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Foreword

This is a greatly revised and expanded version of the book Cardinal func-
tions on Boolean algebras, Birkhäuser 1990. Known mistakes in that book have
been corrected, and many of the problems stated there have solutions in the present
treatment. At the same time, many new problems are formulated here; some as
development of the solved problems from the earlier work, but most as a result of
more careful study of the notions. The book is supposed to be self-contained, and
for that reason many classical results are included.

For help on this book I wish to thank E. K. van Douwen, K. Grant, L.
Heindorf, I. Juhász, S. Koppelberg, P. Koszmider, P. Nyikos, D. Peterson, M.
Rubin, S. Shelah, and S. Todorčević. Unpublished results of some of these people
are contained here, sometimes with proofs, with their permission. As the reader
will see, my greatest debt is to Saharon Shelah, who has worked on, and solved,
many of the problems stated in the 1990 book as well as in preliminary versions
of this book.

Of course I am always eager to hear about solutions of problems, mistakes,
etc. Electronic lists of errata and the status of the open problems are maintained,
initially on the anonymous ftp server of euclid.colorado.edu, directory pub/babib;
on www, go to ftp://euclid.colorado.edu/pub/babib.

J. Donald Monk
Boulder, Colorado

monkd@euclid.colorado.edu
July, 1995
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0. Introduction

This book is concerned with the theory of the most common functions k which
assign to each infinite Boolean algebra A a cardinal number kA. Examples of such
functions are the cardinality of the algebra A, and sup{|X| : X is a family of
pairwise disjoint elements of A}. We have selected 21 such functions as the most
important ones, and others are briefly treated. In Chapter 24 we list most of the
additional functions mentioned in the book, as well as some new ones. For each
function one can consider two very general questions: (1) How does the function
behave with respect to algebraic operations, e.g., what is the value of k on a
subalgebra of A in terms of its value on A? (2) What can one say about other
cardinal functions naturally derived from a given one, e.g., what is sup{kB : B is
a homomorphic image of A}? Another very general kind of question concerns the
relationships between the various cardinal functions: some of them are always less
or equal certain others. We shall shortly be more specific about what these three
general questions amount to. The purpose of this book is to survey this area of the
theory of BAs, giving proofs for a large number of results, some of which are new,
mentioning most of the known results, and formulating open problems. Some of
the open problems are somewhat vague (“Characterize. . . ” or something like that),
but frequently these are even more important than the specific problems we state;
so we have opted to enumerate problems of both sorts in order to focus attention
on them. But there are some natural questions which are not given formally as
problems, since we have not thought much about them.

The framework that we shall set forth and then follow in investigating car-
dinal functions seems to us to be important for several reasons. First of all, the
functions themselves seem intrinsically interesting. Many of the questions which
naturally arise can be easily answered on the basis of our current knowledge of
the structure of Boolean algebras, but some of these answers require rather deep
arguments of set theory, algebra, or topology. This provides another interest in
their study: as a natural source of applications of set-theoretical, algebraic, or
topological methods. Some of the unresolved questions are rather obscure and
uninteresting, but some of them have a general interest. Altogether, the study of
cardinal functions seems to bring a unity and depth to many isolated investigations
in the theory of BAs.

There are several surveys of cardinal functions on Boolean algebras, or, more
generally, on topological spaces: See Arhangelskĭı [78], Comfort [71], van Douwen
[89], Hodel [84], Juhász [71], Juhász [80], Juhász [84], Monk [84], and Monk [90]
(upon which this book is based). We shall not assume any acquaintance with any
of these. On the other hand, we shall frequently refer to results proved in Part I
of the Handbook of Boolean Algebras, Koppelberg [89a].

Definition of the cardinal functions considered.

Cellularity. A subset X of a BA A is called disjoint if its members are pairwise
disjoint. The cellularity of A, denoted by cA, is
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sup{|X| : X is a disjoint subset of A}.
Depth. DepthA is

sup{|X| : X is a subset of A well-ordered by the Boolean ordering}.
Topological density. The density of a topological space X, denoted by dX, is
the smallest cardinal κ such that X has a dense subspace of cardinality κ. The
topological density of a BA A, also denoted by dA, is the density of its Stone space
UltA.

π-weight. A subset X of a BA A is dense in A if for all a ∈ A+ there is an x ∈ X+

such that x ≤ a. The π-weight of a BA A, denoted by πA, is the smallest cardinal
κ such that A has a dense subset of cardinality κ. This could also be called the
algebraic density of A. (Recall that for any subset X of a BA, X+ is the collection
of nonzero elements of X.)

Length. LengthA is
sup{|X| : X is a subset of A totally ordered by the Boolean ordering}.

Irredundance. A subset X of a BA A is irredundant if for all x ∈ X, x /∈ 〈X\{x}〉.
(Recall that 〈Y 〉 is the subalgebra generated by Y .) The irredundance of A, denoted
by IrrA, is

sup{|X| : X is an irredundant subset of A}.
Cardinality. This is just |A|.
Independence. A subset X of A is called independent if X is a set of free gener-
ators for 〈X〉. Then the independence of A, denoted by IndA, is

sup{|X| : X is an independent subset of A}.
π-character. For any ultrafilter F on A, let πχF = min{|X| : X is dense in F}.
Note here that it is not required that X ⊆ F . Then the π-character of A, denoted
by πχA, is

sup{πχF : F an ultrafilter of A}.
Tightness. For any ultrafilter F on A, let tF = min{κ : if Y is contained in UltA
and F is contained in

⋃
Y , then there is a subset Z of Y of power at most κ such

that F is contained in
⋃

Z}. Then the tightness of A, denoted by tA, is
sup{tF : F is an ultrafilter on A}.

Spread. The spread of A, denoted by sA, is
sup{|D| : D ⊆ UltA, and D is discrete in the relative topology}.

Character. The character of A, denoted by χA, is
min{κ : every ultrafilter on A can be generated by at most κ elements}.

Hereditary Lindelöf degree. For any topological space X, the Lindelöf degree
of X is the smallest cardinal LX such that every open cover of X has a subcover
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with at most LX elements. Then the hereditary Lindelöf degree of A, denoted by
hLA, is

sup{LX : X is a subspace of UltA}.
Hereditary density. The hereditary density of A, hdA, is

sup{dS : S is a subspace of UltA}.
Incomparability. A subset X of A is incomparable if for any two distinct elements
x, y ∈ X we have x �≤ y and y �≤ x. The incomparability of A, denoted by IncA, is

sup{|X| : X is an incomparable subset of A}.
Hereditary cofinality. This cardinal function, h-cofA, is

min{κ : for all X ⊆ A there is a C ⊆ X with |C| ≤ κ and C cofinal in X}.
Number of ultrafilters. Of course, this is the same as the cardinality of the
Stone space of A, and is denoted by |UltA|.
Number of automorphisms. We denote by AutA the set of all automorphisms
of A. So this cardinal function is |AutA|.
Number of endomorphisms. We denote by EndA the set of all endomorphisms
of A, and hence this cardinal function is |EndA|.
Number of ideals of A. We denote by IdA the set of all ideals of A, so here we
have the cardinal function |IdA|.
Number of subalgebras of A. We denote by SubA the set of all subalgebras of
A; |SubA| is this cardinal function.

Some classifications of cardinal functions

Some theorems which we shall present, especially some involving unions or ultra-
products, are true for several of our functions, with essentially the same proof. For
this reason we introduce some rather ad hoc classifications of the functions. Some
of the statements below are proved later in the book.

A cardinal function k is an ordinary sup-function with respect to P if P is a
function assigning to every infinite BA A a subset PA ofPA so that the following
conditions hold for any infinite BA A:

(1) kA = sup{|X| : X ∈ PA};
(2) If B is a subalgebra of A, then PB ⊆ PA and X ∩B ∈ PB for any X ∈ PA.
(3) For each infinite cardinal κ there is a BA C of size κ such that there is an
X ∈ PC with |X| = κ.

Table 0.1 lists some ordinary sup-functions.
Given any ordinary sup-function k with respect to a function P and any

infinite cardinal κ, we say that A satisfies the κ−k−chain condition provided that
|X| < κ for all X ∈ PA.
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Table 0.1

Function The subset PA

cA {X : X is disjoint}

DepthA {X : X is well-ordered by the Boolean ordering of A}

LengthA {X : X is totally ordered by the Boolean ordering of A}

IrrA {X : X is irredundant}

IndA {X : X is independent}

sA {X : X is ideal-independent}

IncA {X : X is incomparable}

A cardinal function k is an ultra-sup function with respect to P if P is a function
assigning to each infinite BA a subset PA ofPA such that the following conditions
hold:

(1) kA = sup{|X| : X ∈ PA}.
(2) If 〈Ai : i ∈ I〉 is a sequence of BAs, F is an ultrafilter on I, and Xi ∈ PAi for
all i ∈ I, then {f/F : fi ∈ Xi for all i ∈ I} ∈ P

(∏
i∈I Ai/F

)
.

All of the above ordinary sup-functions except Depth are also ultra-sup functions.
For the next classification, extend the first-order language for BAs by adding

two unary relation symbols F and P. Then we say that k is a sup-min function if
there are sentences ϕ(F,P) and ψ(F) in this extended language such that:

(1) For any BA A we have kA = sup{min{|P | : (A,F, P ) |= ϕ} : A is infinite and
(A,F ) |= ψ}.
(2) ϕ has the form ∀x ∈ P(x �= 0 ∧ ϕ′(F)) ∧ ∀x0 . . . xn−1 ∈ F∃y ∈ Pϕ′′(F).
(3) (A,F ) |= ψ(F)→ ∃x(x �= 0 ∧ ϕ′(F)).

Some sup-min functions are listed in Table 0.2, where μ(F) is the formula saying
that F is an ultrafilter.

Table 0.2

Function ψ(F) ϕ(F,P)

π ∀xFx ∀x ∈ P(x �= 0) ∧ ∀x ∈ F∃y ∈ P(x �= 0→ y ≤ x)

πχ μ(F) ∀x ∈ P(x �= 0) ∧ ∀x ∈ F∃y ∈ P(y ≤ x)

χ μ(F) ∀x ∈ P(x �= 0 ∧ x ∈ F) ∧ ∀x ∈ F∃y ∈ P(y ≤ x)

h-cof ∀xFx ∀x ∈ P(x �= 0 ∧ x ∈ F) ∧ ∀x ∈ F∃y ∈ P(y ≥ x)
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A cardinal function k is an order-independence function if there exists a sentence
ϕ in the language of (ω,<, ω, ω) such that the following two conditions hold:

(1) For any infinite BA A we have kA = sup{λ : there exists a sequence 〈aα : α <
λ〉 of elements of A such that for all finite G,H ⊆ λ such that (λ,<,G,H) |= ϕ
we have

∏
α∈G aα ·

∏
α∈H −aα �= 0}.

(2) If λ is an infinite cardinal, (λ,<,G,H) |= ϕ, G′,H ′ ⊆ λ, and f is a one-to-one
function from G ∪H onto G′ ∪H ′ such that for all α, β ∈ G ∪H, if α < β then
fα < fβ, then (λ,<,G′,H ′) |= ϕ.

Some order-independence functions are listed in Table 0.3.

Table 0.3

Function ϕ

t ∀x ∈ G∀y ∈ H (x < y)

hd ∃x ∈ G∀y ∈ G (x = y) ∧ ∀x ∈ G∀y ∈ H (x < y)

hL ∃x ∈ H∀y ∈ H (x = y) ∧ ∀x ∈ G∀y ∈ H (x < y)

Algebraic properties of a single function.

Now we go into more detail on the properties of a single function which we shall
investigate. From the point of view of general algebra, the main questions are:
what happens to the cardinal function k under the passage to subalgebras, ho-
momorphic images, products, and free products? There are natural problems too
about more special operations on algebras in general, or on Boolean algebras in
particular: what happens to k under weak products, amalgamated free products,
unions of well-ordered chains of subalgebras, ultraproducts, dense subalgebras,
subdirect products, global sections of sheaves, Boolean products, Boolean powers,
set products, one-point gluing, Aleksandroff duplication, and the exponential? The
mentioned operations which are not discussed in the Handbook will be explained
in Chapter 1. Several of these operations are discussed for many of our functions,
but only in the case of cellularity do we discuss all of them somewhat thoroughly.

One may notice that several of the above functions, such as depth and spread,
are defined as supremums of the cardinalities of sets satisfying some property P .
So, a natural question is whether such sups are attained, that is, with depth as an
example, whether for every BA A there always is a subset X well-ordered by the
Boolean ordering, with |X| = DepthA. Of course, this is only a question in case
DepthA is a limit cardinal. For such functions k defined by sups, we can define a
closely related function k′; k′A is the least cardinal such that there is no subset of
A with the property P . So k′A = (kA)+ if k is attained, and k′A = kA otherwise.



6 0. Introduction

Derived operations.

From a given cardinal function one can define several others; part of our work is to
see what these new cardinal functions look like; frequently it turns out that they
coincide with another of our basic 21 functions, but sometimes we arrive at a new
function in this way:

kH+A = sup{kB : B is a homomorphic image of A}.
kH−A = inf{kB : B is an infinite homomorphic image of A}.
kS+A = sup{kB : B is a subalgebra of A}.
kS−A = inf{kB : B is an infinite subalgebra of A}.
kh+A = sup{kY : Y is a subspace of UltA}.
kh−A = inf{kY : Y is an infinite subspace of UltA}.

dkS+A = sup{kB : B is a dense subalgebra of A}.
dkS−A = inf{kB : B is a dense subalgebra of A}.

Note that kh+A and kh−A make sense only if k is a function which naturally
applies to topological spaces in general as well as BAs. Any infinite Boolean space
has a denumerable discrete subspace, and frequently kh− will take its value on
such a subspace.

Given a function defined in terms of ultrafilters, like character above, there
is usually an associated function l assigning a cardinal number to each ultrafilter
on A. Then one can introduce two cardinal functions on A itself:

lsupA = sup{lF : F is an ultrafilter on A}.
linfA = inf{lF : F is a non-principal ultrafilter on A}.

Another kind of derived function applies to cases where the function is defined as
the sup of cardinalities of sets X with a property P , where P is such that maximal
families with the property P exist (usually seen by Zorn’s lemma). For such a
function k, we define

kmmA = min{|X| : X is an infinite maximal family satisfying P}.

The derived functions so far mentioned are really cardinal functions. We also
consider the following two spectrum functions, which assign to each BA a set
of cardinal numbers:

kHsA = {kB : B is an infinite homomorphic image of A}
(the homomorphic spectrum of A)

kSsA = {kB : B is an infinite subalgebra of A}
(the subalgebra spectrum of A)
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It is also possible to define a caliber notion for many of our functions, in analogy to
the well-known caliber notion for cellularity. Given a property P associated with
a cardinal function, a BA A is said to have κ, λ,P-caliber if among any set of λ
elements of A there are κ elements with property P. It is hard to be very precise
about this notion in general, but it has been extensively studied for cellularity, and
studied somewhat for independence. The property P is not necessarily one used to
define the function; thus for cellularity P is the finite intersection property, while
for independence it is, indeed, independence.

Comparing two functions

Given two cardinal functions k and l, one can try to determine whether kA ≤
lA for every BA A or lA ≤ kA for every BA A. Given that one of these cases
arises, it is natural to consider whether the difference can be arbitrarily large (as
with cellularity and spread, for example), or if it is subject to restrictions (as
with depth and length). If no general relationship is known, a counterexample is
needed, and again one can try to find a counterexample with an arbitrarily large
difference between the two functions. Of course, the known inequalities between our
functions help in order to limit the number of cases that need to be considered for
constructing such counterexamples; here the diagrams in Chapter 25 are sometimes
useful. For example, knowing that πχ can be greater than c, we also know that χ
can be greater than c.

Other considerations

In addition to the above systematic goals in discussing cardinal functions, there
are some more ideas which we shall not explore in such detail. One can compare
several cardinal functions, instead of just two at a time. Several deep theorems
of this sort are known, and we shall mention a few of them. There are also a
large number of relationships between cardinal functions which involve cardinal
arithmetic; for example, LengthA ≤ 2DepthA for any BA A. We mention a few of
these as we go along.

One can compare two cardinal functions while considering algebraic oper-
ations; for example, comparing functions k, l with respect to the formation of
subalgebras. We shall investigate just two of the many possibilities here:

kSrA = {(κ, λ): there is an infinite subalgebra B of A such that |B| = λ and
kB = κ}.

kHrA = {(κ, λ): there is an infinite homomorphic image B of A such that
|B| = λ and kB = κ}.
These are called, respectively, the subalgebra k relation and the homomorphic k
relation. For each function k, it would be nice to be able to characterize the possible
relations kSr and kHr in purely cardinal number terms.

Another general idea applies to several functions that are defined somehow
in terms of finite sets; the idea is to take bounded versions of them. For example,
independence has bounded versions: for any positive integer n, a subset X of a BA
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A is called n-independent if for every subset Y of X with at most n elements and
every ε ∈ Y 2 we have

∏
y∈Y yεy �= 0. (Here x1 = x, x0 = −x for any x.) And then

we define IndnA = sup{|X| : X is n-independent}. It is interesting to investigate
this notion and its relationship to actual independence; and similar things can be
done for various other functions.

Special classes of Boolean algebras

We are interested in all of the above ideas not only for the class of all BAs, but
also for various important subclasses: complete BAs, interval algebras, tree alge-
bras, and superatomic algebras, which are discussed in the Handbook. To a lesser
extent we give facts about cardinal functions for other subclasses like all atomic
BAs, atomless BAs, initial chain algebras, minimally generated algebras, pseudo-
tree algebras, semigroup algebras, and tail algebras. In Chapter 2 we describe
some properties of the special classes mentioned which are not discussed in the
Handbook, partly to establish notation.



1. Special operations on
Boolean algebras

We give the basic definitions and facts about several operations on Boolean alge-
bras which were not discussed in the Handbook. We first make some additional
comments on the Boolean algebra of global sections of sheaves.

Sheaves

If 〈Ax : x ∈ X〉 is a system of Boolean algebras, B is a subalgebra of
∏

x∈X Ax,
and a topology is given on X, then we say that B,X has the patchwork property
if the following holds:

For any two f, g ∈ B and any clopen subset N of X, the function (f � N) ∪ (g �
(X\N)) is in B.

Next, if S = 〈S, π,X, 〈Bp〉p∈X〉 is a sheaf of Boolean algebras, we denote by
GsS the BA of global sections of S .

Theorem 1.1. If S = 〈S, π,X, 〈Bp〉p∈X〉 is a sheaf of Boolean algebras, then
GsS ,X has the patchwork property. Moreover ClopX is isomorphic to a subalgebra
of GsS .

Proof. Assume the hypotheses of the definition of patchwork property for GsS ,X,
and let h = (f � N) ∪ (g � (X\N)). Then for any open subset U of S we have
h−1[U ] = (N∩f−1[U ])∪(g−1[U ]\N), proving that h−1[U ] is open. Thus h ∈ GsS ,
proving the patchwork property. The second assertion of the theorem follows from
the first part using characteristic functions.

Boolean products

For the notion of Boolean products see Burris, Sankappanavar [81], whose notation
we follow. We recall the definition. A Boolean product of a system 〈Ax : x ∈ X〉 of
BAs is a subdirect product B of 〈Ax : x ∈ X〉 such that X can be endowed with
a Boolean topology so that the following conditions hold:

(1) For any two f, g ∈ B the set [[f = g]] def= {x ∈ X : fx = gx} is clopen in X.
(2) B,X has the patchwork property.

Theorem 1.2. Up to isomorphism, Boolean products coincide with the global sec-
tion algebras in which the index space is Boolean and the sheaf space is Hausdorff.

Proof. First suppose that we are given a sheaf S = 〈S, π,X, 〈Ax〉x∈X〉 with
X Boolean and S Hausdorff. Let B be the algebra of global sections of S . By
Theorems 8.13 and 8.15 of the Handbook, part I, B is a subdirect product of
〈Ax : x ∈ X〉 and (1) holds; by Theorem 1.1, B,X has the patchwork property.

The other direction takes more work. Let a Boolean product be given as in
the definition above. Without loss of generality we may assume that the sets Ax

are pairwise disjoint, and we let S =
⋃

x∈X Ax. It is “merely” a matter of putting
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a Hausdorff topology on S so that we get a sheaf such that B coincides with the
BA of global sections of the sheaf. For each b ∈ B define fb : X → S by fbx = bx.
As a base for the desired topology we take

{fb[U ] : U is clopen in X, b ∈ B}.

First we show:

(1) The above set is a base for a topology on S.

To show this, suppose that a ∈ fb1[U1] ∩ fb2[U2]. Say a ∈ Ax for a certain x ∈ X.
Thus there exist xi ∈ Ui such that a = fbixi for i = 1, 2. Thus a = (bi)xi , and so
x1 = x2. Let

V = U1 ∩ U2 ∩ [[b1 = b2]].

Then clearly

a ∈ fb1[V ] ⊆ fb1[U1] ∩ fb2[U2],

as desired. And for any s ∈ S, say s ∈ Ax, choose b ∈ B with bx = s. Then
s ∈ fb[X]. This proves (1).

Next, let π be as in Definition 8.14 of Part I of the BA handbook. To show
that π is continuous, it suffices to note that for U open in X we have

π−1[U ] =
⋃
b∈B

fb[U ].

The following statements, easily verified, show that π is an open mapping:

(2) πfbp = p.
(3) pi[fb[U ]] = U .

That π is a local homeomorphism also follows easily from (2): Given s ∈ S, say
s ∈ Ap and bp = s, b ∈ B. Then π � fb[X] is one-one by (2), and fb[X] is a
neighborhood of s.

We still need to check the dreaded condition 8.14(d′). We first note that the
following simplified form of it implies 8.14(d′) itself in an easy manner:

(4) Let U ⊆ X be open, f1, . . . , fn sections over U , and 0 ≤ i ≤ n. Then the set

{p ∈ U : f1p · . . . · fip · −fi+1p · . . . · −fnp = 0}

is open.
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To prove (4), note that

{p ∈ U : f1p · . . . · fip · −fi+1p · . . . · −fnp = 0}
= U ∩

⋃
b1,...,bn∈B

{p ∈ X : fip = (bi)p (i = 1, . . . , n) and

(b1)p · . . . · (bi)p · −(b(i + 1))p · . . . · −(bn)p = 0}

= U ∩
⋃

b1,...,bn∈B

( ⋂
1≤i≤n

{p ∈ X : fip = (bi)p}∩

{p ∈ X : [(b1) · . . . · (bi) · −(b(i + 1)) · . . . · −(bn)]p = 0}
)

;

hence it suffices to show that each set {p ∈ X : fip = (bi)p} is open; but this is
clear, since this set is f−1

i [fbi[X]].
Thus we have a sheaf. Now we need to show that B is exactly the set of all

global sections with respect to this sheaf. First take any b ∈ B. To show that b is
continuous, also take a typical member fc[U ] of the base for the topology on S.
Then

b−1[fc[U ]] = {p ∈ X : bp = fcq for some q ∈ U}
= {p ∈ X : bp = cq for some q ∈ U}
= {p ∈ X : bp = cp and p ∈ U}
= [[b = c]] ∩ U.

On the other hand, suppose that g ∈ ∏
x∈X Ax is continuous; we need to show

that g ∈ B. By compactness (as we shall describe in detail below) it suffices to
take any x ∈ X and find a clopen neighborhood U of x and a b ∈ B such that
g � U = b � U . In fact, take b ∈ B such that bx = gx, and let U = g−1[fb[X]].
Then gx = bx = fbx, so x ∈ U . And if y ∈ U , then

gy = fbz for some z ∈ X

= bz for some z ∈ X

= by,

as desired. We may assume that U is clopen. By compactness, we get a finite
sequence 〈bi : i < n〉 of elements of B and 〈Ui : i < n〉 of clopen subsets of X such
that

⋃
i<n Ui = X and g � Ui = bi � Ui for all i < n. We may assume that the Ui’s

are pairwise disjoint. Then the patchwork property yields that g ∈ B. Finally, S
is Hausdorff by Theorem 8.13.

Boolean powers

The notion of Boolean power is related to that of Boolean product. To some extent
this notion reduces to more familiar notions. In fact, bounded Boolean powers



12 1. Special operations

coincide with free products, while the unbounded Boolean powers are in between
the free product and its completion. We prove these facts here; the first one is due
to Quackenbush [72].

First we recall the definitions of Boolean power and bounded Boolean power,
from Burris [75]. Given two BAs A and B, with B complete, the Boolean power
A[B] consists of all f ∈ AB such that the following two conditions hold:

(1) If a0, a1 ∈ A with a0 �= a1 then fa0 · fa1 = 0;
(2)

∑
a∈A fa = 1.

The Boolean operations on A[B] are defined like this:

(f + g)a =
∑

b+c=a

(fb · gc);

(f · g)a =
∑

b·c=a

(fb · gc);

(−f)a = f(−a);

0a = 0, if a �= 0;
0a = 1, if a = 0;
1a = 0, if a �= 1;
1a = 1, if a = 1.

It is easy to verify that A[B] is a BA. The bounded Boolean power of A and B,
denoted by A[B]∗, consists of those f ∈ A[B] such that {a ∈ A : fa �= 0} is finite;
in this case, we do not need to require that B is complete; and clearly A[B]∗ is a
BA.

Theorem 1.3. Let A and B be BAs. Then C
def= {f ∈ UltBA : f is continuous

(with A having the discrete topology)} is a subalgebra of UltBA which is isomorphic
to A[B]∗. Moreover, C is a Boolean product of 〈A : p ∈ UltB〉.
Proof. Clearly the 0 function is in C. If f ∈ C, then −f ∈ C, since for any X ⊆ A,

(−f)−1[X] = {p ∈ UltB : (−f)p ∈ X}
= {p ∈ UltB : fp ∈ {a ∈ A : −a ∈ X}}
= f−1[{a ∈ A : −a ∈ X}],

and this last set is open. If f, g ∈ C, then f + g ∈ C, since for any X ⊆ A we have

(f + g)−1[X] = {p ∈ UltB : fp + gp ∈ X}
=

⋃
a+b∈X

{p ∈ UltB : fp = a and gp = b}

=
⋃

a+b∈X

(f−1[{a}] ∩ g−1[{b}])],

and the last set is open. This shows that C is a subalgebra of UltBA.
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Note that for any f ∈ C and a ∈ A the set {p ∈ UltB : fp = a} is clopen, since
this set is equal to f−1[{a}], and its complement is equal to

⋃
a′∈A\{a} f−1[{a′}],

which is open. Hence we may define (Ff)a to be the unique b ∈ B such that
{p ∈ UltB : fp = a} = Sb. We now show that F is an isomorphism of C onto
A[B]∗. First we note the following:

(1) if f ∈ C and a0, a1 ∈ A and a0 �= a1, then (Ff)a0 · (Ff)a1 = 0;
(2) if f ∈ C then UltB =

⋃
a∈A S((Ff)a), and

∑
a∈A(Ff)a = 1.

In fact, for any p ∈ UltB we have p ∈ S((Ff)(fp)), so UltB =
⋃

a∈A S((Ff)a),
and (2) follows.

(3) If f ∈ C, then {a ∈ A : (Ff)a �= 0} is finite.

This is clear by (1), (2), and the compactness of UltA.
Now we check that F is a homomorphism. For any f ∈ C we have (F (−f))a =

(Ff)(−a) [hence F (−f) = −(Ff)], since for any p ∈ UltB we have

p ∈ S((F (−f))a) iff (−f)p = a

iff fp = −a

iff p ∈ S((Ff)(−a)).

Next, for any f, g ∈ C and a ∈ A we have (F (f + g))a =
∑

b+c=a((Ff)b · ((Ff)c))
[hence Ff + Fg = F (f + g)], since for any p ∈ Ult B we have

p ∈ S(F (f + g)a) iff (f + g)p = a

iff ∃b, c(fp = b ∧ gp = c ∧ b + c = a)
iff ∃b, c(p ∈ S((Ff)b) ∧ p ∈ S((Fg)c) ∧ b + c = a)
iff ∃b, c(p ∈ S((Ff)b · (Fg)c) ∧ b + c = a)

iff p ∈ S(
∑

b+c=a

((Ff)b · (Fg)c)).

[The last equivalence holds since there are only finitely many nonzero summands.]
Next, F is one-one: if f ∈ C\{0}, say fp �= 0; then p ∈ S(((Ff)(fp)), so

Ff �= 0. F is onto: given g ∈ A[B]∗, define f : UltB → A by setting fp = the
a ∈ A such that ga ∈ p. [This is legal since

∑
a∈A ga = 1, 〈ga : a ∈ A〉 is a disjoint

system, and {a ∈ A : ga �= 0} is finite.] If X ⊆ A, then

f−1[X] = {p ∈ UltB : fp ∈ X}
= {p ∈ UltB : g[X] ∩ p �= 0}
= S(

∑
a∈X,ga�=0

ga).
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Thus f−1[X] is clopen. So f ∈ C. For any a ∈ A we have (Ff)a = ga, since for
any p ∈ UltB we have

p ∈ S((Ff)a) iff fp = a

iff ga ∈ p

iff p ∈ S(ga).

Hence F is the desired isomorphism.
Finally, condition (2) in the definition of Boolean product clearly works for

C. Now let f, g ∈ C. Then

[[f = g]] =
⋃

a∈A

(f−1[{a}] ∩ g−1[{a}],

so [[f = g]] is open, and

UltB\[[f = g]] =
⋃

a,a′∈A,a�=a′
(f−1[{a}] ∩ g−1[{a′}],

so [[f = g]] is clopen.

Theorem 1.4. For any BAs A and B we have A[B]∗ = A⊕B ≤ A[B] ≤ A⊕B,
where ≤ means “is a subalgebra of” and A⊕B is the completion of A⊕B.

Proof. We define embeddings g of A into A[B]∗ and h of B into A[B]∗. For any
a ∈ A, let

(ga)a′ =
{

1, if a = a′;
0, otherwise.

It is straightforward to check that ga ∈ A[B]∗, and that, in fact, g is an isomorphic
embedding of A into A[B]∗.

Next, define for any b ∈ B

(hb)a =

{ 0, if a �= 0, 1;
b, if a = 1;
−b, if a = 0.

Again, it is straightforward to check that hb ∈ A[B]∗, and that h is an isomorphic
embedding of B into A[B]∗.

If a ∈ A+ and b ∈ B+, then ga · hb �= 0 since (ga · hb)a ≥ b. Hence to prove
the theorem it suffices to prove the following: for any ξ ∈ A[B], let X = {a ∈ A+ :
ξa �= 0}. Then

(1) ξ =
∑
a∈X

ga · hξa.
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To prove this, it is convenient to prove the following fact first: for a ∈ A+, b ∈ B+,
and a′ ∈ A we have

(ga · hb)a′ =

⎧⎨
⎩

b, if a = a′;
−b if a′ = 0;
0, otherwise.

We leave this proof to the reader. Then it is easy to show that ξ is an upper bound
for {ga ·hξa : a ∈ X}. If η is any upper bound for this set, then one can prove the
following two facts, valid for any a ∈ A:

ξa =
∑
a≤c

ξa · ηc;

∑
a�≤c

ξa · ηc = 0.

From these two facts ξ ≤ η follows easily. Here are the details on the proofs of the
two facts. They are clear for a = 0 and for ξa = 0. Suppose a ∈ X. Then

ξa = (ga · hξa)a
= (ga · hξa · η)a

=
∑

b·c=a

(ga · hξa)b · ηc

=
∑

a·c=a

ξa · ηc,

giving the first equality above. For the second, if a �≤ c, then

ηc · ξa =
∑
a≤d

ξa · ηd · ηc = 0,

which yields the second equality above.

For conditions under which A[B] is equal to A⊕B see Dwinger [82] and Takahashi
[88].

Set products

This operation, due to Weese and Gurevich independently, is extensively studied
in Heindorf [90]. Suppose that 〈Ai : i ∈ I〉 is a system of BAs; we assume that
Ai is a field of subsets of some set Ji, and that the Ji’s are pairwise disjoint.
Furthermore, let B be an algebra of subsets of I containing all of the finite subsets
of I. For each b ∈ B let b̄ =

⋃
i∈b Ji. Set K =

⋃
i∈I Ji. For each b ∈ B, each finite

F ⊂ I, and each a ∈∏
i∈F Ai, the set

b̄ ∪
⋃
i∈F

ai
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will be denoted by h(b, F, a). It is easily checked that the set of all such elements
h(b, F, a) forms a field of subsets of K. This BA is the set product of the Ai’s over
B, and is denoted by

∏B
i∈I Ai. Finco I is the BA of finite and cofinite subsets of I.

Theorem 1.5. Suppose that 〈Ai : i ∈ I〉 is a system of BAs; each Ai is a field of
subsets of some set Ji, the Ji’s are pairwise disjoint.

(i) If Finco I ≤ B ≤ C ≤PI, then
∏B

i∈I Ai ≤
∏C

i∈I Ai.
(ii) If Finco I ≤ B ≤PI, then

∏B
i∈I Ai can be embedded in

∏
i∈I Ai.

(iii)
∏w

i∈I Ai
∼=

∏Finco I
i∈I Ai.

Proof. (i) is clear. For (ii), define (fx)i = x ∩ Ji for any x ∈ ∏B
i∈I Ai and each

i ∈ I; it is easy to check that f is the desired embedding. In case B = Finco I,
this mapping is easily seen to be onto, proving (iii).

Theorem 1.6. Assume the hypotheses of Theorem 1.5, and suppose that L
def=

{i ∈ I : |Ai| > 2} is infinite. Then
∏B

i∈I Ai is not complete.

Proof. For each i ∈ L choose ai ∈ Ai such that 0 ⊂ ai ⊂ Ji. Suppose that
∑

i∈L ai

exists in
∏B

i∈I Ai; say it is equal to h(b, F, c), where we may assume that b∩F = 0.
Fix i ∈ L\F . Then ai ⊆ h(b, F, c) implies that i ∈ b. But then h(b\{i}, F ′, c′) is
still an upper bound, where F ′ = F ∪ {i} and c′ extends c with c′i = ai. Since
h(b\{i}, F ′, c′) ⊂ h(b, F, c), this is a contradiction.

It is clear that if each Ai is atomless, then so is
∏B

i∈I Ai; similarly for each Ai

atomic. Also note that B can be isomorphically embedded in
∏B

i∈I Ai. It is some-
what less trivial to check that the set product preserves superatomicity:

Theorem 1.7. If each Ai is superatomic and also B is superatomic, then
∏B

i∈I Ai

is superatomic.

Proof. For brevity write C =
∏B

i∈I Ai. It suffices to show that if f is a homo-
morphism from C onto a nontrivial BA D, then D has an atom. We consider two
cases.

Case 1. fJi �= 0 for some i ∈ I. Let fui be an atom of f [Ai]; this is possible
since Ai is superatomic. We claim that fui is also an atom of D. For, suppose that
x ∈ C and fx · fui �= 0. Then 0 �= x · ui ∈ Ai, and so 0 �= f(x · ui) ∈ f [Ai] and
hence fui = f(x · ui) ≤ fx, as desired.

Case 2. fJi = 0 for all i ∈ I. Since D is nontrivial, f [{h(b, 0, 0) : b ∈ B}] = D.
Then B being atomic yields the desired atom.

One-point gluing

Our next algebraic operation is one-point gluing. Suppose we are given a system
〈Ai : i ∈ I〉 of BAs, and a corresponding system 〈Fi : i ∈ I〉 of ultrafilters: Fi is an
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ultrafilter on Ai for each i ∈ I. The one-point gluing of the pair (〈Ai : i ∈ I〉, 〈Fi :
i ∈ I〉) is the following subalgebra of the direct product

∏
i∈I Ai:

{x ∈
∏
i∈I

Ai : for all i, j ∈ I(xi ∈ Fi iff xj ∈ Fj)}.

In the case of two factors Ai and Aj this amounts to identifying the two points
Fi and Fj in the disjoint union of the Stone spaces; this is a special case of the
following theorem.

Theorem 1.8. Let 〈Ai : i ∈ I〉 be a system of BAs, and let 〈Fi : i ∈ I〉 be a
system with Fi an ultrafilter on Ai for each i ∈ I. Let C =

∏
i∈I Ai, and let B be

the one-point gluing of the pair (〈Ai : i ∈ I〉, 〈Fi : i ∈ I〉). Then for each i ∈ I the
set F ′

i
def= {x ∈ C : xi ∈ Fi} is an ultrafilter on C. Further, let K = {F ′

i : i ∈ I}.
Let X be the quotient of UltC obtained by collapsing K to a point. Then UltB is
homeomorphic to X.

Proof. The first assertion of the theorem is obvious. Now let π be the natural
continuous mapping of UltC onto X. We now define g from UltB into X by
setting g(F ∩ B) = πF for any ultrafilter F on C. To see that g is well-defined,
suppose that F ∩B = G∩B, where F and G are ultrafilters on C. If both F and
G are in K, obviously πF = πG. Now suppose, say, that F /∈ K. We claim then
that F = G. Suppose to the contrary that F �= G. Choose u ∈ F\G. Now choose
x ∈ F such that SCx ∩K = 0. Here SC is the Stone map associated with C. If
(x ·u)i ∈ Fi for some i ∈ I, then x ·u ∈ F ′

i , and hence SCx∩K �= 0, contradiction.
Thus (x · u)i /∈ Fi for all i ∈ I, and consequently x · u ∈ B. But x · u ∈ F , so
x · u ∈ G and so u ∈ G, contradiction.

g is one-one: suppose that F and G are ultrafilters on C and πF = πG; we
want to show that F ∩B = G∩B. We may assume that F,G ∈ K. Let x ∈ B; by
symmetry we want to show that if x ∈ F then x ∈ G. So, assume that x ∈ F . Thus
F ∈ SCx so, since F ∈ K, we can choose i ∈ I so that F ′

i ∈ SCx. Thus x ∈ F ′
i

and so xi ∈ Fi. If x /∈ G, then −x ∈ G, and a similar argument gives −xj ∈ Fj for
some j ∈ I. This contradicts the assumption that x ∈ B.

g maps onto X: let F ∈ X. If F /∈ K, then g(F ∩ B) = F . If F is the point
which is the collapse of K, then for any i ∈ I we have g(F ′

i ∩B) = F .
g is continuous: suppose that U is open in X, and F ∩ B ∈ g−1[U ], where

F is an ultrafilter on C. Thus πF ∈ U , and hence F ∈ π−1[U ]. So, choose x ∈ C
so that F ∈ SCx ⊆ π−1[U ]. Case 1. F /∈ K. Choose y ∈ C so that F ∈ SCy and
SCy ∩K = 0. Thus F ∈ SC(x · y), and clearly x · y ∈ B. We claim that F ∩B ∈
SB(x ·y) ⊆ g−1[U ]. Obviously F ∩B ∈ SB(x ·y). Suppose that x ·y ∈ G∩B, where
G is an ultrafilter on C. Then G ∈ SCx, and hence g(G∩B) = πG ∈ U , as desired.
Case 2. F ∈ K. Thus K ⊆ π−1[U ]. Choose y ∈ C such that K ⊆ SCy ⊆ π−1[U ].
Thus y ∈ B. We claim that F ∈ SBy ⊆ g−1[U ]. Obviously F ∈ SBy. Now
suppose that G ∩ B ∈ SBy, where G is an ultrafilter on C. Then G ∈ SCy, and
g(G ∩B) = πG ∈ U , as desired.

Finally, it is clear that X is Hausdorff.
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The Aleksandroff duplicate

Given a BA A, its Aleksandroff duplicate, denoted by DupA, is the subalgebra of
A×PUltA whose set of elements is

{(a,X) : a ∈ A,X ⊆ UltA, and Sa�X is finite}.

(It is easy to check that this is a subalgebra of A×PUltA; recall that Sa = {F ∈
UltA : a ∈ F}.)

We show now that this is equivalent to the usual definition. (See, for example,
Gardner, Pfeffer [84].) That definition runs like this. Let X be a topological space.
We put a topology on X × 2 as follows: a base consists of all sets

• F × {1}, F a finite subset of X;
• (G× 2)\(F × {1}), G open in X, F a finite subset of X.

Theorem 1.9. Let A be a BA. Under the above topology, UltA × 2 is a Boolean
space, and DupA is isomorphic to Clop(UltA× 2).

Proof. The topology is clearly Hausdorff. Now we show that it is compact. Let O
be a cover of UltA× 2 by basic open sets. Then {G : (G × 2)\(F × {1}) ∈ O for
some open G ⊆ X and some finite F ⊆ X} is an open cover of UltA, so we can
choose

(G1 × 2)\(F1 × {1}), . . . , (Gm × 2)\(Fm × {1}) ∈ O
such that G1, . . . , Gm is a cover of UltA. There are only finitely many elements of
UltA× 2 remaining—some of the elements of (F1 × {1}) ∪ . . . ∪ (Fm × {1})— so
O has a finite subcover.

Next we determine the clopen subsets of UltA×2. Clearly each set F ×{1} is
clopen, when F is a finite subset of UltA. And if G is a clopen subset of UltA and
F is a finite subset of UltA, then (G×2)\(F ×{1}) is clopen, since its complement
is [(UltA\G)× 2] ∪ (F × {1}). These two kinds of clopen subsets form a base for
the topology, so every clopen set is a finite join of these two kinds.

So UltA×2 is a Boolean space. Now we define a function f which will extend
to the desired isomorphism. For any a ∈ A let f(a,Sa) = Sa × 2, and for any
ultrafilter F on A let f(0, {F}) = {F} × {1}. So f maps a set of generators of
DupA onto a set of generators of Clop(UltA×2). An easy application of Sikorski’s
extension criterion shows that f extends to a one-one homomorphism, as desired.

We give some more simple facts about the Aleksandroff duplicate. Note that the
duplicate is always atomic. The following result is easy.

Proposition 1.10. For any BA A, define g : A→ DupA by setting ga = (a,Sa)
for any a ∈ A. Then g is an isomorphism from A into DupA.

The special nature of the duplicate is brought out by the following simple theorem.
For any BA A, let IA

at be the ideal of A generated by its atoms.
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Theorem 1.11. Let A be any BA. Then A/IA
at
∼= DupA/IDupA

at .
Proof. Let π be the natural homomorphism from DupA onto DupA/IDupA

at . We
show that π◦g is a homomorphism from A onto DupA/IDupA

at with kernel IA
at, where

g is as in Proposition 1.10. If (a,X) ∈ DupA, then (a,Sa)�(a,X) = (0,Sa�X) ∈
IDupA
at ; thus π ◦ g maps onto DupA/IDupA

at . Now for any a ∈ A, (π ◦ g)a = 0 iff
(a,Sa) ∈ IDupA

at iff a ∈ IA
at, as desired.

A corollary of this theorem is that if A is superatomic, then so is DupA.

The exponential

Let X be any topological space. ExpX is the collection of all non-empty closed
subspaces of X. We topologize it by taking the collection of sets of the following
form as a base:

V (U1, . . . , Um) def= {F ∈ ExpX : F ⊆ U1 ∪ . . . ∪ Um and F ∩ Ui �= 0 for all i},

where U1, . . . , Um are open in X.

Theorem 1.12. Let X be a compact Hausdorff space. Then ExpX is also Haus-
dorff and compact. Moreover, if X is a Boolean space, then so is ExpX, and the
set

{V (U1, . . . , Um) : each Ui clopen}

is a collection of clopen sets forming a base for the topology on ExpX.

Proof. Hausdorff: suppose that F and G are distinct non-empty closed sets. Say
x ∈ F\G. Let W and U be disjoint open sets such that x ∈ W and G ⊆ U . Thus
G ∈ V (U), F ∈ V (X,W ), and V (U) ∩ V (X,W ) = 0.

Compact: First we note some facts. For each open U in X let TU = {F ∈
ExpX : F ∩ U �= 0}. This is an open set, since TU = V (X,U). Next,

(1) {V (U) : U open} ∪ {TU : U open} is a subbase for the topology on ExpX.

For, V (U1, . . . , Um) = V (U1 ∪ . . . ∪ Um) ∩ TU1 ∩ . . . ∩ TUm .
Now to prove compactness of ExpX, suppose that O is a cover of ExpX by

subbase members in (1). Case 1. {W : TW ∈ O} covers X. Choose W1, . . . ,Wm

with each TWi ∈ O such that X = W1 ∪ . . . ∪Wm. Then {TW1 , . . . , TWm} covers
ExpX, as desired. Case 2. {W : TW ∈ O} does not cover X. Let Y =

⋃
TW ∈O W . So

Y is a proper open subset of X, and hence X\Y ∈ ExpX. Therefore X\Y ∈ V (U)
for some V (U) ∈ O. Thus X\Y ⊆ U , so X\U ⊆ Y . Since X\U is compact, there
exist W1, . . . ,Wm with each TWi ∈ O such that X\U ⊆ W1 ∪ . . . ∪Wm. Hence
{V (U)} ∪ {TW1 , . . . , TWm} covers ExpX, as is easily verified.
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Now assume that X is a Boolean space. Then

(2) If U1, . . . , Um are clopen in X, then V (U1, . . . , Um) is clopen in ExpX.

For, suppose that F ∈ ExpX\V (U1, . . . , Um). Case 1. F �⊆ U1 ∪ . . . ∪ Um. Then
for some Γ ⊆ {1, . . . ,m} we have F ∈ V (X\(U1 ∪ . . . , Um), 〈Ui〉i∈Γ), and this set
is disjoint from V (U1, . . . , Um). Case 2. F ⊆ U1 ∪ . . . ∪ Um. Then for some Γ ⊂
{1, . . . ,m} we have F ∈ V (〈Ui〉i∈Γ), and this set is disjoint from V (U1, . . . , Um).

(3) If U1, . . . , Um,W1, . . . ,Wn are open and F ∈ V (U1, . . . , Um)∩V (W1, . . . ,Wn),
then F ∈ V (〈Ui ∩Wj : F ∩ Ui ∩Wj �= 0〉).
(4) {V (U1, . . . , Um) : each Ui clopen} is a base for the topology on ExpX.

To prove (4), assume that F ∈ V (U1, . . . , Um) with each Ui open; we want to find
clopen W1, . . . ,Wn such that F ⊆ V (W1, . . . ,Wn) ⊆ V (U1, . . . , Um). It suffices by
(3) to show that the set

{ExpX\V (U1, . . . , Um)} ∪ {V (W1, . . . ,Wn) :

each Wi clopen and F ∈ V (W1, . . . ,Wn)}

has empty intersection. Suppose to the contrary that G is in each member of this
set. Case 1. G �⊆ U1 ∪ . . . ∪ Um. Thus G �⊆ F ; say x ∈ G\F . Let W be a clopen
set such that x ∈ W and W ∩ F = 0. Thus F ∈ V (X\W ), so G ∈ V (X\W ),
contradiction. Case 2. G ⊆ U1 ∪ . . . ∪ Um. Since G ∈ ExpX\V (U1, . . . , Um), it
follows that G ∩ Ui = 0 for some i. Say x ∈ F ∩ Ui. Let W be clopen with x ∈W
and W ∩ G = 0. Then F ∈ V (W,X\W ) or F ∈ V (W ), so G ∈ V (W,X\W ) or
G ∈ V (W ), contradiction.

For any BA A, we denote by ExpA the Boolean algebra Clop(Exp(Ult(A))); this
is called the exponential of A.

The following somewhat technical result will be useful.

Proposition 1.13. For any BA A, ExpA is generated by {V (Sa) : a ∈ A}.
Proof. We already know from the proof of Theorem 1.12 that ExpA is generated
by {V (U1, . . . , Um) : each Ui clopen}. So it suffices to see that each element of this
set is generated by {V (Sa) : a ∈ A}. This follows from:

V (Sa1, . . . ,Sam) = V (S(a1 + · · ·+ am)\(V (S(−a1)) ∪ . . . ∪ V (S(−am))).

Here is a useful example of a use of Proposition 1.13.

Proposition 1.14. If A is an infinite BA and 0 < a < 1, then there is a homo-
morphism f from ExpA onto Exp (A � a)⊕ Exp (A � −a).

Proof. For this proof we let V 0 = 0. Note that if x, y ∈ A and V (SAx) = V (SAy),
then x = y. Hence there is a function f such that for all x ∈ A we have fV (SAx) =
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V (SA�a(x · a)) ·V (SA�−a(x · −a)). To show that f extends to a homomorphism of
ExpA into Exp (A � a)⊕ Exp (A � −a), suppose that

(∗) V (SAx0) ∩ . . . ∩ V (SAxm−1) ∩ −V (SAy0) ∩ . . . ∩ −V (SAyn−1) = 0.

Here we may assume that m,n > 0. It follows that x0 · . . . · xm−1 ≤ yi for some
i < n, since otherwise SA(x0 · . . . · xm−1) would be a member of the set in (∗).
Then it easily follows that

fV (SAx0) ∩ . . . ∩ fV (SAxm−1) ∩ −fV (SAy0) ∩ . . . ∩ −fV (SAyn1) = 0,

as desired. Thus f extends to a homomorphism, still denoted by f .
To prove that f is onto, note that

{V (SA�ax) · 1 : x ∈ (A � a)+} ∪ {1 · V (SA�−ax) : x ∈ (A � −a)+}

generates Exp (A � a) ⊕ Exp (A � −a). Now if x ∈ (A � a)+, then f(x + −a) =
V (SA�ax) · 1; similarly for the other desired elements.

Proposition 1.15. If A is atomic, then so is ExpA.

Proof. For each atom a of A, let Fa be the principal ultrafilter determined by a.
Suppose that 〈a0, . . . , am−1〉 is a system of distinct atoms of A. Then

V (Sa0, . . . ,Sam−1) = {{Fa0 , . . . , Fam−1}},

and this is hence an atom of ExpA. Now take any nonzero x ∈ ExpA. To show
that there is an atom below x it suffices to take the case in which x has the form
V (Sb0, . . . ,Sbm−1). Note that each bi is nonzero, since x �= 0, and each element
of x has nonempty intersection with each Sbi. Let ai be an atom below bi for each
i < m. Then {{Fa0 , . . . , Fam−1}} is the desired atom.

Proposition 1.16. If A is atomless, then so is ExpA.

Proof. Suppose that 0 �= x ∈ ExpA; we want to find 0 < y < x. We may assume
that x has the form V (Sb0, . . . ,Sbm−1). Note that each bi is nonzero (see the
proof of Proposition 1.15). And we clearly may assume that all the bi are distinct
from one another. Finally, we may assume that b0 is minimal among them, i.e., if
bi ≤ b0 then i = 0. Now choose 0 < a0 < b0. We claim that the desired element is

y = V (Sa0,S(b1 · −b0), . . . ,S(bm−1 · −b0)).

Clearly y ⊆ x. Let u = a0 + b1 · −b0 + · · · + bm−1 · −b0. Then Su is a member
of y, since if bi · −b0 = 0 with i > 0 we get bi ≤ b0, contradiction. So y �= 0. Let
v = b0 ·−a0 + b1 ·−b0 + · · ·+ bm−1 ·−b0. Clearly Sv is a member of x. Since clearly
v · a0 = 0, it is not a member of y. So y < x.
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From this proposition it follows that the free BA on ω free generators is isomor-
phic to its own exponential. Sirota [68] proved that also the free BA on ω1 free
generators is isomorphic to its own exponential. But Shapiro [76a], [76b] showed
that this does not extend to higher cardinals.

To make this discussion of the exponential more concrete, we describe the
exponential for A the finite-cofinite algebra on an infinite cardinal κ. For each
α < κ let Fα be the ultrafilter of all Γ ⊆ κ such that α ∈ Γ. Let G be the ultrafilter
of all finite subsets of κ. Thus UltA = {G} ∪ {Fα : α < κ}. Now {Sa : a ∈ A} is a
basis for UltA. Note:

a finite ⇒ Sa = {Fα : α ∈ a};
a cofinite ⇒ Sa = {G} ∪ {Fα : α ∈ a}.

Thus each Fα is isolated. The open subsets of UltA are

{Fα : α ∈ Γ} for any Γ ⊆ κ;
{G} ∪ {Fα : α ∈ Γ} for any cofinite Γ ⊆ κ.

Hence the closed sets are

yΓ
def= {G} ∪ {Fα : α ∈ Γ} for any Γ ⊆ κ,

zΓ
def= {Fα : α ∈ Γ} for any finite Γ ⊆ κ.

Hence
ExpA = {yΓ : Γ ⊆ κ} ∪ {zΓ : 0 �= Γ a finite subset of κ}.

Now we claim:

(1) Each zΓ is isolated, Γ a finite nonempty subset of κ.

In fact, write Γ = {α0, . . . , αm−1}, m > 0. Then {zΓ} = V ({Fα0}, . . . , {Fαm−1}),
as desired.

The following two statements are obvious:

(2) If a0, . . . , am−1 ∈ A are all finite and m > 0, then

V (Sa0, . . . ,Sam−1) = {zΓ : Γ ⊆ a0 ∪ . . . ∪ am−1 and Γ ∩ ai �= 0 for all i < m}.

(3) If a0, . . . , am−1 ∈ A and some ai is cofinite, then

V (Sa0, . . . ,Sam−1) = {yΓ : Γ ⊆ a0 ∪ . . . am−1 and Γ ∩ ai �= 0
for all i such that ai is finite}
∪ {zΓ : Γ ⊆ a0 ∪ . . . ∪ am−1, Γ finite , Γ ∩ ai �= 0
for all i < m}.
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Next,

(4) No yΓ is isolated.

For, suppose that yΓ ∈ V (Sa0, . . . ,Sam−1), m > 0. Since G ∈ yΓ, some ai is
cofinite. By the above, if

⋃
{ai : ai finite } ⊆ Δ ⊆ a0 ∪ . . . ∪ am−1,

then yΔ ∈ V (Sa0, . . . ,Sam−1). Thus V (Sa0, . . . ,Sam−1) has infinitely many
members, as desired. We also proved:

(5) {yΓ : Γ ⊆ κ}, as a subspace of UltA, is closed and has no isolated points.

The following is obvious:

(6) {{zΓ} : Γ finite and non-empty} is the set of all atoms of ExpA, which is
atomic.

Let xα = V (S(κ\{α}),S{α}) for all α < κ.

(7) 〈xα/fin : α < κ〉 is a system of independent elements of ExpA/fin.

To show this, suppose that Γ and Δ are finite disjoint subsets of κ; we want to
show that

⋂
α∈Γ xα ∩

⋂
α∈Δ−xα is not a finite sum of atoms. Note by (3) that

xα = {yΩ : α ∈ Ω}
∪ {zΩ : α ∈ Ω and Ω �= {α}, Ω finite}.

It follows that if Γ ⊆ Ω and Δ ∩ Ω = 0, then yΩ ∈
⋂

α∈Γ xα ∩
⋂

α∈Δ−xα. Hence
(7) holds.

(8) 〈xα/fin : α < κ〉 generates ExpA/fin.

To prove this, by Proposition 1.13 it suffices to show that if a is cofinite then
V (Sa) is generated by 〈xα/fin : α < κ〉. So (8) follows from

(9) V (Sa)/fin =
⋂

α∈κ\a−xα/fin.

To prove this, first note that if α ∈ κ\a, then

V (Sa) ∩ xα = ({yΓ : Γ ⊆ a} ∪ {zΓ : 0 �= Γ ⊆ a, Γ finite})
∩ ({yΓ : α ∈ Γ} ∪ {zΓ : α ∈ Γ, Γ �= {α}, Γ finite})
= 0.

This proves ≤ in (9). For the other direction, first note that

−xα = {yΓ : α /∈ Γ} ∪ {zΓ : (α /∈ Γ or Γ = {α}) and Γ finite}.
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Hence⎛
⎝ ⋂

α∈κ\a

−xα

⎞
⎠ \V (Sa) = ({yΓ : Γ ∩ (κ\a) = 0}

∪ {zΓ : ∀α ∈ κ\a(α /∈ Γ or Γ = {α}) and Γ finite})
∩ ({yΓ : Γ �⊆ a} ∪ {zΓ : Γ �⊆ a, Γ finite})

= {z{α} : α ∈ κ\a},

as desired.
Some further properties of the exponential will be developed in the discussion

of semigroup algebras in the next chapter.



2. Special classes of
Boolean algebras

We discuss several special classes of Boolean algebras not mentioned in the Hand-
book.

Semigroup algebras

The notion of a semigroup algebra is due to Heindorf [89b]. We give basic defini-
tions and facts only. A subset H of a BA A is said to be disjunctive if 0 /∈ H, and
h, h1, . . . , hn ∈ H and h ≤ h1 + · · ·+ hn (n > 0) imply that h ≤ hi for some i.

If P is any partially ordered set, M ⊆ P , and p ∈ P , we define

M ↑ p = {a ∈M : p ≤ a};
M ↓ p = {a ∈M : a ≤ p}.

Proposition 2.1. Let A be a BA and H ⊆ A+. Then H is disjunctive iff for every
M ⊆ H there is a homomorphism f from 〈H〉 into PM such that fh = M ↓ h
for all h ∈ H.

Proof.⇒: In order to apply Sikorski’s extension criterion, assume that h1, . . . , hm,
k1, . . . , kn ∈ H and h1 · . . . · hm ≤ k1 + · · · + kn; we want to show that (M ↓
h1)∩. . .∩(M ↓ hm) ⊆ (M ↓ k1)∪. . .∪(M ↓ kn). Let x ∈ (M ↓ h1)∩. . .∩(M ↓ hm).
Then x ≤ h1 · . . . · hm, so x ≤ k1 + · · · + kn. Note that n > 0, since otherwise
x = 0, contradicting M ⊆ H ⊆ A+. Hence by disjunctiveness, x ≤ ki for some i;
so x ∈ (M ↓ ki), as desired.

⇐: Suppose that h, h1, . . . , hm ∈ H and h ≤ h1 + · · · + hm (m > 0). Let
M = {h}, and take the function f corresponding to M . Then

h ∈ (M ↓ h) = fh ⊆ fh1 ∪ . . . ∪ fhm = (M ↓ h1) ∪ . . . ∪ (M ↓ hm),

so h ≤ hi for some i.

A BA A is a semigroup algebra if it is generated by a subset H with the following
properties: (1) 0, 1 ∈ H; (2) H is closed under the operation · of A; (3) H\{0} is
disjunctive. Here are three important examples of semigroup algebras:

A. Tree algebras. Let A = TreeAlgT . Without loss of generality T has only one
root. Set H = {T ↑ t : t ∈ T} ∪ {0, 1}. The conditions for a semigroup algebra are
easily verified.
B. Interval algebras. Let A = IntAlg L, where L is a linear ordering with first
element 0L. Let H = {[0L, a) : a ∈ L} ∪ {1}. Again the indicated conditions are
easily checked.
C. Free algebras. Let A be freely generated by X, and set H = {x ∈ A : x is a
finite product of members of X} ∪ {0, 1}. The indicated conditions clearly hold.
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It is also useful to note that if A is a semigroup algebra, then so is DupA.

Proposition 2.2. Suppose that A is a semigroup algebra with associated semigroup
H, B is a BA, and f is a homomorphism from (H, ·) into the semigroup (B, ·)
preserving 0 and 1. Then f has a unique extension to a homomorphism from A
into B. Moreover, if f is onto, the extension is too. Finally, if B is a semigroup
algebra on (K, ·) and f is an isomorphism from (H, ·) into (K, ·) preserving 0 and
1, then the extension is an isomorphism into.

Proof. In order to apply Sikorski’s criterion, let b0, . . . , bm−1, c0, . . . , cn−1 be dis-
tinct elements of H and suppose that

b0 · . . . · bm−1 · −c0 · . . . · −cn−1 = 0.

Without loss of generality, m > 0 and each ci is different from 0. If n = 0, then

fb0 · . . . · fbm−1 = f(b0 · . . . · bm−1) = f0 = 0,

as desired. Assume that n > 0. Then b0 ·. . .·bm−1 ≤ c0+· · ·+cn−1, so b0 ·. . .·bm−1 ≤
ci for some i; hence b0 · . . . · bm−1 · ci = b0 · . . . · bm−1 and

fb0 · . . . · fbm−1 · −fc0 · . . . · −fcn−1

= f(b0 · . . . · bm−1) · −fc0 · . . . · −fcn−1

= f(b0 · . . . · bm−1 · ci) · −fc0 · . . . · −fcn−1

= fb0 · . . . · fbm−1 · fci · −fc0 · . . . · −fcn−1

= 0,

as desired. Clearly if f is onto, then the extension is onto.
Assume the hypothesis of “Finally. . .”. Let b0, . . . , bm−1, c0, . . . , cn−1 be dis-

tinct elements of H such that

fb0 · . . . · fbm−1 · −fc0 · . . . · −fcn−1 = 0.

We want to show that b0 ·. . .·bm−1 ·−c0 ·. . .·−cn−1 = 0. Wlog m,n > 0. Thus either
b0 · . . . · bm−1 = 0, as desired, or f(b0 · . . . · bm−1) ∈ K\{0}, and f(b0 · . . . · bm−1) ≤
fc0 + · · · + fcn−1, so there is an i < n such that f(b0 · . . . · bm−1) ≤ fci. Hence
f(b0 · . . . · bm−1) = f(b0 · . . . · bm−1 · ci), so b0 · . . . · bm−1 = b0 · . . . · bm−1 · ci since
f is one-one, and the desired conclusion follows.

Corollary 2.3. If A and B are semigroup algebras both with the same associated
semigroup (H, ·), then there is an isomorphism from A onto B which fixes H
pointwise.

Now we indicate the connection of the exponential of a BA with semigroup alge-
bras.
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Proposition 2.4. For any BA A, ExpA is a semigroup algebra on a semigroup
isomorphic to (A, ·).
Proof. For any a ∈ A let fa = V (Sa), and let H = f [A]. We want to show
that ExpA is a semigroup algebra on H and f is an isomorphism from (A, ·) onto
(H,∩). Clearly f0 = 0 and f1 = 1. If a, b ∈ A, then

f(a · b) = V (S(a · b)) = V (Sa ∩ Sb) = V (Sa) ∩ V (Sb) = fa ∩ fb.

If a �= b, say a �≤ b; then Sa ∈ V (Sa) but Sa /∈ V (Sb); this shows that f is one-
one. So we have checked that f is an isomorphism from (A, ·) onto (H,∩) taking
0 to 0 and 1 to 1.

Note that H generates ExpA by Proposition 1.13. Finally, the disjunctive
property follows like this: suppose that V (Sa) ⊆ V (Sb1) ∪ . . . ∪ V (Sbm). Now
Sa ∈ V (Sa), so Sa ∈ V (Sbi) for some i, and hence a ≤ bi, as desired.

The following result will also be useful.

Proposition 2.5. For any BA A, ExpA embeds in
∏

n≥1 A∗n, where A∗n denotes
the free product of n copies of A.

Proof. We use the notation of the proof of Proposition 2.4. For each n ≥ 1 define
gn : H → A∗n as follows:

gnfa =
∏
i<n

hia,

where hi is the natural embedding of A into the i-th factor of A∗n. Clearly gn

is a homomorphism from (H, ·) into (A∗n, ·) taking 0 to 0 and 1 to 1. Hence by
Proposition 2.2 it extends to a homomorphism, still denoted by gn, from ExpA
into A∗n. For any x ∈ ExpA let (kx)n = gnx for all n ≥ 1. Clearly k is a homo-
morphism from ExpA into

∏
n≥1 A∗n, so it suffices to show that k is one-one. We

take an arbitrary non-zero member of ExpA; we may assume that it has the form
V (Sa0, . . . ,Sam−1), with each ai �= 0. Then

(k(V (Sa0, . . . ,Sam−1))m = gmV (Sa0, . . . ,Sam−1)
= gm(V (S(a0 + · · ·+ am−1))\(V (S(−a0)) ∪ . . . ∪ V (S(−am−1)))

=
∏
i<m

hi(a0 + · · ·+ am−1) · −
∏
i<m

hi(−a0) · . . . · −
∏
i<m

hi(−am−1)

=
∏
i<m

hi(a0 + · · ·+ am−1) ·
∑
i<m

hia0 · . . . ·
∑
i<m

hiam−1

≥
∏
i<m

hi(a0 + · · ·+ am−1) ·
∏
i<m

hiai

=
∏
i<m

hiai �= 0.

Proposition 2.6. For any BA, there is a homomorphism from ExpA onto A.
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Proof. By Proposition 2.4, ExpA is a semigroup algebra on a semigroup H, with
an isomorphism f from (H, ·) onto (A, ·). Then by Proposition 2.2 there is an
extension of f to a homomorphism from ExpA onto A.

Proposition 2.7. If f is a homomorphism from A into B, then there is a homo-
morphism g from ExpA into ExpB. Moreover, if f is onto, then g may be taken
to be onto.

Proof. By Proposition 2.4, the algebras ExpA and ExpB are semigroup algebras
on semigroups H and K isomorphic to (A, ·) and (B, ·) respectively; hence f yields
a homomorphism from H into K preserving 0 and 1, and the result follows by
Proposition 2.2. The last statement of the proposition is obvious.

Proposition 2.8. Any semigroup algebra can be isomorphically embedded in its
exponential. Hence for any BA A, the algebra ExpA can be isomorphically embed-
ded in ExpExpA.

Proof. Let A be a semigroup algebra. By Proposition 2.4, there is an isomorphism
f from (A, ·) onto a semigroup (K, ·) such that ExpA is a semigroup on (K, ·). But
A is a semigroup algebra on some semigroup (H, ·), so there is an isomorphism of
(H, ·) into (K, ·). By the final part of Proposition 2.2, our proposition follows.

Pseudo-tree algebras

A pseudo-tree is a partially ordered system (T,≤) such that for each t ∈ T the
set T ↓ t is simply ordered. Thus this notion generalizes that of a tree, where
T ↓ t is required to be well-ordered. We define TreealgT to be the subalgebra of
PT generated by {T ↑ t : t ∈ T}; such algebras are called pseudo-tree algebras.
Pseudo-tree algebras are treated thoroughly in Koppelberg, Monk [92].

Much of the theory of tree algebras described in §16 of the BA Handbook,
Vol. 1, carries over to pseudo-tree algebras. In particular, the normal form theorem
16.3 holds for pseudo-tree algebras. (In 16.3(b), the assumption should be that T
has a smallest element. Note that a pseudo-tree may have only one root while
having elements with no roots below them.) The proof of 16.3 as given works for
pseudo-tree algebras. Then 16.4 follows. 16.6 also holds, but its proof must be
modified, since at one point the well-ordering is used. The change that should be
made is as follows. Where w is chosen, at the bottom of page 259, choose w instead
to be minimal among all of the (finitely many) elements of

(∗) {τ} ∪ Σ ∪
n⋃

i=1

({t(i) ∪ S(i))

which are in ε\ei, or simply let w be any element of ε\ei if there are no such
elements. Condition (16) should then be changed to say that if x ∈ [τ, w], x is
among the elements (*), and x /∈ ei, then x = w. With these changes the proof
works for pseudo-tree algebras.
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Now we want to give an abstract characterization of pseudo-tree algebras be-
fore proceeding with our survey of tree-algebra results which carry over to pseudo-
tree algebras. For this purpose we need some easy propositions. A subset R of a BA
A is a ramification set provided that any two elements of R are either comparable
or disjoint. Thus R is then a pseudo-tree under the inverse ordering of the BA.

Proposition 2.9. Let (P,≤) be a partially ordered system. Then {P ↑ p : p ∈ P}
is a disjunctive set in PP .

Proof. Obviously 0 is not in the indicated set. Now suppose that p, p1, . . . , pn ∈ P ,
where n > 0, and assume that P ↑ p ⊆ (P ↑ p1)∪ . . .∪ (P ↑ pn). Then p ∈ (P ↑ p),
and hence p ∈ (P ↑ pi) for some i, and hence (P ↑ p) ⊆ (P ↑ pi), as desired.

As a corollary of Proposition 2.9 we see that every pseudo-tree algebra is a semi-
group algebra.

Proposition 2.10. Let R be a disjunctive ramification set of non-zero elements
and let X,Y be finite subsets of R. Then

∏
X ≤∑

Y iff one of the following three
conditions holds:

(1) X = 0 and
∑

Y = 1;
(2) x · y = 0 for some x, y ∈ X;
(3) x ≤ y for some x ∈ X, y ∈ Y .

Proof. Obviously any of (1)–(3) implies that
∏

X ≤ ∑
Y . Now suppose that∏

X ≤∑
Y and (1) and (2) do not hold. Note that if X = 0 then

∑
Y = 1; hence

X �= 0. From the falsity of (2) it then follows that
∏

X ∈ X and Y �= 0. Then
disjunctiveness yields (3).

Proposition 2.11. Let R ⊆ A+ be a ramification set, and let S be a subset of R
maximal among disjunctive subsets of R. Then 〈S〉 = 〈R〉.
Proof. We need only show that R ⊆ 〈S〉; so let r ∈ R\S. Since r /∈ S, the set
S ∪ {r} is not disjunctive. There are then two cases:

Case 1. r ≤ s1 + · · ·+ sn for certain s1, . . . , sn ∈ S (n > 0), but r �≤ si for all
i. Let n be minimal such that this can happen. By the minimality, r · si �= 0 for
all i, so si ≤ r and hence r = s1 + · · ·+ sn ∈ 〈S〉, as desired.

Case 2. s1 ≤ r + s2 + · · ·+ sn for certain s1, . . . , sn ∈ S (n > 0), but s1 �≤ r
and s1 �≤ si for all i > 1. Again, take n minimal for this situation. Note that
n > 1, by the minimality of n the elements r, s2, . . . , sn are pairwise disjoint, and,
as in Case 1, s1 = r + s2 + · · · + sn. Hence r = s1 · −(s2 + · · · + sn) ∈ 〈S〉, as
desired.

With these preliminaries over, we can now give our abstract characterization of
pseudo-tree algebras. At the same time we can establish 16.7 of the BA Handbook
for pseudo-tree algebras; it can also be proved directly.

Theorem 2.12. For any BA A, the following conditions are equivalent:
(i) A is isomorphic to Treealg T for some pseudo-tree T with a minimum

element;
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(ii) A is isomorphic to TreealgT for some pseudo-tree T ;
(iii) A is generated by a ramification set;
(iv) A is generated by a ramification set S ⊆ A+ such that 1 ∈ S and S is

disjunctive.
Proof. Obviously (i)⇒ (ii), and it is also clear that (ii)⇒ (iii). For (iii)⇒ (iv),
suppose that R is a ramification set which generates A. We may assume that 0 /∈ R
and 1 ∈ R. Then by Proposition 2.11 we get a ramification set S as desired in (iv).

Finally, we prove (iv) ⇒ (i). Clearly S is a pseudo-tree with minimum ele-
ment under the converse of the Boolean ordering; so it suffices to show that A is
isomorphic to TreealgS. By Proposition 2.1, there is a homomorphism f from A
intoPS such that fs = S ↑ s for all s ∈ S; here S ↑ s is in the tree sense. Clearly
f maps onto TreealgS. It is also one-one; we see this by using Sikorski’s criterion:
assume that

t0 · . . . · tm−1 · −s0 · . . . · −sn−1 �= 0,

where all ti and si are in S and m,n ∈ ω. Since 1 ∈ S, we may assume that m > 0.
Then u

def= t0 · . . . · tm−1 is an element of S, and u �≤ si for all i. Hence

u ∈ ft0 ∩ . . . ftm−1 ∩ −fs0 ∩ . . . ∩ −fsn−1,

as desired.

We continue our survey of tree algebra results which extend to pseudo-tree alge-
bras. Lemma 16.8 of the BA Handbook, Vol. 1, extends with no changes in its
proof. Proposition 16.9 extends, with some changes in the proof: if T ′ has only
finitely many roots and each element lies above a root, proceed as in Case 2 of
the old proof; otherwise proceed as in Case 1. The description of atoms in 16.10
is the same for pseudo-tree algebas. The description of ultrafilters in 16.11 carries
over, where an initial chain is required to be non-empty if T has only finitely many
roots and each element is above a root. This brings us to 16.12, which requires an
essentially new proof in the pseudo-tree case:

Theorem 2.13. Every pseudo-tree algebra embeds into an interval algebra.

Proof. Let T be a pseudo-tree algebra; we may assume by 16.7 that T has a
minimum element 0T . We consider a first-order language with a binary relation
symbol < and for each t ∈ T\{0T } two individual constants at,bt. Let Σ be a set
of first-order sentences expressing that in any model A of Σ the following hold:

A is a dense linear order with first element 0A
L.

0A
T < aA

t < bA
t for all t ∈ T\{0T }.

as < at and bt < bs for 0T < t < s in T .
bt < as or bs < at if s, t ∈ T\{0T } and s, t are incomparable.

Clearly if Σ has a model A with universe A, then there is an embedding from
TreealgT into IntalgA mapping T ↑ 0T to A and T ↑ t to the interval [at, bt) for
t ∈ T\{0T }.
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To show that Σ has a model, take any finite subset Σ0 of Σ. Then there is a
finite subset T0 of T such that only members of T0 occur as indices in the members
of Σ0. T0 under the ordering of T is an ordinary finite tree, which can be embedded
in an interval algebra by 16.12—and this yields a model of Σ0.

Recently it has been shown that the converse of Theorem 2.13 holds: any subalge-
bra of an interval algebra is isomorphic to a pseudo-tree algebra; see Purisch [94].
Proposition 16.17 of the BA Handbook, Vol. 1, extends with no changes in the
proof to pseudo-tree algebras. The proof of Proposition 16.18 also extends; but we
can give a shorter proof, which works also for tree algebras:

Proposition 2.14. Every homomorphic image of a pseudo-tree algebra is isomor-
phic to a pseudo-tree algebra.

Proof. Let A be a pseudo-tree algebra, and f a homomorphism from A onto some
algebra B. Then by Theorem 2.12, A is generated by a ramification set R. Clearly
f [R] is also a ramification set, and it generates B. Hence by Theorem 2.12 again,
B is isomorphic to a pseudo-tree algebra.

Simple extensions of Boolean algebras

Given BA’s A and B, we call B a simple extension of A provided that A is a
subalgebra of B and B = 〈A ∪ {x}〉 for some x ∈ B; then we write B = A(x).
We recall that each element of A(x) can be written in the form a · x + b · −x with
a, b ∈ A; or in the form c + a · x + b · −x with a, b, c pairwise disjoint elements
of A. We now introduce some important ideals for studying simple extensions. If
A is a subalgebra of B and x ∈ B, we let A � x = {a ∈ A : a ≤ x}. This is
a slight extension of the usual notion; x is not necessarily in A. Under the same
assumptions we let

SmpA
x = 〈(A � x) ∪ (A � −x)〉Id,

the ideal in A generated by (A � x) ∪ (A � −x). The three ideals A � x, A � −x,
and SmpA

x are important for studying simple extensions.

Proposition 2.15. Let A(x) be a simple extension of A. Then A = A(x) iff
x ∈ SmpA

x .

Proof. If A = A(x), then x ∈ A � x ⊆ SmpA
x , as desired. Conversely, suppose that

x ∈ SmpA
x . Write x = a + b, with a ∈ A � x and b ∈ A � −x. Clearly b = 0, so

x = a ∈ A.

Proposition 2.16. Let A(x) be a simple extension of A, and let a ∈ A. Then the
following conditions are equivalent:

(i) a ∈ SmpA
x ;

(ii) a = b + c for some b ∈ A � x and c ∈ A � −x;
(iii) a · x ∈ A;
(iv) a · −x ∈ A;
(v) For all y ∈ A(x), if y ≤ a then y ∈ A; that is, A(x) � a = A � a;
(vi) For all y ∈ A(x), if y ≤ a then y ∈ SmpA

x .
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Proof. Clearly (i)⇔ (ii). Assume (ii). Then a·x = b ∈ A, i.e., (iii) holds. Assume
(iii). Then a · −x = a · −(a · x) ∈ A, i.e., (iv) holds. Similarly (iv)⇒ (iii). If (iii)
holds, then (iv) holds and a = a ·x + a · −x, so (ii) holds. (ii)⇒ (v): Assume (ii),
and suppose that y ∈ A(x) and y ≤ a. Write y = u ·x+ v ·−x with u, v ∈ A. Then

y · x = a · y · x = a · u · x ∈ A

by (iii). Similarly y ·−x ∈ A, so y ∈ A. Clearly (v)⇔ (vi). (v)⇒ (iii): x ·a ∈ A(x)
and x · a ≤ a, so x · a ∈ A.

Corollary 2.17. If A(x) is a simple extension of A, then SmpA
x is an ideal of

A(x).

Proposition 2.18. Suppose that A(x) and A(y) are simple extensions of A. Then
the following conditions are equivalent:

(i) There is a homomorphism from A(x) into A(y) which is the identity on
A and sends x to y.

(ii) A � x ⊆ A � y and A � −x ⊆ A � −y.

And also the following two conditions are equivalent:
(iii) There is an isomorphism from A(x) onto A(y) which is the identity on

A and sends x to y.
(iv) A � x = A � y and A � −x = A � −y.

Proof. (i)⇒ (ii): obvious. (ii)⇒ (i): by Sikorski’s extension criterion. Since the
homomorphism of (i) is unique, the equivalence of (iii) and (iv) is clear.

Proposition 2.19. Let A be a BA, and let I0 and I1 be two ideals of A such that
I0 ∩ I1 = {0}. Then there is a simple extension A(x) of A such that A � x = I0

and A � −x = I1.

Proof. Let A(y) be a free extension of A by y, that is, let A(y) be the the free
product of A with a four-element BA B, where 0 < y < 1 in B. Consider the
following ideal K of A(y):

K = 〈{a · −y : a ∈ I0} ∪ {a · y : a ∈ I1}〉Id.

Let f be the natural mapping from A onto A/K. It suffices to prove the following
things:

(1) A ∩K = {0}.
(2) (A/K) � (y/K) = f [I0].
(3) (A/K) � −(y/K) = f [I1].

For (1), if a ∈ A ∩K, then a ≤ b · −y + c · y for some b ∈ I0 and c ∈ I1. An easy
argument using freeness then yields a ≤ b · c = 0, as desired.

For (2), first suppose that a ∈ A and a/K ≤ y/K. Thus a · −y ∈ K, so
a · −y ≤ b · −y + c · y for some b ∈ I0 and c ∈ I1. An easy argument then yields
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a ≤ b, and hence a ∈ I0, as desired. On the other hand, if a ∈ I0, obviously
a · −y ∈ K, and hence a/K ≤ y/K and a/K ∈ (A/K) � (y/K), as desired.

A similar argument proves (3).

Minimal extensions of Boolean algebras

We say that B is a minimal extension of a BA A, in symbols A ≤m B, if B is an
extension of A and there is no subalgebra C of B such that A ⊂ C ⊂ B. Clearly
then B is a simple extension of A. This notion is studied in Koppelberg [89b].
First we want to see what this means in terms of the ideal SmpA

x :

Proposition 2.20. Let A(x) be a simple extension of A. Then the following con-
ditions are equivalent:

(a) A ≤m A(x).
(b) SmpA

x is either equal to A or is a maximal ideal of A.
(c) A = 〈{a ∈ A : a is comparable with x}〉.
(d) There is a G ⊆ A which generates A and consists exclusively of elements

comparable with x.
(e) If y ∈ A(x)\A, then x�y ∈ A.

Proof. Obviously (c) ⇔ (d). (a) ⇒ (b): assume that (b) fails. Then there is an
element a ∈ A such that neither a nor −a is in SmpA

x . Then, we claim, A ⊂
A(a ·x) ⊂ A(x). In fact, a ·x /∈ A by Proposition 2.16. And if x ∈ A(a ·x), then we
can write x = b ·a ·x+c ·−(a ·x) with b, c ∈ A. But then x = b ·a ·x+c ·−a+c ·−x,
hence c · −x = 0 and x = b · a ·x+ c · −a. Therefore −a ·x = c · −a ∈ A, and hence
by Proposition 2.16, −a ∈ SmpA

x , contradiction.
(b) ⇒ (c): Assume (b). Then SmpA

x generates A. Let G = {a ∈ A : a is
comparable with x}. Now A � x ⊆ G, and if a ∈ A � −x then −a ∈ G. It follows
that A = 〈SmpA

x 〉 ⊆ 〈G〉, and hence G generates A.
(d) ⇒ (b): Clearly G ⊆ SmpA

x ∪ {a : −a ∈ SmpA
x }, and the latter set is a

subalgebra of A; hence it is all of A, which means that (b) holds.
(b)⇒ (e): Assume (b), and suppose that y ∈ A(x)\A. Write y = a+b·x+c·−x,

where a, b, c are pairwise disjoint elements of A. If b and c are both elements of
SmpA

x , then b · x and c · −x are both elements of A by Proposition 2.16, and so
y ∈ A, contradiction. Assume that b /∈ SmpA

x . Hence −b ∈ SmpA
x by (b). Now

y · b = x · b, so x�y ≤ −b, and hence x�y ∈ A by Corollary 2.17. If c /∈ SmpA
x , we

obtain (−x)�y ∈ A similarly; then note that (−x)�y = −(x�y).
(e)⇒ (a): If y ∈ A(x)\A, then x = x�y�y ∈ A(y), so A(y) = A(x).

Proposition 2.21. If A ≤ B, x ∈ B, and A � x is a maximal ideal in A, then
A ≤m B.

Proof. By Proposition 2.20.

Proposition 2.22. Let A ≤ B, let f : B → Q be an epimorphism, and set
P = f [A]. Then A ≤m B implies that P ≤m Q.

If, moreover, kerf ⊆ A, then A ≤m B iff P ≤m Q.
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Proof. This is a result of universal-algebraic nonsense: the function assigning
to each subalgebra C of Q the subalgebra f−1[C] of B is one-one, and it maps
{C : P ≤ C ≤ Q} into {D : A ≤ D ≤ B}. In case kerf ⊆ A, it maps onto the
latter set: the preimage of such a D is f [D], and P ≤ f [D] ≤ Q.

Proposition 2.23. Assume that A ≤ B ≤M ≥ D. Set P = A∩D and Q = B∩D.
Then A ≤m B implies that P ≤m Q.

Proof. Assume all the hypotheses. We may also assume that P �= Q. Now take
any x ∈ Q\P ; we want to show that Q = P (x). To this end, take any y ∈ Q; we
show that y ∈ P (x). Now x ∈ B since x ∈ Q. Now x /∈ A since x /∈ P . It follows
that B = A(x). We may assume that y /∈ P ; hence y ∈ B\A. Now by Proposition
2.20(e) we get x�y ∈ A. Also, x ∈ D and y ∈ D, so x�y ∈ D; hence x�y ∈ P . It
follows that y = (x�y)�x ∈ P (x), as desired.

Proposition 2.24. Suppose that A(x) is a proper minimal extension of A. Then
the following conditions are equivalent:

(i) A � x and A � −x are non-principal ideals.
(ii) A is dense in A(x).

Proof. Assume (i). Take any non-zero element y of A(x). Wlog we may assume
that y = a · x for some a ∈ A. By Proposition 2.20 there are two cases.

Case 1. a ∈ SmpA
x . Say a = b + c with b ∈ A � x and c ∈ A � −x. Then

a · x = b ∈ A and there is nothing to prove.
Case 2. −a ∈ SmpA

x . Say −a = b + c with b ∈ A � x and c ∈ A � −x. Choose
d ∈ A � x with b < d (which we can do because A � x is non-principal). Then

d · −b · −a = d · −b · (b + c) ≤ d · c = 0

since c ∈ A � −x. Hence 0 �= d · −b ≤ a · x, as desired.
Now assume (ii). To show that A � x is non-principal, let a ∈ A � x. Now

x · −a �= 0, so we can choose a non-zero b ∈ A such that b ≤ x · −a. Then
a < a + b ≤ x, as desired. Similarly, A � −x is non-principal.

Proposition 2.25. Suppose that A(x) is a proper minimal extension of A, and
A � x is a principal ideal generated by an element a∗. Set y = −a∗ · x. Then:

(i) y /∈ A, and hence A(x) = A(y);
(ii) for all a ∈ A, y ≤ a iff −a ∈ SmpA

x ;
(iii) y is an atom of A(x);
(iv) if D is dense in A, then 〈D ∪ {y}〉 is dense in A(x).

Proof. (i): Clearly y /∈ A, since otherwise y ≤ a∗, y = 0, x ≤ a∗, and x = a∗ ∈ A.
So A(x) = A(y) by minimality.

(ii). First assume that y ≤ a. Thus−a ≤ a∗+−x. Now−a = −a·a∗+−a·−a∗,
and −a · −a∗ ≤ −x, proving that −a ∈ SmpA

x .
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Second, assume that −a ∈ SmpA
x . Say −a = b + c with b ∈ A � x and

c ∈ A � −x. Then −a∗ · x · −a = −a∗ · b = 0, showing that y ≤ a.
(iii). Clearly y �= 0, by (i). Suppose that z ≤ y; we show that z = 0 or z = y.

Say z = a ·x+b ·−x with a, b ∈ A. Since y ≤ x, we have b ·−x = 0. By Proposition
2.20, either a ∈ SmpA

x or −a ∈ SmpA
x . If −a ∈ SmpA

x , then y ≤ a by (ii), hence
y = z, as desired. Now suppose that a ∈ SmpA

x . Write a = c+d with c ∈ A � x and
d ∈ A � −x. Then c ≤ a∗, hence a ·x = c ·x ≤ a∗ ·x, but also a ·x = z ≤ y = −a∗ ·x,
so a · x = 0, as desired.

(iv): Assume that u is a non-zero element of A(x). If u · y �= 0, then y ≤ u
by (iii), as desired. So, assume that u · y = 0. Then we can write u = b · −y with
b ∈ A, by (i). Choose d ∈ D+ so that d ≤ b. If d ·−y = 0, then d ≤ y, hence d = y,
from which it follows that y ∈ A, contradicting (i). So 0 �= d · −y ≤ b · −y = u, as
desired.

Minimally generated Boolean algebras

Let A and B be BA’s. A representing chain for B over A is a sequence 〈Cα : α < ρ〉
of BA’s with the following properties:

(1) α < β < ρ implies that Cα ≤ Cβ .
(2) If λ is a limit ordinal less than ρ, then Cλ =

⋃
α<λ Cα.

(3) C0 = A.
(4)

⋃
α<ρ Cα = B.

B is minimally generated over A if there is a representing chain for B over A
such that Cα ≤m Cα+1 whenever α + 1 < ρ. And B is minimally generated if
it is minimally generated over 2. We write A ≤mg B to abbreviate that B is
minimally generated over A. Finally, if A ≤mg B, then len(B : A) is the smallest
ordinal ρ demonstrating the minimal generation of B over A, and if B is minimally
generated, then lenB = len(B : 2). The notion of a minimally generated BA is due
to S. Koppelberg [89b].

Proposition 2.26. (i) Suppose that A ≤ B and f is a homomorphism from B
onto Q. Let P = f [A]. Then:

(a) if A ≤mg B, then P ≤mg Q and len(Q : P ) ≤ len(B : A);
(b) if A includes the kernel of f , then A ≤mg B iff P ≤mg Q, and if one and

hence both of these holds then len(Q : P ) = len(B : A).
(ii) A homomorphic image Q of a minimally generated BA B is minimally

generated. Moreover, lenQ ≤ lenB.

Proof. by Proposition 2.22.

Proposition 2.27. (i) Suppose that A ≤ B ≤ M ≥ D and A ≤mg B. Set
P = A ∩D and Q = B ∩D. Then P ≤mg Q, and len(Q : P ) ≤ len(B : A).

(ii) Every subalgebra D of a minimally generated BA B is minimally gener-
ated. Moreover, lenD ≤ lenB.

(iii) If A ≤mg B and A ≤ C ≤ B, then A ≤mg C.
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Proof. (i) and (ii) are clear from Proposition 2.23. For (iii), let D = C in (i).

Proposition 2.28. Suppose that A is an atomless subalgebra of B and there is an
element u ∈ B which is independent over A, i.e., a ·u �= 0 �= a ·−u for all a ∈ A+.
Then B is not minimally generated over A.

Proof. Otherwise we would have A ≤mg A(u) by Proposition 2.27(iii). Hence
there is an x ∈ A(u) such that x /∈ A and A ≤m A(x). Say x = a + b · u + c · −u
with a, b, c pairwise disjoint elements of A. From the independence of u over A it
then follows that A � x = A � a, a principal ideal in A. In fact, if v ≤ x, then
v ≤ a + b + c; if v · b �= 0, then v · b · −u �= 0. But v · b ≤ b · u, contradiction. So
v · b = 0, and similarly v · c = 0. Similarly, A � −x is a principal ideal in A. So
SmpA

x is a principal ideal in A. By Proposition 2.20, this gives us an atom of A,
contradiction.

Proposition 2.29. If A and B are minimally generated, then so is A×B.

Proof. Let 〈Cα : α < ρ〉 be a representing sequence for A’s minimal generation
(thus with C0 = 2 and Cα ≤m Cα+1 for all α + 1 < ρ), and let 〈Dα : α < σ〉 be
similarly chosen for B. The desired sequence for A× B is 〈2〉�〈Eα : α < ρ + σ〉,
where for α < ρ we set

Eα = {(a, b) : a ∈ Cα and b ∈ {0, 1}},

and for α < σ we set

Eρ+α = {(a, b) : a ∈ A and b ∈ Dα}.

Proposition 2.30. If 〈Ai : i ∈ I〉 is a system of minimally generated BA’s, then
so is

∏w
i∈I Ai.

Proof. Wlog I is an infinite cardinal κ. For all β < κ let 〈Cβα : 0 < α < ρβ〉 be
a representing sequence for Aβ (for technical reasons starting at 1 rather than 0)
such that Cβα ≤m Cβ,α+1 if α + 1 < ρβ . Let σ = supβ<κ ρβ. For each ξ < σ we

define a subalgebra Eξ of
∏w

β<κ Aβ . Say δ < κ and μ
def=

∑
β<δ ρβ ≤ ξ <

∑
β≤δ ρβ;

say ξ = μ + ε with ε < ρδ. If ε = 0 we set

Eξ ={x ∈
w∏

β<κ

Aβ : ∀θ < δ(xθ ∈ Aθ) and

[∀θ < κ(δ ≤ θ ⇒ xθ = 1) or ∀θ < κ(δ ≤ θ ⇒ xθ = 0)]}.

(Note that this makes E0 the two-element subalgebra of
∏w

β<κ Aβ.) If ε �= 0 we
set

Eξ ={x ∈
w∏

β<κ

Aβ : ∀θ < δ(xθ ∈ Aθ) and xδ ∈ Cδε and

[∀θ < κ(δ < θ ⇒ xθ = 1) or ∀θ < κ(δ < θ ⇒ xθ = 0)]}.
Then 〈Eξ : ξ < σ〉 is as desired.
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Proposition 2.31. Every interval algebra is minimally generated.

Proof. Let A be an interval algebra. Then it is generated by a chain C. Enumerate
C: C = {cα : α < ρ}. For each α < 1 + ρ let Bα = 〈{cβ : β < α}〉. Then by
Proposition 2.20 we have Bα ≤m Bα+1 whenever α + 1 ≤ 1 + ρ, so this shows the
minimal generation of A.

Proposition 2.32. Every superatomic BA is minimally generated.

Proof. Let B be superatomic. By Proposition 2.31 we may assume that B is
infinite. Let 〈Iα : α an ordinal〉 be the standard sequence of ideals associated with
B (I1 is the ideal generated by the atoms, etc.). For each α let Rα be a complete
set of representatives of the atoms of B/Iα: thus for each x ∈ Rα, x/Iα is an atom
of B/Iα; (x/Iα) · (y/Iα) = 0 for distinct x, y ∈ Rα; and for each atom b of B/Iα

there is an x ∈ Rα such that b = x/Iα. Fix σ such that Iσ = A. It is easy to see
that X

def=
⋃

α<σ Rα generates B. Now well-order X by levels: X = {xα : α < ρ},
where if xα ∈ Rβ and xγ ∈ Rδ and β < δ, then α < γ. For each α ≤ ρ let
Cα = 〈{xβ : β < α}〉 Clearly this gives a representing chain for B, so it just
suffices to show that Cα ≤m Cα+1 whenever α + 1 ≤ ρ. To prove this we need the
following fact: for any α ≤ ρ,

{xν : ν < α} ⊆ SmpCα
xα

.

And to prove this, let ν < α. Say xν ∈ Rβ and xα ∈ Rγ ; thus β ≤ γ. If β < γ,
then xν ∈ Iγ , hence xν · xα ∈ Iγ , and Iγ ⊆ 〈

⋃
δ<γ Rδ〉 ⊆ Cα. So, by Proposition

2.16, xν ∈ SmpCα
xα

. If β = γ, then again xν · xα ∈ Cα and the desired conclusion
follows.

From the fact and Proposition 2.20 it follows that Cα ≤m Cα+1.

Proposition 2.33. The free BA A on ω1 free generators is not minimally gener-
ated.

Proof. Suppose it is, and let 〈Bα : α < σ〉 be a representing chain which demon-
strates this. Wlog σ = lenA, and Bα ⊂ Bα+1 whenever α+1 < σ. Clearly σ ≥ ω1.

We claim that σ = ω1. Otherwise Bω1 is a subalgebra of A, and it has a
subalgebra C isomorphic to A. Hence by Proposition 2.27,

ω1 ≥ lenBω1 ≥ lenC = lenA,

contradiction.
Let {xα : α < ω1} be the set of free generators of A, and for each α < ω1

let Cα = 〈{xβ : β < α}〉. This gives another representing chain for A. Hence

K
def= {α < ω1 : Bα = Cα} is a club in ω1. Take any infinite member α of K.

Now xα is independent over Bα and A is minimally generated over Bα, which
contradicts Proposition 2.28.
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Proposition 2.34. If an infinite BA A satisfies any of the following conditions
then it is not minimally generated:

(1) A is complete;
(2) A is σ-complete;
(3) A is ω1-saturated (in the sense of model theory);
(4) A has the countable separation property;
(5) A is the product of infinitely many non-trivial algebras.

Proof. Each of (1), (2), (3) implies (4), and (5) implies that A has an infinite CSP
subalgebra. Hence it suffices to show that if A is CSP then it is not minimally
generated (using Proposition 2.27(ii)). Now A has Pω as a homomorphic image,
and Pω has an independent set of size ω1, so the same is true of A, and the
conclusion follows from Proposition 2.33 and Proposition 2.27(ii).

Theorem 2.35. For every minimally generated BA B there is a dense subalgebra
A of B such that A is isomorphic to a tree algebra and B is minimally generated
over A.

Proof. Fix a subset X of B generating B and a well-ordering <X of X such that
if we let Bx = 〈{y : y <X x}〉 then the chain 〈Bx : x ∈ X〉 demonstrates the
minimal generation of B; we assume that 1 ∈ X, and, moreover, that x /∈ Bx for
all x ∈ X\{1}. In particular, 0 /∈ X. Define S = {x ∈ X : x �= 1, Bx is dense in
Bx(x)}, and set T = X\S. Then:

(*) If x ∈ T\{1}, then there is an ultrafilter F on Bx and an element y ∈ Bx(x)
such that Bx(x) = Bx(y) and ∀a ∈ Bx(y ≤ a iff a ∈ F ).

In fact, by Proposition 2.24, one of Bx � x and Bx � −x is a principal ideal. Thus
(*) follows from Proposition 2.25.

By (*), wlog we may assume:

(**) If x ∈ T\{1} then there is an ultrafilter Fx on Bx such that ∀a ∈ Bx(x ≤ a
iff a ∈ F ).

Next we claim that T is a tree under the inverse of the Boolean ordering. In fact,
suppose x, y, z ∈ T and x < y, x < z; we want to show that y and z are comparable.
Say y <X z. Then y ∈ Bz, so by the property we just got, z ≤ y or z ≤ −y; and
z ≤ −y is ruled out since 0 �= x ≤ y · z. Thus z and y are comparable. Moreover,
if x, y ∈ T and x < y, then y <X x; otherwise x <X y, hence x ∈ By, and so by
this same property, y ≤ x or y ≤ −x, both of which are false. So, T is a tree.

Also note that for u, v ∈ T we have that u and v are incomparable iff u·v = 0.
In fact, assume that u and v are incomparable; say u <X v. Then by (**) it follows
that u /∈ Fv and hence −u ∈ Fv and v ≤ −u, as desired.

Next, T is disjunctive. For, assume that t, t1, . . . , tn ∈ T , where n > 0, and
t ≤ t1 + · · · + tn, but t �≤ ti for all i. Wlog the ti’s are pairwise disjoint and
ti < t for each i. So, t = t1 + · · ·+ tn. If t is <X-maximum in {t, t1, . . . , tn}, then
t ∈ Bt, contradiction. Otherwise some ti is <X -maximum in {t, t1, . . . , tn}, and
ti = t ·∑j �=i−tj , hence ti ∈ Bti , contradiction. So, T is disjunctive.
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Now by the proof of Theorem 2.12(iv) ⇒ (i) it follows that A
def= 〈T 〉 is

isomorphic to TreealgT .
We claim that A is dense in B. To prove this, we show by <X-induction on

x ∈ X that 〈{y ∈ T : y <X x}〉 is dense in Bx for all x ∈ X. For x the smallest
element of X the algebra Bx has only two elements, and the conclusion is obvious.
Now suppose that the statement holds for x ∈ X, and x′ ∈ X is the immediate
successor of x under <X . Now Bx′ = Bx(x). If x ∈ T , then Bx is not dense in
Bx′ , and so one of Bx � x and Bx � −x is principal, by Proposition 2.24. Then
by Proposition 2.25(iv) our desired result continues to hold. On the other hand, if
x ∈ S, then Bx is dense in Bx(x) and the desired conclusion is obvious.

Next, for x limit under <X , the induction hypothesis clearly implies the
desired conclusion. Hence our inductive statement holds, and then it is clear that
A is dense in B.

If T = X, then A = B and we are through. So assume that S �= 0. We define
a new well-ordering� on X by putting T before S: for x, y ∈ X, we define x� y
iff (x, y ∈ T and x <X y) or (x, y ∈ S and x <X y) or (x ∈ T and y ∈ S). For each
x ∈ S let Cx = 〈{y ∈ X : y � x}〉. We claim that 〈{Cx : x ∈ S}〉 demonstrates
that B is minimally generated over A. Since Cs = A for s the least member of S
under �, all we really need to prove is that Cx ≤m Cx(x) for all x ∈ S. To do
this, it suffices to take any y � x and show that y ·x ∈ Cx or −y ·x ∈ Cx. In fact,
if we can do this, then by Proposition 2.16, y or −y will be in SmpCx

x , and since
this will be true for each generator of Cx, it will follow that SmpCx

x is either all of
Cx or is a maximal ideal in Cx, so that Cx ≤m Cx(x) by Proposition 2.20.

If y <X x, then y ∈ Bx ≤m Bx(x), and so by Propositions 2.16 and 2.20, one
of y · x or −y · x is in Bx. Now Bx ⊆ Cx since x ∈ S, so we obtain the desired
conclusion. Assume, on the other hand, that x <X y. This can only happen if
y ∈ T . Hence by (**) either y ≤ x and hence y · x = y ∈ Cx, or y ≤ −x and
y · x = 0 ∈ Cx, as desired.

We give a corollary of this theorem which depends on the notion of co-absolute,
borrowed from topology. Two BA’s A and B are co-absolute if their completions
A and B are isomorphic.

Corollary 2.36. Any minimally generated BA A is co-absolute with an interval
algebra.

Proof. By Theorem 2.35, A has a dense subalgebra B isomorphic to a tree algebra.
From the Handbook we know that B can be embedded in an interval algebra, so
let f be an isomorphism from B into an interval algebra C. Let I be an ideal of C
maximal with respect to the property that f [B]∩ I = {0}. Then if g : C → C/I is
the natural homomorphism, g◦f is still an embedding, and g[f [B]] is dense in C/I;
moreover, C/I is isomorphic to an interval algebra. Therefore we may assume in
the original situation that f [B] is dense in C. Now extend f to a homomorphism
f+ from A into C. It is easy to see that f+ is actually an isomorphism from A
onto C, as desired.



40 2. Special classes

Tail algebras

For any partial order P , let the tail algebra of P be the subalgebra ofPP generated
by {P ↑ p : p ∈ P}. Thus these algebras generalize tree algebras and pseudo-tree
algebras. The notion is due to Gary Brenner. It is studied in Koppelberg, Monk
[92], the main results being due to Koppelberg and Blass.

Theorem 2.37. Every semigroup algebra is isomorphic to a tail algebra.

Proof. Let A be a semigroup algebra, and choose a generating set H for A such
that 0, 1 ∈ H, H is closed under ·, and P

def= H\{0} is disjunctive. Let f be the
homomorphism from A onto Tailalg (P−1) given by Proposition 2.1: fp = P ↑ p
for any p ∈ P . We show that f is one-one, which will finish the proof. By Sikorski’s
criterion, we have to show that f(p1) ∩ . . . ∩ f(pn) ⊆ f(q1) ∪ . . . ∪ f(qm) (where
pi, qj ∈ P ) implies p1·. . .·pn ≤ q1+. . .+qm. Without loss of generality, p = p1·. . .·pn

is nonzero and hence is in P . Now p ∈ f(p1) ∩ . . . ∩ f(pn). So p ∈ f(qj) for some
j, p ≤ qj , and p ≤ q1 + . . . + qm, as desired.

We also need a set-theoretic lemma:

Lemma 2.38. Let P be an infinite partially ordered set. Then: either P has a
strictly ascending chain of type ω, or P has a strictly descending chain of type ω,
or P is well- founded (with, say, Pα as its αth level) and there is some n ∈ ω such
that Pn is infinite.

Proof. Assume P has no descending chain of type ω (so P is well-founded) and
no infinite level Pn (n ∈ ω). For each n ∈ ω, let

Tn = {(p0, . . . , pn) : pi ∈ Pi for all i ≤ n, and p0 < . . . < pn}.

So T =
⋃

n∈ω Tn is a tree in which every level is finite and non-empty. But then
T has an infinite branch, which yields an increasing chain of type ω in P .

An algebra which is generated by a disjunctive set is called disjunctively generated.
Clearly tail algebras are disjunctively generated.

Theorem 2.39. Every infinite disjunctively generated algebra has a countably
infinite homomorphic image.

Proof. Say A = 〈P 〉, where P is an infinite disjunctive subset of A. We apply
Lemma 2.38 to P−1, and have three cases.

Case 1. There is in P an ascending sequence (pn : n ∈ ω). Let then M =
{pn : n ∈ ω}, and consider the homomorphism fM given by Proposition 2.1. Then
fM maps each p ∈ P to an initial segment of M , and since fM (pn) = {p0, . . . , pn}
and P generates A, it follows that the image of A under fM is the finite-cofinite
algebra on M , a countable algebra.

Case 2. There is in P a descending sequence of type ω. This is similar to Case
1, again considering M = {pn : n ∈ ω}.
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Case 3. P−1 is well-founded, and for some (minimal) n ∈ ω, Pn is infinite.
Consider M = Pn and f = fM as in Proposition 2.1. Note that

1. f(p) = ∅ if p ∈ Pα, α > n
2. f(p) = {p} for p ∈ Pn

3. {f(p) : p ∈ Pk, k < n} is finite.

It follows that the image of A under f is superatomic, since its quotient under the
ideal generated by the atoms is finite. It is well-known, and easy to check, that
every superatomic algebra has a countable homomorphic image, giving the desired
result.

Corollary 2.40. No infinite Boolean algebra having the countable separation prop-
erty is disjunctively generated.

Theorem 2.41. Every BA can be embedded into a tail algebra.

Proof. This is trivial for a finite Boolean algebra B with, say, n atoms—just take
a tree with n roots and no other points. So let B be an infinite Boolean algebra;
we may assume that it is the algebra of clopen subsets of some Boolean space X.

For each b ∈ B, take two new points pb, qb such that the points pb, qb (b ∈ B),
are pairwise distinct and not in X. Then put

U = {pb, qb : b ∈ B}, P = U ∪X

and define a partial order on P by setting pb < x and qb < x for all x ∈ b. Thus, for
b ∈ B, P ↑ pb = {pb}∪ b, P ↑ qb = {qb}∪ b and b = (P ↑ pb)∩ (P ↑ qb) ∈ TailalgP .

We define a map e from B into the power set algebra of P by fixing a non-
isolated point x∗ of X and putting e(b) = b if x∗ /∈ b and e(b) = U ∪ b if x∗ ∈ b.
It is easily checked that e embeds B into the power set algebra of P and that
e(b) ∈ TailalgP if x∗ /∈ b; hence e is an embedding from B into TailalgP .

Initial chain algebras

Let T be a tree. The initial chain algebra of T , denoted by InitT , is the subalgebra
of PT generated by {T ↓ t : t ∈ T}. These algebras have been treated in the
literature in a scattered fashion. More systematic studies have been made by Lynne
Baur, Lutz Heindorf, and Monk (all unpublished). One can work with pseudo-trees
too, but we restrict ourselves to trees. We prove just a few things about these
algebras here. Call a tree T limit-normal if whenever u and v are distinct elements
of T at the same limit level the sets T ↓ u and T ↓ v are distinct. The first theorem
gives a simple normal form for elements of InitT when T is limit-normal; the proof
is obvious.

Theorem 2.42. If T is limit-normal, then every monomial over InitT has one of
these three forms: (1) T ↓ t or (2) (T ↓ t)\(T ↓ s) or (3) T\⋃s∈F (T ↓ s) for some
finite subset F of T .
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The next theorem, due to Lutz Heindorf, gives an abstract characterization of
initial chain algebras. First we state two lemmas.

Lemma 2.43. Let A be a BA generated by a set H with the following properties:
(i) 0 /∈ H;
(ii) H ∪ {0} is closed under ·;
(iii) H ↓ h is well-ordered, for all h ∈ H.

Then H is disjunctive.

Proof. Suppose that h, h1, . . . , hn ∈ H, n > 0, and h ≤ h1 + · · · + hn. We may
assume that h ·hi �= 0 for all i. Now h = h ·h1 + · · ·+h ·hn, and h ·hi ∈ (H ↓ h) for
each i, so by (iii) there is an i such that h·hi ≤ h·hj for all j. Hence h = h·hi ≤ hi,
as desired.

Lemma 2.44. Let A be a BA generated by a set H with the following properties:
(i) 0 /∈ H;
(ii) H ∪ {0} is closed under ·;
(iii) H ↓ h is well-ordered, for all h ∈ H;
(iv) for every nonzero a ∈ A there is an h ∈ H such that a · h �= 0.

Then H is a tree under the Boolean ordering, and A is isomorphic to InitH.

Proof. Obviously H is a tree under the Boolean ordering. By Lemma 2.43 and
Proposition 2.1, there is a homomorphism f from A intoPH such that fh = H ↓ h
for all h ∈ H. Thus f maps onto InitH. We need to show that f is one-one. Assume
that

(H ↓ h1) ∩ . . . ∩ (H ↓ hm) ∩ [H\(H ↓ k1)] ∩ . . . ∩ [H\(H ↓ kn)] = 0,

but h1 · . . . · hm · −k1 · . . . · −kn �= 0. By (iv) choose h ∈ H such that h · h1 · . . . ·
hm · −k1 · . . . · −kn �= 0. Now

h · h1 · . . . · hm ∈ (H ↓ h1) ∩ . . . ∩ (H ↓ hn),

so h·h1·. . .·hm ∈ H(ki) for some i. Thus h·h1·. . .·hm·−ki = 0, contradiction.

Theorem 2.45. For any BA A the following three conditions are equivalent:
(i) A is isomorphic to the initial chain algebra on some tree;
(ii) A has a set of generators H such that the conditions of Lemma 2.43 hold.
(iii) A has a set of generators H such that the conditions of Lemma 2.44

hold.

Proof. (i)⇒ (ii): let

H = {
⋂
t∈F

(T ↓ t) : F is a finite subset of T}\{0}.

Clearly the conditions (i) and (ii) of Lemma 2.43 hold. As to condition 2.43(iii),
note that the elements of H are initial chains of T ; hence a strictly decreasing
sequence in H would obviously yield a strictly decreasing sequence in T .
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(ii) ⇒ (iii): Suppose that (iv) of Lemma 2.44 fails to hold. Then there is
some monomial x over H such that x · h = 0 for all h ∈ H, with x �= 0. Write
x = h0 · . . . ·hm−1 ·−k0 · . . . ·−kn−1 with all hi, kj ∈ H. Then m = 0 since x ·h = 0
for all h ∈ H. Let H ′ = H ∪ {x}. Clearly H ′ satisfies the conditions of Lemma
2.44.

(iii)⇒ (i): by Lemma 2.44.

Corollary 2.46. For every tree T there is a limit-normal tree T ′ such that InitT
is isomorphic to InitT ′.

Proof. Let H = {⋂t∈F (T ↓ t) : F is a finite subset of T}\{0}. Clearly H is limit-
normal and the conditions of Lemma 2.44 hold.

Theorem 2.47. Let T be a tree and A = InitT . Then every homomorphic image
of A is isomorphic to an initial chain algebra of a tree.

Proof. By Corollary 2.46 we may assume that T is limit-normal. Let I be an
ideal in A, and set H = {(T ↓ t)/I : t ∈ T}\{0/I}. It suffices to check the
conditions of Lemma 2.43, and (i) and (ii) are clear. Now suppose that t, s, r ∈ T
and both (T ↓ s)/I and (T ↓ r)/I are ≤ (T ↓ t)/I; we want to show that they are
comparable. Write (T ↓ s) ∩ (T ↓ t) = (T ↓ s′) and (T ↓ r) ∩ (T ↓ t) = (T ↓ r′).
Then

(T ↓ s)/I = [(T ↓ s) ∩ (T ↓ t)]/I + [(T ↓ s)\(T ↓ t)]/I
= (T ↓ s′)/I,

and similarly (T ↓ r)/I = (T ↓ r′)/I. Now r′, s′ ≤ t, so they are comparable; say
r′ ≤ s′. Then (T ↓ r)/I ≤ (T ↓ s)/I, as desired.

Finally, we need to show that M
def= {x ∈ H : x ≤ (T ↓ t)/I} is well-

ordered. Suppose on the contrary that (T ↓ t0)/I > (T ↓ t1)/I > · · · where t0 = t.
Write (T ↓ t0) ∩ · · · ∩ (T ↓ tm) = (T ↓ sm) for all m ∈ ω. Then s0 > s1 > · · ·,
contradiction.

Theorem 2.48. Every initial chain algebra on a tree is superatomic.

Proof. By Theorem 2.47 it suffices to show that Init T is always atomic, for T a
tree. Note that if t ∈ T is not at a limit level, then {t} ∈ A. We may assume that
T is limit-normal. Let x be a non-zero element of InitT ; we may assume that x is
a monomial. By Theorem 2.42 we have three cases. Case 1. x = (T ↓ t) for some
t. Let s be a root such that s ≤ t. Then {s} is the desired atom below x. Case
2. x = (T ↓ t)\(T ↓ s) for some s, t. Let (T ↓ t) ∩ (T ↓ s) = (T ↓ r). Choose u
at a successor level, r < u ≤ t. Then {u} is the desired atom below x. Case 3.
x = T\⋃s∈F (T ↓ s) for some finite subset F of T . Since x �= 0, choose t ∈ x. Then
(T ↓ t)\⋃s∈F (T ↓ s) reduces to Case 1 or Case 2, as desired.

The following theorem will also be useful later.

Theorem 2.49. Every initial chain algebra on a tree is a semigroup algebra.
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Proof. Let A = InitT , T a tree. Wlog T is limit-normal. If there do not exist
t1, . . . , tn ∈ T such that T = (T ↓ t1)∪ . . .∪ (T ↓ tn), then {T ↓ t : t ∈ T} ∪ {0, T}
works for the set H required in the definition of semigroup algebra (using limit
normality to check closure under ·). Suppose now that there exist such elements,
and choose elements so that n is minimum. The case n = 1 is clear, so assume
that n > 1. Note that the elements ti are exactly all of the maximal elements of
T . Take H = {T ↓ t : t ∈ T\{t1}} ∪ {0, T}. All of the conditions for a semigroup
algebra are clear except that H generates Init T , and of course we just need to
see that H generates T ↓ t1. If (T ↓ t1) ∩ (T ↓ ti) = 0 for all i = 2, . . . , n, then
(T ↓ t1) = T\⋃2≤i≤n(T ↓ ti), as desired. Otherwise, let M = {i : 2 ≤ i ≤ n and
(T ↓ ti) ∩ (T ↓ t1) �= 0. For each i ∈ M write (T ↓ ti) ∩ (T ↓ t1) = (T ↓ si), using
the limit normality. Let j ∈M be such that si ≤ sj for all i ∈M . Then

(T ↓ t1) =

⎛
⎝T\

⋃
2≤k≤n

(T ↓ tk)

⎞
⎠ ∪ (T ↓ sj),

as desired.
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A BA A is said to satisfy the κ-chain condition if every disjoint subset of A has
power < κ. Thus for κ non-limit, this is the same as saying that the cellularity of
A is < κ. Of most interest is the ω1-chain condition, called ccc for short (countable
chain condition). We shall return to it below.

The attainment problem for cellularity is covered by two classical theorems
of Erdös and Tarski: see Handbook, Part I, Theorem 3.10 and Example 11.14.
Cellularity is attained for any singular cardinal, while for every weakly inaccessible
cardinal there are examples of BAs with cellularity not attained.

If B is a subalgebra of A, then obviously cB ≤ cA and the difference can be
arbitrarily large. If B is a dense subalgebra of A, then clearly cA = cB. If B is a
homomorphic image of A, then cellularity can change either way from A to B. For
example, if A is a free BA, then it has cellularity ω, while a homomorphic image
of A can have very large cellularity. On the other hand, given any infinite BA
A, it has a homomorphic image of cellularity ω: take a denumerable subalgebra
B of A, and by Sikorski’s theorem extend the identity mapping from B into the
completion B of B to a homomorphism of A into B.

By an easy argument, c
(∏

i∈I Ai

)
= |I|+ supi∈Ic(Ai), if all the Ai are non-

trivial. The same computation holds for weak products.
Now we turn to chain conditions in free products, where there has been a lot

of work done. Some partition theorems give results which clarify the situation:

(1) c(A⊕B) ≤ 2cA·cB for infinite BAs A,B.

To see this, suppose that 〈xα : α < (2cA·cB)+〉 is a system of disjoint elements of
A⊕B. Without loss of generality we may assume that for each α < (2cA·cB)+, the
element xα has the form aα × bα, where aα ∈ A and bα ∈ B (we use × to make
clear that the indicated product of elements is in the algebra A ⊕ B). Thus for
distinct α, β we have aα ·aβ = 0 or bα ·bβ = 0, and hence the Erdös-Rado partition
theorem (2κ)+ → (κ+)2κ implies that there is a subset Y of (2cA·cB)+ of power
(cA · cB)+ such that either aα · aβ = 0 for all distinct α, β ∈ Y or bα · bβ = 0 for
all distinct α, β ∈ Y , which is impossible. (For this partition relation, see Erdös,
Hajnal, Máté, Rado [84], pp. 98-100.)

Similarly, the partition theorem (2κ)+ → ((2κ)+, κ+)2 (see the above book,
Corollary 17.5) gives the following result:

(2) If cA ≤ 2κ and cB ≤ κ, then c(A⊕B) ≤ 2κ.

Furthermore, if κ is strong limit, then κ+ → (κ+, cfκ) (see the above book, Theo-
rem 17.1). Hence

(3) If κ is strong limit, cA ≤ κ, and cB < cfκ, then c(A⊕B) ≤ κ.

The results (1) and (2) were first proved by Kurepa [62].
Under GCH, these results say the following: (1) For any BAs A and B,

cA · cB ≤ c(A⊕B) ≤ (cA · cB)+; (2) For any BAs A and B, if cB < cf(cA), then
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c(A⊕B) = cA. Thus even under GCH, there are two cases not covered by (1)-(3):
when cA is limit with cf(cA) ≤ cB < cA, and when cA = cB.

About the first case, Shelah [94c] proved that if κ is a strong limit singular
cardinal and 2κ = κ+, then there are BAs A,B such that cA = κ, cB < (2cfκ)+,
and c(A⊕B) = κ+. This gives a partial solution of the following problem:

Problem 1. Is it true that for every singular cardinal κ there exist BAs A and B
such that cA = κ, cfκ ≤ cB < κ, and c(A⊕B) > κ?

This is a modification of Problem 1 of Monk [90], which was solved in the form
stated by the above result of Shelah. The problem is related to a result of Argyros
and Tsarpalias. To formulate this result we need the notion of caliber. A BA A
has caliber κ if for every system 〈aα : α < κ〉 of elements of A+ there is a Γ ∈ [κ]κ

such that for all Δ ∈ [Γ]κ the system 〈aα : α ∈ Δ〉 has the fip. Clearly if A has
caliber κ and A ⊕ B has a system of κ disjoint elements, then B also has such a
system. Thus in an example as in Problem 1, A must fail to have caliber κ. Now
the result of Argyros and Tsarpalias is as follows (see Comfort, Negrepontis [82],
Theorem 6.18): If κ is a strong limit cardinal with cfκ = ω and 2κ = κ+, then
there is a complete BA B of size at least κ+ such that B has ccc and does not
have caliber κ+. So an example as in Problem 1 yields a result in some respects
stronger than the Argyros, Tsarpalias theorem.

The case cA = cB has been intensively studied in the literature. That it is
consistent to have a BA A such that c(A ⊕ A) > cA was essentially recognized
quite early (probably at least implicitly by Kurepa); we give such an example
shortly. Laver made a major advance by showing that CH suffices for such an
example. The first example of such a phenomenon purely in ZFC was given by
Todorčević, and we also give a simple case of his construction below. Working
from the construction of Todorčević, Shelah has almost completely resolved the
question concerning for which cardinals κ there is such an algebra of power κ in
ZFC. To describe his results we introduce some terminology and prove some easy
results. If λ is an infinite cardinal, we say that the λ-cc is productive iff for any
BAs A and B, if they both satisfy the λ-cc, then so does A ⊕ B. Obviously this
is equivalent to saying that if c′A, c′B ≤ λ, then also c′(A⊕B) ≤ λ. Note by the
Erdös-Tarski theorem that if c′A ≤ λ and λ is singular, then c′A < λ. Hence λ-cc
being productive is mainly interesting for λ regular.

Proposition 3.1. Let λ be an infinite regular cardinal. Then the following condi-
tions are equivalent:

(i) The λ-cc is productive.
(ii) For all A,B, if c′A = c′B = λ, then c′(A⊕B) = λ.
(iii) For all A, if c′A = λ, then c′(A⊕A) = λ.

Proof. Obviously (i)⇒ (ii)⇒ (iii). Assume (iii). Suppose that A and B satisfy
the λ-cc. Let C be any BA such that c′C = λ, and set D = A × B × C. Then
c′D = λ. By (iii), c′(D ⊕D) = λ. Since A ⊕ B can be isomorphically embedded
in D ⊕D, it follows that A⊕B satisfies the λ-cc.
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Proposition 3.2. Let κ be an infinite cardinal. Then the following conditions are
equivalent:

(i) The κ+-cc is productive.
(ii) For all A,B, if cA = cB = κ, then c(A⊕B) = κ.
(iii) For all A, if cA = κ, then c(A⊕A) = κ.

Proof. Obviously (i) ⇒ (ii) ⇒ (iii). Now assume (iii). We verify Proposition
3.1(iii). Let A be a BA with c′A = κ+. Then cA = κ, and it is attained. It follows
that c(A⊕A) = κ, also attained. Thus c′(A⊕A) = κ+, as desired.

Now we can formulate most of the known results about productivity of λ-cc. Pro-
ductivity of the ω1-cc (also known as ccc) is independent of the axioms of set
theory; we go into this in detail below. In Shelah [94b] 4.8, Appendix 1 of Shelah
[94e], and Shelah [95b] it is shown that if κ is regular > ω1 then the κ+-cc is not
productive. In Shelah [94a] 4.2 it is shown that for κ singular, the κ+-cc is not
productive. In Shelah [94b] 4.8 it is also proved that if λ is uncountable inaccessible
and not ω-Mahlo then the λ-cc is not productive. Finally, that the ω2-cc is not
productive is proved in Shelah [94f].

Perhaps the easiest proof concerning productivity of the λ-cc is as follows. Let T be
a Suslin tree such that every element t has infinitely many successors, denote two of
them by t0 and t1, and let A be the tree algebra on T . Now A satisfies ccc (see the
description of cellularity for tree algebras at the end of this chapter), but A⊕A does
not. To see this second fact, for each t ∈ T consider the element (T ↑ t0)× (T ↑ t1)
of A ⊕ A. Suppose that s, t ∈ T , s �= t, and (T ↑ t0) ∩ (T ↑ s0) �= 0. Then t0 and
s0 are comparable; say s0 < t0. Clearly, then, t1 and s1 are not comparable, so
(T ↑ t1) ∩ (T ↑ s1) = 0, as desired.

We now give an example in ZFC of this kind of thing. We follow Todorčević
[85], but we give only a simple form of his construction. To begin with we note
that we can work with partial orders rather than Boolean algebras. Given a partial
order (P,≤), we take {P ↑ p : p ∈ P} as a base for a topology on P , and we let
ROP be the complete BA of regular open sets in this topology. For any p ∈ P let
bp = int(cl(P ↑ p)). Elements p, q of P are compatible if there is an r ∈ P such that
p ≤ r and q ≤ r, i.e., if (P ↑ p) ∩ (P ↑ q) �= 0. We say that P satisfies the κ-cc if
any collection of pairwise incompatible elements of P has fewer than κ elements.

Lemma 3.3. Let P be a partial order.
(i) Let p, q ∈ P . Then p and q are incompatible iff bp · bq = 0.
(ii) For any infinite cardinal κ, the partial order P satisfies the κ-cc iff ROP

satisfies the κ-cc.

Proof. (i) follows from the Handbook, Part I, p. 26 (10). (ii) follows from (i).

Given partial orders P and Q, the cartesian product P ×Q is made into a partial
order by defining (p1, q1) ≤ (p2, q2) iff p1 ≤ p2 and q1 ≤ q2.

Lemma 3.4. Let P and Q be partial orders.
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(i) (p1, q1) is incompatible with (p2, q2) iff bp1 · bq1 · bp2 · bq2 = 0 (in ROP ⊕
ROQ).

(ii) For any infinite cardinal κ, P ×Q satisfies the κ-cc iff ROP ⊕ROQ does.

Proof. (i): If (p1, q1) is compatible with (p2, q2), then p1 and p2 are compatible,
and q1 and q2 are compatible, hence by Lemma 3.3, bp1 · bq1 �= 0 and bp2 · bq2 �= 0,
and hence bp1 · bq1 · bp2 · bq2 �= 0. The converse is similar.

(ii): follows easily from (i).

Recall that �0 = ω, �α+1 = 2�α , and �λ = supα<λ �α for λ limit. We are going
to construct BAs B and C which satisfy the �+

ω -cc while B ⊕ C does not; so
cB ≤ �ω, cC ≤ �ω, and c(B ⊕C) > �ω. By the above lemmas, it suffices to work
with partial orders.

A function λ is said to satisfy condition (α) provided that λ is an ω-termed
sequence of infinite cardinals such that supξ<ω λξ = �ω and

∣∣ ∏
η<ξ

λη

∣∣ < λξ = cfλξ for all ξ < ω.

For the following definitions, assume that λ satisfies condition (α). For distinct
a, b ∈∏

ξ<ω λξ let ρ(a, b) = min{ξ < ω : aξ �= bξ}. For a, b ∈∏
ξ<ω λξ we define

a =∗ b iff ∃ξ < ω∀η ∈ (ξ, ω)[aη = bη];
a ≤∗ b iff ∃ξ < ω∀η ∈ (ξ, ω)[aη ≤ bη];
a �∗ b iff a ≤∗ b and a �=∗ b;
a <∗ b iff ∃ξ < ω∀η ∈ (ξ, ω)[aη < bη].

A sequence 〈aα : α < σ〉 ∈ σ(
∏

ξ<ω λξ) is ≤∗-increasing if ∀α, β(α < β < σ ⇒
aα �∗ aβ). For I ⊆ ω, a subset A ⊆ ∏

ξ<ω λξ is ≤∗-unbounded on I if there is no
b ∈ ∏

ξ<ω λξ such that ∀a ∈ A∃ξ < ω∀η ∈ I ∩ (ξ, ω)[aη ≤ bη]. For A ⊆ ∏
ξ<ω λξ

and I ⊆ ω, let

PIA = {p ∈ [A]<ω : (∀ distinct a, b ∈ p)[ρ(a, b) ∈ I]}.

We consider PIA to be partially ordered by ⊆. Suitable choices of I and A will
give the partial orders we are after.

Lemma 3.5. Let λ satisfy condition (α). Suppose that 〈aα : α < �+
ω 〉 is ≤∗-

increasing, I is an infinite subset of ω, and A
def= {aα : α < �+

ω } is ≤∗-unbounded
on I. Then PIA satisfies the �+

ω -cc.

Proof. Let 〈pα : α < �+
ω 〉 be a sequence of distinct elements of PIA. We want

to find distinct α, β < �+
ω such that pα and pβ are compatible. Without loss of

generality 〈pα : α < �+
ω 〉 is a Δ-system, say with kernel q. It suffices to find distinct
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α, β with pα\q and pβ\q compatible; so wlog the pα’s are pairwise disjoint. Also,
we may assume that all the pα’s have the same size n. Since

�+
ω =

⋃
ξ<ω

{σ < �+
ω : (∀ distinct a, b ∈ pσ)[ρ(a, b) < ξ]},

and ω < �+
ω , we may assume that there is a ξ0 < ω such that ρ(a, b) < ξ0 for all

σ < �+
ω and all distinct a, b ∈ pσ. For any q ∈ A define Γq = {α < �+

ω : aα ∈ q}.
Then for σ < �+

ω and ξ < ω let bσξ = min{aαξ : α ∈ Γpσ}. Then

(1) {bσ : σ < �+
ω } is ≤∗-unbounded on I.

For, suppose not: say c ∈ ∏
ξ<ω λξ and ∀σ < �+

ω∃ξ < ω∀η ∈ I ∩ (ξ, ω)[bση ≤ cη].
Then {aα : α < �+

ω } is ≤∗-bounded on I by c (contradiction). For, let α < �+
ω .

Choose σ < �+
ω such that α < β for each β ∈ Γpσ. (This is possible since the

Γpσ’s are pairwise disjoint.) Then aα ≤∗ aβ for each β ∈ Γpσ, so there is a ξ < ω
such that ∀β ∈ Γpσ∀η ∈ (ξ, ω)[aαη ≤ aβη]. Also, by the assumption on c choose
ξ′ < ω such that ∀η ∈ I ∩ (ξ′, ω)[bση ≤ cη]. Without loss of generality ξ′ ≤ ξ.
Hence ∀η ∈ I ∩ (ξ, ω)[aαη ≤ bση ≤ cη], as desired. Thus (1) holds.

By (1), there is an η ∈ I\ξ0 such that {bση : σ < �+
ω } is unbounded in λη.

Now we define σ ∈ λη �+
ω by induction. Suppose it is defined for all α < β, where

β < λη. Then δ
def= supα<β supγ∈Γpσα

aγη < λη, so there is a τ < �+
ω such that bτη

exceeds δ, and we let σβ be the least such τ . Let C = {σα : α < λη}. Then

(2) If τ, ρ ∈ C, τ < ρ, α ∈ Γpτ , and β ∈ Γpρ, then aαη < aβη.

For each τ ∈ C write Γpτ = {α(τ, 0), . . . , α(τ, n − 1)}, with α(τ, 0) < · · · <
α(τ, n− 1). Then

C =
⋃
{{τ ∈ C : ∀i < n[aα(τ,i) � η = ti]} : t ∈ n

( ∏
ξ<η

λξ

)
},

so, since |∏ξ<η λξ| < λη = cfλη, wlog there is a t ∈ n(
∏

ξ<η λξ) such that aα(τ,i) �
η = ti for all τ ∈ C and all i < n. Thus if i �= j then ρ(ti, tj) ∈ I ∩ η. Now if τ and
ρ are distinct members of C and a, b ∈ pτ ∪ pρ it follows that ρ(a, b) ∈ I. For, say
a = aα(τ,i) and b = aα(ρ,j). If i �= j, then ρ(a, b) ∈ I from the above. If i = j, then
ρ(a, b) = η ∈ I.

So pτ and pρ are compatible for all τ, ρ ∈ C, as desired.

Lemma 3.6. Suppose that λ satisfies condition (α) and I and J are disjoint
infinite subsets of ω. Let A ⊆ ∏

ξ<ω λξ be of size �+
ω . Then PIA ×PJA has a

pairwise incompatible subset of size �+
ω .

Proof. We claim that {({a}, {a}) : a ∈ A} is pairwise incompatible. Suppose that
a and b are distinct elements of A, and ({a}, {a}) and ({b}, {b}) are compatible. So
there is a (p, q) ∈PIA×PJA such that a, b ∈ p and a, b ∈ q. Then ρ(a, b) ∈ I∩J ,
contradiction.
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Lemma 3.7. There is a λ satisfying condition (α) for which there is an a ∈
�

+
ω (

∏
ξ<ω λξ) such that a is <∗-increasing and {aα : a < �+

ω } is ≤∗-unbounded on
each infinite I ⊆ ω.

Proof. For each ξ < ω let μξ = �+
ξ . We claim:

(1) If b ∈ �ω(
∏

ξ<ω μξ) then there is a c ∈ ∏
ξ<ω μξ such that bβ <∗ c for all

β < �ω.

In fact, let cη be the least ordinal such that bβη < cη for all β < �η. Now let
β < �ω, in order to show that bβ <∗ c. Choose ξ < ω so that β < �ξ. Then if
η ∈ (ξ, ω) we have bβη < cη. Thus bβ <∗ c, as desired.

By (1), there is a <∗-increasing b ∈ �
+
ω (

∏
ξ<ω μξ). We now define a sequence

〈cσ : σ < σ〉 by induction on σ, each cσ ∈
∏

ξ<ω(μξ + 1). Let c0ξ = μξ for each
ξ < ω. Then we continue to define cσ as long as possible, subject to the following
two conditions:

(2) bα <∗ cσ for all α < �+
ω .

(3) If τ < σ < σ, then cσ �∗ cτ .

Now note that σ < (2ω)+. In fact, otherwise we can write

[(2ω)+]2 =
⋃
ξ<ω

{{σ, τ} : σ < τ < (2ω)+ and cσξ > cτξ},

and the Erdös-Rado theorem (2ω)+ → (ω+)2ω would give an infinite decreasing
sequence of ordinals. So, indeed, σ < (2ω)+. Next we claim

(4) σ is a successor ordinal.

Suppose not. For each ξ < ω let Bξ = {cσξ : σ < σ}. Let B =
∏

ξ<ω Bξ. Now
|Bξ| ≤ 2ω since σ < (2ω)+, so |B| ≤ 2ω. Hence:

(5) There is a γ < �+
ω such that for all d ∈ B, if bγ <∗ d, then bβ <∗ d for all

β ∈ (γ, �+
ω ).

In fact, if (5) fails, then there exist a Δ ∈ [�+
ω ]�

+
ω and a d ∈ B such that for all

γ ∈ Δ we have bγ <∗ d but bβ �<∗ d for some β ∈ (γ, �+
ω ). But then bγ <∗ d for all

γ < �+
ω , since if γ < �+

ω , choose δ ∈ Δ with γ < δ; then bγ <∗ bδ <∗ d. This is a
contradiction. So (5) holds.

Now define d ∈∏
ξ<ω Bξ by setting

dξ =
{

c0ξ if β ≤ bγξ for all β ∈ Bξ,
min{β ∈ Bξ : β > bγξ} otherwise,

for each ξ < ω. Then bα <∗ d ≤∗ cσ for all α < �+
ω and σ < σ. In fact, obviously

bγ <∗ d, so if α < γ then bα <∗ bγ <∗ d, and if γ ≤ α then bα <∗ d by (5). And
bγ <∗ cσ, so we can choose ξ < ω so that bγη < cση for all η ∈ (ξ, ω). Then for
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any η ∈ (ξ, ω) we have cση ∈ Bη, and hence dη ≤ cση; so d ≤∗ cσ. Now actually
d �∗ cσ for all σ < σ, since σ is a limit ordinal. But this contradicts the fact that
cσ is undefined. So (4) is proved.

Let σ = σ + 1, and set d = cσ. For each ξ < ω let λξ = cf(dξ), and pick a
subset Cξ of dξ of order type λξ, so that supCξ = λξ if λξ is a limit ordinal, and
Cξ = {δ} if λξ = δ + 1. For each α < �+

ω define aα ∈
∏

ξ<ω λξ by

aαξ =
{ order type of Cξ ∩ bαξ, if bαξ < dξ,

0 otherwise.

(6) {aα : α < �+
ω } is ≤∗-unbounded in

∏
ξ<ω λξ on any infinite I ⊆ ω.

Proof of (6): Suppose that I is an infinite subset of ω and e is a ≤∗-bound in∏
ξ<ω λξ for {aα : α < �+

ω } on I. Thus

∀α < �+
ω∃ξ < ω∀η ∈ I ∩ (ξ, ω)[aαη ≤ eη],

so there exist an E ∈ [�+
ω ]�

+
ω and a ξ0 < ω such that for all α ∈ E and all

η ∈ I ∩ (ξ0, ω) we have aαη ≤ eη. And bα <∗ d for all α ∈ E, so by a similar
argument wlog ∀α ∈ E∀η ∈ I ∩ (ξ0, ω)[bαη < dη]. Hence for all α ∈ E and all
η ∈ I ∩ (ξ0, ω), aαη is the order type of Cη ∩ bαη. Define f ∈ ∏

ξ<ω(μξ + 1) by
setting fξ = dξ if ξ /∈ I ∩ (ξ0, ω), and fξ = the δ ∈ Cξ such that eξ is the order
type of Cξ ∩ δ if ξ ∈ I ∩ (ξ0, ω). This is possible since eξ ∈ λξ = cfλξ and Cξ ⊆ dξ
has order type λξ. Now let α < �+

ω . We claim that bα <∗ f . For, choose β ∈ E
so that α < β. Choose ξ1 < ω such that ∀ξ ∈ (ξ1, ω)[bβξ < dξ], by (2). Suppose
that ξ ∈ (max(ξ0, ξ1), ω). If ξ /∈ I, clearly bβξ < fξ. Suppose that ξ ∈ I. Then
aβξ ≤ eξ, eξ is the order type of Cξ ∩ fξ, and aβξ is the order type of Cξ ∩ bβξ,
so bβξ ≤ fξ. This proves that bβ ≤∗ f . Since bα <∗ bβ , it follows that bα <∗ f , as
desired: we have proved that bα <∗ f for all α < �+

ω .
Next, f �∗ d. In fact, if ξ /∈ I ∩ (ξ0, ω), then fξ = dξ, while if ξ ∈ I ∩ (ξ0, ω)

then fξ ∈ Cξ, hence fξ < λξ = cf(dξ), and so fξ < dξ; since I is infinite, f �=∗ d.
But this contradicts the fact that cσ is not defined. Hence (6) holds.

(7) If α < β < �+
ω , then aα ≤∗ aβ.

In fact, choose ξ < ω such that ∀η ∈ (ξ, ω)[bαη < bβη < dη]. Then clearly ∀η ∈
(ξ, ω)[aαη ≤ aβη].

(8) If α < �+
ω then ∃γ < �+

ω∀β ∈ (γ, �+
ω )[aα <∗ aβ].

Suppose (8) fails for α. Then there is an F ∈ [�+
ω ]�

+
ω such that aα �<∗ aβ for all

β ∈ F , so by (7),

F =
⋃

I∈[ω]ω

{β ∈ F : I = {ξ < ω : aαξ = aβξ}},

and hence wlog there is an infinite I ⊆ ω such that ∀β ∈ F∀ξ ∈ I[aαξ = aβξ].
Thus aα is a ≤∗-bound for {aγ : γ < �+

ω } on I, which contradicts (6).
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By (7) and (8), there is an increasing function δ ∈ �
+
ω �+

ω such that aδα <∗ aδβ

for all α, β with α < β < �+
ω . Let a′

α = aδα for all α < �+
ω . Then a′ is a one-one

member of �
+
ω

∏
ξ<ω λξ, so supξ<ω λξ = �ω. Hence there is an increasing ε ∈ ωω

such that
∏

η<ξ λεη < λεξ for all ξ < ω. Hence λ′ def= λ ◦ ε satisfies condition (α).
For each α < �+

ω let a′′
α ∈

∏
ξ<ω λ′

ξ be defined by: a′′
αξ = a′

αεξ for all ξ < ω.
Clearly a′′ is <∗-increasing. Suppose that {a′′

α : α < �+
ω } is ≤∗-bounded by g on

an infinite subset I of ω. Now define g′ ∈∏
ξ<ω λ′

ξ by

g′ξ =
{

gε−1ξ, if ξ ∈ ε[ω],
0, otherwise.

Note that if ξ ∈ ε[ω], then gε−1ξ ∈ λ′
ε−1ξ = λξ. So g′ ∈ ∏

ξ<ω λξ. Now we
claim that {aα : α < �+

ω } is ≤∗-bounded by g′ on ε[I], contradicting (6). In
fact, given α < �+

ω , choose β < �+
ω so that α < δβ. Choose ξ < ω such that

∀η ∈ (ξ, ω)[aαη < aδβη] and ∀η ∈ I ∩ (ξ, ω)[a′′
βη ≤ gη]. Then if ν ∈ ε[I] ∩ (εξ, ω),

write ν = εη; then η ∈ I ∩ (ξ, ω), so

aαν < aδβν = aδβεη = a′′
βη ≤ gη = g′ν,

as desired.

Theorem 3.8. There exist BAs A and B such that cA ≤ �ω, cB ≤ �ω, and
c(A⊕B) > �ω.

Corollary 3.9. There is a BA C such that cC = �ω while c(C ⊕C) > �ω.

Another important and quite elementary fact about free products is that

c(⊕i∈IAi) = sup{c(⊕i∈F Ai) : F ∈ [I]<ω}.

In fact, ≥ is clear. Now let κ = sup{c(⊕i∈F Ai) : F ∈ [I]<ω}, and suppose that X is
a disjoint subset of ⊕i∈IAi of size κ+. For each x ∈ X choose a finite Fx ⊆ I such
that x ∈ ⊕i∈FxAi. We may assume that each x ∈ X has the form x =

∏
i∈Fx yx

i ,
where yx

i ∈ Ai for each i ∈ Fx. Without loss of generality, 〈Fx : x ∈ X〉 forms a
Δ-system, say with kernel G. But then, by the free product property, 〈∏i∈G yx

i :
x ∈ X〉 is a disjoint system of elements of ⊕i∈GAi, contradiction.

As our final result on chain conditions in free products, we prove the folklore
theorem that MA (Martin’s axiom) + ¬CH implies that the free product of two
ccc BAs is again ccc. This depends on the following lemma:

Lemma 3.10. (MA + ¬CH) Suppose that 〈xα : α < ω1〉 is a system of elements
in a ccc BA A. Then there is an uncountable S ⊆ ω1 such that 〈xα : α ∈ S〉 has
the finite intersection property.

Proof. We may assume that A is complete. For each α < ω1 let yα =
∑

γ>α xγ .
Then, we claim,



3.10 Amalgamated free products 53

(*) There is an α < ω1 such that for all β > α we have yβ = yα.

Otherwise, since clearly α < β → yα ≥ yβ , we easily get an increasing sequence
〈β(ξ) : ξ < ω1〉 of ordinals less than ω1 such that yβ(ξ) > yβ(η) whenever ξ < η <
ω1. But then 〈yβ(ξ) · −yβ(ξ+1)〉 is a disjoint family of power ω1, contradiction.

Thus (*) holds, and we fix an α as indicated there. The partial ordering P
that we want to apply Martin’s axiom to is {x ∈ A : 0 �= x ≤ yα} under ≥. It is a
ccc partial ordering since A is a ccc BA. Now for the dense sets. For each β < ω1

let

Dβ = {p ∈ P : there is a γ > β such that p ≤ xγ}.
To see that Dβ is dense in P , let p ∈ P be arbitrary. Choose δ ∈ ω1 with δ > α, β.
Then yα = yδ, so from 0 �= p ≤ yα we infer that there is a γ > δ such that
p · xγ �= 0. Thus p · xγ is the desired element of Dβ which is ≤ p.

Now let G be a filter on P intersecting each dense set Dβ for β < ω1, by

MA + ¬CH. Then it is easy to see that S
def= {xγ : γ < ω1, and p ≤ xγ for some

p ∈ G} is the set desired in the lemma.

Now we prove, using MA+¬CH, that the free product of ccc BAs A and B is again
ccc. Let 〈xα : α < ω1〉 be a disjoint system of elements of A ⊕ B. Without loss
of generality we may assume that each xα has the form aα × bα where aα ∈ A
and bα ∈ B. By the lemma, let S be an uncountable subset of ω1 such that
〈aα : α ∈ S〉 has the finite intersection property. But then, by the free product
property, 〈bα : α ∈ S〉 is a disjoint system in B, contradiction.

The argument just given generalizes easily to show that MA+¬CH implies
that if X and Y are ccc topological spaces, then so is X × Y .

We now turn to more special operations. The basic fact about cellularity for amal-
gamated free products is as follows:

c(A⊕C B) ≤ 2cA·cB·|C|.

To prove this, let κ = cA · cB · |C|, and suppose that 〈cα : α < (2κ)+〉 is a disjoint
system in A ⊕C B. We may assume that each cα is non-zero, and has the form
aα · bα, with aα ∈ A and bα ∈ B. Thus for all distinct α, β < (2κ)+ there is a
c ∈ C such that aα · aβ ≤ c and bα · bβ ≤ −c. Hence by the Erdös-Rado theorem
there is a Γ ∈ [(2κ)+]κ

+
and a c ∈ C such that aα · aβ ≤ c and bα · bβ ≤ −c for

all distinct α, β ∈ Γ. Thus (aα · −c) · (aβ · −c) = 0 and (bα · c) · (bβ · c) = 0 for all
distinct α, β ∈ (2κ)+. Since cA < κ+, it follows that there is a Δ ∈ [Γ]κ such that
aα · −c = 0 for all α ∈ Γ\Δ; and there is a Θ ∈ [Γ\Δ]κ such that bα · c = 0 for all
α ∈ (Γ\Δ)\Θ. But then for any α ∈ (Γ\Δ)\Θ we have aα · bα = 0, contradiction.

The above inequality is best-possible, in a sense. To see this, considerPω⊕C

Pω, where C is the BA of finite and cofinite subsets of ω. Let 〈Γα : α < 2ω〉 be
a system of infinite almost disjoint subsets of ω; and also assume that each Γα is
not cofinite. For each α < 2ω let yα be the element Γα · (ω\Γα) of Pω ⊕C Pω.



54 3. Cellularity

These elements are clearly non-zero. For distinct α, β < 2ω let F = Γα ∩Γβ. Then
Γα ∩ Γβ = F and (ω\Γα) ∩ (ω\Γβ) ⊆ (ω\F ), which shows that the system is
disjoint. This demonstrates equality above.

For free amalgamated products with infinitely many factors we have

c(⊕C
i∈IAi) ≤ 2|C| · 2supi∈IcAi .

To prove this, let κ be the cardinal on the right, and suppose that 〈yα : α < κ+〉
is a disjoint system of elements of ⊕C

i∈IAi. We may assume that each yα has the
form

yα =
∏

i∈Fα

aα
i ,

where Fα is a finite subset of I and aα
i ∈ Ai for all i ∈ Fα. We may assume, in

fact, that the Fα’s form a Δ-system, say with kernel G; and that they all have the
same size. Thus by a change of notation we may write

yα =
∏
j<m

aα
iα
j
·
∏
j<n

aα
kj

,

where Fα\G = {iαj : j < m} and G = {kj : j < n}. For distinct α, β < κ+ there
then exist cj ∈ C for j < m, dj ∈ C for j < m, and ej ∈ C for j < n such that
aα

iα
j
≤ cj for all j < m, aβ

iβ
j

≤ dj for all j < m, and aα
kj
· aβ

kj
≤ ej for all j < n, such

that ∏
j<m

cj ·
∏
j<m

dj ·
∏
j<n

ej = 0.

Using the Erdös-Rado theorem again, we get Γ ∈ [κ+]λ and c, d ∈ mC, e ∈ nC
such that the above holds for all distinct α, β ∈ Γ, where λ = (|C| · supi∈IcAi)+.
Arguing similarly to the case of a free product with amalgamation of two algebras,
we then easily infer that there is an α ∈ Γ such that aα

kj
≤ ej for each j < n. But

then yα = 0, contradiction.
Since Pω ⊕C Pω can be considered as a subalgebra of ⊕C

i∈ωPω, with C
as in the example for the free product of two factors, it follows that the above
inequality is again best possible.

The behaviour of cellularity under unions of well-ordered chains is clear on
the basis of cardinal arithmetic. We restrict ourselves, without loss of generality,
to well-ordered chains of regular type. Actually, we can formulate a more general
fact about increasing chains of BAs; this fact will apply to several of our cardinal
functions, namely to the ordinary sup-functions (see the introduction).

Theorem 3.11. Let κ and λ be infinite cardinals, with λ regular. Suppose that k
is an ordinary sup-function with respect to P . Then the following conditions are
equivalent:

(i) cfκ = λ.
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(ii) There is a strictly increasing sequence 〈Aα : α < λ〉 of BAs each satisfying
the κ− k−chain condition such that

⋃
α<λ Aα does not satisfy this condition.

Proof. (i)⇒(ii): Assume (i). Let 〈μξ : ξ < λ〉 be a strictly increasing sequence of
ordinals with sup κ (maybe κ is a successor cardinal, so that we cannot take the
μξ to be cardinals). Let A be a BA of size κ with a set X ∈ PA such that |X| = κ.
Write A = {aα : α < κ}. For each ξ < λ let Bξ = 〈{aα : α < μξ}〉. Thus Bξ ⊆ Bη

if ξ < η, and |Bξ| < κ for all ξ < λ. Hence a strictly increasing subsequence is as
desired (since λ is regular).

(ii)⇒(i). Assume that (ii) holds but (i) fails. Let X be a subset of
⋃

α<λ Aα

of power κ which is in PA. If λ < cfκ, then the facts that X =
⋃

α<λ(X ∩ Aα),
|X| = κ, and |X ∩Aα| < κ for all α < λ, give a contradiction.

So, assume that cfκ < λ. Now for all α < λ there is a β > α such that
X ∩ Aα ⊂ X ∩ Aβ , since otherwise some Aα would contain X. It follows that
λ ≤ κ, and so κ is singular in the case we are considering. Let 〈μα : α < cfκ〉 be a
strictly increasing sequence of cardinals with sup κ. Since supα<λ|X∩Aα| = κ, for
each α < cfκ choose ν(α) < λ such that |X ∩Aν(α)| ≥ μα. Let ρ = supα<cfκν(α).
Then ρ < λ since cfκ < λ and λ is regular. But |X ∩Aρ| = κ, contradiction.

With regard to Theorem 3.11, see also the end of this chapter.
We do not have a complete description of what happens to cellularity under

ultraproducts, but we can give quite a bit of information. Many of the things which
we mention hold for other cardinal functions as well. First we consider countably
complete ultrafilters; the main result we want to give here is that if F is a countably
complete ultrafilter on an infinite set I and Ai is a ccc BA for each i ∈ I, then∏

i∈I Ai/F also satisfies ccc. An analogous statement holds for many of our other
functions. The result follows from the following standard facts. If F is countably
complete and non-principal, then there is an uncountable measurable cardinal,
and |I| is at least as big as the first such — call it κ. (See Comfort, Negrepontis
[74], p. 196.) Also, F is κ-complete. To see this, suppose not, and let λ be the
least cardinal such that F is not λ-complete. Thus ω1 < λ ≤ κ. Then there exist
a cardinal μ < λ and disjoint aα ⊆ I for α < μ such that I\aα ∈ F for all α < μ,
while

⋃
α<μ aα ∈ F . Let G = {S ⊆ μ :

⋃
α∈S aα /∈ F}. Then it is easy to check

that G is a σ-complete non-principal maximal ideal on μ, which is a contradiction,
since μ is less than κ.

Now we can give the simple BA argument from these set-theoretical facts.
Suppose

∏
i∈I Ai/F does not satisfy ccc. Let 〈[aα] : α < ω1〉 be a system of non-

zero disjoint elements of the product; [x] denotes the equivalence class of x under
F . Since F is ω2-complete, the sets Jαβ

def= {i ∈ I : (aα)i · (aβ)i = 0} for α �= β

and the sets Kα
def= {i ∈ I : (aα)i �= 0} have a non-zero intersection, since that

intersection is in F . But this is obviously a contradiction.
Thus countably complete ultrafilters tend to preserve chain conditions; we

skip trying to give a more general version of the above argument.
Next, if F is a countably incomplete ultrafilter on I and each algebra Ai is



56 3. Cellularity

infinite, then
∏

i∈I Ai/F never has ccc. This follows from the fact that the product
is ω1-saturated in the model-theoretic sense; see Chang, Keisler [73], p. 305.

Now we present some results of Douglas Peterson. They depend on some
well-known notions and results. An ultrafilter F on an infinite set I is regular if
there is a system 〈ai : i ∈ I〉 of elements of F such that

⋂
j∈J aj = 0 for every

infinite subset J of I. The following concept is useful. Let F be an ultrafilter on
I, and let 〈αi : i ∈ I〉 be a system of ordinals. We define the essential supremum
of 〈αi : i ∈ I〉 over F to be

ess.supF
i∈Iαi = min{sup

i∈b
αi : b ∈ F}.

Keisler, Prikry [74] show that if F is a regular ultrafilter on an infinite set I and
〈κi : i ∈ I〉 is a system of infinite cardinals, then |∏i∈I κi/F | = (ess.supF

i∈Iκi)|I|.
Given an infinite cardinal κ and an ultrafilter F on some set I, we call F

κ-descendingly incomplete provided that there is a system 〈aα : α < κ〉 of elements
of F such that aα ⊇ aβ whenever α < β < κ, and

⋂
α<κ aα = 0. We need the

following well-known fact:

(*) If F is a regular ultrafilter on an infinite set I and κ is an infinite cardinal such
that κ ≤ |I|, then F is κ-descendingly incomplete.

To prove this fact, let 〈aα : α < |I|〉 be a system of elements showing the regularity
of F . For each α < κ, let bα =

⋃
β>α aβ . Clearly the sequence 〈bα : α < κ〉 shows

the κ-descending incompleteness of F .
Now we begin Peterson’s results, with two useful lemmas.

Lemma 3.12. Suppose that κ is an uncountable limit cardinal, I is a set such
that cfκ ≤ |I|, and F is a cfκ-descendingly incomplete ultrafilter on I. Then there
is a sequence 〈λi : i ∈ I〉 of infinite cardinals such that λi < κ for all i ∈ I and
ess.supF

i∈Iλi = κ.

Proof. By the cfκ-descending incompleteness of F let 〈aα : α < cfκ〉 be a system
of elements of F such that aα ⊇ aβ whenever α < β < cfκ, and

⋂
α<cfκ aα = 0.

We may assume that a0 = I and aλ =
⋂

α<λ aα for λ limit. Let 〈μδ : δ < cfκ〉 be
a strictly increasing continuous sequence of infinite cardinals with supremum κ.
Now we define the sequence 〈λi : i ∈ I〉. Let i ∈ I. Then there is a γ < cfκ such
that i ∈ aγ\aγ+1, and we define λi = μγ . Now to show that ess.supF

i∈Iλi = κ, take
a ∈ F and δ < cfκ; we shall show that sup{λi : i ∈ a} ≥ μδ. For any i ∈ aδ we
have λi ≥ μδ. Now a∩aδ �= 0 since a∩aδ ∈ F , and if we choose i ∈ a∩aδ we have
μδ ≤ λi, and so μδ ≤ sup{λi : i ∈ a}, as desired.

Lemma 3.13. Suppose that F is a regular ultrafilter on an infinite set I, κ is
a limit cardinal, 〈κi : i ∈ I〉 is a system of infinite cardinals, κ = ess.supF

i∈Iκi,
cfκ ≤ |I|, and ω < κi < κ for all i ∈ I. Then there is a system 〈λi : i ∈ I〉 of
infinite cardinals such that λi < κi for all i ∈ I and ess.supF

i∈Iλi = κ.
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Proof. Let 〈aα : α < |I|〉 be a system of elements of F showing the regularity of
F , with a0 = I. Let 〈δα : α < cfκ〉 be a strictly increasing continuous sequence of
cardinals with supremum κ such that δ0 = ω. Let G = {i ∈ I : κi = δα for some
limit α}, and for each i ∈ G let α(i) be such that κi = δα(i). Set ai

ξ =
⋃

ξ≤α<α(i) aα

for each i ∈ G and ξ < α(i). Then the following conditions clearly hold:

(1)
⋂

ξ<α(i) ai
ξ = 0 for each i ∈ G.

(2) If i, j ∈ G are such that α(i) < α(j), then for each ξ < α(i) we have ai
ξ ⊆ aj

ξ.
(3) If i ∈ G and ξ is a limit ordinal < α(i), then

⋂
γ<ξ ai

γ = ai
ξ.

Here is the proof of (3), for example. Suppose the hypotheses of (3) hold but
k ∈

(⋂
γ<ξ ai

γ

)
\ai

ξ. Then k /∈ ⋃
ξ≤α<α(i) aα, so for each γ < ξ, k is in some aα

with γ ≤ α < ξ. This clearly implies that k is in infinitely many aα’s, contradiction.
Now let i ∈ I be arbitrary. We will define λi by cases. Case 1. i /∈ G. There is

an α < cfκ such that δα ≤ κi < δα+1. If α is a successor ordinal β +1. let λi = δβ .
Otherwise α is a limit ordinal or 0, and by i /∈ G we have δα < κi < δα+1, so let
λi = δα. Under either possibility we then have λi < κi. Case 2. i ∈ G. Then there
is a ξ < α(i) such that i ∈ ai

ξ\ai
ξ+1; let λi = δξ. Thus λi = δξ < δα(i) = κi.

In order to show that ess.supF
i∈Iλi = κ, suppose that a ∈ F and ω ≤ ρ < κ;

we show that sup{λi : i ∈ a} ≥ ρ. Choose α < cfκ such that δα ≤ ρ < δα+1.
We consider two cases. Case 1. G /∈ F . Let a′ = {i ∈ I : κi > δα+2}. Then
a′ ∈ F since ess.supF

i∈Iκi = κ. If i ∈ a′\G, then λi ≥ δα+1 > ρ. Since I\G ∈ F ,
there is a j ∈ (a ∩ a′)\G. Then sup{λi : i ∈ a} ≥ λj > ρ. Case 2. G ∈ F .

Since ess.supi∈Iκi = κ, for each γ < κ we have Mγ
def= {i ∈ G : δα(i) > γ} ∈ F .

Hence choose k ∈ G such that δα(k) > δα+1. Then choose j ∈ Mδα(k) ∩ ak
α+1 ∩ a.

Then j ∈ aj
α+1 since aj

α+1 ⊇ ak
α+1 by (2). Choose ε such that j ∈ aj

ε\aj
ε+1. Then

ε ≥ α + 1, and so λj = δε ≥ δα+1 > ρ. Hence sup{λi : i ∈ a} ≥ λj > ρ.

We need three more simple results.

Theorem 3.14. If F is a regular ultrafilter over a set I then there is a system
〈ni : i ∈ I〉 of natural numbers such that

∣∣∏
i∈I ni/F

∣∣ = 2|I|.

Proof. Let 〈ai : i ∈ I〉 be a system showing that F is regular. For each i ∈ I let
Mi = {j ∈ I : i ∈ aj}. Thus |Mi| < ω. We will show that 2|I| ≤

∣∣∏
i∈I

Mi2/F
∣∣,

proving the theorem. For each g ∈ I2 define g′ ∈ ∏
i∈I

Mi2 by g′i = g � Mi. If
g, h ∈ I2 and g �= h, pick j ∈ I such that gj �= hj; then for any i ∈ aj we have
j ∈ Mi, and hence g′i �= h′i. This shows that aj ⊆ {i ∈ I : g′i �= h′i}, and hence
g′/F �= h′/F .

Recall that if k is a cardinal function defined by supremums with respect to a
function P , then

k′A = min{κ : |X| < κ for all X ∈ PA}.
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Proposition 3.15. If k is an ultra-sup function, 〈Ai : i ∈ I〉 is a system of infinite
BAs, with I infinite, F is an ultrafilter on I, and κi < k′Ai for all i ∈ I. then
k

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I κi/F

∣∣.
Corollary 3.16. If k is an ultra-sup function, 〈Ai : i ∈ I〉 is a system of BAs with
I infinite, and F is an ultrafilter on I, then k

(∏
i∈I Ai/F

)
≥ ess.supF

i∈IkAi.

Proof. Let λ = ess.supF
i∈IkAi. If λ is a successor cardinal, then we may assume

that kAi = λ for all i ∈ I, and we are done by Proposition 3.15. If λ is a limit
cardinal, then for each regular cardinal γ < λ we have k

(∏
i∈I Ai/F

)
≥ |γI/F | ≥

γ, and the result follows.

Now we are ready for the main result of Peterson:

Theorem 3.17. Let k be an ultra-sup function with respect to P such that if
A is an infinite BA then PA contains arbitrarily large finite sets. Suppose that
〈Ai : i ∈ I〉 is a system of BAs with I infinite and F is a regular ultrafilter on I.
Then k

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I kAi/F

∣∣.
Proof. Let λ = ess.supF

i∈IkAi, and recall that λ|I| =
∣∣∏

i∈I kAi/F
∣∣. We now

consider several cases.
Case 1. λ = ω. Then λ|I| = 2|I|, and by Theorem 3.14, k

(∏
i∈I Ai/F

)
≥ 2|I|.

Case 2. ω < λ ≤ |I|. Then k
(∏

i∈I Ai/F
)
≥ |Iω/F | = 2|I| = λ|I|.

Case 3. cfλ ≤ |I| < λ, and {i ∈ I : kAi = λ} ∈ F . Then we may assume
that kAi = λ for all i ∈ I. By Lemma 3.12, let 〈κi : i ∈ I〉 be a system of infinite
cardinals such that κi < λ for all i ∈ I and ess.supF

i∈Iκi = λ. Then by Proposition
3.15, k

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I kAi/F

∣∣.
Case 4. cfλ ≤ |I| < λ, and {i ∈ I : kAi < λ} ∈ F . This is like Case 3, except

Lemma 3.13 is used.
Case 5. |I| < cfλ. Then λ|I| = sup{κ|I| : κ < λ}. If ω ≤ κ < λ, then

k
(∏

i∈I Ai/F
)
≥ |Iκ/F | = κ|I|. Hence k

(∏
i∈I Ai/F

)
≥ λ|I|.

Recall that c is an ultra-sup function. Thus Theorem 3.17 gives a lower bound for
c
(∏

i∈I Ai/F
)
, at least for regular F . The following simple result gives an upper

bound.

Theorem 3.18. Let 〈Ai : i ∈ I〉 is a system of infinite BAs, with I infinite, and
suppose that F is a uniform ultrafilter on I. Let κ = max(|I|, ess.supF

i∈IcAi). Then
c
(∏

i∈I Ai/F
)
≤ 2κ.

Proof. Let λ = ess.supF
i∈IcAi). We may assume that cAi ≤ λ for all i ∈ I. In

order to get a contradiction, suppose that 〈fα/F : α < (2κ)+〉 is a system of
disjoint elements. We may assume that fαi �= 0 for all i ∈ I and α < (2κ)+.
Thus [(2κ)+]2 =

⋃
i∈I{{α, β} : fαi · fβi = 0}, so by the Erdös-Rado theorem

(2κ)+ → (κ+)2κ we get a homogeneous set which gives a contradiction.

There are two main results about ultraproducts and cellularity in Shelah [90]. It
is shown there that c

(∏
i∈I Ai/F

)
does not depend solely on cardinal arithmetic.
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Moreover, an example is given in which |∏i∈ω cAi/F | < c
(∏

i∈ω Ai/F
)

for any
uniform ultrafilter F on ω. We give this result, since the reader may have a difficult
time filling in the details of the proof given in Shelah [90]. We do not give it
in the general form of that paper, restricting ourselves to a simple case. The
theorem depends on a combinatorial theorem stated in Shelah [90] whose proof
uses “Todorčević walks”. For the proof see Todorčević [87b], Shelah [88e], and
Bekkali [91]. The basic properties of the walks are stated in Todorčević [87b], but
the proofs there are extremely terse. The author found proofs for some of these
properties in the other two references, and while he could not understand those
proofs completely, they suggested the proofs which follow.

Let θ be a regular uncountable cardinal. A T-sequence for θ is a sequence
〈Cξ : ξ < θ〉 such that for each limit ξ < θ the set Cξ is a closed unbounded subset
of ξ, for each ξ + 1 < θ the set Cξ+1 is {ξ}, and C0 = 0. We will consider the
following condition on a T-sequence 〈Cξ : ξ < θ〉:
(T) If C is a club in θ, then there is an α < θ such that for all β ∈ [α, θ) we have
C ∩ α �⊆ Cβ.

Condition (T) implies some somewhat stronger conditions (Tm):

(Tm) If 〈ζk
ξ : ξ < θ, k < m〉 is a system of elements of θ such that {ζk

ξ : k <

m}∩ {ζk
η : k < m} = 0 for all ξ �= η, and if C is a club in θ, then there is an α < θ

such that for all β ≥ α there is a ξ such that β ≤ ζk
ξ for each k < m and

C ∩ α �⊆
⋃

k<m

Cζk
ξ
.

In fact, clearly (T) implies (T1). To derive the other conditions we need the fol-
lowing lemma, which is also useful for other purposes.

Lemma 3.19. Assume that (Tm) holds, and assume its hypotheses. Then there
exists 〈γk : k < m〉 such that γk < θ for each k < m and

∀y < θ∃y′ ∈ [y, θ)∀x < θ∃x′ ∈ [x, θ)∀k < m[y′ < ζk
x′

and y′ is limit and γk = sup(Cζk
x′
∩ y′) < y′].

Proof. We can form a model Mm whose universe is θ, with 2m + 1 relations: <,
and for each i < m, the relations

Si = {(α, ξ) : α ∈ Cζi
ξ
} Ti = {(α, ξ) : α < ζi

ξ}.

Let 〈Nm
δ : δ < θ〉 be a continuous increasing sequence of elementary submodels of

Mm with union Mm, each of size less than θ. Then the set C ′ def= {δ ∈ C : Nm
δ = δ}

is club in θ. Choose α such that for all β ≥ α there is a ξ such that β ≤ ζk
ξ for

each k < m and C ′ ∩α �⊆ ⋃
k<m Cζk

ξ
. Thus there is a set B ∈ [θ]θ such that for all
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ξ ∈ B we have α ≤ ζk
ξ for each k < m and there is a δξ ∈ C ′ ∩α\⋃k<m Cζk

ξ
. Then

there is a δ ∈ C ′ ∩ α and a B′ ∈ [B]θ such that δξ = δ for all ξ ∈ B. Note that

for each ξ ∈ B and k < m the ordinal γk
ξ

def= sup(Cζk
ξ
∩ δ) is less than δ. Hence

there exist a B′′ ∈ [B′]θ and for each k < m a γk < δ such that γk
ξ = γk for all

ξ ∈ B′. Now let ϕ(u, v) say that u < ζk
v , u is limit, and γk = sup(Cζk

v
∩ u) < u

for all k < m; clearly this is a formula in the language of Mm with constants in
Nm

δ = δ, and Mm |= ϕ[δ, ξ] for all ξ ∈ B′′. We claim:

(∗m) Mm |= ∀y∃y′ > y∀x∃x′ > xϕ(y′, x′).

In fact, suppose not. Then Nm
δ |= ∃y∀y′ > y∃x∀x′ > x[¬ϕ(y′, x′)]. Hence choose

ρ ∈ Nm
δ = δ such that Nm

δ |= ∀y′ > ρ∃x∀x′ > x[¬ϕ(y′, x′)]. Then Mm models
the same thing, so M |= ∃x∀x′ > x[¬ϕ(δ, x′)]. So, choose ε so that M |= ∀x′ >
ε¬ϕ(δ, x′). Choose ξ ∈ B′′ with ξ > ε. Then M |= ¬ϕ[δ, ξ], contradiction. So the
conclusion of the lemma holds.

Lemma 3.20. (T) and (Tm) imply (Tm+1).

Proof. Assume (T) and (Tm). Suppose that 〈ζk
ξ : ξ < θ, k ≤ m〉 is a system of

elements of θ such that {ζk
ξ : k ≤ m} ∩ {ζk

η : k ≤ m} = 0 for all ξ �= η and C is
club in θ. Apply Lemma 3.19 to 〈ζk

ξ : ξ < θ, k < m〉 and C to get 〈γk : k < m〉 as
indicated. Let δ = supk<m(γk +1). Apply (T) to get α < θ such that for all ξ with
α ≤ ζm

ξ we have (C\δ) ∩ α �⊆ Cζm
ξ

. Suppose, to verify the conclusion of (Tm) for
α, that β ∈ [α, θ). By the conclusion of Lemma 3.17, choose a limit ε ∈ [β + 1, θ)
so that

(*) ∀η < θ∃ξ ∈ [η, θ)∀k < m[ε < ζk
ξ and γk = sup(Cζk

ξ
∩ ε) < ε].

Choose η < θ such that ∀ξ ∈ [η, j)∀k < m(β ≤ ζk
ξ ). Then choose ξ ∈ [η, θ) by

(*). Then take δ′ ∈ (C\δ) ∩ α\Cζm
ξ

. Then there are no members of Cζk
ξ

between

γk and ζk
ξ . Since γk < δ ≤ δ′ < α < ε < ζk

ξ , it follows that δ′ /∈ Cζk
ξ
. So

δ′ ∈ C ∩ α\⋃k≤m Cζk
ξ
, as desired.

Next, suppose that θ is a regular uncountable cardinal and 〈Cξ : ξ < θ〉 is a T-
sequence. We define ρ2 : {(α, β) : α ≤ β < θ} → ω by induction: ρ2(α,α) = 0, and
if α < β, then

ρ2(α, β) = ρ2(α,min(Cβ\α)) + 1.

Lemma 3.21. Let θ be a regular uncountable cardinal, 〈Cξ : ξ < θ〉 a T-sequence,
and assume (T). Suppose 〈εζk

ξ : ξ < θ, k < m〉 is given for ε ∈ 2 so that {εζk
ξ : k <

m} ∩ {εζk
η : k < m} = 0 for any ε < 2 and any ξ �= η. Then for any n ∈ ω there

exist ξ, η < θ such that 0ζ
k
ξ < 1ζ

l
η and ρ2(0ζk

ξ , 1ζ
l
η) ≥ n for all k, l < m.

Proof. We proceed by induction on n. The case n = 0 is clear. Assume the lemma
for n. Apply Lemma 3.19 to 〈1ζk

ξ : ξ < θ, k < m〉 to obtain 〈γk : k < m〉 as
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indicated. We can then obtain εν and ξν for each ν < θ so that the following
conditions hold for all k < m:

(1) εν is a limit ordinal;
(2) εν < 1ζ

k
ξν

;
(3) γk = sup(C

1ζk
ξν
∩ εν) < εν ;

(4) 1ζ
k
ξν

< εν′ if ν < ν′.

Define 2ζ
k
ν = min(C

1ζk
ξν
\εν) for each ν < θ. Then if ν < ν′ and k, l < m we have

2ζ
k
ν < 1ζ

k
ξν

< εν′ ≤ 2ζ
l
ν′ .

Hence for ν < ν′ we have {2ζk
ν : k < m} ∩ {2ζk

ν′ : k < m} = 0. Choose ξ0 < θ such
that γk < 0ζ

l
ξ for all k, l < m and all ξ ∈ [ξ0, θ). Let 3ζ

k
ξ = 0ζ

k
ξ0+ξ for all ξ < θ. Now

we apply the induction hypothesis to 〈3ζk
ξ : ξ < θ, k < m〉 and 〈2ζk

ν : ν < θ, k < m〉
to obtain ξ, ν < θ such that

(5) ∀k, l < m[3ζk
ξ < 2ζ

l
ν and ρ2(3ζk

ξ , 2ζ
l
ν) ≥ n].

Take any k, l < m. By (3), there are no members of C
1ζl

ξν
between γl and 2ζ

l
ν . Now

γl < 0ζ
k
ξ0+ξ = 3ζ

k
ξ < 2ζ

l
ν

and
γl < εν ≤ 2ζ

l
ν ,

so min(C
1ζl

ξν
\3ζk

ξ ) = min(C
1ζl

ξν
\εν) = 2ζ

l
ν . Hence

ρ2(0ζk
ξ0+ξ, 1ζ

l
ξν

) = ρ2(3ζk
ξ ,min(C

1ζl
ξν
\3ζk

ξ )) + 1

= ρ2(3ζk
ξ , 2ζ

l
ν) + 1 ≥ n + 1,

as desired.

The combinatorial theorem which we actually need now follows:

Theorem 3.22. (Shelah) Let λ = θ+ with θ an infinite cardinal. Then there is a
d : [λ]2 → ω such that for all m,n ∈ ω, if 〈ζi : i < λ〉 is a system of n-tuples of
members of λ such that ζ1

i < · · · < ζn
i for all i < λ and ζn

i < ζ1
j if i < j < λ, then

there exist i, j ∈ λ with i < j such that d{ζk
i , ζl

j} ≥ m for all k, l = 1, . . . , n.

Proof. By Lemma 3.21 we just need to see that λ has a T-sequence satisfying
(T). For each limit ordinal α < λ let Cα be a closed unbounded subset of α of
order type cfα. For α < λ let Cα+1 = {α}, and let C0 = 0. Now if C is a closed
unbounded subset of λ, let α be a member of C such that the order type of C ∩α
is θ + 1. Then for all β ∈ [α, λ) we have C ∩ α �⊆ Cβ, as desired.
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Theorem 3.23. (Shelah). Let λ = θ+ with θ an infinite cardinal. Then there is a
system 〈Bn : n ∈ ω〉 of BAs each satisfying the λ-cc such that for any non-principal
ultrafilter D on ω, the ultraproduct

∏
n∈ω Bn/D does not satisfy the λ-cc.

(If λ = (2ω)++, then we get |∏n∈ω cBn/D| ≤ (2ω)+ < (2ω)++ ≤ c(
∏

n∈ω Bn/D),
as indicated in the remark following Theorem 3.18.)

Proof. Choose d by Theorem 3.22. Temporarily fix n ∈ ω. Let Cn be freely
generated by 〈xn

α : α < λ〉. Let In be the ideal of Cn generated by the set

{xn
α · xn

β : α < β < λ and d{α, β} ≤ n}.

Let yn
α = xn

α/In for each α < λ. Set Bn = Cn/In. Then for α < β < λ we have
{n ∈ ω : yn

α · yn
β = 0} ⊇ {n ∈ ω : d{α, β} ≤ n}, so (yn

α/D) · (yn
β/D) = 0. We claim

that yn
α/D �= 0; in fact, yn

α �= 0 for all n ∈ ω. Otherwise we would get

xn
α ≤ xn

γ1
· xn

δ1
+ · · ·+ xn

γm
· xn

δm

with γi �= δi for all i. Mapping xn
α to 1 and all other generators to 0 then extending

to a homomorphism, we get a contradiction.
To show that each Bn satisfies λ-cc, assume that 〈bα : α < λ〉 ∈ λCn is such

that bα · bβ ∈ In for all distinct α, β < λ, while each bα /∈ In; we want to get
a contradiction. Without loss of generality, we may assume that each bα has the
following form:

bα =
∏

β∈Fα

(xn
β)εaβ,

where Fα is a finite subset of λ and εα ∈ Fα2. Without loss of generality we may
assume that: 〈Fα : α < λ〉 forms a Δ-system, say with kernel G; εα � G is the
same for all α < λ; and |Fα\G| = |Fβ\G| for all α, β < λ. Cutting down further,
we may assume that Fα\G < Fβ\G if α < β (that is, γ < δ if γ ∈ Fα\G and
δ ∈ Fβ\G). Now by Lemma 3.22 choose α < β < λ so that d{ε, ζ} ≥ n + 1 for all
ε ∈ Fα\G and ζ ∈ Fβ\G. Now we can write

(1) bα · bβ ≤ xn
γ1
· xn

δ1
+ · · ·+ xn

γm
· xn

δm

with γi < δi and d{γi, δi} ≤ n; moreover, we assume that m is minimal so that
such an inequality holds. It follows that γi, δi ∈ Fα ∪ Fβ for all i. If γi ∈ Fα,
then εαγi = 1, since otherwise the summand xn

γi
· xn

δi
could be dropped. Similarly

γi ∈ Fβ implies that εβγi = 1, and similarly for the δi’s. Now it follows, since
bα /∈ In, that we cannot have γ1, δ1 ∈ Fα. Similarly, γ1, δ1 /∈ Fβ . It follows, then,
that γ1 ∈ Fα\G and δ1 ∈ Fβ\G. But then d{γ1, δ1} ≥ n + 1, contradiction.

According to a result of Donder [88], it is consistent that the lower bound in
Theorem 3.17 always holds (since his result says that it is consistent that every
uniform ultrafilter is regular). However, the following problem appears to be open.
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Problem 2. Is it consistent that there is a an infinite set I, a system 〈Ai : i ∈ I〉 of
infinite BAs, and an ultrafilter F on I such that c

(∏
i∈I Ai/F

)
<

∣∣∏
i∈I cAi/F

∣∣?
It may be that a solution can be found using methods of Magidor, Shelah [91].
Theorems in Ros	lanowski, Shelah [94] say that in an example of this kind, cAi is
inaccessible for a set of i’s in the ultrafilter.

Also note that there are obvious examples where the upper bound given in
Theorem 3.18 is attained, and other examples where it is not attained.

We turn to the examination of cellularity under other operations on Boolean al-
gebras. If A is a dense subalgebra of B, obviously cA = cB.

The situation with subdirect products is clear. Suppose that B is a subdirect
product of BAs 〈Ai : i ∈ I〉; what is the cellularity of B in terms of the cellularity
of the Ai’s? Well, since a direct product is a special case of a subdirect product, we
have the upper bound cB ≤ supi∈IcAi ∪ |I|. The lower bound ω is obvious. And
that lower bound can be attained, even if the algebras Ai have high cellularity. In
fact, consider the following example. Let κ be any infinite cardinal, let A be the
free BA on κ free generators, and let B be the algebra of finite and cofinite subsets
of κ. We show that A is isomorphic to a subdirect product of copies of B. To do
this, it suffices to take any non-zero element a ∈ A and find a homomorphism of A
onto B which takes −a to 0. In fact, A � a is still free on κ free generators, and so
there is a homomorphism of it onto B. So our desired homomorphism is obtained
as follows:

A→ (A � −a)× (A � a)→ A � a→ B.

If S is a sheaf of BAs with base space X, then c(ClopX) ≤ c(GsS ) by Theorem
1.1. Even for the more special case of Boolean products the difference can be large;
and equality is also possible. This follows from Theorems 1.2–1.4.

Problems concerning cellularity properties of Boolean powers reduce to more
familiar problems concerning the cellularity of free products, discussed above; see
Chapter 1.

For set products we clearly have

c

(∏
i∈I

B
Ai

)
= |I|+ supi∈Ic(Ai).

Next, let B be obtained from algebras 〈Ai : i ∈ I〉 by one-point gluing, as described
in Chapter 1. With respect to cellularity, clearly B behaves much like the full direct
product: If B is infinite and all algebras Ai have at least four elements, then

cB = |I|+ supi∈IcAi.

Our next algebraic operation is Aleksandroff duplication. Clearly c(DupA) =
|UltA|.

We consider now the exponential of a given BA A. We give an example, as-
suming the existence of a Suslin tree, of a ccc BA A such that ExpA has cellularity
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ω1. Recall that S is the Stone isomorphism of a BA onto the clopen algebra of
its Stone space. Now assume that T is a Suslin tree in which every element s has
infinitely immediate successors, among which we pick out two, s0 and s1. Let A
be the tree algebra on T . For each s ∈ T let T ↑ s = {t ∈ T : s ≤ t}, and let
xs = V (S(T ↑ s0),S(T ↑ s1)). We claim that xs ∩ xt = 0 for distinct s, t ∈ T .
For, say s �≤ t, but suppose that F ∈ xs ∩ xt. Choose ε ∈ {0, 1} so that tε is
incomparable with s. Now F ∩ S(T ↑ tε) �= 0; say M ∈ F ∩ S(T ↑ tε). Since
F ⊆ S(T ↑ s0) ∪ S(T ↑ s1), choose δ ∈ {0, 1} such that M ∈ S(T ↑ sδ). Thus
(T ↑ tε) ∩ (T ↑ sδ) �= 0, so tε and sδ are comparable, contradiction.

The example of Todorčević concerning free products which was described
above adapts to the exponential. Namely, in ZFC there is a BA D such that
cD ≤ �ω while c(ExpD) ≥ �+

ω . In fact, let λ and a be chosen by Lemma 3.7, and let
I and J be infinite disjoint subsets of ω. Set A = {aα : α < �+

ω }, B = RO(PIA),
C = RO(PJA), and D = B × C, using the notation of Lemmas 3.1–3.5. Thus
cD ≤ �ω. We claim that

〈V (S(b{a}, 0),S(0, b{a})) : a ∈ A〉

is pairwise disjoint in ExpD. For, suppose that a and a′ are distinct elements of
A and

C ∈ V (S(b{a}, 0),S(0, b{a})) ∩ V (S(b{a′}, 0),S(0, b{a′})).

Then C∩S(b{a}, 0) �= 0, C ⊆ S(b{a′}, 0)∪S(0, b{a′}), and S(b{a}, 0)∩S(0, b{a′}) =
0, so C ∩ S(b{a}) ∩ S(b{a′}, 0) �= 0, hence b{a} ∩ b{a′} �= a, so {a} and {a′} are
compatible and hence ρ(a, a′) ∈ I. Similarly, ρ(a, a′) ∈ J , which is impossible.

Note from the remark after Lemma 3.10, and Proposition 2.5, that under
MA+¬CH, A ccc implies ExpA ccc.

Now we proceed to discuss the derived functions associated with cellularity. First
we show that cH+ is the same as spread. For this, it is convenient to have an
equivalent definition of spread. A subset X of a BA A is ideal independent if
x /∈ 〈X\{x}〉Id for every x ∈ X; recall that 〈Y 〉Id denotes the ideal generated by
Y , for any Y ⊆ A.

Theorem 3.24. For any infinite BA A, sA = sup{|X| : X is an ideal independent
subset of A}.
Proof. First suppose that D is a discrete subspace of UltA. For each F ∈ D, let
aF ∈ A be such that SaF ∩ D = {F}. Then 〈aF : F ∈ D〉 is one-one and {aF :
F ∈ D} is ideal independent. In fact, suppose that F,G0, . . . , Gn−1 are distinct
members of D such that aF ≤ aG0 + . . .+aGn−1 . Then SaF ⊆ SaG0 ∪ . . .∪SaGn−1 ,
and so F ∈ SaG0 ∪ . . . ∪ SaGn−1 , which is clearly impossible.

Conversely, suppose that X is an ideal independent subset of A. Then for
each x ∈ X, {x} ∪ {−y : y ∈ X\{x}} has the finite intersection property, and so
is included in an ultrafilter Fx. Let D = {Fx : x ∈ X}. Then Sx ∩D = {Fx} for
each x ∈ X, so D is discrete and |D| = |X|, as desired.
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By the proof of Theorem 3.24, spread in the two senses given in the theorem has
the same attainment properties.

Theorem 3.25. For any infinite BA A, cH+A is equal to sA, the spread of A.

Proof. First let f be a homomorphism from A onto a BA B, and let X be a disjoint
subset of B+. We show that |X| ≤ sA; this will show that cH+A ≤ sA. For each
x ∈ X choose ax ∈ X such that fax = x. Then 〈ax : x ∈ X〉 is one-one and {ax :
x ∈ X} is ideal independent. In fact, suppose that x, y(0), . . . y(n− 1) are distinct
elements of X, and ax ≤ ay(0)+· · ·+ay(n−1). Applying the homomorphism f to this
inequality we get x ≤ y(0)+ · · ·+y(n−1). Since the elements x, y(0), . . . , y(n−1)
are pairwise disjoint, this is impossible.

For the converse, suppose that X is an ideal independent subset of A; we
want to find a homomorphic image B of A having a disjoint subset of size |X|.
Let I = 〈{x · y : x, y ∈ X,x �= y}〉Id. It suffices now to show that [x] �= 0 for each
x ∈ X. ([u] is the equivalence class of u under the equivalence relation naturally
associated with the ideal I). Suppose that [x] = 0. Then x is in the ideal I, and
hence there exist elements y0, z0, . . . , yn−1, zn−1 of X such that yi �= zi for all
i < n, and x ≤ y0 · z0 + . . . + yn−1 · zn−1. Without loss of generality, x �= yi for
all i < n. But then x ≤ y0 + · · · + yn−1, contradicting the ideal independence of
X.

For later purposes it is convenient to note the following corollary to the proof of
the previous two theorems.

Corollary 3.26. cH+A and sA have the same attainment properties, in the sense
that sA is attained (in either the discrete subspace or ideal independence sense) iff
there exist a homomorphic image B of A and a disjoint subset X of B such that
|X| = cH+A.

Note in this corollary that attainment of cH+A involves two sups, while attainment
of sA involves only one. Thus if sA is not attained, there are still two possibilities
according to Corollary 3.26: there can exist a homomorphic image B of A with
sA = cB but cB is not attained, or there is no homomorphic image B of A with
sA = cB. Both possibilities are consistent with ZFC; we shall return to this shortly
and indicate the examples.

It is easy to see that cH−A = ω for any infinite BA A: let B be a denumerable
subalgebra of A, and extend the identity homomorphism h of B into B to a
homomorphism from A into B; the image of A under h is a ccc BA. (We are
using here Sikorski’s extension theorem; recall that B is the completion of B.) It
is obvious that cS+A = cA and cS−A = ω for any infinite BA A. ch+A is equal to
sA, since a disjoint family of open subsets of a subspace Y of UltA gives a discrete
subset of UltA of the same size, so that ch+A ≤ sA = cH+A ≤ ch+A. It is obvious
that ch−A = ω, and an easy argument gives that dcS+A = cA = dcS−A.

Next, recall from the introduction the definition of cmmA:

cmmA = min{|X| : X is an infinite maximal disjoint subset of A}.
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We note some easy facts about this function.

(1) cmmA ≥ min{|Y | : Y ⊆ A,
∑

Y = 1, and
∑

Y ′ �= 1 for every finite subset Y ′

of Y }.
If A = Pω/fin, then in the notation of van Douwen [84], cmmA = a and the
right-hand side of (1) is p. It is known to be consistent that p < a. For BAs in
general an example with > in (1) can be given in ZFC. Namely, for any infinite
cardinal κ let B be the free BA with distinct free generators xα for α < κ, and
let A = DupB. We claim that cmmA = 2κ, while the right-hand side of (1) is
≤ κ. Note that |A| = 2κ, so cmmA ≤ 2κ. Suppose that 〈(aα,Xα) : α < λ〉 is a
system of pairwise disjoint nonzero elements of A with sum 1, ω ≤ λ < 2κ. Since
cB = ω, we may assume that aα = 0 for all α ∈ [ω, λ); hence Xα is finite for
all such α. If

∑
α∈F aα = 1 for some finite F ⊆ ω, then

⋃
α∈F Xα is a cofinite

subset of UltB, and so
∑

α∈G(aα,Xα) = 1 for some finite G ⊆ λ, contradiction. It
follows that {−aα : α < ω} has fip. For each α < ω there is a finite Γα ⊆ κ such
that −aα is generated by {xα : β ∈ Γα}. Let Δ =

⋃
α<ω Γα. If ε ∈ κ\Δ2, then

{−aα : α < ω} ∪ {xεβ
β : β ∈ κ\Δ} has fip. Thus there are 2κ ultrafilters D such

that −aα ∈ D for all α < ω. but∣∣∣∣∣∣
⋃

α<ω

(Xα\Saα) ∪
⋃

ω≤α<λ

Xα

∣∣∣∣∣∣ < 2κ,

contradiction. Thus cmmA = 2κ.
Next, we exhibit Y ⊆ A of size κ showing that the right-hand side of (1) is

≤ κ. Namely, let
Y = {(xα,Sxα) : α < κ} ∪ {(0, {D})},

where D is the ultrafilter on B such that −xα ∈ D for all α < κ. To show that
supY = 1 it suffices to take any nonzero (a,X) ∈ A and find y ∈ Y such that
(a,X) · y �= 0. Case 1. a �= 0. Then there is an α < κ such that a · xα �= 0, and so
(a,X) · (xα,Sxα) �= 0. Case 2. a = 0. So X is finite and nonempty. Without loss
of generality, D /∈ X. Take any F ∈ X. Then there is an α < κ such that xα ∈ F ,
so (0,X) · (xα,Sxα) �= 0, as desired.

Clearly
∑

Y ′ �= 1 for all finite Y ′ ⊆ Y .

(2) If A is the finite-cofinite algebra on κ, then cmmA = κ.
(3) If A is κ-saturated in the model-theoretic sense, then cmmA ≥ κ.
(4) cmm(A×B) = min(cmmA, cmmB).

To see this (valid only for infinite A and B), suppose without loss of generality
that cmmA ≤ cmmB. Let X be a maximal disjoint subset of A of size cmmA. Then
{(x, 0) : x ∈ X} ∪ {(0, 1)} is a maximal disjoint subset of A × B. This proves ≤
in (4). On the other hand, let Z be a maximal disjoint subset of A × B of size
cmm(A×B). Let pri be the projection of A×B into the i-th coordinate, i = 1, 2.
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Clearly pr1[Z] is a maximal disjoint subset of A, and similarly for pr2[Z] and B.
One at least of these projections is infinite, and this yields ≥.

(5) For I infinite and each Ai non-trivial we have

cmm

(∏
i∈I

Ai

)
= min(|I|,min{cmmAi : i ∈ I, Ai infinite}).

Proof of (5): An argument as in (4) shows that

min{cmmAi : i ∈ I, Ai infinite} ≥ cmm

(∏
i∈I

Ai

)
.

Now for each i ∈ I let fi be the member of
∏

i∈I Ai such that fij = 0 if j �= i while
fii = 1. This gives a partition of 1 in

∏
i∈I Ai of size |I|, so |I| ≥ cmm(

∏
i∈I Ai).

Thus the right side of (5) is ≥ the left side. Now suppose that Z is an infinite
partition of 1 in

∏
i∈I Ai, but its size is less than the right side of (5); we assume

that all members of Z are nonzero. Now {zi : z ∈ Z}\{0} is a partition of 1 in
Ai for each i ∈ I, so {zi : z ∈ Z} is finite for each i ∈ I. Since Z is disjoint,
{z ∈ Z : zi �= 0} is finite for all i ∈ I. Choose z ∈ Z\⋃i∈I{z ∈ Z : zi �= 0}. Then
z = 0, contradiction. So, (5) holds.

(6) Given ω ≤ κ < λ, there is a BA A such that cA = λ and cmmA = κ.

Proof: let A = Fincoκ× Fincoλ.

(7) If A is σ-complete, then cmmA = ω.

(8) If I is infinite and each Ai has at least four elements, then cmm(⊕i∈IAi) = ω.
To prove this, without loss of generality say that I = κ, an infinite cardinal. For
each i ∈ ω, let 0 < ai < 1 in Ai. Then consider the elements x0, x1, . . . in the free
product defined by

x0 = a0,

x1 = −a0 · a1,

x2 = −a0 · −a1 · a2,

etc.

.

It is easily verified that these elements form a partition of unity in the free product,
yielding (8).

The homomorphic spectrum of cellularity is interesting. First, we can easily see
that [ω, sA) ⊆ cHsA ⊆ [ω, sA] (for cardinals κ < λ, [κ, λ) denotes the set of all
cardinals μ such that κ ≤ μ < λ; similarly for [κ, λ]). This follows from the fact
already proved that sA = cH+A: given a homomorphic image B of A and a disjoint
subset X of B, one can use Sikorski’s extension theorem to get a homomorphic
image C of B such that cC = |X|.
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It is more difficult to decide whether sA ∈ cHsA. This amounts to the follow-
ing question: is there always a homomorphic image B of A such that cB = sA? In
case sA is attained, this is true by Corollary 3.26. For sA not attained, there are
three consistency results which clarify things here and with respect to the ques-
tion raised above after Corollary 3.26. First, example 11.14 in Part I of the BA
handbook shows that for each weakly inaccessible cardinal κ there is a BA A such
that |A| = cA = sA = κ and cA is not attained but sA is attained (as is easily
checked). Second, the interval algebra of a κ-Suslin line, for κ strongly inaccessible
but not weakly compact, gives an example of a BA A such that |A| = cA = sA,
with neither cA nor sA attained; see Juhász [71], example 6.6 (V=L or something
beyond ZFC is needed for the existence of a κ-Suslin line). Third, an example of
Todorčević [86], Theorem 12, shows that it is consistent to have a BA A in which
sA is not attained, while there is no homomorphic image B of A with cB=sA.
This example involves some interesting ideas, and we shall now give it. It depends
on the following lemma about the real numbers.

Lemma 3.27. There exist disjoint subsets E0 and E1 of [0, 1] which are of cardi-
nality 2ω, are dense in [0, 1], and satisfy the following two conditions:

(i) For any κ < 2ω there is a strictly increasing function from some subset
of E0 of size κ into E1.

(ii) There is no strictly monotone function from a subset of E0 of size 2ω

into E1.

Proof. The idea of the proof is to construct E0 and E1 in steps, ”killing” all of
the possible big strictly monotone functions as we go along. The very first thing
to do is to see that we can list out in a sequence of length 2ω all of the functions
to be ”killed”.

For the empty set 0 we let sup0=0, inf0=1. For any subset W of [0,1] we let
clW be its topological closure in [0,1], and we let C1W = {f : f : W → [0, 1], and
f is either strictly increasing or strictly decreasing}. For W ⊆ [0, 1] and f ∈ C1W
(say f strictly increasing) we define fcl : clW → [0, 1] by

fclx =

⎧⎨
⎩

fx if x ∈W,
sup{fy : x > y ∈W} if x /∈W and x = sup{y ∈W : y < x},
inf{fy : x < y ∈W} if x /∈W and x �= sup{y ∈W : y < x}.

(A similar definition is given if f is strictly decreasing.) Note that if x ∈ clW\W
then x = sup{y ∈ W : y < x} or x = inf{y ∈ W : x < y}. Now fcl is increasing.
For, suppose that x, x′ ∈ clW and x < x′. If x, x′ ∈ W , then fclx = fx < fx′ =
fclx

′. Suppose that x /∈W and x′ ∈W . If x = sup{y ∈W : y < x}, then fy < fx′

for all y ∈ W with y < x, and so fclx ≤ fx′ = fclx
′. If x �= sup{y ∈ W : y < x},

then x = inf{y ∈ W : x < y}, hence fclx ≤ fx′ = fclx
′. Other possibilities for x

and x′ are treated similarly. Now if x, y ∈ clW\W , x < y, and fclx = fcly, then
x = sup{z ∈ W : z < x}, y = inf{z ∈ W : y < z}, and |(x, y) ∩W | ≤ 1. For, if
x �= sup{z ∈ W : z < x}, then x = inf{z ∈W : x < z}, and so there are u, v ∈ W
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with x < u < v < y, hence

fclx ≤ fclu = fu < fv = fclv ≤ fcly,

contradiction. A similar contradiction is reached if y �= inf{z ∈ W : y < z}. And
if |(x, y) ∩W | > 1 a contradiction is easily reached.

Next, note that for each z ∈ [0, 1] the set f−1
cl [{z}] has at most three elements.

For, if it has four or more, at most one of them is in W ; so this gives three elements
w < x < y of clW\W all with the same value under fcl. Applying the previous
remark, x = sup{u ∈ W : u < x}, and this gives infinitely many elements of W
between w and x, contradicting the above statement.

For any W ⊆ [0, 1] let C2W be the set of all functions f : W → I such that

(1) f is either increasing or decreasing,
(2) f−1[{y}] is finite for all y ∈ [0, 1],
(3) |{x ∈W : fx �= x}| = 2ω.

Thus by the above, fcl ∈ C2W whenever f ∈ C1W and |W | = 2ω.
Now let W be a closed subset of [0, 1]. Choose a countable dense subset F1 of

W (pick wrs ∈ (r, s)∩W for each pair r < s of rationals such that (r, s)∩W �= 0,
and let F1 be the set of all such elements wrs). Furthermore, let

F2 = {x ∈W : sup{fy : x ≥ y ∈ F1} < inf{fy : x ≤ y ∈ F1}}.

If x ∈ F2, then x /∈ F1. Hence if x, y ∈ F2 and x < y, then there is a z ∈ F1 with
x < z < y. It follows that the sup and inf above determine an open interval Ux in
R so that Ux ∩Uy = 0 for x �= y. So F2 is countable. Note that f is determined by
its restriction to F1 ∪ F2. From these considerations it follows that |C2W | ≤ 2ω.
Also recall that there are just 2ω closed sets, since every closed set is the closure
of a countable dense subset. Hence the set

C =
⋃
{C2F : F ⊆ [0, 1], F closed}

has cardinality ≤ 2ω. Let 〈fα : α < 2ω〉 be an enumeration of C. Let h be a strictly
decreasing function from R onto (0,1); thus h−1 is also strictly decreasing. (For
example, let hx = 1/(ex + 1) for all x ∈ R.) Moreover, fix a well-ordering of R.

Now we construct by induction pairwise disjoint subsets Aα of [0, 1] for α <
2ω. At the end we will let E0 be the union of the Aα with even α and E1 be the
union of the rest. We will carry along the inductive hypothesis that |α| ≤ |Aα| ≤
|α|+ω. Let A0 and A1 be denumerable disjoint subsets of [0,1] which are dense in
[0,1].

Now suppose that Aα has been constructed for all α < β, where β ≥ 2.
Let Bβ =

⋃
α<β Aα and B∗

β = Bβ ∪
⋃

α<β fα[Bβ ] ∪ ⋃
α<β f−1

α [Bβ ]. Note by our
assumptions that |β| ≤ |B∗

β | ≤ |β|+ ω. For every real number r, let

Cr = h[{r + h−1b : b ∈ B∗
β}].
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We claim that there is an r ∈ R such that Cr ∩ B∗
β = 0. Suppose not. For every

r ∈ R choose br ∈ Cr ∩ B∗
β . Since |B∗

β | < 2ω, there exist a set S ⊆ R and an
element c ∈ B∗

β such that |S| > B∗
β and br = c for all r ∈ S. Say c = hd with

d ∈ {r + h−1x : x ∈ B∗
β} for all r ∈ S. Thus h(d − r) ∈ B∗

β for all r ∈ S. So
there exist distinct r, s ∈ S such that h(d−r) = h(d−s). This contradicts h being
one-one.

Finally, let r be the least real number (in the well-ordering fixed above) such
that Cr∩B∗

β = 0, and let Aβ = Cr. Clearly the inductive hypothesis remains true.
This finishes the construction of the sets Aα, α < 2ω.

Let E0 =
⋃

α even Aα and E1 =
⋃

α odd Aα. So E0 and E1 are disjoint subsets
of [0,1], and both of them are dense in [0,1]. Since all of the sets Aα are non-empty,
it is clear that both E0 and E1 are of power 2ω.

Now suppose that f is a strictly monotone function from a subset of E0 of
power 2ω into E1. Say fcl = fα. Now |⋃β≤α Aα| < 2ω, so choose y ∈ ranf such
that y ∈ Aγ for some γ > α. Say fx = y with x ∈ Aδ. Now δ is even and γ is
odd. If δ < γ, then y ∈ B∗

γ , so y ∈ Aγ is a contradiction. If γ < δ, then x ∈ B∗
δ , so

x ∈ Aδ is a contradiction. Thus (ii) of the lemma has been verified.
If ω ≤ κ < 2ω, choose β < 2ω odd with β > κ. Say Aβ = Cr, as in the

definition. Now b �→ h(r + h−1b) is an increasing mapping from B∗
β into Aβ , and

E0 ∩B∗
β has at least κ elements. This verifies (i).

The example also depends upon the following lemma, which will also be useful
later on.

Lemma 3.28. Let A be the interval algebra on R. Then there does not exist in A
a strictly increasing sequence 〈Iα : α < ω1〉 of ideals.

Proof. Suppose that there is such a sequence. For each α < ω1 define r ≡α s iff
r, s ∈ R and either r = s or else if, say, r < s, then [r, s) ∈ Iα. Then ≡α is an
equivalence relation on R and the equivalence classes are intervals. For each r ∈ R

the left endpoints of the intervals [r]α are decreasing for increasing α, and the right
endpoints, increasing ([r]α denotes the equivalence class of r under the equivalence
relation ≡α). Since there is no strictly monotone sequence of real numbers of type
ω1, there is an ordinal βr < ω1 such that both the left and right endpoints of [r]α
are constant for α > βr. Let γ = sup{βr : r rational}. Then all of the equivalence
classes are constant for α > γ, contradiction.

Corollary 3.29. Let A be a subalgebra of the interval algebra on R. Then A does
not have an uncountable ideal independent subset.

Proof. Suppose that X is an uncountable ideal independent subset of A. Let
〈aα : α < ω1〉 be a one-one enumeration of some elements of X. For each α < ω1

let Iα = 〈{aβ : β < α}〉Id. Clearly then 〈Iα : α < ω1〉 is a strictly increasing
sequence of ideals in B, contradicting 3.28.

Finally, we are ready for the example. The main content of the example is from
Todorčević [86], Theorem 12, as we mentioned.
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Theorem 3.30. There is a BA A of power 2ω such that:
(i) UltA has, for each κ < 2ω, a discrete subspace of power κ, and A has an

atomic homomorphic image B with κ atoms;
(ii) UltA has no discrete subspace of power 2ω;
(iii) If B is any homomorphic image of A, then there is a dense subset X

of B such that there is a decomposition X = W ∪⋃
i∈ω Zi with W the set of all

atoms of B and for each i ∈ ω, the set Zi has the finite intersection property.

Proof. Let E0 and E1 be as in Lemma 3.27. Without loss of generality, 0, 1 /∈
E0∪E1. For i < 2 let Ki be the linearly ordered set obtained from [0,1] by replacing
each element r ∈ Ei by two new points r− < r+. Taking the order topology on
Ki, we obtain a Boolean space, as is easily verified. In fact, Ki is homeomorphic to
the Stone space of the interval algebra on Ei∪{0}. Namely, the following function
f from Ult(Intalg(Ei ∪ {0})) into Ki is the desired homeomorphism. Take any
F ∈ Ult(Intalg(Ei ∪ {0})). Let r = inf{a ∈ Ei : [0, a) ∈ F}; so r ∈ [0, 1]. If r ∈ Ei

and [0, r) ∈ F , let fF = r−; if r ∈ Ei and [0, r) /∈ F , let fF = r+; and if r /∈ Ei

let fF = r. Clearly f is one-one and maps onto Ki. To show that it is continuous,
first note that the following clopen subsets of Ki constitute a base for its topology:

{[r+, s−) : r, s ∈ Ei, r < s} ∪ {[0, s−) : s ∈ Ei} ∪ {[r+, 1) : r ∈ Ei}.

Then it is easy to check (with obvious assumptions) that

f−1[[r+, s−)] = {F : [r, s) ∈ F};
f−1[[0, s−)] = {F : [0, s) ∈ F};
f−1[[r+, 1)] = {F : [r, 1) ∈ F}.

This completes the proof that f is a homeomorphism from Ult(Intalg(Ei ∪ {0}))
onto Ki.

By Corollary 3.29, neither K0 nor K1 has an uncountable discrete subspace.
Also, K0 ×K1 is a Boolean space, and we let A be the BA of closed-open subsets
of it.

First we check that for any κ < 2ω, K0 ×K1 has a discrete subset of power
κ. Let f be a strictly increasing function from a subset of E0 of power κ into E1.
Then we claim that D

def= {(r−, (fr)+) : r ∈ domf} is discrete. To show this, for
each r ∈ domf let ar = [0, r+) × ((fr)−, 1]. Suppose (s−, (fs)+) ∈ ar and s �= r.
Thus s− < r− and (fr)+ < (fs)+, contradiction.

From the proofs of 3.25 and 3.26 it now follows that A has a homomorphic
image C which has a disjoint subset of power κ. By an easy application of the
Sikorski extension theorem, A has an atomic homomorphic image B with κ atoms.

Next we prove (ii). Suppose that D is a discrete subspace of K0 ×K1 of size
2ω. Now K1 has no uncountable discrete subspace, so for each x ∈ domD, the set
{y : (x, y) ∈ D} is countable. It follows that we may assume that D is a function.
Similarly, we may assume that D is one-one.
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For (r, s) ∈ D let ars and brs be open intervals in K0 and K1 respectively
such that (ars × brs) ∩D = {(r, s)}. Let F0 and F1 be countable dense subsets of
K0 and K1 respectively (in the sense that if a < b in K0 and (a, b) �= 0 then there
is a c ∈ F0 such that a < c < b; similarly for K1). Suppose that domD\({r− :
r ∈ E0} ∪ {r+ : r ∈ E0}) has power 2ω. Then we may successively assume that
domD ∩ ({r− : r ∈ E0} ∪ {r+ : r ∈ E0})=0, that each ars is an open interval with
endpoints in F0, and that all of the ars are equal, which implies that D has only
one element, contradiction.

Thus we may assume that domD ⊆ {r− : r ∈ E0} ∪ {r+ : r ∈ E0}, and
similarly for ranD. Hence we may assume that there are ε, δ ∈ {−,+} such that
domD ⊆ {rε : r ∈ E0} and ranD ⊆ {rδ : r ∈ E1}.

Thus there are now four cases, which are very similar, and we treat only one
of them: ε = δ = −. We may assume that for each (r−, s−) ∈ D the right endpoint
of ar−s− is r+ and that of br−s− is s+. Furthermore, we may assume that there
exist qi ∈ Fi, i = 0, 1, such that q0 ∈ ar−s− and q1 ∈ br−s− for each (r−, s−) ∈ D.
Now we claim that the mapping r �→ s for (r−, s−) ∈ D is strictly decreasing
(contradiction!). For, suppose that (r−, s−) ∈ D, (u−, v−) ∈ D, r < u, and s < v.
Then it is clear that (r−, s−) ∈ au−v− × bu−v− , a contradiction (using the facts
that q0 ∈ ar−s− ∩ au−v− , and q1 ∈ br−s− ∩ bu−v−).

Now we turn to the last part of the theorem. Suppose that B is a homo-
morphic image of A. Let Fi be a countable dense subset of Ei for i = 0, 1. Let
E+

i = {r+ : r ∈ Ei}, E−
i = {r− : r ∈ Ei} for i = 0, 1. Now we are going to define

some subsets X ...
... of B indexed by various objects in countable sets; each subset

will satisfy the finite intersection property, and this will be obvious in each case.
What is not so obvious is what these sets are good for. We show after defining
them that their union with the set of atoms of B is dense in B, which is the desired
conclusion of the theorem. It is convenient to work with the dual of B, which is
some closed subspace Y of K0 ×K1.

Suppose that p, q ∈ F0, r, s ∈ F1, p < q, r < s, and ([p+, q−]× [r+, s−])∩Y �=
0; then we set

X1
pqrs = {([p+, q−]× [r+, s−]) ∩ Y }.

Next, suppose that q ∈ F0, r, s ∈ F1, and r < s. Then we set

X2
qrs = {([x, q−]× [r+, s−]) ∩ Y : x ∈ E+

0 , x < q, and

∃y(r+ < y < s− and (x, y) ∈ Y )}.
The next three sets are similar to X2

qrs. Suppose that p ∈ F0, r, s ∈ F1, and r < s.
Set

X3
prs = {([p+, x]× [r+, s−]) ∩ Y : x ∈ E−

0 , p < x,

and ∃y(r+ < y < s− and (x, y) ∈ Y )}.
Suppose that p, q ∈ F0, s ∈ F1, and p < q. Set

X4
pqs = {([p+, q−]× [y, s−]) ∩ Y : y ∈ E+

1 , y < s,

and ∃x(p+ < x < q− and (x, y) ∈ Y )}.
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Suppose that p, q ∈ F0, r ∈ F1, and p < q. Set

X5
pqr = {([p+, q−]× [r+, y]) ∩ Y : y ∈ E−

1 , r < y,

and ∃x(p+ < x < q− and (x, y) ∈ Y )}.

Now suppose that p, q ∈ F0, r, s ∈ F1, p < q, and r < s. Set

X6
pqrs = {([x, q−]× [y, s−]) ∩ Y : x ∈ E+

0 , y ∈ E+
1 , x < p−,

y < r−, and ([p+, q−]× [r+, s−]) ∩ Y �= 0}.

The next three sets are similar to X6
pqrs. For each of them we suppose that p, q ∈ F0,

r, s ∈ F1, p < q, and r < s.

X7
pqrs = {([x, q−]× [r+, y]) ∩ Y : x ∈ E+

0 , y ∈ E−
1 , x < p−,

s+ < y, and ([p+, q−]× [r+, s−]) ∩ Y �= 0}.

X8
pqrs = {([p+, x]× [y, s−]) ∩ Y : x ∈ E−

0 , y ∈ E+
1 , q+ < x,

y < r−, and ([p+, q−]× [r+, s−]) ∩ Y �= 0}.

X9
pqrs = {([p+, x]× [r+, y]) ∩ Y : x ∈ E−

0 , y ∈ E−
1 , q+ < x,

s+ < y, and ([p+, q−]× [r+, s−]) ∩ Y �= 0}.
Next, if p ∈ F0 and r, s ∈ F1 with r < s, we set

X10
prs ={([p+, x]× [r+, y]) ∩ Y : x ∈ E−

0 , y ∈ E−
1 , s+ < y, p < x,

and there is a v such that (x, v) ∈ Y and r+ < v < s−}.
.
The other sets are similar to this one; with obvious assumptions,

X11
prs ={([p+, x]× [y, s−]) ∩ Y : x ∈ E−

0 , y ∈ E+
1 , y < r−, p < x,

and there is a v such that (x, v) ∈ Y and r+ < v < s−}.

X12
qrs ={([x, q−]× [r+, y]) ∩ Y : x ∈ E+

0 , y ∈ E−
1 , s+ < y, x < q,

and there is a v such that (x, v) ∈ Y and r+ < v < s−}.

X13
qrs ={([x, q−]× [y, s−]) ∩ Y : x ∈ E+

0 , y ∈ E+
1 , y < r−, x < q,

and there is a v such that (x, v) ∈ Y and r+ < v < s−}.

X14
pqs ={([x, q−]× [y, s−]) ∩ Y : x ∈ E+

0 , y ∈ E+
1 , x < p−, y < s,

and there is a u such that (u, y) ∈ Y and p+ < u < q−}.

X15
pqr ={([x, q−]× [r+, y]) ∩ Y : x ∈ E+

0 , y ∈ E−
1 , x < r−, r < y,

and there is a u such that (u, y) ∈ Y and p+ < u < q−}.
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X16
pqs ={([p+, x]× [y, s−]) ∩ Y : x ∈ E−

0 , y ∈ E+
1 , q+ < x, y < s,

and there is a u such that (u, y) ∈ Y and p+ < u < q−}.

X17
pqr ={([p+, x]× [r+, y]) ∩ Y : x ∈ E−

0 , y ∈ E−
1 , q+ < x, r < y,

and there is a u such that (u, y) ∈ Y and p+ < u < q−}.
Now we show that the union of these sets with the set of atoms of B is dense in B.
Suppose that U is a non-zero element of B; we may assume that U has the form
((a, b) × (c, d)) ∩ Y , and that it is not ≥ any atom of B. Fix an element (x, y) of
U . We consider various possibilities.
Case 1. x /∈ E−

0 ∪ E+
0 and y /∈ E−

1 ∪ E+
1 . Then clearly there exist p, q, r, s such

that (x, y) ∈ X1
pqrs ⊆ U .

Case 2. x ∈ E−
0 and y /∈ E−

1 ∪E+
1 . There are p, r, s such that (x, y) ∈ X3

prs ⊆ U .

Case 3. x ∈ E+
0 and y /∈ E−

1 ∪E+
1 . There are q, r, s such that (x, y) ∈ X2

qrs ⊆ U .

Case 4. x /∈ E−
0 ∪E+

0 . Similar to above cases, using X1
..., X4

..., or X5
....

Case 5. x ∈ E−
0 and y ∈ E−

1 . Then it is easy to find p ∈ F0, r ∈ F1 so that
(x, y) ∈ [p+, x]× [r+, y] ∩ Y ⊆ U . Now there are two subcases. Subcase 5.1. There
is a (u, v) ∈ Y such that p+ < u < x and r+ < v < y. Then it is easy to find q, s
so that (x, y) ∈ X9

pqrs ⊆ U . Subcase 5.2. Otherwise, since we are assuming that U
is not ≥ any atom of B, either there is a v such that (x, v) ∈ Y and r+ < v < y,
or there is a u such that (u, y) ∈ Y and p+ < u < x. In the first instance there is
an s such that (x, y) ∈ X10

prs ⊆ U . In the second instance we use X17.

Case 6. x ∈ E−
0 and y ∈ E+

1 . This is like Case 5. We use X8, X16, and X11.
Case 7. x ∈ E+

0 and y ∈ E−
1 . This is like Case 5. We use X7, X15, and X12.

Case 8. x ∈ E+
0 and y ∈ E+

1 . This is like Case 5. We use X6, X14, and X13.

Corollary 3.31. Assume that 2ω is a limit cardinal. Then there is a BA A of
power 2ω with spread 2ω not attained, such that A has no homomorphic image B
such that cB=sA.

Proof. The first part of the conclusion follows immediately from the theorem.
Now suppose that B is a homomorphic image of A such that cB = sA. Since sA
is not attained, it follows from Corollary 3.26 that cB is not attained. Now let X,
Y , etc., be as in (iii) of the theorem. Then |Y | < 2ω since cB is not attained. Let
W be a disjoint subset of B of power |Y |+. For each w ∈ W choose xw ∈ X such
that xw ≤ w, and let X ′ = {xw : w ∈ W}. Then there has to exist an i ∈ ω such
that |X ′ ∩ Zi| > 2, which is a contradiction, since X ′ is disjoint and Zi has the
finite intersection property.

Returning to the program described in the introduction, we note that it is obvious
that cSsA = [ω, cA]. The caliber notion associated with cellularity has been worked
on a lot. There are several variants of this notion. For a survey of results and
problems, see Comfort, Negrepontis [82].
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We shall compare c with other cardinal functions one-by-one in the discussion
of those functions.

We turn to the relation cSr; see the end of the introduction. We do not have a
purely cardinal number characterization of this relation (this problem was implicit
in Monk [90]):

Problem 3. Give a purely cardinal number characterization of cSr.

Some restrictions to put on cSr are given in the following simple theorem:

Theorem 3.32. For any infinite BA A the following conditions hold:
(i) If (κ, λ) ∈ cSrA, then κ ≤ λ ≤ |A| and κ ≤ cA.
(ii) For each κ ∈ [ω, cA] we have (κ, κ) ∈ cSrA.
(iii) If (κ, λ) ∈ cSrA and κ ≤ μ ≤ λ, then (κ, μ) ∈ cSrA.
(iv) If (λ, (2κ)+) ∈ cSrA for some λ ≤ κ, then (ω, (2κ)+) ∈ cSrA.
(v) (cA, |A|) ∈ cSrA.
(vi) If ω ≤ λ ≤ |A| then (κ, λ) ∈ cSrA for some κ.

The proof of this theorem is easy; for (iv), use Theorem 10.1 of Part I of the
Handbook. To understand more about the possiblities for the relation cSrA, con-
sider the following examples. If κ is an infinite cardinal and A is the finite-cofinite
algebra on κ, then cSrA = {(λ, λ) : λ ∈ [ω, κ]}. If A is the free algebra on κ free
generators, then cSrA = {(ω, λ) : λ ∈ [ω, κ]}. If A is an infinite interval algebra
and we assume GCH, then cSrA does not have any gaps of size 2 or greater. That
is, if (κ, λ) ∈ cSrA, then λ = κ or λ = κ+. This is seen by using Theorem 10.1
again: such a gap would imply the existence in A of an uncountable independent
subset, which does not exist in an interval algebra. There are two deeper results:
(1) Todorčević in [87] shows that it is consistent (namely, it follows from V=L)
to have for each regular non-weakly compact cardinal κ a κ-cc interval algebra
A of size κ such that any subalgebra or homomorphic image B of A of size < κ
has a disjoint family of size |B|. Applying this to subalgebras and to non-limit
cardinals, this means in our terminology that is is consistent to have an algebra A
with cSrA = {(λ, λ) : λ ∈ [ω, κ]} ∪ {(κ, κ+)}.
(2) In models of Kunen [78] and Foreman, Laver [88], every ω2-cc algebra of size
ω2 contains an ω1-cc subalgebra of size ω1. Thus in these models certain relations
cSr are ruled out; cf. (1).

Now we survey what we know about cSr for small cardinals—those ≤ ω2.
(3) cSrA = {(ω, ω)} for any denumerable BA.
(4) cSrA = {(ω, ω), (ω, ω1)} for A = Frω1.
(5) cSrA = {(ω, ω), (ω, ω1), (ω1, ω1)} for Frω1 × Fincoω1.
(6) cSrA = {(ω, ω), (ω1, ω1)} for A = Fincoω1.
(7) cSrA = {(ω, ω), (ω, ω1), (ω, ω2)} for A = Frω2.
(8) cSrA = {(ω, ω), (ω1, ω1), (ω1, ω2)} for the algebra A of (1). Note that in the
models mentioned in (2), such a value for cSr is not possible.
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(9) cSrA = {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2)} for the following BA A, assuming
CH. Let

L = ω12\{f ∈ ω12 : ∃α < ω1(fα = 0 and ∀β > α(fβ = 1))},
M = {f ∈ ω12 : ∃α < ω1(fα = 1 and ∀β > α(fβ = 0))}.

Clearly M is dense in L, and |M | = ω1 by CH. Let L′ be a subset of L of size ω2

which contains M . Then A
def= Intalg (L′) is as desired. For, by the denseness of M it

has ω2-cc, and it clearly has depth ω1, and hence cellularity ω1; so (ω1, ω2) ∈ cSrA.
We have (ω, ω2) /∈ cSrA by Theorem 10.1 of Part I of the Handbook. Obviously
(ω1, ω1) ∈ cSrA. The ordered set L′′ constructed from ω2 similarly to L′ from
ω12 has size ω1 and a dense subset of size ω. Then Intalg (L′′) is isomorphic to a
subalgebra of Intalg (L′) by Remark 15.2 of the BA Handbook, so (ω, ω1) ∈ cSrA

(10) cSrA = {(ω, ω), (ω, ω1), (ω1, ω1), (ω, ω2), (ω1, ω2)} for A = Fincoω1 × Frω2.
(11) cSrA = {(ω, ω), (ω1, ω1), (ω2, ω2)} for A = Fincoω2.
(12) cSrA = {(ω, ω), (ω, ω1), (ω1, ω1), (ω2, ω2)} for A = Fincoω2 × Frω1. To prove
this, it suffices to show that any subalgebra B of A of size ω2 has cellularity ω2.
Now C

def= {x ∈ Fincoω2 : ∃y(x, y) ∈ B} is a subalgebra of Fincoω2 of size ω2,
and hence there is a system 〈cα : α < ω2〉 of nonzero disjoint elements of C. Say
(cα, dα) ∈ B for all α < ω2. Now there are only ω1 possibilities for the dα’s, so
wlog we may assume that they are all equal, and this easily gives rise to a disjoint
subset of B of size ω2.
(13) cSrA = {(ω, ω), (ω1, ω1), (ω1, ω2), (ω2, ω2)} for A = B × Fincoω2, where B is
the algebra of (1), assuming V=L. For, (ω, ω2) /∈ cSrA by CH and Theorem 10.1
of the Handbook, Part I. So we just need to show that (ω, ω1) /∈ cSrA. Suppose
that D is a subalgebra of A of size ω1. Let E = {b ∈ B : (b, c) ∈ A for some c}
and F = {c ∈ Fincoω2 : (b, c) ∈ A for some b}. Case 1. |E| = ω1. By the basic
property of B, let 〈eα : α < ω1〉 be a system of nonzero disjoint elements of E.
Say (eα, fα) ∈ D for all α < ω1. If some fβ is cofinite, replace 〈(eα, fα) : α < ω1〉
by 〈(eα, fα · −fβ) : α < ω1, α �= β〉; so wlog all fα are finite. Wlog the fα’s form
a Δ-system, say with kernel g. Pick distinct β, γ < ω1. Note that for α �= β, γ we
have (eα, fα\g) = (eα, fα) · −[(eβ , fβ) ∩ (eγ , fγ)]; hence

〈(eα, fα\g) : α < ω1, α �= β, γ〉
is a system of disjoint, nonzero elements of D, as desired. Case 2. |F | = ω1 and
|E| < ω1. This case is easy.

Note that in the models of (2), an algebra A of the sort just described is not
possible.
(14) cSrA = {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)} for A = B×Fincoω2, with
B as in (9), assuming CH; the argument for this is easy.
(15) We do not know whether, under any set-theoretic assumptions, a BA A exists
with cSrA = {(ω, ω), (ω, ω1), (ω1, ω1), (ω, ω2), (ω2, ω2)}; this was Problem 2 in
Monk [90]:
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Problem 4. Is there a BA A with cSrA = {(ω, ω), (ω, ω1), (ω1, ω1), (ω, ω2),
(ω2, ω2)}? Equivalently, is there a BA A such that |A| = ω2 = cA, A has a ccc
subalgebra of power ω2, and every subalgebra of A of size ω2 either has cellularity
ω or ω2?

(16) cSrA = {(ω, ω), (ω, ω1), (ω1, ω1), (ω, ω2), (ω1, ω2), (ω2, ω2)}, where A is the
algebra B × Fincoω2, B the subalgebra of Pω1 generated by the singletons and
a set of ω2 independent elements.

It is easy to check that (3)–(16) describe all the possibilities for cSr with the size
of the algebra at most ω2. We also mention the following problem, concerning (9)
and (14); by (9) and (14), it is consistent that BAs of the sort indicated exist.

Problem 5. Can one construct in ZFC BAs with cSr equal to the following rela-
tions?

(i) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2)}.
(ii) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)}.

The relation cHrA is similar to cSrA. We begin with a general theorem. Part (v)
of this theorem is due to Piotr Koszmider.

Theorem 3.33. For any infinite BA A the following conditions hold:
(i) If (κ, λ) ∈ cHrA, then κ ≤ λ ≤ |A| and κ ≤ sA.
(ii) For each κ ∈ [ω, sA) there is a λ ≤ 2κ such that (κ, λ) ∈ cHrA.
(iii) If (λ, (2κ)+) ∈ cHrA, for some λ ≤ κ, then (ω, (2κ)+) ∈ cHrA.
(iv) (cA, |A|) ∈ cHrA.
(v) If (κ′, λ′) ∈ cHrA, where κ′ is a successor cardinal or a singular cardinal

and κ′ < cf|A|, then there is a κ′′ ≥ κ′ such that (κ′′, |A|) ∈ cHrA.

Proof. Only (ii) and (v) need need proofs. For (ii), let κ ∈ [ω, sA). Take a homo-
morphic image B of A such that cB > κ; let C be a subalgebra of B generated by
a disjoint set of power κ, and extend the identity on C to a homomorphism from
B onto a subalgebra D of C; then D is as desired.

Now we prove (v). For brevity let λ = |A|. There is nothing to prove if
κ′ = λ, so assume that κ′ < λ. Let f be a homomorphism from A onto a BA B
with |B| = λ′ and cB = κ′. By the Erdös-Tarski theorem, there is a system of
〈bξ : ξ < κ′〉 of nonzero disjoint elements in B. For each ξ < κ′ choose aξ ∈ A such
that faξ = bξ. We now consider two cases.

Case 1. |A � aξ| < λ for all ξ < κ′. Let J be the ideal in A generated by
{aξ · aη : ξ < η < κ′}. Then

(*) |J | < λ.

In fact, a ∈ J if and only if there is a finite set Γ of ordered pairs (ξ, η) with
ξ < η < κ′ such that

a ≤
∑

(ξ,η)∈Γ

aξ · aη,
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and the number of such sets Γ is κ′. Take any such set Γ. Write Γ = {(ξi, ηi) : i <
n}. Define ci = aξi · −

∑
j<i aξj for each i < n. Then

∑
i<n ci =

∑
i<n aξi , and

hence ∣∣∣∣∣
{

a ∈ A : a ≤
∑
i<n

aξi · aηi

}∣∣∣∣∣ =

∣∣∣∣∣
∏
i<n

A � ci

∣∣∣∣∣ < λ,

which proves (*), since κ′ < λ.
It is also clear that aξ /∈ J for all ξ < κ′. It follows that in A/J there is a

system of κ′ nonzero disjoint elements, and |A/J | = λ, as desired.
Case 2. There is a ξ0 < κ′ such that |A � aξ0 | = λ. Then if we take the

homomorphism

A ∼= (A � aξ0)× (A � −aξ0)→ (A � aξ0)× (B � −bξ0)

determined by the identity and f � (A � −aξ0), we get a homomorphism from A
onto an algebra C of size λ and with κ′ disjoint elements.

A related fact was noticed by P. Nyikos: if (ω1, ω2) ∈ cHrA and (ω, ω2) /∈ cHrA,
then (ω1, ω1) ∈ cHrA.

Note in Theorem 3.33 (ii) that κ = sA is not in general possible, by Corollary
3.26. The following examples shed some light on cHr. If A is complete and (κ, λ) ∈
cHrA, then λω = λ. If A is the finite-cofinite algebra on an infinite cardinal κ,
then cHrA = {(λ, λ) : ω ≤ λ ≤ κ}. If A is the free BA on κ free generators, κ
infinite, then cHrA = {(λ, μ) : ω ≤ λ ≤ μ ≤ κ}. If A an infinite interval algebra
and GCH is assumed, then there is no gap of size 2 or greater in cHrA, in the
same sense as above. The algebra A of Todorčević [87] (assuming V = L) has
cHrA = {(λ, λ) : λ ∈ [ω, κ]} ∪ {(κ, κ+)}. Another example is Pω. Under CH, its
homomorphic cellularity relation is {(ω, ω1), (ω1, ω1)}. If we assume that 2ω = ω2

then we see that its homomorphic cellularity relation is {(ω, ω2), (ω1, ω2), (ω2, ω2)}.
Another relevant result is from Koppelberg [77]: assuming MA, if A is an infinite
BA with |A| < 2ω, then A has a countable homomorphic image. And a special case
of a result of Just, Koszmider [87] is that it is consistent to have 2ω = ω2 with an
algebra A having homomorphic cellularity relation {(ω, ω1), (ω1, ω1)}. In Juhász
[92] it is shown that if κ > ω and |A| ≥ κ, then A has a homomorphic image of
size λ for some λ with κ ≤ λ ≤ 2<κ. Fedorchuk [75] constructed, assuming ♦,
a BA A such that cHrA = {(ω, ω1)}. This example is described in Chapter 16.
Koszmider (email message) has modified Fedorchuk’s construction to give a model
of ZFC + 2ω = ω2 in which there are BAs A, B, C, and D with the following
properties:

cHrA = {(ω, ω2)};
cHrB = {(ω, ω1)};
cHrC = {(ω, ω2), (ω1, ω2)};
cHrD = {(ω, ω1), (ω1, ω1)}.
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R. Laver gave a forcing construction to show that it is consistent to have a system
〈aα : α < ω2〉 of almost disjoint subsets of ω such that if b is any subset of ω, then

{α < ω2 : b ∩ aα is infinite} is infinite

implies that

{α < ω2 : b ∩ aα is infinite} is cocountable in ω2.

P. Nyikos observed that one can then define a BA A such that

cHrA = {(ω, ω), (ω1, ω1), (ω, ω2), (ω2, ω2)}.

The following elementary fact is also useful in constructing examples:

C is a homomorphic image of A×B iff C is isomorphic to A′×B′ for some
homomorphic images A′ and B′ of A and B respectively.

Proof. ⇐: obvious. ⇒: suppose that f is a homomorphism from A × B onto C.
It suffices to show that C � f(1, 0) is a homomorphic image of A (similarly for
B). Let I be a maximal ideal in A, and for any a ∈ A let ga = f(a, a/I) · f(1, 0).
Clearly g is a homomorphism from A into C � f(1, 0). To show that it is onto, let
x ∈ C � f(1, 0). Say f(a, b) = x. Then

ga = f(a, a/I) · f(1, 0) = f(a, b) · f(1, 0) = x.

Problem 6. Describe in cardinal number terms the relation cHr. (This problem
was implicit in Monk [90].)

Now we consider small cardinals, like we did for cSr. There are many more problems
here. The problems are of two sorts: cases in which we know that the existence of
the appropriate BA is consistent but have no construction in ZFC, and cases in
which we know that the existence of the appropriate BA is inconsistent, but have no
proof of non-existence in ZFC. After stating the problems we shall systematically
go through all of the possible cases of relations cHr for algebras of size at most ω2.

For each part of the following problem it is known to be consistent that there
is a BA with the indicated relation.

Problem 7. Can one prove in ZFC that BAs with the following relations cHr

exist?
(i) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2)}. See (H45).
(ii) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. See (H60).

Concerning the relations in the following problem, it is known to be consistent
that no BA with that cHr relation exists.

Problem 8. Is it consistent that BAs with the following relations cHr exist?
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(i) {(ω, ω1), (ω1, ω1), (ω2, ω2)}. See (H36).
(ii) {(ω, ω1), (ω1, ω1), (ω1, ω2)}. See (H35).
(iii) {(ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. See (H55).
(iv) {(ω, ω1), (ω1, ω1), (ω, ω2), (ω2, ω2)}. See (H53).

Possibilites for cHr. For the convenience of the reader we mention all of the 63
a priori possibilities. As a guide through these, we arrange the six possible pairs
lexicographically and go through them in order of the number present.

(H1) {(ω, ω)}. Any countably infinite BA works.

(H2) {(ω, ω1)}. The Fedorchuk example gives this, assuming ♦. If MA+2ω > ω1,
it is ruled out by Koppelberg.

(H3) {(ω, ω2)}. This is impossible under CH, by Juhász. If MA + 2ω > ω2, it is
ruled out by Koppelberg’s Theorem. A consistent example is given by Koszmider’s
algebra A.

(H4) {(ω1, ω1)}. Any BA has a homomorphic image of countable cellularity, so
this relation is impossible.

(H5) {(ω1, ω2)}. See (H4).

(H6) {(ω2, ω2)}. See (H4).

(H7) {(ω, ω), (ω, ω1)}. A subalgebra of IntalgR of size ω1 gives an example.

(H8) {(ω, ω), (ω, ω2)}. This is impossible under CH, by Juhász. Assuming 2ω = ω2,
the algebra Intalg R works; see Theorem 9.4.

(H9) {ω, ω), (ω1, ω1)}. Fincoω1 works.

(H10) {(ω, ω), (ω1, ω2)}. This is impossible, by the result of Nyikos.

(H11) {(ω, ω), (ω2, ω2)}. Any BA of cellularity ω2 has a homomorphic image of
cellularity ω1, so this relation is impossible.

(H12) {(ω, ω1), (ω, ω2)}. Not possible under CH, by Theorem 13.6. If MA + 2ω >
ω1, it is ruled out by Koppelberg’s Theorem. A consistent example is given by
A×B, where A and B are Koszmider’s algebras.

(H13) {(ω, ω1), (ω1, ω1)}. Under CH, Pω works; and also the Just, Koszmider
example works. Koppelberg’s Theorem indicates that it is not possible to have
such an example in ZFC.

(H14) {(ω, ω1), (ω1, ω2)}. This is ruled out by the result of Nyikos.

(H15) {(ω, ω1), (ω2, ω2)}. Not possible: see (H11).

(H16) {(ω, ω2), (ω1, ω1)}. This is not possible, since the homomorphic image of
size ω1 should have a homomorphic image which is ccc.
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(H17) {(ω, ω2), (ω1, ω2)}. This is impossible under CH, by Juhász. If MA + 2ω >
ω2, it is ruled out by Koppelberg’s Theorem. A consistent example is given by
Koszmider’s algebra C.

(H18) {(ω, ω2), (ω2, ω2)}. Not possible; see (H11).

(H19) {(ω1, ω1), (ω1, ω2)}. Not possible; see (H4).

(H20) {(ω1, ω1), (ω2, ω2)}. Not possible; see (H4).

(H21) {(ω1, ω2), (ω2, ω2)}. Not possible; see (H4).

(H22) {(ω, ω), (ω, ω1), (ω, ω2)}. Not possible under CH, since then there is an un-
countable independent set. Under ¬CH, a product of certain interval algebras
works.

(H23) {(ω, ω), (ω, ω1), (ω1, ω1)}. A free algebra of size ω1 works.

(H24) {(ω, ω), (ω, ω1), (ω1, ω2)}. This is not possible, by the result of Nyikos.

(H25) {(ω, ω), (ω, ω1), (ω2, ω2)}. Not possible; see (H11).

(H26) {(ω, ω), (ω, ω2), (ω1, ω1)}. Ruled out by Theorem 3.33 (v).

(H27) {(ω, ω), (ω, ω2), (ω1, ω2)}. This is impossible under CH, by Juhász. A con-
sistent example is given by C × Fincoω, where C is Koszmider’s algebra.

(H28) {(ω, ω), (ω, ω2), (ω2, ω2)}. Not possible; see (H11).

(H29) {(ω, ω), (ω1, ω1), (ω1, ω2)}. Under V=L this is possible, by the result of
Todorčević. This is not possible in the models of Kunen [78] and of Foreman
and Laver; see (2) in the discussion of cSr. Namely, suppose that cHrA is the indi-
cated relation in one of the indicated models A. Let B be an ω1-cc subalgebra of
A of size ω1. By the Sikorski extension theorem, there is a homomorphism from
A onto some BA C such that B ≤ C ≤ B. Thus C has ccc and size ω1 or ω2,
contradiction.

(H30) {(ω, ω), (ω1, ω1), (ω2, ω2)}. Fincoω2 works.

(H31) {(ω, ω), (ω1, ω2), (ω2, ω2)}. This is ruled out by the result of Nyikos.

(H32) {(ω, ω1), (ω, ω2), (ω1, ω1)}. This is ruled out by Theorem 3.33(v).

(H33) {(ω, ω1), (ω, ω2), (ω1, ω2)}. This is impossible under CH, by Juhász. A con-
sistent example is given by B ×C, both Koszmider’s algebras.

(H34) {(ω, ω1), (ω, ω2), (ω2, ω2)}. This is not possible; see (H11).

(H35) {(ω, ω1), (ω1, ω1), (ω1, ω2)}. If MA + 2ω > ω2, this is ruled out by Koppel-
berg’s Theorem. It is open whether an example is consistent (Problem 8(ii)).

(H36) {(ω, ω1), (ω1, ω1), (ω2, ω2)}. If MA+2ω > ω2, this is ruled out by Koppel-
berg’s theorem. It is open whether an example is consistent (Problem 8(i)).
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(H37) {(ω, ω1), (ω1, ω2), (ω2, ω2)}. This is ruled out by the result of Nyikos.

(H38) {(ω, ω2), (ω1, ω1), (ω1, ω2)}. The homomorphic image of size ω1 and cellu-
larity ω1 must have a homomorphic image of cellularity ω, contradiction.

(H39) {(ω, ω2), (ω1, ω1), (ω2, ω2)}. Impossible; see (H38).

(H40) {(ω, ω2), (ω1, ω2), (ω2, ω2)}. This is impossible under CH, by Juhász. Assum-
ing 2ω = ω2,Pω has this relation. If MA+2ω > ω2, it is ruled out by Koppelberg’s
Theorem.

(H41) {(ω1, ω1), (ω1, ω2), (ω2, ω2)}. Not possible; see (H4).

(H42) {(ω, ω), (ω, ω1), (ω, ω2), (ω1, ω1)}. This is ruled out by Theorem 3.33(v).

(H43) {(ω, ω), (ω, ω1), (ω, ω2), (ω1, ω2)}. Not possible under CH, since then there
must be an independent subset of size ω2, and one of the pairs must be (ω2, ω2).
A consistent example with this relation is C×E, where C is Koszmider’s example
and E is a subalgebra of IntalgR of size ω1.

(H44) {(ω, ω), (ω, ω1), (ω, ω2), (ω2, ω2)}. Not possible: see (H11).

(H45) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2)}. Under GCH the following algebra works:
the standard interval algebra constructed from ω12; see (9) in the discussion of cSr.
It is open whether it is consistent that there is no example of this sort (Problem
7(i)).

(H46) {(ω, ω), (ω, ω1), (ω1, ω1), (ω2, ω2)}. Let B be a subalgebra of Intalg R of size
ω1, and set A = B × Fincoω2. Then it suffices to show that A does not have a
homomorphic image of size ω2 with cellularity less than ω2. But this is obvious by
the above fact, since any homomorphic image of Fincoω2 of size ω2 is isomorphic
to Fincoω2.

(H47) {(ω, ω), (ω, ω1), (ω1, ω2), (ω2, ω2)}. By the result of Nyikos this is impossible.

(H48) {(ω, ω), (ω, ω2), (ω1, ω1), (ω1, ω2)}. Not possible under CH, since then there
must be an independent subset of size ω2, and one of the pairs must be (ω2, ω2). A
consistent example is provided by C × Fincoω1, where C is Koszmider’s algebra.

(H49) {(ω, ω), (ω, ω2), (ω1, ω1), (ω2, ω2)}. Not possible under GCH, since then there
must be an independent subset of size ω2, and one of the pairs must be (ω1, ω2).
Laver’s forcing example gives this relation.

(H50) {(ω, ω), (ω, ω2), (ω1, ω2), (ω2, ω2)}. This is impossible under CH, by Juhász.
Assuming that 2ω = ω2, the algebra Fincoω ×Pω gives an example.

(H51) {(ω, ω), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. This is possible under V=L: let B be
the algebra of Todorčević, and set A = B × Fincoω2. Then A has countable
independence, and hence the pair (ω, ω2) is ruled out. The elementary fact above
rules out (ω, ω1).
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This relation is not possible in the models of Kunen and of Foreman and
Laver.

(H52) {(ω, ω1), (ω, ω2), (ω1, ω1), (ω1, ω2)}. Not possible under CH, since then there
is an independent subset of size ω2, and one of the ordered pairs must be (ω2, ω2).
Also ruled out by Koppelberg’s theorem if MA + 2ω > ω2. A consistent example
is provided by C ×D, where C and D are Koszmider’s algebras.

(H53) {(ω, ω1), (ω, ω2), (ω1, ω1), (ω2, ω2)}. Not possible under GCH, since then
there is an independent set of size ω2, and one of the ordered pairs must be
(ω1, ω2). Also ruled out by Koppelberg’s theorem if MA + 2ω > ω2. It is open
whether this relation is consistent (Problem 8(iv)).

(H54) {(ω, ω1), (ω, ω2), (ω1, ω2), (ω2, ω2)}. Not possible under CH since then there
is an independent set of size ω2, and hence (ω1, ω1) would have to be present. If
MA + 2ω > ω2, this is ruled out by Koppelberg’s Theorem. A consistent example
is given by B ×Pω, where B is Koszmider’s algebra.

(H55) {(ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. If MA + 2ω > ω2, this is ruled out by
Koppelberg’s Theorem. It is open to consistently give an example with this relation
(Problem 8(iii)).

(H56) {(ω, ω2), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. This is impossible; a BA of size ω1 has
a ccc homomorphic image.

(H57) {(ω, ω), (ω, ω1), (ω, ω2), (ω1, ω1), (ω1, ω2)}. This is not possible under CH,
since then there must be an independent subset of size ω2, and one of the pairs
must be (ω2, ω2). Assuming that 2ω > ω1, we can take the standard linear order
which is a subset of ω2, take a subset L of size ω2, containing a dense subset of
size ω, and let B = IntalgL and A = B × Fincoω1.

(H58) {(ω, ω), (ω, ω1), (ω, ω2), (ω1, ω1), (ω2, ω2)}. This is not possible under CH,
since then there must be an independent subset of size ω2, and one of the pairs
must be (ω1, ω2). A consistent example is given by A × B, where A is Laver’s
algebra and B is a subalgebra of IntalgR of size ω1.

(H59) {(ω, ω), (ω, ω1), (ω, ω2), (ω1, ω2), (ω2, ω2)}.Pω2 works, assuming GCH. This
is ruled out by Koppelberg’s theorem if MA + 2ω > ω2.

(H60) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. This is possible under CH: take
the algebra B of (9) in the discussion of cSr, and let A = B × Fincoω2; (ω, ω2) is
ruled out by independence. It is open to give an example in ZFC (Problem 7(ii)).

(H61) {(ω, ω), (ω, ω2), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. Not possible under CH, since
then there must be an independent subset of size ω2, and one of the pairs must be
(ω, ω1). Assuming 2ω = ω2, Pω × Fincoω2 works.

(H62) {(ω, ω1), (ω, ω2), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. Pω2 works, assuming GCH.
Ruled out by Koppelberg’s theorem if MA + 2ω > ω2.



84 3. Cellularity

(H63) {(ω, ω), (ω, ω1), (ω, ω2), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. Many examples.

To conclude this chapter, we consider cellularity for special classes of BAs. For
an atomic BA A, cA coincides with the number of atoms of A. Also note that
some of the free product questions are trivial for atomic algebras; in particular,
c(A ⊕ B) = max{cA, cB} if A and B are atomic. There is one interesting result
which comes up in considering cellularity and unions for complete BAs; this result
is evidently due to Solovay, Tennenbaum [71]:

Theorem 3.34. Let κ and λ be uncountable regular cardinals, and suppose that
〈Aα : α < λ〉 is an increasing sequence of complete BAs satisfying the κ−chain
condition, such that Aα is a complete subalgebra of Aβ for α < β < λ, and for
γ limit < λ,

⋃
α<γ Aα is dense in Aγ. Then

⋃
α<λ Aα also satisfies the κ−chain

condition.

Proof. By the proof of Theorem 3.11 we may assume that κ = λ. Let B =⋃
α<κ Aα. For each α < κ we define cα mapping B into Aα by setting

cαx =
∏

x≤a∈Aα

a.

(This function is a cylindrification on B, but we do not need to check that.)
Now, in order to get a contradiction, assume that X is a disjoint subset of B

of size ≥ κ. We may assume that X is maximal disjoint. Take any α < κ. Now∑
X = 1, and hence

∑{cαx : x ∈ X} = 1. Since each Aα satisfies the κ−chain
condition, choose Xα ⊆ X of size < κ such that

(1)
∑{cαx : x ∈ Xα} = 1.

Choose βα < κ such that Xα ⊆ Aβα ; the ordinal βα exists since |Xα| < κ and κ is
regular. Finally, let γ be a limit ordinal < κ such that βα < γ for all α < γ; the
existence of γ is easy to see. We shall now prove that X ⊆ Aγ (contradiction!).

Let x ∈ X be arbitrary. Since
⋃

α<γ Aα is dense in Aγ , choose a non-zero
b ∈ ⋃

α<γ Aα such that b ≤ cγx. Say b ∈ Aα with α < γ. By (1), choose a ∈ Xα

such that cαa·b �= 0. If b·a = 0, then a ≤ −b and hence cαa ≤ −b and so cαa·b = 0,
contradiction. Thus b · a �= 0, and so cγx · a �= 0. It follows that x · a �= 0, by the
same argument as above. But both x and a are in X, so x = a. Thus x ∈ Xα ⊆ Aγ ,
as desired.

There is a large literature on cellularity for BAs of the form P(κ)/I; for a start,
see Baumgartner, J., Taylor, A., Wagon, S. [82]. Usually BA terminology is not
used in such investigations; saturation of ideals is the term used.

Note that c(Pκ/fin) = κω, and this value is always attained; see the Hand-
book, v. 1, Lemma 17.15.

The cellularity of tree algebras has been described in Brenner [82]:

Theorem 3.35. For A = TreealgT , T a tree, cA is the maximum of |{t ∈ T : t has
finitely many immediate successors}| and sup{|X| : X is a collection of pairwise
incomparable elements of T}.
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Proof. If t has finitely many immediate successors, then {t} ∈ A. And if s and t
are incomparable, then (T ↑ s) ∩ (T ↑ t) = 0. Hence ≥ is clear. Now suppose that
X is a collection of pairwise disjoint elements of A; we want to show that |X| is
≤ the indicated maximum. Without loss of generality we may assume that each
element x ∈ X has the form (T ↑ tx)\⋃s∈Fx

(T ↑ s), where Fx is a finite set of
s > tx. And we may assume that if tx has only finitely many immediate successors,
then x = {tx}. Write X = X0 ∪ X1, where X0 is the set of singletons in X and
X1 = X\X0. Thus if x ∈ X1, then tx has infinitely many immediate successors.
Therefore, if x, y ∈ X1, x �= y, then either tx and ty are incomparable, or s ≤ ty for
some s ∈ Fx, or s ≤ tx for some s ∈ Fy. For each x ∈ X1 let ux be an immediate
successor of tx such that ux �≤ s for all s ∈ Fx. Then it is easy to check that if x
and y are distinct elements of X1, then ux and uy are incomparable. This proves
that |X1| is ≤ the sup mentioned in the theorem.

This characterization does not work for pseudo-tree algebras: for example, if L is
a dense linear order of size ω1 with an increasing subset of order type ω1, then
c(Treealg L) = ω1 (recall that for L a linear order, TreealgL = Intalg L). This
gives rise to the following vague question.

Problem 9. Describe cellularity for pseudo-tree algebras.
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Recall that DepthA is the supremum of cardinalities of subsets of A which are well-
ordered by the Boolean ordering. There are two main references for results about
this notion: McKenzie, Monk [82] and (implicitly) Grätzer, Lakser [69]. (Theorems
3.4.4 and 3.5.2 and their corollaries in McKenzie, Monk [82] were essentially already
proved in Grätzer, Lakser [69].)

Some of the results which we shall present about depth depend on the fol-
lowing simple lemma.

Lemma 4.1. Let A and B be BAs, and let X be a chain in A × B of infinite
cardinality κ. Then the projections of X are chains, and at least one of them has
cardinality κ. Furthermore, if X has order type κ, then X has a subset of order
type κ on which one of the two projections is one-one.

Proof. For any z ∈ X write z = (z0, z1). For i = 0, 1 write z ≡i w iff z, w ∈ X
and zi = wi. Now note that

{{x} : x ∈ X} = {a ∩ b : a ∈ X/ ≡0, b ∈ X/ ≡1}\{0};

hence one of the two equivalence relations ≡0,≡1 has κ equivalence classes, and
the lemma follows.

Now we shall show that DepthA is attained if DepthA is a successor cardinal or a
cardinal of cofinality ω; otherwise, there are counterexamples.

Theorem 4.2. If cf(DepthA) = ω, then DepthA is attained.

Proof. Let κ = DepthA. We may assume that κ is an uncountable limit cardinal.
Let 〈λi : i < ω〉 be a strictly increasing sequence of cardinals with supremum κ,
and with λ0 = 0 and λ1 infinite. Now we call an element a of A an ∞-element if
λi is embeddable in A � a for all i < ω. We claim

(∗) If a is an ∞-element, and a = b + c with b · c = 0, then b is an ∞-element or c
is an ∞-element.

In fact, by Lemma 4.1, for each i < ω, λi is embeddable in A � b or A � c, so (∗)
follows.

Using (∗), we construct a sequence 〈ai : i < ω〉 of elements of A by induction.
Suppose that aj has been constructed for all j < i so that b

def=
∏

j<i−aj is an
∞-element. Let 〈c(α) : α < λi+1〉 be an isomorphic embedding of λi+1 into b.
By (∗), one of the elements c(λi) and b · −c(λi) is an ∞-element, while clearly λi

is embeddable in both of these elements. So we can choose ai ≤ b so that λi is
embeddable in ai, and

∏
j≤i−aj is an ∞-element. This finishes the construction.

For each i < ω let 〈biα : α < λi〉 be an embedding of λi into ai. Note that
ai · aj = 0 for i < j < ω. Hence the following sequence 〈dα : α < κ〉 is clearly the
desired embedding of κ into A. Given α < κ, there is a unique i < ω such that
λi ≤ α < λi+1. We let dα = a0 + · · ·+ ai + bi+1,α.
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In order to see that Theorem 4.2 is ”best possible”, it is convenient to first discuss
the depth of products.

Theorem 4.3. Depth(
∏

i∈I Ai) = max(|I|, supi∈IDepthAi).

Proof. Clearly≥ holds. Suppose = fails to hold, and let f be an order isomorphism
of κ+ into

∏
i∈I Ai, where κ = max(|I|, supi∈IDepthAi). For each i ∈ I there is an

ordinal αi < κ+ such that (fαi)i = (fβ)i for all β > αi. Let γ = supi∈Iαi. Then
for all δ > γ we have fδ = fγ, contradiction.

Theorem 4.4. Let κ = supi∈IDepthAi, and suppose that κ is regular. Then the
following conditions are equivalent:

(i) Depth(
∏

i∈I Ai) is not attained.
(ii) |I| < κ, and for all i ∈ I, Ai has no chain of order type κ.

The proof of this theorem is very similar to that of Theorem 4.3. The case of
singular cardinals is a little more involved:

Theorem 4.5. Let κ = supi∈I DepthAi, and suppose that κ is singular. Then the
following conditions are equivalent:

(i) Depth(
∏

i∈I Ai) is not attained.
(ii) These four conditions hold:

(a) |I| < κ.
(b) For all i ∈ I, Ai has no chain of type κ.
(c) |{i ∈ I : DepthAi = κ}| < cfκ.
(d) sup{DepthAi : i ∈ I, DepthAi < κ} < κ.

Proof. Let 〈μα : α < cfκ〉 be a strictly increasing continuous sequence of cardinals
with supremum κ, with μ0 = 0. (i) ⇒ (ii): (a) and (b) are clear. Suppose that
(c) fails to hold; we show that (i) fails. Let i be a one-one function from cfκ into
{i ∈ I : DepthAi = κ}. For each α < cfκ let 〈aiβ : μα ≤ β < μα+1〉 be a strictly
increasing sequence of elements of Aiα . Now we define a sequence 〈xβ : β < κ〉 of
elements of

∏
i∈I Ai. For each β < κ choose α < cfκ so that μα ≤ β < μα+1, and

for any j ∈ I set

xβj =

{ 1 if j = iγ for some γ < α;
aiβ if j = iα;
0 otherwise.

Clearly this sequence is as desired.
Next we show that if (d) fails then (i) fails. By induction we can define iα for

α < cfκ so that

sup
β<α

(DepthAiβ
∪ μβ) < DepthAiα < κ,

and then we can proceed as for (c).
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(ii) ⇒ (i): Assume (ii), and suppose that 〈xα : α < κ〉 is strictly increasing
in

∏
i∈I Ai. Define

Ji = {α < κ : xαi < xα+1i} for i ∈ I;
K = {i ∈ I : DepthAi = κ};
λ = sup{DepthAi : i ∈ I, DepthAi < κ}.

Then by the above assumptions we have λ < κ, |Ji| ≤ λ for all i ∈ I\K, |K| < cfκ,
and |Ji| < κ for all i ∈ K. It follows that |⋃i∈I Ji| < κ. But for any α ∈ κ\⋃i∈I Ji

we have xα = xα+1, contradiction.

The above theorems completely describe the depth of products. The case of weak
products is even simpler:

Theorem 4.6. Let κ = supi∈I DepthAi, and suppose that cfκ > ω. Then the
following conditions are equivalent:

(i)
∏w

i∈I Ai has no chain of order type κ.
(ii) For all i ∈ I, Ai has no chain of order type κ.

Proof. (i)⇒ (ii) is clear. (ii)⇒(i): Suppose that 〈xα : α < κ〉 is strictly increasing
in

∏w
i∈I Ai. For any y ∈∏w

i∈I Ai let Sy = {i ∈ I : yi �= 0}.
Case 1. Sxα is finite for all α < κ. Since cfκ > ω, it follows that there is an

α < κ such that Sxα = Sxβ whenever α < β < κ. But then Lemma 4.1 easily
gives a contradiction.

Case 2. Otherwise we may assume that {i ∈ I : xαi �= 1} is finite for all
α < κ, and a contradiction is reached as in Case 1.

Corollary 4.7. Depth(
∏w

i∈I Ai) = supi∈IDepthAi.

Theorem 4.6 enables us to easily show that Theorem 4.2 is best possible: if κ is a
limit cardinal with cfκ > ω, then it is easy to construct a weak product B such
that DepthB = κ but depth is not attained in B.

If A is a subalgebra of B, then obviously DepthA ≤ DepthB and the dif-
ference can be arbitrarily large. If A is a homomorphic image of then depth can
change either way from A to B; see the argument here for cellularity.

For free products, we have Depth(⊕i∈IAi) = supi∈IDepthAi. The proof is
somewhat involved, and will be omitted; see McKenzie, Monk [82].

We now briefly discuss depth and amalgamated free products. The following
theorem is a special case of a theorem in McKenzie, Monk [82].

Theorem 4.8. Let A be the BA of finite and cofinite subsets of ω. Then there
exist B,C ≥ A both satisfying ccc such that Depth(B ⊕A C) = ω1.

Proof. Let M be the collection of all even integers, N the set of all odd integers.
Then we take two sequences 〈aα : α < ω1〉 and 〈bα : α < ω1〉 such that

(1) Each aα is an infinite subset of M , and for α < β < ω1 we have aα\aβ finite
and aβ\aα infinite.
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(2) Similarly for the bα’s, subsets of N .

Now let B = C = A×Pω. For each a ∈ A let ga = (a, a). Then g is an isomorphism
of A into B = C. So it is enough to prove that Depth(B ⊕g[A] C) = ω1. For each
α < ω1 let cα = (0, aα)× (0, bα) [using × rather than · to indicate which one is in
B and which one in C]. We claim that 〈cα : α < ω1〉 is as desired. Let α < β < ω1.
Then

cα · −cβ = [((0, aα) · (1,−aβ))× (0, bα)] + [(0, aα)× ((0, bα) · (1,−bβ))]
= [(0, aα\aβ)× (0, bα)] + [(0, aα)× (0, bα\bβ)].

Now d
def= aα\aβ is a finite subset of M , so d ∈ A. And (0, aα\aβ) ≤ (d, d), while

(0, bα) · (d, d) = (0, 0). Using a similar argument for the second summand, this
shows that cα · −cβ = 0.

Now suppose that α < β and cβ · −cα = 0. So (0, aβ\aα)× (0, bβ) = 0, hence
there is a d ∈ A such that (0, aβ\aα) ≤ (d, d) and (0, bβ) · (d, d) = (0, 0). Now
aβ\aα is infinite, so d is cofinite. Hence bβ ∩ d �= 0, contradiction.

The following theorem solves Problem 2 of McKenzie, Monk [82]:

Theorem 4.9. Let A be the BA of finite and cofinite subsets of ω, and let κ be
an uncountable cardinal. Then there exist B,C ≥ A such that |B| = |C| = κ,
DepthB = DepthC = ω, and Depth(B ⊕A C) ≥ ω1.

Proof. First we choose B and C as in the proof of Theorem 4.8. In particular,
B ⊕A C has a chain of the form 〈bα × cα : α < ω1〉, while B and C have size ω1.
Let B′ = B × Fincoκ and C ′ = C × Fincoκ. Thus |B′| = |C ′| = κ. Set

A′ = {(a, 0) : a ∈ [ω]<ω} ∪ {(a, 1) : ω\a ∈ [ω]<ω}.

Clearly A′ is isomorphic to A. To prove the theorem it suffices to show that B′⊕A′

C ′ has depth ω1. Let b′α = (bα, 0), c′α = (cα, 0), and dα = b′α × c′α for all α < ω1.
We claim that 〈dα : α < ω1〉 is a chain in B′ ⊕A′ C ′, as desired. To prove this,
suppose that α < β. Choose u, v ∈ A such that bα ·−bβ ≤ u, cα∩u = 0, bα · v = 0,
and cα · −cβ ≤ v. Now

dα · −dβ = (b′α · −b′β)× c′α + b′α · (c′α · −c′β).

Note that (b′α · −b′β) × c′α = (bα · −bβ , 0) × (cα, 0). Then for some ε ∈ {0, 1}
we have (u, ε) ∈ A′, (bα · −bβ , 0) ≤ (u, ε), and (u, ε) · (cα, 0) = (0, 0). Therefore
(b′α · −b′β) × c′α = 0. Similarly for the other summand, so dα · −dβ = 0. Suppose
that also dβ ·−dα = 0. This easily gives (bβ ·−bα, 0)× (cβ , 0) = (0, 0). Hence there
is a (w, ε) ∈ A′ such that (bβ · −bα, 0) ≤ (w, ε) and (cβ , 0) · (w, ε) = (0, 0). Hence
bβ · −bα ≤ w and cβ · w = 0, contradiction.

The following variation on Problem 2 of McKenzie, Monk [82] remains open.
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Problem 10. Is it true that for every infinite BA A there is a cardinal κ such
that if B and C are extensions of A with depth at least κ then Depth(B ⊕A C) =
max(DepthB,DepthC)?

A large cardinal κ might work here.
We also mention the following problem from McKenzie, Monk [82]:

Problem 11. Is it true that for every infinite BA A there exist extensions B and
C of A and an infinite cardinal κ such that B and C have no chains of order type
κ but B ⊕A C does?

Concerning unions, we note that Depth is an ordinary sup function with respect
to the function P , where PA = {X ⊆ A : X is a well-ordered chain in A}, and so
Theorem 3.11 applies.

For ultraproducts the situation is similar to that for cellularity. The same
argument as before shows that if F is a countably complete ultrafilter on an infinite
set I and is a BA with depth ω for each i ∈ I, then

∏
i∈I Ai/F has depth ω. And,

as before, if F is a countably incomplete ultrafilter on I and each algebra is infinite,
then

∏
i∈I Ai/F has depth > ω. This is easiest to see by recalling that

∏
i∈I Ai/F

is ω1-saturated, and noting

(*) If an infinite BA A is κ-saturated, then A has a chain of order type κ.

To prove (*), we construct a ∈ κA by recursion. Suppose that aβ has been defined
for all β < α, so that if β is a successor ordinal γ +1, then A � −aγ is infinite. If β
is a successor ordinal, it is clear how to proceed in order to still have the indicated
condition. If β is limit, consider the set

{cxα < v0 : α < β} ∪ { “there are at least n”v1(v0 < v1) : n ∈ ω}.

This set is finitely satisfiable in A, and so an element satisfying all of these formulas
gives the desired element aβ .

Now we consider regular ultrafilters. The first result follows easily from a
theorem of W. Hodges, that if F is a regular ultrafilter on I then in I〈ω,>〉/F
there is a chain of order type |I|+. We give a direct BA proof of the BA result:

Theorem 4.10. Let F be a |I|-regular ultrafilter on I, and suppose that Ai is an
infinite BA for every i ∈ I. Then in

∏
i∈I Ai/F there is a chain of order type |I|+.

Proof. For brevity set κ = |I|. By the definition of regularity choose E ⊆ F such
that |E| = κ and for all i ∈ I the set {e ∈ E : i ∈ e} is finite. Let G be a one-
one function from E onto κ. For each i ∈ I choose a strictly increasing sequence
〈xij : j < ω〉 in Ai, and let Xi = {xij : j < ω}. Then it suffices to show:

(*) If gα ∈
∏

i∈I Xi for all α < κ, then there is an f ∈∏
i∈I Xi such that gα/F <

f/F < 1 for all α < κ.

To define f , let i ∈ I. Let e(1), . . . , e(m) be all of the elements u of E such
that i ∈ u. Then let fi be any element of Xi greater than all of the elements
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gGe(1)i, . . . , gGe(m)i. This defines f . Now if α < κ and i ∈ G−1α, we have gαi <
fi < 1, as desired.

Theorem 4.11. Let I be an infinite set, and suppose that Ai is an infinite BA for
every i ∈ I. Then there is a proper filter G on I such that G contains all cofinite
sets, and

∏
i∈I Ai/F has a chain of order type 2|I| for every ultrafilter F including

G.

Proof. Again let κ = |I|. Let S ⊆ κω satisfy the following condition:

(1) |S| = 2κ, and for every finite sequence i0, . . . , ik−1 of natural numbers and
every sequence f0, . . . , fk−1 of distinct members of S of length k, there is an α < κ
such that ftα = it for all t < k.

For the existence of such a set, see Comfort, Negrepontis [74], pp. 75-77. Let
〈fα : α < 2κ〉 enumerate S without repetitions. For α < β < 2κ, let Jαβ = {γ <
κ : fαγ < fβγ}. From (1) it is clear that the intersection of any finite number of
the sets Jαβ is infinite. Hence

{Jαβ : α < β < 2κ} ∪ {Γ ⊆ κ : |κ\Γ| < ω}

generates a proper filter G containing all cofinite sets. Clearly G is as desired.

Now we give some results of Douglas Peterson.

Theorem 4.12. Suppose that 〈Ai : i ∈ I〉 is a system of infinite BAs, with I infi-
nite, and F is an ultrafilter on I. Then Depth

(∏
i∈I Ai/F

)
≥ ess.supF

i∈IDepthAi.
Proof. For any linearly ordered set L let Depth L be the supremum of the size
of well-ordered subsets of L. Let λ = ess.supF

i∈IDepthAi. If λ is a successor car-
dinal, then {i ∈ I : DepthAi = λ} ∈ F , and hence clearly Depth

(∏
i∈I Ai/F

)
≥

Depth(Iλ/F ) ≥ λ, as desired. If λ is a limit ordinal, then by similar reason-
ing, Depth

(∏
i∈I Ai/F

)
≥ κ for every successor cardinal κ < λ, and so also

Depth
(∏

i∈I Ai/F
)
≥ λ.

Theorem 4.13. Suppose that 〈Ai : i ∈ I〉 is a system of infinite BAs, with I
infinite, and that F is a regular ultrafilter on I. Let λ = ess.supF

i∈IDepthAi, and
assume that cfλ ≤ |I| < λ. Then Depth

(∏
i∈I Ai/F

)
≥ λ+.

Proof. Case 1. {i ∈ I : DepthAi = λ} ∈ F . We may assume that DepthAi = λ for
all i ∈ I. By Lemma 3.12 we get a system 〈κi : i ∈ I〉 of infinite cardinals such that
κi < λ for all i ∈ I, and ess.sup F

i∈Iκi = λ. Let δi = κ+
i for all i ∈ I. Then, using the

notation in the proof of Theorem 4.12, Depth
(∏

i∈I Ai/F
)
≥ Depth

(∏
i∈I δi/F

)
,

so it suffices to show that Depth
(∏

i∈I δi/F
)
≥ λ+. Suppose that {fα/F : α < λ}

is a set of elements of
∏

i∈I δi/F ; we shall find an element f ∈ ∏
i∈I δi such that

f/F > fα/F for all α < λ, and this will clearly finish the proof. Let i ∈ I. Then
{fαi : α < κi} is not cofinal in δi, so we can let fi be an element of δi greater than
each fαi, α < κi. Then for any α < λ we have {i ∈ I : fi > fαi} ⊇ {i ∈ I : κi >
α} ∈ F , so f/F > fα/F , as desired.
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Case 2. {i ∈ I : DepthAi < λ} ∈ F . Then we can assume that DepthAi < λ
for all i ∈ I. Then by Lemma 3.13 there is a system 〈κi : i ∈ I〉 of infinite cardinals
such that κi < DepthAi for all i ∈ I, and ess.sup F

i∈Iκi = λ. Let δi = κ+
i . Note

that Ai has a well-ordered subset of size δi. Hence the rest of the proof of Theorem
4.12 goes through.

Theorem 4.14. (GCH) Suppose that 〈Ai : i ∈ I〉 is a system of infinite BAs,
with I infinite, and F is a regular ultrafilter on I. Then Depth

(∏
i∈I Ai/F

)
≥∣∣∏

i∈I DepthAi/F
∣∣.

Proof. Let λ = ess.sup F
i∈IDepthAi. Then we consider three cases: Case 1. λ ≤

|I|. Then λ|I| = 2|I| = |I|+, and this case follows from Theorem 4.10. Case 2.
cfλ ≤ |I| < λ. Then λ|I| = λ+, and the result follows from Theorem 4.13. Case 3.
|I| < cfλ. Then λ|I| = λ and we are through by Theorem 4.12.

We can get an upper bound as in the case of cellularity (see Theorem 3.18).

Theorem 4.15. Let 〈Ai : i ∈ I〉 is a system of infinite BAs, with I infinite, let
F be a uniform ultrafilter on I, and let κ = max(|I|, ess.supF

i∈IDepthAi). Then
Depth

(∏
i∈I Ai/F

)
≤ 2κ.

So, again we have a lower and an upper bound. First consider the lower bound.
It is consistent to have Depth

(∏
i∈I Ai/F

)
>

∣∣∏
i∈I DepthAi/F

∣∣ with F regular;
see McKenzie,Monk [82], p. 158, for an example due to Laver. It is open to give
such an example in ZFC.

Problem 12. Is an example with Depth
(∏

i∈I Ai/F
)

>
∣∣∏

i∈I DepthAi/F
∣∣ pos-

sible in ZFC?

But one can also consistently have inequality in the other direction; this is a result
of Shelah [90] which also solves Problem 4 of Monk [90]. The proof is very similar to
the proof of Theorem 1.5.8 in McKenzie, Monk [82] (also due to Shelah). Note that
the theorem says that it is consistent to have a BA A such that Depth(ωA/F ) <
|ωDepthA/F |.
Theorem 4.16. Suppose V |=CH, let κ be any uncountable cardinal in V , and let
P be the partial order for adding κ Sacks reals side-by-side. Then in V P there is a
nonprincipal ultrafilter F on ω such that Depth(ωA/F ) = ω1, where A is the BA
of finite and cofinite subsets of ω.

(Since one can make the continuum large in this way, and cardinals are preserved,
this does do the job.)

Proof. We shall use the notation in Jech [86]; in particular, we use the proof of
Theorem 7.12 there. In fact, we need to give more details than were supplied for
7.12, so we give a proof of it here too.

A perfect tree is a nonempty subset T of <ω2 such that if t ∈ T and m is
smaller than the domain of t then t � m ∈ T , and such that for any t ∈ T there
is some s ∈ T with t ⊆ s such that s0, s1 ∈ T . We write p ≤ q in place of p ⊆ q
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for perfect trees p, q. A branching point of p is a point t ∈ p such that t0 ∈ p and
t1 ∈ p. An nth branching point is a branching point t such that there are exactly
n branching points < t. Note that for any s ∈ p, if there are m branching points
of p strictly less than s, then for any n ≥ m there is an nth branching point t of
p such that s ≤ t. For perfect trees p and q, p ≤n q means that p ⊆ q and every
nth branching point of q is a branching point of p. If p ≤n q, then p ≤i q for every
i ≤ n. For, suppose that t is an ith branching point of q. By the above remark,
choose an nth branching point u of q with t ≤ u. Then u ∈ p, and hence t ∈ p. So
p ≤i q. Now it follows that every nth branching point of q is also an nth branching
point of p.

We also note:

(�) If p ≤ q and n ∈ ω, then there is an nth branching point t of q such that t ∈ p.

For, let s be an nth branching point of p. Then it is an mth branching point of q
for some m ≥ n. Let t ≤ s be an nth branching point of q. Thus t ∈ p, as desired.

Thus p ≤n q means that p ⊆ q, and any points of q thrown away to get p
have more than n branching points strictly below them.

A fusion sequence is a sequence such that

p0 ≥0 p1 ≥1 p2 ≥2 · · · ≥n−1 pn ≥n · · ·

Fusion Lemma 4.17. If 〈pn : n ∈ ω〉 is a fusion sequence, then p
def=

⋂
n∈ω pn is

a perfect tree, and p ≤n pn for all n ∈ ω.

Proof. Let n ∈ ω, and let s be an nth branching point of pn. If n ≤ m, then
pn ≥n pm, and so s is a branching point of pm, so that s, s0, s1 ∈ pm. Hence
s, s0, s1 ∈ p, and s is a branching point of p.

Thus we just need to see that p is a perfect tree. If t ∈ p and m < domt, then
obviously t � m ∈ p.

Now suppose that s ∈ p; we want to find t ≥ s such that t0, t1 ∈ p. Let
m = doms. Now s ∈ pm, and there are at most m − 1 branching points of pm <
s, since there are only that many elements of <ω2 which are < s. Choose an mth
branching point t of pm with s ≤ t. By the first paragraph of this proof we have
t, t0, t1 ∈ p, as desired.

If p is a perfect tree and t ∈ p, we define

p � t = {u ∈ p : u and t are comparable}.

Now let p be a perfect tree, s an nth branching point of p, and t one of the
immediate successors of s in p. Suppose that q ≤ p � t. Then

r
def= q ∪ {u ∈ p : u and t are incomparable}

is a perfect tree called the amalgamation of q into p at t. Clearly r ≤n p. Also note
that r � t = q.
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Let Q be the collection of all perfect trees. Q is called Sacks forcing. Its
greatest element is <ω2, the full binary tree of height ω. The partial order P that
we are concerned with is the σ-product of κ copies of Q; it consists of all p ∈ κQ
such that pi = 1 for all but countably many i ∈ κ, where 1 is the full binary tree of
height ω. The support of an element p ∈ P is the set of all i ∈ κ such that pi �= 1;
it is denoted by Supp(p). The essence of Theorem 7.12 of Jech [86] is the following
lemma; we are interested not so much in the lemma itself as in its proof.

Lemma 4.18. Let P be the σ-product of κ-many Sacks forcings, where κ is any
infinite cardinal. Suppose that B ∈ V , p ∈ P , and p � Ẋ : ω → B. Then there is
a countable A ∈ V and a p∞ ≤ p, p∞ ∈ P , such that p∞ � Ẋ : ω → A.

Proof. We assume given a well-ordering of all objects that play a role in this
proof. This is so we can make the construction very definite, implicitly choosing
the “first” object when we make an arbitrary choice. We construct a sequence
p = p0 ≥ p1 ≥ p2 ≥ · · ·, and finite sets A0, A1, . . . . As soon as pi is defined we let
Si be the support of pi.

We need an auxiliary function g : ω → ω× ω. Let g0 = (0, 0). If gn has been
defined, say gn = (i, j), let

g(n + 1) =
{

(i + 1, j − 1), if j �= 0;
(0, i + 1), otherwise.

Then g maps onto ω × ω, and if gn = (i, j), then i ≤ n.
If pi has been defined, we let 〈Gij : j ∈ ω〉 be the first system of finite subsets

of κ with union Si. And let Fi =
⋃

j≤i Ggj . (Note that if j ≤ i and gj = (k, l), then
k ≤ j, so Ggj has been defined already too.) So, 〈Fi : i ∈ ω〉 will be an increasing

sequence of finite sets with union S
def=

⋃
n Sn.

Let p0 = p and A0 = 0. Now suppose that pn−1 and An−1 have been defined.
For each i ∈ Fn−1 let Ein be the set of all successors of all nth branching points
of the tree pn−1(i). Let σ1n, . . . , σlnn be all of the functions σ on Fn−1 such that
σi ∈ Ein for all i ∈ Fn−1. We construct q0n ≥ q1n ≥ · · · ≥ qlnn and An =
{a1n, . . . , anln} as follows. Let q0n = pn−1. Assume that qkn has been defined so
that qkn(i) ≤n pn−1(i) for all i ∈ Fn−1. Thus σkn(i) is a successor of an nth
branching point of qkn(i) if i ∈ Fn−1. Let

q′kn(i) =
{

qkn(i) � σkn(i), if i ∈ Fn−1,
qkn(i), otherwise.

So q′kn ≤ qkn. Hence there is an rkn ≤ q′kn and an ank ∈ B such that rkn � Ẋn =
ank. Let

q(k+1)n(i) =
{

amalgamation of rkn(i) into qkn(i) if i ∈ Fn−1,
rkn(i), otherwise.
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Thus q(k+1)n(i) ≤n qkn(i) if i ∈ Fn−1. Let pn = qlnn. Thus pn(i) ≤n pn−1(i) for
all i ∈ Fn−1.

Hence for all i ∈ S, p∞(i) def=
⋂

n∈ω pn(i) is a perfect tree, by the fusion
lemma, since for i ∈ Fn we have

p0(i) ≥ · · · ≥ pn−1(i) ≥n pn(i) ≥n+1 pn+1(i) ≥ · · · .

Let p∞(i) = 1 for i /∈ S. Define A =
⋃

n∈ω An. Now we prove that p∞ � Ẋ :
ω → A, which will finish the proof. And to do this it suffices to show that, for any
n ∈ ω,

p∞ � Ẋn = a1n ∨ . . . ∨ Ẋn = alnn.

In turn, to do this it suffices to take an arbitrary q ≤ p∞ and find q̃ ≤ q and k
such that q̃ � Ẋ = akn. Choose q ≤ q and b ∈ B such that q � Ẋn = b. Consider
Fn−1 and σ1n . . . σlnn as above. For each i ∈ Fn−1 let τ(i) ∈ Ein ∩ q(i); it exists
since q(i) ≤ q(i) ≤ p∞(i) ≤n pn−1(i) (see (�). Say τ = σkn. Then if rkn is as
above, we have q(i) � σkn(i) ≤ q(k+1)n(i) � σkn(i) = rkn(i) for i ∈ Fn−1. Thus if
q̃(i) = q(i) � σkn(i) for i ∈ Fn−1 and q̃(i) = q(i) otherwise, then q̃ ≤ rkn, q. In fact,
clearly q̃ ≤ q, and q̃(i) ≤ rkn(i) for i ∈ Fn−1. For i /∈ Fn−1,

q̃(i) = q(i) ≤ q(i) ≤ p∞(i) ≤ pn(i) ≤ q(k+1)n(i) = rkn(i),

as desired. q̃ � Ẋn = akn, as desired.

We now begin the proof of Theorem 4.16 itself:

For each p ∈ P and each subset Γ of κ, let p � Γ be the function which agrees with p
on Γ and is the 1 of P otherwise. By a result of Laver, let F ′ be a Ramsey ultrafilter
in V which generates a Ramsey ultrafilter F in V P . By Theorem 4.10, we only
need to show that ωA/F has no chain of type ω2. So, arguing by contradiction,
suppose that p ∈ P and

p � ∀α < ω2(ḟα ∈ ωA) ∧ (〈ḟα/F : α < ω2〉 is strictly increasing).

where ḟ is a name. Thus for each α < ω2 we have p � ḟα : ω → A, so we can apply
the proof of the Lemma to p. We thus obtain for each α certain constructed objects
in V ; with an obvious correspondence with that proof, they are, for all n, j ∈ ω,

pα
n, Gα

nj ,
Fα

n , Eα
in for all i ∈ Fα

n−1,
Aα

n, lαn ,

and, for all i = 1, . . . , lαn ,

σα
in, qα

in,
(qα

in)′, rα
in,

and aα
in;



96 4. Depth

finally, we have pα
∞. Now we claim

(1) ∀α < ω2∀u ≤ pα
∞∀n ∈ ω∀j ∈ ω(u � j ∈ ḟαn iff u � Supp(pα

∞) � j ∈ ḟαn) and
(u � j /∈ ḟαn iff u � Supp(pα

∞) � j /∈ ḟαn).

Suppose that α < ω2, u ≤ pα
∞, n ∈ ω, j ∈ ω, u � j ∈ ḟαn, and u � Supp(pα

∞) �

j ∈ ḟαn; we want to get a contradiction. Choose v ≤ u � Supp(pα
∞) such that

v � j /∈ ḟαn. For each i ∈ Fα
n−1 let τ(i) ∈ Eα

in ∩ v(i); it exists since v(i) ≤ u(i) ≤
pα
∞(i) ≤ pα

n−1(i). Say τ = σα
kn. Thus rα

kn � ḟαn = aα
kn, and rα

kn ≤ (qα
kn)′. Also, if

i ∈ Fα
n−1, then v(i) � σα

kn(i) ≤ qα
k+1,n � σα

kn(i) = rα
kn(i). Let ṽ(i) = v(i) � σα

kn(i)
for i ∈ Fα

n−1 and ṽ(i) = v(i) otherwise. Then ṽ ≤ rα
kn, v, so j /∈ aα

k . On the other
hand, u(i) � σα

kn ≤ rα
kn(i) for i ∈ Fα

n−1. Let ũ(i) = u(i) � σα
kn(i) for i ∈ Fα

n−1 and
ũ(i) = u(i) otherwise. Then ũ ≤ rα

kn, u. So j ∈ aα
k , contradiction. The other part

of (1) is similar.
Now we may assume that 〈Supp(pα

∞) : α < ω2〉 forms a Δ-system, say with
kernel Δ. Note that for each α < ω2, pα

∞ � Δ : Δ → P(<ω2); the set of all
such functions has, by CH in V , ω1 elements. Hence we may assume that for all
α, β < ω2 we have pα

∞ � Δ = pβ
∞ � Δ. Next, for each α < ω2, the set Supp(pα

∞)\Δ
has a certain countable order type. There are ω1 countable order types, so we may
assume that all such order types are the same. Thus for any α, β < ω2 there is a
unique order isomorphism παβ from Supp(pα

∞)\Δ onto Supp(pβ
∞)\Δ. We extend

παβ to a permutation of κ, still denoted by παβ , by letting it be πβα (= π−1
αβ ) on

Supp(pβ
∞)\Δ and the identity elsewhere. Thus παβ = πβα. And this permutation

παβ extends to other objects; for example, if p ∈ P , then παβ(p) is the member q
of P such that q(i) = p(παβ(i)) for all i ∈ κ. Note here that if p has support Γ,
then παβ(p) has support παβ [Γ]. Now consider the objects

πα0(pα
n), πα0[Gα

nj ],
πα0[Fα

n ], 〈Eα
(πα0i)n : i ∈ πα0[Fα

n−1]〉,
Aα

n, lαn ,

and, for all i = 1, . . . , lαn ,

σα
in ◦ π0α, πα0(qα

in),
πα0((qα

in)′), πα0(rα
in),

and aα
in;

and, finally, πα0(pα
∞). By CH, there are only ω1 of these things, so we may assume

that they are the same for all α ∈ ω2\{0}. Now take any two distinct α, β ∈ ω2\{0}.
Thus, for example,

(παβ(pα
∞))(i) = (π0β(πα0(pα

∞)))(i)
= (πα0(pα

∞))(π0β(i))

= (πβ0(pβ
∞))(π0β(i))

= pβ
∞(i).
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Hence παβ(pα
∞) = pβ

∞. Another useful fact now is that if i ∈ Fα
n−1 then E(παβi)n =

Eα
in for all i ∈ Fα

n−1. In fact, πα0(i) ∈ πα0[Fα
n−1] = πβ0[F

β
n−1] and Eβ

(παβi)n =

Eβ
(πβ0πα0i)n = Eα

(πα0πα0i)n = Eα
in.

Next,

(2) ∀u ≤ pα
∞∀n ∈ ω∀j ∈ ω(u � j ∈ ḟαn iff παβu � j ∈ ḟβn).

For, suppose that u � j ∈ ḟαn but παβu � j ∈ ḟβn. By (1) we may assume that
Supp(u) ⊆ Supp(pα

∞). Choose v ≤ παβ(u) such that v � j /∈ ḟβn. Now if i ∈ Fβ
n−1,

then
v(i) ≤ (παβ(u))(i) ≤ (παβ(pα

∞))(i) = pβ
∞(i),

so there is a τ(i) ∈ Eβ
in ∩ v(i). Say τ = σβ

kn. Thus rβ
kn � ḟβn = aβ

kn. As above, let
ṽ(i) = v(i) � σβ

kn(i) for i ∈ Fβ
n−1 and ṽ(i) = v(i) otherwise. Then ṽ ≤ rβ

kn, v, so
j /∈ aβ

kn. Now πβαv ≤ u. Furthermore, if i ∈ Fα
n−1 then παβi ∈ Fβ

n−1, and so

σα
kn(i) = (πβα(σβ

kn))(i) = σβ
kn(παβi) ∈ Eβ

(παβi)n ∩ v(παβi) = Eα
in ∩ (πβαv)(i).

Now let w̃(i) = (πβαv)(i) � σα
kn(i) for i ∈ Fα

n−1 and w̃(i) = (πβαv)(i) otherwise.
Then w̃ ≤ rα

kn and w̃ ≤ πβαv ≤ u, so j ∈ ak, contradiction. This proves (2).

Now let s be the member of P which agrees with pα
∞ and pβ

∞ on their supports
and is 1 otherwise. Clearly παβ(s) = s. We may assume that α < β. Then, using
the fact that F ′ generates F ,

(3) s � ∃X ∈ F ′∀i ∈ X∀j ∈ ω(j ∈ ḟαi⇒ j ∈ ḟβi).

We claim that

(4) s � ∃X ∈ F ′∀i ∈ X∀j ∈ ω(j ∈ ḟβi→ j ∈ ḟαi).

This is a clear contradiction. So, it suffices to prove (4). By (3), there is a u ≤ s
and an X ∈ F ′ such that

(5) u � ∀i ∈ X∀j ∈ ω(j ∈ ḟαi→ j ∈ ḟβi).

It suffices now to show

παβu � ∀i ∈ X∀j ∈ ω(j ∈ ḟβi→ j ∈ ḟαi).

So, let v ≤ παβu, i ∈ X, j ∈ ω, and assume that v � j ∈ ḟβi. Since v ≤ s ≤ pβ
∞,

from (2) we get παβv � j ∈ ḟαi. And παβv ≤ u, so by (5) we get παβ(v) � j ∈ ḟβi.
But παβ(v) ≤ s ≤ pα

∞, so by (2) again, v � j ∈ ḟαi, as desired.

Shelah has a more recent construction proving the above inequality < for depth
and ultraproducts, and this construction applies to some other functions too. To
formulate this result, we need a definition.

Suppose that O is an operation on sequences of BAs, and inv is a cardinal
invariant on BAs such that |invB| ≤ |B| for every infinite BA B. Then we say that



98 4. Depth

the property O holds provided that if μ is a cardinal and Bi is a BA for each
i < μ+, then

sup
i<μ+

invBi ≤ inv
(
Oi<μ+Bi

)
≤ μ + sup

i<μ+
invBi.

Ros	lanowski, Shelah [94] proved the following result:

Suppose that inv is a cardinal invariant on BAs satisfying ⊕ or Πw ; suppose
that invB ≤ |B| for any BA B. Suppose that for each infinite cardinal χ there is
a BA B such that χ < invB and there is no inaccessible cardinal in the interval
(χ, |B|]. Assume further that

" 〈λi : i < κ〉 is a sequence of weakly inaccessible cardinals λi > κ+, D is an
ℵ1-complete ultrafilter on κ, and

∏
i<κ(λi, <)/D is μ+-like.

Then there exist BAs Bi for i < κ such that

invBi = λi and inv

(∏
i<κ

Bi/D

)
≤ μ.

As a corollary of this and Magidor, Shelah [91] one has:

Suppose that inv is a cardinal invariant on BAs such that the following three con-
ditions hold:

(i) invB ≤ |B| for all infinite BAs B.
(ii) supi<μ+ invBi ≤ inv

(∏w
i<μ+ Bi

)
≤ μ + supi<μ+ invBi for every system

〈Bi : i < μ+〉 of BAs.
Then it is consistent to have a system 〈Bi : i < κ〉 of BAs such that

inv
(∏

i<κ Bi/D
)

<
∏

i<κ invBi/D.

This corollary applies not only to depth, but also to length, independence, π-
character, and tightness.

Observe that the upper bound of Theorem 4.15 is strict in some ultraprod-
ucts, and mere equality in others.

Some additional results on the connection between depth and ultraproducts
of BAs can be found in Shelah [95a].

Note that if A is a dense subalgebra of B, then trivially DepthA ≤ DepthB. The
difference can be arbitrarily large: take B to be an interval algebra on a large
cardinal, and let A be the subalgebra of B generated by its atoms.

For subdirect products the situation is similar to that for cellularity, with
essentially the same proof: there is a BA with depth ω which is a subdirect product
of BAs having high depth. Depth of Boolean powers is described by our discussion
of free products.

Depth of set products can easily be described using the arguments for prod-
ucts:
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Theorem 4.19. Depth(
∏B

i∈I Ai) = max{DepthB, supi∈I DepthAi}.
Proof. We use the notation introduced in Chapter 1 for set products. Clearly ≥
holds. Now let κ = max{DepthB, supi∈I DepthAi}, and, to get a contradiction,
suppose that 〈h(bα, Fα, aα) : α < κ+〉 is a strictly increasing sequence. Without
loss of generality bα ∩ Fα = 0 and aα

i �= Ji for all α < κ+ and i ∈ I. Then bα ⊆ bβ

for α < β < κ+. Hence there is a Γ ∈ [κ+]κ
+

such that bα = bβ for all α, β ∈ Γ.
Then aα < aβ for α < β, both in Γ, and this easily gives a contradiction.

An easy argument shows that depth for one-point gluing behaves like arbitrary
products (Theorem 4.3), if all algebras have more than two elements. Note that a
one-point gluing of a product of two-element algebras still has just two elements.
For the Aleksandroff duplicate it is clear that the following result holds:

Depth(DupA) = DepthA.

For the exponential we also have DepthExpA = DepthA, by Proposition 2.5,
Theorem 4.3, and the above remarks on free products.

Next we discuss derived functions with respect to depth. The first result is that
DepthH+ is the same as tightness. To prove this, we need an equivalent form of
tightness due to Arhangelskĭı and Shapirovskĭı. It involves the notion of a free
sequence in a topological space. Let X be a topological space. A free sequence in
X is a sequence 〈xξ : ξ < α〉 (α an ordinal) of elements of X such that for all
ξ < α we have {xη : η < ξ} ∩ {xη : ξ ≤ η < α} = 0. For an arbitrary topological
space X and a point x ∈ X, the tightness tx of x in X is, by definition, the least
cardinal κ such that if Y ⊆ X and x ∈ Y , then there is a subset Z ⊆ Y such that
|Z| ≤ κ and x ∈ Z. And the tightness tX of X itself is supx∈X tx. Clearly this
means that tA = t(UltA) for any BA A. The equivalent form of tightness due to
Arhangelskĭı (based on proofs of Shapirovskĭı) is given in the following theorem.

Theorem 4.20. Let X be a compact Hausdorff space. Then tX = sup{|α| : there
is a free sequence in X of order type α}.
Proof. For ≥, suppose that 〈xξ : ξ < κ〉 is a free sequence, where κ is regular; we
shall find a point y ∈ X such that ty ≥ κ. First note:

(1) There is a y ∈ X such that |U ∩ {xξ : ξ < κ}| = κ for each neighborhood U of
y.

In fact, otherwise for every y ∈ X let U(y) be an open neighborhood of y such
that |U(y) ∩ {xξ : ξ < κ}| < κ. Thus {U(y) : y ∈ X} is an open cover of X. Let
U(y0), . . . , U(yn−1) be a finite subcover. Then

{xξ : ξ < κ} =
⋃
i<n

(U(yi) ∩ {xξ : ξ < κ}),

and the right side has cardinality < κ, contradiction. So (1) holds.
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Take y as in (1). Assume that ty < κ. Now y ∈ {xξ : ξ < κ}. Hence by
the definition of tightness, choose a subset Γ of κ of power at < κ such that
y ∈ {xξ : ξ ∈ Γ}. Let η = supΓ + 1. Hence y ∈ {xξ : ξ < η}, so by freeness y /∈
{xξ : η ≤ ξ}. So there is a neighborhood U of y such that U ∩ {xξ : η ≤ ξ} = 0.
This contradicts (1). We have now proved ≥ in the theorem.

Now, for ≤, let κ = tX and suppose that 1 ≤ λ < κ. We shall construct a
free sequence of length λ+. Choose y ∈ X with t(y) > λ; say Y ⊆ X, y ∈ Y , and
for all Z ⊆ Y with |Z| ≤ λ, y /∈ Z. Set

Y ′ = {x : there is a Z ⊆ Y such that |Z| ≤ λ and x ∈ Z}.

Thus Y ⊆ Y ′, so y ∈ Y ′. Note

(2) If Z ⊆ Y ′ and |Z| ≤ λ, then y /∈ Z;
(3) If Z ⊆ Y ′, |Z| ≤ λ, and z ∈ Z, then z ∈ Y ′.

We now construct xξ, Fξ, Uξ for ξ < λ+ such that xξ ∈ Y ′, y ∈ Fξ ⊆ Uξ with
Uξ open and Fξ a closed neighborhood of y, by recursion. Suppose these have
been constructed for all η < ξ, where ξ < λ+. Since y /∈ {xη : η < ξ}, let Uξ be
an open neighborhood of y such that Uξ ∩ {xη : η < ξ} = 0. Let Fξ be a closed
neighborhood of y such that Fξ ⊆ Uξ. Then we claim

(4) Y ′ �⊆ ⋃
η≤ξ(X\Fη) ∪ {xη : η < ξ}.

For, suppose not; then we show that y ∈ {xη : η < ξ} (contradiction). For, let U
be an open neighborhood of y and let F ′ be a closed neighborhood of y which
is included in U . Let W be the closure of the set {Fη : η ≤ ξ} ∪ {F ′} under
finite intersections. Since y ∈ Y ′, for all H ∈ W choose zH ∈ Y ′ ∩ H. Then
H ′ ∩ {zH : H ∈W} �= 0 for all H ′ ∈W . Choose

t ∈
⋂

H∈W

H ∩ {zH : H ∈W}.

By (3), t ∈ Y ′. Now t ∈ Fη for all η ≤ ξ, so by the “suppose not” for (4),
t ∈ {xη : η < ξ}. Since t ∈ F ′ ⊆ U , it follows that U ∩{xη : η < ξ} �= 0, as desired.

So (4) holds; choose xξ in the left side of (4) but not in the right side. This
completes the construction.

Suppose ξ < λ+ and s ∈ {xη : η < ξ} ∩ {xη : ξ ≤ η < λ+}. Then s /∈ Uξ, so
s /∈ Fξ. Thus s ∈ X\Fξ, which is open, so there is an η with ξ ≤ η < λ+ such that
xη ∈ X\Fξ, contradiction.

Note that the proof of Theorem 4.20 shows that if tX is regular and is attained
in the free sequence sense then it is attained in the defined sense, i.e., there is a
point y with tightness tX.

Theorem 4.21. For any infinite BA A we have DepthH+A =tA.
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Proof. For ≥, let 〈Fξ : ξ < α〉 be a free sequence; we produce a quotient
A/I of A having a strictly increasing sequence of order type α. For brevity let
Y = {Fξ : ξ < α}. For every ξ < α there is an element aξ of A such that
{Fη : η < ξ} ⊆ Saξ and Saξ ∩ {Fη : ξ ≤ η < α} = 0. Consider the following ideal
on A: I = {x ∈ A : Y ⊆ S(−x)}. Suppose ξ < η < α. Then S(aξ · −aη) ∩ Y = 0:
if Fν ∈ S(aξ · −aη), then Fν ∈ Saξ, hence ν < ξ, and −aη ∈ Fν , hence η ≤ ν,
so η < ξ, contradiction. This shows that [aξ] ≤ [aη] for ξ < η < α. Still suppose
that ξ < η < α. Then Fξ ∈ Saη\Saξ = S(aη · −aξ). Thus Y �⊆ S(−aη + aξ), so
aη · −aξ /∈ I, which means that [aη] < [aξ], as desired.

For ≤, let I be an ideal in A, and let 〈[aξ] : ξ < α〉 be a strictly increasing
sequence in A/I. For each ξ < α, the set {x : −x ∈ I}∪ {aξ+1,−aξ} has the finite
intersection property, since aξ+1 · −aξ /∈ I. Let Fξ be an ultrafilter including this
set. Then, we claim, 〈Fξ : ξ < α〉 is a free sequence. To prove this it suffices to
show that for any ξ < α we have

(1) {Fη : η < ξ} ⊆ Saξ and Saξ ∩ {Fη : ξ ≤ η < α} = 0.

If η < ξ < α, then aη+1 ·−aξ ∈ I, and hence −aη+1 +aξ ∈ Fη; but also aη+1 ∈ Fη,
so aξ ∈ Fη and so Fη ∈ Saξ, proving the first part of (1). For the second part,
suppose that ξ ≤ η < α and Fη ∈ Saξ. Now aξ · −aη ∈ I, so −aξ + aη ∈ Fη; but
also −aη ∈ Fη, so −aξ ∈ Fη, contradiction.

Corollary 4.22. DepthH+ and t (for free sequences) have the same attainment
properties, i.e., for any BA A and any infinite cardinal κ, A has a homomorphic
image with a chain of order type κ iff UltA has a free sequence of type κ.

Note that, as in the relation between spread and cellularity, DepthH+ involves two
sups, while t for free sequences involves only one; we return to this below.

Since DepthA ≤ cA, it is clear that DepthH−A = ω. It is also easy to see that
DepthS+A = DepthA and DepthS−A = ω. Depthh+ is a little more interesting:

Theorem 4.23. Depthh+A =sA for any infinite BA A.

Proof. For ≥, suppose that Y is a discrete subspace of UltA; clearly Y , since it
is discrete, has an increasing sequence of closed-open sets of order type |Y |. For
≤, suppose that Y is a subspace of UltA and 〈Uα : α < κ〉 is a strictly increasing
system of closed-open subsets of Y . For each α < κ choose yα ∈ Uα+1\Uα. Clearly
{yα : α < κ} is a discrete subspace of UltA.

The proof shows that Depthh+A and sA have the same attainment properties.
Since Depthh−A ≤ DepthH−A, we have Depthh−A = ω for any infinite BA

A. Obviously dDepthS+A = DepthA for any BA A.
The status of the derived function dDepthS− is not clear. Note that for A

the interval algebra on a cardinal κ we have dDepthS−A = ω : this follows upon
considering the subalgebra of A generated by {{α} : α a non-limit ordinal < κ}.
Also, Koppelberg and Shelah have independently observed that if A is atomless
and λ-saturated (in the model-theoretic sense), then dDepthS−A ≥ λ. To show
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this, suppose that B is a dense subalgebra of A. By induction choose elements
aα ∈ A and bα ∈ B for α < λ so that α < β implies that aα > aβ > bβ > 0; the
aα’s can be chosen by λ-saturation, and the bα’s by denseness. So the sequence
〈bα : α < λ〉 shows that the depth of B is at least λ.

Depth does not quite fit into the framework for discussing Depthmm. But
there is a closely related idea which has been extensively discussed for the Boolean
algebraPω/fin, and for completeness we define it. A tower in a BA A is a sequence
〈aα : α < κ〉 of elements of A such that aα ≤ aβ < 1 if α < β < κ, and∑

α<κ aα = 1. We define

towA = min{κ : there is a tower in A of length κ}.

Next, clearly [ω, tA) ⊆ DepthHsA, by an argument very similar to that used for the
function c. And, of course, DepthHs ⊆ [ω, tA]. Like for cellularity, there is a problem
whether tA ∈ DepthHsA. This is trivially true if tA is a successor cardinal or a
limit cardinal of cofinality ω by Corollary 4.22 and Theorem 12.2 below. For each
singular cardinal κ with cfκ > ω there is a BA A such that |A| = DepthA = tA
and UltA has no free sequence of length κ, hence by Corollary 4.22 A has no
homomorphic image B such that DepthB = tA and DepthB is attained. Namely,
let 〈μα : α < cfκ〉 be a strictly increasing sequence of infinite cardinals with sup
κ, and let A =

∏w
α<cfκ Intalgμα, and use Theorem 12.1. Nevertheless, we have:

Problem 13. Is tB ∈ DepthHsB for every infinite BA B?

This is problem 5 of Monk [90].
Clearly DepthSs = [ω,DepthA] for any infinite BA A.
Next comes the relation DepthSr. It is easy to see that parts (i)-(iii) and

(v)-(vi) of Theorem 3.32 hold with cellularity replaced by depth. We do not know
if Theorem 3.32 (iv) holds for depth:

Problem 14. Are there an infinite cardinal κ and a BA A such that (κ, (2κ)+) ∈
DepthSrA, while (ω, (2κ)+) /∈ DepthSrA?

This is problem 6 of Monk [90]. Note that if (ω1, ω2) ∈ DepthSrA then also
(ω, ω1) ∈ DepthSrA. In fact, let B be a subalgebra of A with depth ω1. Then
B has a disjoint subset of size ω1, and hence has a subalgebra C isomorphic to the
finite-cofinite algebra on ω1. C has depth ω, as desired. This observation solves
problem 7 of Monk [90].

Problem 15. Characterize the relation DepthSr.

The following theorem seems relevant to these problems:

Theorem 4.24. (GCH) For every infinite cardinal κ there is an interval algebra
A of power κ+ such that every subalgebra of A of power κ+ has depth ≥ κ.

Proof. Let μ be minimum such that ωμ > κ. Let L be the linearly ordered set
μQ under lexicographic order, where Q is the set of all rationals in [0,1). Set
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D = {f ∈μQ : there is an α < μ such that fβ = 0 for all β > α}. It is clear that
|D| ≤ κ and D is dense in L in the sense that if f, g ∈ L and f < g then there is
an h ∈ D such that f < h < g. Let M be a subset of L of size κ+ which includes
D, and let A be the interval algebra on M . Suppose that B is a subalgebra of A
of power κ+. Let N be any subset of B with κ+ elements; we shall first show that
B includes a simply ordered subset of size κ+; here we follow closely the proof of
Theorem 15.22 in Part I of the handbook. For each x ∈ N write

x = [a(1, x), b(1, x)) ∪ . . . ∪ [a(mx, x), b(mx, x)),

where a(1, x), b(1, x), . . . , a(mx, x), b(mx, x) are in M∪{+∞} and a(1, x) < b(1, x)
< · · · < a(mx, x) < b(mx, x). By going from x to −x if necessary, we may assume
that a(1, x) = 0 for all x ∈ N . We may assume that mx does not depend on x, so
we drop the subscript x. Now for each x ∈ N we choose

c(1, x), . . . , c(m,x), d(1, x), . . . , d(m,x) ∈ D

so that a(i, x) < c(i, x) < b(i, x) < d(i, x) < a(i + 1, x) for all i = 1, . . . ,m
(omitting the term a(i + 1, x) for i = m, and also omitting d(i, x) if b(i, x) = ∞.
We may assume that the elements c(i, x) and d(i, x) do not actually depend on x;
so we write simply ci and di. Next, we may assume that for some k, 1 ≤ k ≤ m,
the elements a(k, x), x ∈ N , are pairwise distinct (the argument below is similar if
some elements b(k, x), x ∈ N are pairwise distinct). Note that k > 1. Now define
a homomorphism f of B into the BA of all subsets of L ∩ [dk−1, ck) by setting
fu = u ∩ [dk−1, ck) for all u ∈ B. Now by Theorem 15.18 of the BA handbook,
Part I, there is an isomorphism from the range of f into B. But clearly f takes N
onto a linearly ordered set of power κ+, as desired.

Now by the Erdös-Rado theorem (2λ)+ → (λ+)2λ it follows in an obvious way
that B has depth ≥ κ..

We note the following two obvious facts about DepthHr:

(1) If (κ, λ) ∈ DepthHrA, then κ ≤ λ ≤ |A| and κ ≤ tA.
(2) If κ ∈ [ω, tA) then there is a λ ≤ 2κ such that (κ, λ) ∈ DepthHrA.

Also, the following examples are relevant: if A is the finite-cofinite algebra on κ,
then DepthHrA = {(ω, λ) : ω ≤ λ ≤ κ}; if A is free on κ, then DepthHrA =
{(λ, μ) : ω ≤ λ ≤ μ ≤ κ}. A problem similar to Problem 14 for DepthSr is open
(this is Problem 8 of Monk [90]):

Problem 16. Are there an infinite cardinal κ and a BA A such that (κ, (2κ)+) ∈
DepthHrA, while (ω, (2κ)+) /∈ DepthHrA?

Problem 17. Characterize the relation DepthHr.

Concerning special classes of BAs, first notice that Depth is the same as cellularity
for complete BAs. It is possible to have DepthA < cA for an interval algebra. For
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example, let τ be the order type of the real numbers, let L be an ordered set of
type 0 + (ω + ω∗) · τ , and let A be the interval algebra on L. It is easily seen
that DepthA = ω while cA = 2ω. By Proposition 16.20 in the Handbook, if T is
an infinite tree then Depth(TreealgT ) is equal to max(sup{|C| : C is a chain in
T}, ω).

We finish this chapter by giving two theorems concerning depth in the algebra
Pω/fin. The first theorem is due to Hechler [72].

Theorem 4.25. Under MA, Depth(Pω/fin) = 2ω.

Proof. It clearly suffices to prove the following statement:

(1) If 〈xα : α < γ〉 is a system of infinite subsets of ω such that (a) γ < 2ω,
(b) α < β < γ implies that xα\xβ is finite and xβ\xα is infinite, and (c) ω\xα is
infinite for all α < γ, then there is an infinite subset xγ of ω such that (d) xα\xγ is
finite for each α < γ, (e) xγ\xα is infinite for each α < γ, and (f) ω\xγ is infinite.

To prove (1) we may assume that γ is nonzero, and we take two cases. Case 1. γ is a
successor ordinal β+1. Write ω\xβ = y∪z, where y and z are infinite and disjoint.
Let xγ = xβ ∪ y. Clearly this works. Case 2. γ is a limit ordinal. In this case we
shall apply Theorem 2.15 of Chapter 2 in Kunen [80]. Let A = {xα : α < γ} and
C = {ω}. If F is a finite subset of γ with maximum element δ, then

(
ω\

⋃
α∈F

xα

)
/fin =

∏
α∈F

−(xα/Fin)

= −(xδ/fin)
�= 0,

by the assumption (c) of (1). This means that ω\⋃α∈F xα is infinite, and verifies
the hypothesis of Kunen 2.15. So we apply Kunen 2.15 and get a set d ⊆ ω such
that xα ∩ d is finite for each α < γ, and d itself is infinite. Let xγ = ω\d. We
proceed to check (d)–(f). (d) and (f) are clear. If (e) fails for a certain α < γ, then

xα+1\xα = (xα+1 ∩ d\xα) ∪ (xα+1\d\xα),

and the latter is finite, contradiction.

The second result is of a folklore nature.

Theorem 4.26. There is a model of ZFC in which 2ω > ω1 while Pω/fin has
depth ω1. In fact, we can take M [G], where M satisfies CH and G adds Cohen
reals.

Proof. We use Boolean-valued forcing, as in Jech [78]. Assume that (in M) CH
holds, and κ is a regular uncountable cardinal. Let P = {p : p is a finite function
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with domain contained in κ and range contained in 2}. And let G be M -generic
over P. Let ϕ be the formula

〈Tα : α < ω2〉 is a sequence of subsets of ω,

and ∀α, β ∈ ω2[α < β ⇒ Tα\Tβ is finite and Tβ\Tα is infinite],

and suppose that M [G] |= ϕ; we want to get a contradiction. Choose p ∈ G so
that p � ϕ. From now on we work in M .

Temporarily fix α < ω2 and n ∈ ω. Now p � n ∈ Tα ∨ n /∈ Tα, so ∀q ≤ p∃r ≤
q(r � n ∈ Tα ∨ r � n /∈ Tα). Hence there is a maximal pairwise incompatible set
Aαn ⊆ {q : q ≤ p} such that ∀q ∈ Aαn(q � n ∈ Tα ∨ q � n /∈ Tα).

Now for any α ∈ ω2 let

Cα = dmnp ∪
⋃
n∈ω

⋃
q∈Aαn

dmnq.

Thus Cα is countable. By CH there is an X ∈ [ω2]ω2 such that 〈Cα : α ∈ X〉 is a
Δ-system, say with kernel C. We may also assume that there is a γ < ω1 such that
Cα\C has order type γ for all α ∈ X. For all α, β ∈ X, let jαβ be the permutation
of Cα ∪ Cβ such that jαβ is the identity on C, and is the unique order preserving
map from Cα\C onto Cβ\C and from Cβ\C onto Cα\C. Thus jαα is the identity
on Cα, and jαβ = jβα. Extend each jαβ to a permutation j′αβ of κ by letting j′αβ

be the identity outside of Cα ∪ Cβ . Obviously then

(1) (j′βγ ◦ j′αβ) � Cα = j′αγ � Cα for any α, β, γ ∈ X.

Now j′αβ naturally induces an automorphism j′′αβ of P, given by: dmn(j′′αβp) =
j′αβ [dmnp] and for any α ∈ dmnp, (j′′αβp)(j′αβα) = pα. And of course then j′′αβ

induces an automorphism j′′′αβ of ROP. Finally, j′′′αβ induces a permutation jiv
αβ

of V ROP , defined recursively by setting dmn(jiv
αβx) = {jiv

αβy : y ∈ dmnx} and
(jiv

αβx)(jiv
αβy) = j′′′αβ(xy). A basic property of this process is:

(2) j′′′αβ [[ϕ(x1, . . . , xn)]] = [[ϕ(jiv
αβx1, . . . , j

iv
αβxn)]].

Now for each α ∈ X define Pα = {q ∈ P : dmnq ⊆ Cα and q ≤ p}. Then the
following are easy to prove:

(3) j′′αβ [Pα] =Pβ for any α, β ∈ X.
(4) (j′′βγ �Pβ) ◦ (j′′αβ �Pα) = (j′′αγ �Pα).

We define hα :Pα → ω3 by

(hαq)n =

⎧⎨
⎩

0, if q � n /∈ Tα,
1, if q � n ∈ Tα,
2, otherwise.

Define α ≡ β iff α, β ∈ X and hβ ◦ (j′′αβ � Cα) = hα. It is straightforward to check
that ≡ is an equivalence relation on X. Then:
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(5) There are at most ω1 equivalence classes under ≡.

In fact, suppose that Γ ∈ [X]ω2 consists of pairwise inequivalent ordinals. Fix
α ∈ Γ. Then for any distinct β, γ ∈ Γ we have hβ ◦ (j′′αβ �Pα) �= hγ ◦ (j′′αγ �Pα),
since otherwise

hβ ◦(j′′βγ �Pγ) = hβ ◦(j′′αβ �Pα)◦(j′′αγ �Pγ) = hγ ◦(j′′αγ �Pα)◦(j′′αγ �Pγ) = hγ ,

contradiction. But this gives ℵ2 members of Pα(ω3), which by CH has cardinality
ℵ1, contradiction. Thus (5) holds.

By (5), let X ′ be an equivalence class with ℵ2 elements. Fix α, β ∈ X ′ with
α < β. Now p � (Tβ\Tαis infinite), so by (2), since dmnp ⊆ C,

(6) p � ((jiv
αβT )β\(jiv

αβT )α is infinite).

Next we claim:

(7) p � ∀n ∈ ω(n /∈ Tα → n /∈ (jiv
αβT )β).

To prove this, suppose that q ≤ p and q � n /∈ Tα; we want to show that q �
n /∈ (jiv

αβT )β . Suppose that this is not true. Then there is an r ≤ q such that
r � n ∈ (jiv

αβT )β . Since r ≤ q, we also have r � n /∈ Tα, so there is a t ∈ Aαn such
that r and t are compatible. Thus t ∈ Pα and (hαt)n = 0. Let s = j′′αβt. Since
α ≡ β, we have hβs = hβj′′αβt = hαt. Hence (hβs)n = 0, so s � n /∈ Tβ . Hence by
(2), t � n /∈ (jiv

αβT )β . Since r and t are compatible and r � n ∈ (jiv
αβT )β , this is a

contradiction. So, (7) holds.
Similarly:

(8) p � ∀n ∈ ω(n ∈ Tβ → n ∈ (jiv
αβT )α.

Next, since p � (Tα\Tβ is finite), choose m ∈ ω and q ≤ p so that

(9) q � ∀n ≥ m(n ∈ Tα → n ∈ Tβ).

By (6), q � ∃n ≥ m(n ∈ (jiv
αβT )β ∧ n /∈ (jiv

αβT )α), so choose n ≥ m and r ≤ q so
that r � n ∈ (jiv

αβT )β ∧ n /∈ (jiv
αβT )α). By (7), r � n ∈ Tα, so by (9), r � n ∈ Tβ.

Then by (8), r � n ∈ (jiv
αβT )α, contradiction.
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We begin with some equivalents of this notion. A set X of non-zero elements of a
BA A is said to be centered provided that it satisfies the finite intersection property.
And A is called κ-centered if A\{0} is the union of κ centered sets.

Theorem 5.1. For any infinite BA A, dA is equal to each of the following cardi-
nals:

min{κ : A is isomorphic to a subalgebra of Pκ};
min{κ : A is κ-centered};
min{κ : A\{0} is a union of κ proper filters};
min{κ : A\{0} is a union of κ ultrafilters}.

Proof. Call the five cardinals mentioned κ0, . . . κ4 respectively, starting with dA
itself. κ0 ≤ κ1: Let g be an isomorphism of A into Pκ. For each α < κ let
Fα = {a ∈ A : α ∈ ga}. Then, as is easily checked, Fα is an ultrafilter on A. Let
Y = {Fα : α < κ}. We claim that Y is dense in UltA. For, let U be a non-empty
open set in UltA. We may assume that U = Sa for some a ∈ A. Thus a �= 0, so
choose α ∈ ga. Then a ∈ Fα, and so Fα ∈ Y ∩ U , as desired.

κ1 ≤ κ2: Suppose that A\{0} =
⋃

α<λ Xα, where each Xα is centered. Extend
each Xα to an ultrafilter Fα. For each a ∈ A let fa = {α < λ : a ∈ Fα}. Clearly f
is an isomorphism of A into Pλ, as desired.

Obviously κ2 ≤ κ3 ≤ κ4.
κ4 ≤ κ0: Let X be a dense subset of UltA. Then obviously A\{0} =

⋃
F∈X F ,

as desired.

We begin the discussion of algebraic operations for d. If A is a subalgebra of B,
then dA ≤ dB, and the difference can be arbitrarily large. If A is a homomorphic
image of B, then d can change either direction in going from B to A. Thus if B is is
a large free BA and A is a countable homomorphic image of B, then d goes down.
On the other hand, if B = Pω, and A = Pω/fin, then dB = ω while dA = 2ω,
since in A there is a disjoint set of size 2ω. Next, d(A × B) = max(dA,dB) for
infinite BAs A,B. To see this, note that ≥ is clear, since A and B are isomorphic
to subalgebras of A × B. For the other inequality, suppose that f (resp. g) is an
isomorphism of A (resp. B) into Pκ (resp. Pλ). Let

X = {(0, α) : α < κ} ∪ {(1, α) : α < λ}.

We define h mapping A×B into PX by setting

h(a, b) = {(0, α) : α ∈ fa} ∪ {(1, α) : α ∈ gb}

for all (a, b) ∈ A× B. It is easily verified that h is an isomorphism of A×B into
PX, and this proves ≤. A similar idea works for products and weak products in
general:
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Theorem 5.2. If 〈Ai : i ∈ I〉 is a system of non-trivial BAs, then

d

(∏
i∈I

Ai

)
= d

(∏
i∈I

w
Ai

)
=

∑
i∈I

dAi.

Proof. First we work with the full product, showing that
∑

i∈I dAi = d(
∏

i∈I Ai).
Clearly dAi ≤ d(

∏
i∈I Ai) for each i ∈ I. Since

∏
i∈I Ai has a system of |I| disjoint

elements, we also have |I| ≤ d
(∏

i∈I Ai

)
. This verifies ≤. The direction ≥ is proved

as in the case of two factors, using the “disjoint union” of all of the algebras. And
the argument for weak products is the same.

Concerning ultraproducts, we do not know the full story. The following is fairly
clear, though. Let 〈Ai : i ∈ I〉 be a system of infinite BAs, and F an ultrafilter
on I. Then d(

∏
i∈I Ai/F ) ≤ |∏i∈I dAi/F |. To see this, let fi be an isomorphism

of Ai into P(dAi) for each i ∈ I. Then the desired isomorphism g of
∏

i∈I Ai/F
into P(

∏
i∈I dAi/F ) is given as follows: for any x ∈∏

i∈I Ai,

g(x/F ) = {y/F : y ∈
∏
i∈I

dAi and {i ∈ I : yi ∈ fixi} ∈ F}.

(This is easily verified.)
Ros	lanowski, Shelah [94] constructed a system of BAs in ZFC such that

d
(∏

i∈I Bi/F
)

<
∣∣∏

i∈I dBi/F
∣∣; this is a positive solution of Problem 9 of Monk

[90].

Now we give some results of Douglas Peterson. We need the following simple fact
about essential suprema:

(*) If F is any ultrafilter on a set I and 〈Ai : i ∈ I〉 is a system of sets, then∣∣∏
i∈I Ai/F

∣∣ ≤ (ess.sup F
i∈I |Ai|)|I|.

To prove this, say ess.sup F
i∈I |Ai| = sup{|Ai| : i ∈ a} with a ∈ F . Then∣∣∣∣∣

∏
i∈I

Ai/F

∣∣∣∣∣ =

∣∣∣∣∣
∏
i∈a

|Ai|/F
∣∣∣∣∣ ≤

∣∣∣∣∣
∏
i∈a

|Ai|
∣∣∣∣∣ ≤ (sup

i∈I
|Ai|)|a| ≤ (sup

i∈a
|Ai|)|I|.

Theorem 5.3. Suppose that k is a cardinal function on BAs such that kA ≤ |A| ≤
2kA for every infinite BA A. Suppose that 〈Ai : i ∈ I〉 is a system of infinite BAs
and F is an ultrafilter on I. Set λ = ess.sup F

i∈IkAi. Then k
(∏

i∈I Ai/F
)
≤ 2λ·|I|.

Proof. We have

k

(∏
i∈I

|Ai/F

)
≤

∣∣∣∣∣
∏
i∈I

Ai/F

∣∣∣∣∣
≤ (ess.sup F

i∈I |Ai|)|I|

≤ (ess.sup F
i∈I(2

kAi))|I|

≤ (2λ)|I|.
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The last inequality holds since if λ = supi∈a kAi with a ∈ F , then 2kAi ≤
2supi∈a kAi for each i ∈ a, and hence

ess.sup F
i∈I(2

kAi) ≤ sup
i∈a

(2kAi) ≤ 2supi∈a kAi .

Corollary 5.4. If F is a regular ultrafilter on an infinite set I and ess.sup F
i∈IdAi ≤

|I|, then d
(∏

i∈I Ai/F
)

= 2|I|.

Proof. Using Theorems 3.17 and 5.3 we have

2|I| =
(
ess.sup F

i∈IcA
)|I|

=

∣∣∣∣∣
∏
i∈I

cAi/F

∣∣∣∣∣ ≤ c

(∏
i∈I

Ai/F

)
≤ d

(∏
i∈I

Ai/F

)
≤ 2|I|.

Clearly d(A ⊕ B) = max(dA,dB): if f is an isomorphism of A into Pκ and g is
an isomorphism of B into Pλ, then the following function clearly extends to an
isomorphism of A⊕B into P(κ×λ): for a ∈ A and b ∈ B, ha = fa×λ and hb =
κ×gb. For free products of several algebras there is a much more general topological
result. To prove it, we need the following lemma.

Lemma 5.5. Let κ be an infinite cardinal. Then the product space
κ2κ has density

≤ κ (where κ has the discrete topology).

Proof. Let D = {f ∈ κ2κ :there is a finite subset M of κ such that for all x, y ∈ κ2,
if x � M = y � M , then fx = fy}. We show that |D| ≤ κ. First,

D =
⋃

M∈[κ]<ω

{f ∈ κ2κ : for all x, y ∈ κ2( if x � M = y � M, then fx = fy}.

So, it suffices to take any finite M ⊆ κ and show that N
def= {f ∈ κ2κ : for all

x, y ∈ κ2, if x � M = y � M then fx = fy} has power at most κ. For any f ∈ N ,
let f ′ ∈ M2κ be defined as follows: for any x ∈ M2, choose any y ∈ κ2 such that
x ⊆ y and let f ′x = fy. Clearly the assignment f �→ f ′ is one-one. So |N | ≤ κ, as
desired.

To show that D is dense in
κ2κ, let U be an open set in

κ2κ. We may assume
that U has a very special form, namely that there is a finite subset F of κ2 and a
function g mapping F into κ such that

U = {f ∈ κ2κ : g ⊆ f}.

Now let G be a finite subset of κ such that f � G �= h � G for distinct f, h ∈ F .
Define k ∈ κ2κ in the following way: for any x ∈ κ2, set kx = gf if x � G = f � G
for some f ∈ F , otherwise let kx be 0. Clearly k ∈ D ∩ U , as desired.
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Theorem 5.6. Let 〈Xi : i ∈ I〉 be a system of topological spaces each having at
least two disjoint non-empty open sets. Then d(

∏
i∈I Xi) = max(λ, supi∈IdXi),

where λ is the least cardinal such that |I| ≤ 2λ.

Proof. Clearly dXi ≤ d(
∏

i∈I Xi) for each i ∈ I. Suppose that D is dense in∏
i∈I Xi but 2|D| < |I|. Let U0

i and U1
i disjoint non-empty open sets in Xi for all

i ∈ I. For each i ∈ I let

Vi = {x ∈
∏
i∈I

Xi : xi ∈ U0
i }.

Then our supposition implies that there are distinct i, j ∈ I such that Vi ∩D =
Vj ∩D. Let W = {x : xi ∈ U0

i and xj ∈ U1
j }. Choose x ∈W ∩D. Then x ∈ Vi but

x /∈ Vj , contradiction.
Up to this point we have proved the inequality ≥. Now for each i ∈ I, let

Di be dense in Xi with |Di| = dXi. Set κ = max(λ, supi∈I |Di|). Then for each
i ∈ I there is a function fi mapping κ onto Di. Since |I| ≤ 2λ, we then get a
continuous function from

κ2κ onto
∏

i∈I Di. Namely, let g be a one-one function
from I into κ2. For each x ∈ κ2κ and each i ∈ I let (hx)i = fixgi. Then h is the
desired continuous function. To see that h is continuous, let U be basic open in∏

i∈I Di. Then there is a finite F ⊆ I such that pri[U ] is open in Di for all i ∈ F

and pri[U ] = Di for all i ∈ I\F . Let L = {l ∈ g[F ]κ : ∀i ∈ F (filgi ∈ priU)}. For

each l ∈ L the set Wl
def= {k ∈ κ2κ : l ⊆ k} is open in

κ2κ, and h−1[U ] =
⋃

l∈L Wl.
So h is continuous. Clearly h is maps onto

∏
i∈I Di.

Now Lemma 5.5 yields the desired result.

The second part of the following corollary was observed by Sabine Koppelberg.

Corollary 5.7. Let A be a free BA on κ free generators. Then dA is the smallest
cardinal λ such that κ ≤ 2λ. More generally, if B is an infinite subalgebra of A,
then dB is the least cardinal μ such that |B| ≤ 2μ.

Proof. For each infinite cardinal ν let log2ν be the least cardinal μ such that
ν ≤ 2μ. For A itself the corollary is true directly by Theorem 5.6. Now let B
be an infinite subalgebra of A. Note that B is a subalgebra of a subalgebra of A
generated by |B| free generators, and so dB ≤ log2|B|. If |B| = ω, the desired
conclusion is obvious. If ω < |B| and |B| is regular, the conclusion follows from
Theorem 9.16 of the BA handbook. Finally, suppose that |B| is a singular cardinal.
Then for each regular ν < |B| we have log2ν ≤ dB by Theorem 9.16. Since clearly
log2|B| = supν<|B| log2ν, this case now follows too.

Next we treat the topological density of the union of a well-ordered chain.

Proposition 5.8. Let 〈Bα : α < κ〉 be a strictly increasing sequence of BAs with
union A. Then:

(i) supα<κ dBα ≤ dA ≤∑
α<κ dBα ≤ κ · supα<κ dBα ≤ (2supα<κ dBα)+.

(ii) κ ≤ |A| ≤ 2dA.
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Proof. Clearly supα<κ dBα ≤ dA. Now for each α < κ let Xα be a set of ultrafilters
on A such that |Xα| = dBα and {F ∩Bα : F ∈ Xα} is dense in UltBα. So

dA ≤
∣∣∣∣∣
⋃

α<κ

Xα

∣∣∣∣∣ ≤
∑
α<κ

dBα ≤ κ · sup
α<κ

dBα.

Since |Bβ | ≤ 2dBβ ≤ 2supα<κ dBα for each β < κ, we must have κ ≤ (2supα<κ dBα)+,
since otherwise (2supα<κ dBα)+ ≤ |Bβ| ≤ 2supα<κ dBα with β = (2supα<κ dBα)+,
contradiction. Since 〈Bα : α < κ〉 is strictly increasing, clearly κ ≤ |A|. Obviously
|A| ≤ 2dA.

Corollary 5.9. Let 〈Bα : α < κ〉 be a strictly increasing sequence of BAs with
union A. Suppose that supα<κ dBα < dA. Then dA ≤ κ.

A connection between cellularity and topological density is given in Shelah [80];
we can use it to get another result about unions. Shelah’s result is as follows: If
λ = λ<κ, B satisfies the κ-cc, |B| = λ+, and κ is regular and uncountable, then
dB ≤ λ.

Corollary 5.10. Let 〈Bα : α < κ〉 be a strictly increasing sequence of BAs whose
union is A.

Suppose that dBα ≤ μ for all α < κ, νμ = ν, κ = ν+, and 2μ = μ+. Then A
satisfies the μ+-cc, |A| = ν+, and dA ≤ ν.

In particular, if dBα = ω for all α < ω2 and CH holds, then A is ccc,
|A| = ω2, and dA ≤ ω1.

Proof. Let α < κ. Since 2μ = μ+ and dBα ≤ μ we have |Bα| ≤ μ+. Also,
since νμ = ν we have μ+ ≤ ν. Now ν<μ+

= νμ = ν, so by Shelah’s theorem,
dA ≤ ν.

Also note the following example. Assume GCH, and let B be a free BA on free
generators {xα : α < ω2}, and for each α < ω2 let Aα be the subalgebra of B
generated by {xξ : ξ < α}. Then dB = ω1, while dAα = ω for all α < ω2.

We turn to derived operations for topological density. We shall show that dH+ =
hd, but to do this we need two results about tightness and spread which are
corollaries of Theorems 4.20 and 3.25.

Theorem 5.11. (Shapirovskĭı) tA ≤ sA for any infinite BA A.

Proof. By Theorem 4.20 it suffices to note that if 〈Fξ : ξ < α〉 is a free sequence,
then 〈Fξ : ξ < α〉 is one-one and {Fξ : ξ < α} is discrete. Let ξ < α. There exist
clopen sets Sa,Sb such that {Fη : η < ξ} ∩ Sa = 0, {Fη : ξ ≤ η < α} ⊆ Sa,
{Fη : η < ξ + 1 < α} ⊆ Sb, and {Fη : ξ + 1 ≤ η < α} ∩ Sb = 0. Clearly then
S(a · b) ∩ {Fη : η < α} = {Fξ}, as desired.

Theorem 5.12. sA ≤ dH+A for any infinite BA A.
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Proof. Obviously cB ≤ dB for any infinite BA B. Hence by Theorem 3.25, sA =
cH+A ≤ dH+A.

Theorem 5.13. dH+A = dh+A = hdA for any infinite BA A.

Proof. dh+A = hdA by definition, and dH+A ≤ dh+A since homomorphic images
correspond to closed sets in UltA. So it remains to show that hdA ≤ dH+A. Let
κ = dH+A, and suppose that κ < hdA. Choose Y ⊆ UltA such that κ < dY . Let
Z be a dense subset of Y of size ≤ κ. For each z ∈ Z we have z ∈ Y , and so z ∈Wz

for some Wz ∈ [Y ]≤κ by Theorems 5.11 and 5.12. We claim now that
⋃

z∈Z Wz is
dense in Y ; since

∣∣⋃
z∈Z Wz

∣∣ ≤ κ, this will be a contradiction. Let U be an open
set in UltA such that U ∩ Y �= 0. Then U ∩ Y �= 0, so choose z ∈ U ∩ Z. Since
z ∈Wz, we get U ∩Wz �= 0, as desired.

Notice that attainment in the dH+ sense obviously implies attainment in the hd
sense.

We have dH−A = dh−A = ω for infinite A, since by Sikorski’s extension theorem
there is a homomorphism of A onto an infinite subalgebra ofPω. Clearly dS+A =
dA, dS−A = ω, and ddS+A = dA for any infinite BA A. Furthermore, ddS−A = dA:
if B is a dense subalgebra of A and f is an isomorphism of B intoPκ, then f can
be extended to an isomorphism of A into Pκ, as desired.

Concerning the spectrum function dHs we mention the following problem,
Problem 10 in Monk [90].

Problem 18. Is it true that [ω,hdA) ⊆ dHsA for every infinite BA A?

Problem 19. Completely describe dHs.

Concerning dSs we have the following theorem and example, due to S. Koppelberg,
solving Problem 11 in Monk [90].

Theorem 5.14. (GCH) dSsA = [ω,dA] for every infinite BA A.

Proof. Suppose that ω ≤ κ < dA; we want to find a subalgebra B of A such
that dB = κ. If κ is a limit cardinal, then any subset of A of size κ will do, by
GCH. So we may assume that κ is a successor cardinal, and hence is regular. If A
has a disjoint subset of size κ, then the subalgebra generated by such a subset is
isomorphic to Fincoκ, which has topological density κ. So we may assume that A
satisfies the κ-cc. Now μ<κ < κ+ for every μ < κ+ by GCH. Hence by Theorem
10.1 of the BA Handbook, Part I, A has a free subalgebra B of size κ+. By GCH,
dB = κ, as desired.

The equality in Theorem 5.14 cannot be proved in ZFC. Namely, if for example
2ω = 2ω1 = ω2 and 2ω2 = ω4, then for A the free BA on ω4 free generators we
have dSsA = {ω, ω2} by Corollary 5.7.

From Theorem 5.1 the inequality cA ≤ dA for every infinite BA A is obvious. The
difference between cA and dA can be arbitrarily large, for example in free BAs.
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The equivalent definition of d using the notion of κ-centered set gives rise to
bounded notions of d (see the introduction). A subset X of a BA A is said to
have the n-intersection property (n a positive integer) if the product of at most n
elements of X is always nonzero. And the ω-intersection property is the f.i.p. We
set

dnA = sup{|X| : X ⊆ A satisfies the n-intersection property}.
These notions were used in Ros	lanowski, Shelah [94] to give the example mentioned
above concerning ultraproducts. The following proposition summarizes some easy
facts.

Proposition 5.15. (i) If 1 ≤ n < m and X has the m-intersection property, then
X has the n-intersection property.

(ii) X has the finite intersection property iff it has the m-intersection property
for every positive integer m.

(iii) If for each positive integer n the set Xn has the n-intersection property,
then

⋂
1≤n<ω Xn has the f.i.p.

(iv) If n < m, then dnB ≤ dmB.
(v) dnB ≤ dB.
(vi) dB ≤∏

1≤n<ω dnB.

Proof. Everything is trivial except (vi). To prove it, for each positive integer n
write B\{0} =

⋃
i<dnB Xn

i , where each Xn
i has the n-intersection property. For

each f ∈∏
1≤n<ω dnB define

Yf =
⋂

1≤n<ω

Xn
fn.

Then by (iii), each set Yf has the f.i.p. Clearly B =
⋃

f∈
∏

1≤n<ω
dnB Yf , so (v)

follows.

Turning to topological density for special classes of BAs, note first that if A is
atomic, then dA is the number of atoms of A. Hence if A is the finite-cofinite
algebra on κ, then dSrA = {(λ, λ) : ω ≤ λ ≤ κ} = dHrA. For interval algebras, we
have one interesting inequality not true for BAs in general. It is actually true for
linearly ordered spaces in general, and we give that general form, due to Kurepa
[35]. This result has evidently been rediscovered by many people independently;
see, e.g., Juhász [71].

Theorem 5.16. If L is an infinite linearly ordered space, then dL ≤ (cL)+.

Proof. Assume the contrary. Set κ = (cL)+. Let ≺ be a well-ordering of L. Now
we set

N = {p ∈ L : p is the ≺ -least element of some neighborhood of p}.

Clearly N is dense in L. Hence |N | > κ. Now for each p ∈ N let Ip be the union
of all open intervals having p as their ≺-first element. Then, we claim,
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(1) If p, p′ ∈ N and p ≺ p′, then Ip ∩ Ip′ = 0 or Ip′ ⊂ Ip.

In fact, suppose p ≺ p′ and Ip ∩ Ip′ �= 0. This means that there exist an open
interval U with ≺-first element p and an open interval U ′ with ≺-first element p′

such that U ∩ U ′ �= 0; hence U ∪ U ′ is an open interval with both p and p′ as
members, and with p as ≺-first member. So, if V is any open interval with ≺-first
element p′, then V ∪ U ∪ U ′ is an open interval with ≺-first element p, and hence
V ⊆ Ip. This shows that Ip′ ⊆ Ip. Since p ∈ Ip\Ip′ , (1) then follows.

Next, set

N0 = {p ∈ N : Ip is not contained in any other Ip′}.

Now Ip ∩ Ip′ = 0 for all distinct p, p′ ∈ N0, so |N0| < κ. We continue inductively
for all ξ < κ:

Hξ = N\
⋃
η<ξ

Nη;

Nξ = {p ∈ Hξ : Ip is not contained in any other Ip′ for p′ ∈ Hξ}.

Note inductively that |Nξ| < κ, and hence always Hξ �= 0. Hence |⋃ξ<κ Nξ| ≤ κ,
so there is a p ∈ N\⋃ξ<κ Nξ. Thus p ∈ Hξ for all ξ < κ. But then for each ξ < κ
there is a p(ξ) ∈ Nξ such that Ip ⊂ Ip(ξ). In fact, there is a q ∈ Hξ such that
Ip ⊂ Iq. Taking the smallest such q under ≺, we get the desired p(ξ). Hence for all
ξ, η < κ we have Ip(ξ) ⊂ Ip(η) or Ip(η) ⊂ Ip(ξ). By the partition relation κ→ (κ, ω)2

we may assume that p(ξ) ≺ p(η) whenever ξ < η < κ, and hence the sequence
〈Ip(ξ) : ξ < κ〉 is strictly decreasing. For each ξ < κ choose xξ ∈ Ip(ξ)\Ip(ξ+1). Let

Kl = {xξ : xξ < p(ξ + 1)}, Kr = {xξ : xξ > p(ξ + 1)}.

Now if ξ < η and xη, xξ ∈ Kl, then xξ < xη: otherwise, note that xξ is less than all
members of Ip(ξ+1); so xη ≤ xξ < p(η + 1) and xη, p(η + 1) ∈ Ip(η), so xξ ∈ Ip(η),
contradiction. Similarly, if ξ < η and xη, xξ ∈ Kr, then xξ > xη. But this means
that there are κ disjoint open intervals, contradiction.

The interval algebra of a Suslin line gives an example of an interval algebra A in
which cA < dA; on the other hand, Martin’s axiom implies that for an interval
algebra, cA = ω ⇒ dA = ω (see any set theory book). In general, the existence of
an interval algebra A such that cA < dA is connected with the generalized Suslin
problem.

Since interval algebras are retractive, it follows that if B is a homomorphic
image of an interval algebra A, then dB ≤ dA. Hence dA = hdA for every interval
algebra A.

For a minimally generated BA A we also have dA ≤ (cA)+. In fact, by
Corollary 2.36 A is co-absolute with an interval algebra B. Hence

dA = dA = dB = dB ≤ (cB)+ = (cA)+.
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An example of a complete BA A for which cA < dA can be obtained by taking A
to be the completion of a large free BA.

Theorem 5.17. For an infinite tree T we have π(Treealg T ) = d(TreealgT ) = |T |.
Proof. Let A = Treealg T . Clearly πB ≤ dB for any BA B. Suppose that πA <
|T |. Since clearly cA ≤ πA, each level of T has at most πA elements. Hence T has
|T | levels. It also has height |T |, since an element of level |T | would give a chain
of order type |T | and hence |T | disjoint elements. If |T | is singular, by considering
chains in T we easily get cA = |T |, contradiction. Suppose that |T | is regular. Let
D be a dense subset of A of cardinality πA. We may assume that each element
d ∈ D has the form (T ↑ td)\

⋃
s∈Sd

(T ↑ s). Let u be an element of T at a level
greater than the levels of all elements td for d ∈ D. Clearly no element of D is ≤
T ↑ u, contradiction.



6. π-weight

If A is a subalgebra of B, then πA can vary either way from πB; for clearly one can
have πA < πB, and if we take B =Pω and A the subalgebra of B generated by an
independent subset of size 2ω, then we have πB = ω and πA = 2ω. Similarly, if A is
a homomorphic image of B: it is easy to get such A and B with πA < πB, and if we
take B =Pω and A = B/Fin, then πB = ω while πA = 2ω since A has a disjoint
subset of size 2ω. Turning to products, we have π(

∏
i∈I Ai) = max(|I|, supi∈IπAi)

for any system 〈Ai : i ∈ I〉 of infinite BAs. For, ≥ is clear; now suppose Di is a
dense subset of Ai for each i ∈ I. Let

E =

{
f ∈

∏
i∈I

(Di ∪ {0}) : fi �= 0 for only finitely many i ∈ I

}
.

Clearly E is dense in
∏

i∈I Ai, and |E| = max(|I|, supi∈IπAi), as desired. The
equation π(

∏w
i∈I Ai) = max(|I|, supi∈IπAi) is proved by the same argument.

Turning to ultraproducts, it is clear that π(
∏

i∈I Ai/F ) ≤ |∏i∈I πAi/F |.
In Koppelberg, Shelah [93] there is a forcing construction in which < holds; this
answers Problem 12 of Monk [90]. Several results about ultraproducts and π hold
more generally for the sup-min functions defined in the introduction. These results
are due to Douglas Peterson.

Theorem 6.1. Let k be a sup-min function, 〈Ai : i ∈ I〉 a sequence of infinite
BAs with I infinite, and F a regular ultrafilter on I. Suppose that kAi ≥ ω for all
i ∈ I, λ = ess.sup F

i∈IkAi, and cfλ ≤ |I| < λ. Then k
(∏

i∈I Ai/F
)
≥ λ+.

Proof. For brevity let B =
∏

i∈I Ai/F . Case 1. {i ∈ I : kAi = λ} ∈ F . Then
we may assume that kAi = λ for all i ∈ I. Now by Lemma 3.12 let 〈κi : i ∈ I〉
be a system of cardinals such that κi < λ for all i ∈ I and ess.sup F

i∈Iκi = λ.
Now fix i ∈ I. Since kAi = λ, we can find Gi ⊆ Ai such that (Ai, Gi) |= ψ and
min{|P | : (Ai, Gi, P ) |= ϕ} > κi. Let H =

∏
i∈I Gi/F . Thus (B,H) |= ψ. We claim

that min{|P | : (B,H,P ) |= ϕ} ≥ λ+; this will prove the theorem. To prove the
claim, suppose that P = {fα : α < λ} ⊆ B and (B,H,P ) |= ∀x ∈ P(x �= 0 ∧ ϕ′);
we shall show

(*) (B,H,P ) |= ¬∀x0 . . . xn−1 ∈ F∃y ∈ Pϕ′′.

We may assume that fαi �= 0 for all α < λ and i ∈ I. Now for any α < λ we
have (B,H) |= ϕ′[fα/F ], and hence {i ∈ I : (Ai, Gi) |= ϕ′[fαi]} ∈ F . Hence we
can assume that (Ai, Gi) |= ϕ′[fαi] for all α < λ and i ∈ I. (If (Ai, Gi) �|= ϕ′[fαi],
replace fαi by a nonzero element ai such that (Ai, Gi) |= ϕ′[ai]; ai exists by (3) of
the definition of sup-min function.) Now fix i ∈ I again. Then

(Ai, Gi, {fαi : α < κi}) |= ∀x ∈ P(x �= 0 ∧ ϕ′),

so, since (Ai, Gi, {fαi : α < κi}) �|= ϕ, we can choose ai
0, . . . , a

i
n−1 ∈ Gi such

that (Ai, Gi) |= ¬ϕ′′[ai
0, . . . , a

i
n−1, fαi] for all α < κi. Now for any α < λ we have
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{i ∈ I : α < κi} ∈ F , and hence (B,H) |= ¬ϕ′′[a0/F, . . . , an−1/F, fα/F ], and this
proves (*).

Case 2. {i ∈ I : kAi < λ} ∈ F . We may assume that ω < kAi < λ for all
i ∈ I. Then we can apply Lemma 3.13 to get a system 〈κi : i ∈ I〉 of infinite
cardinals such that κi < kAi for all i ∈ I, and ess.sup F

i∈Iκi = λ. Now we can
proceed as in Case 1.

Theorem 6.2. Suppose that k is a sup-min function, 〈Ai : i ∈ I〉 is a system
of infinite BAs, with I infinite, and F is an ultrafilter on I. Then k

(∏
i∈I Ai

)
≥

ess.sup F
i∈IkAi.

Proof. Let λ = ess.sup F
i∈IkAi and B =

∏
i∈I Ai/F . Take any κ < λ. Then the

set K
def= {i ∈ I : kAi > κ} ∈ F . For each i ∈ K choose Gi ⊆ Ai such that

(Ai, Gi) |= ψ and min{|P | : (Ai, Gi, P ) |= ϕ} > κ. For i ∈ I\K let Gi = Ai.
Set H =

∏
i∈I Gi/F . Then (B,H) |= ψ. We claim that min{|P | : (B,H,P ) |=

ϕ} > κ; this will prove the theorem. Suppose that P = {fα/F : α < κ} ⊆ B and
(B,H,P ) |= ∀x ∈ P(x �= 0 ∧ ϕ′). As in the proof of Theorem 6.1 we can assume
that (Ai, Gi) |= ϕ′[fαi] and fαi �= 0 for all α < λ and i ∈ I. Fix i ∈ K. Then

(Ai, Gi, {fαi : α < κ}) |= ∀x ∈ P (x �= 0 ∧ ϕ′),

so, since (Ai, Gi, {fαi : α < κ}) �|= ϕ, we can choose ai
0, . . . , a

i
n−1 ∈ Gi such that

(Ai, Gi) |= ¬ϕ′′[ai
0, . . . , a

i
n−1, fαi] for all α < κ. Then it follows that (B,H) |=

¬ϕ′′[a0/F, . . . , an−1/F, fα/F ], as desired.

Theorem 6.3. Suppose that k is a sup-min function such that for every infinite
BA A there is a G ⊆ A such that (A,G) |= ψ and min{|P | : (A,G,P ) |= ϕ} ≥ ω.
Assume that 〈Ai : i ∈ I〉 is a system of infinite BAs, with I infinite, and F is a
regular ultrafilter on I. Then k

(∏
i∈I Ai/F

)
≥ |I|+.

Proof. Let B =
∏

i∈I Ai/F . For each i ∈ I choose Gi ⊆ Fi such that (Ai, Gi) |= ψ
and min{|P | : (Ai, Gi, P ) |= ϕ} ≥ ω. Let H =

∏
i∈I Gi/F . Thus (B,H) |= ψ. We

want to show that min{|P | : (B,H,P ) |= ϕ} ≥ |I|+; this will prove the theorem.
To this end, suppose that P = {fα/F : α < |I|} ⊆ B and (B,H,P ) |= ∀x ∈
P (x �= 0 ∧ ϕ′). As in the proof of Theorem 6.1 we may assume that (Ai, Gi) |=
ϕ′[fαi] and fαi �= 0 for all α < |I| and i ∈ I. Let {aα : α < |I|} be a regular
family for F . Now fix i ∈ I. Then the set Ki

def= {α < |I| : i ∈ aα} is finite.
Since min{|Q| : (Ai, Gi, Q) |= ϕ} ≥ ω and Pi

def= {fαi : α ∈ Ki} is finite, it
folows that (Ai, Gi, Pi) |= ¬ϕ. But (Ai, Gi, Pi) |= ∀x ∈ P (x �= 0 ∧ ϕ′), so we
can choose ai

0, . . . , a
i
n−1 ∈ Gi such that (Ai, Gi) |= ¬ϕ′′[ai

0, . . . , a
i
n−1, fαi] for all

α ∈ Ki. Therefore {i ∈ I : (Ai, Gi) |= ¬ϕ′′[ai
0, . . . , a

i
n−1, fαi]} ⊇ aα ∈ F , so

(B,H) |= ¬ϕ′′[a0/F, . . . , an−1/F, fα/F ], as desired.

Theorem 6.4. Suppose that k is a sup-min function such that the formula ψ in
the definition is ∀xPx and the formula ϕ′ is x = x. Assume that 〈Ai : i ∈ I〉
is a system of infinite BAs, with I infinite, and F is an ultrafilter on I. Then
k

(∏
i∈I Ai/F

)
≤

∣∣∏
i∈I kAi/F

∣∣.
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Proof. For each i ∈ I choose Pi ⊆ Ai such that |Pi| = kAi and (Ai, Ai, Pi) |= ϕ.
Then, we claim,

(∏
i∈I Ai/F,

∏
i∈I Ai/F,

∏
i∈I Pi/F

)
|= ϕ, which will prove the

theorem. So, suppose that x0, . . . , xn−1 ∈
∏

i∈I Ai. For each i ∈ I choose yi ∈ Pi

such that (Ai, Ai) |= ϕ′′[x0i, . . . , xn−1i, yi]. Then(∏
i∈I

Ai/F,
∏
i∈I

Ai/F

)
|= ϕ′′[x0/F, . . . , xn−1/F, y/F ]

Theorem 6.5. (GCH) Suppose that k is a sup-min function such that the formula
ψ in the definition is ∀xPx and the formula ϕ′ is x = x. We also suppose that
for every infinite BA A there is a G ⊆ A such that (A,G) |= ψ and min{|P | :
(A,G,P ) |= ϕ} ≥ ω. If 〈Ai : i ∈ I〉 is a system of infinite BAs, with I infinite,
and F is a regular ultrafilter on I, then k

(∏
i∈I Ai/F

)
=

∣∣∏
i∈I kAi/F

∣∣.
Proof. Let λ = ess.sup F

i∈IkAi. We consider several cases. Case 1. λ ≤ |I|. Then,
using Theorem 6.4 we have

2|I| = |Iω/F | ≤ k

(∏
i∈I

Ai/F

)
≤

∣∣∣∣∣
∏
i∈I

kAi/F

∣∣∣∣∣ = λ|I| = 2|I|.

Case 2. cfλ ≤ |I| < λ. Then by Theorem 6.1 we get λ+ ≤ k
(∏

i∈I Ai/F
)
≤∣∣∏

i∈I kAi/F
∣∣ = λ|I| = λ+.

Case 3. |I| < cfλ. Then by Theorem 6.2 we have λ ≤ k
(∏

i∈I Ai/F
)
≤∣∣∏

i∈I kAi/F
∣∣ = λ|I| = λ.

By a result of Donder [88], V = L implies that every uniform ultrafilter is regu-
lar, and hence that the equality in Theorem 6.5 always holds; thus this answers
Problem 12 of Monk [90] in a different way from the solution of Koppelberg and
Shelah mentioned at the outset.

An easy argument shows that π(⊕i∈IAi) = max(|I|, supi∈IπAi) for any system
〈Ai : i ∈ I〉 of Boolean algebras. In fact, if Di is dense in Ai for each i ∈ I, then

E
def= {d0 · . . . · dn−1 : ∃ distinct i0, . . . , in−1 ∈ I such that ∀j < n(dj ∈ Dij )}

is clearly dense in ⊕i∈IAi, and it has the indicated cardinality. On the other hand,
suppose X is dense in ⊕i∈IAi. We may assume that each element of X is a product
of members of

⋃
i∈I Ai, with distinct factors coming from distinct Ai’s. For each

i ∈ I let Yi = {x ∈ X : x ≤ a for some a ∈ Ai}. For each x ∈ Yi, let x+
i be

obtained from x by replacing each factor of x which is not in Ai by 1. Clearly then
{x+

i : x ∈ Yi} ⊆ Ai and this set is dense in Ai, so πAi ≤ |{x+
i : x ∈ Yi}| ≤ |Yi| ≤

|X|. It is also clear that |I| ≤ |X|; so |X| ≥ max(|I|, supi∈IπAi), as desired.
We turn to the discussion of unions. The following theorem takes care of some

possibilities.
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Theorem 6.6. Suppose that 〈Aα : α < κ〉 is a strictly increasing sequence of BAs,
with union B, where κ is regular. Let λ = supα<κπAα. Then

(i) πB ≤∑
α<κ πAα ≤ max(κ, λ).

Now assume that, in addition, Aα =
⋃

β<α Aβ for all limit α < κ. Then
(ii) κ ≤ 2λ,
(iii) πB ≤ λ+.

Proof. For (i), if Xα is dense in Aα for each α < κ, then
⋃

α<κ Xα is dense in B.
Now we make the additional assumption indicated, and prove (ii). Assume that
κ ≥ (2λ)+. Let μ = (2λ)+. Since clearly |Aα| ≤ 2λ for all α < κ, we have κ = μ.
Let S = {α < μ : cfα = λ+}. Thus S is stationary in μ. For each α ∈ S, Aα has
a dense subset Dα of size ≤ λ. Since cfα = λ+, it follows that there is an fα < α
such that Dα ⊆ Afα. Now f is regressive on S, so f is constant on a stationary
subset S′ of S. Let β be the constant value of f on S′. Then Dβ is dense in B.
But |B| ≥ (2λ)+, contradiction. So, (ii) holds. For (iii), if πB > λ+, then by (i)
we have κ > λ+, and we can use an argument similar to that for (ii).

Note that the upper bound λ+ mentioned in Theorem 6.6 can be attained: use a
free algebra, as in the discussion of unions for topological density.

Turning to the functions derived from π, we first work toward proving that πH+ =
πh+ = hd.

We call a sequence 〈xξ : ξ < κ〉 of elements of a space X left-separated
provided that for every ξ < κ there is an open set U in X such that U ∩ {xη : η <
κ} = {xη : ξ ≤ η}. We now need the following important fact relating this notion
to the function hd:

Theorem 6.7. For any infinite Hausdorff space X, hdX is the supremum of all
cardinals κ such that there is a left-separated sequence in X of type κ.

Proof. If 〈xξ : ξ < κ〉 is a left-separated sequence in X and κ is infinite and
regular, then clearly the density of {xξ : ξ < κ} is κ. Hence the inequality ≥
holds. Now suppose that Y is a subspace of X, and set dY = κ. We construct a
left-separated sequence 〈xξ : ξ < κ〉 as follows: having constructed xη ∈ Y for all
η < ξ, where ξ < κ, it follows that {xη : η < ξ} is not dense in Y , and so we can
choose xξ ∈ Y \{xη : η < ξ}. This proves the other inequality.

Note that the proof of Theorem 6.7 shows that if hdX is attained, then it is also
attained in the left-separated sense, and conversely if hdX is regular.

There is an algebraic version of left-separated sequences. We call a sequence
〈aξ : ξ < α〉 of elements of A left-separated if for all ξ < α and all finite F ⊆ α
such that ξ < β for all β ∈ F we have aξ ·

∏
η∈F −aη �= 0.

Lemma 6.8. A has a left-separated sequence of length α iff UltA has a left-
separated sequence of length α.

Proof. ⇒: Let 〈aξ : ξ < α〉 be a left-separated sequence of elements of A. For
each ξ < α, let Fξ be an ultrafilter on A containing the set {aξ} ∪ {−aη : ξ < η}.
Clearly 〈Fξ : ξ < α〉 is a left-separated sequence in UltA.
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⇐: Let 〈Fξ : ξ < α〉 be a left-separated sequence in UltA. For each ξ < α
choose an element aξ such that Fξ ∈ S aξ and S aξ ∩ {Fη : η < α} ⊆ {Fη : ξ ≤
η < α}. To check that 〈aξ : ξ < α〉 is a left-separated sequence, suppose on the
contrary that aξ ≤

∑
η∈F xη, where ξ < η for all η ∈ F , F a finite subset of α.

Since aξ ∈ Fξ, it follows that aη ∈ Fξ for some η ∈ F . This contradicts the choice
of aη.

The essential step in proving that πH+ = hd is as follows; we follow the proof of
van Douwen [89], 10.1.

Lemma 6.9. Let A be an infinite BA. Then there exists a left-separated sequence
〈xξ : ξ < πA〉 such that {xξ : ξ < πA} is dense in A.

Proof. For brevity let π = πA. The major part of the proof consists in proving

(1) There is a sequence 〈aξ : ξ < π〉 of non-zero members of A such that {aξ : ξ <
π} is dense in A and for each η < π, |{ξ < η : aξ · aη �= 0}| < π(A � aη).

To prove this, call an element b ∈ A π-homogeneous provided that π(A � c) = π(A �
b) for every non-zero c ≤ b. Clearly the collection of all π-homogeneous elements of
A is dense in A. Let A be a maximal disjoint collection of π-homogeneous elements
of A. Let κ = |A|; then κ ≤ cA ≤ πA. For each b ∈ A let Mb be a dense subset
of A � b of cardinality π(A � b). Then

⋃{Mb : b ∈ A} is dense in A. Now let
〈Nb : b ∈ A〉 be a partition of π into disjoint subsets of power π. For each b ∈ A
let fb be a one-one function from Mb onto a subset of Nb of order type π(A � b).
Now for each ξ < π, let

aξ =
{

0, if ξ /∈ ⋃
b∈A ran(fb);

f−1
b ξ, if ξ ∈ ran(fb), b ∈ A.

Suppose that η < π and aη �= 0. Say η ∈ ran(fb). Then

|{ξ < η : aξ · aη �= 0}| ≤ |{ξ ∈ ranfb : ξ < η}| < π(A � b).

Thus we have (1), except that some of the aη’s are zero. If we renumerate the
non-zero aη’s in increasing order of their indices, we really get (1).

Now we construct a sequence 〈bα : α < π〉 of non-zero elements of A so that
the following conditions hold:

(2α) bα ≤ aα for all α < π,

and

(3α) for all ξ < α and every finite F ⊆ (ξ, α] we have bξ ·
∏

η∈F −bη �= 0 for all
α < π.
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Assume that β < π, and bα has been constructed for all α < β so that (2α) and
(3α) hold. Then by (1) and the assumption that (2α) holds for all α < β we see
that the set Γ def= {α < β : bα · aβ �= 0} has power < π(A � aβ). Hence there is a
non-zero bβ in A such that bβ ≤ aβ and for all ϕ ∈ Γ and all finite G ⊆ Γ, if
bϕ ·

∏
γ∈G−bγ �= 0, then bϕ ·

∏
γ∈G−bγ �⊆ bβ . Thus (2β) and (3β) hold, and the

construction is complete.
It is clear from (2α) and (3α) that 〈bα : α < π〉 is the desired dense sequence.

The following theorem is due to Shapirovskĭı.

Theorem 6.10. πH+A = πh+A = hdA for any infinite BA A.

Proof. It is obvious that πH+A ≤ πh+A. Now if O is a π-base for Y ⊆ UltA with
|O| = πY , without loss of generality O has the form {Sa ∩ Y : a ∈ A} for some
A ⊆ A. Let fx = Sx ∩ Y for any x ∈ A. Then f is a homomorphism onto some
algebra B of subsets of Y , and O is dense in B. This shows that πh+A ≤ πH+A. It
is also trivial that hdA ≤ πh+A, since if S ⊆ UltA then dS ≤ πS. It remains just to
show that πH+A ≤ hdA. Suppose that f is a homomorphism of A onto B, where B
is infinite. Apply 6.9 to B to get a system 〈bξ : ξ < πB〉 of elements of B such that
for any ξ < πB and any finite subset G of (ξ, πB) we have bξ ·

∏
η∈G−bη �= 0. For

each ξ < πB choose aξ so that faξ = bξ. Clearly 〈aξ : ξ < πB〉 is a left-separated
sequence of elements of A, which by Theorem 6.7 is as desired.

The proof of Theorem 6.10 shows that πH+ and πh+ have the same attainment
properties; also, if πH+ is attained, then hd is attained in the left-separated sense.
Also, if hdA is attained in the defined sense then it is attained in the πh+ sense.

The cardinal function πS+ is of some interest, since it does not coincide with any
of our standard ones. Obviously πA ≤ πS+A for any infinite BA A. Moreover,
πS+A ≤ πH+A; this follows from the following fact: for every subalgebra B of
A there is a homomorphic image C of A such that πB = πC. To see this, by
the Sikorski extension theorem extend the identity function from B into B to a
homomorphism from A onto a subalgebra C of B. Since B ⊆ C ⊆ B, it is clear
that πB = πC. Thus we have shown that πA ≤ πS+A ≤ πH+A for any infinite
BA A. It is possible to have πA < πS+A: let A = Pκ—then πA = κ, while
πS+A = 2κ, since A has a free subalgebra B of power 2κ, and clearly πB = 2κ.
It is more difficult to come up with an example of an algebra where the other
inequality is proper (this example is due to Monk):

Example 6.11. There is an infinite BA A such that πS+A < πH+A.

To see this, let B be the interval algebra on the real numbers, and let A = B⊕B.
Now, we claim, πS+A = ω, while πH+A = 2ω. To prove that πH+A = 2ω, by
5.12, 5.13, and 6.10 it suffices to show that sA = 2ω. For each real number r let
cr = br · b′r, where br = [−∞, r) (as a member of the first factor of B ⊕ B) and
b′r = [r,∞) (as a member of the second factor of B⊕B). Note that we have adjoined
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−∞ as a member of R in order to fulfill the requirement for interval algebras that
the ordered set in question always has a first element. To show that 〈cr : r ∈ R〉 is
an ideal independent system of elements, suppost that cr ≤ cs1 + · · · + csm with
r /∈ {s1, . . . , sm}. Let Γ = {i : si < r} and Δ = {i : r < si}. Then

cr · −cs1 · . . . · −csm ≥ br · b′r ·
∏
i∈Γ

−bsi ·
∏
i∈Δ

−b′si
�= 0,

contradiction.
To prove that πS+A = ω, we proceed as follows. Let C be any subalgebra

of A. We want to show that πC = ω. Now for each element c of C we choose a
representation of c of the form ∑

i<m(c)

x0ic × x1ic,

where x0ic and x1ic are half-open intervals in B. Let T = {(m, r, s) : m ∈ ω\{0}
and r, s ∈ mQ}. An element (m, r, s) of T is a frame for c ∈ C provided that
m(c) = m, and ri ∈ x0ic, si ∈ x1ic for all i ∈ m. For each (m, r, s) ∈ T let Dmrs be
the set of all c ∈ C with frame (m, r, s). Since C is the union of all sets Dmrs, it
suffices to take an arbitrary (m, r, s) ∈ T and find a countable subset of C dense
in Dmrs.

For each c ∈ Dmrs and each i < m write

x0ic = [aic, bic) and x1ic = [dic, eic).

Thus aic ≤ ri < bic and dic ≤ si < eic for all c ∈ Dmrs and i < m. For each i < m
let N0i be a countable subset of {aic : c ∈ Dmrs} cofinal in that set. Similarly
choose N1i coinitial for the bic’s, N2i cofinal for the dic’s, and N3i coinitial for the
eic’s. Let M be the set of all products∏

i<m,j<4

uij

with u ∈ m×4
⋃

i<m(N0i∪N1i∪N2i∪N3i). Clearly all such products are nonzero. We
claim that M is dense in Dmrs. For, let c ∈ Dmrs. For each i < m choose ui0 ∈ N0i

such that aic ≤ ui0; similarly for uij, j = 1, 2, 3. Then clearly
∏

i<m,j<4 uij ≤ c,
as desired.

Shelah [92b] showed that it is consistent to have a BA A with πS+A not attained;
this answers Problem 13 in Monk [90]. But we do not know whether this can be
done in ZFC:

Problem 20. Can one find in ZFC a BA A such that πS+A is not attained?

Clearly πS−A = πH−A = πh−A = ω for any infinite BA A. Furthermore, dπS+A =
dπS−A = πA for any infinite BA A.
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Concerning the function πSs we mention the following result from Shelah
[92b]:

Theorem 6.12. Let B be an infinite BA, and suppose that θ is an infinite regular
cardinal less than πS+B. Then there is a subalgebra A of B such that πA = θ.

Proof. We may assume that ω < θ < πB. We define a sequence 〈Aα : α < θ〉 of
subalgebras of B, each of power less than θ, as follows. Let A0 be any denumerable
subalgebra of B. For α a limit ordinal < θ, let Aα be the union of preceding
algebras. If Aα has been defined, then, since it has fewer than πB elements, there
is a nonzero element b ∈ B such that for all x ∈ A+

α we have x �≤ b. Let Aα be the
subalgebra of B generated by Aα ∪ {b}. Clearly

⋃
α<θ Aα is as desired.

Thus πSsA contains all regular cardinals in the interval [ω, πS+A). But Shelah also
showed in that paper that it is consistent to have a BA A with some of the singular
cardinals in that interval not in πSsA; and some special singular cardinals in that
interval are always in πSsA. These results answer problem 15 in Monk [90].

The following problem is open (this is Problem 14 in Monk [90]):

Problem 21. Is it true that for every infinite BA A we have

πHsA =

{
[ω,hdA], if hdA is attained,

[ω,hdA), otherwise?

We have already observed that d ≤ π; the difference is small, though, since dA ≤
πA ≤ |A| ≤ 2dA for any infinite BA A.

About π for special classes of BAs, note that πA = dA for any interval
algebra A; in fact, πA is also equal to hdA. To see this, note that dA = hdA for A
an interval algebra, since any interval algebra is retractive; then πA = dA by the
above inequalities.

Another interesting fact about π and interval algebras was observed by Dou-
glas Peterson: πIntalg L = dL · |M |, where dL is the density of L as a topological
space and M is the set of atoms of Intalg L. To prove ≤, let X be dense in L with
|X| = dL; we show that {[x, y) : x, y ∈ X,x < y}∪M is dense in Intalg L. Take any
nonzero a ∈ Intalg L. Wlog a has the form [u, v). If [u, v) is finite, then b ≤ [u, v)
for some atom b. If [u, v) is infinite, then there exist x, y ∈ X with u < x < y < v,
and so [x, y) ⊆ [u, v). For ≥, suppose to the contrary that R is dense in Intalg L
and |R| < dL · |M |. Clearly M ⊆ R. Wlog each member of R has the form [a, b).
Since |M | ≤ |R|, we have |R| < dL. Let R′ = {a ∈ L : ∃b([a, b) ∈ R)}. Thus
L\R′ is a non-empty open set. Say w ∈ (u, v) ⊆ L\R′. Then [w, v) ∈ Intalg L, so
[a, b) ⊆ [w, v) for some [a, b) ∈ R; but then a ∈ R′, contradiction.
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If A is a minimally generated algebra, then πA = dA. In fact, A is co-absolute
with an interval algebra, and πB = πB and dB = dB for any BA B, so this follows
from the interval algebra result.

For A atomic, clearly πA is the number of atoms of A. Also note that πS+A =
|A| for A complete, and πS+A = hdA for A retractive.

If A is the completion of the free BA on ω1 free generators, then dA < πA:
clearly πA = ω1. The identity mapping from the free BA on ω1 free generators
into Pω can be extended to a homomorphism f from A into Pω, and f must be
one-one; so dA = ω.

For tree algebras we recall from Theorem 5.17 that πA = |A|.
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Recall that LengthA is the sup of cardinalities of subsets of A which are simply
ordered by the Boolean ordering. For references see the beginning of Chapter 4.
The analysis of Length is similar to that for Depth; many of the proofs are similar,
but there are some differences. To take care of the first problem, attainment of
Length, we need two small lemmas about orderings:

Lemma 7.1. Let L be a linear ordering of regular cardinality λ which has no
strictly increasing or strictly decreasing sequences of length λ. Then there exist
a < b in L such that |[a, b)| = λ.

Proof. Let 〈aξ : ξ < α〉 and 〈bξ : ξ < β〉 be coinitial strictly decreasing and cofinal
strictly increasing sequences in L, respectively. Then L, except for its greatest
element, if it has such, is the union of all of the intervals [aξ, bη), and ξ < λ and
η < λ, so the conclusion is clear.

Lemma 7.2. Let L be a linear ordering with first element 0, and with cardinality
κ+, where κ is infinite. Then there exist a < b in L such that |[a, b)| ≥ κ and
|L\[a, b)| ≥ κ.

Proof. Suppose not. Then clearly

(1) in L there is no strictly increasing or strictly decreasing sequence of length κ+.

Define by induction a sequence 〈[aξ, bξ) : ξ < α〉 of half-open intervals in L such
that [aη, bη) ⊂ [aξ, bξ) for ξ < η, |[aξ, bξ)| = κ+, and |L\[aξ, bξ)| < κ for all
ξ < α, continuing as long as possible. We can start by Lemma 7.1. How long can
we continue? Well, if [aξ, bξ) has been defined, then [aξ+1, bξ+1) can be defined:
choose c with aξ < c < bξ; then |[aξ, c)| = κ+ or |[c, bξ)| = κ+. Suppose that
[aξ, bξ) has been defined for all ξ < β, where β is a limit ordinal < κ+. Then

|L\
⋂
ξ<β

[aξ, bξ)| = |
⋃
ξ<β

L\[aξ, bξ)| < κ+,

so by (1) and Lemma 7.1 applied to
⋂

ξ<β[aξ, bξ), the interval [aβ, bβ) can be
defined. Thus α ≥ κ+. Now aξ ≤ aη and bξ ≥ bη for ξ < η, so one of {aξ : ξ < κ+}
and {bξ : ξ < κ+} contains a suborder of L of size κ+. This contradicts (1).

Theorem 7.3. If cf(LengthA) = ω, then LengthA is attained.

Proof. The proof should be fairly clear, following the lines of the proof of 4.2. Some
modifications: a is an ∞-element provided that for each i ∈ ω, some ordering of
size λi is embeddable in A � a. When constructing ai, Lemma 7.2 is used to obtain
elements c, d such that b = c + d, c · d = 0, and both A � c and A � d contain
strictly increasing chains of length λi; then the new (*) is applied.

The analog of 4.3 for Length does not hold. For example, if A is any denumerable
BA, then ωA has length 2ω. This is because PQ can be embedded in ωA, and R
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can be embedded in PQ: for each r ∈ R, let fr = {q ∈ Q : q < r}. To generalize
this example, let us call a subset D of a linear order L weakly dense in L provided
that if a, b ∈ L and a < b, then there is a d ∈ D such that a ≤ d ≤ b. Now for
any infinite cardinal κ let Dedκ = sup{λ: there is an ordering of size λ with a
weakly dense subset of size κ}. The following theorem from Kurepa [57] shows the
connection of this notion to length in Pκ:

Theorem 7.4. Let κ and λ be cardinals such that ω ≤ κ ≤ λ. Then the follolwing
two conditions are equivalent:

(i) There is an ordering L of size λ with a weakly dense subset of size κ.
(ii) In Pκ there is a chain of size λ.

Proof. (i)⇒ (ii). We may assume that κ < λ. Let D be weakly dense in L, with
|D| = κ. Thus |L\D| = λ. Let f be a one-one function from κ onto D. For each
a ∈ L\D let ga = {α < κ : fα < a}. Clearly a < b implies that ga ⊆ gb. Suppose
a < b with a, b ∈ L\D; choose x ∈ D so that a ≤ x ≤ b. Hence a < x < b, and so
f−1x ∈ gb\ga and ga �= gb, as desired.

(ii)⇒ (i). Let L be a chain in Pκ of size λ. For each α < κ let xα =
⋃{a ∈

L : α /∈ a}. For any α, β < κ we have xα ⊆ xβ or xβ ⊆ xα. For, suppose that
γ ∈ xα\xβ and δ ∈ xβ\xα. Say γ ∈ a ∈ L with α /∈ a and ∀b ∈ L(β /∈ b⇒ γ /∈ b);
and δ ∈ b ∈ L with β /∈ b and ∀c ∈ L(α /∈ c ⇒ δ /∈ c). Say a ⊆ b. Then γ ∈ b,
contradiction. For any a ∈ L and α < κ we clearly have a ⊆ xα or xα ⊆ a. Hence
we may assume that {xα : α < κ} ⊆ L. Let D be a subset of L of size κ such that
{xα : α < κ} ⊆ D. Now suppose that a, b ∈ L and a ⊂ b. Choose α ∈ b\a. Then
a ⊆ xα; and if c ∈ L and α /∈ c, then c ⊆ b; so xα ⊆ b, as desired.

Because of this theorem, about all that we can say about the length of products
is this:

max(Ded|I|, supi∈ILengthAi) ≤ Length

(∏
i∈I

Ai

)
≤

∏
i∈I

LengthAi.

Shelah [87] has shown that Length(
∏

i∈I Ai) cannot be calculated purely from |I|
and 〈LengthAi : i ∈ I〉.
For weak products, we have the following analogs of 4.6 and 4.7:

Theorem 7.5. Let κ = supi∈ILengthAi, and suppose that cfκ > ω. Then the
following conditions are equivalent:

(i)
∏w

i∈I Ai has no chain of size κ.
(ii) For all i ∈ I, Ai has no chain of size κ.

Proof. For the non-trivial direction (ii) → (i), suppose that X is a chain in∏w
i∈I Ai of size κ. Wlog assume that for each x ∈ X, the set Mx

def= {i ∈ I : xi �= 0}
is finite. Define x ≡ y iff Mx = My. Then it is easy to see that ≡ is a convex
equivalence relation on X; there is an order induced on X/ ≡, and clearly that order
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is isomorphic to an interval of the ordered set ω. It follows from cfκ > ω that some
equivalence class has cardinality κ. Then Lemma 4.1 gives a contradiction.

Corollary 7.6. Length
(∏w

i∈I Ai

)
= supi∈ILengthAi.

By 7.5 we see that 7.3 is best possible: if κ is a limit cardinal with cfκ > ω, then
it is easy to construct a weak product B such that LengthB = κ but the length
of B is not attained.

If A is a subalgebra of B, then LengthA ≤ LengthB, and the difference can
be arbitrarily large. If A is a homomorphic image of B, then length can vary either
way from B to A again, see the argument for cellularity.

Now we turn to ultraproducts, giving some results of Douglas Peterson. Since
length is an ultra-sup function, Theorems 3.15–3.17 apply. Theorem 3.17 is es-
pecially to be noticed: Length

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I LengthAi/F

∣∣ for F regu-
lar. Thus by Donder’s theorem it is consistent that ≥ always holds. Magidor
and Shelah have shown that it is consistent to have an example in which the
length of an ultraproduct is strictly less than the size of the ultraproduct of
their lengths; see Chapter 4 for details. It is consistent to have an example in
which Length

(∏
i∈I Ai/F

)
>

∣∣∏
i∈I LengthAi/F

∣∣ with F regular; see the com-
ments about depth. But it seems to be open whether this can be done in ZFC:

Problem 22. Can one prove in ZFC that there exist a system 〈Ai : i ∈ I〉 of
infinite BAs, I infinite, and an ultrafilter F on I such that Length

(∏
i∈I Ai/F

)
>∣∣∏

i∈I LengthAi/F
∣∣?

The following version of Theorem 3.18 holds:

Theorem 7.7. Let 〈Ai : i ∈ I〉 be a system of infinite BAs, with I infinite, let
F be a uniform ultrafilter on I, and let κ = max(|I|, ess.supF

i∈ILengthAi). Then
Length

(∏
i∈I Ai/F

)
≤ 2κ.

Proof. Let λ = ess.supF
i∈ILengthAi. We may assume that LengthAi ≤ λ for all

i ∈ I. In order to get a contradiction, suppose that 〈fα/F : α < (2κ)+〉 is a system
of distinct comparable elements. Thus [(2κ)+]2 =

⋃
i∈I{{α, β} : fαi and fβi are

distinct comparable elements}, so by the Erdös-Rado theorem (2κ)+ → (κ+)2κ we
get a homogeneous set which gives a contradiction.

Concerning equality in Theorem 7.7, we note that it holds if F is regular and
ess.sup |Ai| ≤ |I|, since then

2|I| = (ess.sup LengthAi)|I|

=

∣∣∣∣∣
∏
i∈I

LengthAi/F

∣∣∣∣∣ ≤ Length

(∏
i∈I

Ai/F

)

≤
∣∣∣∣∣
∏
i∈I

Ai/F

∣∣∣∣∣ ≤ 2|I|.
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On the other hand, if |A| = LengthA = κ and κω = κ, then Length (ωA/F ) < 2κ

for any nonprincipal ultrafilter F on ω.

For free products, we have Length(⊕i∈IAi) = supi∈ILengthAi; this result of
Grätzer and Lakser was considerably generalized by McKenzie and Monk; but in
any case the proof is too lengthy to include here. Bekkali [92] constructed a BA A
of length ℵω1 such that if L is a Suslin line, then A⊕ Intalg L has no chain of size
ℵω1 ; this solves Problem 16 in Monk [90].

Length is an ordinary sup-function, so Theorem 3.11 applies.

We turn to derived functions for length. The function LengthH+A seems to be
new. Note just that tA = DepthH+A ≤ LengthH+A, using 4.21. It is possible to
have tA < LengthH+A; this is true when A is the interval algebra on R, since
tA = ω, while obviously LengthH+A = 2ω. To see that tA = ω, one can use 3.24,
5.11, and 3.29.

Shelah has constructed an algebra A such that ω < LengthA < |A| while A has
no homomorphic image of power smaller that |A|, assuming ¬CH (email message
of December 1990). This answers Problem 17 in Monk [90]. Since an infinite BA
always has a homomorphic image of size ≤ 2ω, the assumption ¬CH is needed here.
We present this result here. It depends on the following notation. If 〈an : n ∈ ω〉
is a system of elements of a BA A and Y ⊆ ω, then {[x, an]if n∈Y : n ∈ ω} denotes
the following set of formulas:

{an ≤ x : n ∈ Y } ∪ {an · x = 0 : n ∈ ω\Y }.

If L is a chain, then a Dedekind cut of L is a pair (M,N) such that L = M ∪N
and u < v for all u ∈ M and v ∈ N . If in addition L is a subset of a BA A, then
an element a ∈ A realizes the Dedekind cut (M,N) if u ≤ a ≤ v for all u ∈M and
v ∈ N .

For any BA A, Length′A is the smallest infinite cardinal κ such that every
chain in A has size less than κ.

Shelah’s result will follow easily from the following lemma:

Lemma 7.8. Let ℵ0 ≤ μ < λ
def= 2ℵ0 , and let A be a subalgebra of Pω containing

all singletons {i}, with |A| = μ. Then there is a BA B of size 2ℵ0 satisfying
⊗0 A is a dense subalgebra of B.
⊗1 If 〈an : n < ω〉 is a system of pairwise disjoint elements of B+, then for

2ℵ0 subsets Y of ω there is an element aY ∈ B realizing {[x, an]if n∈Y : n ∈ ω}.
⊗2 If 〈an : n < ω} is a chain of members of B, then the number of Dedekind

cuts of it realized in B is less than 2ℵ0 .

Proof. First we obviously have:

(1) there is an enumeration 〈〈aζn : n < ω〉 : ζ < λ〉 of all of the ω-tuples of subsets
of ω, each one repeated λ times.

Next we claim:
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(2) There is a function h : λ→ λ such that for all ζ < λ we have hζ < μ or hζ < ζ,
and the set

Sζ
def= {ε < λ : hε = ζ}

has power λ.

To see this, first choose a system 〈Dα : α < λ〉 of pairwise disjoint sets whose
union is λ, each of power λ, with D0 the set of all limit ordinals less than λ. Define

Eα = (Dα ∪ {α + 1})\
⋃

β<α

Eβ.

Then

(3) Dα\Eα ⊆ α + 1;
(4) Eα\Dα ⊆ {α + 1}.
For, (4) is obvious. For (3), suppose that ζ ∈ Dα\Eα. Then there is a β < α such
that ζ ∈ Eβ . Now ζ /∈ Dβ , so ζ = β + 1 by (4). Thus (3) holds.

By (3), |Eα| = λ for all α < λ. Next,

(5)
⋃

α<λ Eα = λ.

For, suppose that ζ /∈ ⋃
α<λ Eα. Since E0 = D0 ∪ {1}, ζ is a successor ordinal

α + 1. Then ζ ∈ Eα, contradiction.
For each ζ < λ let hζ be the α such that ζ ∈ Eα. Suppose μ ≤ hζ. Then

hζ �= 0, so ζ is a successor ordinal α + 1. Clearly ζ ∈ ⋃
β≤α Eβ , so hζ < ζ. This

proves (2).
Now we define a BA Bε by induction on ε < λ such that:

a) Bε is a subalgebra ofPω containing all singletons, of cardinality < μ++|ε|+.
b) Bε is increasing and continuous in ε.
c) B0 = A.
d) If ζ < ε and 〈aζn : n < ω〉 is a linearly ordered system of elements of Bζ (no

two equal), then every Dedekind cut of it which is not realized in Bζ is also
not realized in Bε.

e) Let Evens be the set of all even natural numbers. If hε = ζ and 〈aζn : n < ω〉
is a system of pairwise disjoint members of Bε (some possibly zero) with
union ω, then for some Yε ⊆ Evens we have

(i) Bε+1 is generated by Bε ∪ {xε}, where xε =
⋃

n∈Yε
aζn.

(ii) If ψ < ε and hψ = ζ, then Yψ �= Yε.
If 〈aζn : n < ω〉 is not such a system, then Bε+1 = Bε.

The construction is determined for ε = 0 and for limit ε. At stage ε→ ε+1, assume
that hε = η and 〈aηn : n < ω〉 is a system of pairwise disjoint elements of Bε with
union ω, let κε = (μ + |ε|)+, and let 〈Y ε

i : i < κε〉 be a sequence of almost disjoint
infinite subsets of Evens; we try each of these as Yε and get Bεi by adjoining xεi

in order to satisfy e)(i); so the bad case is that one of the “demands” e)(ii) or d)
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fails. There are < κε demands, so we may assume that the same demand fails for
all of them. It cannot be e)(ii), so it is d) for a certain ζ ≤ ε. There is then a term,
wlog not depending on i, call it t(xεi, b) with b ∈ Bε, which realizes a Dedekind
cut (Mi, Ni) of 〈αζn : n < ω〉 not realized in Bζ ; here xεi =

⋃
n∈Y ε

i
aηn. We can

write t(xεi, b) = b0 + b1 · xεi + b2 · −xεi for some partition (b0, b1, b2, b3) of unity in
Bε.

If (Mi, Ni) = (Mj , Nj) for two distinct i, j < κε, we get a contradiction, as
follows. For all c ∈Mi and d ∈ Ni we have

c · b0 ≤ b0 · t(xεi, b) = b0 ≤ b0 · d;
c · b1 ≤ b1 · t(xεi, b) = b1 · xεi ≤ b1 · d;
c · b2 ≤ b2 · t(xεi, b) = b2 · −xεi ≤ b2 · d;

it follows that c · b1 ≤ b1 · xεi · xεj ≤ b1 · d; note also that xεi · xεj ∈ Bζ . Similarly,
c · b2 ≤ b2 · −xεi + b2 · −xεj ≤ b2 · d, and −xεi +−xεj = −(xεi · xεj) ∈ Bζ . Hence
the Dedekind cut (Mi, Ni) is realized by

b0 + b1 · xεi · xεj + b2 · −xεi + b2 · −xεj

in Bε, contradiction. Thus we have shown that distinct i, j < κε realize different
Dedekind cuts.

Wlog the truth values of the following statements do not depend on i:

(6) S1
i

def= {n ∈ Y ε
i : aηn · b1 �= 0} is infinite;

(7) S2
i

def= {n ∈ Y ε
i : aηn · b2 �= 0} is infinite.

If both of these are false (for all i), take any i, and consider (Mi, Ni). Then, with
c ∈Mi and d ∈ Ni,

c · b1 ≤ b1 · xεi = b1 ·
∑

n∈S1
i

aηn ≤ d · b1

and b2 · xεi = b2 ·
∑

n∈S2
i
aηn and hence

c · b2 ≤ b2 · −xεi = b2 · −
∑

n∈S2
i

aηn ≤ d · b2;

so (Mi, Ni) is realized by

b0 + b1 ·
∑

n∈S1
i

aηn + b2 · −
∑

n∈S2
i

aηn

in Bε, contradiction.
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Thus either (6) or (7) is true. Take distinct Dedekind cuts (Mi, Ni) and
(Mj , Nj); say Mi ⊂Mj . Choose c ∈Mj\Mi.

Case 1. (6) is true. Then in Bεi we have t(xεi, b) ≤ c, so

(*) xεi = t(xεi, b) · b1 ≤ c · b1.

And in Bεj we have c ≤ t(xεj , b), so

(�) c · b1 ≤ t(xεj , b) · b1 = xεj · b1.

Now if n ∈ S1
i , then 0 �= aηn · b1 ≤ xεi · b1 ≤ c · b1 (by (*)) ≤ xεj · b1 (by (�)), so

n ∈ Y ε
j , hence n ∈ S1

j . Thus S1
i ⊆ S1

j , contradicting S1
i ∩ S1

j ⊆ Y ε
i ∩ Y ε

j finite.
Case 2. (7) is true. Then in Bεi we have t(xεi, b) ≤ c, so

(**) −xεi · b2 = t(xεi, b) · b2 ≤ c · b2.

And

(��) c · b2 ≤ t(xεj , b) · b2 = −xεj · b2.

If n ∈ S2
j , then aηn · b2 · −xεj = 0, so by (��), aηn · b2 · c = 0, hence by (**) aηn ·

b2 · −xεi = 0, so n ∈ Y ε
i , hence n ∈ S2

i . So S2
j ⊆ S2

i , again giving a contradiction.
Thus the construction can be carried through. Let B =

⋃
ε<λ Bε. Clearly

⊗0 holds, by c). Now suppose that 〈an : n < ω〉 is a system of pairwise disjoint
elements of B+. Choose ε < λ such that an ∈ Bε for all n ∈ ω, extend {an :
n ∈ ω} to a maximal disjoint set X in Bε, and enumerate X as 〈bn : n < ω}
so that {an : n < ω} = {b2n : n < ω}. By (1), there is a ζ < λ such that
〈bn : n < ω〉 = 〈aζn : n < ω〉. Then by (2) and e) we get 2ℵ0 subsets Y of ω such
that {[x, an]if n∈Y : n ∈ ω} is realized in B. Next, suppose that 〈an : n < ω〉 is a
chain of members of B+. By (1), say 〈an : n < ω〉 = 〈aζn : n < ω〉. Choose ε < λ
such that all an are in Bε. Then by d), B realizes at most |Bε| Dedekind cuts of
〈an : n < ω〉.
Theorem 7.9. If ℵ0 ≤ μ < 2ℵ0 then there is a BA B such that:

(i) B is a subalgebra of Pω containing all singletons, and hence πB = ℵ0;
(ii) μ+ ≤ Length′B ≤ 2ℵ0 ;
(iii) every infinite homomorphic image of B has size 2ℵ0 .

Proof. We apply the lemma to a subalgebra A of Pω containing all singletons, of
size μ and with length μ. We obtain a BA B as a result.

We check that every infinite homomorphic image of B has size 2ℵ0 . Let f be
a homomorphism from B onto C with C infinite. Let 〈cn : n < ω〉 be a system of
nonzero disjoint elements of C. Then there is a system 〈bn : n < ω〉 of non-zero
disjoint elements of B such that fbn = cn for all n < ω. Let D be a collection
of 2ℵ0 subsets of ω such that for each Y ∈ D there is an element bY realizing
{[x, bn]if n∈Y : n < ω}. Clearly {fbY : Y ∈ D} is a subset of C of size 2ℵ0 , as
desired.

Now suppose that J is a chain in B of size 2ℵ0 ; we shall get a contradiction.
For each i ∈ ω let Mi = {b ∈ J : i /∈ b}. Clearly there is a countable subset Ki of
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Mi cofinal in Mi. Let I =
⋃

i∈ω Ki. So, I is countable. Each element of J realizes
a Dedekind cut of I, so we can contradict ⊗2 of the Lemma by showing that any
two distinct u, v ∈ J realize distinct Dedekind cuts of I. Suppose that u ⊂ v but
{w ∈ I : u ⊆ w} = {w ∈ I : v ⊆ w}. Choose i ∈ v\u. Choose w ∈ Ki with u ⊆ w.
Then v ⊆ w and hence i ∈ w, contradiction.

The function LengthH− is also new. Note that ω ≤ LengthH−A ≤ 2ω, by an
easy argument using the Sikorski extension theorem. It is obviously possible to
have ω = LengthH−A. Shelah has shown under ♦ that there is a BA A such
that LengthH−A < CardH−A. This answers Problem 18 in Monk [90]. Obviously
LengthS+A = LengthA and LengthS−A = ω. The following is Problem 19 in Monk
[90]:

Problem 23. Is always Lengthh−A = ω?

Clearly Lengthh+A ≥ Depthh+A = sA by 4.23. And Lengthh+A ≥ LengthH+A;
but it is possible to have Lengthh+A > LengthH+A. This is true, for example, if A
is the finite-cofinite algebra on an uncountable cardinal κ. For then Lengthh+A =
Dedκ, while LengthH+A = ω. That Lengthh+A = Dedκ is seen like this: UltA
has a discrete subspace S of size κ, and so Theorem 7.4 applies for the chains of
subsets of S, since every subset is clopen.

Clearly dLengthS+A = LengthA. By the discussion of dDepthS− in Chapter
4 we see that if A is atomless and λ-saturated (in the model-theoretic sense), then
dLengthS−A ≥ λ. Thus Problem 20 of Monk [90] is answered.

Concerning the relationships of length to our previously treated functions,
note that obviously DepthA ≤ LengthA for any infinite BA A. Another clear
relationship is LengthA ≤ 2DepthA: if L is an ordered subset of A of power
(2DepthA)+, let ≺ be a well-ordering of L; then by the Erdös-Rado partition rela-
tion (2κ)+ → (κ+)2κ we get a well-ordered or inversely well-ordered subset of L of
power (DepthA)+, contradiction.

Note that LengthA > πA for A = Pω; and cA > LengthA for A the finite-
cofinite algebra on κ. If A is a tree algebra, then LengthA = DepthA by Proposi-
tion 16.20 of the Handbook. For A superatomic we have LengthA = DepthA by
Rosenstein [82] Corollary 5.29.
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Clearly IrrA ≤ |A|. If A is a subalgebra of B, then IrrA ≤ IrrB, and Irr can
change to any extent from B to A (along with cardinality). The same is true for
A a homomorphic image of B. The following problem is open:

Problem 24. Is Irr(A×B) = max{IrrA, IrrB}?
We prove a weak but useful result along the lines of this problem:

Theorem 8.1. For any infinite BA A, IrrA = Irr(A× 2).

Proof. Let κ = IrrA, and suppose that D ∈ [A× 2]κ
+

is irredundant. Then {a ∈
A : (a, 0) ∈ D} or {a ∈ A : (a, 1) ∈ D} has size κ+. By passing to {d : −d ∈ D} if
necessary, we may assume that the second set has size κ+; and so we may assume
that every element x of D has the form (ax, 1).

Case 1. {ax : x ∈ D} does not have the fip. Say z0, . . . , zm−1 ∈ D and
az0 · . . . · azm−1 = 0. Now {ax : x ∈ D\{z0, . . . , zm−1}} is redundant, so we can
write

ax =
∑
i<p

∏
j<n

aεij
yj

,

where x, y0, . . . , yn−1 are distinct elements of D\{z0, . . . , zm−1} and εij ∈ {0, 1}.
Then

ax =
∑
i<p

∏
j<n

aεij
yj

+ az0 · . . . · azm−1 ,

and hence
x =

∑
i<p

∏
j<n

yj + z0 · . . . · zm−1,

contradiction.
Case 2. {ax : x ∈ D} has fip. Write

ax =
∑
i<m

∏
j<n

aεij
yj

,

where x, y0, . . . , yn−1 are distinct elements of D and εij ∈ {0, 1}. If ∃i < m∀j <
n(εij = 1), then x =

∑
i<m

∏
j<n yj , contradiction. Hence ∀i < m∃j < n(εij = 0),

and hence ay0 · . . . · ayn−1 · ax = 0, contradiction.

Corollary 8.2. If A is infinite and B is finite, then IrrA = Irr(A×B).

Corollary 8.3. If |B| ≤ IrrA, then Irr(A×B) = IrrA.

Proof. Let κ = IrrA, and suppose that X ∈ [A × B]κ
+

is irredundant. Then
there is a b ∈ B such that Y

def= {(a, b) : (a, b) ∈ X} has power κ+. Thus Y ⊆
A× {0, b,−b, 1}, so this contradicts Corollary 8.2.
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Irredundance is an ultra-sup function, so Theorems 3.15–3.17 of Peterson apply. By
Theorem 3.17, Irr

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I IrrAi/F

∣∣ for regular F ; hence by Donder’s
result it is consistent that this inequality always holds. But it seems to be open
to actually find examples where equality fails to hold, giving two problems (under
any set-theoretic assumptions):

Problem 25. Is there an example of a system 〈Ai : i ∈ I〉 of infinite BAs,
with I infinite, and a uniform ultrafilter F on I such that Irr

(∏
i∈I Ai/F

)
<∣∣∏

i∈I IrrAi/F
∣∣?

Problem 25 may be solvable by the methods of Magidor, Shelah [91]. See also
Ros	lanowski, Shelah [94].

Problem 26. Is there an example of a system 〈Ai : i ∈ I〉 of infinite BAs,
with I infinite, and a uniform ultrafilter F on I such that Irr

(∏
i∈I Ai/F

)
>∣∣∏

i∈I IrrAi/F
∣∣?

Concerning the derived operations, we note just the obvious facts that IrrS+A =
IrrA, IrrS−A = ω, and dIrrS+A = IrrA.

Obviously any chain is irredundant; so LengthA ≤ IrrA. The difference can be
large, e.g. in a free BA. By Theorem 4.25 of Part I of the BA handbook, πA ≤ IrrA.
In particular, if |A| is strong limit, then |A| = IrrA, since then πA = |A|.

These trivial facts give the immediate results about irredundance. Deeper
facts about it are that it is consistent that there is a BA with irredundance less than
cardinality, and it is also consistent that every uncountable BA has uncountable
irredundance (see Todorčević [90b]). We shall spend the rest of this chapter proving
the first fact, in the form that under CH there is a BA of power ω1 with countable
irredundance. We give two examples for this. The first example is a compact Kunen
line. We say “a” since there are various Kunen lines, and we say “compact” since
the standard Kunen lines are only locally compact. For the Kunen lines, see Juhász,
Kunen, Rudin [76]. The second construction uses considerably less than CH, and
can be found in Todorčević [89]. For a forcing construction of an uncountable BA
with countable irredundance, see Bell, Ginsburg, Todorčević [82]. A generalization
of the main results about irredundance (to other varieties of universal algebras)
can be found in Heindorf [89a] and Todorčević [90b].

The history of these results is complicated. I think that the first example of
an uncountable BA with countable irredundance is due to Rubin [83] (the result
was obtained several years before 1983). The papers with the constructions we give
do not mention irredundance; their relevance for our purposes is due to a simple
theorem of Heindorf [89a]. So, modulo the simple theorem of Heindorf, the first
example with irredundance different from cardinality is a Kunen line.

Before beginning the examples we need the following topological lemma.

Lemma 8.4. Suppose that X is a locally compact Hausdorff space, and Y is its
one-point compactification. Then:

(i) If the compact-open sets of X form a base, then Y is a Boolean space.
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(ii) For every integer k > 0, if kX is hereditarily separable, then so is kY .

Proof. Recall that Y is obtained from X by adding one new point y, and declaring
the topology on Y to consist of all open sets U of X together with all sets {y}∪U
such that U ⊆ X and X\U is compact in X. Note that if U ⊆ X and X\U is
compact in X then U is open in X. (i): We want to show that the clopen subsets
of Y form a base. Any subset of X which is compact and open in X is clopen in
Y . So it suffices to show that each “new” basic open set contains a new basic open
set which is clopen. So, let W be a new basic open set—say W = {y} ∪ U where
U ⊆ X and X\U is compact in X. Then X\U ⊆ V for some compact open subset
V of X, by the compactness of X\U . Thus {y} ∪ (X\V ) ⊆ W and {y} ∪ (X\V )
is clopen in Y , as desired.

(ii) Fix x ∈ X. Assume that k is a positive integer and kX is hereditarily
separable. Now suppose that S is a non-empty subspace of kY . For each Γ ⊆ k let

SΓ = {z ∈ S : ∀i < k(zi = y iff i ∈ Γ)};
S′

Γ = {w ∈ kX : ∃z ∈ SΓ∀i < k[(i ∈ Γ⇒ wi = x) and (i /∈ Γ⇒ wi = zi)]}.

Then for each Γ ⊆ k let C ′
Γ be a countable dense subset of S′

Γ. Next, let

CΓ = {z ∈ kY : ∃w ∈ C ′
Γ∀i < k[(i ∈ Γ⇒ zi = y) and (i /∈ Γ→ zi = wi}.

We claim that D
def=

⋃
Γ⊆k CΓ is dense in S (as desired). To this end, take an open

set U such that U ∩ S �= 0. We may assume that U has the form V0 × · · · × Vk−1,
where each Vi is open in Y . Say U ∩ SΓ �= 0. Define, for i < k,

V ′
i =

{
X, if i ∈ Γ,
Vi ∩X, if i /∈ Γ.

Set U ′ = V ′
0 × · · · × V ′

k−1. Then U ′ ∩ S′
Γ �= 0, so U ′ ∩ C ′

Γ �= 0. Take w ∈ U ′ ∩ C ′
Γ.

Define, for i < k,

zi =
{

y, if i ∈ Γ,
wi, if i /∈ Γ.

Then z ∈ U ∩ CΓ, as desired.

Example 8.5. (CH) (A compact Kunen line). We construct a Boolean space
making use of the topology on the real line; the resulting space is not linearly or-
dered, despite the name. We construct it by constructing a certain locally compact
space, and then taking the one-point compactification to get the Boolean space
we are interested in. Since we will be dealing with many topologies, we have to
be precise about what we mean by a topology—for us, it is just the collection of
all open sets. For any topology σ and any subset A of the space in question, Āσ

denotes the closure of A with respect to the topology σ. Let 〈xξ : ξ < ω1〉 be a
one-one enumeration of R. For each α ≤ ω1 let Rα = {xξ : ξ < α}. Let ρ be the
usual topology on R. Now we claim
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(1) There is an enumeration 〈Sμ : μ < ω1〉 of all of the countable subsets of R×R

such that Sμ ⊆ Rμ ×Rμ for all μ < ω1.

In fact, first let 〈S′
μ : μ < ω1〉 be any old enumeration of the countable subsets of

R× R. We define Sμ = Rμ × Rμ for all μ < ω. Now for ω ≤ μ < ω1 let Sμ = S′
ν ,

where ν is minimum such that S′
ν /∈ {Sη : η < μ} and S′

ν ⊆ Rμ × Rμ. To see
that this is the desired enumeration, suppose that S′

ν is not in the range of the
function S, and choose ν minimum with this property. Then choose μ < ω1 such
that ω ≤ μ, S′

ρ ∈ Rng(S � μ) for each ρ < ν, and S′
ν ⊆ Rμ × Rμ. Then the

construction gives Sμ = S′
ν , contradiction.

Now we construct topologies τη for all η ≤ ω1 so that the following conditions
hold:

(2η) τη is a topology on Rη.
(3η) τξ = {Rξ ∩ U : U ∈ τη} for ξ < η.
(4η) τη ⊇ {Rη ∩ U : U ∈ ρ}.
(5η) If ξ, ξ′ < η, μ < ξ or μ < ξ′, and (xξ, xξ′) ∈ S̄ρ

μ, then (xξ, xξ′) ∈ S̄
τη
μ .

(6η) τη is first-countable.
(7η) τη is Hausdorff.
(8η) In τη, the compact open sets form a base.

For β ≤ ω let τβ be the discrete topology on Rβ . Then the conditions (2β)− (8β)
are clear; (5β) holds since Sμ is finite under the indicated hypotheses.

Now assume that ω < β ≤ ω1 and τα has been constructed for all α < β so
that (2α)− (8α) hold. If β is a limit ordinal, let

τβ = {U ⊆ Rβ : U ∩ Rα ∈ τα for all α < β}.

Then (2β)−(5β) and (7β) are clear. For (6β), suppose that ξ < β; we want to find a
countable neighborhood base for xξ. Let {Un : n ∈ ω} be a countable neighborhood
base for xξ in the topology τξ+1. If V ∈ τβ and xξ ∈ V , then V ∩ Rξ+1 ∈ τξ+1, so
there is an n ∈ ω such that Un ⊆ V ∩ Rξ+1 ⊆ V , as desired. Finally, for (8β), it
suffices to notice that if K ⊆ Rξ is compact in τξ, where ξ < β, then it is compact
in τβ also.

Finally, suppose that β is an infinite successor ordinal α + 1. If there is no
μ < α such that for some ξ ≤ α we have (xα, xξ) ∈ S̄ρ

μ or (xξ, xα) ∈ S̄ρ
μ, let τβ be

the topology with the base τα ∪ {{xα}}. The conditions (2β) − (8β) are easy to
check.

Now suppose there is such a μ. Let T be the set of all ordered triples (γ, ε, μ)
such that γ, ε ≤ α, γ = α or ε = α, and (xγ , xε) ∈ S̄ρ

μ, where μ < α. Thus
0 < |T | ≤ ω. Let 〈(ξm, ηm, μm) : m < ω〉 emumerate T , each element of T repeated
infinitely many times. For each ξ ≤ α, let 〈Uξ

n : n < ω〉 be a decreasing sequence of
open sets forming a neighborhood base for xξ in the usual topology ρ. Now for each
n < ω choose (pn, qn) ∈ Sμn ∩(Uξn

n ×Uηn
n ). Note that pn, qn ∈ Rμn by (1). By (8α)
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we find compact open (in τα) Kn ⊆ Uα
n such that pn ∈ Kn if ξn = α and qn ∈ Kn if

ηn = α. Let τβ be the topology on Rβ having as a base the sets in τα together with
all sets of the form {xα} ∪

⋃
m>n Km for n ∈ ω. We proceed to check (2β)− (8β).

(2β) and (3β) are clear. For (4β), suppose that V is open in ρ. If xα /∈ V , then
V ∩Rβ = V ∩Rα and so V ∩Rα ∈ τα ⊆ τβ . Suppose that xα ∈ V . For xξ ∈ V with
ξ < α we have xξ ∈ V ∩ Rα ∈ τα ⊆ τβ . Choose n ∈ ω such that Uα

n ⊆ V . Then⋃
m>n Km ⊆ Uα

n ⊆ V . Hence V ∩Rβ = (V ∩Rα)∪{xα}∪
⋃

m>n Km ∈ τβ, proving
(4β). For (5β), assume that ξ, ξ′ < β, μ < ξ or μ < ξ′, and (xξ, xξ′) ∈ S̄ρ

μ. We want
to show that (xξ, xξ′) ∈ S̄

τβ
μ . To this end, take a neighborhood of (xξ, xξ′); we may

assume that it has the form W ×W ′ with W and W ′ open in τβ. There are four
possiblities. If ξ = α and ξ′ < α, we proceed as follows. We may assume that W
has the form {xα} ∪

⋃
m>n Km and W ′ has the form Uξ′

a ∩ Rβ for some n, a ∈ ω.
Choose r > n, a so that (ξr, ηr, μr) = (ξ, ξ′, μ). Then (pr, qr) ∈ Sμ ∩ (W ×W ′), as
desired. The possiblities ξ < α and ξ′ = α, and ξ = ξ′ = α are treated similarly.
The possibility ξ, ξ′ < α follows easily from (5α). So (5β) is established. Condition
(6β) is obvious, as is (7β). For (8β), note that a set which is compact open in τα

remains so in τβ. Hence it suffices to show that {xα} ∪
⋃

m>n Km is compact for
each n ∈ ω. Suppose that O is an open cover of this set. Choose V ∈ O such that
xα ∈ V . Then there is a p ∈ ω such that {xα} ∪

⋃
m>p Km ⊆ V , and without loss

of generality n < p. Since O\{V } covers
⋃

n<m≤p Km, which is compact, there is
a finite subset of O which covers the desired set {xα} ∪

⋃
m>n Km. This finishes

the construction of the topologies.
For brevity, let τ = τω1 . To proceed further, we need the following fact about

the construction:

(9) If A ⊆ R× R, then |Āρ\Āτ | ≤ ω.

For, let B be countable and ρ-dense in A; thus Āρ = B̄ρ. Choose μ < ω1 so that
B = Sμ. By condition (5ω1) we clearly have

Āρ\Āτ ⊆ B̄ρ\B̄τ ⊆ {xξ : ξ ≤ μ} × {xξ : ξ ≤ μ}.

and (9) follows.

(10) (R, τ)× (R, τ) is hereditarily separable.

To prove (10), let X be any subspace of (R, τ)×(R, τ). Let C be a countable subset
of X which is ρ-dense in X. Then C ∪ (X\C̄τ ) ⊆ C ∪ (C̄ρ\C̄τ ), so C ∪ (X\C̄τ )
is countable by (9). It is τ -dense in X, since if U, V ∈ τ and (U × V ) ∩ X �= 0,
then (U × V ) ∩ X ∩ (X\C̄τ ) = 0 implies that (U × V ) ∩ X ⊆ C̄τ and hence
(U × V ) ∩X ∩ C �= 0, as desired.

Now we go to the final step in this example: let Y be the one-point com-
pactification of (R, τ). By Lemma 8.4, Y is a Boolean space. It is straightforward
to check that the BA of closed-open sets is uncountable (new compact-open sets
were introduced at each successor step). By (10) and Lemma 8.4, Y × Y is hered-
itarily separable. That the dual of Y has countable irredundance follows from the
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following result of Heindorf [89a] (upon noticing that sA = cH+A ≤ dH+A = hdA
using 3.25 and 5.13).

Theorem 8.6. Let X be a Boolean space, and A its BA of closed-open sets. Then
IrrA ≤ s(X ×X).

Proof. Suppose that I is an infinite irredundant subset of A; we will produce an
ideal independent subset of A × A of power |I| (as desired—see Theorem 3.24).
Namely, take the set {a×−a : a ∈ I}; it is as desired, for suppose that

a×−a ⊆ (b0 ×−b0) ∪ . . . ∪ (bm−1 ×−bm−1),

where a, b0, . . . , bm−1 are distinct elements of I. Now a is not in 〈{bi : i < m}〉, so
it follows that in that subalgebra, a splits some atom; this means that there is an
ε ∈ m2 such that, if we set d =

⋂
i<m bεi

i then we have d∩a �= 0 �= d∩−a. Choosing
x ∈ d ∩ a and y ∈ d ∩ −a it follows that (x, y) ∈ a×−a but (x, y) /∈ bi ×−bi for
each i < m, giving the desired contradiction.

This theorem gives rise to the following problem:

Problem 27. Is it true that IrrA = s(A⊕A) for every infinite BA A?

Note that if IrrA = s(A ⊕ A), then Irr(A × A) = IrrA, since by 11.6(c) of the
Boolean algebra handbook we have (A×A)⊕ (A×A) ∼= 4(A⊕A), and hence

Irr(A×A) ≤ s((A×A)⊕ (A×A))

= s(4(A⊕A))
= s(A⊕A) = IrrA.

Example 8.7. This example, which as we mentioned is from Todorčević [89],
constructs a topology on a certain subset of ωω. First, some notation: If A is a
set with a linear order < on it, and if k ∈ ω, then 〈A〉k denotes the set of all
f ∈ kA such that fi < fj for all i < j < k. For f, g ∈ ωω define f <∗ g if
∃m∀n ≥ m(fn < gn). The BA we want will be constructed under the assumption
that there is a subset A of ωω of power ω1 which is unbounded under <∗. This is
an obvious consequence of CH, but is weaker.

Without loss of generality A has order type ω1 under <∗ and all members
of A are strictly increasing. In fact, take the A originally given, and write A =
{fα : α < ω1}. Then one can inductively define f̄α for α < ω1 so that f̄β <∗ f̄α

for β < α, fα <∗ f̄α, and f̄α is strictly increasing. Namely, let f̄0 be arbitrary. If
f̄β has been constructed for all β < α, let 〈gn : n < ω〉 enumerate 〈f̄β : β < α〉.
Define f̄α(n) to be > f̄α(m) for all m < n, also > fα(n), and also > gm(n) for all
m < n. Clearly this works. The new set {f̄α : α < ω1} (still denoted by A below)
has the desired properties.

We will apply the above notation 〈A〉k to A under the ordering <∗. Let T
be an Aronszajn subtree of {s ∈ <ω1ω : s is one-one}. (See Kunen [80], p. 70.)
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For each α < ω1 let tα be a member of T with domain α. Define e : 〈A〉2 → ω by
e(f̄α, f̄β) = tβα for α < β. Then the following conditions clearly hold:

(1) For all b ∈ A, the function eb
def= e(·, b) is a one-one map from Ab

def= {a ∈ A :
a <∗ b} into ω.

(2) For all a ∈ A, the set {eb � Aa : b ∈ A, a <∗ b} is countable.

For distinct a, b ∈ A let Δ(a, b) be the least n < ω such that an �= bn. And let
Δ(a, a) =∞. The following fact about this notation will be useful:

(�) If Δ(a, b) < Δ(c, b) then Δ(a, c) = Δ(a, b).

To see this, note that a � Δ(a, b) = b � Δ(a, b) = c � Δ(a, b), and aΔ(a, b) �=
bΔ(a, b) = cΔ(a, b), so Δ(a, c) = Δ(a, b).

Now we define H : A→PA by

Hb = {a ∈ A : a <∗ b and e(a, b) ≤ b(Δ(a, b))}.

Note by (1) and the definition of H we have

(3) for all l < ω and b ∈ A the set {a ∈ Hb : Δ(a, b) = l} is finite.

Next we define Cb for b ∈ A by recursion on b: a ∈ Cb iff a = b or

(4) ∃c ∈ Hb(a ∈ Cc and ∀d ∈ Hb(d �= a and d �= c⇒ Δ(a, d) < Δ(a, c))).

Note that

(5) Hb ⊆ Cb

for all b ∈ A (if a ∈ Hb, take c = a and note that Δ(a, a) =∞).
For each n ∈ ω and b ∈ A let Cnb = {a ∈ Cb : Δ(a, b) ≥ n}. Then

(6) c ∈ Hb⇒ ∃l(Clc ⊆ Cb).

In fact, {x ∈ Hb : Δ(x, b) = Δ(c, b)} is finite by (3). Choose l > Δ(x, c) for
any x �= c which is in this set, and with l > Δ(c, b). Suppose that d ∈ Clc. We
claim that d ∈ Cb, and that the element c works to show this in (4). Indeed,
suppose that x ∈ Hb, x �= d, x �= c, and Δ(d, x) ≥ Δ(d, c). Now Δ(c, b) < Δ(d, c),
so Δ(b, d) = Δ(c, b) by (�), and Δ(b, d) < Δ(d, x), so Δ(x, b) = Δ(c, b) by (�).
So x is in the indicated set, which gives Δ(x, c) < l ≤ Δ(c, d) ≤ Δ(d, x), so
Δ(c, d) = Δ(x, c) by (�), contradiction.

(7) a ∈ Cb⇒ ∃l(Cla ⊆ Cb).

For, we may assume that a /∈ Hb by (6), and we proceed by induction on b. The
conclusion is clear if a = b, so suppose that a �= b. Choose c in accordance with
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(4). Then a �= c since a /∈ Hb. By the induction hypothesis, choose l such that
Cla ⊆ Cc. Without loss of generality, l > Δ(a, c). We claim that Cla ⊆ Cb. To
prove this, let d ∈ Cla. So, d ∈ Cc. Suppose x ∈ Hb, x �= d, and x �= c. then x �= a
since a /∈ Hb. So Δ(a, x) < Δ(a, c). Now Δ(a, c) < l ≤ Δ(a, d), so Δ(c, d) = Δ(a, c)
by (�). Also, Δ(a, x) < Δ(a, d), so Δ(d, x) = Δ(a, x) < Δ(a, c) = Δ(c, d), showing
that d ∈ Cb.

From (7) we immediately get

(8) a ∈ Cmb⇒ ∃l(Cla ⊆ Cmb).

From (8) it follows that the collection of sets {Cmb : b ∈ A,m ∈ ω} forms a base
for a topology on A. It is Hausdorff, since, given a �= b, let l = Δ(a, b) + 1; clearly
Cla ∩ Clb = 0. Also note that each set Cb = C0b is open. Next,

(9) Clb is closed in Cb.

For, suppose that x ∈ Cb\Clb, and let m = Δ(x, b) + 1. Then clearly Cmx∩Cb ⊆
Cb\Clb, as desired.

(10) Cb is compact.

We prove this by induction on b. So, assume that it is true for all c <∗ b, and
suppose that Cb ⊆ ⋃

x∈X Cm(x)x. Then choose y ∈ X such that b ∈ Cm(y)y. There
is an l such that Clb ⊆ Cm(y)y. Now we consider two cases:

Case 1. Hb is finite. In this case, we can easily show that Cb is closed: suppose
that a ∈ A\Cb. Hence a �= b and

(∗) ∀c ∈ Hb(a /∈ Cc or ∃d ∈ Hb(d �= a and d �= c and Δ(a, d) ≥ Δ(a, c))).

If c ∈ Hb and a /∈ Cc, choose an open neighborhood Uc of a with the property
that Uc ∩ Cc = 0, using the inductive hypothesis. For c ∈ Hb and a ∈ Cc, choose
d = d(a, c) ∈ Hb such that d �= a, d �= c, and Δ(a, d) ≥ Δ(a, c). Let

V = CΔ(a,b)+1a ∩
⋂

c∈Hb,a/∈Cc

Uc ∩
⋂

c∈Hb,a∈Cc

CΔ(a,d(a,c))+1a.

We claim that V ∩ Cb = 0 (as desired, showing that Cb is closed). For, suppose
that x ∈ V ∩ Cb. Since x ∈ CΔ(a,b)+1a, we have x �= b. Choose, then, c ∈ Hb
such that x ∈ Cc and for all d ∈ Hb, if d �= x and d �= c then Δ(x, d) < Δ(x, c).
If a /∈ Cc, then x ∈ Uc ∩ Cc, contradiction. So a ∈ Cc. Set d = d(a, c). Now
x ∈ CΔ(a,d)+1a, so x �= d and Δ(a, x) > Δ(a, d). Hence Δ(d, x) = Δ(a, d) by (�).
Now Δ(a, d) ≥ Δ(a, c), so Δ(a, c) < Δ(a, x). Hence by (�), Δ(c, x) = Δ(a, c) ≤
Δ(a, d) = Δ(d, x), contradicting the choice of c.

Now for each c ∈ Hb we have that Cc ∩ Cb is a closed subset of Cc, and
hence the inductive hypothesis finishes this case. (Here one should note that Cb =
{b} ∪⋃

c∈Hb(Cc ∩ Cb).)
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Case 2. Hb is infinite. For all c ∈ Hb let

Dc = {a : a /∈ Hb,Δ(a, b) < l, a ∈ Cc, and
∀d ∈ Hb(d �= a and d �= c⇒ Δ(a, d) < Δ(a, c))}.

Now

(**) If c ∈ Hb and a ∈ Dc, then Δ(c, b) < l.

For, assume otherwise. Now Δ(a, b) < Δ(c, b), so Δ(a, c) = Δ(a, b) by (�). Also,
for all d ∈ Hb\{a, c} we have Δ(d, a) < Δ(a, c) = Δ(a, b), hence by (�) we get
Δ(d, b) = Δ(d, a) < Δ(a, c). So Hb is finite by (3), contradiction. Thus (**) holds.

Let Y = {c ∈ Hb : Δ(c, b) < l}. Note that Y is finite by (3). Now

(***) If c ∈ Y , a ∈ Dc, and m = Δ(a, c), then Cmc ⊆ Cb.

For, assume the hypotheses. If Δ(a, c) ≤ Δ(a, b), then d ∈ Hb\{a, c} implies that
Δ(a, d) < Δ(a, c) ≤ Δ(a, b), so Δ(d, b) = Δ(a, d) < Δ(a, c) by (�), hence Hb is
finite by (3), contradiction. Thus Δ(a, c) > Δ(a, b). Now suppose that u ∈ Cmc.
Thus Δ(a, c) ≤ Δ(u, c). Suppose that d ∈ Hb\{u, c}. Then d �= a since a /∈ Hb. So
Δ(a, d) < Δ(a, c) since a ∈ Dc, so Δ(d, c) = Δ(a, d) < Δ(a, c) ≤ Δ(u, c) by (�),
hence by (�) again, Δ(d, u) = Δ(d, c) < Δ(u, c). This shows that u ∈ Cb, and it
proves (***).

For c ∈ Y with Dc �= 0 let n(c) = min{Δ(a, c) : a ∈ Dc}. Then

(****) Cb = Clb ∪ Y ∪⋃
c∈Y,Dc �=0 Cn(c)c.

For, ⊇ holds by (5) and (***). For ⊆, suppose that a ∈ Cb, a /∈ Clb, a /∈ Y .
Since a /∈ Clb, we have a �= b. Since a /∈ Clb and a /∈ Y , we have a /∈ Hb. Since
a ∈ Cb, choose c ∈ Hb such that a ∈ Cc and ∀d ∈ Hb(d �= a and d �= c ⇒
Δ(a, d) < Δ(a, c)). So a ∈ Dc. By (**) we get c ∈ Y . Thus a ∈ Cn(c)c, as desired
for ⊆; (****) has been proved.

By the inductive hypothesis each Cn(c)c is compact, so it follows that Cb is
compact in Case 2.

So, we have proved (10).
From (9) and (10) we get

(11) Clb is compact; so A is locally compact.

(12) a <∗ b⇒ Ca �= Cb.

This is true because b ∈ Cb\Ca. So there are uncountably many compact open
sets.

A subset F ⊆ 〈A〉k is cofinal in A provided that for all a ∈ A there is an
f ∈ F such that a <∗ fi for all i < k. Next we prove

(13) ∀ finite k ≥ 1 and ∀ cofinal F ⊆ 〈A〉k∃f, g ∈ F (fi ∈ Hgi for all i < k).



142 8. Irredundance

This will take a while to prove, but it leads us close to the end of the matter. Since
F is cofinal in A, we may assume that there is an enumeration 〈hα : α < ω1〉 of F

such that hα
i <∗ hβ

j whenever α < β < ω1 and i, j < k. Hence every uncountable
subset of F is also cofinal in A; this is all we need the sequence 〈hα : α < ω1〉 for.
Let D ⊆ F be countable dense in F in the ordinary topology (ωω has the product
topology with ω having the discrete topology; k(ωω) gets the product topology
too). Choose c ∈ A such that fi <∗ c for all f ∈ D and i < k. Now

∀f ∈ F∃m ∈ ω∀n ≥ m∀i < j < k(fin < fjn).

Hence there is an uncountable F0 ⊆ F and an m0 such that

(14) ∀f ∈ F0∀n ≥ m0∀i < j < k(fin < fjn).

Next, let F1 = {f ∈ F0 : c <∗ f0}. Then

∀f ∈ F1∃m > m0∀n ≥ m(cn < f0n).

Hence there is an uncountable F2 ⊆ F1 and an m > m0 such that

(15) ∀f ∈ F2∀n ≥ m(cn < f0n).

Now
F2 =

⋃
{{f ∈ F2 : ∀i < k(fi � m = si} : s ∈ k(mω)}.

Hence there is an uncountable subset F3 of F2 and an s ∈ k(mω) such that

(16) ∀f ∈ F3∀i < k(fi � m = si).

Let C = {eb � Ac : b ∈ A}. Then

F3 =
⋃
{{f ∈ F3 : ∀i < k(efi � Ac = ui)} : u ∈ kC},

so, using (2), there is an uncountable F4 ⊆ F3 and a u ∈ kC such that

(17) ∀f ∈ F4∀i < k(efi � Ac = ui).

Now there is an n ∈ ω such that {f0n : f ∈ F4} is unbounded in ω, since otherwise,
for each n ∈ ω let gn be greater than each f0n for f ∈ F4. Since F4 is cofinal in
A, it follows that g is an upper bound for A, contradiction. Take m0 to be the
least such n. Then there is a p ∈ ω such that {f0 � m0 : f ∈ F4} ⊆ m0p; so
there is a t0 ∈ m0p and an infinite subset F5 of F4 such that f0 � m0 = t0 for
all f ∈ F5 and {f0m0 : f ∈ F5} is unbounded in ω. Wlog 〈f0m0 : f ∈ F5〉 is
one-one. Let n = max(m0,m0). For any i ∈ ω choose f ∈ F5 such that i < f0m0.
then i < f0n < f1n too. Thus {f1n : f ∈ F5} is unbounded. Let m1 be minimum
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such that {f1m1 : f ∈ F5} is unbounded. Continuing in this fashion, we get
m0,m1, . . . ,m(k − 1), t0, . . . , tk−1, F5, . . . , F4+k such that F4 ⊇ F5 ⊇ · · · ⊇ F4+k,
F4+k is infinite, and the following conditions hold:

(18) ∀f ∈ F4+k∀i < k(ti ⊆ fi), ti ∈ miω.

(19) 〈fimi : f ∈ F4+k〉 is one-one for all i < k.

Now the open set in k(ωω) determined by 〈t0, . . . , tk−1〉 meets F , since F4+k is
contained in it; so by the denseness of D, choose d ∈ D in this open set: ti ⊆ di

for all i < k. By (19) there is an f ∈ F4+k such that

∀i < k[fimi > max{ujdj : j < k}].

Hence for all i < k we have fi � mi = ti = di � mi, so mi ≤ Δ(di, fi), and hence

e(di, fi) = uidi < fimi ≤ fi(Δ(di, fi)),

so di is in Hfi for all i < k, as desired; we have proved (13)!
Next,

(21) For every positive integer k, the space kA does not have an uncountable
discrete subspace.

We prove this by induction on k; suppose that it is true for all k′ < k. Suppose
that F is an uncountable discrete subspace of kA. We may assume that there is
an integer m such that (Cmf0 × · · · × Cmfk−1) ∩ F = {f} for all f ∈ F . For all
f ∈ F define ≡f on k by i ≡f j iff fi = fj . Without loss of generality, ≡f is the
same for all f ∈ F . Hence by the induction hypothesis, ≡ is the identity relation,
so that each f ∈ F is one-one. And then by a similar argument with permutations
of k we may assume that fi <∗ fj whenever f ∈ F and i < j < k. Next, we may
assume that 〈rngf : f ∈ F 〉 is a Δ-system, say with kernel G. For each f ∈ F ,
{i < k : fi ∈ G} is a finite subset of k; we may assume that this set is the same
for all f ∈ F ; call the set Γ. Thus fi = gi for all f, g ∈ F and all i ∈ Γ. So the set
F ′ def= {f � (k\Γ) : f ∈ F} is still uncountable and discrete. Since 〈rngf : f ∈ F ′〉
is a system of disjoint sets, F ′ is cofinal in A. And

F ′ =
⋃
{{f ∈ F : ∀i < k(fi � m = si)} : s ∈ k(mω)},

so we may assume that fi � m = gi � m for all f, g ∈ F ′ and i < k. Now we apply
(13) to get distinct f, g ∈ F ′ such that fi ∈ Hgi for all i < k. Since Ha ⊆ Ca for
all a, this clearly is a contradiction. So (21) holds.

The only remaining step is to take the one-point compactification A′ of A.
Lemma 8.1(i) says that A′ is a Boolean space. An easy argument shows that kA′

has no uncountable discrete subspace.
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Problem 28. Can one construct in ZFC a BA A such that IrrA < |A|?
This is Problem 21 in Monk [90].

There are reasonable finite versions of irredundance. For positive integers m,n,
call a subset X of A mn-irredundant if for all x ∈ X one cannot write

x =
∑
i<m

∏
j<n

aij ,

with aij ∈ X\{x} or −aij ∈ X\{x} for all i < m, j < n. So, X is irredundant iff
it is mn-irredundant for all m,n. And define

IrrmnA = sup{|X| : X ⊆ A,X mn− irredundant}.

These function have not been studied. But note that in Rubin’s algebra described
in Chapter 18 we have Irr12A = ω.

Since πA = |A| for A a tree algebra, we also have IrrA = |A| for A a tree algebra.
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We denote |A| also by CardA. The behaviour of this function under algebraic
operations is for the most part obvious. Note, though, that questions about its be-
haviour under ultraproducts are the same as the well-known and difficult problems
concerning the cardinality of ultraproducts in general. CardH− is a non-obvious
function. Clearly CardH−A ≤ 2ω for every infinite BA, and CardH−A = ω for
many BAs, e.g. for free BAs and interval algebras. But CardH−A = 2ω for A sat-
isfying CSP. W. Just and P. Koszmider [91] have shown that it is consistent to
have a BA A such that ω1 ≤ CardH−A = |A| < 2ω. Questions about CardH− are
connected to some problems about cofinality and related cardinal functions which
will not be considered here; see van Douwen [89]. The cardinal function Cardh+ is
defined as follows:

Cardh+A = sup{|ClopX| : X ⊆ UltA}.

It is possible to have Cardh+A > |UltA| : this is true, for example, with A the finite-
cofinite algebra on an infinite cardinal κ, taking X to be the set of all principal
ultrafilters on A, so that X is discrete and hence ClopX =PX and Cardh+A =
2κ. On the other hand, Cardh− coincides with CardH−: obviously Cardh−A ≤
CardH−A, and if X is any infinite subset of UltA, then the function f such that
fa = Sa∩X is a homomorphism from A onto an algebra B such that |B| ≤ ClopX;
so CardH−A ≤ Cardh−A. Clearly dCardS+A = |A|, and dCardS−A = πA.

We shall now go into some detail concerning the spectrum function CardHs, which
seems to be another interesting derived function associated with cardinality. First
we note some more-or-less obvious facts: (1) If A is an infinite free BA, then
CardHsA = [ω, |A|]; (2) If A is infinite and complete, then CardHsA = [ω, |A|]∩{κ :
κω = κ} (using in an essential way the Balcar-Franěk theorem); (3) if ω ≤ κ ≤ |A|,
then CardHsA ∩ [κ, 2κ] �= 0; (4) if A has a free subalgebra of power κ ≥ ω, then
CardHsA ∩ [κ, κω] �= 0. Now we prove a few more involved things.

Lemma 9.1. If κ is an infinite cardinal, L is a linear ordering, the sequence
〈aα : α < κ〉 is strictly increasing in L, and A is the interval algebra on L, then
[ω, κ] ⊆ CardHsA.

Proof. It suffices to show that κ ∈ CardHsA. Define x ≡ y iff x, y ∈ L and
∀α < κ[(aα < x iff aα < y) and (x < aα iff y < aα)]. Then ≡ is a convex
equivalence relation on L with the equivalence classes of order type κ or κ + 1,
and the desired homomorphism is easy to define.

Corollary 9.2. If κ is an infinite cardinal and A is the interval algebra on κ, then
CardHsA = [ω, κ].

Corollary 9.3. If κ is an infinite cardinal, L is a linear ordering of power ≥
(2κ)+, and A is the interval algebra on L, then [ω, κ+] ⊆ CardHsA.
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Proof. One can apply the Erdös-Rado theorem (2κ)+ → (κ+)2κ to get a chain in
L of order type κ+ or (κ+)∗.

Theorem 9.4. Let A be the interval algebra on R. Then CardHsA = {ω, 2ω}.
Proof. The inclusion ⊇ is obvious. Now suppose that f is a homomorphism of
A onto an uncountable BA B; we want to show that |B| = 2ω. Notice that f
is determined by a convex equivalence relation E on R, where the number of
E-equivalence classes is |B|. Now L′ def=

⋃{k : k is an E-equivalence class with
|k| > 1} is Borel, so L′′ def= R\L′ is also. There are only countably many E-
equivalence classes k such that |k| > 1, so clearly |L′′| = |B|. Hence |B| = 2ω by the
Aleksandroff-Hausdorff theorem (see Kuratowski [58] Theorem 3, p. 355).

Theorem 9.5. CardHs(A×B) = CardHsA ∪ CardHsB.

Proof. The inclusion ⊇ is obvious. For ⊆, use the elementary fact given in the
discussion of cHr in Chapter 3.

Theorem 9.6. CardHs(A⊕B) = CardHsA ∪ CardHsB.

Proof. The inclusion ⊇ is obvious. If f is a homomorphism from A⊕ B onto C,
then f [A] ∪ f [B] generates C, so the other inclusion follows.

Corollary 9.7. If ω ≤ κ ≤ 2ω, then there is a BA A such that CardHsA =
[ω, κ] ∪ {2ω}.
Proof. Apply Theorem 9.5 to A×Pω, where A is the free BA on κ free generators.

The strongest result known about CardHs is a special case of the following theorem
of Juhász [92]:

Let κ be a regular uncountable cardinal and let X be a compact Hausdorff space of
weight at least κ. Then there is a closed subspace F ⊆ X such that the weight of
F is in [κ, 2<κ] and

|F | ≤
∑
λ<κ

22λ

.

As a corollary, under GCH for every BA A the set CardHsA contains all regular
uncountable cardinals ≤ |A|. As a special case, this solves Problem 22 of Monk
[90].

Note that the relations CardSr and CardHr are trivial. In comparing cardi-
nality with the cardinal functions so far introduced, we now note explicitly that
2dA ≥ |A| for any infinite BA A. Finally, recall from Part I of the BA Handbook,
Theorem 12.2, that |A|ω = |A| for any infinite CSP algebra A, in particular for
any (countably) complete infinite BA A.
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There is a lot of information about independence in Part I of the Handbook. An
even more extensive account is in Monk [83].

To treat the attainment problem, it is again convenient to first talk about
independence in products.

Theorem 10.1. If neither A nor B has an independent set of power κ ≥ ω then
A×B also does not.

Proof. Let 〈(aα, bα) : α < κ〉 be a system of elements of A × B; we want to
show that this system is dependent. Choose a finite subset Γ of κ and ε ∈ Γ2
so that

∏
α∈Γ aεα

α = 0, and then choose a finite subset Δ of κ\Γ and δ ∈ Δ2 so
that

∏
α∈Δ bδα

α = 0. Let Θ = Γ ∪Δ and θ = δ ∪ ε. Then
∏

α∈Θ(aα, bα)θα = 0, as
desired.

Corollary 10.2. Ind(A×B) = max(IndA, IndB) for infinite BAs A,B.

Corollary 10.3. If 〈Ai : i ∈ I〉 is a system of BAs, κ is an infinite cardinal, and
for every i ∈ I, the set Ai does not have an independent subset of power κ, then∏w

i∈I Ai also has no such subset.

Proof. Suppose that X is an independent subset of
∏w

i∈I Ai of power κ. Fix x ∈ X.

We may assume that F
def= {i ∈ I : xi �= 0} is finite. Then

〈y �
∏
i∈F

Ai : y ∈ X\{x}〉

gives κ independent elements of
∏

i∈F Ai, contradicting Theorem 10.1.

Corollary 10.4. Ind(
∏w

i∈I Ai) = supi∈IIndAi.

Corollary 10.3 enables us to take care of the attainment problem for independence.
For each limit cardinal κ there is a BA A with independence κ not attained. For
κ = ω we simply take for A any infinite superatomic BA. Now assume that κ is
an uncountable limit cardinal. Let I be the set of all infinite cardinals < κ, and
for each λ ∈ I let Bλ be the free BA with λ free generators. Then A

def=
∏w

λ∈I Bλ

is as desired, by Corollary 10.3.
It is perhaps surprising that the analog of Corollary 10.4 for arbitrary prod-

ucts is false. This follows from a theorem of L. Heindorf [92]; it was known earlier—
see Cramer [74], but the construction there is rather ad hoc. Heindorf proves that
|A| ≤ Ind(

∏
n∈ω\1 A∗n) for any infinite BA A, where A∗n is the free product of A

with itself n times. For later purposes we need a modification of his theorem, as
follows.

Theorem 10.5. If A is an infinite BA and X is an infinite disjoint subset of A+,
then there is a function f mapping X into

∏
n∈ω\1 A∗n such that if M and N are
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finite disjoint subsets of X then the set{
n ∈ ω\1 :

∏
x∈M

fxn ·
∏
x∈N

−fxn = 0

}

is finite.
In particular, cA ≤ Ind(

∏
n∈ω\1 A∗n).

Proof. For each a ∈ X we define fa ∈
∏

n∈ω\1 A∗n by setting fan = g0(−a) · . . . ·
gn−1(−a) for each n ∈ ω\1, where gi is the natural isomorphism of A onto the i-th
free factor of A∗n for each i < n. Given finite disjoint subsets M and N of X, let
m = |N |+1. We claim that (

∏
a∈M fa ·

∏
a∈N −fa)n �= 0 for all n ≥ m. For, extend

N to a subset of X, still disjoint from M , of size n. Write N ′ = {a0, . . . , an−1}.
Then ( ∏

a∈M

fa ·
∏

a∈N ′
−fa

)
n =

∏
a∈M

g0(−a) · . . . ·
∏

a∈M

gn−1(−a)·
∏

a∈N ′
(g0a + · · ·+ gn−1a)

≥
∏

a∈M

g0(−a) · . . . ·
∏

a∈M

gn−1(−a)·

g0a0 · . . . · gn−1an−1 �= 0,

as desired.

Now, given an infinite cardinal κ, let A be the finite-cofinite algebra on κ. Then
each algebra A∗n is superatomic, hence has no infinite independent set, but the
product

∏
n∈ω\1 A∗n has independence at least κ. This shows a total failure of

Corollary 10.4 for full direct products. Although this example takes care of the
most obvious question about independence in products, there is another related
question, namely whether an example of this sort can be done with an interval
algebra (they always have independence ω too, just like superatomic algebras,
although independence is attained for some interval algebras). The answer is no,
and after several partial results by several mathematicians a complete solution was
given by Shelah in December 1992; see Shelah [94d]:

If Ai is a non-trivial interval algebra for each i ∈ I, where I is infinite, then
Ind(

∏
i∈I Ai) = 2|I|.

This answers Problem 23 in Monk [90].

We also give Heindorf’s theorem itself:

Theorem 10.6. If A is an infinite BA, then |A| ≤ Ind
(∏

n∈ω\1 A∗n
)
.

Proof. Let F be the set of all functions f such that f maps m2 into 2 for some
m ∈ ω\1; m is denoted by ρf . Let B be a free BA with free generators xa for
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a ∈ A. It suffices to isomorphically embed B into
∏

f∈F A∗ρf . For each f ∈ F and
each i < ρf let gf

i be the natural embedding of A into the i-th free factor of A∗ρf .
We define G : B →∏

f∈F A∗ρf by

(Gxa)f =
∑

ε∈ρf2,fε=1

⎛
⎝ ∏

j<ρf

(gf
j a)εj

⎞
⎠ ,

extending G to a homomorphism. We want to show that G is one-one. To this
end, let a0, . . . , an−1 be distinct elements of A and suppose that ε ∈ n2; we want
to show that

y
def= (Gxa0)

ε0 · . . . · (Gxan−1)
ε(n−1) �= 0

Let Γ = {(i, j) : i < j < n}, and choose m and h so that h is a one-one function
from m onto Γ. For each k < m write hk = (i, j), and let Fk be any ultrafilter
on A such that ai�aj ∈ Fk. For each l < n we define δl ∈ m2 by setting, for any
k < m,

δlk =
{ 1 if al ∈ Fk,

0 otherwise.

Note that if i < j < n then δi �= δj , since if k = h−1(i, j) we have δik �= δjk. Hence
there is an f : m2→ 2 such that fδi = εi for all i < n. Now we claim that yf �= 0, as
desired. If l < n, then for εl = 1 we have fδl = 1, and so

∏
k<m(gf

kal)δlk ≤ (Gxal
)f ;

and for εl = 0 we have fεl = 0 and so
∏

k<m(gf
kal)δlk ≤ ((Gxal

)f )0; so in either
case we have

∏
k<m(gf

kal)δlk ≤ (Gxal
)f )εl. It follows that

∏
l<n

∏
k<m(gf

kal)δlk ≤
yf . Suppose that l < n and k < m. Then aδlk

i ∈ Fk, so
∏

l<n aδlk
l ∈ Fk, so∏

l<n aδlk
l �= 0. Hence

∏
l<n

∏
k<m

(gf
kal)δlk =

∏
k<m

gf
k

(∏
l<n

aδlk
l

)
�= 0,

as desired.

We turn to independence in ultraproducts. As in the case of cellularity, it is easy
to see that if F is a countably complete ultrafilter on an index set I and each
Ai has countable independence, then so does

∏
i∈I Ai/F . Namely, suppose that

〈fα/F : α < ω1〉 is a system of independent elements of
∏

i∈I Ai/F . Now for every
i ∈ I there exist finite disjoint subsets M(i), N(i) of ω1 such that∏

α∈M(i)

fαi ·
∏

α∈N(i)

−fαi = 0.

Hence
I =

⋃
M,N

{i ∈ I : M = M(i) and N = N(i)},
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with M and N ranging over finite subsets of ω1, so, since F is ω2-complete, there
exist finite disjoint M,N ⊆ ω1 such that {i ∈ I : M = M(i) and N = N(i)} ∈ F .
But then

∏
α∈M fα/F ·∏α∈N −fα/F = 0, contradiction.

Further, if F is countably incomplete and each algebra Ai is infinite, then∏
i∈I Ai/F is ω1-saturated, hence is CSP, from which it follows that

∏
i∈I Ai/F

has independence ≥ 2ω. (See Part I of the BA handbook, Theorem 13.20.) Like
with cellularity, if I is infinite, F is a |I|-regular ultrafilter on I, and Ai is an
infinite BA for each i ∈ I, then Ind(

∏
i∈I Ai/I) ≥ 2|I|. The proof is similar to that

for cellularity: let E be a subset of F such that |E| = |I| and each i ∈ I belongs
to only finitely many members of E; let Gi be the set of all e ∈ E such that i ∈ e.
With each g ∈ E2 we associate g′ ∈ ∏

i∈I Ai as follows. Let 〈xh : h ∈ Gi2〉 be
a system of independent elements of Ai. Then for any i ∈ I we set g′i = xg�Gi.
We claim that 〈[g′] : g ∈ E2〉 is an independent system of elements of

∏
i∈I Ai/I.

To see this, let [(g0)′], . . . , [(g(m− 1))′] be distinct elements of
∏

i∈I Ai/I and let
ε ∈ m2. Let H be a finite subset of E such that (g0) � H, . . . , (g(m−1)) � H are all
distinct. Let i ∈ ⋂

H be arbitrary. Now H ⊆ Gi, so (g0) � Gi, . . . , (g(m− 1)) � Gi
are all distinct. Hence

((g0)′i)ε0 · . . . · ((g(m− 1))′i)ε(m−1) = xε0
(g0)�Gi · . . . · x

ε(m−1)
(g(m−1))�Gi �= 0,

as desired.
An application of Theorem 10.5 shows that independence can jump greatly

in an ultraproduct.
Independence is an ultra-sup function, so Theorems 3.15–3.17 of Peterson

apply, Theorem 3.17 saying that Ind
(∏

i∈I Ai/F
)
≥

∣∣∏
i∈I IndAi/F

∣∣ for F regular.
So by Donder’s theorem it is consistent that ≥ always holds. The inequality can
be strict, as is seen by Theorem 10.5. On the other hand, Magidor and Shelah
have shown that is is consistent that there is an infinite set I, a system 〈Ai :
i ∈ I〉 of infinite BAs, and an ultrafilter F on I such that Ind

(∏
i∈I Ai/F

)
<∣∣∏

i∈I IndAi/F
∣∣. See Ros	lanowski, Shelah [94].

Independence in free products is treated in Part I of the BA handbook: Ind(A⊕
B) = max(IndA, IndB), while if I is infinite and |Ai| ≥ 4 for each i ∈ I, then
Ind(⊕i∈IAi) = max(|I|, supi∈IIndAi); see Part I, Theorem 11.15. Under subalge-
bra and homomorphic image formation, the behaviour of independence is basically
simple: if A is a subalgebra or homomorphic image of B, then IndA ≤ IndB, and
the difference can be arbitrarily large. Finally, independence is an ordinary sup-
function, and so its behaviour with respect to unions of well-ordered chains is given
by Theorem 3.11.

We turn to the functions derived from independence. IndH+, IndS+, and dIndS+

all coincide with Ind itself. IndH− appears to be a new function. Fedorchuk [75] has
constructed, using ♦, a BA A such that IndH−A = IndA = ω and CardH−A = ω1;
see also Nyikos [90]. Fedorchuk’s construction is given in Chapter 16.
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Problem 29. Can one construct in ZFC a BA A with the property that IndH−A <
CardH−A?

This is Problem 24 in Monk [90]. Clearly IndS−A = ω for any infinite BA A. We
define

Indh+A = sup{|X| : X ⊆ ClopY , X is independent, Y ⊆ UltA}.

Then it is possible to have A superatomic, hence with IndA = ω, while Indh+A >
|UltA|; see the argument for Card. In fact, maybe it is always true that Indh+A =
Cardh+A:

Problem 30. Is Indh+A = Cardh+A for every infinite BA A?

This is Problem 25 in Monk [90]. Indh− is defined analogously. Again we do not
know anything about this cardinal function; for example:

Problem 31. Is Indh−A = IndH−A for every infinite BA A?

This is Problem 26 in Monk [90]. The function dIndS− appears to be interesting;
if A is PX for some infinite X, then we have dIndS−A = ω since the BA of finite
and cofinite subsets of X is dense in A. On the other hand, if A is an infinite free
BA of regular cardinality, then dIndS−A = |A|; see Part I of the BA handbook,
Theorem 9.16.

Concerning the spectrum function IndHs, note that if IndH−A ≤ μ ≤ IndA,
then A has a homomorphic image B such that μ ≤ IndB ≤ μω. Moreover, if A
has CSP, then this cannot be improved:

IndHsA = {λ : 2ω ≤ λ ≤ IndA, λω = λ}.

(These remarks are due to S. Koppelberg.)

The spectrum function IndSs is trivial: IndSsA = [ω, IndA] for every infinite BA.

The comparison of independence with the cardinal functions already introduced
is simple: IndA ≤ IrrA for every infinite BA A, and the difference can be arbi-
trarily large, for example in an interval algebra; it is possible to have IndA bigger
than πA, for example in Pκ. DepthA can be much larger than IndA, for ex-
ample in the interval algebra on κ. Note that there are some close relationships
between independence and cellularity, though. For example, if (2cA)+ ≤ |A|, then
(2cA)+ ≤ IndA by Corollary 10.9 of Part I of the BA handbook. In particular,
|A| ≤ 2max(cA,IndA). And if |A| is strong limit, then |A| = max(cA, IndA). There
are, however, some problems concerning the relationship of cellularity to inde-
pendence. We give problems 7, 9, and 10 from Monk [83], where there is some
background.

Problem 32. Assume that ρ < ν < κ ≤ 2ρ < λ ≤ 2ν with κ and λ regular. Is
there a κ-cc BA A of power λ with no independent subset of power λ?
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Problem 33. Can one prove the following in ZFC? Suppose that cfμ < κ < μ <
λ ≤ μcfμ = μ<κ and ∀ρ < μ(ρ<κ < μ). Then there is a BA of power λ satisfying
the κ-cc with no independent subset of power λ.

Problem 34. Suppose that κ is uncountable and weakly inaccessible, 2ν < λ for
all ν < κ, 2<κ = λ, and λ is singular. Is there a κ-cc BA of power λ with no
independent subset of power λ?

A BA A has free caliber κ if ∀X ∈ [A]κ∃Y ∈ [X]κ(Y is independent). FreecalA is
the set of all κ ≤ |A| such that A has free caliber κ. We mention some results and
problems about this notion from Monk [83]. Problems 4 and 5 from Monk [83] are
as follows.

Problem 35. For all n ∈ ω let An be the free BA on �n free generators. Does∏
n∈ω An have free caliber �+

ω ?

Problem 36. Let A be free on a set of size �ω+1. Is �ω+1 ∈ FreecalA?

Recall here that for any BA B, B is the completion of B.
In Monk [83] it is observed that Freecal(IntalgL) is empty for every linear

ordering L with first element. This gives rise to the following problem, Problem
14 of Monk [83]:

Problem 37. Is there for every μ a complete BA A of power 2μ such that
FreecalA = 0?

The last problem of this sort that we mention is motivated by the following facts
noted in Monk [83]:

(1) Assume GCH. Suppose that A is an infinite BA and

K
def= {κ : κ ∈ FreecalA and κ is regular}

is nonempty. Then the following conditions hold, where μ = minK and ν = supK:

(i) μ is uncountable.
(ii) For all λ ∈ (μ, ν], if λ is regular and is not the successor of a singular cardinal,
then λ ∈ K.
(iii) For all λ ∈ (μ, ν], if λ = σ+ for some singular σ with μ ≤ cfσ, then λ ∈ K.

(2) Suppose that ω < μ ≤ ν and μ is regular. Then there is a BA A such that

FreecalA = [μ, ν]\{κ : cfκ = ω}.

(3) Assume GCH. Suppose that ω < μ ≤ ν and μ is regular. Then there is a BA
A such that

{κ ∈ FreecalA :κ is regular} = {κ ∈ (μ, ν] : κ is regular but
κ does not have the form σ+ with σ singular, cfσ < μ}.
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Problem 38. If K is a set of regular cardinals with μ = minK and ψ = supK,
and if K satisfies (1)(i)–(iii), is there a BA A such that K is the set of regular
members of FreecalA?

As mentioned in the introduction, there are bounded versions of independence. A
set X ⊆ A is m-independent (where m is a positive integer) if for every Y ∈ [X]m

and every ε ∈ Y 2 we have
∏

y∈Y yεy �= 0. Then we set

IndnA = sup{|X| : X ⊆ A and X is n-independent}.

This notion is briefly studied in Monk [83], where the following problem is stated
which is somewhat relevant to the notion:

Problem 39. Can one prove the following in ZFC? For every m ∈ ω with m ≥ 2
there is an interval algebra having a subset P of size ω1 such that for all Q ∈ [P ]ω1 ,
Q has m pairwise comparable elements and also m independent elements.

The condition in this problem is shown to be consistent in Monk [83]. Ros	lanowski,
Shelah [94] consider the finite version of independence more extensively, proving
the following results (and more):

(1) If n ≥ 2 and λ is an infinite cardinal, then there is a BA A such that IndnA =
λ = |B| and Indn+1A = ω.

(2) If λ is an infinite cardinal and n is an even integer > 2, then there is a BA A
such that IndnA = λ and Ind(A×A) = ω.

We close this chapter with some comments on independence for special kinds of
BAs. By the Balcar-Franěk theorem, IndA = |A| for infinite and complete. For
CSP algebras in general, all one can say is that IndA = (IndA)ω; see Part I of
the BA handbook, Theorem 13.20. Finally, recall the important fact that interval
algebras, tree algebras, and superatomic algebras have countable independence.
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First of all, note that if F is a non-principal ultrafilter on a BA A, then πχF ≥ ω.
To see this, suppose that X is a finite set of non-zero elements of A which is dense
in F Choose y ∈ F such that y <

∏
(X ∩ F ). Then choose x ∈ X such that

x ≤ y ·∏{z ∈ F : −z ∈ X}. This clearly gives a contradiction, whether x ∈ F or
not.

It can happen that A is a subalgebra of B and πχA > πχB: take B =Pω and
A an uncountable free subalgebra of B (see the description of πχ for free algebras
below). A somewhat more complicated example works for A is a homomorphic
image of B. Namely, let B =Pω, and using the fact that B has an independent
set of size ω1, obtain a homomorphism f from B onto an algebra A such that
A is a subalgebra of the completion of the free algebra C on ω1 free generators
{xα : α < ω1}, and C is a subalgebra of A. Then, we claim, πχA = ω1. For,
suppose that F is an ultrafilter on A, and X is a countable subset of A. Then each
element of X is a countable sum of monomials in the xα’s. If we take some α with
xα not in any of these monomials, then xα (or −xα) is an element of F with no
element of X below it.

We turn to products. Clearly πχ(A ×B) = max(πχA, πχB) for any infinite
BAs A and B. More generally, we have:

Theorem 11.1. πχ(
∏w

i∈I Ai) = supi∈IπχAi for any system 〈Ai : i ∈ I〉 of infinite
BAs.

Proof. We may assume that I is infinite. Since Ult(
∏w

i∈I Ai) is the one-point
compactification of the disjoint union of all of the spaces UltAi, it suffices to prove
the following:

(1) Let F be the ultrafilter on
∏w

i∈I Ai consisting of all x ∈ ∏w
i∈I Ai such that

{i ∈ I : xi �= 1} is finite. Then πχF = ω.

To prove (1), let J be any denumerable subset of I. For each j ∈ J we define an
element xj of

∏w
i∈I Ai by setting, for each i ∈ I,

xj
i =

{
0 if j �= i,
1 if j = i.

We claim that {xj : j ∈ J} is dense in F . To see this, take any y ∈ F . Then there
is a j ∈ J such that yj = 1. So xj ≤ y, as desired.

Note that the proof of Theorem 11.1 shows that π-character is attained in
∏w

i∈I Ai

iff there is an i ∈ I such that πχ
(∏w

i∈I Ai

)
= πχAi and πχAi is attained. Using

this remark, we can describe the attainment property of π-character: for each
uncountable limit cardinal κ there is a BA A with π-character κ not attained: we
take the weak product of free algebras of the obvious sizes. On the other hand,
if πχA = ω, then it is attained, since any non-principal ultrafilter has infinite
π-character by our initial remark.
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Turning to arbitrary products, we have:

Theorem 11.2. If 〈Ai : i ∈ I〉 is a system of non-trivial BAs with
∏

i∈I Ai infinite
and |I| regular, then πχ(

∏
i∈I Ai) ≥ max(|I|, supi∈IπχAi).

Proof. If i ∈ I and G is an ultrafilter on Ai, then the set F
def= {y ∈ ∏

i∈I Ai :
yi ∈ G} is an ultrafilter on

∏
i∈I Ai, and a subset of

∏
i∈I Ai dense in F clearly

gives rise to a subset of Ai with no more elements which is dense in G. Hence
πχAi ≤ πχ(

∏
i∈I Ai).

Next, assume that I is infinite; we show that |I| ≤ πχ(
∏

i∈I Ai). For each
subset J of I let xJ be the characteristic function of J , considered as a member
of

∏
i∈I Ai. Let F be any ultrafilter on

∏
i∈I Ai containing all elements xI\J such

that |J | < |I|. Then, we claim, πχF ≥ |I|. In fact, suppose that X ⊆ A+, X is
dense in F , and |X| < |I|. For each y ∈ X choose i(y) ∈ I such that yi(y) �= 0.
Let J = {i(y) : y ∈ X}. Then the element xI\J of F is not ≥ any element of X,
contradiction.

Actually, πχ can jump tremendously in a product. This follows in an obvious way
from the following theorem, which is an observation of Douglas Peterson based on
Theorem 10.5 and its proof.

Theorem 11.3. If A is an infinite BA, then cA ≤ πχ
(∏

i∈ω\1 A∗i
)

(with notation
as in Theorem 10.5).

Proof. Wlog cA > ω. Let X and f be as in Theorem 10.5 and its proof, with
X uncountable. Then by that proof, {−fx : x ∈ X} generates a proper filter
in

∏
i∈ω\1 A∗i, and we extend it to an ultrafilter F . We claim that πχF ≥ |X|;

this will prove the Theorem. Suppose that Y ⊆
(∏

i∈ω\1 A∗i
)+

, |Y | < |X|, and
Y is dense in F ; we want to get a contradiction. There exist a y ∈ Y and an
uncountable Z ⊆ X such that y ≤ −fz for all z ∈ Z. Say yi �= 0. Wlog yi

has the form a0 · a1 · . . . · ai−1, where aj is in the j-th free factor of A∗i. Then
a0 · a1 · . . . · ai−1 ≤ g0z + · · · + gi−1z for all z ∈ Z, so there is a j < i such that
aj ≤ gjz. This being true for all z ∈ Z, and Z being infinite, it follows that there
exist a j < i and two distinct z, w ∈ Z such that aj ≤ gjz and aj ≤ gjw. Since
z · w = 0, it follows that aj = 0, contradiction.

The possibility of doing the above with interval algebras, which naturally arose
in Chapter 10, is not so interesting here, since interval algebras can have high
π-character (see the end of this chapter).

We turn to ultraproducts, giving some results of Douglas Peterson. Since πχ is a
sup-min function, Theorems 6.1–6.3 hold. An additional result of the sort described
in these theorems, with a proof using independent matrices, is the following theo-
rem of Peterson: If 〈Ai : i ∈ I〉 is a system of infinite BAs, with I infinite, F is a
regular ultrafilter on I, and ess.sup F

i∈I |Ai| ≤ 2|I|, then πχ
(∏

i∈I Ai/F
)
≥ cf(2|I|).



156 11. π-character

From 6.1–6.3 the following theorem follows, with a proof similar to that of Theorem
4.14:

Theorem 11.4. (GCH) Suppose that 〈Ai : i ∈ I〉 is a system of infinite BAs,
with I infinite, and F is a regular ultrafilter on I. Then πχ

(∏
i∈I Ai/F

)
≥∣∣∏

i∈I πχAi/F
∣∣.

As usual, the result of Donder shows that it is consistent to always have≥. Peterson
has shown that it is consistent to have < in Theorem 11.4 in the absence of GCH.
See also Chapter 4 for an independent solution by Shelah. For > we have the
following extension of Theorem 11.3, which shows that πχ can jump very much in
an ultraproduct.

Theorem 11.5. If A is an infinite BA and F is a nonprincipal ultrafilter on ω,
then cA ≤ πχ

(∏
i∈ω\1 A∗i/F

)
, again with notation as in Theorem 10.5.

Proof. Let X be as in Theorem 10.5, with X uncountable. By Theorem 10.5,
if N is a finite subset of X then {n :

∏
x∈N −fxn = 0} is finite, and hence∏

x∈N −fx/F �= 0. Thus {−fx/F : x ∈ X} has the finite intersection property,
and we can let G be an ultrafilter on

∏
i∈ω\1 A∗i/F containing this set. We claim

that πχG ≥ |X|, which will prove the theorem. To get a contradiction, suppose that
Y ⊆∏

i∈ω\1 A∗i/F , |Y | < |X|, and Y is dense in G. Then there is a y/F ∈ Y and
an uncountable X ′ ⊆ X such that y/F ≤ −fx/F for all x ∈ X ′. We may assume
that yi �= 0 for all i ∈ ω, and further that each yi has the form a0

i · a1
i · . . . · ai−1

i

with aj
i from the j-th factor. Now for any x ∈ X ′ we have y/F ≤ −fx/F , and so

there is an i ∈ ω such that yi ≤ −fxi. Hence there is an i ∈ ω and an uncountable
X ′′ ⊆ X ′ such that yi ≤ −fxi for all x ∈ X ′′. Now we proceed to a contradiction
as in the proof of Theorem 11.3.

Next we describe π-character for free products:

Theorem 11.6. If 〈Ai : i ∈ I〉 is a system of BAs each with at least 4 elements,
then πχ(⊕i∈IAi) = max(|I|, supi∈IπχAi).

Proof. For brevity let B = ⊕i∈IAi. First take any i ∈ I; we show that πχAi ≤
πχB. Let F be any ultrafilter on Ai, and extend F to an ultrafilter G on B.
Suppose X ⊆ B is dense in G. We may assume that each x ∈ X has the form

(1) x =
∏

j∈Mx yx
j

for some finite subset Mx of I, where yx
j ∈ Aj for every j ∈ Mx. Now define

Y = {yx
i : x ∈ X, i ∈ Mx}. Then clearly Y is dense in F and |Y | ≤ |X|. This

proves that πχAi ≤ πχB.
Next, we show that |I| ≤ πχB, where we assume that I is infinite. For each

i ∈ I choose ai ∈ Ai such that 0 < ai < 1. Let F be an ultrafilter on B such that
ai ∈ F for each i ∈ I; clearly such an ultrafilter exists. Suppose that X ⊆ B is
dense in F ; we may assume that each x ∈ X has the form (1) indicated above.
Clearly then, by the free product property, we must have |X| ≥ |I|.
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Now let F be an ultrafilter on B. Then for each i ∈ I, F ∩Ai is an ultrafilter
on Ai, and so there is an Xi ⊆ Ai of cardinality ≤ πχAi which is dense in F ∩Ai.
Let

Y = {y :there is a finite J ⊆ I and a b in
∏

j∈J Xj such that y =
∏

j∈J bj}.
Clearly |Y | ≤ max(|I|, supi∈IAi) and Y is dense in F , as desired.

As a corollary, πχA = κ if A is the free BA on κ generators.

Next we discuss the behaviour of πχ under unions.

Theorem 11.7. Suppose that 〈Aα : α < κ〉 is a strictly increasing sequence of
BAs with union B, where κ is regular. Let λ = supα<κ πχAα. Then πχB ≤∑

α<κ πχAα ≤ max(κ, λ). Assume in addition that Aα =
⋃

β<α Aβ for all limit
α < κ. Then πχB ≤ λ+.

Proof. Let F be an ultrafilter on B. Choose Xα ⊆ Aα which is dense in F ∩Aα,
with |Xα| = πχ(F ∩ Aα), for each α < κ. Then

⋃
α<κ Xα is dense in F , and

|⋃α<κ Xα| ≤
∑

α<κ πχAα. So πχB ≤∑
α<κ πχAα ≤ max(κ, λ).

Now we make the additional assumption indicated, and suppose that πχB >
λ+. Let F be an ultrafilter on B such that πχF > λ+. Thus κ > λ+ by the first
part of this proof. Let S = {α < κ : cfα = λ+}. So, S is stationary in κ. For each
α < κ let Xα ⊆ Aα be dense in F ∩ Aα with |Xα| ≤ λ. For α ∈ S we then have
Xα ⊆ Afα for some fα < α. Therefore f is constant, say equal to β, on some
stationary subset of S. So Xβ is dense in F , contradicting πχF > λ+.

In contrast to Theorem 6.6, we did not assert in 11.7 that κ ≤ 2λ. In fact, for any
infinite cardinal κ there is a strictly increasing continuous sequence 〈Aα : α < κ〉
of BAs such that πχAα = ω for all α < κ. Namely, take a strictly increasing
continuous sequence of subalgebras of Fincoκ with union Fincoκ; recall that if
A ≤ Fincoκ, then A is isomorphic to Fincoλ for some λ ≤ κ. (In Monk [90],
κ ≤ 2λ was mistakenedly asserted.)

The upper bound λ+ mentioned in Theorem 11.7 can be attained—take a
sequence of free algebras.

Concerning the derived functions of π-character, the first result is that tA =
πχH+A = πχh+A, where πχh+A = sup{πχ(F, Y ) : F ∈ Y, Y ⊆ UltA}, and for
any point x of any space X, πχ(x,X) is defined to be min{|M | : M is a collection
of non-empty open subsets of X and for every neighborhood U of x there is a
V ∈ M such that V ⊆ U}. Such a set M is called a local π-base for x. It is
also convenient for this proof to have an algebraic version of free sequences. Let
A be a BA. A free sequence in A is a sequence 〈xξ : ξ < α〉 of elements of A
such that if ξ < α and F and G are finite subsets of ξ and α\ξ respectively, then∏

η∈F xη ·
∏

η∈G−xη �= 0. Then A has a free sequence of length α iff UltA has a
free sequence (in the topological sense, defined in Chapter 4) of length α. In fact,
first suppose that 〈xξ : ξ < α〉 is a free sequence in A. For each ξ < α let Fξ

be an ultrafilter containing {xη : η ≤ ξ} ∪ {−xη : ξ < η < α}. This is possible
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by the definition above. It is easy to check that 〈Fξ : ξ < α〉 is a free sequence
in UltA. Conversely, let 〈Fξ : ξ < α〉 be a free sequence in UltA. Then by the
definition of free sequences in spaces, for each ξ < α there is a xξ ∈ A such that
{Fη : η < ξ} ⊆ S(−xξ) and {Fη : ξ ≤ η} ⊆ Sxξ. Then 〈xξ : ξ < α〉 is a free
sequence in A. This equivalence shows, in particular, that IndA ≤ tA. Note that
tightness in these two free sequence senses have the same attainment properties:
one is attained iff the other is.

Theorem 11.8. (Shapirovskĭı) For any infinite BA A we have tA = πχH+A =
πχh+A.

Proof. First we show tA ≤ πχh+A. For brevity let κ = πχh+A. Let F be an
ultrafilter on A, and suppose that Y ⊆ UltA and F ⊆ ⋃

Y ; we want to find a
subset Z of Y of size ≤ κ such that F ⊆ ⋃

Z. We may assume that F /∈ Y . By the
definition of πχh+A, let M be a local π-base for F in Y ∪{F} with |M | ≤ πχh+A.
The assumption that F /∈ Y implies that F is not isolated in Y ∪ {F}, and hence
that V ∩ Y �= 0 for every V ∈M . Taking a point from each such intersection, we
get a subset Z of Y of power ≤ κ such that V ∩ Z �= 0 for every V ∈ M . Then
clearly F ⊆ ⋃

Z, as desired. Clearly 〈aα : α < κ〉 is a free sequence, as desired.
Next we show that πχh+A ≤ πχH+A. Given Y ⊆ UltA, let Y be the closure

of Y , and recall from the duality theory that Y corresponds to a homomorphic
image of A. So, we just need to show that πχY ≤ πχY . Let y ∈ Y , and let M be
a local π-base for y in Y . Then {U ∩ Y : U ∈M} is clearly a local π-base for y in
Y . So, πχY ≤ πχY follows.

Finally, we show that πχH+A ≤ tA. Note that if Y is a closed subspace of X
and 〈xξ : ξ < α〉 is a free sequence in Y , then it is a free sequence in X also. Hence
it suffices to show that if F ∈ UltA and πχF ≥ κ, then there is a free sequence of
length κ in A, by Theorem 4.20. Thus we have:

(1) For every subset B of A+ of power < κ there is an a ∈ F such that
b · −a �= 0 for every b ∈ B.

We construct a sequence 〈aα : α < κ〉 by induction. Choose a0 arbitrary ∈ F . Now
suppose that aβ has been defined for all β < α, where 0 < α < κ. Let Gα be the
set of all non-zero products

∏
β∈M aβ ·

∏
β∈N −aβ such that M and N are finite

disjoint subsets of α such that M < N (meaning that ∀β ∈ M∀λ ∈ N(β < λ)).
By (1), choose aα ∈ F such that b · −aα �= 0 for all b ∈ Gα. Clearly 〈aα : α < κ〉
is a free sequence, as desired.

Note from the proof of Theorem 11.8 that one of πχh+ and πχH+ is attained iff
the other is; and if πχh+ is attained, then so is t, in the free sequence sense.

It is possible to have πχS+A > πχA; this is true, for example, for A =Pω,
using the fact that Pω has a free subalgebra of size 2ω.

Clearly πχS−A = πχH−A = ω. On the other hand, πχh−A = 1 for any
infinite BA A, since UltA has a denumerable discrete subspace. If B is dense in
A, then πχB ≤ πχA. In fact, if F is an ultrafilter on A, let X ⊆ A be dense in F
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with |X| = πχF . Wlog X ⊆ B. Hence X is dense in F ∩B, so πχ(F ∩B) ≤ πχF .
This shows that, indeed, πχB ≤ πχA. It is possible that πχB < πχA when
B is dense in A. For example, let A be the interval algebra on an uncountable
cardinal κ and let B be Fincoκ; see the description of πχ for interval algebras
below. These comments show that dπχS+A = πχA, but there is an example with
dπχS−A < πχA (contradicting a statement in Monk [90]).

Recall from the introduction that for a cardinal function such as πχ we can
define an associated function πχinf as follows: πχinfA = inf{πχF : F is an ultrafil-
ter on A}. And recall from Part I Theorem 10.16 the useful result of Shapirovskĭı
that IndA = (πχinf)H+A = sup{πχinfB : B is a homomorphic image of A}, for
A not superatomic. Moreover, πχinf can be given a more elementary equivalent
definition:

Theorem 11.9. For any infinite BA, πχinfA is the smallest cardinality of a subset
D of A+ such that for any finite partition of unity 〈ai : i < m〉 in A there is a
d ∈ D and an i < m such that d ≤ ai.

Proof. Let πχinfA = πχF , where F is an ultrafilter on A. Let D be dense in F
with |D| = πχA. Let 〈ai : i < m〉 be a finite partition of unity in A. Then ai ∈ F
for some i < m. Say d ∈ D and d ≤ ai. This shows that D satisfies the indicated
condition.

For the other direction, suppose that D satisfies the indicated condition,
but |D| < πχinfA. For all F ∈ UltA, D is not dense in F , so there is an aF ∈
F such that d �≤ aF for all d ∈ D. Now {SaF : F ∈ UltA} covers UltA. Let
{SaF0 , . . . ,SaFn−1} be a finite subcover. So aF0 + · · ·+ aFn−1 = 1, and d �≤ ai for
all d ∈ D and i < n. Without loss of generality the ai’s are pairwise disjoint, and
this gives a contradiction.

This theorem suggests another function related to πχinf : call a subset D ⊆ A+

weakly dense if for all a ∈ A there is a d ∈ D such that d ≤ a or d ≤ −a. Let
wdA = min{|D| : D is weakly dense in A}. Then wdA ≤ πχinfA by Theorem
11.9. Balcar and Simon [91a], [91b] have shown that there are BAs where these
two cardinals are different, although they are equal for all complete BAs and for
all homogeneous BAs.

Clearly πχA ≤ πA for any infinite BA A. The difference between πχ and π can
be large, for example in a finite-cofinite algebra: as in the proof of Theorem 11.1,
πχA = ω for a finite-cofinite algebra A. πχA > dA for some free algebras A; a free
algebra also shows that πχA can be greater than LengthA. It is easy to construct
an example where πχ is much smaller than Ind. In fact, let A be a free BA on κ free
generators. Then we construct a sequence 〈Bn : n ∈ ω〉 of algebras by recursion.
Let B0 = A. Having constructed Bn, let Bn+1 be an extension of Bn obtained by
adding for each ultrafilter F on Bn an element 0 �= yn

F such that yn
F ≤ b for all

b ∈ F ; it is easy to see that this is possible. Let C =
⋃

n∈ω Bn. Then IndC ≥ κ,
while πχC = ω. For, let G be any ultrafilter on C. Then {yn

G∩Bn
: n ∈ ω} is dense

in G, showing that πχG ≤ ω.
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πχA > IndA for A the interval algebra on an uncountable cardinal κ, and
DepthA > πχA for A the interval algebra on 1 + ω∗ · (κ + 1); both of these results
are clear on the basis of the description of πχ for interval algebras given at the
end of this chapter.

There are two interesting positive results concerning the relationship of πχ
with our earlier cardinal functions. The first of these is true for arbitrary non-
discrete regular Hausdorff spaces, with no complications in the proof from the BA
case:

Theorem 11.10. dX ≤ πχXcX for any non-discrete regular Hausdorff space X.

Proof. By non-discreteness, πχX ≥ ω; this is easy to check, following the lines of
the argument at the beginning of this chapter. For each x ∈ X let Ox be a family
of non-empty open subsets of X such that |Ox| ≤ πχX and for every neighborhood
U of x there is a V ∈ O such that V ⊆ U . Now we define subsets Yα ⊆ X and
collections Pα of open sets for α < (cX)+ by induction so that the following
conditions hold:

(1) |Yα| ≤ (πχX)cX ;
(2) |Pα| ≤ (πχX)cX .

Fix x0 ∈ X. Set Y0 = {x0} and P0 = Ox0 . Suppose that Yβ and Pβ have been
defined for all β < α. If α is a limit ordinal, set Yα =

⋃
β<α Yβ and Pα =

⋃
β<αPβ .

Now suppose that α is a successor ordinal β + 1. Set

Qα = {R : R ⊆Pβ, |R| ≤ cX,
⋃
R �= X}

Clearly |Qα| ≤ πχXcX . For every R ∈ Qα choose ϕR ∈ X\⋃R and put

Yα = Yβ ∪ {ϕR : R ∈ Qα},

Pα =
⋃

x∈Yα

Ox.

This finishes the definition. Now we claim

(3) L
def=

⋃
α<(cX)+ Yα is dense in X.

Since |L| ≤ (πχX)cX , (3) finishes the proof. To prove (3), suppose that it is not
true. Then by regularity, there is an open U such that L ⊆ U ⊆ U �= X. Set
P∗ =

⋃
x∈LOx, and T = {V ∈ P∗ : V ⊆ U}. Let R be a maximal disjoint subset

of T . Then L ⊆ ⋃R; for, if x ∈ L\⋃R, then x ∈ U\⋃R, which is open, so there
is a V ∈ Ox such that V ⊆ U\⋃R, and R ∪ {V } contradicts the maximality of
R. Also,

⋃R ⊆ ⋃ T ⊆ U �= X. Since R ⊆ Pβ for some β < (cX)+, it follows
that R ∈ Qβ for some β < (cX)+, and hence we get ϕR ∈ X\⋃R ⊆ X\L,
contradiction.
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Theorem 11.11. dA · πχA = πA for any infinite BA A.

Proof. We already know that dA ≤ πA and πχA ≤ πA. Now let D be a dense
subset of UltA with |D| = dA, and for each F ∈ D let XF be a local base for F
of size ≤ πχA. Clearly

⋃
F∈D XF is dense in A, as desired.

Concerning πχ for special classes of algebras, we first give a description of what
happens for interval algebras. Let L be a linearly ordered set with first element
0, and let A be the interval algebra on L. The ultrafilters on A are in one-one
correspondence with the final segments of L not containing 0; corresponding to
the ultrafilter F is the segment {a ∈ L : [0, a) ∈ F}. Given a terminal segment
T of L, let κ be the type of a shortest cofinal sequence in L\T and λ the type of
a shortest coinitial sequence in T . If both κ and λ are infinite, then πχF is the
minimum of κ and λ. If one is infinite and the other is 1, then πχF is the infinite
one. If both are 1, then πχF is 1. From this description it is easy to construct a
linear order L such that if A is the interval algebra on L then πχA < χA, with
the difference arbitrarily large: for example, let κ be any infinite cardinal, and
let L be 0 + ω∗ · κ + ω∗. The above description implies that πχA = ω, while if
F is the ultrafilter corresponding to the terminal segment ω∗, then χF = κ. In
this example we also have πχA < DepthA. The description of πχ also shows that
πχA ≤ DepthA for an interval algebra A.

If A is complete, then cA ≤ πχA: in fact, suppose that πχA < cA. Let X
be disjoint in A with

∑
X = 1 and |X| = (πχA)+. Let F be an ultrafilter on A

such that
∑

(X\Y ) ∈ F for each Y ⊂ X such that |Y | < |X|. Let Y be a π-base
for F with |Y | < |X|. For each y ∈ Y choose xy ∈ X such that y · xy �= 0. Then
{xy : y ∈ Y } is a π−base for F ∩ 〈X〉cm (where 〈X〉cm is the complete subalgebra
of A generated by X). But −∑

y∈Y xy ∈ F ∩ 〈X〉cm, contradiction.
K. Bozeman [91] shows that under GCH we have πA = πχA for A complete;

this is a partial solution of Problem 27 of Monk [90]. We reformulate that problem:

Problem 40. Can one show in ZFC that πA = πχA for A complete?

(Bozeman’s results must be suitably analyzed to get the indicated result. First
some notation. Let B be a BA, X ⊆ B, and a ∈ B. Then we set X � a = {x · a :
x ∈ X}. We say that X is hereditarily weakly dense if X � a is weakly dense in
B � a for all a ∈ B+. Then we set

hwdB = min{|X| : X is hereditarily weakly dense in B}.

Note that wdB ≤ hwdB. If k is a cardinal function on Boolean algebras, we say
that B is k-homogeneous if k(B � a) = kB for every a ∈ B. Two major results in
Bozeman [91] are as follows:

(1) If B is complete and hwd-homogeneous, then wdB = hwdB. (This result is
rather easy.)
(2) If B is complete and both π- and hwd-homogeneous, then πB ≤ 2<hwdB. (The
proof is rather involved.)
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On the basis of these results, if B is complete and both π- and hwd-homogeneous,
and if GCH holds, then

wdB ≤ πχinfB ≤ πχB ≤ πB ≤ hwdB ≤ wdB.

Now assume GCH, and let B be any complete BA. It is easy to see that we can
write B ∼=

∏
i∈I Ci with each Ci both π- and hwd-homogeneous. Then

πB = max{|I|, sup
i∈I

πCi}

= max{cB, sup
i∈I

πχCi}

≤ πχB ≤ πB,

as desired.)
In Chapter 6 we gave an example of a complete algebra A with the property

that dA < πA; hence by Theorem 11.11 we have dA < πχA also.
πχ is characterized for tree algebras by the following theorem.

Theorem 11.12. Let T be an infinite tree. Then πχ(Treealg T ) = sup{cf C : C is
an initial chain of T with finitely many immediate successors}.
Proof. We describe πχF for each ultrafilter F on TreealgT . Recall that the ul-
trafilters on TreealgT are in one-one correspondence with the initial chains of T ,
where if T has finitely many roots we exclude the empty chain (a correction of the
description in the Handbook). Given an initial chain C, we let FC be generated
by

{T ↑ t : t ∈ C} ∪ {T\(T ↑ t) : t ∈ T\C}.
This is the ultrafilter associated with C. We now consider several cases. Case
1. C has a maximal element t, and t has finitely many immediate successors.
Then {t} ∈ FC , which is thereby principal, so that πχF = 1. Case 2. C has
infinitely many immediate successors. Let M be a countable set of such immediate
successors, and let X = {T ↑ t : t ∈ M}. Then X is dense in FC . So πχFC ≤ ω
in this case. Case 3. C has no maximal element, but has finitely many immediate
successors. Let M be the set of all immediate successors of C, and let N be a
cofinal subset of C of size cf C. Then {(T ↑ t)\⋃s∈M (T ↑ s) : t ∈ N} is dense in
FC . Suppose that X is dense in FC but |X| < cfC. Wlog each element x ∈ X has
the form (T ↑ tx)\⋃s∈Px

(T ↑ s). Choose u ∈ N such that tx < u for all x ∈ X.
Then (T ↑ u)\⋃s∈M (T ↑ s) ∈ FC , and no element of X is below it, contradiction.
Thus πχFC = cfC in this case.

For tree algebras we have πχA ≤ DepthA, since DepthA = tA for them. The
difference can be arbitrarily large; this is an observation of Douglas Peterson.
Namely, given κ, consider the tree

T
def= {f : f : α + 1→ ω for some α ≤ κ} ∪ {0}
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under ⊆. Every initial chain of T has countably many immediate successors, so
πχ(Treealg T ) = ω by Theorem 11.12; but Depth(TreealgT ) = κ.

In Dow, Monk [94] the relationship between depth and π-character for super-
atomic BAs is described. There is a BA A such that DepthA = ω and πχA = ω1.
If πχA ≥ ω2, then πχA = DepthA. Above we showed that one can have πχA <
DepthA with any prescribed gap for A an arbitrary BA.
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Again we note first of all that if F is a non-principal ultrafilter in a BA A, then
tF ≥ ω. To see this, note that for each x ∈ F there is a y /∈ F such that 0 < y < x;
hence there is an ultrafilter Gx such that x ∈ Gx but Gx �= F . Let Y = {Gx : x ∈
F}. Thus F ⊆ ⋃

Y . Suppose that Z is a finite subset of Y such that F ⊆ ⋃
Z.

But it is a very elementary exercise to show that no ultrafilter is included in a
finite union of other, different, ultrafilters. So, tF ≥ ω, and hence tA ≥ ω for every
infinite BA A.

From the definition of tightness it is clear that t(A × B) = max{tA, tB}.
Furthermore, t(

∏w
i∈I Ai) = supi∈ItAi for any system 〈Ai : i ∈ I〉 of non-trivial

BAs with I infinite. By the topological description of weak products, to prove this
it suffices to show that tF = ω for the “new” ultrafilter F

def= {x ∈∏w
i∈I Ai : there

is a finite subset G of I such that xi = 1 for all i ∈ I\G}. To see this, first note
that if G ∈ Ult(

∏
i∈I Ai) and G �= F , then there is an iG ∈ I and an ultrafilter

KG on Ai such that G = {x ∈ ∏
i∈I Ai : xiG ∈ KG}. Next, for H a finite subset

of I let
xH i =

{
1 if i ∈ I\H
0 if i ∈ H.

Now suppose that F ⊆ ⋃
Y with Y ⊆ Ult(

∏
i∈I Ai). The case F ∈ Y is easy, so

suppose that F /∈ Y . Now H
def= {iG : G ∈ Y } is infinite; otherwise xH ∈ F gives a

contradiction. Let Z be a countable subset of Y such that {iG : G ∈ Z} is infinite.
Suppose that x ∈ F . Say xi = 1 for all i ∈ I\L, L finite. Choose G ∈ Z such that
iG /∈ L. Then x ∈ G, as desired.

Note that this argument again shows that tightness is attained in
∏w

i∈I Ai

iff there is an i ∈ I such that t
(∏w

i∈I Ai

)
= tAi and tightness is attained in Ai

(for infinite Ai’s). From this, the attainment property of tightness follows: for each
limit cardinal κ > ω there is a BA A with tightness κ not attained: take the weak
product of 〈Aλ : ω < λ < κ, λ a cardinal〉, where Aλ is the free BA of size λ.

For the free sequence equivalents of tightness see Chapters 4 and 11. The free
sequence characterization shows that if A is a subalgebra or homomorphic image
of B, then tA ≤ tB. Clearly the difference can be arbitrarily large.

Concerning attainment in the free sequence sense, we first show

Theorem 12.1. If κ is an infinite cardinal with cfκ > ω and 〈Ai : i ∈ I〉 is a
system of BAs none of which has a free sequence of type κ, then also

∏w
i∈I Ai does

not have a free sequence of type κ.

Proof. Suppose that 〈Fα : α < κ〉 is a free sequence in Ult
(∏w

i∈I Ai

)
. We think

of Ult
(∏w

i∈I Ai

)
as the one-point compactification of the disjoint union of all of

the spaces UltAi. We may assume that the “new” ultrafilter G is not among the
Fα’s. For each α < κ let iFα be the unique i ∈ I such that Fα ∈ UltAi. Set
J = {iFα : α < κ}. Then |J | ≥ cfκ, since κ =

⋃
j∈J{η < κ : iFη = j}. Now

J =
⋃

ξ<κ{iFη : η < ξ}, so it follows from cfκ > ω that there is a ξ < κ such that
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{iFη : η < ξ} is infinite. Clearly |{iFη : ξ ≤ η}| ≥ cfκ by the above argument, so
it follows that

G ∈ {Fη : η < ξ} ∩ {Fη : ξ ≤ η < κ},
which contradicts the free sequence property.

It follows from Theorem 12.1 that for every κ with cfκ > ω there is a BA with
tightness κ not attained in the free sequence sense.

Now we turn to the case of cofinality ω:

Theorem 12.2. Let tA = κ, where κ is a singular cardinal of cofinality ω. Then
A has a free sequence of length κ.

Proof. This will be a modification of the proof of 4.2; see also Theorem 4.21.
An element a ∈ A is called a μ-element if for some ideal I of A � a, the algebra
(A � a)/I has a strictly increasing sequence of type μ. Let 〈λi : i < ω〉 be a
strictly increasing sequence of infinite regular cardinals with supremum κ. We call
an element a ∈ A an ∞-element if it is a λi-element for all i < ω.

(1) If a is an ∞-element and a = b + c with b · c = 0, then b is an ∞-element or c
is an ∞-element.

For, it is enough to show that for every i < ω, either b is a λi-element or c is a
λi-element. Suppose that for some i < ω, neither b nor c is a λi-element. Let I be
an ideal in A � a and 〈[xα] : α < λi〉 a strictly increasing sequence of elements in
(A � a)/I. Now if α < β < λi, then

xα · b · −(xβ · b) = xα · −xβ · b ∈ I ∩ (A � b),

and hence in A � b we have [xα · b] ≤ [xβ · b]. Hence there is an α < λi such that if
α < β < γ < λi then xγ · −xβ · b ∈ I. Similarly for c: there is an α′ < λi such that
if α′ < β < γ < λi, then xγ · −xβ · c ∈ I. But then if max(α,α′) < β < γ < λi we
get xγ · −xβ ∈ I, contradiction. This proves (1).

Now we construct disjoint elements a0, a1, . . . such that ai is a λi-element for
all i < ω. Suppose that ai has been constructed for all i < n so that

∏
i<n−ai

is an ∞-element. Now there exists an ideal I in A �
∏

i<n−ai with a sequence
〈[xα] : α < λn+1〉 strictly increasing in (A �

∏
i<n−ai)/I. Then clearly

(2) xλn is a λn-element.

Now by (1) and (2) there is a λn-element an such that
∏

i≤n−ai is an∞-element.
Now for each i < ω choose an ideal Ii in A � ai such that (A � ai)/Ii has a

chain of type λi. Let J = 〈⋃i<ω Ii〉Id. Then J ∩ (A � ai) = Ii for each i < ω, and
hence A/J has a chain of type λi for all i < ω. Hence as in the proof of 4.2, A/J
has a chain of type κ, as desired (see the proof of 4.21).

We also recall from Theorem 11.8 that tA = πχH+A = πχh+A. And, as mentioned
after the proof of Theorem 11.8, πχH+ and πχh+ have the same attainment prop-
erties, while πχH+ attained implies that t is attained in the free sequence sense.
Another of the attainment problems is answered by the following theorem.
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Theorem 12.3. Suppose that κ is a singular cardinal. Then tightness is not at-
tained in Intalgκ.

Proof. Let 〈λα : α < cfκ〉 be a strictly increasing continuous sequence of cardinals
with supremum κ. By the Handbook, each ultrafilter on Intalgκ is determined by
an end segment of κ not containing 0 (this last restriction is not found in the
Handbook, but it is clearly necessary). If C is such an end segment of κ, then its
associated ultrafilter FC is generated by

{[0, c) : c ∈ C} ∪ {[c,∞) : c ∈ κ\C}.

So, take any end segment C; we want to show that tFC < κ. Case 1. C = 0.
In this case we claim that tFC ≤ cfκ. In fact, suppose that FC ⊆

⋃
Y , where

Y ⊆ Ult(Intalg κ). For each α < cfκ we have [λα,∞) ∈ FC , so we can choose
Gα ∈ Y such that [λα,∞) ∈ Gα. We claim that FC ⊆

⋃{Gα : α < cfκ} (as
desired). In fact, let x ∈ FC . Without loss of generality x has the form [c,∞) for
some c ∈ κ. Choose α < cfκ such that c < λα. Then [c,∞) ⊇ [λα,∞) ∈ Gα,
as desired. Case 2. C �= 0. Let c be the least element of C. Then we claim that
tFC ≤ max(ω, |c|). For, again suppose that FC ⊆

⋃
Y , where Y ⊆ Ult(Intalg κ).

For each d < c we have [d, c) ∈ FC , and so we can choose Gd ∈ Y such that
[d, c) ∈ Gd. Now we claim that FC ∈

⋃{Gd : d < c}, as desired. For, let x ∈ FC .
Wlog x has the form [d, e) with d ∈ κ\C and e ∈ C. Then x ∈ Gd, as desired.

Corollary 12.4. For every singular cardinal κ there is a BA A such that tA = κ
not attained but A has a free sequence of type κ.

This corollary answers Problem 29 of Monk [90]. But recall from the proof of
Theorem 4.20 that if tA is regular, then attainment in the free sequence sense
implies attainment in the defined sense.

The description of πχ for interval algebras given at the end of Chapter 11
shows that if κ is singular, then πχ(Intalg κ) = κ not attained. Thus attainment in
the free sequence sense does not imply attainment in the πχH+ sense, answering
Problem 30 in Monk [90] negatively. But again if tA is regular and it is attained in
the free sequence sense then it is attained in the πχh+ sense. The argument here
is a little lengthy, but will be useful in discussing character too. Let tA = κ, κ
regular, and suppose that 〈Fα : α < κ〉. is a free sequence in UltA. For each ξ < κ
choose aξ ∈ A such that {Fα : α < ξ} ⊆ Saξ and Saξ ∩ {Fα : ξ ≤ α < κ} = 0.
Then

{−aξ : ξ < κ} ∪ {x ∈ A : {Fα : α < κ} ⊆ Sx}
has the finite intersection property. In fact, otherwise we would get −aξ1 · . . . ·
−aξn · x = 0, where {Fα : α < κ} ⊆ Sx. Choose α < κ with ξi < α for all
i = 1, . . . , n. Then x ∈ Fα, so aξi ∈ Fα for some i, contradiction. So, let G be an
ultrafilter containing the given set. Let Y = {Fα : α < κ} ∪ {G}. We claim that
πχ(G,Y ) = κ. For, suppose that M ∈ [A]<κ and {Sx ∩ Y : x ∈ M} is a π-base
for G, where Sx ∩ Y �= 0 for all x ∈ M . Then by the regularity of κ, there is
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an x ∈ M and a Γ ∈ [κ]κ such that Sx ∩ Y ⊆ S(−aξ) ∩ Y for all ξ ∈ Γ. Then
{Fα : α < κ} ⊆ S(−x). In fact, let α < κ. Choose ξ ∈ Γ such that α < ξ. Then
Fα ∈ Saξ, so Fα /∈ Sx, hence Fα ∈ S(−x), proving that {Fα : α < κ} ⊆ S(−x). It
follows that −x ∈ G too. So Sx ∩ Y = 0, contradiction.

Three problems about attainment remain; the first one is Problem 28 in Monk
[90].

Problem 41. Does attainment of tightness imply attainment in the free sequence
sense?

Problem 42. Does attainment of tightness imply attainment in the πχH+ sense?

Note that “yes” on Problem 42 implies “yes” on Problem 41.

Problem 43. Does attainment of tightness in the πχH+ sense imply attainment
in the sense of the definition?

We return to the discussion of products.

Theorem 12.5. If 〈Ai : i ∈ I〉 is a system of non-trivial BAs, with I infinite, then
t(

∏
i∈I Ai) ≥ max(2|I|, supi∈ItAi).

Proof. If j ∈ I, then Aj is isomorphic to a subalgebra of
∏

i∈I Ai; so tAi ≤
t(

∏
i∈I Ai). Since independence is less than or equal to tightness, it also follows

that 2|I| ≤ t(
∏

i∈I Ai).

Theorem 10.5 implies that tightness can jump in a product: apply it to A =
Fincoκ and use the discussion of free products below. A similar remark holds for
ultraproducts.

Note that there can be superatomic interval algebras with high tightness; this
is clear from the fact that Depth ≤ t.

Now we consider ultraproducts, giving some results of Douglas Peterson. Recall
from the introduction that tightness is an order-independence function. For such
functions we have the following theorem, which uses the notion of depth of a linear
ordering, which is the supremum of cardinalities of well-ordered subsets of the
ordering.

Theorem 12.6. Suppose that k is an order-independence function, 〈Ai : i ∈ I〉 is
a sequence of infinite BAs, with I infinite, F is an ultrafilter on I, and 〈κi : i ∈ I〉
is a sequence of cardinals such that κi < k′Ai for all i ∈ I. Then k

(∏
i∈I Ai/F

)
≥

Depth
(∏

i∈I κi/F
)
.

Proof. For each i ∈ I let 〈ai
α : α < κi〉 be a sequence of elements of Ai such that

for all finite G,H ⊆ κi, if 〈κi, <,G,H〉 |= ϕ then
∏

α∈F ai
α ·

∏
α∈H −ai

α �= 0. Let
λ = Depth

(∏
i∈I κi/F

)
. We consider two cases. Case 1. λ is a successor cardinal.

Let 〈fα/F : α < λ〉 be a sequence of elements of
∏

i∈I κi/F such that fα/F < fβ/F
if α < β. Define gαi = ai

fαi for all α < λ and i ∈ I. Now suppose that G and H
are finite subsets of λ such that (λ,<,G,H) |= ϕ. Let

K = {i ∈ I : ∀α, β ∈ G ∪H(α < β ⇒ fαi < fβi)}.
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Then K ∈ F . By (2) in the definition of order-independence function we have
(κi, <, {fαi : α ∈ G}, {fαi : α ∈ H}) |= ϕ for each i ∈ K, and hence

∏
α∈G ai

fαi ·∏
α∈H −ai

fαi �= 0. Therefore
∏

α∈G fα/F ·∏α∈H −gα/F �= 0, as desired.
Case 2. λ is a limit cardinal. Then k

(∏
i∈I Ai/F

)
≥ κ for each successor

κ < λ, by the above argument; hence k
(∏

i∈I Ai/F
)
≥ λ.

Theorem 12.7. (GCH) Suppose that 〈Ai : i ∈ I〉 is a system of infinite BAs, with
I infinite, and F is a regular ultrafilter on I. Then t

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I tAi/F

∣∣.
Proof. Let κ = ess.sup F

i∈ItAi. Case 1. κ ≤ |I|. The ultraproduct has an indepen-
dent subset of size 2|I|, and the desired result follows. Case 2. cfκ > |I|. Then if
κ is a successor cardinal, we may assume that t′Ai = κ+ for all i ∈ I, and hence
by Theorem 12.6 we have t

(∏
i∈I Ai/F

)
≥ Depth

(∏
i∈I κ/F

)
= κ. The limit case

clearly follows from this case. Case 3. cfκ ≤ |I| < κ. Using Lemma 3.12 or Lemma
3.13, we obtain a system 〈λi : i ∈ I〉 of infinite cardinals such that λi < tAi for
each i ∈ I, and ess.sup F

i∈Iλi = κ. Hence by Theorem 12.6 again, and by the proof
of Theorem 4.13, t

(∏
i∈I Ai/F

)
≥ Depth

(∏
i∈I λi/F

)
≥ κ+.

As usual, Donder’s theorem then says that ≥ holds for any uniform ultrafilter,
assuming V = L. The inequality can be strict, from the discussion of independence.
A consistent example exists for the other direction by Magidor, Shelah [91]; see
also Ros	lanowski, Shelah [94].

The tightness of free products is described by a theorem of Malyhin [72]; we give
the result here. The proof we give is due to Todorčević (private communication);
he uses the idea of this proof to strengthen Malyhin’s result.

Theorem 12.8. t(A⊕B) = max(tA, tB).

Proof. The inequality ≥ is clear. For the other inequality it suffices to show that
if 〈cα : α < θ〉 is a free sequence in A ⊕ B with θ regular and uncountable, then
either A or B has a free sequence of that length too. We use free sequence here in
the algebraic sense described in Chapter 11. First we claim:

(1) We may assume that each cα has the form aα · bα with aα ∈ A and bα ∈ B.

To see this, first write cα =
∑

i<mα
aαi · bαi with each aαi ∈ A and each bαi ∈ B.

Since θ is regular and uncountable, we may assume that mα = m does not depend
on α. Now for each α < θ let Fα be an ultrafilter on A ⊕ B such that {cξ : ξ ≤
α} ∪ {−cξ : α < ξ < θ} ⊆ Fα. Then by the first part of the proof of Theorem 4.20
we get an ultrafilter G on A⊕B such that

(2) |{α < θ : a ∈ Fα}| = θ for all a ∈ G.

Then cα ∈ G for all α < θ; for if −cα ∈ G we would get −cα ∈ Fβ for some β ≥ α
by (2), and this is impossible. It follows that for all α < θ there is an i < m such
that aαi ·bαi ∈ G. Hence there exist an i < m and a Γ ∈ [θ]θ such that aαi ·bαi ∈ G
for all α ∈ Γ. Now let

K = {δ ∈ Γ : ∀H ∈ [Γ ∩ δ]<ω∃α ∈ (maxH, δ)∀ξ ∈ H(aξi · bξi ∈ Fα)}.



12.8 Free products 169

We claim that K is unbounded in θ. For, let δ0 < θ. For every finite H ⊆ Γ ∩ δ0

we have
∏

ξ∈H aξi · bξi ∈ G, and hence by (2) there is an αH > maxH such that∏
ξ∈H aξi · bξi ∈ FαH . Choose δ1 ∈ Γ greater than δ0 and all ordinals αH for

H ∈ [Γ∩δ0]<ω. Then repeat the construction for δ1, obtaining δ2 ∈ Γ, etc. Finally,
let δω be the least member of Γ greater than all δi, i < ω. Clearly δω ∈ K, proving
the claim about K.

Let 〈δξ : ξ < θ〉 enumerate K in increasing order. We claim, then, that
〈aδξi · bδξi : ξ < θ〉 is a free sequence in A ⊕ B; this will prove the claim (1). To
prove this, let M and N be finite subsets of θ such that each member of M is
less than each member of N . We may assume that N is nonempty. Let ξ be the
least member of N . We then apply the definition of K to its member δξ to get an
α ∈ (max{δη : η ∈ M}, δξ) such that aδηi · bδηi ∈ Fα for all η ∈ M . Note that we
also have −cδη ∈ Fα for all η ∈ N . Now∏

η∈M

aδηi · bδηi ·
∏
η∈N

−cδη ≤
∏

η∈M

aδηi · bδηi ·
∏
η∈N

−(aδηi · bδηi),

and the left side is in Fα and hence is nonzero, so the right side is nonzero too,
and this proves that 〈aδξi · bδξi : ξ < θ〉 is a free sequence in A⊕B.

So now we assume (1). We consider two cases. Case 1. ∀α < θ∃β ≥ α∀K ∈
[α]<ω∀L ∈ [θ\β]<ω(aKL

def=
∏

ξ∈K aξ ·
∏

ξ∈L−aξ �= 0). Define 〈αξ : ξ < θ〉 as
follows. If αη has been defined for all η < ξ, let βξ = supη<ξ αη and choose
αξ > βξ such that ∀K ∈ [βξ]<ω∀L ∈ [θ\αξ]<ω(aKL �= 0). Then 〈aαξ

: X < θ〉 is a
free sequence in A. For, assume that M and N are finite subsets of θ, each member
of M less than each member of N . Let ξ = supη∈M (η + 1) (ξ = 0 if M = 0). Then
{αη : η ∈M} ∈ [βξ]<ω and {αη : η ∈ N} ∈ [θ\αξ]<ω, so

∏
η∈M aαη ·

∏
η∈N −aαη �=

0, as desired.
Case 2. Case 1 fails: ∃α0 < θ∀β ≥ α0∃Kβ ∈ [α0]<ω∃L ∈ [θ\β]<ω(aKβL = 0).

So ∃K ∈ [α0]<ω∃Γ ∈ [θ\α0]θ∀β ∈ Γ∃L ∈ [θ\β]<ω(aKL = 0). Hence we get
〈Lα : α < θ〉 such that (α < β < θ ⇒ ∀ξ ∈ Lα∀η ∈ Lβ(ξ < η)), (α < θ ⇒
∀ξ ∈ K∀η ∈ Lα(ξ < η)), and aKLα = 0 for all α < θ. Let bα =

∏
ξ∈Lα

bξ for all
α < θ. Then 〈bα : α < θ〉 is a free sequence in B. For, suppose that M and N are
finite subsets of θ, each member of M less than each member of N . Then, with
P =

⋃
α∈N Lα,

0 �=
∏
ξ∈K

aξ · bξ ·
∏

α∈M,ξ∈Lα

aξ · bξ ·
∏

α∈N,ξ∈Lα

−(aξ · bξ)

=
∏
ξ∈K

aξ · bξ ·
∏

α∈M,ξ∈Lα

aξ · bξ ·
∑
Γ⊆P

⎛
⎝∏

ξ∈Γ

−aξ ·
∏

ξ∈P\Γ
−bξ

⎞
⎠ ,

so choose Γ ⊆ P so that

0 �=
∏
ξ∈K

aξ · bξ ·
∏

α∈M,ξ∈Lα

aξ · bξ ·
∏
ξ∈Γ

−aξ ·
∏

ξ∈P\Γ
−bξ.
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Now if Lα ⊆ Γ for some α ∈ N , then∏
ξ∈K

aξ · bξ ·
∏

α∈M,ξ∈Lα

aξ · bξ ·
∏
ξ∈Γ

−aξ ·
∏

ξ∈P\Γ
−bξ ≤ aKLα = 0,

contradiction. So for all α ∈ N there is a ξ ∈ Lα\Γ. Thus

0 �=
∏
ξ∈K

bξ ·
∏

α∈M,ξ∈Lα

bξ ·
∏

ξ∈P\Γ
−bξ ≤

∏
α∈M

bα ·
∏

α∈N

∑
ξ∈Lα

−bξ

=
∏

α∈M

bα ·
∏

α∈N

−bα,

as desired.

Theorem 12.9. If 〈Ai : i ∈ I〉 is a system of BAs each with at least four elements,
then t(⊕i∈IAi) = max(|I|, supi∈I tAi).

Proof. . Obviously tAj ≤ t(⊕i∈IAi) for each j ∈ I; and |I| ≤ ⊕i∈IAi since
Ind ≤ t. Thus ≥ holds. To prove ≤, let κ = max(|I|, supi∈I tAi), and suppose
that 〈cα : α < κ+〉 is a free sequence in ⊕i∈IAi; we shall get a contradiction. For
each α < κ+ there is a finite Sα ⊆ I such that cα ∈ ⊕i∈SαAi. We may assume
that S = Sα does not depend on α. But then κ+ ≤ supi∈S tAi by Theorem 12.8,
contradiction.

The behaviour of tightness in the free sequence sense under unions of chains of
BAs is similar to the case of cellularity (Theorem 3.11). The definition of ordinary
sup-function does not quite fit, but essentially the same proof can be used:

Theorem 12.10. Let κ and λ be infinite cardinals, with λ regular. Then the
following conditions are equivalent:

(i) cfκ = λ.
(ii) There is a strictly increasing sequence 〈Aα : α < λ〉 of infinite Boolean

algebras each with no free sequence of type κ such that
⋃

α<λ Aα has a free sequence
of type κ.

In view of the equivalence of tightness with its free sequence variant, 12.10 also
applies to tightness when κ is a successor cardinal. And actually 12.10 extends in
the following form to tightness itself; this answers, negatively, Problem 31 in Monk
[90].

Theorem 12.11. Let κ and λ be infinite cardinals, with λ regular. Then the
following conditions are equivalent:

(i) cfκ = λ.
(ii) There is a strictly increasing sequence 〈Aα : α < λ〉 of Boolean algebras

each with tightness less than κ such that
⋃

α<λ Aα has tightness κ.

Proof. By the comment before the theorem, we assume that κ is a limit cardinal.
Let B =

⋃
α<λ Aα. (i)⇒(ii): Take a free BA of size κ and write it as an increasing

union of smaller algebras in the obvious way.
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(ii)⇒(i): Assume that (ii) holds and (i) fails. Let μ = supα<λ tAα; the first
part of the proof will consist in showing that μ = κ; to this end, suppose that μ < κ.
Fix ν such that μ < ν < κ. Let 〈aα : α < ν〉 be a free sequence in B. For each β < λ
let Sν

β = {α < ν : aα ∈ Aβ}. Thus Sν
β ⊆ Sν

γ for β < γ < λ, and ν =
⋃

β<λ Sν
β .

If ∃β < λ∀γ ∈ (β, λ)[Sν
β = Sν

γ ], then ν = Sν
β and so {aα : α < ν} ⊆ Aβ, hence

tAβ ≥ ν, contradiction. Thus ∀β < λ∃γ ∈ (β, λ)[Sν
β ⊂ Sν

γ ]. Applying this to

ν = μ+ we get λ ≤ μ+; then applying it to ν = μ++ we get μ++ =
⋃

β<λ Sμ++

β , so

there is a β < λ such that |Sμ++

β | = μ++, so Aβ has a free sequence of type μ++,
which contradicts tAβ ≤ μ. This contradiction proves that μ = κ.

Since each tAα is less than κ, from μ = κ it follows that cfκ ≤ λ; since (i) fails,
we have in fact that cfκ < λ. Now ∀α < λ∃β ∈ (α, λ)[tAα < tAβ ], since otherwise
we would have μ < κ. Hence λ ≤ supα<λ tAα = κ. Since λ is regular, λ < κ.
So κ is singular. Let 〈να : α < cfκ〉 be a strictly increasing sequence of cardinals
with supremum κ. For each α < cfκ there is a βα < λ such that tAβα ≥ να,
since μ = κ. Let γ = supα<cfκ βα; then γ < λ since cfκ < λ. But then tAγ = κ,
contradiction.

A more natural version of Theorem 12.10 for tightness itself would be the equiva-
lence expressed in the following problem.

Problem 44. Is the following true? Let κ and λ be infinite cardinals, with λ
regular. Then the following conditions are equivalent:

(i) cfκ = λ.
(ii) There is a strictly increasing sequence 〈Aα : α < λ〉 of Boolean algebras

each having no ultrafilter with tightness κ such that
⋃

α<λ Aα has an ultrafilter
with tightness κ.

We turn to derived functions for tightness. By Theorem 11.8 we have that tH+ =
th+ = tA. Clearly tS+ = tA, tS−A = ω, and dtS+A = tA. In the algebra of
Fedorchuk [75] we have tH−A ≤ tA < CardH−A; so Problem 32 of Monk [90] was
solved long ago. See Chapter 16 for Fedorchuk’s algebra. Note that dtS−A �= tA in
general; this can be seen by considering Pω and its dense subalgebra consisting
of the finite and cofinite subsets of ω.

Recall also our earlier results that DepthH+A = tA = πχH+A; see Theorems
4.21, 11.8.

Next we mention more about the relationships between tightness and our
previously introduced functions. By Theorem 4.21 we have DepthA ≤ tA for any
BA A; the difference can be big, for example in a free algebra. πχA ≤ tA by
Theorem 11.8. We observed in Chapter 11 that one can have πχA < DepthA in
an interval algebra with the difference arbitrarily large. This solves Problem 33
in Monk [90]. In particular, it is possible to have πχA < tA with the difference
arbitrarily large.

We observed at the beginning of this chapter that IndA ≤ tA; the difference
is large in some interval algebras. Obviously tA ≤ |A|. Note that tA ≤ sA ≤
IrrA by Theorems 3.25 and 4.21. Thus Problem 34 in Monk [90] has the obvious
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answer “no”. tA > πA for A = Pω. tA > LengthA for A an uncountable free
BA. LengthA > tA for A the interval algebra on the reals. cA > tA for A an
uncountable finite-cofinite algebra.

We also give the following result relating π with t; it is from Todorčević [90a].

Theorem 12.12. For every infinite BA A there is a sequence 〈aα : α < β〉
of nonzero elements of A such that {aα : α < β} is dense in A and for every
subset Γ of β with no maximum element, the sequence 〈aα : α ∈ Γ〉 is free iff
{aα : α ∈ Γ} has the finite intersection property. (Since Γ has a natural order from
β, the meaning of “free” in this extended sense is clear.)

Proof. Let P be a maximal disjoint subset of A+ such that A � b is π-homogeneous
for every b ∈ P , that is, π(A � c) = π � b) for every nonzero c ≤ b. Temporarily
fix b ∈ P . Let π(A � b) = κb, and let 〈cb

α : α < κb〉 enumerate a dense subset of
(A � b)+ of size κb. Now we define 〈ab

α : α < κb〉 by induction. Suppose that ab
α

has been defined for all α < β. Let F be the collection of all nonzero elements of
the form cb

β ·
∏

α∈F (ab
α)εα for F a finite subset of β and ε ∈ F 2. Then F is not

dense in A � cb
β , so there is an ab

β ∈ (A � cb
β)+ such that x �≤ ab

β for all x ∈ F .
This finishes the construction.

Concatenating the so obtained sequences 〈ab
α : α < κb〉 in any order, we

obtain a sequence 〈aα : α < β〉 as desired in the theorem. In fact, first we check
that {aα : α < β} is dense in A. Suppose that a ∈ A+. Choose b ∈ P such that
a·b �= 0. There is a γ < κb such that cb

γ ≤ a·b. By construction, ab
γ ≤ cb

γ , as desired.
Next we check that for any subset Γ of β with no maximum element, 〈aα : α ∈ Γ〉
is free iff {aα : α ∈ Γ} has the finite intersection property.⇒: obvious.⇐: Assume
that {aα : α ∈ Γ} has the finite intersection property. Then there is a b ∈ P such
that each of the aα’s for α ∈ Γ of the form ab

γ . So without loss of generality we
assume that {ab

α : α ∈ Γ} has the finite intersection property, and we want to show
that 〈ab

α : α ∈ Γ〉 is free. We prove

(*) If F and G are finite subsets of γ and F < G, then
∏

α∈F ab
α ·

∏
α∈G−ab

α �= 0.

This we do by induction on |G|. The case G = 0 is given. Assume that (*) is
true for G, and G < γ ∈ Γ. If

∏
α∈F ab

α ·
∏

α∈G−ab
α · cb

γ = 0, then also
∏

α∈F ab
α ·∏

α∈G−ab
α ·ab

γ = 0, and so 0 �= ∏
α∈F ab

α ·
∏

α∈G−ab
α =

∏
α∈F ab

α ·
∏

α∈G−ab
α ·−ab

γ ,
as desired. If

∏
α∈F ab

α ·
∏

α∈G−ab
α · cb

γ �= 0, then
∏

α∈F ab
α ·

∏
α∈G−ab

α · −ab
γ �= 0

by construction.

There are several natural finite versions of tightness, using the free sequence equiv-
alent. For m,n ∈ ω, an m,n-free sequence is a sequence 〈aα : α < κ〉 such that if
Γ,Δ ⊆ α with |Γ| = m, |Δ| = n, and Γ < Δ, then

∏
α∈Γ aα ·

∏
β∈Δ−aβ �= 0. Then

we set
tmnA = sup{κ : there is an m,n-free sequence of length κ}.

Similarly we get four more notions:
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An m-free sequence is a sequence 〈aα : α < κ〉 such that if Γ,Δ ⊆ α with |Γ| = m,
Δ finite and Γ < Δ, then

∏
α∈Γ aα ·

∏
β∈Δ−aβ �= 0;

tmA = sup{κ : there is an m-free sequence of length κ}.

utmnA = sup{|X| : ∀Y ∈ [X]m and ∀Z ∈ [X]n(Y ∩ Z = 0⇒
∏
y∈Y

·
∏
z∈Z

−z �= 0)};

utmA = sup{|X| : ∀Y ∈ [X]m and ∀ finite Z(Y ∩ Z = 0⇒
∏
y∈Y

·
∏
z∈Z

−z �= 0)}.

These notions are studied in Ros	lanowski, Shelah, S. [94].

Concerning tightness for special classes of algebras, note first of all that tA = |A|
whenever A is complete. The description of t for interval algebras is similar to that
for πχ. Since t coincides with DepthH+, tA = DepthA for A an interval algebra,
by retractiveness. But it is of some interest to describe tF for each ultrafilter F on
an interval algebra. Let A be the interval algebra on a linearly ordered set L with
first element. Let C be a terminal segment of L not containing 0, and let κ be the
type of a shortest cofinal sequence in L\C and λ the type of a shortest coinitial
sequence in C. Then, we claim, the tightness of the ultrafilter FC associated with
C is the maximum of κ and λ. Let 〈aα : α < κ〉 be a strictly increasing cofinal
sequence in L\C, and let 〈bα : α < λ〉 be a strictly decreasing coinitial sequence
in C. First we show that tFC ≤ max{κ, λ}. So, assume that FC ⊆

⋃
Y , where

Y ⊆ UltA. For each α < κ and β < λ we have [aα, bβ) ∈ FC , so choose Gαβ ∈ Y
such that [aα, bβ) ∈ Gαβ . Clearly FC ⊆

⋃{Gαβ : α < κ, β < λ}, as desired. Second
we show that tFC = max{κ, λ}. Say wlog κ = max{κ, λ}. For each α < κ let Gα

be an ultrafilter such that [aα, aα+1) ∈ Gα. each β < λ let Hβ be an ultrafilter
such that Then

FC ⊆
⋃

α<κ

Gα;

and it is clear that no subset with fewer than κ elements will work.
For tree algebras the situation is similar: t(TreealgT ) = Depth(Treealg T )

by retractiveness. Now take any ultrafilter F on Treealg T . It corresponds to an
initial chain C of T ; see the Handbook. A description of tF , due to Brenner [82],
is as follows:

Theorem 12.13. Let T be a tree with a single root and F an ultrafilter on
TreealgT . Let C = {t ∈ T : (T ↑ t) ∈ F}. Then one of the following holds:

(i) C has a greatest element t, and t has only finitely many immediate suc-
cessors. Then F is principal, and tF = 1.

(ii) C has a greatest element t, and t has infinitely many immediate succes-
sors. Then tF = ω.

(iii) C has no greatest element. Then tF = cfC.
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Proof. (i) is obvious. For (ii), suppose that C has a greatest element t and t
has infinitely many immediate successors. Suppose that F ⊆ ⋃

Y , where Y ⊆
Ult(TreealgT ). Without loss of generality F /∈ Y . We claim

(1) S
def= {s : s is an immediate successor of t and (T ↑ s) ∈ G for some G ∈ Y } is

infinite.

For, suppose that S is finite. Now (T ↑ t)\⋃s∈S(T ↑ s) ∈ F , so choose G ∈ Y
such that (T ↑ t)\⋃s∈S(T ↑ s) ∈ G. For every immediate successor s of t we have
(T ↑ s) /∈ G. So F = G, contradiction. So (1) holds.

Let U ∈ [S]ω. For each u ∈ U choose Gu ∈ Y such that (T ↑ u) ∈ Gu. Now
suppose that x ∈ F . Without loss of generality x has the form (T ↑ t)\⋃v∈V (T ↑ v)
where V is a finite set of immediate successors of t. Choose u ∈ U\V . Clearly
(T ↑ t)\⋃v∈V (T ↑ v) ∈ Gu, as desired.

In the present case it is clear that F is nonprincipal, so tF = ω.
For (iii), suppose that C has no greatest element. Let 〈sα : α < cfC〉 be a

strictly increasing cofinal sequence of elements of C.
First we show that tF ≥ cfC. For each α < cfC the set

{T ↑ sα}∪{T\(T ↑ u) : u is an immediate successor of sα}
∪{T\(T ↑ v) : v and sα are incomparable}

has the fip, as is easily seen; let Gα be an ultrafilter containing this set. We claim
that F ⊆ ⋃

α<cfC Gα. For, suppose that x ∈ F . We may assume that

(2) x = (T ↑ r)\⋃u∈U (T ↑ u) where r ∈ C, U is a set of immediate successors of
r, and U ∩ C = 0.

Choose α < cfC such that r ≤ sα. Clearly x ∈ Gα, as desired.
Now suppose that Γ ⊆ cfC and |Γ| < cfC. We claim that F �⊆ ⋃

α∈Γ Gα. For,
choose β < cfC such that Γ < β. Clearly (T ↑ sβ) ∈ F but (T ↑ sβ) /∈ ⋃

α∈Γ Gα.
So, we have shown that tF ≥ cfC.
Now suppose that F ⊆ ⋃

Y , Y ⊆ Ult(TreealgT ). We want to find Z ∈
[Y ]≤cfC such that F ⊆ ⋃

Z. We may assume that F /∈ Y . For each α < cfC
let yα = (T ↑ sα) and let Gα ∈ Y be such that yα ∈ Gα. We claim that F ⊆⋃

α<cfC Gα. Let x ∈ F . We may assume that x is as in (2). Choose α < cfC such
that r < α. Then yα ⊆ x, and so x ∈ Gα, as desired.

The connection between tightness and depth in superatomic BAs is not completely
known. In Dow, Monk [94] it is shown that if κ→ (κ)<ω, then every superatomic
BA with tightness at least κ+ has depth at least κ. But the following problem, for
example, is open.

Problem 45. Is there a superatomic BA A such that tA = (2ω)+ and DepthA =
ω?
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The following theorem gives some equivalent definitions of spread.

Theorem 13.1. For any infinite BA A, sA is equal to each of the following car-
dinals:

sup{|X| : X is a minimal set of generators of 〈X〉Id};
sup{|X| : X is ideal-independent};
sup{|X| : X is the set of all atoms in some homomorphic image of A};
sup{|AtB| : B is an atomic homomorphic image of A};
sup{cB : B is a homomorphic image of A}.

Proof. Six cardinals are mentioned in this theorem; let them be denoted by
κ0, . . . κ5 in the order that they are mentioned. In Theorem 3.24 we proved that
κ0 = κ2, and in Theorem 3.25 that κ2 = κ5. It is obvious that κ1 = κ2. To
show that κ3 ≤ κ4, suppose that B is a homomorphic image of A with an infinite
number of atoms. Let I be the ideal 〈{x : x · a = 0 for every atom a of B}〉Id of
B. Clearly B/I is atomic with the same number of atoms as B. This shows that
κ3 ≤ κ4. Obviously κ4 ≤ κ5 Finally, for κ5 ≤ κ3, let B be a homomorphic image
of A, and let D be an infinite disjoint subset of B. We show how to find an atomic
homomorphic image C of B with exactly |D| atoms. Let M be the subalgebra of
B generated by D. Let f be an extension of the identity on D to a homomorphism
of B into D; the image of B under f is as desired.

From these characterizations it follows that if A is a subalgebra or homomorphic
image of B, then sA ≤ sB. Clearly the difference can be arbitrarily large.

As to attainment of spread, first note that all of the equivalents of spread
given in Theorem 13.1 have the same attainment properties. We state the facts
known about attainment of spread without proof: (1) Spread is always attained for
singular strong limit cardinals: see Juhász [80] Theorem 4.2; (2) Spread is always
attained for singular cardinals of cofinality ω; see Juhász [80], Theorem 4.3; (3)
Assuming V=L, if κ is inaccessible but not weakly compact, then there is a BA
A with spread κ not attained: see Juhász [71], example 6.6; (4) If sA is weakly
compact, then sA is attained: see Juhász [71], remark following 3.2; (5) If 2ω is a
limit cardinal, then there is a BA A with spread 2ω not attained; see Corollary
3.31.

An infinite BA A has an infinite disjoint subset D, which gives rise to an
infinite discrete subspace of UltA. So sA is always infinite.

The following theorem is obvious upon looking at its topological dual:

Theorem 13.2. Suppose that 〈Ai : i ∈ I〉 is a system of BAs each with at least
two elements. Then s

(∏w
i∈I Ai

)
= max(|I|, supi∈IsAi).

Clearly s
(∏

i∈I Ai

)
≥ max(2|I|, supi∈IsAi). Shelah and Peterson independently

oberved that strict inequality is possible, thus answering Problem 35 of Monk [90].
Namely, let κ be the first limit cardinal bigger than 2ω (thus κ has cofinality ω), let
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A be the finite-cofinite algebra on κ, and consider ωA. Then for any non-principal
ultrafilter on ω we have

κω = |ωA| ≥ s(ωA) ≥ c(ωA/F ) = κω

by the discussion of ultraproducts for cellularity. Thus ωA gives a product where
this inequality is strict.

Turning to ultraproducts, note that spread is an ultra-sup function, so The-
orems 3.15–3.17 apply; Theorem 3.17 says that s

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I sAi/F

∣∣ for
F regular, and Donder’s theorem says that under V = L the regularity assumption
can be removed. The example of Laver mentioned in Chapter 4 shows also that >
is consistent; see Ros	lanowski, Shelah [94] for another example, consistently.

Problem 46. Can one construct an example with s
(∏

i∈I Ai/F
)

>
∣∣∏

i∈I sAi/F
∣∣

in ZFC?

Problem 47. Is an example with s
(∏

i∈I Ai/F
)

<
∣∣∏

i∈I sAi/F
∣∣ consistent?

Here the methods of the paper Magidor, Shelah [91] might yield a solution; and
note from Ros	lanowski, Shelah [91] that in any such example the invariants sAi

are inaccessible.

Theorem 13.3. If 〈Ai : i ∈ I〉 is a system of BAs each with at least 4 elements,
then s(⊕i∈IAi) ≥ max(|I|, supi∈IsAi).

Equality does not hold in Theorem 13.3, in general. For example, let A be the
interval algebra on the reals. We observed in Corollary 3.29 that sA = ω. Here is
a system of 2ω ideal independent elements in A ⊕ A: for each real number r, let
ar = [r,∞) × [−∞, r) (considered as an element of A ⊕ A). Suppose that F is a
finite subset of R, r ∈ R\F , and ar ∈ 〈as : s ∈ F 〉Id. Thus

[r,∞)× [−∞, r) ·
∏
s∈F

([−∞, s) + [s,∞)) = 0.

But if T
def= {s ∈ F : r < s} and U

def= F\T , then

[r,∞)× [−∞, r) ·
∏
s∈F

([−∞, s) + [s,∞)) ≥

[r,∞)× [−∞, r) ·
∏
s∈T

[−∞, s) ·
∏
s∈U

[s,∞) �= 0,

contradiction.
We can, however, give an upper bound for the spread of a free product,

namely max(|I|, 2supi∈IsAi). This is true because |B| ≤ 2sB for any BA B (see
Theorem 13.6 below); so

max(|I|, supi∈IsAi) ≤ s(⊕i∈IAi) ≤ max(|I|, 2supi∈IsAi).
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Both equalities here can be attained.

We give now the proof that |B| ≤ 2sB for any BA B. It depends on several other
results which are of interest. A network for a space X is a collection N of subsets
of X such that every open set in X is a union of members of N (the members of
N are not assumed to be open).

Theorem 13.4. For any infinite BA A, |A| = min{|N | : N is a network for
UltA}.
Proof. Clearly ≥ holds. Now suppose that N is a network for UltA. LetP be the
set of all pairs (C,D) such that C,D ∈ N and for some disjoint open sets U and V ,
C ⊆ U and D ⊆ V ; and for each (C,D) ∈P, choose open sets of this sort — call
them UCD and VCD. Then let W be the closure of the set {UCD, VCD : (C,D) ∈
P} under ∩ and ∪. We shall now show that {Sa : a ∈ A} ⊆ W, which will prove ≤.
So, let a ∈ A. For each F ∈ Sa and G /∈ Sa choose disjoint open sets X,Y such that
F ∈ X and G ∈ Y ; then choose C(F,G),D(F,G) ∈ N such that F ∈ C(F,G) ⊆ X
and G ∈ D(F,G) ⊆ Y . Thus (C(F,G),D(F,G)) ∈ P; so in particular F ∈
UC(F,G)D(F,G) and G ∈ VC(F,G)D(F,G). Now fix G /∈ Sa. Thus by compactness
of Sa we get a finite subset F of Sa such that Sa ⊆ ⋃

F∈F UC(F,G)D(F,G). Let
U(G) =

⋃
F∈F UC(F,G)D(F,G) and V (G) =

⋂
F∈F VC(F,G)D(F,G). Thus Sa ⊆ U(G)

and G ∈ V (G), and U(G) and V (G) are disjoint. By compactness of UltA\Sa
there is a finite subset G of UltA\Sa such that UltA\Sa ⊆ ⋃

G∈G V (G). Since
also Sa ⊆ ⋂

G∈G U(G), and
⋃

G∈G V (G) and
⋂

G∈G U(G) are disjoint, we have
Sa =

⋂
G∈G U(G) ∈ W, as desired.

Lemma 13.5. If X is a Hausdorff space and 2κ < |X|, then there is a sequence
〈Fα : α < κ+〉 of closed subsets of X such that α < β implies Fβ ⊂ Fα.

Proof. For each f ∈ ⋃
α<κ+

α2 we define a closed subset Xf of X. Let X0 = X. For
domf limit, let Xf =

⋂
α<domf Xf�α. Now suppose that Xf has been constructed.

If |Xf | ≤ 1, let Xf〈0〉 = Xf〈1〉 = Xf . Otherwise, let Xf〈0〉 and Xf〈1〉 be
two proper closed subsets of Xf whose union is Xf . This finishes the construction.
Clearly

⋃
domf=α Xf = X for all α < κ+. Now

(*) there is an f ∈ κ+
2 such that |Xf�α| ≥ 2 for all α < κ+.

For, otherwise, for all x ∈ X there is an f ∈ ⋃
α<κ+

α2 such that Xf = {x}, and
so

|X| ≤
∣∣∣∣∣

⋃
α<κ+

α2

∣∣∣∣∣ = 2κ,

contradiction. So (*) holds, and it clearly gives the desired result.

Theorem 13.6. |B| ≤ 2sB for any BA B.

Proof. To start with, we prove:

(1) dA ≤ 2sA.
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In fact, suppose that (1) fails. Note that for every Y ⊆ UltA of power < dA we
have Y �= UltA. Hence one can construct two sequences 〈Fα : α < (2sA)+〉 and
〈aα : α < (2sA)+〉 such that aα ∈ Fα ∈ UltA and Saα ∩ {Fβ : β < α} = 0 for all
α < (2sA)+. Let X = {Fα : α < (2sA)+}. Clearly F is one-one, so |X| > 2sA. By
Lemma 13.5, let 〈Kα : α < (sA)+〉 be a system of closed subsets of X such that
α < β implies that Kβ ⊂ Kα. Say Fβα ∈ Kα\Kα+1 for all α < (sA)+, and choose
bα ∈ A so that Fβα ∈ Sbα ∩X ⊆ X\Kα+1. Then

(2) Sbα ∩ {Fβγ : γ > α} = 0.

For, suppose γ > α and Fβγ ∈ Sbα. But Fβγ ∈ Kγ ⊆ Kα+1, contradiction.
Define f : [(sA)+]2 → 2 as follows: f{γ, δ} = 0 iff when γ < δ we have

βγ > βδ. We now use the partition relation μ+ → (ω, μ+). Since there is no
infinite decreasing sequence of ordinals, we get a subset Γ of (sA)+ of size (sA)+

such that if γ, δ ∈ Γ and γ < δ, then βγ < βδ. Hence for any α ∈ Γ we have

S(aβα · bα) ∩ {Fβγ : γ ∈ Γ} = {Fβα},

and {Fβγ : γ ∈ Γ} is discrete, contradiction. So, we have finally proved (1).
Let Y be a subset of UltA which is dense in UltA and of cardinality dA. Let

N = {Z : Z ⊆ Y, |Z| ≤ tA}.

From (1) and Lemma 13.5 we see that |N | ≤ 2sA. So, we will be finished, by
Theorem 13.4, after we show that N is a network for A. Let F ∈ U , with U open.
Say F ∈ V ⊆ V ⊆ U , with V open. Choose Z ⊆ Y with |Z| ≤ tA such that F ∈ Z.
Let Z ′ = V ∩ Z. Then F ∈ Z ′ ⊆ U and Z ′ ∈ N , as desired.

By Theorem 13.1, spread can be considered to be an ordinary sup-function, and
so its behaviour under unions is given by Theorem 3.11.

We turn to the derived functions for spread. The following facts are clear:
sH+A = sA; sS+A = sA; sS−A = ω; sh−A = ω; dsS+A = sA. The algebra A of
Fedorchuk [75] (constructed under ♦ and presented in Chapter 16) is such that
sH−A ≤ sA < CardH−A. Thus Problem 36 of Monk [90] was solved long ago. It
is also easy to see that sh+A = sA. The status of the derived function dsS− is not
clear; note that dsS−A < sA for A =Pκ.

Turning to the relationships of spread to our other functions, we first list out the
things already proved: cH+A = sA by Theorem 3.25; Depthh+A = sA in Theorem
4.23; tA ≤ sA in Theorem 5.11; and |A| ≤ 2sA in Theorem 13.6. Now we prove the
important fact that πA ≤ sA · (tA)+ for any infinite BA A, following Todorčević
[90a]. The result he proves is somewhat stronger, and to state it we need two
definitions. First, ddA is the least cardinality of a collection of discrete subsets of
UltA whose union is dense in UltA. Second, f ′A is the smallest cardinal such that
A does not have a free sequence of length f ′A. Thus if tA is attained in the free
sequence sense, then f ′A = (tA)+, while tA = f ′A otherwise.
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Theorem 13.7. ddA ≤ f ′A, and πA ≤ sA · f ′A for any infinite BA A.

Proof. Choose 〈aα : α < β〉 in accordance with Theorem 12.12. Let E = {aα :
α < β}. Now we define Dγ ⊆ UltA and Sγ ⊆ E for γ < f ′A by induction. Suppose
that they have been defined for all γ < δ. Let

Sδ = {x ∈ E : Sx ∩Dγ = 0 for all γ < δ}.

Then we let Dδ be a maximal subset of
⋃

x∈Sδ
Sx having at most one element in

common with each Sx for x ∈ Sδ. This finishes the construction. Note that Dδ is
discrete: if F ∈ Dδ, choose x ∈ Sδ such that F ∈ Sx. Then Dδ ∩Sx = {F} by the
defining property of Dδ

For each F ∈ Dδ choose gF ∈ Sδ such that F ∈ SgF . Then g is a one-one
function, and its range is S′

γ
def= {x ∈ Sδ : Dδ ∩ Sx �= 0}. Now

(1) Sx ∩⋃
δ<f′A Dδ �= 0 for all x ∈ E.

For, suppose that (1) fails for a certain x ∈ E. Then

(2) Sx ⊆ ⋃
y∈S′

δ
Sy for all δ < f′A.

For, suppose that (2) fails for a certain δ < f′A. Choose F ∈ Sx\⋃y∈S′
δ
Sy. Now

if G ∈ Dδ ∩Sy with y ∈ Sδ, then y ∈ S′
δ and so F /∈ Sy. Also, Dδ ∩Sx = 0 by (1)

failing. So Dδ ∪{F} has at most one element in common with each Sy for y ∈ Sδ,
and F /∈ Dδ, contradicting the maximality of Dδ. Thus (2) holds.

Now if γ < δ < f ′A, then S′
γ ∩S′

δ = 0, since if z ∈ S′
γ ∩S′

δ, then Sz ∩Dγ = 0
because z ∈ S′

δ ⊆ Sδ, but Sz ∩Dγ �= 0 by the definition of S′
γ , contradiction. It

follows now that for any F ∈ Sx we have F ∈ Sy for a collection of f ′A y’s, and
this contradicts the condition of Theorem 12.12. So we have proved (1).

By (1) we have ddA ≤ f ′A, since E is dense in A. Next,

(3)
⋃

δ<f′A S′
δ is dense in A.

In fact, suppose not. Then there is an x ∈ E such that x·y = 0 for all y ∈ ⋃
δ<f′A S′

δ.
By (1), choose δ < f ′A such that Dδ ∩Sx �= 0; say F ∈ Dδ ∩Sx. Say F ∈ Sz with
z ∈ S′

δ. So x · z ∈ F , contradicting the fact that x · z = 0. Thus (3) holds.
Now |Dδ| = |S′

δ| for all δ < f ′A. Hence

πA ≤
∣∣∣∣∣

⋃
δ<f′A

S′
δ

∣∣∣∣∣ ≤ sA · f ′A,

as desired.

Note that tA can be much smaller than sA, for example in the finite-cofinite algebra
on an infinite cardinal κ. Also note that, obviously, cA ≤ sA; and the difference
is big in, e.g., free algebras. We have sA > LengthA for A a free algebra; sA <
LengthA for A the interval algebra on the reals. Also, sA > πA for A =Pκ. The
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interval algebra of a Suslin line provides an example of a BA A with sA = ω and
dA > ω. In fact, clearly sA = cA for A an interval algebra, by the retractiveness
of interval algebras.

An example with sA = ω < dA cannot be given in ZFC; this follows from
the following rather deep results. Juhász [71] showed that under the assumption
of MA+¬CH, for every compact Hausdorff space X, if sX = ω then hLX = ω.
Todorčević [83] showed that it is consistent with MA+¬CH that for every regular
space X, if sX = ω then hLX = ω. Hence it is consistent that for every BA A, if
sA = ω then hLA = ω = hdA.

Bounded versions of spread can be defined as follows. For m a positive integer,
a subset X of A is called m-ideal-independent if for all distinct x0, . . . , xm ∈ X
we have x0 �≤ x1 + · · · + xm. Then we let smA = sup{|X| : X ⊆ A and X is
m-ideal-independent}. For these functions see Ros	lanowski, Shelah [94].
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First note that we can define χA as a sup; namely, for any ultrafilter F on A let
χF = min{|X| : X is a set of generators of F}—then χA = sup{χF : F is an
ultrafilter on A}. Clearly then, by topological duality, χ(A × B) = sup(χA,χB).
For a weak product we have χ(

∏w
i∈I Ai) = max(|I|, supi∈IχAi). To show this, it

suffices to show that χF = |I| for the “new”ultrafilter F . This ultrafilter is defined
as follows. For each subset M of I, let xM be the element of

∏
i∈I Ai such that

xM i = 1 if i ∈ M and xM i = 0 for i /∈ M . Then F is the set of all y ∈ ∏w
i∈I Ai

such that xM ≤ y for some cofinite subset M of I. So, it is clear that χF ≤ |I|.
If X is a set of generators for F with |X| < |I|, then there is a y ∈ X such that
y ⊆ xM for infinitely many cofinite subsets M of I; this is clearly impossible.

As usual, weak products enable us to discuss the attainment problem. Any
infinite BA has a non-principal ultrafilter, and hence if A has character ω, then it
is attained. Next, if κ is a singular cardinal, then we can construct a BA A with
χA = κ not attained. Namely, let 〈μξ : ξ < cfκ〉 be an increasing sequence of
infinite cardinals with sup κ. For each ξ < cfκ let Aξ be the free BA on μξ free
generators; thus χAξ = μξ. By the above remarks on weak products,

∏w
ξ<cfκ Aξ

has character κ not attained. For regular limit cardinals, there is an old theorem of
Parovichenko [67] which characterizes attainment; this solves Problem 37 of Monk
[90]. We give this theorem here; it requires a simple lemma, and a definition. If X is
a topological space and x ∈ X, the character of x is min{|O| : O is a neighborhood
base of x}. Clearly for any BA A and any F ∈ UltA, the character of F as a point
in UltA coincides with χF as defined above.

Lemma 14.1. For any Hausdorff topological space X and any Y ⊆ X we have
|Y | ≤ 22|Y |

.

Proof. For any z ∈ Y let fz = {Y ∩ U : U an open neighborhood of z}. Thus f
maps Y intoPPY , so it suffices to show that f is one-one. Suppose that z and w
are distinct points of Y , and suppose that fz = fw. Let U and V be disjoint open
neighborhoods of z and w respectively. Then Y ∩U ∈ fz = fw, so let W be an open
neighborhood of w such that Y ∩U = Y ∩W . Then 0 �= Y ∩W ∩V = Y ∩U∩V = 0,
contradiction.

Theorem 14.2. Let κ be a limit cardinal. Then the following conditions are equiv-
alent:

(i) κ is weakly compact.
(ii) For every compact Hausdorff space X of size at least κ, X has a point of

character at least κ.
(iii) For every BA A, if χA = κ, then A has an ultrafilter with character κ.

Proof. (i)⇒(ii): Assume (i), and suppose that X is a compact Hausdorff space
with |X| ≥ κ such that X has no point of character ≥ κ.

(1) We may assume that |X| = κ.



182 14. Character

For, let Y ∈ [X]κ. We claim that |Y | = κ. Since the character of a point of
Y is clearly still < κ, (1) follows from the claim. By Lemma 14.1, it suffices to
show that if y ∈ Y , then there is a Z ∈ [Y ]<κ such that y ∈ Z, since then
Y =

⋃
Z∈[Y ]<κ Z, and by κ being strongly inaccessible |Y | = κ follows. Let U be

an open neighborhood base for y of size < κ. For every U ∈ U choose zU ∈ U ∩Y .
Clearly Z

def= {zU : u ∈ U } is as desired.
So we now assume that |X| = κ. Let X = {xα : α < κ}. For each α < κ, let

Uα be an open neighborhood base for xα of size < κ. Set Fα = {F : X\F ∈ Uα}.
So Fα is a collection of closed sets,

⋃
Fα = X\{xα}, and |Fα| < κ. Let T be

the collection of all functions f such that there is an α < κ such that dmn f = α,
∀β < α(fβ ∈ Fβ), and

⋂
β<α fβ �= 0. Thus T is a tree under ⊆.

(2) ∀α < δ∃f ∈ T (dmn f = α).

For,
0 �= X\{xβ : β < α} =

⋂
β<α

⋃
Fα

=
⋃

f ∈
∏

β<α
Fβ

⋂
β<α

fβ ,

so there is an f ∈∏
β<αFβ such that

⋂
β<α fβ �= 0. Thus f is as desired in (2).

(3) Every level of T has size < κ.

This is true since κ is strongly inaccessible.
Now by the weak compactness of κ, let f with domain κ be a branch through

T . By compactness,
⋂

α<κ fα �= 0. But if y ∈ ⋂
α<κ fα, then y �= xα for all α < κ,

contradiction.
(ii)⇒(iii): obvious.
(iii)⇒(i): Assume that κ is not weakly compact; we want to find a BA A

with character κ not attained. By the comments before 14.1, we may assume that
κ is regular. Let L be a linear order of size κ such that neither κ nor κ∗ embeds
in L. By replacing points of L by ordinals less than κ we may assume that each
ordinal less than κ embeds in L. More precisely, write L = {aα : α < κ} with no
repetitions. let M = {(β, aα) : β ≤ α, α < κ}, ordered anti-lexicographically. We
show that M has no increasing chain of type κ. For, suppose that 〈(βξ, xξ) : ξ < κ〉
is such a chain. Since κ is regular, the set {xξ : ξ < κ} has κ elements, and hence
determines a chain in L of type κ, contradiction. Similarly, M has no decreasing
chain of type κ. Let A = IntalgM . Then by the description of character for interval
algebras below, A has the desired properties.

To treat arbitrary direct products, note that obviously tA ≤ χA; hence IndA ≤
χA, and so clearly χ(

∏
i∈I Ai) ≥ max(2|I|, supi∈IχAi). Shelah and Peterson in-

dependently observed that strict inequality is possible. This solves Problem 38 in
Monk [90]. The same example used for spread works here: let κ be the first limit
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cardinal > 2ω, let A be the finite-cofinite algebra on κ, and consider ωA. Character
does not increase when going to a homomorphic image (see below), and Theorem
6.1 can be applied.

We now discuss ultraproducts, giving some results of Douglas Peterson. Char-
acter is a sup-min function, and so Theorems 6.1–6.3 apply. Then a proof simi-
lar to that of Theorem 4.14 shows that if GCH holds then χ

(∏
i∈I Ai/F

)
≥∣∣∏

i∈I χAi/F
∣∣ for F regular, and Donder’s theorem says that under V = L the

regularity assumption can be removed. Whether there is consistently an example
with < is open.

Problem 48. Is it consistent that there exist a system 〈Ai : i ∈ I〉 of infinite BAs
with I infinite, and an ultrafilter F such that χ

(∏
i∈I Ai/F

)
<

∣∣∏
i∈I χAi/F

∣∣?
On the other hand, it is easy to give an example in which > holds. Let κ be any in-
finite cardinal such that κω = κ. We will shortly show that the Aleksandroff dupli-
cate A of a free BA on κ generators has character κ and cellularity 2κ. By Theorem
11.5 this implies that χ(A∗i) = κ for all i ∈ ω\1 while χ

(∏
i∈ω\1 A∗i/F

)
= 2κ

for any nonprincipal ultrafilter F on ω\1. (See below for the character of free
products.) The assumption κω = κ implies that

∣∣∣∏i∈ω\1 χ(A∗i)/F
∣∣∣ = κ.

Character can increase in going from an algebra to a subalgebra. To construct
an example of this sort, first notice that if A is the finite-cofinite algebra on an
infinite cardinal κ, then χA = κ, by our initial remarks (since A =

∏w
α<κ 2).

The algebra that we want is the Aleksandroff duplicate of the free algebra on
κ free generators, where κ is any infinite cardinal. Recall from Chapter 1 the
definition of the Aleksandroff duplicate. Now let B be the free BA on κ free
generators, κ any infinite cardinal. We claim that χDupB = κ. To see this, we
describe the ultrafilters on DupB. Note that DupB is atomic, and its atoms
are all of the elements (0, {F}) for F ∈ UltA. So there is a principal ultrafil-
ter corresponding to each of these atoms. Next, if G is an ultrafilter on B, then
G+ def= {(a,X) : a ∈ G,X ⊆ UltB,Sa�X finite} is an ultrafilter on DupB.
Conversely, any nonprincipal ultrafilter on DupB is easily seen to have this form.
Thus it suffices to show that any ultrafilter of this form has character κ. So, let
F be an arbitrary ultrafilter on B. We claim that the set X of all elements of
F+ of the form (a,Sa\{F}) generates F+. For, let (a, Y ) be any element of F+;
thus Sa\Y is finite. For each G ∈ Sa\(Y ∪ {F}) choose aG ∈ F\G. Then let
b = a ·∏G∈Sa\(Y ∪{F}) aG. Then (b,Sb\{F}) ∈ F+ and (b,Sb\{F}) ≤ (a, Y ), as
desired. So, this shows that χF+ ≤ κ. An easy argument shows that actually
χF+ = κ. Namely, if Z generates F+ and |Z| < κ, then choose (a,X) ∈ Z such
that (a,X) ≤ (b,Sb) for infinitely many b ∈ F such that b or −b is one of the free
generators of B; this is impossible. So, χDupB = κ. But the finite-cofinite algebra
A on UltB is isomorphic to a subalgebra of DupB, and by the previous remarks
it has character 2κ.

If A is a homomorphic image of B, then χA ≤ χB (let f be a homomorphism
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from B onto A; if F ∈ UltA, then f−1[F ] ∈ UltB, and if we choose X ⊆ f−1[F ]
with |X| ≤ χB such that X generates f−1[F ], then f [X] generates F ). It is also
easy to see that if 〈Ai : i ∈ I〉 is a system of BAs each with at least four elements,
then χ(⊕i∈IAi) = max(|I|, supi∈IχAi). In fact, for ≥, first let j ∈ I and let
F ∈ UltAj . Let G be any ultrafilter on ⊕i∈IAi which includes F . Suppose that
X ⊆ G generates G. Without loss of generality, each member of X is a product of
elements from distinct Ai’s. Then it is clear that X∩Aj ⊆ F and X∩Aj generates
F . So χF ≤ |X|. It follows that χF ≤ χG ≤ χ(⊕i∈IAi). Hence χAj ≤ χ(⊕i∈IAi).
It is clear that χH ≥ |I| for any ultrafilter H on ⊕i∈IAi. Altogether, this proves
≥. For ≤, for any ultrafilter G on ⊕i∈IAi, and for each i ∈ I let Xi ⊆ G ∩ Ai

generate G ∩ Ai, with |Xi| = χ(G ∩ Ai). Clearly the set of all finite products of
elements of

⋃
i∈I Xi generates G, as desired.

We turn to the derived functions for character. By a remark above, we have
χH+A = χA for any infinite BA A. Under CH we have χH−A = CardH−A; indeed,
inequality would imply that χH−A = ω, and then results from van Douwen [89]
would imply that CardH−A = ω too; see below. On the other hand, Koszmider
(email message) has shown that it is consistent to have CardH−A = ω2 = 2ω while
χH−A = ω1. This solves Problem 39 in Monk [90].

We also do not know the status of χS+A; we observed above that it can
happen that χS+A > χA. Clearly χS−A = ω for any infinite BA A. The topological
version of character is this: for any space X and any x ∈ X, χ(x,X) is the minimum
of the cardinalities of neighborhood bases for x in X, and χX = sup{χ(x,X) : x ∈
X}. Clearly then χh+A = χA, and χh−A = 1 for any infinite BA A, since A has
an infinite discrete subspace.

The function χinf is of some interest; recall from the introduction that χinfA =
inf{χF : F ∈ UltA} for any infinite BA A. It has not been investigated much, but
we give the following classical result of Čech and Posṕı̌sil concerning it:

Theorem 14.3. 2χinfA ≤ |UltA| for any infinite BA A.

Proof. For brevity set κ = χinfA. It clearly suffices to construct a function f
mapping <κ2 into A such that

(1) For each s ∈ <κ2, the set {f(s � α) : α ≤ dom s} has the finite intersection
property;
(2) f(s�0) · f(s�1) = 0 for each s ∈<κ 2.

Suppose s ∈ <κ2 and f(s � α) has been defined for all α ∈ dom s. By the induction
hypothesis, {f(s � α) : α ∈ dom s} has the finite intersection property; since this
set has < κ elements, it does not generate an ultrafilter, and hence there is a a ∈ A
such that both a and −a fail to be in the filter generated by it. Hence if we set
f(s�0) = a and f(s�1) = −a we extend our function f so that (1) and (2) will
hold. This completes the proof.

We give some more results related to χinf . For any topological space X and infinite
cardinal κ, we say that an infinite sequence 〈aα : α < κ〉 of elements of X converges
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to a point y ∈ X provided that for every open neighborhood U of y there is a β < κ
such that aα ∈ U for all α ∈ κ\β. We introduce a cardinal function aA, the altitude
of A, on an arbitrary infinite BA A by

aA = min{κ : there is a one-one convergent sequence of length κ in UltA}.

It may not be completely clear that there always is an infinite one-one convergent
sequence in UltA. Rather than proving this directly, we give it as a consequence
of the following theorem.

Theorem 14.4. Let B be a homomorphic image of A, and G a nonprincipal
ultrafilter on B. Then aA ≤ χG; in particular, aA exists for any BA A.

Proof. Let f be a homomorphism from A onto B, and let 〈bα : α < χG〉 be an
enumeration of a set of generators of G. For each α < χG choose aα ∈ A such
that faα = bα. Now for each β < χG, the set {bα : α < β} does not generate G,
so we can choose cβ ∈ G such that for all finite Γ ⊆ β we have

∏
α∈Γ bα �≤ cβ . Say

fdβ = cβ. Then

(1) {aα : α < β} ∪ {−dβ} ∪ {x ∈ A : fx = 1} has fip.

For, otherwise there exist a finite Γ ⊆ β and an x ∈ A such that fx = 1 and∏
α∈Γ aα · dβ · x = 0. Applying f to this equation we get

∏
α∈Γ bα · −cβ = 0,

contradiction. So (1) holds. Let Fβ be an ultrafilter on A extending the set in (1).
Now we claim

(2) 〈Fβ : β < χG〉 converges to f−1[G].

For, let e ∈ f−1[G]. Choose a finite Γ ⊆ χG such that
∏

α∈Γ bα ≤ fe. Let β =
(supΓ) + 1. Suppose that γ ∈ χG\β. Then

{aα : α ∈ Γ} ∪ {−
∏
α∈Γ

aα + e} ⊆ Fγ ,

so e ∈ Fγ . Thus (2) holds.

(3) Fβ �= f−1[G] for all β < χG.

This is clear by the definition of Fβ , since dβ ∈ f−1[G].
From (2) and (3) we see that by taking a one-one subsequence of 〈Fβ : β <

χG〉 we get a sequence which proves that aA ≤ χG.

This theorem suggests a variant of χinf :

χnpinfA = min{χG : G is a nonprincipal ultrafilter on A}.

Thus we get the following corollary:

Corollary 14.5. aA ≤ (χnpinf)H−A ≤ χH−A for any infinite BA A.
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We also give a related theorem.

Theorem 14.6. For any infinite BA A, if aA = ω then CardH−A = ω.

Proof. By hypothesis, choose a one-one convergent sequence 〈Fn : n < ω〉 of
ultrafilters of A. We may assume that no Fn is equal to the limit G of this sequence.
For each a ∈ A let

fa = Sa ∩ {Fn : n ∈ ω}.

Clearly f is a homomorphism from A into the finite-cofinite algebra of subsets of
{Fn : n ∈ ω}. It remains only to show that the range of f is infinite. Take any
n ∈ ω; we show that {Fn} is in the range of f . Choose a ∈ Fn\G. Then choose
m so that for all p ∈ ω\m we have −a ∈ Fp. For each p < m with p �= n choose
bp ∈ Fn\Fp. Then f(a ·∏p<m,p�=n bp) = {Fn}, as desired.

Corollary 14.7. If χH−A = ω then CardH−A = ω.

We turn to the relationship of character with our previously treated functions.
Obviously tA ≤ χA for any infinite BA A; the difference can be big—for example
for the finite-cofinite algebra on an infinite cardinal κ. Now consider the possibility
that χA > sA. By the comment at the end of the last section, plus the fact that
χA ≤ hLA (easy, and proved in Chapter 15), it is consistent that sA = ω implies
χA = ω. The Kunen line, constructed in Chapter 8, has uncountable character but
countable spread; it was constructed using CH. To show that it has uncountable
character, assume the notation in the construction.

(*) If U ∈ τω1 is open and {ξ < ω1 : xξ ∈ U} is uncountable, then U is not compact
in τω1 .

To see this, note that for each xξ ∈ U we have xξ ∈ U ∩ Rξ+1 ∈ τξ+1. Thus
{U ∩Rξ+1 : xξ ∈ U} is a cover of U , and it clearly has no finite subcover, proving
(*).

Now suppose that the new point y of Y has a countable base {{y} ∪ Um :
m ∈ ω}; we may assume that these are clopen. Hence Y \({y} ∪ Um) = X\Um is
open in Y and hence in X; and it is also compact. It follows from (*) that X\Um

is countable. Choose xα ∈
⋂

m∈ω Um. Then Y \{xα} is an open neighborhood of y
not containing any of the basis sets {y} ∪ Um, contradiction.

Problem 49. Can one construct in ZFC a BA A such that sA < χA?

This was Problem 40 in Monk [90]. It is equivalent to the problem whether one
can construct in ZFC a BA A such that sA < hLA; see the end of Chapter 15.

An example of a BA A with cA > χA is provided by the Aleksandroff du-
plicate of the free algebra on κ free generators, as discussed above. The interval
algebra on R gives an example of an algebra A with LengthA > χA.

Now we turn to Arhangelskĭı’s theorem that |UltA| ≤ 2χA for any infinite BA A.
We need some lemmas.
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Lemma 14.8. If Y ⊆ UltA and F ⊆ ⋃
Y has the finite intersection property,

then there is an ultrafilter G such that F ⊆ G ⊆ ⋃
Y .

Proof. Let G be maximal among the filters H such that F ⊆ H ⊆ ⋃
Y . Suppose

that G is not an ultrafilter; say a,−a /∈ G. Then 〈G∪{a}〉fi �⊆ ⋃
Y . Say b ∈ G and

b · a /∈ ⋃
Y . Similarly obtain c ∈ G such that c · −a /∈ ⋃

Y . Choose H ∈ Y such
that b · c ∈ H. Then b · c · a /∈ H and b · c · −a /∈ H, contradiction.

Note that for any subset Y of UltA, the closure of Y is {F ∈ UltA : F ⊆ ⋃
Y }.

Lemma 14.9. If Z ⊆ UltA is closed, then UltA\Z is the union of at most
max{ω, |Z|, supG∈Z χG} clopen sets.

Proof. For every G ∈ Z let {aG
α : α < χG} be a set of generators of G, closed

under multiplication. Let

B = {aG0
α0

+ · · ·+ aGn−1
αn−1

: n ∈ ω, G0, . . . , Gn−1 ∈ Z, αi < χGi for all i < n},

and let C = {y : −y ∈ B ∩⋂
Z}. We claim that

UltA\Z =
⋃

y∈C

Sy,

which gives the desired result. ⊇ is clear. Now suppose that F ∈ UltA\Z. For
every G ∈ Z choose bG ∈ F\G; say aG

α(G) ≤ −bG. Then

(*) There exist an integer n ∈ ω and elements G0, . . . , Gn−1 ∈ Z with the property
that aG0

α(G0)
+ · · ·+ a

Gn−1

α(Gn−1) ∈ H for all H ∈ Z.

Otherwise, L
def= {−aG0

α(G0)
· . . . · −a

Gn−1

α(Gn−1)
: n ∈ ω, G0, . . . , Gn−1 ∈ Z} has the

finite intersection property and is contained in
⋃

Z. Hence by Lemma 14.8, there
is an ultrafilter K such that L ⊆ K ⊆ ⋃

Z. Hence K ∈ Z and −aK
α(K) ∈ K,

contradiction.
We choose n ∈ ω and G0, . . . , Gn−1 ∈ Z as in (*). Let y be the element

−aG0
α(G0)

· . . . · −a
Gn−1

α(Gn−1). Then y ∈ C and F ∈ Sy, as desired.

Lemma 14.10. If Y ⊆ UltA and |Y | ≤ χA, then |Y | ≤ 2χA.

Proof. For every ultrafilter G on A let {aG
α : α < χA} be a set of generators of

G, and set fG = {{F ∈ Y : aG
α ∈ F} : α < χA}. Thus fG ∈ [PY ]≤χA. Hence

it is enough to show that f � Y is one-one. Suppose that G and H are distinct
ultrafilters on A such that G,H ∈ Y . Say aG

α ∈ G\H, and choose aH
β ≤ −aG

α .
Suppose that fG = fH; then there is a γ < χA such that {F ∈ Y : aG

γ ∈ F} =
{F ∈ Y : aH

β ∈ F}. Then aG
α · aG

γ ∈ G; say then aG
α · aG

γ ∈ F ∈ Y . Then aH
β ∈ F ,

aG
α ∈ F , and −aG

α ∈ F , contradiction.

Now we are ready for the proof of Arhangelskĭı’s theorem:
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Theorem 14.11. |UltA| ≤ 2χA for any infinite BA A.

Proof. Suppose that 2χA < |UltA|. Fix an ultrafilter F on A. For each f ∈⋃
α<(χA)+

α(2χA) we define a closed set Xf ⊆ UltA and a Gf ∈ UltA. Let X0 =
UltA and G0 = F . For dom f limit let Xf =

⋂
α<dom f Xf�α, and if Xf �= 0 choose

Gf ∈ Xf , and otherwise let Gf = F . Now suppose that dom f is a successor
ordinal α + 1. Let g = f � α, and set Yg = {Gg�β : β ≤ α}. Thus |Yg| ≤ χA, so
by Lemma 14.10, |Y g| ≤ 2χA, and so by Lemma 14.9 we can let 〈ag

β : β < 2χA〉
be such that UltA\Y g =

⋃
β<2χA S(ag

β) and set Xf = Xg ∩ S(ag
fα). Again let

Gf ∈ Xf if Xf �= 0, and Gf = F otherwise. This finishes the construction.
Now choose

H ∈ UltA\
⋃⎧⎨

⎩{Gf�β : β ≤ dom f} : f ∈
⋃

α<(χA)+

α(2χA)

⎫⎬
⎭

Now we define f mapping (χA)+ into 2χA by induction. Suppose that fβ has been
defined for all β < α. Now H /∈ {Gf�β : β ≤ α}, so there is a γ < 2χA such that
H ∈ X(f�α)∪{(α,γ)}; set fα = γ. Thus H ∈ Xf�α for all α < (χA)+. We claim
that 〈Gf�(β+1) : β < (χA)+〉 is a free sequence, which contradicts tA ≤ χA. Let
α < (χA)+ and suppose that

K ∈ {Gf�(β+1) : β < α} ∩ {Gf�(β+1) : α ≤ β < (χA)+}

Then K ∈ {Gf�β : β ≤ α}, so K ∈ UltA\Xf�(α+1), and this set is open, so there is a
β ≥ α such that Gf�(β+1) ∈ UltA\Xf�(α+1) ⊆ UltA\Xf�(β+1), contradiction.

We describe character for interval algebras. Let L be an ordering, and A the
interval algebra on L. As mentioned at the end of Chapter 11, the ultrafilters on A
are in one-one correspondence with the terminal segments T of L such that 0 /∈ L.
The character of such a terminal segment is the pair (κ, λ∗) such that L\T has
cofinality κ and T has coinitiality λ. And χF is the maximum of κ and λ. χA is
the supremum of all χF . From this description it is clear that DepthA = χA (and
hence both are equal to tA), for any interval algebra A.

For tree algebras we have the following theorem (Brenner [82]):

Theorem 14.12. Let T be a tree, and set A = TreealgT . Then χA = sup{|{x : x
is an immediate successor of C}|, cfC : C an initial chain of T}.

Proof. Let κ = sup{|{x : x is an immediate successor of C}|, cfC : C an initial
chain of T}. Let F be an ultrafilter of A and let C be the associated initial chain.
We shall show that F has a set of generators of size at most κ; this will prove ≤.

If C has a maximal element x, then {(T ↑ x)\⋃y∈F (T ↑ y) : F a finite set of
immediate successors of x} generates F , as desired.
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Suppose that C has no maximal element. Let 〈xα : α < cfC〉 be an increasing
cofinal sequence in C. Then the set

{(T ↑ xα)\
⋃

y∈F

(T ↑ y) : α < cf C, F a finite set of immediate successors of C}

generates F , as desired.
Conversely, Let C be an initial chain of T and F the associated ultrafilter.

Suppose X generates F and |X| < max(|{x : x is an immediate successor of
C}|, cfC). Without loss of generality each element x ∈ X has the form (T ↑
tx)\⋃y∈Fx

(T ↑ y), where Fx is a finite set of successors of tx. If C has a maximal
element z, then |X| < {u : u is an immediate successor of z}, so there is an
immediate successor u of z such that z /∈ ⋃

x∈X Fx. Then (T ↑ z)\(T ↑ u) ∈ F ,
but no element of X is≤ it, contradiction. Suppose that C has no maximal element.
If |X| < cfC, choose z ∈ C such that tx < z for all x ∈ X; then T ↑ z is in F but
has no element of X less than it. Finally, if cf C ≤ |X|, then |X| < {u : u is an
immediate successor of C}, and we get a contradiction as above.

Concerning superatomic algebras we have the following result (due to Monk):

Theorem 14.13. χA = |A| for A superatomic.

Proof. Let λ be a regular cardinal ≤ |A|; we want to show that χA ≥ λ. Let
R be a complete system of representatives of atoms (of all levels) of A. We may
assume that the top atoms of R form a finite partition of unity. Recall the notion
of rank of an element of A: this is the least α such that a ∈ Iα+1. An element
a ∈ A is big if |{x ∈ R : x ≤∗ a}| ≥ λ. (u ≤∗ v means that if β is the rank of
u then u/Iβ ≤ v/Iβ). Note that at least one of the top atoms of R is big. Let α
be minimum such that there is a big a ∈ R of rank α, and fix such an a, and the
ultrafilter F associated with it. Note that if x is any element of rank less than α,
then x is small. In fact, otherwise suppose that x is of smallest rank β < α such
that x is big. Then x/Iβ = c1/Iβ + · · · + cm/Iβ for certain c1, . . . , cm ∈ R such
that each ci/Iβ is an atom. Thus x · −c1 · . . . · −cm ∈ Iβ , and hence it is small. If
y ∈ R and y ≤∗ x, say y has rank γ. Then

y/Iγ ≤ x/Iγ = (x · c1)/Iγ + · · ·+ (x · cm)/Iγ + (x · −c1 · . . . · −cm)/Iγ

≤ c1/Iγ + · · ·+ cm/Iγ + (x · −c1 · . . . · −cm)/Iγ ,

and so y/Iγ is ≤ one of these last summands. This means that one of c1, . . . , cm, x ·
−c1 · . . . · −cm is big, contradiction.

We claim that χF ≥ λ (as desired). In fact, suppose that X ⊆ F generates
F , where |X| < λ. If b ∈ R, b ≤∗ a, and b has rank less than α, then −b ∈ F , and
hence there is an xb ∈ X such that xb ≤ −b. Since λ is regular there is an S ⊆ R
with |S| ≥ λ and an x ∈ X such that each member of S has rank less than α and
x ≤ −b for each b ∈ S. Thus b ≤ −x, and b ≤∗ a · −x. So, a · −x is big.

Case 1. a/Iα ≤ x/Iα. Then a · −x ∈ Iα, so a · −x is small, contradiction.
Case 2. a/Iα ·x/Iα = 0. Then a ·x ∈ Iα, and hence −a+−x ∈ F and −x ∈ F ,

contradiction.



15. Hereditary Lindelöf degree

We begin with some equivalent definitions. Two of them involve new notions. A
sequence 〈xξ : ξ < κ〉 of distinct elements of a topological space X is right-separated
provided that for every ξ < κ the set {xη : η ≤ ξ} is open in {xξ : ξ < κ}. A
sequence 〈aα : α < κ〉 of elements of a BA A is right separated provided that if Γ
is a finite subset of κ and α < κ with β < α for all β ∈ Γ, then aα ·

∏
β∈Γ−aβ �= 0.

Theorem 15.1. For any infinite BA A, hLA is equal to each of the following
cardinals:

sup{κ:there is an ideal not generated by less than κ elements};
sup{κ:there is a strictly increasing sequence of ideals of length κ};
sup{κ:there is a strictly increasing sequence of filters of length κ};
sup{κ:there is a strictly increasing sequence of open sets of length κ};
sup{κ:there is a strictly decreasing sequence of closed sets of length κ};
sup{κ:there is a right-separated sequence in UltA of length κ};
sup{κ:there is a right-separated sequence in A of length κ;
min{κ:every open cover of a subspace of UltA has a subcover of size ≤ κ}.

Proof. Nine cardinals are mentioned; let them be denoted by κ0, . . . , κ8 in their
order of mention (starting with hL itself). First we take care of easy relations:
κ2 = κ3 since, if I is an ideal then If def= {a ∈ A : −a ∈ I} is a filter, and I ⊂ J iff
If ⊂ Jf ; similarly, going from filters to ideals. So κ2 = κ3 follows. Next, κ2 ≤ κ4.
For, if I is an ideal, let Iu =

⋃
a∈I Sa. Then Iu is open, and I ⊂ J implies Iu ⊂ Ju.

(If a ∈ J\I, then Sa ⊆ Ju, of course, but Sa �⊆ Iu, since otherwise compactness
of Sa would easily yield a ∈ I.) This shows κ2 ≤ κ4. It is clear that κ4 = κ5, by
taking complements. κ4 ≤ κ6: If 〈Uα : α < κ〉 is a strictly increasing sequence of
open sets, for every α < κ choose xα ∈ Uα+1\Uα. Clearly 〈xα : α < κ〉 is right-
separated. κ6 = κ7: First suppose that 〈Fα : α < κ〉 is right-separated in UltA.
For all α < κ choose aα ∈ A such that Fα ∈ Saα ∩ {Fβ : β < κ} ⊆ {Fβ : β ≤ α}.
We claim that 〈aα : α < κ〉 is right-separated in A. To see this, suppose that
Γ is a finite subset of κ, α < κ, and β < α for all β ∈ Γ. Thus aα ∈ Fα. If
β ∈ Γ, then aβ /∈ Fα by the choice of aβ, and hence −aβ ∈ Fα. Therefore the
element aα ·

∏
β∈Γ−aβ is in Fα, and hence it must be non-zero, as desired. Second,

suppose that 〈aα : α < κ〉 is right-separated in A. Then for each α < κ the set
{aα}∪{−aβ : β < α} has the finite intersection property, and hence is included in
an ultrafilter Fα. It is easy to check that 〈Fα : α < κ〉 is right-separated in UltA,
as desired. κ8 ≤ κ0: for any subspace X of UltA, any cover of X has a subcover
of power ≤ LX ≤ κ0, so κ8 ≤ κ0.

It remains only to prove that κ0 ≤ κ1, κ1 ≤ κ2, and κ7 ≤ κ8. For the first
one, suppose that X ⊆ UltA and O is an open cover of X with no subcover of
power λ; we construct an ideal not generated by λ or fewer elements. Let

I = 〈{a ∈ A : ∃U ∈ O(Sa ∩X ⊆ U)}〉Id.
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Suppose that I is generated by J , where |J | ≤ λ. For every a ∈ J there is a finite
subset Pa of O such that Sa∩X ⊆ ⋃

Pa. Let O′ =
⋃

a∈JPa. We claim that O′

covers X, which is the desired contradiction. Indeed, let x ∈ X. Say x ∈ U ∈ O.
Say x ∈ Sa ∩ X ⊆ U . Choose a finite subset F of J such that a ≤ ∑

F . Then
x ∈ Sa ∩X ⊆ ⋃

b∈F

⋃
Pb, as desired.

Next, κ1 ≤ κ2: suppose that I is an ideal not generated by fewer than λ
elements. Then it is easy to construct a sequence 〈aα : α < λ〉 of elements of I
such that aα /∈ 〈{aβ : β < α}〉Id for all α < λ. Thus 〈〈{aβ : β < α}〉Id : α < λ〉 is
a strictly increasing sequence of ideals, as desired.

For κ7 ≤ κ8, suppose that λ is a regular cardinal ≤ κ7 and 〈xα : α < λ〉
is right separated. Thus for each α < λ we can choose an open set Uα such that
Uα ∩{xξ : ξ < λ} = {xξ : ξ < α+ 1}. Then {Uα : α < λ} is a cover of {xξ : ξ < λ}
with no subcover of size < λ. Hence λ < κ8, and this shows that κ7 ≤ κ8.

In Theorem 15.1, eight of the nine equivalents involve sups, and thus give rise to
attainment problems. The proof of the theorem shows the following: attainment is
the same for κ2 and κ3, for κ4 and κ5, and for κ6 and κ7; moreover, attainment in
the sense κ2 implies attainment in the sense κ4, attainment in the sense κ4 implies
attainment in the sense κ6, and attainment in the sense κ1 implies attainment
in the sense κ2. It is also easy to see that attainment in the sense κ4 implies
attainment in the sense κ2. In fact, if 〈Uα : α < κ3〉 is an increasing sequence of
open sets, for each α < κ3 let Iα = {a : Sa ⊆ Uα}. Clearly Iα is an ideal. To show
properness, pick F ∈ Uα+1\Uα. Say F ∈ Sa ⊆ Uα+1. Thus a ∈ Iα+1\Iα. And
attainment in the sense κ6 implies attainment in the sense κ4. In fact, suppose
that 〈Fα : α < κ〉 is right separated. For each α < κ choose aα ∈ Fα such that
Saα ∩ {Fβ : β > α} = 0, and let Uα =

⋃
β<α Saβ . Note that Fα ∈ Uα+1\Uα, as

desired. Also note that if hLA is regular, then attainment in the right-separated
sense implies attainment in the defined sense.

Thus we have seen that there are only three versions of the definition of hL
that might lead to different attainment properties: hL as defined, in the ideal-
generated sense, and in the right-separated sense, where we know only that at-
tainment in the ideal-generated sense implies attainment in the right-separated
sense. So we have the following problem (Problems 41–43 in Monk [90]):

Problem 50. Describe the implications between attainment of hL as defined, in
the ideal-generation sense, and in the right-separated sense.

It is known that hL is attained in the right-separated sense for cardinals of cofi-
nality ω, and for strong limit singular cardinals; see Juhász [80].

We turn to algebraic operations. If A is a subalgebra or homomorphic image
of B, then hLA ≤ hLB. Furthermore, looking at the right-separated equivalent
and the topological dual it is clear that

hL(
w∏

i∈I

Ai) = max(|I|, supi∈IhLA).
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Note that IndA ≤ hLA, using the equivalent concerning ideals, for example. Hence
it is clear that hL(

∏
i∈I Ai) ≥ max(2|I|, supi∈IhLAi). Strict inequality is possible,

as was noticed by Shelah and Peterson independently, solving Problem 44 of Monk
[90]. Again the example used for spread applies here.

Concerning ultraproducts, note that hL is an order-independence function, and
hence Theorem 12.6 holds. By the proof of Theorem 12.7 it follows that under GCH
we have hL

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I hLAi/F

∣∣ for F regular, and Donder’s theorem
says that under V = L the regularity assumption can be removed. The example
of Laver for depth works for hL also: it is consistent to have a situation where
hL

(∏
i∈I Ai/F

)
>

∣∣∏
i∈I hLAi/F

∣∣ for F regular; see also Ros	lanowski, Shelah [94]
for another consistent example.

Problem 51. Can one construct in ZFC an example with hL
(∏

i∈I Ai/F
)

>∣∣∏
i∈I hLAi/F

∣∣? We do not know whether < is possible:

Problem 52. Can one have hL
(∏

i∈I Ai/F
)

<
∣∣∏

i∈I hLAi/F
∣∣ for some system

of BAs (consistently)?

As usual, it may be that Magidor, Shelah [91] essentially answers this problem,
and an example of this sort implies that the invariants hLAi are (for most i)
inaccessible.

Next come free products:

Theorem 15.2. If 〈Ai : i ∈ I〉 is a system of BAs each with at least 4 elements,
then

max(|I|, sup
i∈I

hLAi) ≤ hL(⊕i∈IAi) ≤ max
(
|I|, 2supi∈I sAi

)
.

Proof. The first inequality is easy. For the second,

hL(⊕i∈IAi) ≤ | ⊕i∈I Ai| = |I| · sup
i∈I
|Ai|

≤ |I| · sup
i∈I

2sAi

≤ max
(
|I|, 2supi∈I sAi

)
.

The inequalities in Theorem 15.2 are sharp, in the sense that all possibilities can
occur. Thus both are equalities if I = ω1 and each Ai is a four-element algebra.
The first is an equality and the second not for I = ω1 and each Ai the free BA on
ω1 free generators. The first is a strict inequality and the second an equality for
A⊕ A, where A = Intalg R. Finally, both inequalities are strict for A⊕ A, where
A is the tree algebra on a Suslin tree in which each element has infinitely many
immediate successors, and ¬CH holds. It is clear that ¬CH is needed to get an
example where both inequalities are strict.

Concerning derived functions of hL, we mention these obvious facts:

hLA = hLH+A = hLS+A = hLh+A = dhLS+A;
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and hLS−A = hLh−A = ω. The following theorem is a corollary of 14.5 and 14.6,
using the fact given below that χA ≤ hLA for any infinite BA.

Theorem 15.3. If hLA = ω, then CardH−A = ω.

On the relationship of hL with the previously defined functions: obviously sA ≤
hLA for any infinite BA A. Next, χA ≤ hLA. In fact, suppose that F is any
ultrafilter on A; we want to find a subset X of F which generates F and has at
most hLA elements. The set {Sa : −a ∈ F} covers UltA\{F}. Hence there is a
subset X of F such that {Sa : −a ∈ X} also covers UltA\{F}, and |X| ≤ hLA.
We claim that X generates F . For suppose that a ∈ F . Then X ∪ {−a} does not
have the finite intersection property; otherwise, there would exist an ultrafilter
G containing this set—then G �= F , so b ∈ G for some b such that −b ∈ X,
contradiction. But X ∪ {−a} not having the finite intersection property means
that a is in the filter generated by X, as desired.

The following theorem is due to Todorčević [90]:

Theorem 15.4. |A| ≤ IrrA · (hLA)+ for any infinite BA A.

Proof. Let θ = IrrA · (hLA)+ and κ = (hLA)+. Assume that |A| > θ, in order to
work for a contradiction. Wlog |A| = θ+. Write A as a strictly increasing sequence
〈Aξ : ξ < θ+〉 of subalgebras of size ≤ θ. Let S0 = {δ < θ+ : cf δ = κ}. So S0 is
stationary in θ+. For each δ ∈ S0 choose aδ ∈ Aδ+1\Aδ. Define

Iδ = {b ∈ Aδ : b · aδ = 0}; Jδ = {b ∈ Aδ : b · −aδ = 0}.

Note that Iδ and Jδ are ideals in Aδ. Let I ′δ be the ideal of A generated by Iδ. Thus
I ′δ = {a ∈ A : a ≤ b for some b ∈ Iδ}. Now I ′δ has a generating set of size ≤ hLA;
so Iδ itself has such a generating set. Since κ is a regular cardinal > hLA, there
is an fδ < δ such that a generating set for Iδ is a subset of Afδ. So by Fodor’s
theorem there is a ξ0 < θ+ and a stationary subset S1 of S0 such that fδ = ξ0 for
all δ ∈ S1. Similarly, we can get a stationary subset S2 of S1 and a ξ1 < θ+ such
that every ideal Jδ for δ ∈ S2 has a generating set in Aξ1 . Let ξ2 be the maximum
of ξ0, ξ1. We now claim that 〈aδ : δ ∈ S2〉 is irredundant, which, of course, is a
contradiction. To prove this claim we first show

(*) Suppose ξ2 < δ < δ0 < · · · δn are elements of S2 and ε ∈ n+12. Suppose that
c ∈ Aδ and

c ·
∏
i≤n

aεi
δi
≤ aδ.

Then there exist b0, . . . bn ∈ Aξ2 such that

c ·
∏
i≤n

aεi
δi
≤ c ·

∏
i≤n

bi ≤ aδ.

We prove (*) by induction on n; the following argument will work when n = 0
and also for the inductive step. Let d =

(
c ·∏i<n aεi

δi

)
· −aδ. Then d ∈ Aδn and
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d ≤ −aεn
δn

. Case 1. εn = 1. Then d ∈ Iδn . Hence there is an x ∈ Aξ0 ∩Iδn such that
d ≤ x. So d ≤ x ≤ −aεn

δn
. Case 2. εn = 0. Then d ∈ Jδn , so there is an x ∈ Aξ1∩Jδn

such that d ≤ x. So again d ≤ x ≤ −aεn
δn

.
So, in either case we get an x ∈ Aξ2 such that d ≤ x ≤ −aεn

δn
. It follows that

c ·
∏
i≤n

aεi
δi
≤ c · −x ·

∏
i<n

aεi
δi
≤ aδ,

so we have started the induction if n = 0, and continued the induction otherwise.
Now suppose that 〈aδ : ξ2 < δ ∈ S2〉 is redundant. So we can find δ < δ0 <

· · · < δn with ξ2 < δ such that aδ is generated by Aδ ∪ {aδ0 , . . . , aδn}. Therefore
aδ is a finite union of elements of the form

c ·
∏
i≤n

aεi
δi

,

where c ∈ Aδ. By (*), every such intersection can be replaced by one of the form

c ·
∏
i≤n

bi

for some b0, . . . , bn ∈ Aξk
. It follows that aδ ∈ Aδ, contradiction.

The BA of the Kunen line constructed in Chapter 8 (assuming CH) has character
ω1 (see Chapter 14), hence hereditary Lindelöf degree ω1, and countable spread.

If one can construct in ZFC a BA A such that sA < hLA, then one can also
construct in ZFC a BA B such that sB < χB (see problem 49). For, let I be
an ideal of A such that I is not generated by fewer than (sA)+ elements, and let
B = I ∪ −I.

An example where χA < hLA is provided by the Aleksandroff duplicate of
a free algebra; see Chapter 14. An example with hLA < dA is provided by the
interval algebra on a complete Suslin line, using the argument of Lemma 3.28; on
the other hand, in the first edition of Juhász’s book, it is shown that MA+¬CH
implies that hLA = ω implies hdA = ω.

These observations leave the following question open; this is Problem 46 in
Monk [90]:

Problem 53. Is there an example in ZFC of a BA A such that hLA < dA?

This problem is equivalent to the problem of constructing in ZFC a BA A such
that hLA < hdA; see the end of Chapter 16.

Bounded versions of hL can be defined as follows. For m a positive integer, a
sequence 〈xα : α < κ〉 of elements of A is said to be m-right-separated provided
that if Γ ∈ [κ]m, α < κ, and β < α for all β ∈ Γ, then aα ·

∏
β∈Γ−aβ �= 0. Then

we define

hLmA = sup{κ : there is an m-right-separated sequence in A}.
For this notion see Ros	lanowski, Shelah [94].
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For an interval algebra A we have hLA = cA. In fact, suppose that A is the interval
algebra on L and I is an ideal of A. Define a ≡ b iff a, b ∈ L and either a = b or
else if, say, a < b, then [a, b) ∈ I. Then ≡ is a convex equivalence relation on L.
For each ≡-class k having more than one element, let 〈ak

α : α < λk〉 be a strictly
decreasing coinitial sequence in k (with λk = 1 if k has a first element), and let
〈bk

α : α < μk〉 be a strictly increasing cofinal sequence in k (with μk = 1 if k has
a greatest element), and with ak

0 < bk
0 . Note that there are at most cA ≡-classes

with more than one element, and always λk, μk < (cA)+. Hence

{[ak
α, bk

β) : k an ≡-class with more than one element, α < λk, β < μk}

is a collection of at most cA elements which generates I; so hLA ≤ cA by Theorem
15.1.

For any tree algebra B on an infinite tree T we also have cB = hLB. For,
TreealgT embeds in an interval algebra A, and we may assume that TreealgT
is dense in A (extend the identity from TreealgT onto itself to a homomorphism
from A into the completion of TreealgT , and then take the image of A). Hence

hLA ≥ hL(Treealg T ) ≥ c(Treealg T ) = cA = hLA.
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We begin again with some equivalent definitions, which are similar to the case of
hereditary Lindelöf degree. Recall the definition of left-separated sequence from
Chapter 6, before Theorem 6.7.

Theorem 16.1. For any infinite BA A, hdA is equal to each of these cardinals:
sup{κ:there is a strictly decreasing sequence of ideals of length κ};
sup{κ:there is a strictly decreasing sequence of filters of length κ};
sup{κ:there is a strictly decreasing sequence of open sets of length κ};
sup{κ:there is a strictly increasing sequence of closed sets of length κ};
sup{κ:there is a left-separated sequence of length κ};
min{κ:every subspace S of UltA has a dense subset of power ≤ κ};
sup{πB : B is a homomorphic image of A};
sup{dB : B is a homomorphic image of A}.

(Note that left-separated can be taken in the topological or algebraic sense.)

Proof. This time there are nine cardinals, named κ0, . . . , κ8 in their order of
mention, starting with hd itself. The following relationships are easy, following the
pattern of the proof of Theorem 15.1: κ1 = κ2; κ1 ≤ κ3; κ3 = κ4; κ3 ≤ κ5; and
κ0 = κ6. Furthermore, κ8 = κ0 by Theorem 5.13, κ0 = κ5 by Theorem 6.7, and
κ0 = κ7 by Theorem 6.10. Hence only two inequalities remain.

κ6 ≤ κ2: Suppose that X is a subspace of UltA, and dX = κ; we construct a
strictly decreasing sequence of filters of type κ. By induction let

Fα ∈ X\{Fβ : β < α}

for each α < κ. Then set Cα =
⋂

β≤α Fβ . Thus 〈Cα : α < κ〉 is a decreasing
sequence of filters. It is strictly decreasing, since if α < κ we can choose a ∈ Fα+1

such that Sa ∩ {Fβ : β ≤ α} = 0, so that −a ∈ Cα\Cα+1.
κ5 ≤ κ6: Suppose 〈xα : α < κ〉 is left separated, where κ is regular. Clearly

then {xα : α < κ} has no dense subset of power < κ.

The equivalents in Theorem 16.1 give rise to eight possible attainment problems,
on the face of it. However, proofs of previous results set some limits:

Proof of Theorem 5.13 :
attainment in the κ8 sense implies attainment in the κ0 sense;

Proof of Theorem 6.7 :
attainment in the κ0 sense implies attainment in the κ5 sense;
for hdA regular, attainment in the κ5 sense implies attainment in the κ0

sense;
Proof of Theorem 6.10 :

attainment in the κ7 sense implies attainment in the κ5 sense;
attainment in the κ0 sense implies attainment in the κ7 sense;
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Proof of Theorem 16.1 :
attainment for κ1, κ2, κ3, κ4 are equivalent;
attainment in the κ0 sense implies attainment in the κ2 sense;

Now we note two other implications.
κ1 attained implies κ5 attained. Suppose that 〈Iα : α < κ1〉 is a strictly

decreasing sequence of ideals. For each α < κ1 choose aα ∈ Iα\Iα+1. Then 〈aα :
α < κ1〉 is left-separated.

κ5 attained implies κ1 attained. Similarly.

Thus we are left with four possible attainment questions, represented by κ0, κ5,
κ7, and κ8, where attainment implications κ8 ⇒ κ0 ⇒ κ7 ⇒ κ5 hold.

Problem 54. Describe completely the attainment relations for the equivalent def-
initions of hd.

This extends Problems 47 and 48 from Monk [90].

Like for hL, it is known that hd in the sense of left-separation is attained for
singular cardinals of cofinality ω and for strong limit singular cardinals.

If A is a subalgebra or homomorphic image of B, then hdA ≤ hdB. It is also
clear that

hd

(
w∏

i∈I

Ai

)
= max(|I|, supi∈IhdAi).

Obviously sA ≤ hdA, and hence IndA ≤ hdA. It follows that for arbitrary products
we have, as usual , hd

(∏
i∈I Ai

)
≥ max(2|I|, supi∈IhdAi). Shelah and Peterson

independently noticed that strict inequality is possible; this answers Problem 49
of Monk [90]. The example for spread can be used here.

The situation for ultraproducts is like for hL. hd is an order-independence function,
and hence Theorem 12.6 holds. By the proof of Theorem 12.7 it follows that
under GCH we have hd

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I hdAi/F

∣∣ for F regular, and Donder’s
theorem says that under V = L the regularity assumption can be removed. A
consistent example with > is due to Laver, as before, and other consistent examples
can be found in Ros	lanowski, Shelah [94].

Problem 55. Can one get an example with hd
(∏

i∈I Ai/F
)

>
∣∣∏

i∈I hdAi/F
∣∣ in

ZFC?

Problem 56. Is an example with hd
(∏

i∈I Ai/F
)

<
∣∣∏

i∈I hdAi/F
∣∣ consistent?

For this problem see Magidor, Shelah [91] and Ros	lanowski, Shelah [94] for a
possible solution, as usual.

For free products, the analog of Theorem 15.2 holds, with essentially the same
proof:
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Theorem 16.2. If 〈Ai : i ∈ I〉 is a system of non-trivial BAs, for brevity let
λ = supi∈IhdAi; then

max(|I|, sup
i∈I

hdAi) ≤ hd(⊕i∈IAi) ≤ max
(
|I|, 2supi∈I sAi

)
.

The inequalities in Theorem 16.2 are sharp. This is seen as for Theorem 15.2,
except for both <; for this case one can take S such that Q ⊆ S ⊆ R, |S| = ℵ1,
let A = IntalgS, and consider A⊕A, assuming ¬CH.

Another important fact about free products is given in the following theorem.

Theorem 16.3. For infinite BAs A and B we have s(A⊕B) ≥ min(hLA,hdB).

Proof. Let κ = min(hLA,hdB), and let λ+ ≤ κ. Let 〈aα : α < λ+〉 be right-
separated in A, and let 〈bα : α < λ+〉 be left-separated in B. We claim that
〈aα·bα : α < λ+〉 is ideal independent. For, suppose that Γ ∈ [λ+]<ω and α ∈ λ+\Γ.
Let Δ = {β ∈ Γ : β < α}. then

aα · bα ·
∏
β∈Γ

−(aβ · bβ) ≥

⎛
⎝aα ·

∏
β∈Δ

−aβ

⎞
⎠ ·

⎛
⎝bα ·

∏
β∈Γ\Δ

−bβ

⎞
⎠ �= 0,

as desired.

Now we want to give some results concerning the exponential due to Malyhin [72].

Lemma 16.4. If X is a topological space and X ∈ Z in ExpX, then
⋃

Z is dense
in X.

Proof. Let 0 �= U be open in X. Then X ∈ V (X,U), so there is an F ∈ Z ∩
V (X,U). Thus F ∩ U �= 0, so

⋃
Z ∩ U �= 0.

Lemma 16.5. For any Hausdorff space X we have dX ≤ t(ExpX).

Proof. Let Z be the collection of all finite non-empty subsets of X. Then Z is a
subset of ExpX. Moreover, X ∈ Z, since if V (U0, . . . , Um−1) is any neighborhood
of X, choose ai ∈ Ui for all i < m; then {ai : i < m} ∈ Z ∩V (U0, . . . , Um−1). Now
choose a subset Y of Z of size ≤ t(ExpX) such that X ∈ Y . Then by Lemma
16.4,

⋃
Y is dense in X. Clearly |⋃Y | ≤ t(ExpX).

Theorem 16.6. hdA ≤ t(ExpA).

Proof. We use the fact that hdA = sup{dB : B a homomorphic image of A}, given
in Theorem 16.1. Let B be any homomorphic image of A. Then by Proposition
2.7, ExpB is a homomorpic image of ExpA, so dB ≤ t(ExpB) ≤ t(ExpA).

Lemma 16.7. χA ≤ t(ExpA); in fact, every closed set in UltA has a neighborhood
basis with at most t(ExpA) elements.
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Proof. Let F be a closed subset of UltA. Then

F ∈ {U : U clopen, F ⊆ U}.

For, suppose that F ∈ V (U0, . . . , Um−1) with each Ui clopen. Then U0 ∪ . . . ∪
Um−1 ∈ V (U0, . . . , Um−1), as desired.

It follows that there is a subset O of {U : U clopen, F ⊆ U} such that
|O| ≤ t(ExpA) and F ∈ O. Then O is the desired neighborhood base for F . For,
suppose F ⊆ W with W clopen. Then F ∈ V (W ), so there is a U ∈ O such that
U ∈ V (W ). So U ⊆W , as desired.

Theorem 16.8. χ(ExpA) = t(ExpA).

Proof. Since t ≤ χ in general, it suffices to show χ(ExpA) = t(ExpA). Let F be
a nonempty closed subset of UltA. By Lemma 16.7, let O be a collection of clopen
subsets of UltA which forms a neighborhood base for F , with |O| ≤ t(ExpA).
And by Theorem 16.6, let Y be a dense subset of F of size at most t(ExpA).
For each y ∈ Y , let Py be a collection of clopen subsets of UltA which forms a
neighborhood base for y, with |Py| ≤ t(ExpA), again using Lemma 16.7. Now let
Q be the collection of all open sets in Exp (UltA) of the form

V (W0, . . . ,Wm−1, S),

where S ∈ O and for each i < m there is a yi ∈ Y such that Wi ∈Pyi . We claim
that Q forms a neighborhood base for F in Exp (UltA). Clearly F is a member
of each member of Q. Now suppose that F ∈ V (U0, . . . , Um−1), where each Ui is
open in UltA. Choose S ∈ O such that S ⊆ U0 ∪ . . . ∪ Um−1. For each i < m we
have F ∩ Ui �= 0, and so we can choose yi ∈ Y ∩ Ui. Then choose Wi ∈Pyi such
that yi ∈Wi ⊆ Ui. Clearly then

F ∈ V (W0, . . . ,Wm−1, S) ⊆ V (U0, . . . , Um−1),

as desired.

Theorem 16.9. hLA ≤ s(ExpA).

Proof. By Theorem 15.1, let 〈Fα : α < κ〉 be a strictly decreasing sequence
of closed subsets of UltA, where κ = hLA. We claim that D

def= {Fα+1 : α <
λ} is a discrete set of points of ExpA. For, let α < κ. Choose x ∈ Fα\Fα+1

and y ∈ Fα+1\Fα+2. Then there is a clopen subset S of UltA such that y ∈ S,
Fα+2∩S = 0, and x /∈ S. And there is a clopen U such that Fα+1 ⊆ U and x /∈ U .
Now V (U,X) ∩ D = {Fα+1}. For, obviously Fα+1 ∈ V (U, ,X). Suppose that
α < β and Fβ+1 ∈ V (U, S). Then Fβ+1 ⊆ Fα+2 and Fβ+1 ∩ S �= 0, contradicting
Fα+2 ∩ S = 0. Suppose that β < α and Fβ+1 ∈ V (U, S). Then Fα ⊆ Fβ+1, so
x ∈ Fβ+1. But x /∈ U and x /∈ S, contradiction.

We also want to give an important result from Bell, Ginsburg, Todorčević, S. [82].
We need a well-known lemma first.
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Lemma 16.10. For any infinite BA A and any X ⊆ A the following are equivalent:
(i) X generates A.
(ii) {Sx : x ∈ X} separates points in UltA.

Proof. (i)⇒ (ii): Suppose that F,G ∈ UltA, F �= G. If ∀x ∈ X(x ∈ F iff x ∈ G),
then ∀x ∈ 〈X〉(x ∈ F iff x ∈ G), by an easy argument.

(ii)⇒ (i): Suppose that a ∈ A\〈X〉. Let A = {xε0
0 · . . . · x

εm−1
m−1 : each xi ∈ X

and xε0
0 · . . . · x

εm−1
m−1 ≤ a}. Then

⋃
b∈A Sb ⊂ Sa by compactness, since a /∈ 〈X〉, so

choose F ∈ Sa\⋃b∈A Sb. Now (F ∩〈X〉)∪{−a} has fip, and so is contained in an
ultrafilter G. But then F and G are distinct ultrafilters which cannot be separated
by {Sx : x ∈ X}.
Theorem 16.11. For any infinite BA A we have hd(ExpA) = s(ExpA).

Proof. Since s ≤ hd in general, we assume that κ
def= s(ExpA) < hd(ExpA) and

try to get a contradiction. Let 〈Cα : α < κ+〉 be left separated in the space ExpA.
Set

I = {a ∈ A : |A � a| ≤ κ} and W =
⋃
a∈I

Sa.

Thus I is an ideal of A. Let F = UltA\W . By 16.6, hdA ≤ κ, so we can choose a
dense subset D of F with |D| ≤ κ.

(1) |{α < κ+ : d /∈ Cα}| ≤ κ for all d ∈ D.

For, suppose not: this gives us d ∈ D such that Γ def= {α < κ+ : d /∈ Cα}| ≥ κ+. By
16.7 we have χA ≤ κ, so we can choose a clopen neighborhood base B for d such
that |B| ≤ κ. For every α ∈ Γ choose Uα ∈ B such that Uα ∩Cα = 0. Then there
exist a Δ ∈ [Γ]κ

+
and a b ∈ A such that Sb ∩ Cα = 0 for all α ∈ Δ and Sb ∈ B.

Now d ∈ F ∩ Sb, so b /∈ I. Thus |A � b| ≥ κ+.

(2) hL(Exp (A � b)) ≥ κ+.

For, suppose that hL(Exp (A � b)) ≤ κ. Let Y = {X ∈ Exp (A � b) : |X| = 2}.
For all X ∈ Y choose UX clopen in Ult(A � b) such that |UX ∩ X| = 1. Then
{V (UX ,−UX) : X ∈ Y } covers Y . Let {V (UX ,−UX) : X ∈ Y ′} be a subcover
with |Y ′| ≤ κ. Now {UX : X ∈ Y ′} separates the points of Ult(A � b). For, suppose
that u, v ∈ Ult(A � b), u �= v. Say {u, v} ∈ V (UX ,−UX) with X ∈ Y ′. Clearly UX

separates u and v. Now by Lemma 16.10 we get |A � b| ≤ κ, contradiction. So (2)
holds.

Now Cα ⊆ S(−b) for all α ∈ Δ. For each α ∈ Δ let C ′
α = {F ∩ (A � −b) :

F ∈ Cα}. Then it is easy to check that 〈C ′
α : α ∈ Δ〉 is a left-separated sequence

in Ult(Exp (A � −b)). So hd(Exp (A � −b)) ≥ κ+. Now by Theorem 16.3 it follows
that s(Exp (A � b) ⊕ Exp (A � −b)) ≥ κ+. Then 1.14 implies that s(ExpA) ≥ κ+,
contradiction. This proves (1).

By (1) we may assume that d ∈ Cα for all d ∈ D and all α < κ+, i.e., D ⊆ Cα

for all α < κ+. Hence F ⊆ Cα for all α < κ+.
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Now let B = I ∪ −I. We claim that |B| ≤ κ. In fact, hLB ≤ κ by 16.9, so I
is generated by ≤ κ elements, so the claim follows. As a consequence, |ExpB| ≤ κ
too. But now we show that hdB ≥ κ+, which is the final contradiction. We can
write

Cα ∈ V (Sc0
α, . . . ,Scmα−1

α , . . . ,Scnα−1
α ),

V (Sc0
α, . . . ,Scmα−1

α , . . . ,Scnα−1
α ) ∩ {Cβ : β < κ+} ⊆ {Cβ : α ≤ β},

F ∩ Sci
α �= 0 iff i < mα.

For all α < κ+ let dα = c0
α + · · ·+cmα−1

α . Thus F ⊆ Sdα, and so dα ∈ I ⊆ B. Also,
cmα
α , . . . , cnα−1

α ∈ B. Let C ′
α = {u∩B : u ∈ Cα} for each α < κ+. Clearly each C ′

α

is nonempty and closed in UltB. We claim that 〈C ′
α : α < κ+〉 is left-separated in

UltB. In fact, it is easy to check that

C ′
α ∈ V B(SBdα,SBcmα

α , . . . ,SBcnα−1
α )

and V
B(SBdα,SBcmα

α , . . . ,SBcnα−1
α ) ∩ {C ′

β : β < κ+} ⊆ {C ′
β : α ≤ β},

as desired.

Concerning derived functions, we have the following obvious facts:

hdA = hdH+A = hdS+A = hdh+A = dhdS+A;

and hdS−A = hdh−A = ω.

Now we want to go into a result of Fedorchuk [75], which provides an example
for several of the questions in Monk [90]: assuming ♦, there is a BA A with
hdA = ω and CardH−A = ω1. This is a weakened form of his main theorem. We
give two constructions: a fairly short one of Kunen [75] (quite different from that
of Fedorchuk but done upon looking at that article and noticing some problems
with the construction), and a longer one which follows Fedorchuk rather closely,
except for using the ideas of Kunen at crucial places which were unclear in the
Fedorchuk construction.

Special ♦-sequences. This material is from Kunen [75] (except for the name
special and the proof of the lemma). If f ∈ ω1(ω1ω1), let f��α = 〈fξ � α : ξ < α〉.
A special ♦-sequence is a sequence 〈fα : α < ω1〉 such that each fα ∈ α(αω1) and
for all f ∈ ω1(ω1ω1) the set {α < ω1 : f��α = fα} is stationary.

Lemma 16.12. ♦ implies that there is a special ♦-sequence.

Proof. Let H be a one-one function from ω1 onto ω1×ω1. If x ∈ ω1×ω1, we write
x = (x0, x1). For f ∈ ω1(ω1ω1) we define f̃ ∈ ω1ω1 by f̃α = f(Hα)0(Hα)1. Define
G : ω1ω1 → ω12 by

Ghβ =
{

1 if h(Hβ)0 = (Hβ)1,
0 otherwise.
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Define F : ω12→ ω1ω1 by

(Fk)β =
{

γ if kH−1(β, γ) = 1 and kH−1(β, δ) = 0 for all δ �= γ,
0 if there is no such γ.

Let χ : Pω1 → ω12 be the natural bijection. Let C0 = {α < ω1 : H[α] = α× α}.
So, C0 is club. Let 〈Aα : α < ω1} be a ♦-sequence. For α ∈ C0 let fα ∈ α(αω1) be
defined by

fα
β γ = (FχAα)H−1(β, γ).

Let fα ∈ α(αω1) be arbitrary if α /∈ C0.
Now suppose that f ∈ ω1(ω1ω1). Let B = χ−1Gf̃ . Now

C1
def= {α : ∀ξ < α(fξ � α ∈ αα)}

is club. Hence C0 ∩ C1 ∩ {α < ω1 : α ∩B = Aα} is stationary. We claim that if α
is in this set, then f��α = fα; this will finish the proof. Suppose ξ < α. We want
to show that fξ � α = fα

ξ . Let γ < α. Then

f̃H−1(ξ, γ) = fξγ;

Gf̃H−1(H−1(ξ, γ), fξγ)) = 1;

H−1(H−1(ξ, γ), fξγ) ∈ α ∩B;

H−1(H−1(ξ, γ), fξγ) ∈ Aα;

χAαH−1(H−1(ξ, γ), fξγ) = 1.

It is easily checked that if δ �= fξγ then χAαH−1(H−1(ξ, γ), δ) = 0. Therefore
(FχAα)H−1(ξ, γ) = fξγ. It follows that fα

ξ γ = fξγ.

Kunen’s construction. We assume ♦; so CH is available also. Fix a special ♦-
sequence 〈fα : α < ω1〉. For any space Y , a point y ∈ Y is a strong limit point of
H ⊆ PY if for all neighborhoods V of y there is an H ∈ H such that y /∈ H
and H ⊆ V . For α ≤ β ≤ ω1 define πβ

α : β2 → α2 by πβ
αg = g � α; thus πβ

α is
continuous. We claim

(1) there is an enumeration 〈qα : α < ω1〉 of
⋃

σ<ω1

σ2 such that every element is
repeated ω1 times and qα ∈ σα2 with σα ≤ α.

To prove (1), for each σ < ω1 let σ2 = {hσξ : ξ < ω1} with each element re-
peated ω1 times. Let H enumerate ω1 × ω1 under its natural order ((α, β) <
(γ, δ) iff [max(α, β) < max(γ, δ) or (max(α, β) = max(γ, δ) and α < γ) or
(max(α, β) = max(γ, δ) and α = γ and β < δ)]). By induction on α one can
show that (Hα)0, (Hα)1 ≤ α for all α < ω1. Let qα = h(Hα)0(Hα)1 for all α < ω1.
Then (1) is clear.

Our space will be a closed subspace of ω12. By induction on α ≤ ω1 we will
define Xα ⊆ α2 and pα ∈ Xα so that:
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(2) Xα is closed and nonempty.
(3) If α ≤ β then πβ

αXβ = Xα.
(4) If qα ∈ Xσα , then pα � σα = qα.
(5) pα

�0, pα
�1 ∈ Xα+1.

(6) If α ≤ β, {fα
ξ : ξ < α} ⊆ Xα, and h ∈ Xα is an accumulation point of

{fα
ξ : ξ < α}, then every point k in Xβ ∩ (πβ

α)−1[{h}] is a strong limit point of
{Xβ ∩ (πβ

α)−1[{fα
ξ }] : ξ < α}.

Before actually making this construction we check that (2)–(6) yield the desired
properties of X

def= Xω1 .
X is hereditarily separable: If not, let f = 〈fξ : ξ < ω1〉 be a left-separated

sequence in X. Let

C = {α < ω1 : for all clopen N ⊆ Xα

(N ∩ {fξ � α : ξ < α} = 0 iff (πω1
α )−1[N ] ∩ {fξ : ξ < ω1} = 0) and

(|N ∩ {fξ � α : ξ < α}| = 1 iff |(πω1
α )−1[N ] ∩ {fξ : ξ < ω1}| = 1)}.

Then C is club. Since the argument for this is more complicated than usual for
club arguments, we sketch it. First note, obviously:

(7) N ∩ {fβ � α : β < α} �= 0 implies that (πω1
α )−1[N ] ∩ {fβ : β < ω1} �= 0, if

α < ω1 and N is a clopen subset of Xα.

(8) |N ∩ {fβ � α : β < α}| ≥ 2 implies that |(πω1
α )−1[N ] ∩ {fβ : β < ω1}| ≥ 2, if

α < ω1 and N is a clopen subset of Xα.

Now to prove that C is closed, suppose that α < ω1 is a limit ordinal and α ∩ C
is unbounded in α. Suppose that N is clopen in Xα and (πω1

α )−1[N ] ∩ {fξ : ξ <

ω1} �= 0. Say ξ < ω1 and fξ � α ∈ N . Write N = Uα
g

def= {h ∈ Xα : g ⊆ h}, where
g ∈ F 2 for some finite F ⊆ α. Say F ⊆ β < α, β ∈ C. Then fξ � β ∈ Uβ

g , i.e.,
(πω1

β )−1[Uβ
g ]∩{fη : η < ω1} �= 0 so, since β ∈ C, we get Uβ

g ∩{fη � β : η < β} �= 0.
Hence choose η < β with fη � β ∈ Uβ

g . Hence fη � α ∈ Uα
g = N , and N ∩ {fη � α :

η < α} �= 0, as desired. The other part of C is treated similarly. This proves that
C is closed.

To prove that C is unbounded, suppose that α0 < ω1. Choose α1 such that
α0 < α1 and for all clopen N ⊆ Xα0 we have

(πω1
α0

)−1[N ] ∩ {fξ : ξ < ω1} �= 0⇒ ∃ξ < α1(fξ � α0 ∈ N) and

|(πω1
α0

)−1[N ] ∩ {fξ : ξ < ω1}| ≥ 2⇒ |N ∩ {fξ � α0 : ξ < α1}| ≥ 2.

This is possible since there are only countably many clopen sets N ⊆ Xα0 . Con-
tinuing in this fashion with α2, α3, . . ., we see that αω = supn<ω αn is the desired
member of C.

Fix α ∈ C such that f��α = fα.
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(9) fη � α ∈ {fα
β : β < α} for all η < ω1.

For, if fη � α ∈ N with N clopen, then (πω1
α )−1[N ] ∩ {fν : ν < ω1} �= 0 so, since

α ∈ C, N ∩ {fβ � α : β < α} �= 0, as desired.

(10) For all η < ω1, if fη � α is an isolated point of {fβ � α : β < α}, then η < α.

For, let N be clopen such that N ∩{fβ � α : β < α} = {fη � α}. Thus since α ∈ C
we get |(πω1

α )−1[N ]∩ {fβ : β < ω1}| = 1. Say fη � α = fγ � α with γ < α. Since fη

and fγ are both in (πω1
α )−1[N ] ∩ {fβ : β < ω1}, it follows that η = γ, as desired.

From (9) and (10) it follows that fα � α is an accumulation point of {fβ � α :
β < α} = {fα

β : β < α}. Hence by (6) fα is a strong limit point of {Xω1 ∩
(πω1

α )−1[{fα
ξ }] : ξ < α}. So fα is a limit point of {fξ : ξ < α}, which contradicts

the left-separatedness.

Now we show that χH−A ≥ ω1, where A = ClopXω1 . By Corollary 14.5 it suffices to
show that Xω1 has no one-one convergent sequences. So, assume that limn→∞ gn =
h with all gn distinct and different from h. Choose f ∈ ω1(ω12) so that {fα : α <
ω1} = {gn : n ∈ ω}. Choose α so that f��α = fα, all of the functions gn � α, h � α
are distinct, and {fβ : β < α} = {gn : n ∈ ω}. Then h � α is an accumulation
point of {fα

ξ : ξ < α}. Say h � α = qβ with α ≤ β. Then pβ
�0 and pβ

�1 are both
in Xβ+1 and extend h � α. This gives by (6) two distinct points h, l which are
strong limit points of Xω1 ∩ {(πω1

α )−1[{fα
ξ }] : ξ < α}. Thus both are limit points

of {gn : n ∈ ω}, contradiction.

Next we do the construction to yield (2)–(6). As soon as a space Xα is constructed,
fix pα ∈ Xα such that (4) holds. Let X0 be the one-point space. For δ limit, let
Xδ = {g ∈ δ2 : ∀α < δ(g � α ∈ Xα)}. It is straightforward to check (2)–(6) then.
Now we do the crucial step from Xδ to Xδ+1. We now define a nested clopen basis
〈Kn : n ∈ ω〉 of pδ. First let 〈K ′

n : n ∈ ω〉 be any such basis, with K′
0 = Xδ. If

there is no α ≤ δ such that {fα
ξ : ξ < α} ⊆ Xα and pδ � α is an accumulation point

of {fα
ξ : ξ < α}, let Kn = K ′

n for all n ∈ ω. Otherwise, let {αn : n ∈ ω} enumerate
all α ≤ δ such that {fα

ξ : ξ < α} ⊆ Xα and pδ � α is an accumulation point of
{fα

ξ : ξ < α}, each one enumerated infinitely many times by both even and odd
integers. Now define Kn by induction as follows. K0 = Xδ. If Kn has been defined,
by (6) for β = δ, pδ is a strong limit point of {Xδ ∩ (πδ

αn
)−1[{fαn

ξ }] : ξ < αn}, so
there is a ξ < αn such that pδ /∈ Xδ ∩ (πδ

αn
)−1[{fαn

ξ }] ⊆ Kn. We let pδ ∈ Kn+1 ⊆
K′

n ∩ (Kn\(πδ
αn

)−1[{fαn

ξ }]), Kn+1 clopen. Thus the following condition holds:

(11) {Kn : n ∈ ω} is a nested clopen base for pδ, and if α ≤ δ is such that
{fα

ξ : ξ < α} ⊆ Xα and pδ � α is an accumulation point of {fα
ξ : ξ < α},

then there are infinitely many even and infinitely many odd n such that ∃ξ(pδ /∈
Xδ ∩ (πδ

α)−1[{fα
ξ }] ⊆ Kn\Kn+1).
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Finally, we set

Xδ+1 ={g ∈ δ+12 : g � δ = pδ}∪⋃
n even

{g ∈ δ+12 : g � δ ∈ Kn\Kn+1, gδ = 0}∪
⋃

n odd

{g ∈ δ+12 : g � δ ∈ Kn\Kn+1, gδ = 1}.

It remains only to check (2)–(6) for δ + 1. All except (6) are easy, and (6) is
obvious if α = δ + 1. So assume that α ≤ δ, h ∈ Xα is an accumulation point of
{fα

ξ : ξ < α}, k ∈ Xδ+1 ∩ (πδ+1
α )−1[{h}]. To show that k is a strong limit point of

{Xδ+1 ∩ (πδ+1
α )−1[{fα

ξ }] : ξ < α}, let k ∈ Uδ+1
g with g ∈ F 2, F ⊆ δ + 1, F finite.

Without loss of generality, δ ∈ F .
Case 1. k � δ �= pδ. Say k � δ ∈ Kn\Kn+1 with n even. Thus kδ = 0 = gδ.

Thus k � δ ∈ Uδ
g�δ ∩ (Kn\Kn+1), so by (6) for δ choose ξ < α such that

k � δ /∈ (πδ
α)−1[{fα

ξ }] ⊆ Uδ
g�δ ∩ (Kn\Kn+1).

It follows that k /∈ (πδ+1
α )−1[{fα

ξ }] ⊆ Uδ+1
g , since if l ∈ (πδ+1

α )−1[{fα
ξ }] then

l � δ ∈ Kn\Kn+1 and n is even, so lδ = 0 = gδ.
Case 2. k � δ = pδ. Say gδ = 0. Choose m even such that Km ⊆ Uδ

g�δ
and pδ /∈ Xδ ∩ (πδ

α)−1[{fα
ξ }] ⊆ Km\Km+1 for some ξ < α. Then k /∈ Xδ+1 ∩

(πδ+1
α )−1[{fα

ξ }] ⊆ Uδ+1
g , as desired.

This completes Kunen’s construction.

Fedorchuk’s construction, as modified here, uses the special ♦-sequence introduced
by Kunen, and also a general expansion construction, to which we now turn.

An expansion construction. No special set-theoretical assumptions are needed
in this construction. Let X be a space, and suppose that we have associated with
every x ∈ X another space Yx and a continuous function fx : X\{x} → Yx. We
also assume that the spaces Yx are pairwise disjoint. Then we set Z =

⋃
x∈X Yx,

and we let π be the natural mapping from Z onto X: πz is the unique x such that
z ∈ Yx. We claim that the collection of all subsets of the following form constitutes
a base for a topology on Z:

(1) W ∪ π−1[U ∩ f−1
x [W ]] with x ∈ X, W open in Yx, U an open neighborhood of

x in X.

To show that this collection forms a base, note first that Z can be written in the
given form: Z = Yx ∪ π−1[X ∩ f−1

x [Yx]] for any x ∈ X. Now suppose that we have
two sets of the form (1), V and V ′. Say V is exactly as in (1), and V ′ is similar
with primes on everything. We want to show that V ∩ V ′ is a union of elements
of the form (1).
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Case 1. x ∈ U ′ ∩ f−1
x′ [W ′] and x′ ∈ U ∩ f−1

x [W ]. Then

V ∩ V ′ = W ∪ π−1[U ∩ U ′ ∩ f−1
x′ [W ′] ∩ f−1

x [W ]]

∪W ′ ∪ π−1[U ∩ U ′ ∩ f−1
x [W ] ∩ f−1

x′ [W ′]].

Case 2. x ∈ U ′ ∩ f−1
x′ [W ′] and x′ /∈ U ∩ f−1

x [W ]. Then

V ∩ V ′ = W ∪ π−1[U ∩ U ′ ∩ f−1
x′ [W ′] ∩ f−1

x [W ]].

Case 3. x /∈ U ′ ∩ f−1
x′ [W ′] and x′ ∈ U ∩ f−1

x [W ]. Similarly.
Case 4. x /∈ U ′ ∩ f−1

x′ [W ′], x′ /∈ U ∩ f−1
x [W ], x = x′. Then

V ∩ V ′ = (W ∩W ′) ∪ π−1[U ∩ U ′ ∩ f−1
x [W ∩W ′]].

Case 5. x /∈ U ′ ∩ f−1
x′ [W ′], x′ /∈ U ∩ f−1

x [W ], x �= x′. Then

V ∩ V ′ =π−1[U ∩ U ′ ∩ f−1
x [W ] ∩ f−1

x′ [W ′]]

=
⋃
{Yx′′ ∪ π−1[U ∩ U ′ ∩ f−1

x [W ] ∩ f−1
x′ [W ′] ∩ f−1

x′′ [Yx′′ ]] :

x′′ ∈ π−1[U ∩ U ′ ∩ f−1
x [W ] ∩ f−1

x′ [W ′]]}.

Our main aim in the next portion of the text is to show that if X and all of the
spaces Yx are Boolean, then so is Z. We do this step by step.

(2) If X and all spaces Yx are Hausdorff, then so is Z.

In fact, let u, v be distinct members of Z. We want to find disjoint neighborhoods
of them. Say u ∈ Yx and v ∈ Yx′ . If x = x′, let W and W ′ be disjoint neighbor-
hoods of u and v respectively in Yx. Then desired disjoint neighborhoods in Z are
W ∪ π−1[X ∩ f−1

x [W ]] and W ′ ∪ π−1[X ∩ f−1
x [W ′]]. Suppose that x �= x′. Let U

and V be disjoint neighborhoods of x and x′ respectively. Then desired disjoint
neighborhoods in Z are Yx ∪ π−1[U ∩ f−1

x [Yx]] and Yx′ ∪ π−1[V ∩ f−1
x′ [Yx′ ]].

(3) If X and all spaces Yx are compact Hausdorff, then so is Z.

To show this, let O be a cover of Z by basic open sets. For each V ∈ O let

V = WV ∪ π−1[UV ∩ f−1
xV

[WV ]],

where WV is open in YxV and UV is an open neighborhood of xV . Let C = {x ∈ X :
for all V ∈ O, x /∈ UV ∩ f−1

xV
[WV ]}. If x ∈ C, then {WV : xV = x, V ∈ O} covers

Yx; let Ox be a finite subcover. Thus

{UV ∩ f−1
xV

[WV ] : V ∈ O} ∪ {
⋂

V ∈Ox

UV : x ∈ C}



16.13 Fedorchuk’s example 207

covers X. Let O ′ ∈ [O]<ω and C ′ ∈ [C]<ω be such that

{UV ∩ f−1
xV

[WV ] : V ∈ O ′} ∪ {
⋂

V ∈Ox

UV : x ∈ C ′}

covers X. We claim that O ′ ∪⋃
x∈C′ Ox covers Z (as desired). For, let z ∈ Z; say

z ∈ Yx. If x ∈ UV ∩ f−1[WV ] for some V ∈ O ′, then z ∈ V , as desired. Otherwise,
choose y ∈ C ′ such that x ∈ ⋂

V ∈Oy
UV . Case 1. x = y. Then z ∈ WV ⊆ V for

some V ∈ Oy, as desired. Case 2. x �= y. Now fyx ∈ Yy, so choose V ∈ Oy such
that fyx ∈WV . Then x ∈ UV ∩ f−1[WV ], so z ∈ V , as desired.

(4) If X and all spaces Yx are Boolean, then so is Z.

We first note that if W is clopen in Yx and U is a clopen neighborhood of x, then
V

def= W ∪ π−1[U ∩ f−1
x [W ]] is clopen in Z:

Z\V = (Yx\W ) ∪ π−1[U ∩ f−1
x [Yx\W ]]

∪
⋃

z∈X\U

(Yz ∪ π−1[(X\U) ∩ f−1
z [Yz]]).

We also note that if U is open in X, then π−1[U ] is open in Z: if x ∈ U , then

π−1[U ] = Yx ∪ π−1[U ∩ f−1
x [Yx]].

Now suppose that y ∈ V = W ∪ π−1[U ∩ f−1
x [W ]] with assumptions as in (1); we

want to find a clopen V ′ such that y ∈ V ′ ⊆ V .
Case 1. y ∈ W . Choose W ′ clopen so that y ∈ W ′ ⊆ W , and choose U ′

clopen so that x ∈ U ′ ⊆ U . Then V ′ = W ′ ∪ π−1[U ′ ∩ f−1
x [W ′]] is as desired.

Case 2. y /∈ W . Thus πy ∈ U ∩ f−1
x [W ]. Let U ′ be clopen such that πy ∈

U ′ ⊆ U ∩ f−1
x [W ]. Then V ′ = π−1[U ′] is as desired.

Note the following fact which was established in the course of proving (4) (true
without special assumptions on the space):

(5) π is continuous.

Lemma 16.13. Let X be a first-countable Boolean space and for each x ∈ X let
Yx be homeomorphic to the Cantor set, the Yx’s pairwise disjoint. Let 〈Cx

i : i < ω〉
be a system of sets such that

(i) Cx
i ⊆ X\{x};

(ii) x ∈ Cx
i .

Then there exist continuous functions fx : X\{x} → Yx for x ∈ X such that if Z
is obtained from X and the functions fx by the expansion construction, and if π
is the natural mapping from Z onto X, then:

(iii) If D ⊆ Z and π[D] = Cx
i , then Yx ⊆ D.

(iv) if W is a non-empty open set in Yx and i < ω, then x ∈ Cx
i ∩ f−1

x [W ].
(v) Z is first-countable.
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Proof. Fix x ∈ X. For each i < ω let 〈ai
j : j < ω〉 be a sequence of distinct

members of Cx
i converging to x.

(1) There are infinite subsets Ai ⊆ {ai
j : j < ω} for i < ω such that Ai ∩ Ak = 0

for distinct i, k < ω.

For, we define j(i, k) < ω for i ≤ k < ω by induction on k, and within that, by
induction on i:

j(0, 0) =0;

j(i, k + 1) = least l < ω such that ai
l ∈ {ai

j : j < ω}\
({as

j(s,m) : s ≤ m ≤ k} ∪ {as
j(s,k+1) : s < i}).

Then let Ai = {ai
j(i,k) : i ≤ k < ω}. Clearly Ai is an infinite subset of {ai

j : j < ω}.
Suppose that i �= i′ and u ∈ Ai ∩Ai′ . Write u = ai

j(i,k) = ai′
j(i′,k′). Without loss of

generality, k′ ≤ k. Case 1. k = 0. Then i = i′ = 0, contradiction. Case 2. k′ < k.
Then ai

j(i,k) = ai′
j(i′,k′) contradicts the definition, for the first omitted set. Case 3.

0 < k = k′. Say i′ < i. Then ai
j(i,k) = ai′

j(i′,k) contradicts the definition, for the
second omitted set. So (1) holds.

Now decompose each Ai into infinite subsets: Ai =
⋃

j<ω Bi
j , Bi

j ∩ Bi
k = 0

for j �= k. Let 〈Vm : m < ω〉 be a decreasing sequence of open sets forming a
neighborhood base for x. Then

(2) ∀i∀m∃k∀j ≥ k(Bi
j ⊆ Vm).

For, suppose that (2) fails. So we get i,m so that for all k there is a j ≥ k such
that Bi

j �⊆ Vm. Thus we can find an increasing sequence k0, k1, . . . of integers and
elements dn ∈ Bi

kn
\Vm. So 〈dn : n < ω〉 is a sequence of distinct elements of Ai

all outside Vm, which contradicts the fact that x ∈ Ai. Hence (2) holds.
By (2), for each i and m choose k(m, i) so that Bi

j ⊆ Vm for all j ≥ k(m, i).
Without loss of generality we may assume that k(0, i) < k(1, i) < · · ·. Set

Dm = B0
k(m,0) ∪ . . . ∪Bm

k(m,m).

Note that Dm∩Dn = 0 for m �= n, x ∈ Dm, Dm is closed in X\{x}, and Dm ⊆ Vm.

(3)
⋃

j �=i Dj is closed in X\{x} for every i < ω.

In fact suppose that z ∈ ⋃
j �=i Dj\

⋃
j �=i Dj . There is then a sequence 〈dj : j < ω〉

of distinct elements of
⋃

j �=i Dj converging to z. Say dj ∈ Dkj for all j < ω.
Since z /∈ ⋃

j �=i Dj , we may assume that the kj ’s are all distinct, and in fact that
〈kj : j < ω〉 forms an increasing sequence of integers. Let U , an open neighborhood
of z, and m < ω be such that U ∩ Vm = 0. Now for all t ≥ m we have kt ≥ t ≥ m,
and so Dkt ⊆ Vm, which is impossible. So, (3) holds.
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Let Γi = (X\{x})\⋃j �=i Dj . So Γi is open in X\{x}, hence in X itself, Γi∩Dj = 0
for i �= j, and Di ⊆ Γi. Write

Γi = Δi
0 ∪Δi

1 ∪ . . .

with each Δi
j clopen. Define (i, j) <′ (m,n) iff (1) max(i, j) < max(m,n), or (2)

max(i, j) = max(m,n) and i < m, or (3) max(i, j) = max(m,n) and i = m and
j < n. Then let

Em
n = Δm

n \
⋃
{Δi

j : (i, j) <′ (m,n), i �= m}

Note that if i �= m then Dm ∩Δi
j ⊆ Dm ∩ Γi = 0. Thus Um

def=
⋃

n<ω Em
n ⊇ Dm.

Also, Em
n ∩Ep

q = 0 for m �= p: for if say (p, q) <′ (m,n), then

Em
n ∩Ep

q ⊆ Em
n ∩Δp

q = 0.

It follows that Um ∩Up = 0 for m �= p. Furthermore,
⋃

m<ω Um = X\{x}. For, let
y ∈ X\{x}. Then y ∈ ⋃

i<ω Γi, so there exist i, j such that y ∈ Δi
j . Choose (m,n)

minimum under <′ such that y ∈ Δm
n . Then y ∈ Em

n ⊆ Um.
Let 〈zi : i < ω〉 be a sequence without repetitions of members of Yx such that

{zi : i < ω} is dense in Yx. Define fx : X\{x} → Yx by setting f [Um] = {zm} for
all m < ω. Clearly fx is continuous.

To prove (iii), assume that x ∈ X, i ∈ ω, D ⊆ Z, and π[D] = Cx
i . We want

to show that Yx ⊆ D. To this end, assume that y ∈ Yx and V is a neighborhood
of y. Without loss of generality we may assume that

V = W ∪ π−1[U ∩ f−1
x [W ]],

with obvious assumptions. Choose zm ∈ W with i ≤ m. So Bi
k(m,i) ⊆ Dm ⊆

Um ⊆ f−1[W ]. Now x ∈ Bi
k(m,i), so choose u ∈ U ∩ Bi

k(m,i) ⊆ U ∩ f−1
x [W ]. Now

Bi
k(m,i) ⊆ Cx

i , so u ∈ Cx
i . Choose v ∈ D with πv = u. Thus v ∈ V ∩D, as desired.

For (iv), pick m such that zm ∈W and m ≥ i. Then

Bi
k(m,i) ⊆ Dm ⊆ Um = f−1

x [{zm}] ⊆ f−1
x [W ],

and Bi
k(m,i) ⊆ Ai ⊆ Cx

i , so x ∈ Bi
k(m,i) ⊆ Cx

i ∩ f−1
x [W ], as desired.

For (v), let z ∈ Z; say z ∈ Yx. Let 〈Ux
n : n < ω〉 be a nested open neighbor-

hood base for x in X, and let 〈W z
n : n < ω〉 be one for z in Yx. Define

Sn = W z
n ∪ π−1[Ux

n ∩ f−1
x [W z

n ]]

for all n < ω. We claim that this gives a neighborhood base for z; the simple proof
will be omitted.
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Fedorchuk’s construction. Assume ♦, and hence CH. We start with some def-
initions:

•F is the free BA on ω free generators.
• for each α < ω1, 〈Qξ : ξ ∈ αω1〉 is a system of pairwise disjoint spaces each
homeomorphic to UltF, and pξ is a homeomorphism from UltF onto Qξ.
• s is a one-one function from ω1 onto UltF.
• For each limit ordinal α ≤ ω1, 〈uξ : ξ ∈ αω1〉 is a system of distinct objects not
in any of the spaces Qξ.
• For each non-zero α ≤ ω1 and each ξ ∈ αω1 we set

xξ =
{

pξ�βsξβ if α = β + 1,
uξ if α is a limit ordinal.

• For any non-zero α ≤ ω1 we let Xα = {xξ : ξ ∈ αω1}.
• For 0 < α ≤ β ≤ ω1 we define πβ

α : Xβ → Xα by πβ
αxξ = xξ�α for any ξ ∈ βω1.

Now we begin the main part of the construction. For 0 < α ≤ ω1 we shall construct
Aα, ψα, and a topology on Xα so that the following conditions hold:

(1) Aα is a BA;
(2) if β < α, then Aβ is a subalgebra of Aα;
(3) if α is a limit ordinal, then Aα =

⋃
β<α Aβ.

(4) ψα is a homeomorphism from UltAα onto Xα.
(5) if β < α, then πα

β is a continuous function from Xα onto Xβ .
(6) if β < α ≤ ω1, then the following diagram commutes:

UltAα Xα

UltAβ Xβ

ψα

σα
β πα

β

ψβ

Here σα
β is the natural continuous mapping which is the dual of the inclusion of

Aβ in Aα. (Actually, σα
β F = F ∩Aβ for any F ∈ Ult Aα.)

(7) Xα is first-countable.

We define A1 = F. Note that X1 = Q0; we take the natural topology on X1. Let
ψ1 = p0. Clearly (1)–(7) hold.

Having defined Aβ and a topology on Xβ, we now define Aβ+1 and a topology
on Xβ+1. We defer until later the construction of functions fξ for ξ ∈ βω1; we
will make this construction so that fξ : Xβ\{xξ} → Qξ is continuous. So, we
can put the topology on Xβ+1 determined by all of these functions fξ by the
method described previously. Therefore Xβ+1 is a Boolean space; since the natural
mapping πβ+1

β from Xβ+1 onto Xβ is a continuous function from Xβ+1 onto Xβ,
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which is homeomorphic via ψβ to Ult Aβ, we hence get an extension Aβ+1 and a
homeomorphism ψβ+1 so that the conditions (1)–(7) continue to hold.

Now for the limit step, assume that α is a limit ordinal and the construction
has been done for all β < α. We define Aα by (3). Then

(8) If F ∈ UltAα, then there is a unique ξ ∈ αω1 such that ψβ(F ∩Aβ) = xξ�β for
all β < α.

For, suppose that β < α. Thus ψβ(F ∩ Aβ) ∈ Xβ , so there is a unique ηβ ∈ βω1

such that ψβ(F ∩Aβ) = xηβ
. We claim that if β < γ < α then ηβ ⊆ ηγ . In fact,

ψβ(F ∩Aβ) = ψβσγ
β(F ∩Aγ)

= πγ
βψγ(F ∩Aγ)

= πγ
βxηγ

= xηγ�β ,

so the claim follows. Hence (8) holds.
For each F ∈ UltAα let ψαF = xξ, with ξ as in (10). We claim that ψα is

one-one. For, if F �= G, say F ∩Aβ �= G∩Aβ for some β < α. Then with ψαF = xξ

and ψαG = xη we have xξ�β = ψβ(F ∩Aβ) �= ψβ(G∩Aβ) = xη�β , so ξ � β �= η � β
and ξ �= η.

Also, ψα is onto. For, let ξ ∈ αω1. For all β < α let Fβ = ψ−1
β xξ�β . Then

β < γ < α implies that Fβ ⊆ Fγ , since

σγ
βFγ = σγ

βψ−1
γ xξ�γ

= ψ−1
β πγ

βxξ�γ

= ψ−1
β xξ�β

= Fβ .

Let G =
⋃

β<α Fβ . Clearly ψαG = xξ, as desired.
Put a topology on Xα so that ψα is a homeomorphism. Then if β < α and

F ∈ UltAα we have (with ψαF = xξ)

ψβσα
β F = ψβ(F ∩Aβ) = xξ�β

= πα
β xξ = πα

β ψαF.

Thus (6) holds. For (5), let β < α and a ∈ Aβ; we show that (πα
β )−1[ψβ [S a]] is

open in Xα. In fact, for any F ∈ UltAα,

F ∈ ψ−1
α [(πα

β )−1[ψβ [S a]]] iff πα
β ψαF ∈ ψβ [S a]

iff ψβσα
β F ∈ ψβ [S a]

iff σα
β F ∈ S a

iff F ∩Aβ ∈ S a

iff a ∈ F,

so (πα
β )−1[ψβ [S a]] = ψα[S a], as desired.
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(7) holds by considering duality: each ultrafilter on Aα clearly has a countable
set of generators.

This finishes the construction, except for the crucial definition of the functions fξ,
to which we now turn. So, suppose that ξ ∈ βω1, where Aβ, ψβ , and a topology on
Xβ have been defined so that (1)–(7) hold. We shall apply the lemma to construct
fξ; thus we want to define a countable subset Cξ ofP(Xβ\{xξ}) such that xξ ∈ C
for each C ∈ Cξ. We will define Cξ as C 0

ξ ∪ C 1
ξ ∪ C 2

ξ .
Defining C 0

ξ . First suppose that β is limit. For each α < β choose ηα ∈ βω1

such that ηα �= ξ but ηα � α = ξ � α. Let C 0
ξ = {{xηα : γ < α < β} : γ < β}. We

note that xξ ∈ D for each D ∈ C 0
ξ . In fact, suppose ψ−1

β xξ ∈ S a. Say a ∈ Aα,
where α < β. We claim that xηγ ∈ S a for all γ > α. For,

ψ−1
β xξ ∩Aα = σβ

αψ−1
β xξ

= ψ−1
α πβ

αxξ

= ψ−1
α xξ�α

= ψ−1
α πβ

αxηγ

= σβ
αψ−1

β xηγ

= ψ−1
β xηγ ∩Aα,

which proves the claim.

Second, assume that β = γ + 1 for some γ. Then xξ ∈ Qξ�γ , and we let Y be
the range of a sequence of distinct elements of Qξ�γ\{xξ} which converges to xξ,
and C 0

ξ = {Y }.
Note the following property of C 0

ξ , true whether β is limit or not:

(9) For all α < β there is a Y ∈ C 0
ξ such that for all xη ∈ Y we have ξ � α ⊆ η.

Defining C 1
ξ . Let 〈fα : α < ω1〉 be a special ♦-sequence. We define

C
1
ξ =

{
{xfβ

γ
: γ < β}\{xξ} if xξ is an accumulation point of {xfβ

γ
: γ < β},

0 otherwise.

Defining C 2
ξ . Let g : ω1 → Xβ be a bijection and let 〈Jα : α < ω1〉 be a ♦-sequence.

We set
C

2
ξ = {g[Jγ ] : γ ≤ g−1xξ, xξ ∈ g[Jγ ]}.

Now we prove the essential properties of the construction.

(10) Suppose that β < α ≤ ω1, β limit, uη ∈ Xβ, E ⊆ Xω1 , Qη ⊆ πω1
β+1[E],

xξ ∈ Xα, and πα
β xξ = uη. Then xξ ∈ πω1

α [E].
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We prove (10) by induction on α. The case α = β + 1 is given. Now assume (10)
for α, where β + 1 ≤ α. Assume that xξ ∈ Xα+1 and πα+1

β xξ = uη; we want to
show that xξ ∈ πω1

α+1[E]. Suppose that xξ ∈ V where V is open; without loss of
generality say

V = W ∪ (πα+1
α )−1[U ∩ f−1

ξ�α[W ]],

where W is a non-empty open subset of Qξ�α and U is an open neighborhood
of xξ�α. By (9), choose Y ∈ C 0

ξ�α so that for all xρ ∈ Y we have ξ � β ⊆ ρ.

Now xξ�α ∈ Y , so by the Lemma (iv) we get xξ�α ∈ Y ∩ f−1
ξ�α[W ]; hence choose

xρ ∈ U ∩ Y ∩ f−1
ξ�α[W ]. Thus ρ ∈ αω1, so by the induction hypothesis xρ ∈ πω1

α [E].
Say xθ ∈ U ∩ f−1

ξ�α[W ] ∩ πω1
α [E]. Say πω1

α e = xθ. Then πω1
α+1e ∈ V ∩ πω1

α+1[E], as
desired.

Finally, suppose that γ is limit and (10) holds for each α < γ. Suppose
that πγ

βz = xη. Take any neighborhood V of z; without loss of generality we may
assume that V = ψγ [S a], where a ∈ Aγ . Say a ∈ Aα, where β < α < γ. Thus
ψ−1

γ z ∈ S a, so σγ
αψ−1

γ z ∈ S a, so ψ−1
α πγ

αz ∈ S a, and finally πγ
αz ∈ ψα[S a]. Now

by the induction hypothesis πγ
αz ∈ πω1

α [E], so ψα[S a] ∩ πω1
α [E] �= 0. This easily

yields ψγ [S a] ∩ πω1
γ [E] �= 0, as desired. This finishes the proof of (10).

(11) Every infinite closed subset of Xω1 has cardinality 2ω1 .

In fact, let C be an infinite closed subset of Xω1 , and let E be a countably infinite
subset of C. Choose γ < ω1 such that F ∩ Aγ �= G ∩ Aγ for all distinct F,G ∈
ψ−1

ω1
[E]. Choose f ∈ ω1(ω1ω1) such that E = {xfα : α < ω1}. Now D

def= {α < ω1 :
f��α = fα} is stationary, so there is a limit α with γ < α < ω1, f��α = fα, and
E = {xfδ : δ < α}. Now πω1

α [E] is infinite, and so it has an accumulation point xξ.
Note that {xfα

δ
: δ < α} = πω1

α [E]. Let Y = {xfα
δ

: δ < α}\{xξ}. Thus Y ∈ C 1
ξ ,

and xξ ∈ Y . Hence by the Lemma (iii), Qξ ⊆ πω1
α+1[Y ] and so Qξ ⊆ πω1

α+1[E]. It
now follows by (10) that |C| = 2ω1 .

(12) Assume that Xβ is hereditarily separable. If C is a closed subset of Xβ+1,

then B
def= {xξ : ξ ∈ βω1, , Qξ ∩ C �= 0 �= Qξ\C} is countable.

For, suppose that B is uncountable. Since Qξ ∩ C �= 0 for each xξ ∈ B, we
have B ⊆ πβ+1

β [C]. We use the notation for defining C 2
ξ . Let D be a countable

dense subset of B. Choose γ < ω1 such that D ⊆ g[γ]. Then choose δ such that
γ ≤ δ < ω1 and δ ∩ g−1[B] = Jδ. Thus B ⊆ g[δ] ∩B = g[Jδ], so we can choose
xξ ∈ B such that δ ≤ g−1xξ and xξ ∈ g[Jδ]. Now let E be a subset of C such that
πβ+1

β [E] = g[γ]∩B. Then by the choice of C 2
ξ and the lemma we get Qξ ⊆ E ⊆ C,

contradicting xξ ∈ B. Thus (12) holds.

(13) Assume that Xβ is hereditarily separable. If C is a closed subset of Xβ+1, then

B′ def= {xξ : ξ ∈ βω1, Qξ ⊆ C, and there are U,W with U an open neighborhood
of xξ and W a non-empty subset of Qξ such that (πβ+1

β )−1[U ∩ f−1
ξ [W ]]∩C = 0}

is countable.
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The proof is similar to that of (12). Suppose that B′ is uncountable. Let D be a
countable dense subset of B′, and choose γ < ω1 such that D ⊆ g[γ]. Then choose
δ such that γ ≤ δ < ω1 and δ ∩ g−1[B′] = Jδ. Then B′ ⊆ g[δ] ∩B′ = g[Jδ], so
there is a xξ ∈ B′ such that δ ≤ g−1xξ and xξ ∈ g[Jδ]. So by the choice of C 2

ξ and

the Lemma (iv) we get xξ ∈ g[Jδ] ∩ f−1
ξ [W ]. Hence U ∩ g[Jδ] ∩ f−1

ξ [W ] �= 0. But
g[Jδ] = g[δ] ∩B′ ⊆ πβ+1

β [C], so this contradicts xξ ∈ B′. So (13) holds.

(14) Each space Xβ is hereditarily separable for β < ω1.

We prove this by induction on β. It is true for β = 1. Assume that it is true for
β. Suppose that C ⊆ Xβ+1. Since Xβ+1 is first countable, we may assume that C
is closed, as is easily seen. Let B and B′ be as in (12) and (13), and let D be a
countable dense subset of πβ+1

β [C]. For each xξ ∈ B let Eξ be a countable dense
subset of Qξ ∩ C, and for each xξ ∈ B′ let Eξ be a countable dense subset of Qξ.
For each xξ ∈ D choose yξ ∈ Qξ ∩ C. We claim that the countable set

{yξ : xξ ∈ D} ∪
⋃

xξ∈B∪B′
Eξ

is dense in C. To prove this, suppose that V is an open set such that V ∩ C �= 0.
We may assume that V has the form W ∪ (πβ+1

β )−1[U ∩ f−1
ξ [W ]], with obvious

assumptions. First suppose that (πβ+1
β )−1[U ∩ f−1

ξ [W ]]∩C �= 0. If c is an element
of this set, then πβ+1

β c ∈ U ∩ f−1
ξ [W ], so we can choose xη ∈ D ∩ U ∩ f−1

ξ [W ].
Then yη ∈ V ∩C, as desired. Second, suppose that W ∩C �= 0 and xξ ∈ B. Then
there is some member of Eξ which is in C∩V , as desired. The only remaining case
is that W ∩X �= 0 and xξ ∈ B′, which again yields the desired conclusion.

Now suppose that β is a limit ordinal and we know that Xα is hereditarily
separable for all α < β. Let C be a subset of Xβ. For each α < β let Dα be a
countable subset of C such that πβ

α[Dα] is dense in πβ
α[C]. Set E =

⋃
α<β Dα; we

claim that E is dense in C. To see this, suppose that a ∈ Aβ and ψβ [S a]∩C �= 0;
we want to show that ψβ [S a] ∩E �= 0. Choose α < β so that a ∈ Aα. Now

0 �= πβ
α[ψβ [S a] ∩ C] ⊆ πβ

α[ψβ [S a]] ∩ πβ
α[C]

= ψα[S a] ∩ πβ
α[C].

Hence there is a z ∈ Dα such that πβ
αz ∈ ψα[S a]. Thus ψ−1

α πβ
αz ∈ S a, so

σβ
αψ−1

β z ∈ S a, so z ∈ ψβ [S a], as desired.

(15) Suppose that C is an uncountable discrete subset of Xω1 . Then πω1
β [C] is

countable for all β < ω1.

For, suppose not; choose β < ω1 with πω1
β [C] uncountable. Let D be a countable

subset of C such that πω1
β [D] is dense in πω1

β [C]. We again use the notation for
defining C 2

ξ . There is a γ < ω1 such that πω1
β [D] ⊆ g[γ]. Choose δ such that
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γ ≤ δ < ω1 and δ ∩ g−1[πω1
β [C]] = Jδ. Hence πω1

β [C] ⊆ g[Jδ]. Hence there is a
ξ such that xξ ∈ πω1

β [C], δ ≤ g−1xξ, and xξ ∈ g[Jδ]. Now g[Jδ] ∈ C 2
ξ , so by the

Lemma (iii), Qξ ⊆ g[Jδ]. Let E be a subset of C such that πω1
β [E] = g[Jδ]. Say

πω1
β c = xξ, with c ∈ C. Then by (10) we have c ∈ E. Since c /∈ E, this contradicts

the assumption that C is discrete.

(16) Xω1 is hereditarily separable.

For, suppose not. Let 〈xξα : α < ω1〉 be a left-separated sequence in Xω1 . The
following two statements are obvious.

(17) If α < ω1, N is a clopen subset of Xα, and N ∩ {xξβ�α : β < α} �= 0, then
(πω1

α )−1[N ] ∩ {xξβ
: β < ω1} �= 0.

(18) If α < ω1, N is a clopen subset of Xα, and |N ∩ {xξβα : β < α}| ≥ 2, then
|(πω1

α )−1[N ] ∩ {xξβ
: β < ω1}| ≥ 2.

Now let

C = {α < ω1 : for every clopen N ⊆ Xα(N ∩ {xξβ�α : β < α} = 0 iff

(πω1
α )−1[N ] ∩ {xξβ

: β < ω1} = 0)and (|N ∩ {xξβ�α : β < α}| = 1 iff

|(πω1
α )−1[N ] ∩ {xξβ

: β < ω1}| = 1).

We claim

(19) C is club in ω1.

We shall prove this in detail, since it is a little trickier than your usual club
arguments. Actually the “closed” part is straightforward, but for completeness we
do that too.

First we show that C is closed. Suppose that α is a limit ordinal less than
ω1 and α ∩ C is unbounded in α; we want to show that α ∈ C. Suppose that
N ⊆ Xα is clopen and (πω1

α )−1[N ] ∩ {xξβ
: β < ω1} �= 0. Say β < ω1 and

πω1
α xξβ

∈ N . Thus xξβ�α ∈ N . Write N = ψα[S a], a ∈ Aα. Then there is a
γ < α such that γ ∈ C and a ∈ Aγ . Thus xξβ�α ∈ ψα[S a], so by the commutative
diagram we easily get xξβ�γ ∈ ψγ [S a] so, since γ ∈ C, xξδ�γ ∈ ψγ [S a] for some
δ < γ. The commutative diagram then gives xξδ�α ∈ N , as desired. Similarly
|(πω1

α )−1[N ]∩{xξβ
: β < ω1}| ≥ 2 implies that Xα, and |N ∩{xξβ�α : β < α}| ≥ 2.

Hence C is closed.
C is unbounded: Let α0 < ω1 be given; we want to find a member of C

which is greater than α0. By (15) let Γ be a countable subset of ω1 such that
{ξβ � α0 : β < ω1} = {ξβ � α0 : β ∈ Γ}. For each β ∈ Γ let Uβ be a countable
clopen neighborhood base for xξβ�α0 . Let V =

⋃
β∈ΓUβ. For each U ∈ V , let

ΔU be a largest subset of ω1 with the following two properties: (a) |ΔU | ≤ 2; (b)
for all β ∈ ΔU , xξβ�α0 ∈ U . Let α1 = max(α0, supU∈V maxΔU ) + 1. Continue in
the same way with α2, α3, . . ., and let αω = supn∈ω α1. We claim that αω ∈ C.
Suppose that N ⊆ Xαω is clopen, and (πω1

αω
)−1[N ] ∩ {xξβ

: β < ω1} �= 0. Say
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β < ω1, xξβ�αω ∈ N . Write N = ψαω [S a] with a ∈ Aαω . Say a ∈ Aαi , i < ω. Thus
ψ−1

αω
xξβ�αω ∈ S a, so xξβ�αi ∈ ψαi [S a]. Then with V as above, but for αi rather

than α0, there is a U ∈ V such that xξβ�αi ∈ U and U ⊆ ψαi [S a]. Hence we get a
γ < αi+1 such that xξγ�αi ∈ U . Thus ψ−1

αi
xξγ�αi ∈ S a, so ψ−1

αω
xξγ�αω ∈ S a, and

hence N ∩ {xξδ�αω : δ < αω} �= 0. The other desired condition is proved similarly.
Hence (19) holds.

Now fix α ∈ C with ξ��α = fα, where 〈ξα : α < ω1〉 is the special ♦ sequence.
Then

(20) xξη�α ∈ {xξα
β

: β < α} for all η < ω1.

For, if xξη�α ∈ N with N clopen, then (πω1
α )−1[N ] ∩ {xξν : ν < ω1} �= 0, so

N ∩ {xξβ�α : β < α} �= 0 as desired, since α ∈ C.

(21) For all η < ω1, if xξη�α is isolated in {xξβ�α : β < α}, then η < α.

For, let N be clopen such that N ∩ {xξβ�α : β < α} = {xξη�α}. Thus since α ∈ C
we get |(πω1

α )−1[N ] ∩ {ξβ : β < ω1}| = 1. Say xξη�α = xξγ�α with γ < α. Since xξη

and xξγ are both members of (πω1
α )−1[N ]∩{ξβ : β < ω1}, it follows that η = γ, as

desired.
By (21), xξα�α is an accumulation point of {xξβ�α : β < α} = {xξα

β
: β < α}.

Then by the Lemma and (10) we get xξα ∈ {xξβ�α : β < α}, contradicting left-
separatedness.

This finishes Fedorchuk’s example.

On the relationship of hd with the other functions, note also that by Theorem 16.1
we have πA ≤ hdA. πA is strictly less than hdA inPκ, for example. And we have
sA < hdA for A the interval algebra on a Suslin line, and hdA < χA for a Kunen
line (Chapter 8).

There is a model of ZFC with a BA A such that sA,dA < hdA (a remark
of I. Juhász in an email message in February, 1995). Namely, take a model with
MA(σ-centered) + ∃ a 0-dimensional Susilin line S, let K be a compactification of
ω such that K\ω = S, and let A = clopK. (See W. Weiss [84], J. van Mill [84].)

From the result that πA ≤ sA · (tA)+ it follows that hdA ≤ sA · (tA)+.
It is also true that hdA ≤ IrrA. In fact, we have hdA = πH+A, and for any
homomorphic image B of A we have πB ≤ IrrB ≤ IrrA.

If one can construct in ZFC a BA A such that hLA < hdA, then one can also
construct in ZFC a BA B such that hLB < dB (see problem 53). In fact, A has a
homomorphic image such that hLA < dB, and hLB ≤ hLA. Similarly for hL < π.

The following problems are open; these are Problems 50 and 51 in Monk [90].

Problem 57. Can one construct in ZFC a BA A such that sA < hdA?

Problem 58. Can one construct in ZFC a BA A such that hdA < χA?

Note that Problem 57 is equivalent to the problem of constructing in ZFC a BA A
such that sA < dA, and also to the problem of constructing in ZFC a BA A such
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that sA < πA; see the argument preceding problem 57. Also note that “yes” for
Problem 53 implies “yes” for problem 57.

Problem 58 is equivalent to the problem of constructing in ZFC a BA A such
that hdA < hLA; see the argument at the end of Chapter 15. And note that “yes”
for problem 58 implies “yes” for problem 49.

Bounded versions of hd can be defined as follows. For m a positive integer, a
sequence 〈xα : α < κ〉 of elements of A is said to be m-left-separated provided that
if Γ ∈ [κ]m, α < κ, and α < β for all β ∈ Γ, then aα ·

∏
β∈Γ−aβ �= 0. Then we

define

hdmA = sup{κ : there is an m-left-separated sequence in A}.

For this notion, see Ros	lanowski, Shelah [94].



17. Incomparability

We begin with one important equivalent definition:

Theorem 17.1. For any infinite BA A we have IncA = sup{|T | : T is a tree
included in A}.
(Note that when we say that T is a tree included in A, we mean merely that T is
a subset of A which is a tree under the induced ordering; there is no assumption
that incomparable elements (in T ) are disjoint (in the dual of A).)

Proof. Since any incomparable set is a tree having only roots, the inequality ≤
is clear. To show equality, suppose that κ is regular and A has no incomparable
set of size κ; we show that A has no tree of size κ. Suppose T is a tree of size
κ. By Theorem 4.25 of Part I of the BA handbook, A has a dense subset D of
size < κ. Now each level of T is an incomparable set, and hence has fewer than
κ elements. Hence T has at least κ levels. Let T ′ be a subset of T of power κ
consisting exclusively of elements of successor levels. For each d ∈ D let

Md = {t ∈ T ′ : if s is the immediate predecessor of t, then d ≤ t · −s}.

Thus T ′ =
⋃

d∈D Md, so there is a d ∈ D such that |Md| = κ. But then Md

is incomparable, contradiction: if y, z ∈ Md and y < z, then y ≤ u where u is
the immediate predecessor of z, and d ≤ z · −u, hence d · y = 0, contradicting
d ≤ y.

Note that if IncA is attained, then it is obviously attained in the tree sense. The
converse also holds, as Todorčević pointed out in a letter to the author several
years before Monk [90] appeared; this solves Problem 52 in Monk [90]. We give
this result here, following the proof in an email message from Shelah of December
1990.

Theorem 17.2. If A is an infinite BA and there is a tree T ⊆ A with |T | = IncA,
then A has an incomparable subset of power IncA.

Proof. By the proof of Theorem 17.1 we may assume that λ
def= IncA is singular.

Let 〈κα : α < cfλ〉 be an increasing sequence of cardinals with supremum λ.
Without loss of generality, T has no level of size λ. Now we consider two cases.

Case 1. For every α < cfλ there is a β such that T has at least κα elements
of level β. For any ordinal β let levβT be the set of elements of T of level β. By
an easy construction we obtain a strictly increasing sequence 〈βα : α < cfλ〉 of
ordinals such that |levβα+1T | > max(κα, |levβα |) for all α < cfλ. For every α < cfλ
let Sα be a subset of levβα+1T of power (max(κα, |levβα |))+ such that all elements
of Sα have the same predecessors at level βα. Note that if α < cfλ then

Rα
def= {t ∈ Sα : t ≤ s for some s ∈ Sγ with α < γ < cfλ}
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has power at most cfλ. Now the set
⋃

α<cfλ(Sα\Rα) is incomparable of size λ, as
desired.

Case 2. Case 1 fails to hold. Then clearly T must have at least λ levels. Hence
DepthA = λ and cA = λ, so by the Erdös-Tarski theorem A has a disjoint subset
of power λ; it is also an incomparable subset.

Concerning attainment of Inc, several things are known. Milner and Pouzet [86]
proved a general result, of which a special case is that if IncA = λ with cfλ = ω,
then IncA is attained. Todorčević has shown that if 2ω is weakly inaccessible, then
there is a BA of size 2ω with incomparability 2ω not attained. On the other hand,
Theorem 4.25 of the BA handbook shows that if IncA is a strong limit cardinal,
then IncA is attained. The statement in Monk [90] about attainment due to Shelah
has been withdrawn by him. Instead, in Shelah [92a] he proves that IncA is always
attained for singular cardinals. We give this interesting proof here.

Theorem 17.3. Inc is attained for singular cardinals.

Proof. Suppose that IncB = λ, with λ singular. Now we choose 〈λi : i < cfλ〉 and
〈Ai : i < cfλ〉 so that the following conditions hold:

(1) 〈λi : i < cfλ〉 is a strictly increasing sequence of regular cardinals all greater
than cfλ and with supremum λ.
(2) 〈Ai : i < cfλ〉 is a system of incomparable sets in B with |Ai| = λ+

i for all
i < cfλ.

It is clear that this can be done. In addition, if possible we choose these things so
that the following condition holds:

(3) If i < j < cfλ, x ∈ Ai, and y ∈ Aj, then y �≤ x.

Now let A =
⋃

i<cfλ Ai. The following notation will also be useful. Let C ⊆ B.
For any x ∈ B, C ↑ x = {y ∈ C : y ≥ x}, C ↓ x = {y ∈ C : y ≤ x}, and for any
cardinal μ, C ↑μ= {x ∈ C : |C ↑ x| < μ} and C ↓μ= {x ∈ C : |C ↓ x| < μ}.
Case 1. There is a μ < λ such that |A ↑μ | = λ. For each x ∈ (A ↑μ) let
fx = (A ↑μ) ↑ x. Thus f : (A ↑μ)→P(A ↑μ) and |fx| < μ < λ for all x ∈ (A ↑μ).
Hence by Hajnal’s free set Theorem (see the Handbook, Part III, p. 1231) we
get E ⊆ (A ↑μ) of size λ such that x /∈ fy for all distinct x, y ∈ E. So E is
incomparable, as desired.

Case 2. There is a μ < λ such that |A ↓μ | = λ. Similarly.

Case 3. For every i < cfλ there is an xi ∈ A such that λi < |A ↑ xi| < λ. We
now define a function μ : cfλ→ cfλ by induction. Having defined μj for all j < i,
choose μi < cfλ so that λμi >

∑
j<i(|A ↑ xμj |+λμj ). Now let A′

i = Aμi , λ′
i = λμi ,

x′
i = xμi for all i < cfλ. Then (1)–(2) hold for A′

i and λ′
i, (3) holds for the A′

i’s if
it held for the Ai’s, and

(4) If j < i < cfλ, then
∑

j<i |A ↑ x′
j | < λ′

i.
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Now for i < cfλ we have
∣∣∣(A ↑ x′

i)\
⋃

j<i(A ↑ x′
j)

∣∣∣ > λ′
i, cfλ < λi, and A =⋃

j<cfλ Aj , so there is an α(i) < cfλ such that

∣∣∣∣∣∣Aα(i) ∩ (A ↑ x′
i)\

⋃
j<i

(A ↑ x′
j)

∣∣∣∣∣∣ > λ′
i.

Clearly α(i) ≥ μi. We define β : cfλ→ cfλ by induction. If β(j) has been defined
for all j < i, choose β(i) < cfλ such that supj<i max{α(β(j)), μβ(j)} < μβ(i). Now
choose

A∗
i ⊆ Aα(β(i)) ∩ (A ↑ x′

β(i))\
⋃
j<i

(A ↑ x′
β(j))

of size λ′
β(i). Note that α(β(j)) < μβ(i) ≤ α(β(i)) for j < i < cfλ. Let λ∗

i = λ′
β(i).

Then (1)–(2) hold for A∗
i and λ∗

i , (3) holds for the A∗
i ’s if it held for the Ai’s (since

A∗
i ⊆ Aα(β(i))), and

(5) if i < j < cfλ, x ∈ A∗
i , and y ∈ A∗

j , then x �≤ y.

For, otherwise x′
β(i) ≤ x ≤ y /∈ (A ↑ x′

β(i)), contradiction. Now let A�
i = {x :

−x ∈ A∗
i }. Then (1)–(3) hold for A�

i and λ∗
i . Therefore by the initial choices, (3)

itself holds. So, (3) and (5) hold for A∗
i and λ∗

i . It follows that
⋃

i<cfλ A∗
i is an

incomparable set of size λ, as desired.

Case 4. For every i < cfλ there is an x ∈ A such that λi < |A ↓ x| < λ. Similar to
Case 3.

Case 5. None of the previous cases. By ¬Case 3, there is an i(∗) < cfλ such that for
all x ∈ A we have ¬(λi(∗) < |A ↑ x| < λ). By ¬Case 2, |A ↓λ+

i(∗)
| < λ, and by ¬Case

1, |A ↑λ+
i(∗)
| < λ. Choose x∗ ∈ A\((A ↓λ+

i(∗)
)∪ (A ↑λ+

i(∗)
)). Thus |A ↑ x∗| ≥ λ+

i(∗), so

by the choice of i(∗) we have |A ↑ x∗| = λ. Also, |A ↓ x∗| ≥ λ+
i(∗) > cfλ, so there is a

j(∗) < cfλ such that |(A ↓ x∗)∩Aj(∗)| ≥ cfλ. Choose distinct yi ∈ (A ↓ x∗)∩Aj(∗)
for i < cfλ.

For each i < cfλ let A′
i = Ai ∩ (A ↑ x∗). Thus A′

i is an incomparable set and∣∣∣∣∣
⋃

i<cfλ

A′
i

∣∣∣∣∣ =

∣∣∣∣∣(A ↑ x∗) ∩
⋃

i<cfλ

Ai

∣∣∣∣∣ = |(A ↑ x∗) ∩A| = λ.

Finally, {yi + x · −x∗ : i < cfλ, x �= x∗, x ∈ A′
i} is an incomparable set of size λ,

as desired.

Now we turn to algebraic operations, as usual. If A is a subalgebra or homomorphic
image of B, then IncA ≤ IncB. If A is a subalgebra of B, then, easily, Inc(A×B) ≥
|A|; in fact, {(a,−a) : a ∈ A} is an incomparable set in A × B. Hence if A is
cardinality-homogeneous and has no incomparable set of size |A|, then A is rigid
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(this follows from some elementary facts concerning automorphisms; see the article
in the BA handbook about automorphisms). Thus the incomparability of a product
can jump from that in a factor—for example, if A is such that IncA < |A|, we
have Inc(A × A) = |A|. Finally, Inc(A ⊕ B) = max(|A|, |B|) if |A|, |B| ≥ 4, since
A⊕ C ∼= A×A if |C| = 4.

Ultraproducts: Inc is an ultra-sup function, so Theorems 3.15–3.17 hold, The-
orem 3.17 saying that Inc

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I IncAi/F

∣∣ for F regular, and Don-
der’s theorem says that under V = L the regularity assumption can be removed.
In Shelah [94g] it is shown that > is consistent, but we do not know whether this
can be done in ZFC:

Problem 59. Do there exist in ZFC a system 〈Ai : i ∈ I〉 of infinite BAs, I infi-
nite, and a regular ultrafilter F on I such that Inc

(∏
i∈I Ai/F

)
>

∣∣∏
i∈I IncAi/F

∣∣?
Problem 60. Is an example with Inc

(∏
i∈I Ai/F

)
<

∣∣∏
i∈I IncAi/F

∣∣ consistent?

Again this problem may be solved by the methods of Magidor, Shelah [91].

Concerning derived functions of incomparability, we mention only a result of Shelah
(email message of December 1990), solving Problem 53 in Monk [90]:

Theorem 17.4. If IncA = ω, then CardH−A = ω.

Proof. Suppose that IncA = ω < CardH−A. Without loss of generality, assume
that A is a subalgebra of Pω containing all of the finite subsets of ω. Hence
there is an a ∈ A such that both a and ω\a are infinite. Let F be a nonprincipal
ultrafilter on A � a. Then we can construct 〈aα : α < χF 〉, each aα ⊆ a, such that
for each α < χF , the element aα is not in the filter generated by {aβ : β < α};
in particular, β < α ⇒ aβ �≤ aα. Similarly we get a nonprincipal ultrafilter G on
A � −a and a sequence 〈bα : α < χG〉 of subelements of −a such that β < α ⇒
bβ �≤ bα. Say χF ≤ χG. Then 〈aα+−bα ·−a : α < χF 〉 is a system of incomparable
elements. By 14.5, aA ≤ χF , so aA = ω. Hence 14.7 gives a contradiction.

Now we turn to connections with our other functions. From the Handbook Theo-
rem 4.25 it follows that dA ≤ πA ≤ IncA for any infinite BA A; hence hdA ≤ IncA,
by an easy argument. An example in which they are different is the interval algebra
A on the reals. In fact, hdA = ω by Theorem 16.1, and an incomparable set of size
2ω is provided by

{[0, r) ∪ [1 + r, 2) : r ∈ (0, 1)}.
Much effort has been put into constructing BAs A in which IncA < |A|. An
example in ZFC of such an algebra has been given by Shelah (email message,
December 1990; see the end of this chapter). Another example is an algebra of
Bonnet, Shelah [85]; their algebra is an interval algebra, and has power cf(2ω), so
that if cf(2ω) is not limit one gets such an algebra. Rubin’s algebra [83] is another
example (constructed assuming ♦). Baumgartner [80] showed that it is consistent
to have MA, 2ω = ω2, and every uncountable BA has an uncountable incomparable
subset.
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We give a construction, using ♦, of a BA A with IncA < |A|; the example is due
to Baumgartner, Komjath [81], and settles another question which is of interest.
It depends on some lemmas. For all the lemmas let A be a denumerable atomless
subalgebra of Pω, and let I be a maximal ideal in A. We consider a partial
ordering P = {(a, b) : a ∈ I, b ∈ A\I, a ⊆ b}, ordered by: (a, b) & (c, d) iff a ⊇ c
and b ⊆ d.

Lemma 17.5. The following sets are dense in P:
(i) For each m ⊆ I, the set D1m

def= {(a, b) ∈ P : either ∀c ∈ m(c �⊆ b) or
∃c ∈ m(c ⊆ a)}.

(ii) For each c ∈ A, the set D2c
def= {(a, b) ∈ P : ¬(a ⊆ c ⊆ b}).

(iii) For each c ∈ I, the set D3c
def= {(a, b) ∈ P : c ⊆ a ∪ (ω\b)}.

(iv) The set D4
def= {(a, b) ∈ P : a �= 0}.

Proof. Suppose (a, b) ∈ P . (i) If ∀c ∈ m(c �⊆ b), then (a, b) ∈ D1m, as desired.
Otherwise there is a c ∈ m such that c ⊆ b, and then (a∪c, b) ∈ P , (a∪c, b) & (a, b),
and (a ∪ c, b) ∈ D1m, as desired.

(ii) If a ⊆ c ⊆ b, then there are two cases: Case 1. c ∈ I. Thus c ⊂ b. Choose
disjoint non-empty d, e such that b\c = d ∪ e. Since 1 /∈ I, one of d, e is in I; say
d ∈ I. Then (a∪d, b) ∈ P , (a∪d, b) & (a, b), and (a∪d, b) ∈ D2c. Case 2. c /∈ I. We
can similarly find d ⊂ (c\a) such that d /∈ I; then (a, a ∪ d) is the desired element
showing that D2c is dense.

(iii) The element (a ∪ (c ∩ b), b) shows that D3c is dense.
(iv) If a �= 0, we are through. Otherwise choose non-empty disjoint c, d such

that c ∪ d = b. One of c, d, say c, is in I; then (c, b) is as desired.

Lemma 17.6. Suppose that D is dense in P. Then so are the following sets:
(i) SD

def= {(a, b) ∈ P : (ω\b, ω\a) ∈ D}.
(ii) For e, f ∈ I, T (D, e, f) def= {(a, b) ∈ P : ((a\e) ∪ f, (b\e) ∪ f) ∈ D}.

Proof. Suppose (a, b) ∈ P . (i) We can choose (c, d) & (ω\b, ω\a) so that (c, d) ∈ D.
Thus ω\b ⊆ c and d ⊆ ω\a, so ω\c ⊆ b and a ⊆ ω\d, which shows that (ω\d, ω\c)
is a desired element.

(ii) By Lemma 17.5(iii), choose (a′, b′) & (a, b) such that e ∪ f ⊆ a′ ∪ (ω\b′).
Let e′ = a′ ∩ e and f ′ = a′ ∩ f . By density of D, choose (x, y) ∈ D such that
(x, y) & ((a′\e) ∪ f, (b′\e) ∪ f). Now let

a′′ = (x\(e ∪ f)) ∪ e′ ∪ f ′ and b′′ = (y\(e ∪ f)) ∪ e′ ∪ f ′.

It is easy to check that (a′′, b′′) ∈ T (D, e, f) and (a′′, b′′) & (a, b).

Now suppose that M is a countable collection of subsets of I; then we let DM be
the smallest collection of dense sets in P such that

(1) every set D1m, D2c, D3e, D4 is in DM for m ∈M , c ∈ A, e ∈ I;
(2) if D ∈ DM and e, f ∈ I, then SD,T (D, e, f) ∈ DM .
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A subset x ⊆ ω is M−generic if for all D ∈ DM there is an (a, b) ∈ D such that
a ⊆ x ⊆ b. Note that because D2c ∈ DM for all c ∈ A we have x /∈ A in such a
case.

Lemma 17.7. For every M as above, there is a subset x ⊆ ω which is M-generic.

Proof. Let 〈D0,D1 . . .〉 enumerate all members of DM . Now we define (a0, b0),
(a1, b1), . . .by induction: a0 = 0 and b0 = ω. Having defined (ai, bi), choose
(ai+1, bi+1) so that (ai+1, bi+1) & (ai, bi) and (ai+1, bi+1) ∈ Di. Let x =

⋃
i<ω ai.

Clearly x is as desired.

Lemma 17.8. Let x be M-generic and set B = 〈A ∪ {x}〉. Then every element of
B\A is M-generic. B is atomless, and B ⊃ A. Moreover, for any a ∈ I we have
x ∩ a ∈ I and a\x ∈ I.

Proof. First we prove the final statement. In fact, choose (c, d) ∈ D3a so that
c ⊆ x ⊆ d. Thus a ⊆ c ∪ (ω\d). It follows that a ∩ x ⊆ c ∩ a ⊆ a ∩ x, as desired.
And a\x ⊆ a\d ⊆ a\x, as desired.

Now we claim:

(1) Every element of B\A has one of the two forms (x\e)∪ f or ((ω\x)\e)∪ f for
some e, f ∈ I.

In fact, take any element y of B\A; we can write it in the form y = (e∩x)∪ (f\x),
where e, f ∈ A. By the above we cannot have e, f ∈ I. Now −y = ((ω\e) ∩ x) ∪
((ω\f)\x), so by the above we also cannot have −e,−f ∈ I. So we have two cases:
Case 1. e ∈ I and f /∈ I. Then y = ((ω\x)\(ω\f)) ∪ (e ∩ x), which is in one of the
desired forms. Case 2. e /∈ I and f ∈ I. Then y = (x\(ω\e)) ∪ (f\x), which again
is in one of the desired forms. So (1) holds.

Next

(2) If e, f ∈ I, then (x\e) ∪ f is M -generic.

For, given D ∈ DM , we also have T (D, e, f) ∈ DM , and hence there is an (a, b) ∈
T (D, e, f) such that a ⊆ x ⊆ b. Then (a\e) ∪ f ⊆ (x\e) ∪ f ⊆ (b\e) ∪ f , and
((a\e) ∪ f, (b\e) ∪ f) ∈ D, as desired.

Finally, since DM is closed under the operation S, it follows easily that ω\x
is M -generic. From (1) and (2) the first conclusion of the lemma now follows.

That B is atomless follows from what has already been shown, plus the fact
that D4 ∈ DM . And B is a proper extension of A since D2c ∈ DM for every
c ∈ A.

Lemma 17.9. Under the hypotheses of Lemma 17.8,
(i) for all a ∈ I and all b ∈ B, if b ⊆ a then b ∈ A.

(ii) I ′ def= 〈I ∪ {x}〉Id is a maximal ideal in B.

Proof. (i): By Lemma 17.8, if b /∈ A then b is M -generic, so by the last comment
of Lemma 17.8, a ∩ b ∈ A; so, of course, b �⊆ a.
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(ii): First suppose that I ′ is not proper; write ω = x ∪ a with a ∈ I. Thus
ω\a ⊆ x so, since a\x ∈ A by Lemma 17.8, its complement is also in A, and
x = (ω\a) ∪ x ∈ A, contradiction. So, I ′ is a proper ideal.

Since u ∈ I ′ or −u ∈ I ′ for every u ∈ A ∪ {x}, and A ∪ {x} generates B, it
follows that I ′ is maximal.

Example 17.10. (The Baumgartner-Komjath algebra.) We construct a BA A
such that IncA = ω = LengthA, while χA = ω1. ♦ is assumed.

Let 〈Sα : α ∈ ω1〉 be a ♦-sequence, and let 〈aα : α ∈ ω1〉 be a one-one
enumeration of Pω. For each β < ω1 let mβ = {aα : α ∈ Sβ}.

We define sequences 〈Aα : α < ω1〉, 〈Iα : α < ω1〉, 〈Mα : α < ω1〉 by
induction, as follows. Let A0 be a denumerable atomless subalgebra ofPω, and let
I0 be a maximal ideal in A0. If we have defined a denumerable atomless subalgebra
Aα ofPω and a maximal ideal Iα of Aα, we let Mα = {mβ : β ≤ α, and mβ ⊆ Iα}.
Let xα be Mα-generic (with respect to Aα and Iα), and let Aα+1 = 〈Aα∪{xα}〉 and
Iα+1 = 〈Iα ∪ {xα}〉Id. For α a limit ordinal let Aα =

⋃
β<α Aβ and Iα =

⋃
β<α Iβ .

Finally, let A =
⋃

α<ω1
Aα and I =

⋃
α<ω1

Iα.
From the above lemmas it is clear that each Aα is atomless, and hence A is

atomless. Furthermore, I is a maximal ideal of A, and |A � a| = ω for every a ∈ I.
Moreover, |A| = ω1. The filter dual to I has character ω1, so χA = ω1. In fact, let
F = {a ∈ A : −a ∈ I}. Thus F is an ultrafilter on A. Assume that χF = ω; say
N is a countable generating set for F . Say N ⊆ Aα, α < ω1. Choose b ∈ Aα+1\A.
Wlog b ∈ F . Then there exist a0, . . . , am−1 ∈ N such that a0 · . . . · am−1 ≤ b. So
−b ≤ −a0 + · · ·+−am−1 ∈ Aα ∩ I, so by Lemma 17.9, −b ∈ Aα, contradiction.

Suppose that m is an uncountable incomparable set. Now trivially a ⊆ b
iff ω\b ⊆ ω\a, so we may assume that m ⊆ I. And wlog m ∩ A0 = 0. Let
S = {α : aα ∈ m}, and let Z be the set of all α satisfying the following two
conditions:

(1) {aβ : β ∈ S ∩ α} = m ∩Aα.
(2) For all b ∈ Aα\Iα, if there is a c ∈ m such that c ⊆ b, then there is a β ∈ S ∩α
such that aβ ⊆ b.

Clearly Z is club. Hence by the ♦ property, choose α ∈ Z such that Sα = S ∩ α.

(3) mα ⊆ Aα ∩m.

For, let x ∈ mα. Say x = aβ with β ∈ Sα = S∩α. Since α ∈ Z, we get x ∈ m∩Aα.
For each c ∈ A\A0 let ρc be the least β such that c ∈ Aβ+1\Aβ. Now pick

c ∈ m\mα. Thus c /∈ A0. Write ρc = β. Now β ≥ α : if β < α, then c ∈ Aα∩m, so,
since α ∈ Z, we have c = aγ for some γ ∈ S ∩ α = Sα, so c ∈ mα, contradiction.

Since c is Mβ-generic (with respect to Aβ and Iβ) and mα ∈ Mβ , there
is a (a, b) ∈ D1mα such that a ⊆ c ⊆ b. By the definition of D1mα and since
c is not comparable with any element of mα, we must have ∀c′ ∈ mα(c′ �⊆ b).
Choose b′ with b′ ∈ A0 or (b′ /∈ A0 and ρb′ minimum) such that c ⊆ b′ /∈ Iα and
∀c′ ∈ mα(c′ �⊆ b′).
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Now b′ /∈ A0 and ρb′ ≥ α: suppose not. Then b′ ∈ Aα\Iα. Now for any γ, if
γ ∈ S ∩ α then γ ∈ Sα, aγ ∈ mα, and aγ �⊆ b′. This contradicts (2) for α.

Say ρb′ = γ ≥ α. Now b′ is Mγ-generic (with respect to Aγ and Iγ) and
mα ∈ Mγ , so there is a (a′′, b′′) ∈ D1mα such that a′′ ⊆ b′ ⊆ b′′; note that
a′′, b′′ ∈ Aγ . For any c′ ∈ mα we have c′ �⊆ a′′; hence by the definition of D1mα

we have ∀c′ ∈ mα(c′ �⊆ b′′). Since c ⊆ b′′ /∈ Iα and b′′ ∈ A0 or (b′′ /∈ A0 and
ρb′′ < γ), this contradicts the minimality of ρb′. Thus we have shown that A has
no uncountable incomparable set.

If C is an uncountable chain in A, we may assume that C ⊆ I. We define
〈cα : α < ω1〉. Suppose cβ ∈ C has been constructed for all β < α. Say {cβ :
β < α} ⊆ Aγ . Then {c : c ∈ C and c ≤ cβ for some β < α} ⊆ Aγ by Lemma
17.9(i). So, we can choose cα ∈ C such that cβ < cα for all β < α. The sequence
so constructed shows that DepthA = ω1; hence IncA = ω1, contradiction.

Problem 61. Can one construct in ZFC a BA A such that IncA < χA?

This is Problem 54 in Monk [90]. This problem is equivalent to constructing in
ZFC a BA A such that IncA < hLA; see the argument at the end of Chapter 15.
Note that “yes” on problem 61 implies “yes” on both problems 49 and 58.

We should mention in connection with Example 17.10 that Shelah [80], and
independently van Wesep, showed that it is consistent to have 2ω arbitrarily large
and to have a BA of size 2ω whose length and incomparability are countable.

We conclude this chapter with some remarks about incomparability in subalgebras
of interval algebras. By Theorem 15.22 of Part I of the BA handbook, if κ is
uncountable and regular, and B is a subalgebra of an interval algebra and |B| = κ,
then B has a chain or incomparable subset of size κ. M. Bekkali has shown that
it is consistent that this no longer holds for singular cardinals.

An important combinatorial equivalent for incomparability in interval alge-
bras has been established by Shelah. Let μ be an infinite cardinal and let L be
a linear order. We say that L is μ-entangled if for every n ∈ ω, every system
〈tiζ : i < n, ζ < μ〉 of pairwise distinct elements of L with t0ζ < t1ζ < · · · < tn−1

ζ ,
and every w ⊆ n there exist ζ < ξ < μ such that ∀i < n(i ∈ w iff tiζ < tiξ).
Shelah [90] showed that the following conditions are equivalent, for μ regular and
uncountable:

(1) L is μ-entangled;
(2) If 〈aα : α < μ〉 is a sequence of elements of IntalgL then there exist α < β < μ
such that aα ≤ aβ ;
(3) There is no incomparable subset of Intalg I with μ elements.

Later Shelah showed in ZFC that for arbitrarily large cardinals λ there is a λ+-
entangled linear order of size λ+.
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Theorem 18.1. For any infinite BA A, h-cofA is equal to each of:
sup{|T | : T ⊆ A, T well-founded};
sup{κ : there is an a ∈ κA such that for all α, β < κ, if α < β then aα �≥ aβ}.

Proof. Call these three cardinals κ0, κ1. κ2 respectively. Suppose that κ1 < κ0.
Let X be a subset of A having no cofinal subset of power ≤ κ1. We construct
elements 〈xα : α < κ+

1 〉 by induction: if xα has been defined for all α < β, with
β < κ+

1 , then {xα : α < β} is not cofinal in X, so there is an xβ ∈ X such that
xβ �≤ xα for all α < β. This finishes the construction. Now {xα : α < κ+

1 } is not
well-founded, so there exist α0, α1, . . . < κ+

1 such that xα0 > xα1 > . . .. Choose
i < j such that αi < αj. Then xαj < xαi is a contradiction.

Suppose κ0 < κ1. Let T be a well-founded subset of A of power κ+
0 . If T

has κ+
0 incomparable elements, this is a contradiction. So T has ≥ κ+

0 levels. Let
T ′ consist of all elements of T of level < κ+

0 . Let X ⊆ T ′ be a cofinal subset of
T ′ of cardinality ≤ κ0. Then choose a ∈ T ′ of level greater than the levels of all
members of X; clearly this is impossible.

Thus we have shown that κ0 = κ1. Next, we show that κ2 ≤ κ1. Suppose that
κ and a are as in the definition of κ2; we show that {aα : α < κ} is well-founded.
Suppose not: say aα0 > aα1 > · · ·. Then there exist m < n such that αm < αn.
Since aαm > aαn , this contradicts the defining property of a.

Finally, suppose that κ2 < κ1; we shall get a contradiction. Let T be well-
founded, with |T | > κ2. Write T = {aα : α < κ}, with κ > κ2 and a one-one.
Now because κ > κ2, it follows that for each Γ ∈ [κ]κ there are α, β ∈ Γ such
that α < β and aα > aβ. Let Δ = {{α, β} : α < β < κ and not(aα > aβ)}. Then
from the partition relation κ → (κ, ω)2 we obtain α0 < α1 < · · · in κ such that
aα0 > aα1 > · · ·, contradicting T well-founded.

Concerning ultraproducts, h-cof is a sup-min function, so Theorems 6.1–6.3 hold.
h-cof

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I h-cofAi/F

∣∣ under GCH for F regular, by a proof sim-
ilar to that of Theorem 4.14, and Donder’s theorem says that under V = L the
regularity assumption can be dropped. The inequality > is consistently possible
by Ros	lanowski, Shelah [94]. We do not know whether < is consistently possible:

Problem 62. Is it consistent to have an example with h-cof
(∏

i∈I Ai/F
)

<∣∣∏
i∈I h-cofAi/F

∣∣?
Again, Magidor, Shelah [91] may help for this problem.

Concerning relationships to our other functions, the main facts are that
IncA ≤ h-cofA ≤ |A| and hLA ≤ h-cofA. To see that hLA ≤ h-cofA, suppose
that 〈xα : α < κ〉 is a right-separated sequence of elements of A. Then it is also
well-founded. For, suppose that xα0 > xα1 > · · ·. Choose i < j with αi < αj . Then
xαi > xαj , so xαj ·−xαi , contradiction. It is obvious that IncA ≤ h-cofA ≤ |A|. An
example in which hLA < h-cofA is provided by the interval algebra A on the reals.
In fact, in Lemma 3.28 we showed that hLA = ω, and in Chapter 17 we showed that
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IncA = 2ω, and hence h-cofA = 2ω. Since χA ≤ hLA ≤ h-cofA, the Baumgartner-
Komjath algebra of Chapter 17 provides an example where IncA < h-cofA.

Problem 63. Can one construct in ZFC a BA A with the property that IncA <
h-cofA?

This is Problem 55 in Monk [90]. Note that “yes” on problem 61 implies “yes” on
problem 63.

For interval algebras the equality h-cofA = IncA holds. This was proved
by Shelah [91], as an easy consequence of a result in Shelah [90], namely the
equivalences mentioned at the end of the last chapter. In fact, let A = IntalgI,
and suppose that IncA < h-cofA. Let μ = (IncA)+, and by Theorem 18.1 let T
be a well-founded subset of A of power μ. Now each level of T is an incomparable
set, so there are at least μ levels. Let 〈aα : α < μ〉 be a sequence of elements of
T such that aα has level α for each α < μ. Then by the above result there exist
α < β < μ such that −aα ≤ −aβ. So aβ < aα, which is impossible.

To complete the picture, it remains to provide an example in which h-cof
is less than cardinality. An example of this in ZFC was given by Shelah [91]; see
also Ros	lanowski, Shelah [94]. See also the algebra of Bonnet and Shelah [85],
where CH is used. We are going to describe a different construction, the algebra
of Rubin [83]. It requires ♦, but it will be used later too. It is relevant to many of
our functions and problems.

Example 18.2. Rubin’s construction is not direct, but goes by way of more
general considerations. Let A be a BA. A configuration for A is, for some n ∈ ω,
an (n + 3)-tuple 〈a, c1, c2, b1, . . . , bn〉 such that a, b1, . . . , bn are pairwise disjoint,
each bi �= 0, c1 ⊆ a+

∑n
i=1 bi, a+ c1 ≤ c2, and (c2− c1) · bi �= 0 for all i = 1, . . . , n.

(See Figure 18.3.)

Now we call a subset P of A nowhere dense for configurations in A, for brevity
nwdc in A, if for every n ∈ ω\1 and all disjoint a, b1, . . . , bn with each bi �= 0, there
exist c1, c2 such that 〈a, c1, c2, b1, . . . , bn〉 is a configuration and P ∩ (c1, c2) = 0.
Rubin’s theorem that we are aiming for says that, assuming ♦, there is an atomless
BA A of power ω1 such that every set which is nwdc in A is countable. Before
proceeding to the proof of this theorem, let us check that for such an algebra we
have h-cofA = ω. Suppose that P is an uncountable subset of A. Thus P is not
nwdc, so we get n ∈ ω\1 and disjoint a, b1, . . . , bn with each bi �= 0 such that

(1) For all c1, c2, if 〈a, c1, c2, b1, . . . , bn〉 is a configuration then P ∩ (c1, c2) �= 0.

Let c0 = a+b1+· · ·+bn. Choose d0 such that a ≤ d0 ≤ c0 and d0·bi �= 0 �= −d0·bi for
all i; this is possible since A is atomless. Thus 〈a, d0, c0, b1, . . . bn〉 is a configuration,
hence choose c1 ∈ P with d0 < c1 < c0. Then c1 · bi ≥ d0 · bi �= 0 for all i, and
a ≤ c1. Choose d1 so that a ≤ d1 ≤ c1 and d1 · bi �= 0 �= c1 · −d1 · bi for all i.
then 〈a, d1, c1, b1, . . . , bn〉 is a configuration, so choose c2 ∈ P with d1 < c2 < c1.
Continuing in this fashion, we get elements c1, c2, . . . of P such that c1 > c2 > · · ·,
which means that P is not well-founded. This shows that h-cofA = ω.
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b1 b2 · · · bn

a

c2

c1

Figure 18.3.

To do the actual construction leading to Rubin’s theorem, we need another def-
inition and two lemmas. Let A be a BA and assume that P ⊆ B ⊆ A. We say
that P is B-nowhere dense for configurations in A, for brevity P is B-nwdc in A,
if for every n ∈ ω\1 and all disjoint a, b1, . . . , bn ∈ A with each bi �= 0, there exist
c1, c2 ∈ B such that 〈a, c1, c2, b1, . . . , bn〉 is a configuration and P ∩ (c1, c2) = 0.
Thus to say that P is nwdc in A is the same as saying that P is A-nwdc in A.

An important tool in the construction is the general notion of the free ex-
tension A(x) of a BA A obtained by adjoining an element x (and other elements
necessary when it is adjoined); this is the free product of A with a BA with four
elements 0, x,−x, 1. We need only this fact about this procedure:

Lemma 18.4. Let A be a BA and A(x) the free extension of A by an element x.
Suppose that 〈ai : i ∈ I〉 is a system of disjoint elements of A, 〈bi : i ∈ I〉 is another
system of elements of A, and bi ≤ ai for all i ∈ I. Let I = 〈{(ai · x)�bi : i ∈ I〉Id,
and let k be the natural homomorphism from A(x) onto A(x)/I. Then k � A is
one-one.

Proof. Suppose kc = 0, with c ∈ A. Then there exist i(0), . . . , i(m) ∈ I such that

c ≤ (ai(0) · x)�bi(0) + · · ·+ (ai(m) · x)�bi(m);

letting f be a homomorphism of A(x) into A such that f is the identity on A and
fx = bi(0) + · · ·+ bi(m), we infer that c = 0, as desired.

Note that the effect of the ideal I in Lemma 18.4 is to subject x to the condition
that x · ai = bi for all i ∈ ω. Now we prove the main lemma:

Lemma 18.5. Let A be a denumerable atomless BA and for each i < ω we have
Pi ⊆ Bi ⊆ A with Pi is Bi-nwdc for A. Then there is a countable proper extension
A′ of A such that A is dense in A′ and Pi is Bi-nwdc for A′ for all i < ω.
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Proof. Let A(x) be a free extension of A by an element x; we shall obtain the
desired algebra A′ by the procedure of Lemma 18.4; thus we will let A′ = A(x)/I,
with I specified implicitly by defining aj ’s and bj ’s. Let 〈sn : n < ω〉 be an
enumeration of the following set:

{〈0, a〉 : a ∈ A} ∪ {〈1, a, b, c〉 : a, b, c are disjoint elements of A}∪
{〈2, a, b, c, b1, . . . , bk, i〉 : a, b, c are disjoint elements of A, k ∈ ω\1

b1, . . . , bk are disjoint non-zero elements of A, and i < ω}.
As we shall see, 〈sn : n < ω〉 is a list of things to be done in coming up with the
ideal I. We will take care of the objects si by induction on i. Suppose that we have
already taken care of si for i < n, having constructed aj and bj for this purpose,
j ∈ J , so that J is a finite set, bj ≤ aj for all j ∈ J , the aj ’s are pairwise disjoint,
and

∑
j∈J aj < 1. Let u =

∑
j∈J aj and v =

∑
j∈J bj . We want to take care of sn

so that these conditions (called the “list conditions”) will still be satisfied. Note
that under I, x · u will be equivalent to v, and −x · u will be equivalent to u · −v.
Now we consider three cases, depending upon the value of the first term of sn.

Case 1. The first term of sn is 0; say sn = 〈0, a〉, where a ∈ A. We want to
add new elements ak and bk to our lists in order to insure that [x] �= [a] in A(x)/I,
where in general [z] denotes the equivalence class of z ∈ A(x) with respect to I.
Thus the fact that this case is taken care of for all sn of this type in our list will
insure merely that A(x)/I is a proper extension of A. If a+u �= 1, choose e so that
0 < e < −(a+u), and set ak = bk = e. Then in the end we will have (e ·x)�e ∈ I,
hence 0 < [e] ≤ [x], and [e] · [a] = 0, so [x] �= [a]. Clearly the list conditions still
hold. Now suppose that a + u = 1. Thus −u ≤ a, and −u �= 0. Choose e with
0 < e < −u. Let ak = e and bk = 0. Then in the end we will have e · x ∈ I, hence
[e] · [x] = 0, and 0 < [e] ≤ [a], so [a] �= [x]. And again the list conditions hold.

Case 2. The first term of sn is 1; say sn = 〈1, a, b, c〉, where a, b, c are disjoint
elements of A. We consider the element t

def= a + b · x + c · −x; we want to fix
things so that if [t] is non-zero then there will be some element w ∈ A such that
0 < [w] ≤ [t]. This will insure that A will be dense in A(x)/I. Now

t = a + b · x · u + b · x · −u + c · −x · u + c · −x · −u,

and under I this is equivalent to

a + b · v + u · −v · c + b · −u · x + c · −u · −x.

Let a′ = a + b · v + u · −v · c, b′ = b · −u, c′ = c · −u; thus a′, b′, c′ are disjoint.
If a′ �= 0, we don’t need to add anything to our lists. Suppose that b′ �= 0. Then
choose e with 0 < e < b′, and add ak, bk to our lists, where ak = bk = e; this
assures that [e] ≤ [x], hence 0 < [e] ≤ [t]; clearly the list conditions hold. If c′ �= 0
a similar procedure works. Finally, if a′ = b′ = c′ = 0, then [t] = 0, and again we
do not need to add anything.

Case 3. The first term of sn is 2; say sn = 〈2, a, b, c, b1, . . . , bk, i〉, where a, b, c
are disjoint elements of A, k ∈ ω\1, b1, . . . , bk are disjoint non-zero elements of A,
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and i < ω. Let t be as in case 2. Case 3 is the crucial case, and here we will do
one of three things: (1) make t equivalent to an element of A; (2) make sure that
[t] · [bj ] �= 0 for some j = 1, . . . , k; (3) find c1, c2 ∈ Bi with Pi ∩ (c1, c2) = 0 so that
〈[t], [c1], [c2], [b1], . . . , [bk]〉 is a configuration. Thus this step will assure in the end
that Pi is Bi-nwdc for A′. In fact, assume that the construction is completed. To
show that Pi is Bi-nwdc for A′, suppose that k ∈ ω, a′, b′1, . . . , b

′
k ∈ A′ are disjoint

with each b′i �= 0. Since A is dense in A′, choose bi ∈ A with 0 < bi ≤ b′i for each
i. Write a′ = a + b · [x] + c · [−x] with a, b, c pairwise disjoint elements of A. Say
〈2, a, b, c, b1, . . . , bk〉 = sn. If (1) was done, the desired conclusion follows since Pi

is Bi-nwdc for A. Since a′ is disjoint from each bi, (2) could not have been done.
If (3) was done, the desired conclusion is clear.

Let a′, b′, c′ be as in Case 2. If
∑k

j=1 bi · a′ �= 0, then (2) will automatically
hold, and we do not need to add anything to our lists. If there is a j, 1 ≤ j ≤ k,
such that bj · b′ �= 0, let e be such that 0 < e < bj · b′, and adjoin al, bl to our
lists, where al = bl = e; then we will have [e] ≤ [x], and [bj ] · [t] �= 0, which means
that (2) holds—and the list conditions are ok. Similarly if bj · c′ �= 0 for some j.
If b′ + c′ = 0, then [t] = [a′], i.e., (1) holds. Thus we are left with the essential
situation: b′+c′ �= 0, and (a′+b′+c′) ·bj = 0 for all j = 1, . . . , k. First of all we use
the fact that Pi is Bi-nwdc for A, applied to a′, b′ + c′, b1, . . . , bk, to get c1, c2 ∈ Bi

such that Pi ∩ (c1, c2) = 0 and 〈a′, c1, c2, b
′ + c′, b1, . . . , bk〉 is a configuration. This

time we add elements al, am, bl, bm to our lists, where al = c1 · (b′ + c′), bl = c1 · b′,
am = (b′ + c′) · −c2, and bm = c′ · −c2. Clearly al · am = 0 and both elements
are disjoint from previous aj ’s. Obviously bl ≤ al and bm ≤ am. Next, since
〈a′, c1, c2, b

′ + c′, b1, . . . , b + k〉 is a configuration, c2 · −c1 · (b′ + c′) �= 0, and since
this element is disjoint from all previous aj ’s as well as from al and am it follows
that u+al +am < 1. Thus the list conditions hold. It remains only to show that in
the end 〈[t], [c1], [c2], [b1], . . . , [bk]〉 is a configuration. The only things not obvious
are that [c1] ≤ [t +

∑k
j=1 bj ] and [t] ≤ [c2]. Since 〈a′, c1, c2, b

′ + c′, b1, . . . , bk〉 is a
configuration, we have c1 ≤ a′ + b′ + c′ + b1 + · · ·+ bk. Hence to show that [c1] ≤
[t +

∑k
j=1 bj ], it suffices to prove that [c1 · (b′ + c′)] ≤ [t], which is done as follows.

First note that our added elements al, am, bl, bm assure that [x·c1 ·(b′+c′)] = [c1 ·b′]
and [x · (b′ + c′) · −c2] = [c′ · −c2], hence [c1 · b′] ≤ [x] and [c′ · −c2] ≤ [x]. Now,

[t] ≥ [b′ · x + c′ · −x]

≥ [b′ · c1 · x + c′ · −x · c1]

= [c1 · b′ + c′ · c1 · −x]

= [c1 · b′ + (c′ · c1) · −(c′ · c1 · x)]

≥ [c1 · b′ + (c′ · c1) · −((b′ + c′) · c1 · x)]

= [c1 · b′ + (c′ · c1) · −(c1 · b′)]
= [c1 · b′ + c1 · c′]
= [c1 · (b′ + c′)].
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To show that [t] ≤ [c2], it suffices to show that [t · (b′ + c′)] ≤ [c2], and that is done
like this:

[t · (b′ + c′)] = [t · (b′ + c′) · c2 + t · (b′ + c′) · −c2]
≤ [c2 + t · (b′ + c′) · −c2]
= [c2 + b′ · x · (b′ + c′) · −c2 + c′ · −x · (b′ + c′) · −c2]
= [c2 + b′ · c′ · −c2 + c′ · −c2 · −x]
= [c2].

This completes the construction and the proof.

Example 18.2 (Conclusion). Recall that we are trying to construct, using ♦, an
atomless BA A of power ω1 such that every nwdc subset of A is countable. We shall
define by induction an increasing sequence 〈Aα : α < ω1, α limit〉 of countable
BAs, and a sequence 〈Pα : α < ω1, α limit〉, such that: the universe of Aα is α; Aω

is atomless and is dense in Aα for all limit α < ω1; Pα ⊆ Aα for all limit α < ω1,
and Pα is Aα-nwdc for Aβ whenever α, β are limit ordinals < ω1 with α ≤ β.

Let 〈Sα : α < ω1〉 be a ♦-sequence. Let Aω be a denumerable atomless BA.
If λ is a limit of limit ordinals, λ < ω1, let Aλ =

⋃
α<λ Aα. If Sλ is nwdc for Aλ,

let Pλ = Sλ, and let Pλ = 0 otherwise. Now suppose that α is a limit ordinal <
ω1, and Aβ and Pβ have been defined for all limit ordinals β ≤ α. By Lemma 18.5
let Aα+ω be a BA with universe α + ω such that Aα is dense in Aα+ω and Pβ is
Aβ-nwdc for Aα+ω for all limit β ≤ α. And again choose Pα+ω = Sα+ω if Sα+ω is
nwdc for Aα+ω, and let it be 0 otherwise. This completes the inductive definition.
Let A =

⋃{Aα : α limit, α < ω1}.
Clearly A is atomless and of power ω1. Now suppose, in order to get a con-

tradiction, that P is an uncountable nwdc subset of A. Let

F = {α : α < ω1, α limit, and (Aα, P ∩ α) &ee (A,P )}.

Here &ee means “elementary substructure”. Clearly F is club in ω1. Now by the
♦-property, the set S

def= {α < ω1 : α ∩ P = Sα} is stationary, so we can choose
α ∈ F ∩S. Clearly nwdc can be expressed by a set of first-order formulas; so P ∩α
is nwdc in Aα. Since P ∩ α = Sα, the construction then says that Pα = Sα. Since
P is uncountable, choose a ∈ P\Pα, and then choose c1, c2 ∈ Aα so that 〈a, c1, c2〉
is a configuration (this means just so that c1 ≤ a ≤ c2) and Pα ∩ (c1, c2) = 0;
this is possible, since if a ∈ Aβ with α ≤ β, then Pα is Aα-nwdc for Aβ by the
construction. But then we have

(Aα, Pα) |= ∀x[P (x)→ x /∈ (c1, c2)];
(A,P ) |= P (a) ∧ x ∈ (c1, c2).

This contradicts the fact that (Aα, Pα) &ee (A,P ).
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This cardinal function is rather easy to describe, at least if we do not try to
go into the detail that we did for cellularity, for example. If A is a subalgebra
or homomorphic image of B, then |UltA| ≤ |UltB|. For weak products we have
|∏w

i∈I Ai| = max(ω, supi∈I |UltAi|). The situation for full products is more com-
plicated: ∣∣∣∣∣Ult

(∏
i∈I

Ai

)∣∣∣∣∣ ≤ 22κ

,

where κ =
∑

i∈I dAi. This follows from the following two facts:

∏
i∈I

Ai �
∏
i∈I

P(dAi) ∼=P
( •⋃

i∈I
dAi

)
,

where “�” means “is isomorphically embeddable in”, and “
•⋃
” means “disjoint

union”. Next, clearly |Ult ⊕i∈I Ai| =
∏

i∈I |UltAi|. We give some observations
due to Douglas Peterson concerning ultraproducts and the number of ultrafilters.
Clearly Ult

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I UltAi/F

∣∣. And if ess.supF
i∈I |Ai| ≤ |I| and F is

regular, then |Ult
(∏

i∈I Ai/F
)
| = 22|I|

. This follows from one of the results stated
for independence, for example.

Concerning relationships to our other functions, we mention only that |A| ≤
|UltA|; and 2IndA ≤ |UltA| if IndA is attained. This last assumption is needed. For
example, if κ is an uncountable strong limit cardinal and Aα is the free BA of size
|α + ω| for each α < κ, then

∏w
α<κ Aα has independence κ and only κ ultrafilters.

(These remarks are due to L. Heindorf, and correct a mistake in Monk [90].)
About |UltA| for A in special classes of BAs: first recall from Theorem 17.10

of Part I of the BA handbook that |UltA| = |A| for A superatomic. If A is not
superatomic, then |UltA| ≥ 2ω, since A has a denumerable atomless subalgebra
B, and obviously |UltB| = 2ω.
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This cardinal function is not related very much to the preceding ones. To start with,
we state some general facts about the size of automorphism groups in BAs; for
proofs or references, see the chapter on automorphism groups in the BA handbook.

1. If A is denumerable, then |AutA| = 2ω.
2. If 0 �= m ∈ ω and κ > ω, then there is a BA A with |A| = κ such that
|AutA| = m!.
3. If |AutA| < ω, then |AutA| = m! for some m ∈ ω.
4. If MA and |AutA| = ω, then |A| ≥ 2ω.
5. If 2ω ≤ κ, then there is a BA A such that |AutA| = ω and |A| = κ.
6. If ω < κ ≤ λ, then there is a BA A with |A| = λ and |AutA| = κ.
7. If ω ≤ κ, then there is a BA A with |A| = κ and |AutA| = 2κ.
8. Any BA can be embedded in a rigid BA.
9. Any BA can be embedded in a homogeneous BA.

Now we discuss algebraic operations on BAs vis-à-vis automorphism groups. If
A is a subalgebra or homomorphic image of B, then |AutA| can vary in either
direction from |AutB|: embedding a rigid BA A into a homogeneous BA B, we
get |AutA| < |AutB|, while if we embed a free BA A in a rigid BA B we get
|AutA| > |AutB|; any rigid BA A is the homomorphic image of a free BA B,
and then |AutA| < |AutB|; and finally, embed A

def= Pω into a rigid BA B, and
then extend the identity on A to a homomorphism from B onto A—this gives
|AutA| > |AutB|.

Now we consider products. There are two fundamental, elementary facts here.
First, |A| ≤ |Aut(A×A)| for any BA A. This is easily seen by the following chain
of isomorphisms, starting from any element a ∈ A to produce an automorphism
fa of A×A:

A×A
g∼= (A � a)× (A � −a)× (A � a)× (A � −a)
h∼= (A � a)× (A � −a)× (A � a)× (A � −a)
g−1

∼= A×A,

where g is the natural mapping and h interchanges the first and third factors,
leaving the second and fourth fixed. If a �= b, then fa �= fb; in fact, say a �≤ b;
then fa(a, 0) = (0, a) while fb(a, 0) = (a · −b, a · b) �= (0, a). This proves that
|A| ≤ |Aut(A × A)|. The second fact is that the group AutA × AutB embeds
isomorphically into Aut(A × B); an isomorphism F is defined like this, for any
f ∈ AutA, g ∈ AutB, a ∈ A, b ∈ B: (F (f, g))(a, b) = (fa, gb). Putting these two
elementary facts together, we have |A|, |AutA| both ≤ |Aut(A×A)|. Shelah in an
email message of December 1990 showed that actually equality holds (this solves
Problem 56 of Monk [90]):
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Theorem 20.1. If A is an infinite BA, then |Aut(A×A)| = max(|A|, |AutA|).

Proof. First note that A′ def= (A×A) � (1, 0) and A′′ def= (A×A) � (0, 1) are both
isomorphic to A. Now for any b ∈ A×A let Gb = {g ∈ Aut(A×A) : g(1, 0) = b}.
Then

(*) For any b ∈ A×A, |Gb| ≤ |AutA|2.
For, take any b ∈ A × A and fix f ∈ Gb (if Gb �= 0). Note that for any g ∈ Gb,
f−1g(1, 0) = (1, 0); so (f−1◦g) � A′ ∈ AutA′, and similarly (f−1◦g) � A′′ ∈ AutA′′.
Now the map

g �→ ((f−1 ◦ g) � A′, (f−1 ◦ g) � A′′)

is clearly one-one, so (*) follows.
By (*),

|Aut(A×A)| =
∑

b∈A×A

|Gb| ≤ |A×A| · |AutA|2,

and the theorem follows.

For weak products, we have supi∈I |AutAi| ≤ |Aut
(∏w

i∈I Ai

)
| by the above re-

marks; a similar statement holds for full products—in fact, the full direct product
of groups

∏
i∈I AutAi is isomorphically embeddable in Aut

(∏
i∈I Ai

)
.

The situation for free products is much like that for products. By Proposition
11.11 of the BA handbook, Part I, every automorphism of A extends to one of
A⊕B; so |Aut(A⊕B)| ≥ max(|AutA|, |AutB|). And |A| ≤ |Aut(A⊕A)|. In fact,
choose a ∈ A with 0 < a < 1. Then |(A⊕A) � (a×−a)| = |A|, (A⊕A) � (a×−a) ∼=
(A⊕A) � (−a× a), and

A⊕A ∼= [(A⊕A) � (a×−a)]× [(A⊕A) � (−a× a)]× [(A⊕A) � c]

for some c, so our statement follows from the above considerations on products.
Actually, Shelah showed that there is an infinite BA A such that |A| and |AutA|
are both smaller than |Aut(A ⊕ A)| (in an email message of December 1990; S.
Koppelberg supplied some details and simplifications in January 1992). This solves
Problem 57 in Monk [90]. Namely, we start with an uncountable cardinal κ and
a system 〈Bα : α < κ〉 of rigid BAs of size κ such that Bα � b �∼= Bβ � c if
α < β < κ and b ∈ B+

α , c ∈ B+
β ; for the existence of such a system see Shelah

[83]. Let A =
∏w

α<κ Bα. Then A is also rigid, as is easy to check. We claim that
A ⊕ A has 2κ automorphisms. To see this we use duality. Recall that UltA is
homeomorphic to the one-point compactification of

⋃
α<κ UltBα. For each Γ ⊆ κ

we define fΓ : UltA×UltA→ UltA×UltA by

fΓ(F,G) =
{

(G,F ) if F,G ∈ UltBα for some α ∈ Γ,
(F,G) otherwise.
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Obviously fγ is one-one and onto, and it is easy to check that it is continuous.
Since fΓ �= fΔ for Γ �= Δ, this exhibits 2κ autohomeomorphisms, as desired.

About the relationship between ultraproducts and automorphisms, it is easy
to see that Aut

(∏
i∈I Ai/F

)
≥

∣∣∏
i∈I AutAi/F

∣∣. If CH holds and A is a rigid BA
of power ℵ1, then ωA/F has at least ℵ1 automorphisms; this is true because ωA/F
is ω1-saturated and of power ℵ1.

As mentioned at the beginning of this section, |AutA| is not strongly related to
our previous cardinal functions. An example with the property that |AutA| <
DepthA is provided by embedding the interval algebra on κ into a rigid BA A.
A similar procedure can be applied for independence and π-character, and these
three examples show similar things for all of our preceding functions. And recall
from the chapter on incomparability that if A is cardinality-homogeneous and has
no incomparable subset of size |A|, then A is rigid.

Concerning automorphisms of special kinds of BAs, first note that |AutA| =
2κ for A the interval algebra on κ. In fact, every automorphism of A is induced
by a permutation of κ; so we just need to describe 2κ permutations of κ that give
rise to automorphisms of A. For each α < κ we can consider the transposition
(ω · α + 1, ω · α + 2). For each ε ∈ κ2 let fε be the permutation of κ which, on the
interval [ω · α, ω · α + ω), is this transposition if εα = 1, and is the identity there
otherwise. It is easy to see that the function on A induced by fε maps into A, and
hence is an automorphism, as desired.

If A is infinite and superatomic, then |AutA| ≥ 2ω. In fact, we may assume
that A is a subalgebra of some power-set algebra Pκ, and {α} ∈ A for all α < κ.
Let a be a representative of an atom of A at level 1. Suppose that f is a permutation
of a such that f2 is the identity. Extend f to all of κ by letting fα = α if α ∈ κ\a.
Now we claim that x ∈ A implies that f [x] ∈ A; this will show that f induces an
automorphism of A, hence proving the theorem.

Case 1. a/I1 ≤ x/I1, where I1 is the ideal of A generated by its atoms. Then
a\x is finite. Hence

f [x] = f [x ∩ a] ∪ f [x\a]
= (f [a]\f [a\x]) ∪ f [x\a]
= (a\f [a\x]) ∪ (x\a) ∈ A,

since f [a\x] is finite.
Case 2. a/I1 · x/I1 = 0. Thus a ∩ x is finite. Hence

f [x] = f [a ∩ x] ∪ f [x\a] = f [a ∩ x] ∪ (x\a) ∈ A,

since f [a ∩ x] is finite.
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The main relationships of |EndA| to our previous functions are the following two
easily established facts: |UltA| ≤ |EndA| and |AutA| ≤ |EndA|. If A is the BA
of finite and cofinite subsets of an infinite cardinal κ, then |UltA| = κ while
|AutA| = |EndA| = 2κ. For an infinite rigid BA A we have |AutA| < |EndA|.
Furthermore, we have:

Theorem 21.1. |EndA| ≤ |UltA|dA for any infinite BA A.

Proof. Let D be a dense subset of UltA of cardinality dA. Then any continuous
function from UltA into UltA is determined by its restriction to D. Hence the
theorem follows by duality.

It is more interesting to construct a BA A such that |A| = |UltA| = |EndA|, and
we will spend the rest of this chapter discussing this. An easy example of this sort
is the interval algebra of the reals, and we first want to generalize the argument
for this. (Here we are repeating part of Monk [89].)

Theorem 21.2. Suppose that L is a complete dense linear ordering of power
λ ≥ ω, and D is a dense subset of L of power κ, where λκ = λ. Let A be the
interval algebra on L. Then |A| = |EndA| = λ.

Proof. Recalling the duality for interval algebras from Part I of the BA handbook,
we see that UltA is a linearly ordered space of size λ with a dense subset (in the
topological sense) of power κ. Now apply Theorem 21.1.

Corollary 21.3. If A is the interval algebra on R, then |A| = |EndA| = 2ω.

Recalling a construction of more general linear orders of the type described in
Theorem 21.2 (see Monk [89]), we get

Corollary 21.4. If μ is an infinite cardinal and ∀ν < μ(μν = μ), then there is a
BA A such that |A| = |EndA| = 2μ.

Corollary 21.5. (GCH) If κ is infinite and regular, then there is a BA A such
that |A| = |EndA| = κ+.

Corollary 21.6. Let λ be strong limit, let L consist of all members of λ2 which are
not eventually 1, and let A be the interval algebra on L (which is lexicographically
ordered). Then |A| = |EndA| = 2λ.

Proof. Let D consist of all members f ∈ λ2 such that there is an α with fα = 0
and fβ = 1 for all β > α. Then D is dense in L and Theorem 21.2 applies.

Corollary 21.6 was pointed out by Shelah (answering Problems 58 and 59 in Monk
[90].) We mention one more result connecting |A| and |EndA|:

Theorem 21.7. If |A| = ω1, then |EndA| ≥ 2ω.
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Proof. If A has an atomless subalgebra, then |EndA| ≥ |UltA| ≥ 2ω. So suppose
that A is superatomic. Then there is a homomorphism f from A onto B, the finite-
cofinite algebra on ω: if a is an atom of A/〈AtA〉Id, then f can be taken to be the
composition of the natural onto mappings

A→ A � a→ C → B,

where C is the finite-cofinite algebra on ω or ω1. There is an isomorphism g of
B into A. If X is any subset of ω with ω\X infinite, then B/〈{i} : i ∈ X〉Id is
isomorphic to B, and so there is an endomorphism kX of B with kernel 〈{i} : i ∈
X〉Id. Clearly the endomorphisms g◦kX ◦f of A are distinct for distinct X’s.

Corollary 21.8. (ω1 < 2ω). There is no BA A with the property that |A| =
|EndA| = ω1.
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The main relationships with our earlier functions are: |UltA| ≤ |IdA| and 2sA ≤
|IdA|; both of these facts are obvious. Also recall the deep Theorem 10.10 from
Part I of the BA handbook: if A is an infinite BA, then |IdA|ω = |IdA|. This result
is due to Shelah [86b]; there he also proves that if κ is a strong limit cardinal
of size at most |A|, then |IdA|<κ = |IdA|. Note that |UltA| < |IdA| for A the
finite-cofinite algebra on an infinite cardinal κ.

Next, we show that |IdA| = 2ω for the interval algebra A on the reals; thus
A has the property that |A| = |UltA| = |IdA|. For each ideal I on A, let ≡I be
defined as follows: a ≡I b iff a = b or else if, say a < b, then [a, b) ∈ I. Thus ≡I is
a convex equivalence relation on R. Now define the function f by setting, for any
ideal I,

fI = {(r, s, ε) : there is an equivalence class a under ≡I such that |a| > 1
and a has left endpoint r, right endpoint s, and
ε = 0, 1, 2, 3 according as a is [r, s], [r, s), (r, s], or (r, s)}.

Clearly f is a one-one function; since fI ∈ (R×R×4)≤ω, it follows that |IdR| = 2ω,
as desired.

A rigid BA A shows that |AutA| < |IdA| is possible. Koppelberg, Shelah [93]
show that if μ is a strong limit cardinal satisfying cf(μ) = ω and 2μ = μ+, then
there is a Boolean algebra B such that |B| = |EndB| = μ+ and |IdB| = 2μ+

. This
answers Problem 60 of Monk [90]. Also, in an email message of December 1990
Shelah showed that under suitable set-theoretic hypotheses there is a BA A such
that |IdA| < |AutA|, answering problem 61 from Monk [90]. This result is easy
to see from known facts. Namely, let T be a Suslin tree in which each element
has infinitely many immediate successors, and with more than ω1 automorphisms.
Assume CH. Then A

def= Treealg T has more than ω1 automorphisms. By the
characterization of the cellularity of tree algebras given in Chapter 3, cA = ω, and
since hLA = cA (see the end of Chapter 15), by the equivalents at the beginning
of Chapter 15 every ideal in A is countably generated, and hence A has only ω1

ideals. The following problem is open.

Problem 64. Can one construct in ZFC a BA A such that |IdA| < |AutA|?
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First we note the following simple result:

Proposition 23.1. If B is a homomorphic image of A, then |SubB| ≤ |SubA|.
Proof. Let f be a homomorphism from A onto B. With each subalgebra C of B
associate the subalgebra f−1[C] of A.

It is also obvious that if B is a subalgebra of A, then |SubB| ≤ |SubA|.
Now we give some results from Shelah [92a]; the main fact is that |EndA| ≤

|SubA|. This answers Problem 63 from Monk [90]. Let PsubA be the collection
of all subsets of A closed under +, ·, and − (as a binary operation—namely,
a − b = a · −b). The part |IdA| ≤ |SubA| in the next theorem is due to James
Loats, and can be proved more easily.

Theorem 23.2. |PsubA| = |SubA| for any infinite BA A. In particular, |IdA| ≤
|SubA|.
Proof. First, it is clear that |A| ≤ |SubA|, since a �→ {0, 1, a,−a} (a ∈ A) is a
2-to-1 mapping from A into SubA. Hence for the theorem it suffices to show that
the set of infinite members of Psub(A) has cardinality at most |Sub(A)|. To this
end, choose for every infinite X ∈ Psub(A) an element aX of X such that there
are elements u, v ∈ X with 0 < u < aX < v < 1; then let Y [X] be the subalgebra
generated by X � aX and let Z[X] be the subalgebra generated by X � −aX . Note
that Y [X] consists of all elements of the form y +−z with y ∈ X � aX , and either
z ∈ X � aX or z = 1, and similarly for Z[X]. Now we claim that for X �= X ′ we
have Y [X] �= Y [X ′] or Z[X] �= Z[X ′], from which the desired conclusion clearly
follows. Suppose that this claim fails; say X\X ′ �= 0. Let a = aX and b = aX′ . We
claim next that −a ≤ b or a ≤ −b. For, take any x ∈ X\X ′. Then we can write

x · a = y +−z, y ∈ X ′ � b, and z ∈ X ′ � b or z = 1,
x · −a = u +−v, u ∈ X ′ � −b, and v ∈ X ′ � −b or v = 1.

Since x /∈ X ′, we have z �= 1 or v �= 1; this gives in the first case −x + −a =
z · −y ≤ b, hence −a ≤ b, and a ≤ −b in the second case, proving our latest claim.

Say without loss of generality that −a ≤ b. Choose b′ ∈ X ′ such that b < b′ <
1. So 0 < −b′ < −b. Thus −b′ ∈ X � −b, so −b′ = s +−t, where s ∈ X � −a, and
t ∈ X � a or t = 1. If t = 1, then −b′ = s ≤ −a ≤ b and −b′ ≤ −b, contradiction.
If t �= 1, then b′ = t · −s ≤ −a ≤ b, so −b ≤ −b′, contradiction.

Lemma 23.3. |AutA| ≤ |SubA| for A infinite.

Proof. The idea is to associate with each automorphism of A a sequence of 8
members of PsubA, in a one-one fashion; clearly this will prove the theorem. Let
f be any automorphism. Define

Jf = {x ∈ A : fy = y for all y ≤ x};
If = {x ∈ A : x · fx = 0}.
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Clearly we have:

(1) If x ∈ If then fx ∈ If .
(2) Jf ∪ If is dense in A.

To prove (2), let a ∈ A+, and suppose that a /∈ Jf . Then there is a b ≤ a such
that b �= fb. If b �≤ fb, then 0 �= b · −fb ≤ a and b · −fb ∈ If . If fb �≤ b, then
0 �= b · −f−1b ≤ a and b · −f−1b ∈ If .

Next, let X be a maximal subset of If such that x · fy = 0 for all x, y ∈ X.
Let If

1 = 〈X〉Id and If
2 = 〈{fx : x ∈ X〉Id}. Then let

If
0 = {y ∈ If : fy ∈ If

1 and y · x = 0 for all x ∈ If
1 }.

Let If
3 = 〈{fx : x ∈ If

2 }〉Id. Thus

(3) If
i is an ideal ⊆ If for i < 4.

(4) If
i ∩ If

i+1 = {0} for i < 3.
(5) If

0 ∪ If
1 ∪ If

2 is dense in If .

To prove (5), suppose that x ∈ (If )+ but there is no non-zero member of the
indicated union which is below it. Since x ∈ If , we have x · fx = 0. Now since
there is no nonzero element of If

1 below x, we have x /∈ X, and this gives two
cases. Case 1. There is a z ∈ X such that x ·fz �= 0. But x ·fz ∈ If

2 , contradiction.
Case 2. There is a z ∈ X such that z · fx �= 0. Choose w such that fw = z · fx.
Since w ≤ x, we have w ∈ (If )+, and since fw ≤ z we have fw ∈ If

1 . For any
t ∈ If

1 we have t · x = 0 (otherwise 0 �= t · x ≤ x and t · x ∈ If
1 ), hence t · w = 0.

Thus w ∈ If
0 , contradiction, proving (5).

For i < 3 we now define a member Cf
i of PsubA: Cf

i = {x + fx : x ∈ If
i }.

Clearly each Cf
i is closed under +. For any x, y ∈ If

i we have x · fy = 0, and from
this it follows that Cf

i is closed under · and −.
We have now defined our sequence

〈Jf , If
0 , If

1 , If
2 , If

3 , Cf
0 , Cf

1 , Cf
2 〉

of 8 members of PsubA. It remains just to show that if two automorphisms f and
g give rise to the same sequence 〈J, I0, I1, I2, I3, C0, C1, C2〉, then f = g. By (2)
and (5) it is enough to show that they agree on J ∪ I0 ∪ I1 ∪ I2. Suppose that
y ∈ I0. Thus y + fy ∈ C0, so there is a z ∈ I0 such that y + fy = z + gz. Now
0 = y · gz since gz ∈ I1, so y ≤ z. Similarly z ≤ y, so y = z. So y + fy = y + gy.
But y ∈ If , so y · fy = 0. Similarly y · gy = 0, so fy = gy. The cases of I1 and I2

are similar.

Theorem 23.4. |EndA| ≤ |SubA| for any infinite BA A.

Proof. Let μ = |SubA|, and suppose that μ < |EndA|. With each f ∈ EndA
associate the pair (Kernelf,Rangef). The number of such pairs is at most |IdA|×
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|SubA|, which by 23.2 is μ. Thus there is a set E of μ+ endomorphisms with the
same kernel I and range R. For each f ∈ E we define a mapping gf from A/I onto
R by gf (x/I) = fx; clearly gf is well-defined and is an isomorphism from A/I
onto R. Fix h ∈ E. Then {gf ◦g−1

h : f ∈ E} is a set of μ+ different automorphisms
of R. Thus by 23.3,

μ < |AutR| ≤ |SubR| ≤ |SubA|,
contradiction.

Another result in Shelah [92a] is that |AutA|ω ≤ |SubA|; we shall not give the
proof.

For any BA A, let PendA = {f : f is a homomorphism from a subalge-
bra of A onto another subalgebra of A}. Such homomorphisms are called partial
endomorphisms of A.

Theorem 23.5. |PendA| = |SubA| for any infinite BA A.

Proof. ≥ is clear, since with each subalgebra B one can associate the identity
mapping on B, a partial endomorphism of A. For ≤ we proceed as in the proof
of Theorem 23.4: this time we associate with each partial endomorphism a triple
consisting of its domain, kernel, and range; otherwise the details are similar.

Theorem 23.6. If A×B is infinite, then |Sub(A×B)| = max(|SubA|, |SubB|).
Proof. We prove the equivalent statement that if A is infinite and a ∈ A, then
|SubA| = max(|Sub(A � a)|, |Sub(A � −a)|). The inequality ≥ is obvious. Let
μ = max(|Sub(A � a)|, |Sub(A � −a)|), and suppose that μ < |SubA|. Now we
associate with each subalgebra B of A five objects:

CB
0 = {x · a : x ∈ B}, a subalgebra of A � a;

CB
1 = {x · −a : x ∈ B}, a subalgebra of A � −a;

IB
0 = {x ∈ B : x ≤ a}, an ideal of CB

0 ;

IB
1 = {x ∈ B : x ≤ −a}, an ideal of CB

1 ;

and gB, the isomorphism from CB
0 /IB

0 onto CB
1 /IB

1 such that gB((x · a)/IB
0 ) =

(x · −a)/IB
1 for all x ∈ B. Now B can be reconstructed from these five objects:

B = 〈IB
0 ∪ IB

1 ∪ {x + y : x ∈ CB
0 , y ∈ CB

1 , and gB(x/IB
0 ) = y/IB

1 }〉

In fact, the direction ⊆ is clear. For ⊇ it suffices to show that if x ∈ CB
0 , y ∈ CB

1 ,
and gB(x/IB

0 ) = y/IB
1 then x + y ∈ B. Say x = x′ · a and y = y′ · −a, with

x′, y′ ∈ B. Now (x′ · −a)/IB
1 = (y′ · −a)/IB

1 , so (x′ · −a)�(y′ · −a) ∈ B. Now

(x + y)�(x′ · −a)�(y′ · −a) = (x′ · a)�(y′ · −a)�(x′ · −a)�(y′ · −a)
= (x′ · a)�(x′ · −a) = x′ ∈ B,

so x + y ∈ B.
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Now there is a set X of μ+ subalgebras of A such that CB
i = CD

i and IB
i = ID

i

for all B,D ∈ X and all i < 2. Fix B ∈ X. Now {g−1
D ◦ gB : D ∈ X} is a set of

automorphisms of CB
0 /IB

0 , and by 23.1 and 23.3,

|Aut(CB
0 /I0)| ≤ |Sub(CB

0 /I0)| ≤ |SubCB
0 | ≤ μ,

so there are distinct D,E ∈ X for which gD = gE . This contradicts the noted fact
about reconstruction.

Note that 2IrrA ≤ |SubA| if IrrA is attained. An example A for which |IdA| <
|SubA| is provided by the interval algebra A on the reals. We noted in the last
chapter that |IdA| = 2ω. Since IrrA = 2ω attained, we have |SubA| = 22ω

.
The above theorems imply that |SubA| is our biggest cardinal function. Its

size is, of course, always at most 2|A|. For most algebras, this value is actually
attained. It is also quite interesting to construct a BA A in which |SubA| is as
small as possible. The only algebra we know of where this is the case is Rubin’s
algebra A from Chapter 18. We now go through the proof that |SubA| = ω1; thus
|A| = |UltA| = |IdA| = |SubA|. We call an element a ∈ A countable provided that
A � a is countable.

Lemma 23.7. A has only countably many countable elements.

Proof. Let P be the set of all countable elements of A, and suppose that P
is uncountable. Then it is easy to construct 〈aα : α < ω1〉 ∈ ω1P such that if
α < β < ω1 then aβ �≤ aα. Since h-cof(A) = ω, the set P ′ def= {aα : α < ω1} is
not well-founded; say aα(0) > aα(1) > · · ·. Choose i, j ∈ ω such that i < j and
α(i) < α(j). Then aα(i) > aα(j) contradicts the choice of the aβ ’s.

Note that the collection of countable elements of A forms an ideal, which we denote
by C(A). To proceed further, we have to go back to the main property of Rubin’s
algebra. For this purpose we introduce the following notation. A preconfiguration
in a BA A is a sequence 〈a, b1, . . . , bn〉 of pairwise disjoint elements of A with
each bi �= 0, n > 0. Given such a preconfiguration, a subset P of A is dense at
〈a, b1, . . . , bn〉 provided that for all c1, c2, if 〈a, c1, c2, b1, . . . , bn〉 is a configuration
then P ∩ (c1, c2) �= 0. Thus the main property of Rubin’s BA A is that if P is an
uncountable subset of A then there is a preconfiguration 〈a, b1, . . . , bn〉 of A such
that P is dense at 〈a, b1, . . . , bn〉. For both of the next two lemmas we advise the
reader to draw a diagram along the lines of the one in Chapter 18 to see what is
going on.

Lemma 23.8. Assume that P ⊆ A, P is uncountable, 〈a, b1, . . . , bn〉 is a precon-
figuration of A, P is dense at 〈a, b1, . . . , bn〉, a ≤ b ≤ a +

∑n
i=1 bi, b · bi �= 0 for

i = 1, . . . , n, and b · −a /∈ C(A). Then P ∩ [a, b] is uncountable.

Proof. Suppose that P ∩ [a, b] is countable, and let Q be the closure of P ∩ [a, b]
under +; so Q is countable also. Say b · bi /∈ C(A). Pick any c ≤ b · bi, c �= 0,
such that c′ def= a + c +

∑
j �=i bj /∈ Q. Then pick c1, c2 so that a + ci < c′ and
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〈a, ci, c
′, b1, . . . , bn〉 is a configuration for i = 1, 2, and c1 + c2 = c′. Then pick

d1, d2 ∈ P so that ci < di < c′ for i = 1, 2. But d1, d2 ∈ [a, b] and d1 + d2 = c′, so
c′ ∈ Q, contradiction.

Lemma 23.9. Every subalgebra of A is the union of countably many closed inter-
vals.

Proof. Suppose that B is a subalgebra of A which is not the union of countably
many closed intervals. Let 〈[xα, yα] : α < ω1〉 enumerate all of the closed intervals
contained in B. Now B contains ω1 elements pairwise inequivalent with respect
to C(A); hence it is easy to construct a sequence 〈zα : α < ω1〉 ∈ ω1B with the
following two properties:

(1) zα /∈ ⋃
β<α[xβ , yβ ] for each α < ω1;

(2) zα�zβ /∈ C(A) for distinct α, β < ω1.

Let D = {zα : α < ω1}. Since D is somewhere dense, let 〈a, b1, . . . , bn〉 be a
preconfiguration of A such that D is dense at 〈a, b1, . . . , bn〉. Choose any b such
that a ≤ b ≤ a +

∑n
i=1 bi and b · bi �= 0 �= bi · −b for all i = 1, . . . , n. We show

that [a, b] ⊆ B. Take any d ∈ [a, b]. Choose e1, e2 with the following properties:
d = e1 · e2; a ≤ ei ≤ a +

∑n
j=1 bj ; ei · bj �= 0 for i = 1, 2, j = 1, . . . , n. Thus

〈a, d, ei, b1, . . . , bn〉 is a configuration, so we can choose fi ∈ D∩ (d, ei) for i = 1, 2.
Then f1 · f2 = d, and so d ∈ B (since D ⊆ B). Thus, indeed, [a, b] ⊆ B. By an
easy argument, [a, b] ∩D has at least two elements. Since distinct elements of D
are inequivalent mod C(A), it follows that b · −a /∈ C(A). Hence by Lemma 23.8,
D ∩ [a, b] is uncountable. But this clearly contradicts the construction of D.

With these lemmas available we can now prove that |SubA| = ω1. We claim that
each subalgebra B of A is generated by an ideal along with a countable set. In
fact, write B =

⋃
i<ω[ai, bi]. Let I be the ideal generated by {bi · −ai : i < ω}.

Then clearly B is generated by I ∪ {bi : i < ω}, as required. Now every ideal is
countably generated. This follows from the fact that hLA ≤ h-cofA = ω, proved
in Chapter 18, and one of the equivalents of hL given in Chapter 15. This being
the case, it follows that there are exactly ω1 ideals in A, since ωω

1 = ω1 by virtue
of CH (which follows from ♦, which we are assuming). Now |SubA| = ω1 is clear,
again using CH.

In Cummings, Shelah [95] it is shown that it is consistent (relative to a large
cardinal assumption) that every infinite BA A has 2|A| subalgebras. This answers
Problem 62 in Monk [90]. It is possible to have |AutA| < |SubA|: take a rigid BA.
One can even have |EndA| < |SubA|, for example in the interval algebra on the
reals.
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There are many other cardinal functions besides the 21 that we have discussed in
the preceding chapters. In this chapter we give a list of some natural ones; some
of these have been explicitly mentioned earlier. We also mention some facts and
problems about them, without trying to be exhaustive. In particular, many of the
problems may be easy, so we do not list them among our formal problems.

Functions mentioned in the previous text

1. cmm. See the text following 3.26 for the definition and properties of this function.
It is clear that cmmA ≤ cA for any infinite BA A.
2. The following function is related to cmm; see the text following 3.26:

pA = min{|Y | : Y ⊆ A,
∑

Y = 1,

and
∑

Y ′ �= 1 for every finite subset Y ′ of Y }.

3. dDepthS−. See the text following 4.23. Obviously dDepthS−A ≤ DepthA.
4. tow. See the text following 4.23. Clearly towA ≤ DepthA; tow is a variant of
Depth.
5. dn. See the discussion following 5.14. It is noted in 5.15 that dnA ≤ dA for any
infinite A. These functions are finite variants of d.
6. πS+. See the discussion following 6.10. It is proved there that πA ≤ πS+A ≤ hdA
for any infinite BA A, with strict inequality possible in both cases.
7. LengthH+. See the discussion after 7.7. We have tA ≤ LengthH+A, with <
possible.
8. LengthH−. See the discussion after 7.9; 7.8 and 7.9 are also relevant.
9. Lengthh−. It is possible that this function always has value ω (Problem 23).
10. Lengthh+. See the end of Chapter 7. This function is related to Depthh+ and
LengthH+.
11. dLengthS−. This is related to the above function dDepthS−. See the end of
Chapter 7.
12. Irrmn. These are finite versions of irredundance, defined at the end of Chapter
8.
13. CardH−. See Chapter 9 for information.
14. Cardh−. See Chapter 9. It is possible to have Cardh−A > |UltA.
15. IndH−. See Chapter 10, discussion around Problem 29.
16. Indh+. See Chapter 10, discussion around Problem 30.
17. Indh−. See Chapter 10, discussion around Problem 31.
18. dIndS−. See Chapter 10.
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19. Indn. See the end of Chapter 10.
20. πχS+. See the discussion preceding 11.9.
21. dπχS−. See the discrussion preceding 11.9.
22. πχinf . See 11.9.
23. wd. This is the function weak density, related to πχinf ; see the discussion
following 11.9.
24. hwd. This is hereditary weak density. See the discussion following Problem 40
in Chapter 11.
25. tH−. See the discussion after Problem 44.
26. dtS−. See the discussion after Problem 44.
27. tmn. This is a finite version of tightness; see the text following the proof of
12.12.
28. tm. Another finite version of tightness; see above.
29. utmn. Another finite version of tightness; see above.
30. utm. Another finite version of tightness; see above.
31. sH−. See the discussion before 13.7.
32. dsS−. See the discussion before 13.7.
33. dd. This function is related to s; see 13.7.
34. sm. This is a finite version of spread; see the end of Chapter 13.
35. χH−. See 14.4–14.7.
36. a. This is the altitude function, related to χH−; see 14.4–14.7.
37. χinf . See 14.3.
38. χS+. See the discussion before 14.3.
39. (χnpinf)H−. See 14.5.
40. hLm. This is a finite version of hL; see the text following Problem 53.
41. hdm. This is a finite version of hd; see the end of Chapter 16.

Some additional natural functions

42. The tree algebra number. For any BA A, the tree algebra number of A,
denoted by taA, is the supremum of cardinalities of subalgebras of A isomorphic to
tree algebras. This number is clearly greater or equal to cellularity. It is dominated
by d, since if A is isomorphic to a tree algebra and A is a subalgebra of B, then
|A| = dA ≤ dB. Note that an infinite free algebra always has tree algebra number
ℵ0. So taB can be much smaller than dB. If cB < taB, then there is a generalized
Suslin tree of size (cB)+.
43. The pseudo-tree algebra number. For any BA A, the pseudo-tree algebra
number of A, denoted by ptaA, is the supremum of cardinalities of subalgebras of
A isomorphic to pseudo-tree algebras. Clearly LengthA ≤ ptaA, taA ≤ ptaA, and
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ptaA ≤ IrrA. Any infinite free algebra has pseudo-tree number ℵ0. In a large free
algebra we thus have ptaA = ℵ0 while dA is large. So the place of pta with respect
to the standard functions is clear.

44. The semigroup algebra number. For any BA A, the semigroup algebra
number of A, denoted by saA, is the supremum of cardinalities of subalgebras of
A which are semigroup algebras. We have IndA ≤ saA and ptaA ≤ saA. It is not
clear whether saA ≤ IrrA.

45. The tail algebra number. For any BA A, the tail algebra number of A,
denoted by tlaA, is the supremum of cardinalities of subalgebras of A isomorphic
to tail algebras. Clearly saA ≤ tlaA. It may be that tlaA = |A| for every infinite
BA A.

46. Disjunctiveness. The disjunctiveness of A, djA, is the supremum of cardi-
nalities of disjunctive subsets of A. Clearly tlaA ≤ djA and sA ≤ djA. It may be
that djA = |A| for every infinite BA A.

47. Minimality. The minimality of A, mA, is the supremum of cardinalities of
minimally generated subalgebras of A. Clearly ptaA ≤ mA. For every infinite free
BA A we have mA = ℵ0.

48. Initial chain algebra number. This number, denoted by icA, is the supre-
mum of cardinalities of subalgebras of A isomorphic to the initial chain algebra on
some tree. If A is free, then icA = ω.

49. Initial chain algebra number for pseudo trees. Similarly, for pseudo-trees;
denoted by icpA. Thus icA ≤ icpA. If A is free, then icpA = ω.

50. Superatomic number. This is the supremum of cardinalities of superatomic
subalgebras of a BA; denoted by spa. If A is free, then spaA = ω. We have
icA ≤ spaA.

51. Pseudoaltitude. The pseudo-altitude of a BA A is min{χinfB : B is an infinite
homomorphic image of A} and is denoted by paA. See cofinality, below.

52. Cofinality. The cofinality of a BA A, denoted by cfA, is the smallest infinite
cardinal κ such that A can be written as the union of an increasing chain of type κ
of subalgebras of A. This notion and the previous two are discussed in van Douwen
[89]. We have a ≤ pa ≤ cf ≤ CardH− ≤ 2ω. It is open to show in ZFC that cf ≤ ω1.

53. The order-ideal number. This is the supremum of the cardinality of a
system of ideals ordered by inclusion; we denote it by oiA. Clearly hL ≤ oi and
hd ≤ oi. It is possible to have |A| < oiA; this is true for A = IntalgQ, for example.
It is not clear whether oi < Card is possible.

Dimensions of Boolean algebras

Heindorf [91] introduces an interesting notion of dimension of Boolean algebras,
which gives rise to several cardinal functions. Let A be a non-empty class of non-
trivial BAs. Since every BA is embeddable in a product of two-element BAs, every
BA is embeddable in a product of members of A . Hence the following definition
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makes sense: the A -dimension of a BA A is the smallest cardinal number κ such
that A can be embedded in a product of κ members of A (not necessarily distinct
members). This A -dimension is denoted by A -dimA. It is natural to consider
this notion for natural classes A . Various one-element classes A are natural, of
course. At the opposite extreme we can consider the notion for our natural proper
classes—the class of all free algebras, of all superatomic algebras, etc. In Heindorf
[91] the three cases (1) all free algebras, (2) all superatomic algebras, (3) all in-
terval algebras, are investigated. Some cases are trivial; for example, with A the
class of all complete BAs, the A -dimension of any BA is 1, since any BA can
be embedded in a complete BA. Another obvious remark is that each dimension
function is dominated by the function d. We list some dimension functions which
may be interesting:

54. int-dim, where A is the class of all interval algebras.
55. sa-dim, where A is the class of all superatomic algebras.
56. free-dim, where A is the class of all free algebras.
57. tree-dim, where A is the class of all tree algebras.
58. ptree-dim, where A is the class of all pseudo-tree algebras.
59. sg-dim, where A is the class of all semigroup algebras.
60. mg-dim, where A is the class of all minimally generated algebras.
61. ic-dim, where A is the class of all initial chain algebras.
62. dj-dim, where A is the class of all disjunctively generated algebras.
63. finco-dim, where A is the class of all finite-cofinite algebras on some infinite
set.
64. {Fincoω}-dim.
65. {IntalgR}-dim.
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In this chapter we give several diagrams for the relationships between the main 21
functions that we have considered. Thus this chapter summarizes the main text.
But it also turns out that we have some new things to say upon considering these
relationships thoroughly.

For each of the diagrams, we need to do the following: (1) For each edge,
indicate where the relation is proved, and give an example where the functions
involved are different. Also, if the difference is indicated as “small”, indicate where
that is stated in the text, while if the difference is “large”, indicate an example.
Recall that a difference is “small” if there is some limitation on the difference. It is
“large” if for every infinite cardinal κ, there is an example where the difference is
at least κ. (2) Show that there are not any relations except those indicated in the
diagrams. It suffices to do this just for crucial places in the diagram. For example, if
in the diagram for the general case we give an algebra A in which LengthA < πχA,
this will also be an example for LengthA < h-cofA and DepthA < πχA. As will
be seen, we have not been completely successful in either of these two tasks; there
are several open problems left.

The main diagram, edges and “large” and “small” indications.

25.1. Depth ≤ Length. This relation is obvious from the definitions. The difference
is small by the Erdös, Rado theorem; see the end of Chapter 7.
25.2. Depth ≤ c. Again, this is obvious from the definitions. The difference is large
in the finite-cofinite algebra on an infinite cardinal κ.
25.3. Depth ≤ t. This is proved in Chapter 4. The difference is big in a free
algebra.
25.4. πχ ≤ t. See Chapter 11. The difference can be large in an interval algebra.
25.5. πχ ≤ π. Obvious from the definitions. The difference is large in a finite-
cofinite algebra; see Chapter 11.
25.6. c ≤ s. This is a consequence of a theorem in Chapter 3. The difference is
large in free algebras.
25.7. c ≤ d. See Chapter 5. The difference is large in free algebras.
25.8. Length ≤ Irr. Obvious from the definitions. The difference is large in free
algebras.
25.9. Ind ≤ t. See the beginning of Chapter 12. The difference can be large in
some interval algebras, since Depth ≤ t.
25.10. d ≤ π. Obvious from the topological versions of these functions. The dif-
ference is small. See the end of Chapter 6 for an example where they differ.
25.11. t ≤ χ. Obvious from the definitions. The difference is big in a finite-cofinite
algebra on a large cardinal κ.
25.12. t ≤ s. See Theorem 5.11. The difference is big in a finite-cofinite algebra
on a cardinal κ.
25.13. π ≤ hd. See Theorem 6.10. The difference is small, since πA ≤ hdA ≤
|A| ≤ 2πA. The functions differ in Pκ, for example.
25.14. hd ≤ Irr. See the end of Chapter 16. They differ in the interval algebra on
the reals.
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25.15. χ ≤ hL. See Chapter 15. The difference is small, since |UltA| ≤ 2χA; they
differ on the Aleksandroff duplicate of a free algebra; see Chapter 14.
25.16. s ≤ hL. Obvious from the definitions. The difference is small, since |A| ≤
2sA for any BA A by Chapter 13. They differ in a Kunen line (constructed under
CH; see the end of Chapter 15). Whether there is an example in ZFC is an open
question; see the end of chapter 15, and Problem 49.
25.17. s ≤ hd. Obvious from the definitions. The difference is small (see above).
They differ on the interval algebra of a Suslin line. Whether there is an example
in ZFC is open (Problem 57).
25.18. Irr ≤ Card. Obvious from the definitions. The difference is small; from
Theorem 4.23 of Part I of the Boolean algebra handbook it follows that |A| ≤ 2IrrA.
A compact Kunen line (constructed under CH) gives a BA in which they are
different (see Chapter 8). It is open to give an example in ZFC. (Problem 28)
25.19. hL ≤ h-cof. See Chapter 18. The difference is small, since χA ≤ hLA, and
so hLA ≤ h-cofA ≤ |A| ≤ 2χA ≤ 2hLA, using Chapter 14. They differ on the
interval algebra on the reals; see the beginning of Chapter 18.
25.20. hd ≤ Inc. This is an easy consequence of Theorem 4.25 of the BA handbook,
part I. The difference is small, since s ≤ hd, Inc ≤ Card, and |A| ≤ 2sA for any
BA. They differ on Intalg R.
25.21. Inc ≤ h-cof. Obvious from Theorem 18.1. The difference is small since by
the above |A| ≤ 2IncA. They differ on the Baumgartner, Komjath algebra (see the
beginning of Chapter 18); this was constructed using ♦, and it remains a problem
to get an example with weaker assumptions. (Problem 63)
25.22. h-cof ≤ Card. Obvious from the definitions. The difference is small (see
above). An example where they differ can be found in Ros	lanowski, Shelah [94].
25.23. Card ≤ |Ult|. This is well-known; see the Handbook Part I, Theorem 5.31.
The difference is, of course, small. They differ in an infinite free algebra.
25.24. |Ult| ≤ |End|. This is obvious. The difference is small. They differ for the
finite-cofinite algebra on an infinite cardinal.
25.25. |Aut| ≤ |End|. Also obvious. The difference is large, as shown by a rigid
BA.
25.26. |Ult| ≤ |Id|. Again obvious. The difference is small. They differ on the
finite-cofinite algebra on an infinite cardinal.
25.27. |Id| ≤ |Sub|. See Chapter 23. The difference is small. They differ for the
interval algebra on the reals.
25.28. |End| ≤ |Sub|. See Chapter 23. The difference is small. They differ for the
interval algebra on the reals.

The main diagram: no other relationships. Keep in mind that we only treat
“crucial” relations; other possibilities are supposed to follow from these.

25.29. Length < πχ: an uncountable free algebra: see Chapter 11.
25.30. Length < c: the finite-cofinite algebra on an uncountable cardinal.
25.31. Length < Ind: an uncountable free algebra.
25.32. πχ < Depth: see the example in Chapter 11.
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25.33. d < πχ: some free algebras.
25.34. Ind < Depth: the interval algebra on an uncountable cardinal.
25.35. Ind < πχ: true in the interval algebra on an uncountable cardinal; see
Chapter 11.
25.36. π < Ind: Pκ. The difference is small.
25.37. πχ < Ind: the difference can be large; see chapter 11.
25.38. χ < c: the Aleksandroff duplicate of an infinite free algebra; Chapter 14.
25.39. hL < Length: Intalg R.
25.40. hL < d: The interval algebra of a complete Suslin line. It is not known if
this is possible in ZFC. (Problem 54)
25.41. hL < Inc: The interval algebra on the reals; see Chapter 17.
25.42. Inc < χ: The Baumgartner-Komjath algebra, constructed under ♦; see
Chapter 17. It is not known if this is possible under weaker hypotheses. Weaker
problems are hd < χ? and s < χ?. See Problems 49, 59, 62.
25.43. Inc < Length: Constructed by Shelah in ZFC using entangled linear orders.
25.44. Irr < χ: The compact Kunen line, constructed using CH. No example is
known in ZFC.

Problem 65. Can one construct in ZFC a BA A such that IrrA < χA?

This problem is equivalent to the problem of constructing in ZFC a BA A such
that IrrA < hLA; see the argument at the end of Chapter 15.

25.45. h-cof < Length: Constructed by Shelah in ZFC using entangled linear
orders; see Shelah [91].
25.46. |Aut| < Depth: embed a large interval algebra in a rigid algebra.
25.47. |Aut| < πχ: a rigid complete BA of large cellularity gives an example.
25.48. |Aut| < Ind: embed a large free algebra in a rigid algebra.
25.49. |Id| < |Aut|: see Chapter 22; possible under some set-theoretic assumptions.
No example is known in ZFC (Problem 64).
25.50. |Ult| < |Aut|: the finite-cofinite algebra on an infinite cardinal.
25.51. |End| < |Id|: See below in the treatment of superatomic algebras.

Other possibilities follow from the above crucial relations, but in the case of exam-
ples mentioned above that involve additional axioms of set theory there are some
additional problems; see arguments at the end of Chapters 15 and 16. And some
more problems arise:

25.52. Irr < Inc using a Kunen line; see the examples chapter. No example is
known in ZFC:

Problem 66. Is there an example in ZFC of a BA A such that IrrA < IncA?

25.53. Irr < hL by the example for Irr < χ, but no example in ZFC is known.
This is actually equivalent to Problem 65. In fact, if A is such that IrrA < hLA,
then there is an ideal I in A not generated by fewer than (IrrA)+ elements, and
then with B

def= I ∪ −I we have IrrB < χB.
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25.54. Irr < h-cof by the example for Irr < χ, but no example in ZFC is known:

Problem 67. Is there an example in ZFC of a BA A such that IrrA < h-cofA?

Note that “yes” on either of problems 65 or 66 implies “yes” on problem 67.

25.55. Inc < hL by the example for Inc < χ, but no example in ZFC is known.
This is equivalent to Problem 61 by a familiar argument.
25.56. |Id| < |End| by the example for |Id| < |Aut|, but this problem is open:

Problem 68. Is there an example in ZFC of a BA A such that |IdA| < |EndA|?
The interval algebra diagram: the edges, indicated equalities, and the
“large” and “small” indications. See below.

25.57. Ind = ω: this is one of the main results about interval algebras; see Part I
of the BA handbook.
25.58. ω ≤ πχ, difference possibly large. See the description of πχ for interval
algebras in Chapter 11.
25.59. Depth = t = χ: see Chapter 14.
25.60. πχ ≤ Depth, difference possibly large. See Chapter 11.
25.61. c=s=hL: see Chapter 15.
25.62. Depth ≤ c, with the difference small. The difference is small since |A| ≤
2DepthA for an interval algebra A; this implies smallness for the next few that we
consider also. For an example where they differ, see Chapter 4.
25.63. d = π = hd: obvious from the retractiveness of interval algebras.
25.64. c ≤ d. They differ in the interval algebra of a Suslin line; see Chapter 5. In
fact, for any infinite cardinal κ the following two conditions are equivalent:

(1) there is an interval algebra A such that κ = cA < dA;
(2) there is a κ+-Suslin line (or tree).

Thus the problem of getting an example in ZFC of a BA A such that cA < dA is
equivalent to the set-theoretical question of proving in ZFC that there is for some
infinite κ a κ+-Suslin tree.
25.65. d ≤ Inc. They differ in the interval algebra on the reals.
25.66. Inc = h-cof. See Chapter 18.
25.67. h-cof ≤ Card. Shelah [91] constructed an example where they differ in ZFC.
25.68. Card ≤ |Ult|. They differ for the interval algebra on the rationals.
25.69. |Ult| ≤ |Id|. They differ on the interval algebra on κ.
25.70. |Aut| ≤ |End|, the difference large: take an infinite rigid interval algebra.
25.71. |Id| ≤ |End|: follows from retractiveness. A Suslin line with more than
ω1 automorphisms gives an example where they are different, assuming CH. And
if an example of an interval algebra A such that |IdA| < |EndA| can be given
in ZFC, then assuming GCH + (there is no uncountable inaccessible) one can
show that for some infinite κ there is a κ+-Suslin tree. For, suppose that A is
an interval algebra such that |IdA| < |EndA|, GCH holds, and there are no
uncountable inaccessibles. Thus |A| = |UltA| = |IdA| and |EndA| = |A|+. If
cA = |A|, then cA is attained (since there are no uncountable inaccessibles), and
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hence |A| < |IdA|, contradiction. Thus cA < |A|, and |A| = |cA|+. If dA < |A|,
then |EndA| ≤ |UltA|dA = |A|dA = |A|, contradiction. So cA < dA, and A must
be the interval algebra on a (cA)+-Suslin tree. So, the problem of existence of such
interval algebras A in ZFC is stronger than the above set-theoretical question:

Interval algebras
l = difference can be large; s =“small” difference

•2|A| = |SubA|

s

•|EndA|

•

s
l

|IdA| • |AutA|

s

• |UltA|

s

• |A| = Length = Irr

s

• h-cof = Inc

s

• d = π = hd

s

• c = s = hL

s

• Depth = t = χ

l

• πχ

s

• Ind = ω
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Problem 69. Can one construct in ZFC an interval algebra A such that |IdA| <
|EndA|?
25.72. |End| ≤ |Sub|. They differ on the interval algebra on the reals.

The interval algebra diagram: no other relationships.

25.73. |Aut| < Ind: an infinite rigid interval algebra.
25.74. |Id| < |Aut|: as in the case of Suslin trees (see Chapter 22), one can
construct a Suslin line with more than ω1 automorphisms. Again, the question of
existence of such algebras in ZFC is a strong set-theoretical hypothesis:

Problem 70. Can one construct in ZFC an interval algebra A such that |IdA| <
|AutA|?
25.75. |Ult| < |Aut|: the interval algebra on κ.

The tree algebra diagram: the indicated equalities and inequalities, and
the “large” and “small” indications. See below. Let T be a tree, and let
A = TreealgT .

25.76. IndA = ω, since A can be embedded in an interval algebra.
25.77. The difference between Ind and πχ can be arbitrarily large by the descrip-
tion of πχ for tree algebras.
25.78. πχ ≤ t in general.
25.79. Depth = t, since tree algebras are retractive; see Chapter 4.
25.80. Length = Depth by the Brenner, Monk theorem (Handbook, p. 269).
Depth(A) = Depth(T ) + ω by that theorem too.
25.81. The difference between πχ and Depth can be arbitrarily large; Chapter 11.
25.82. χA = sup{|set of immed. succ. of C|, cfC : C an initial chain}; see Chapter
14. Fincoκ is an example where χ is high and depth low.
25.83. In Chapter 3 we showed that

cA = max{|{t ∈ T : t has finitely many immed. succ.}|, Inc(T )}.

From this it is easy to see that χ ≤ c. In fact, suppose that C is an initial chain
of T whose order type is an infinite regular cardinal. Obviously |set of immediate
succ. of C| ≤ c. If |{x ∈ C : x has finitely many immediate successors}| = |C|,
clearly |C| ≤ c. If this set has power less than |C|, one can choose an element to
the side of x for |C| many elements x ∈ C, and this gives an incomparable subset
of T of size |C|, and so again |C| ≤ c. So this shows that χ ≤ c. An Aronszajn
non-Suslin tree is an example in which χ < c. The difference has to be small by
the general diagram.
25.84. s=c by Chapter 3 plus the fact that tree algebras are retractive.
25.85. To see that s=hL, take any infinite tree T . Now TreealgT embeds in an
interval algebra A, and we may assume that TreealgT is dense in A (extend the
identity from TreealgT onto itself to a homomorphism from A into the completion
of TreealgT , and then take the image of A). Hence



25.75 Tree algebras 255

Tree algebras
l = difference can be large; s =“small” difference

•2|A| = |SubA|

?

•|EndA|

s
l

•|IdA| • |AutA|

s

• |UltA|

s

•|A| = h-cof = Inc = hd = π = d = Irr

s

• c = s = hL

s

• χ

l

• Depth = t = Length

l

• πχ

l

• Ind = ω

hLA ≥ hL(TreealgT ) ≥ c(Treealg T ) = cA = hLA.

25.86. Suppose that cA < |A|. Then clearly T is a tree such that Inc(T ) < |T |
and |T | has height |T | but no chains of length |T |. Moreover, since cA < |A|, the
cardinal |A| must be a successor. Thus T is a generalized Suslin tree on a successor
cardinal.
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25.87. d=hd, since tree algebras are retractive, dB ≤ dA for B a subalgebra of
A, and by Theorem 14.1.
25.88. Recall from Chapter 5 that πA = |A| for A a tree algebra.
25.89. From the above it follows that

|A| = h-cof = Inc = hd = π = d = Irr.

25.90. For T a chain with order type a regular cardinal we have |A| = |UltA|,
since A is superatomic. For T the full binary tree of height ω we have |A| = ω and
|UltA| = 2ω.
25.91. For A = Fincoκ we have |UltA| = κ and |IdA| = 2κ = |AutA|.
25.92. There are rigid tree algebras.
25.93. |IdA| ≤ |EndA| by retractiveness. See Chapter 22 for an example where
they differ (consistently). If cA = |A| and cellularity is attained, then |IdA| = 2|A|,
so that such an example is impossible. On the other hand, if cA < |A|, then see
25.86. So no such example is possible in ZFC alone.
25.94. 2|A| = |SubA| since {T ↑ t : t ∈ T} is an irredundant set.
25.95. |EndA| ≤ |SubA| in general; no example of a tree algebra is known where
they differ. By a previous remark, the problem reduces to the following question.

Problem 71. Is there a tree algebra A such that |EndA| < 2|A|?

The tree algebra diagram: no other relationships.

25.96. |AutA| < others: there are rigid tree algebras.
25.97. See Chapter 22 for an example of a tree algebra where |IdA| < |AutA|
(consistently). Again, there is no example in ZFC.

25.98. |UltA| < |AutA| for the interval algebra on an infinite cardinal.

The complete BA diagram: the indicated equalities and inequalities
and the “large” and “small” indications. See below. In fact, the “small”
indications are clear.

25.99. c = Depth: obvious.
25.100. c < Length: Pω.
25.101. c < d: completions of free algebras.
25.102. c < πχ: free algebras; see the end of Chapter 11, and Theorem 11.6.
25.103. d < π: completion of the free algebra on ω1 free generators.
25.104. πχ < π: under GCH these are equal, by an argument of Bozeman. It is
not known if this is true in ZFC. See Problem 40.
25.105. Length < Card: a large ccc algebra.
25.106. π < Card: Pκ.
25.107. |A| = Ind = t = s = χ = hL = Irr = s = hd = Inc = h-cof: these
equalities all follow from |Ind| = Card (attained), which is a consequence of the
Balcar, Franěk theorem.
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25.108. |UltA| = |IdA| = |SubA| = |EndA| = 2|A|: again true since any infinite
complete BA A has an independent subset of size |A|.

Complete BAs
l = difference can be small; s =“small” difference

•|UltA|

• |A| • |AutA|

•Length •π

•d • πχ

•
c

s
l

l
s

s
?

s

l
l

c=Depth
|A| = Ind = t = s = χ = hL = Irr = s = hd = Inc = h-cof
|UltA| = |IdA| = |SubA| = |EndA| = 2|A|

25.109. |Aut| < |Ult|: a rigid complete algebra.

The complete BA diagram: no other relations.

25.110. π < Length: Pω.
25.111. Length < πχ: the completion of a free algebra.
25.112. Length < d: the completion of a free algebra.
25.113. Under GCH we have d ≤ πχ, by the result of Bozeman and Chapter 11;
it is not known whether this holds in ZFC. This is equivalent to Problem 40, by
Chapter 11.
25.114. |Aut| < c: embed Pκ in a rigid BA.
25.115. Card < |Aut|: the completion of the free BA of size 2ω.

Diagram for superatomic BAs: the indicated relations, and the “large”
and “small” indications. See below.

25.116. Ind = ω since every superatomic BA has countable independence.
25.117. Ind < Depth: Any interval algebra on an uncountable cardinal provides
an example; the difference can be arbitrarily large.
25.118. Depth = Length by Rosenstein [82] Corollary 5.29, p. 88.
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Superatomic BAs
l = difference can be small; s =“small” difference
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25.119. Ind < πχ: the interval algebra on a cardinal provides an example with
the difference arbitrarily large.
25.120. Depth < t. There is an even stronger example, with c < t. Let 〈aα : α <
ω1〉 be a system of subsets of ω such that for α < β < ω1 we have aα\aβ finite
and aβ\aα infinite. Let A be the subalgebra of Pω generated by the singletons
together with the aα’s. Clearly A is as desired. On the other hand, in Dow, Monk
[94] it is shown that if κ → (κ)<ω

2 , then any superatomic BA with tightness κ+

also has depth at least κ. This shows that the difference between tightness and
depth cannot be arbitrarily large. But we do not know how big the gap can be;
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recall Problem 44.
25.121. πχ < t: see Chapter 11; the difference can be large.
25.122. Obviously c = d = π = number of atoms.
25.123. Depth < c: they differ in a finite-cofinite algebra, where the difference can
be large.
25.124. πχ < c: see Chapter 11; the difference can be large.
25.125. hd = s: see the characterizations of hd and s.
25.126. t < s, and the difference can be arbitrarily large: a finite-cofinite algebra.
25.127. c < s: Take a family A of 2ω almost disjoint subsets of ω, and consider
the BA generated by A ∪ {{i} : i ∈ ω}.
25.128. s < Inc. Under ♦, Shelah constructed a thin-tall BA A with countable
spread. Then A×A has countable spread too, while its incomparability is ω1. The
example of Bonnet, Rubin [92] can also be used for this purpose. We do not know
whether there is an example in ZFC:

Problem 72. Is there an example in ZFC of a superatomic BA A such that
sA < IncA?

25.129. We do not know of an example of a superatomic BA in which s is less
than Irr:

Problem 73. Is there a superatomic BA A such that sA < IrrA?

25.130. |A| = h-cof = hL = χ: χ = Card by Chapter 14, and the other equalities
follow.
25.131. In Bonnet, Rubin [92] a superatomic algebra of power ω1 is constructed
using ♦ in which Inc and Irr are countable.

Problem 74. Can one construct in ZFC a superatomic algebra A with the property
that IncA < |A|?
Problem 75. Can one construct in ZFC a superatomic algebra A with the property
that IrrA < |A|?
25.132. |A| = |UltA|: see the Handbook.
25.133. |A| < |EndA| in a finite-cofinite algebra.
25.134. M. Rubin constructed under ♦ a BA A such that |AutA| < |A| (unpub-
lished, December 1992) in particular, |AutA| < |EndA|. We do not know whether
this can be done in ZFC:

Problem 76. Can one construct in ZFC a superatomic BA A such that |AutA| <
|EndA|?
25.135. c < |Aut|. The BA of finite and cofinite subsets of κ gives an example
where they differ.
25.136. |EndA| ≤ |IdA| for A superatomic. For, let κ be the number of atoms of A.
Then |UltA| = |A| ≤ 2κ ≤ |IdA|, and hence by Chapter 21, |EndA| ≤ |UltA|dA ≤
2κ ≤ |IdA|. In the example of 25.127 we have |EndA| = 2ω and |IdA| = 22ω

.
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25.137. We do not have an example where |IdA| < |SubA|:
Problem 77. Can one have |IdA| < |SubA| in a superatomic BA?

Superatomic BAs, no additional relationships:

25.138. πχ < Depth: see Chapter 11.
25.139. Depth < πχ: Dow, Monk [94] constructed an example.
25.140. t < c: the finite-cofinite algebra on κ.
25.141. We do not have any example of a superatomic BA A with the property
that IncA < IrrA:

Problem 78. Is there, under any set-theoretic assumptions, a superatomic BA A
such that IncA < IrrA?

25.142. We also do not have an example of a superatomic BA A with the property
that IrrA < IncA:

Problem 79. Is there, under any set-theoretic assumptions, a superatomic BA A
such that IrrA < IncA?

25.143. Card < |Aut|: a finite-cofinite algebra.
25.144. |Aut| small relative to “lower” functions. Recall 25.134. But we have the
following problem:

Problem 80. Is there in ZFC a superatomic BA A with |AutA| < |A|?
Now the algebra of Rubin in 25.134 has ℵ1 atoms, and also ℵ1 automorphisms.
Also recall from Chapter 20 that any infinite superatomic BA has at least 2ω

automorphisms. Also, it is clear that any atomic BA A has at least as many
automorphisms as atoms, since every finite permutation of the atoms extends to
an automorphism of the algebra. The strongest remaining problem is as follows.

Problem 81. Under any set-theoretic assumptions, is there a superatomic BA A
such that |AutA| < tA?

25.145. The relationship between Card and |Aut| is not completely clear, but
we indicate some other facts; see 25.143. Recall from Chapter 20 that an infinite
superatomic BA has at least 2ω automorphisms. The initial chain algebra A on
≤ω2 is such that |A| = |AutA| = 2ω.

Now assume that 2ω = ω2, 2ω1 = ω3, and 2ω2 = ω4. Let T be the tree ≤ωω1,
and let A = InitT , the initial chain algebra on T . Note that |A| = ω2. For each
permutation ϕ of ω1 there is an automorphism ϕ′ of A such that ϕ′(T ↓ t) =
T ↓ (ϕ ◦ t) for every t ∈ T . If ϕ �= ψ, then ϕ′ �= ψ′. Thus this gives 2ω1 = ω3

automorphisms; since A has only ω1 atoms, it follows that |AutA| = ω3. Note that
2|A| = ω4. Thus |A| < |AutA| < 2|A|.
25.146. |Aut| < |Id|: the algebra of 25.145.
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Atomic BAs
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Atomic diagram, edges and “large” and “small” indications.

25.147. Most of the edges follow from the general diagram. Note that c = d = π
is clear for atomic BAs.
25.148. Depth < Length. This is true in Pκ for any infinite cardinal κ; see
Theorem 7.4, and recall that Dedκ > κ for any infinite cardinal κ (see Baumgartner
[76]). The difference is small even in the general case.
25.149. Depth < c. This is true in Fincoκ when κ > ω. The difference here can
be large.
25.150. πχ < c. Also true in Fincoκ when κ > ω. The difference here can be large.
25.151. πχ < t. See the interval algebra example at the end of Chapter 11, which
shows that the difference can be large.
25.152. Depth < t. Pκ gives an example with depth κ and independence 2κ,
hence tightness 2κ. The difference between Depth and tightness can be arbitrarily
large. This follows from the fact that B

def= Length(Dup(A)) = ω if A is the free
BA on κ generators.
In fact, suppose that X is a chain in B, |X | = ω1. Define (a,X) ≡ (b, Y ) iff
a = b, for elements (a,X) and (b, Y ) of X . Since A has no uncountable chains,
this equivalence relation has only countably many classes. Hence there is an a ∈ A

such that Y def= {X : (a,X) ∈X } is uncountable. Now

Y =
⋃

m,n∈ω

{X ∈ Y : |X\Sa| = m and |Sa\X| = n}.

Hence there exist m,n ∈ ω with distinct X,Y ∈ Y such that |X\Sa| = m =
|Y \Sa| and |Sa\X| = n = |Sa\Y |. But X and Y are comparable under ⊆, so this
is impossible.
25.153. Ind < t. The interval algebra on an infinite cardinal provides an example
and shows that the difference can be arbitrarily large.
25.154. c < s. Any algebra Pκ shows this. The difference is small, of course.
25.155. t < χ. Fincoκ shows that the difference can be large.
25.156. t < s. Also in this case Fincoκ shows that the difference can be large.
25.157. χ < hL. The Aleksandroff duplicate of a free BA gives the inequality.
Even in the general case the difference is small.
25.158. s < hL. See the superatomic diagram. But even in the general case there
is a question whether one can get an example in ZFC; see the end of Chapter 15.

Problem 82. Can one construct in ZFC an atomic BA A such that sA < hLA?

25.159. s < hd. Take the algebra A at the end of Chapter 16 such that sA,dA <
hdA, and apply the argument in 25.164 below. But we do not know if this can be
done in ZFC:

Problem 83. Can one show in ZFC that there an atomic BA A such that sA <
hdA?
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25.160. Length < Irr. The finite-cofinite algebra on an infinite cardinal furnishes
an example.
25.161. hd < Inc. Take the interval [0, 1) and replace each rational r by two
elements r0, r1 with r0 < r1 and no elements between them, thereby forming a
linear ordering L. Then IntalgL is the desired example.
25.162. hd < Irr. The previous example works.
25.163. hL < h-cof. That example works here too.
25.164. Inc < h-cof. We prove, in ZFC, that if A is a BA such that IncA <
h-cofA, then there is an atomic BA B such that IncB < h-cofB. This argument,
and variants of it below, are due to M. Rubin. Without loss of generality A is a
subalgebra of Pκ, where κ = dA ≤ IncA. Let λ = IncA. Let B = 〈A ∪ {{α} :
α < κ}〉Pκ. We claim that IncB = λ. For, suppose that X ∈ [B]λ

+
. For all x ∈ X

there are Fx, Gx ∈ [κ]<ω and ax ∈ A such that x = (ax\Fx) ∪ Gx, Fx ⊆ ax, and
Gx∩ax = 0. Then there exist H,K ∈ [κ]<ω and Y ∈ [X]λ

+
such that Fx = H and

Gx = K for all x ∈ Y . {ax : x ∈ Y } is not incomparable, so there exist distinct
ax0 , ax1 such that x0, x1 ∈ Y and ax0 < ax1 . Then x0 < x1, as desired.

It follows that, assuming ♦, there is an atomic BA B such that IncB <
h-cofB. The problem of finding an example in ZFC is equivalent to the problem
for arbitrary BAs; see Problem 55.
25.165. Irr < |A|. The situation is very similar here, but the above argument of
Rubin has to be supplemented. We show in ZFC that if IrrA < |A|, then there
is an atomic BA B such that IrrB < |B|. Again, since κ

def= dA ≤ IrrA, we may
assume that A is a subalgebra of Pκ, and we let B = 〈A ∪ {{α} : α < κ}〉Pκ.
Let λ = IrrA, and suppose that D ∈ [B]λ

+
. As in 25.164 we may assume that

there exist H,K ∈ [κ]<ω such that for all x ∈ D there is an ax ∈ A such that
H ⊆ ax, K ∩ ax = 0, and x = (ax\H) ∪K. For each y ∈ A, let fy = y\H. Then
f is a homomorphism of A into B � (κ\H). For each b ∈ B let gb = (b\H, b ∩K).
So g is a homomorphism from B into (B � (κ\H)) ×PH. If x ∈ D, then gx =
(ax\H,K). Hence g � 〈D〉B is a homomorphism of 〈D〉B into f [A] ×PK. Now
Irr(f [A]) ≤ IrrA = λ, so we contradict Corollary 8.2 by showing that g � 〈D〉B is
one-one. Suppose that

gx0 ∩ . . . ∩ gxm−1 ∩ −gy0 . . . ∩ −gyn−1 = 0

with x0, . . . , xm−1, y0, . . . , yn−1 ∈ D.
Case 1. n = 0. Then ax0 ∩ . . . ∩ axm−1 ⊆ H, and K = 0. It follows that

x0 ∩ . . . ∩ xm−1 = 0.
Case 2. n > 0. Note that −gz = (−a−H,−a∩H) for all z ∈ B. It follows that

−y0∩. . .∩−yn−1 ⊆ H; since H ⊆ yi for each i, we must have −y0∩. . .∩−yn−1 = 0,
as desired.

It follows from Chapter 8 that under CH there is an atomic BA B such that
IrrB < |B|. The problem of existence of such an algebra in ZFC is equivalent to
the problem for arbitrary BAs; see Problem 25.
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25.166. h-cof < |A|. The situation is like that for Inc < h-cof. By essentially the
same argument, one can show in ZFC that if A is a BA such that h-cofA < |A|,
then there is an atomic BA of this sort. As mentioned in Chapter 18, Shelah has
constructed a BA A of this sort.
25.167. |A| < |UltA|. Pκ is an example.
25.168. |UltA| < |IdA|. Fincoκ furnishes an example.
25.169. |UltA| < |EndA|. Again Fincoκ furnishes an example.
25.170. c < |Aut|. This is clear since any finite permutation of the atoms extends
to an automorphism of the algebra. < holds for Pκ, for example.
25.171. |AutA| < 2c. ≤ true since any automorphism is induced by a permutation
of the atoms. An atomic BA of size 2ω with countable automorphism group is an
example where < holds.
25.172. |AutA| < |EndA|. The same example works.
25.173. 2c ≤ |Id|. Every subset of the set of atoms determines the ideal generated
by those atoms. In Pκ the difference is strict.
25.174. |IdA| < |SubA|. As in the example with hd < Irr.
25.175. |EndA| < |SubA|. Let L be the linear order obtained from R by replacing
each rational by two adjacent points. Then A = IntalgL is as desired.

Atomic diagram, no other relations

25.176. Length < πχ. An example of Dow, Monk [94] works here: length ω, πχ
ω1. To get the difference arbitrarily large, one can work as follows. Let κ be a
regular infinite cardinal. Let 〈xα : α < κ〉 be a system of independent elements of
Pκ such that all the elementary products

⋂
α∈Γ

xα ∩
⋂

α∈Δ

(κ\xβ)

have size κ (Γ and Δ finite disjoint subsets of κ). For each α < κ let yα = xα\α.
Then let A be the subalgebra of Pκ generated by

{{α} : α < κ} ∪ {yα : α < κ}.

First we check that πχA = κ. For, let F be the ultrafilter on A such that all cofinite
subsets of κ are in F , and also each yα ∈ F . Suppose D is dense in F , and |D| < κ.
We may assume that D is a collection of singletons, say D = {{α} : α ∈ Γ}, where
Γ ∈ [κ]<κ. Choose α < κ such that all members of Γ are less than α. Then
there is no member of D below yα, contradiction. Next, LengthA = ω. To see
this, first note that A/fin is isomorphic to the free BA on κ generators. Now if
L is an uncountable chain in A, define an equivalence relation ≡ on L by setting
a ≡ b iff a�b is finite. Clearly each equivalence class is countable. Hence there
are uncountably many equivalence classes. This means that we get an uncountable
chain in A/fin, contradiction.
25.177. |Ult| < |Aut|: the finite-cofinite algebra on an infinite cardinal.
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25.178. Length < Ind: see 25.152.
25.179. πχ < Depth: see Chapter 11.
25.180. Ind < Depth: Intalgκ.
25.181. |Aut| < Ind. An example is given in McKenzie, Monk [75].
25.182. c < Ind:Pκ. One can even get the difference arbitrarily large. Recall from
Chapter 11 that there is an atomless BA A with πχA = ω and the independence
of A any prescribed value κ; A also has size κ. We may assume that A is actually
a subalgebra of Pκ. Let B = 〈A ∪ {{α} : α < κ}. Now let F be any nonprincipal
ultrafilter on B. Let D ⊆ A+ be a countable set dense in F∩A. Since A is atomless,
each d ∈ D is an infinite subset of κ. For each d ∈ D let Γd be a countably infinite
subset of d. Let E = {{α} : α ∈ Γd for some d ∈ D}. So E is a countable subset
of B. We claim that it is dense in F . For, take any element x ∈ F . We can write
x = (a\M)∪N , where a ∈ A and M and N are finite subsets of κ. Clearly a ∈ D,
so there is a d ∈ D such that d ≤ a. Then choose α ∈ Γd\M . Thus {α} ∈ E and
{α} ⊆ x, as desired.
25.183. Ind < πχ: Intalgκ.
25.184. h-cof < Length. The situation is as for 25.166; atomic examples exist in
ZFC.
25.185. Inc < Length. The situation is as for 25.164; examples exist in ZFC.
25.186. hd < Length: see 25.161.
25.187. hL < Length: see 25.161.
25.188. χ < c: the Aleksandroff duplicate of a free BA gives an example; see
Chapter 14.
25.189. Irr < χ. See 25.165; the situation here is similar.
25.190. Inc < χ. See 25.164; examples exist in ZFC.
25.191. |End| < |Id|. See 25.136 for a superatomic example.

Atomless algebras. The diagram here is the same as the general case, but to
check this we have to give some new examples in some cases. One new example
is the weak power of a denumerable atomless BA, used in many of the cases in
the general diagram in which a finite-cofinite algebra was used. Where an interval
algebra of a discrete linear order L was used, one can use instead the linear order
obtained from L by replacing each point by a copy of the rationals. In several ex-
amples, the Aleksandroff duplicate was used. Like in the examples just mentioned,
here also one can replace atoms by the denumerable atomless BA. We go through
the details of this in one case:
25.192. χ ≤ hL. Let B be the Aleksandroff duplicate of a free algebra on κ
free generators. To replace atoms by the denumerable atomless BA, we use set
products; see Chapter 1. We may assume that B is a field of subsets of some set I
containing all singletons. For each i ∈ I suppose that Ai is a denumerable atomless
field of subsets of a set Ji, where the Ji’s are pairwise disjoint. The algebra we
want is C

def=
∏B

i∈I Ai. Recall that each element of C can be written uniquely in
the form h(b, F, a), where b ∈ B, F is a finite subset of I disjoint from b, and a is
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a member of
∏

i∈F (Ai\{0, 1}). We want first to describe all the ultrafilters of C.
They are of two types:

Type 1. Let H be a nonprincipal ultrafilter on B. Then G
def= {h(b, F, a) : conditions

as above, and b ∈ H} is an ultrafilter on C. This follows easily from the following
easy facts, where we assume that h(b, F, a) and h(b′, F ′, a′) both satisfy the above
conditions:

(1) h(b, F, a) ⊆ h(b′, F ′, a′) iff b ⊆ b′ and for all i ∈ F , either i ∈ b′ or else i ∈ F ′

and ai ⊆ a′
i.

(2) h(b, F, a) ∩ h(b′, F ′, a′) = h(b ∩ b′, G, a′′), where

G = (F ∩ b′) ∪ (F ′ ∩ b) ∪ {i ∈ F ∩ F ′ : 0 �= ai ∩ a′
i}

and for all i ∈ G,

a′′
i =

⎧⎨
⎩

ai if i ∈ F ∩ b′,
a′

i if i ∈ F ′ ∩ b,
ai ∩ a′

i otherwise.

(3) h(b, F, a) ∪ h(b′, F ′, a′) = h(c,G, a′′, where

c = b ∪ b′ ∪ {i ∈ F ∩ F ′ : ai ∪ a′
i = Ji},

G = (F\(b′ ∪ F ′)) ∪ (F ′\(b ∪ F )) ∪ {i ∈ F ∩ F ′ : ai ∪ a′
i �= Ji},

and, for any i ∈ G, a′′
i takes on the obvious value.

(4) K\h(b, F, a) = h(I\(b ∪ F ), F, c), where for any i ∈ F , ci = Ji\ai.

Type 2. For any i ∈ I and any ultrafilter H on Ai, the set G
def= {h(b, F, a) :

conditions as above, and either i ∈ b or else i ∈ F and ai ∈ H}.
Now let L be any ultrafilter on C; we claim that L is of type 1 or of type

2. Case 1. For every finite subset M of I, the element h(I\M, 0, 0) is in L. Let
H = {b ∈ B : h(b, 0, 0) ∈ L}. It is easy to check that H is a nonprincipal ultrafilter
on B, and that L is obtained from H as indicated in the type 1 description. Case 2.
There is a finite subset M of I such that h(M, 0, 0) is in L. Then there is an i ∈ I
such that h({i}, 0, 0) ∈ L. Let H = {x ∈ Ai : h(0, {i}, a) ∈ L with ai = x} ∪ {Ji}.
Then it is easy to check that H is an ultrafilter on Ai and L is obtained from H
as in the type 2 description.

This completes the description of the ultrafilters on C.
If G is of type 1, obtained from H, then χG = χH. Similarly for type 2.

It follows that χC = max{κ, 2ω}, while clearly cC = 2κ. So for κ ≥ 2ω we have
χC < hLC.

Semigroup algebras. Here again the main diagram applies, except that there
are a number of open problems where we used special algebras in the discussion
above.
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25.193. π < hd. One can take 〈{{i} : i < ω} ∪ {aα : α < 2ω〉Pω, where 〈aα : α <
2ω〉 is an independent family of subsets of ω.
25.194. s < hL. In the general diagram we used a Kunen line for this, assuming
CH. We do not know if a Kunen line is a semigroup algebra.

Problem 84. Is the Kunen line a semigroup algebra?

Problem 85. Is there a semigroup algebra A such that sA < hLA?

25.195. Irr < Card. In the general case there were a number of examples of this;
we presented three: the Kunen line, a Todorčević algebra, and Rubin’s algebra.
We do not know whether the Kunen line or the Todorčević algebra are semigroup
algebras; see Problem 84 and the following problem.

Problem 86. Is the Todorčević algebra of Chapter 8 a semigroup algebra?

We now show that Rubin’s algebra is not a semigroup algebra. In fact, take
the notation of 18.2, and suppose that H is a subset showing that A is a semigroup
algebra. Let P = H\{0, 1}. Then |P | = ω1, hence it is not nwdc, and so we get
n ∈ ω\1 and disjoint a, b1, . . . , bn with each bi �= 0 such that

(1) For all c1, c2, if 〈a, c1, c2, b1, . . . , bn〉 is a configuration it follows that P ∩
(c1, c2) �= 0.

Now as in 18.2 we can get an element c1 ∈ P such that a ≤ c1 ≤ a + b1 + · · ·+ bn

and c1 · bi �= 0 �= bi · −c1 for all i = 1, . . . , n. Then it is easy to apply (1) to get
two more elements c2, c3 of P such that each one is properly less than c1, while
c1 = c2 + c3. This contradicts the disjunctiveness of P .

Problem 87. Is there a semigroup algebra A such that IrrA < |A|?
25.196. Inc < h-cof. Recall that the Baumgartner-Komjath algebra works for this
in the general case.

Problem 88. Is the Baumgartner-Komjath algebra a semigroup algebra?

Problem 89. Is there a semigroup algebra A such that IncA < h-cofA?

25.197. h-cof < Card. See Chapters 17 and 18 for an example.

25.198. π < Ind. See 25.193.
25.199. πχ < Ind. See 25.193
25.200. Inc < χ. In the general case the Baumgartner-Komjath algebra works.
See problem 88.

Problem 90. Is there a semigroup algebra A such that IncA < IrrA?

25.201. Irr < χ. See above.

Problem 91. Is there a semigroup algebra A such that IrrA < χA?

25.202. |Aut| < πχ. In the general case we used a rigid complete BA, but we have
no example which is a semigroup algebra.
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Problem 92. Is there a semigroup algebra A such that |AutA| < πχA?

25.203. |Aut| < Ind. We do not have an example.

Problem 93. Is there a semigroup algebra A such that |AutA| < IndA?

25.204. Finally, we mention two problems concerning the number of ideals.

Problem 94. Is there a semigroup algebra A such that |IdA| < |AutA|?
Problem 95. Is there a semigroup algebra A such that |EndA| < |IdA|?

Pseudo-tree algebras. For the diagram, see below. The edges and coun-
terexamples follow by looking at the interval algebra and tree algebra descriptions.

Minimally generated BAs. See below for the diagram. The edges fol-
low from those for interval algebras and superatomic algebras; we just make two
comments.
25.205. c < d. For interval algebras a Suslin line gives an example. The difference
is small, and the existence of an example with < is connected to the generalized
Suslin problem.

25.206. c < s. For superatomic algebras there is an example, but the difference
is not large. In fact, the difference is small for minimally generated algebras. For
if A has spread at least (2cA)+, then it has at least that size, and so by Theorem
10.1 of the BA Handbook, A has an independent subset of that size; so A cannot
be minimally generated.
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Pseudo-tree algebras
• 2|A| = |SubA|

•|EndA|

•|IdA| • |AutA|

•|UltA|

•|A| = IrrA

•h-cof = Inc

•d = π = hd

•c = s = hL

•χ • Length

•Depth = t

•πχ

•Ind = ω
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Minimally generated BAs
•|SubA|

•|IdA| • |EndA|

•|UltA| •
|AutA|

•|A|

•h-cof

•Inc •Irr

•hL •hd • Length

• π = d•χ •
s

•
t

• c

•
πχ

•
Depth

•
Ind = ω
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26. Examples

We determine our cardinal functions on the following examples, as much as possi-
ble; see also the following table:

1. The finite-cofinite algebra on κ.
2. The free algebra on κ free generators.
3. The interval algebra on the reals.
4. Pκ.
5. The interval algebra on κ.
6. Pω/Fin.
7. The Aleksandroff duplicate of a free algebra.
8. The completion of a free algebra.
9. The countable-cocountable algebra on ω1.
10. A compact Kunen line.
11. The Baumgartner-Komjath algebra.
12. The Rubin algebra.

We do not have to consider all of our 21 functions for each of them, since usually
the determination of some key functions says what the rest are; see the diagrams.

1. The finite-cofinite algebra on κ.

1. cA = κ.
2. tA = ω. See the beginning of Chapter 12.
3. |UltA| = κ.
4. |AutA| = 2κ.

2. The free BA on κ free generators.

1. LengthA = cA = ω. See Handbook, Part I, Corollaries 9.17 and 9.18.
2. dA = the smallest cardinal λ such that κ ≤ 2λ; see Corollary 5.7.
3. πχA = κ: see Theorem 11.6.
4. IndA = κ.
5. |UltA| = 2κ.
6. |AutA| = 2κ.

3. The interval algebra on the reals.

1. πA = ω.
2. IncA = 2ω. For example, {[r, r + 1) : r ∈ R} is incomparable.
3. |EndA| = 2ω; Corollary 21.3.
4. |AutA| = 2ω; this is clear by the above, since it is easy to exhibit 2ω automor-
phisms.
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4. Pκ.

1. cA = κ.
2. πA = κ.
3. πχA = κ. An easy argument gives this.
4. LengthA = Dedκ. See Chapter 7.
5. |UltA| = 22κ

.
6. |AutA| = 2κ.

5. The interval algebra on κ.

1. πχA = κ. See the end of Chapter 11. πχA is attained if κ is regular, otherwise
not.
2. |UltA| = κ. See Theorem 17.10 of Part I of the BA handbook.
3. |AutA| = 2κ. See the end of Chapter 20.

6. Pω/Fin

1. DepthA ≥ ω1. It is consistent that it is ω1 and ¬CH holds. Under MA, it is 2ω.
See the end of Chapter 4.
2. LengthA = 2ω.
3. cA = 2ω.
4. πχA ≥ cf2ω. Con(2ω = ℵω1 + πχA = ω1); see van Mill [84], p. 558.
5. IndA = 2ω.
6. |UltA| = 22ω

.
7. |AutA| can consistently be 2ω or 22ω

; see van Mill [84], p. 537.

7. The Aleksandroff duplicate of a free BA.

We use notation as in Chapter 14. Thus B is a free BA of size κ and DupB is its
Aleksandroff duplicate.
1. c(DupB) = 2κ.
2. χDupB = κ. See Chapter 14.
3. Length(DupB) = ω. In fact, suppose that Y ⊆ DupB, Y a chain, |Y | = ω1.
Define (a,X) ≡ (b, Z) iff (a,X), (b, Z) ∈ Y and a = b. Then since B has no
uncountable chains, there are only countably many ≡-classes. So there is a class,
say K, which has ω1 elements; say that a is the first member of each ordered pair
in K. Then M

def= {X : (a,X) ∈ K} is of size ω1, is a chain under inclusion, and
if X,Z ∈M with X ⊆ Z, then Z\X is finite. Clearly this is impossible.
4. Ind(DupB) = κ.
5. πχDupB = ω. (This corrects a mistake in Monk [90].) For, let H be a non-
principal ultrafilter on UltDupB. By the description of ultrafilters on DupB in
Chapter 14, there is an ultrafilter G on B such that

H = {(a,X) : a ∈ G, X ⊆ UltB, Sa�X is finite}.

Let 〈xα : α < κ〉 be the system of free generators of B (without repetitions).
Choose ε ∈ κ2 such that xεα

α ∈ G for all α < κ. For each n < ω let Fn be an
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ultrafilter on B such that xεα
α ∈ Fn for all α �= n and x1−εn

n ∈ Fn. We claim that
{(0, {Fn}) : n < ω} is dense in H. For, let y ∈ H. Without loss of generality y has
the form

(xεα1
α1
· . . . · xεαm

αm
,X), S(xεα1

α1
· . . . · xεαm

αm
)�X finite.

Choose n < ω so that n �= α1, . . . , αm and Fn /∈ S(xεα1
α1
· . . . · xεαm

αm
)�X). Since

Fn ∈ S(xεα1
α1
· . . . · xεαm

αm
), it follows that Fn ∈ X, as desired.

6. |Ult(Dup(B))| = 2κ. See the description of ultrafilters in Chapter 14.
7. |Id(Dup(B))| = 22κ

.
8. In an email message of January 1992, Sabine Koppelberg shows that Aut(DupA)
has exactly 2κ elements, answering Problem 64 in Monk [90]. She also showed that
|End(DupA)| = 22κ

. We give her proofs here.
(a) For any BA A, let

Dup′A = 〈S[A] ∪ {{F} : F ∈ UltA〉PUltA.

For A atomless, Dup A is isomorphic to Dup′A; an isomorphism is given by
f(a,X) = X for all (a,X) ∈ DupA, as is easily checked.
(b) Any automorphism of A induces an automorphism of DupA. Namely, if f is
an automorphism of A, define f+(a,X) = (fa, {f [F ] : F ∈ X}); it is easy to check
that f+ is an automorphism of DupA. Clearly f+ �= g+ for distinct f, g.
(c) In Dup′A, {F} =

⋂
a∈F Sa. Hence if f and g are automorphisms of Dup′A and

f � S[A] = g � S[A], then f = g.
(d) From (a)–(c) it follows that |Aut(DupA)| = 2κ for A free on κ free generators.
(e) Suppose that A is atomless. Let f be a homomorphism from S[A] into Dup′A
and g a homomorphism from Finco (UltA) into Dup′A. Then f ∪ g extends to an
endomorphism of Dup′A iff the following condition holds:

(*) If a ∈ A, M is a finite subset of UltA, and M ⊆ Sa, then gM ⊆ f(Sa).

In fact,⇒ is obvious. For⇐, to apply Sikorski’s criterion suppose that Sa∩N = 0,
where a ∈ A and N ∈ Finco (UltA). If N is cofinite, then Sa is finite, hence a = 0,
so fSa ∩ gN = 0. If N is finite, then fSa ∩ gN = 0 by (*).
(f) Suppose that π is a one-one mapping of UltA into UltA. Then we can define
an endomorphism π+ of Finco (UltA) by setting π+F = {πF : F ∈ F} for F
a finite subset of UltA, and π+F = UltA\π+(UltA\F ) for F a cofinite subset
of UltA. Then for f a homomorphism from S[A] into Dup′A the criterion (*) for
f ∪ π+ to extend to an endomorphism of Dup′A becomes

(**) If a ∈ A and F ∈ Sa, then πF ∈ f(Sa).

(g) Now suppose that A is free on κ free generators. We show that DupA has
22κ

endomorphisms. Now A is isomorphic to A ⊕ A; let h be an isomorphism
of A ⊕ A onto A. Let k be the embedding of A onto the first factor of A ⊕ A,
and l the embedding onto the second factor. Set f = h ◦ k. Thus f is a one-one
endomorphism of A, so the dual mapping f−1 from UltA to UltA is onto. Now
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(�) For each G ∈ UltA, the set {F : f−1[F ] = G} has at least two elements.

In fact, we claim that for any non-zero element b of A the set f [G]∪{hlb} has the
finite intersection property. If not, there is an element a ∈ G such that fa ·hlb = 0;
since f = h ◦ k, it follows that ka · lb = 0, contradiction. This claim being true, if
we take b ∈ A\{0, 1}, we can get ultrafilters F,F ′ in A such that f [G]∪{hlb} ⊆ F
and f [G]∪ {hl(−b)} ⊆ F ′. Then F �= F ′ and f−1[F ] = G = f−1[F ′], as desired in
(�).

Now take a function π from UltA into UltA such that πG ∈ {F : f−1[F ] = G}
for all G ∈ UltA. Let f ′[Sa] = S(fa) for all a ∈ A. Then f ′ is a homomorphism
from S[A] into Dup′A. If G ∈ Sa, then πG ∈ {F : f−1[F ] = G}, so f−1[πG] = G,
a ∈ f−1[πG], fa ∈ πG, and πG ∈ S(fa) = f ′[Sa]. This means that (**) holds for
π and f ′, and so f ′ ∪π+ extends to an endomorphism of Dup′A. Clearly π+ �= σ+

for distinct π, σ, so we have exhibited 22κ

endomorphisms of Dup′A, as desired.

8. The completion of a free algebra.

Let B be a free algebra of size κ, A its completion.
1. cA = ω.
2. LengthA = 2ω. In fact, ≥ is clear. Suppose that L is a chain of size (2ω)+.
Using a well-ordering of L and the partition relation (2ω)+ → (ω1)2ω, we get an
uncountable well-ordered chain in A, contradiction.
3. dA is the least cardinal λ such that κ ≤ 2λ. For, this is true for B itself by
Chapter 5, and an application of Sikorski’s extension theorem shows that it is true
of A.
4. πχA = κ. For, ≤ is clear. Suppose that F is an ultrafilter on A and D is a
π-base for F . Without loss of generality D ⊆ B. Then D is dense in F ∩ B, so
|D| ≥ κ.
5. πA = κ by the same argument.
6. |A| = κω.
7. |UltA| = 2κω

.
8. |AutA| = 2κ. In fact, any automorphism of A is uniquely determined by its
restriction to B, and there are only 2κ mappings of B into A. On the other hand,
there are at least 2κ automorphisms of A.

9. The countable-cocountable algebra on ω1.

1. DepthA = ω1, by an easy argument.
2. LengthA = 2ω.
3. πA = ω1.
4. IndA = 2ω.
5. πχA = ω1: let F be the ultrafilter of cocountable sets. Suppose that D is dense
in F , with |D| ≤ ω. Without loss of generality the members of D are singletons.
But then ω1\

⋃
D ∈ F , contradiction.

6. |A| = 2ω.
7. |UltA| = 22ω

.
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8. |AutA| = 2ω1 .

10. A compact Kunen line.

Recall that this Boolean algebra was constructed using CH.
1. IrrA = ω. See Chapter 8.
2. χA = ω1. This was proved in the discussion following Theorem 14.3.
3. |A| = |UltA| = ω1. Clear from the construction.
4. |EndA| = ω1 by 3 and Theorem 21.1.
5. Although we have not been able to determine IncA, the algebra A × A has
incomparability ω1, and still has the other important properties of A: |A × A| =
|Ult(A×A)| = ω1, χ(A×A) = ω1, and Irr(A×A) = ω. The set {(a,−a) : a ∈ A} is
incomparable, showing that Inc(A×A) = ω1. Obviously |A×A| = |Ult(A×A)| =
ω1 and χ(A × A) = ω1. To see that Irr(A × A) = ω, note from the Handbook
volume 1, example 11.6, that (A × A) ⊕ (A × A) ∼= (A ⊕ A)4, and then apply
Heindorf’s theorem in Chapter 8.

Problem 96. Determine IncA, |AutA|, |IdA|, and |SubA| for the compact Kunen
line of Chapter 8.

This is part of problem 65 in the Monk [90].

11. The Baumgartner, Komjath algebra.

Recall that this BA was constructed using ♦. See Chapter 17.
1. IncA = ω.
2. LengthA = ω.
3. χA = ω1.
4. |UltA| = ω1. To see this, first note that each ultrafilter on A is determined
by the membership of the elements xα or their complements. Hence this equality
follows from the following fact:

(*) If F and G are ultrafilters on A, xα ∈ F ∩G, and F ∩Aα+1 = G∩Aα+1, then
F = G.

In fact, suppose that β ∈ (α, ω1). If xβ ∈ F , then xα∩xβ ∈ F ; but by construction
xα ∩ xβ ∈ Aα+1, so xα ∩ xβ ∈ G and so xβ ∈ G. The same argument works if
ω\xβ ∈ F , so F ⊆ G and hence F = G.
5. |EndA| = ω1 by 4 and Theorem 21.1.
6. Since A has a nonzero element a such that A � a is countable, A � a has ω1

automorphisms, and so the same is true of A itself.

Problem 97. Determine IrrA, |IdA|, and |SubA| for the Baumgartner, Komjath
algebra.

This is part of problem 66 in Monk [90].

12. The Rubin algebra.

This algebra was also constructed using ♦.
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1. h-cofA = ω; see Chapter 18.
2. IrrA = ω; see Rubin [83].
3. |A| = ω1. This is clear from the construction in Chapter 18.
4. |SubA| = ω1. See Chapter 23.

We do not know about |AutA|, although the construction can be changed to make
A rigid; see Shelah [91] for more details.

Table of examples

Example Depth πχ c Length Ind d t π χ s Irr

Fincoκ ω ω κ ω ω κ ω κ κ κ κ

Frκ ω κ ω ω κ (1) κ κ κ κ κ

IntalgR ω ω ω 2ω ω ω ω ω ω ω 2ω

Pκ κ κ κ Dedκ 2κ κ 2κ κ 2κ 2κ 2κ

Intalgκ κ κ κ κ ω κ κ κ κ κ κ

Pω/fin (2) (3) 2ω 2ω 2ω 2ω 2ω 2ω 2ω 2ω 2ω

Dup ω ω 2κ ω κ 2κ κ 2κ κ 2κ 2κ

Frκ ω κ ω 2ω κω (1) κω κ κω κω κω

Cblcoω1 ω1 ω1 ω1 2ω 2ω ω1 2ω ω1 2ω 2ω 2ω

CKL ω ω ω ω ω ω ω ω ω1 ω ω

BK ω ω ω ω ω ω ω ω ω1 ω ?

Rubin ω ω ω ω ω ω ω ω ω ω ω

Notes:
Dup is the Aleksandroff duplicate of the free BA of size κ.
CKL is the compact Kunen line constructed in chapter 8.
BK is the Baumgartner, Komjath algebra constructed in chapter 17.
Rubin is the algebra constructed in chapter 18.

(1) The least λ such that κ ≤ 2λ.
(2) The depth is ≥ ω1; various possibilities are consistent.
(3) ≥ cf2ω.

(Table continued on the next page)
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Example hL hd Inc h-cof Card |Ult| |Aut| |Id| |End| |Sub|

Fincoκ κ κ κ κ κ κ 2κ 2κ 2κ 2κ

Frκ κ κ κ κ κ 2κ 2κ 2κ 2κ 2κ

IntalgR ω ω 2ω 2ω 2ω 2ω 2ω 2ω 2ω 22ω

Pκ 2κ 2κ 2κ 2κ 2κ 22κ

2κ 22κ

22κ

22κ

Intalgκ κ κ κ κ κ κ 2κ 2κ 2κ 2κ

Pω/fin 2ω 2ω 2ω 2ω 2ω 22ω

(1) 22ω

22ω

22ω

Dup 2κ 2κ 2κ 2κ 2κ 2κ 2κ 22κ

22κ

22κ

Frκ κω κω κω κω κω 2κω

2κ 2κω

2κω

2κω

Cblcoω1 2ω 2ω 2ω 2ω 2ω 22ω

2ω1 22ω

22ω

22ω

CKL ω1 ω ? ω1 ω1 ω1 ? ? ω1 ?

BK ω1 ω ω ω1 ω1 ω1 ω1 ? ω1 ?

Rubin ω ω ω ω ω1 ω1 ? ω1 ω1 ω1

Notes:
Dup is the Aleksandroff duplicate of the free BA of size κ.
CKL is the compact Kunen line constructed in chapter 8.
BK is the Baumgartner, Komjath algebra constructed in chapter 17.
Rubin is the algebra constructed in chapter 18.

(1) Consistently 2ω or 22ω

.
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Index of problems
Problem 1. Is it true that for every singular cardinal κ there exist BAs A and B
such that cA = κ, cfκ ≤ cB < κ, and c(A⊕B) > κ? Page 46.

Problem 2. Is it consistent that there is a an infinite set I, a system 〈Ai : i ∈ I〉 of
infinite BAs, and an ultrafilter F on I such that c

(∏
i∈I Ai/F

)
<

∣∣∏
i∈I cAi/F

∣∣?
Page 62.

Problem 3. Give a purely cardinal number characterization of cSr. Page 75.

Problem 4. Is there a BA A with cSrA = {(ω, ω), (ω, ω1), (ω1, ω1), (ω, ω2),
(ω2, ω2)}? Equivalently, is there a BA A such that |A| = ω2 = cA, A has a ccc
subalgebra of power ω2, and every subalgebra of A of size ω2 either has cellularity
ω or ω2? Page 77.

Problem 5. Can one construct in ZFC BAs with cSr equal to the following rela-
tions?

(i) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2)}.
(ii) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. Page 77.

Problem 6. Describe in cardinal number terms the relation cHr. Page 79.

Problem 7. Can one prove in ZFC that BAs with the following relations cHr

exist?
(i) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2)}.
(ii) {(ω, ω), (ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)}. Page 79.

Problem 8. Is it consistent that BAs with the following relations cHr exist?
(i) {(ω, ω1), (ω1, ω1), (ω2, ω2)}.
(ii) {(ω, ω1), (ω1, ω1), (ω1, ω2)}.
(iii) {(ω, ω1), (ω1, ω1), (ω1, ω2), (ω2, ω2)}.
(iv) {(ω, ω1), (ω1, ω1), (ω, ω2), (ω2, ω2)}. Page 79.

Problem 9. Describe cellularity for pseudo-tree algebras. Page 85.

Problem 10. Is it true that for every infinite BA A there is a cardinal κ such
that if B and C are extensions of A with depth at least κ then Depth(B ⊕A C) =
max(DepthB,DepthC)? Page 90.

Problem 11. Is it true that for every infinite BA A there exist extensions B and
C of A and an infinite cardinal κ such that B and C have no chains of order type
κ but B ⊕A C does? Page 90.

Problem 12. Is an example with Depth
(∏

i∈I Ai/F
)

>
∣∣∏

i∈I DepthAi/F
∣∣ pos-

sible in ZFC? Page 92.

Problem 13. Is tB ∈ DepthHsB for every infinite BA B? Page 102.

Problem 14. Are there an infinite cardinal κ and a BA A such that (κ, (2κ)+) ∈
DepthSrA, while (ω, (2κ)+) /∈ DepthSrA? Page 102.
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Problem 15. Characterize the relation DepthSr. Page 102.

Problem 16. Are there an infinite cardinal κ and a BA A such that (κ, (2κ)+) ∈
DepthHrA, while (ω, (2κ)+) /∈ DepthHrA? Page 103.

Problem 17. Characterize the relation DepthHr. Page 103.

Problem 18. Is it true that [ω,hdA) ⊆ dHsA for every infinite BA A? Page 112.

Problem 19. Completely describe dHs. Page 112.

Problem 20. Can one find in ZFC a BA A such that πS+A is not attained? Page
122.

Problem 21. Is it true that for every infinite BA A we have

πHsA =
{

[ω,hdA], if hdA is attained,
[ω,hdA), otherwise?

Page 123.
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Problem 86. Is the Todorčević algebra of Chapter 8 a semigroup algebra? Page
267.

Problem 87. Is there a semigroup algebra A such that IrrA < |A|? Page 267.

Problem 88. Is the Baumgartner-Komjath algebra a semigroup algebra? Page
267.

Problem 89. Is there a semigroup algebra A such that IncA < h-cofA? Page 267.



292 Problems

Problem 90. Is there a semigroup algebra A such that IncA < IrrA? Page 267.

Problem 91. Is there a semigroup algebra A such that IrrA < χA? Page 267.

Problem 92. Is there a semigroup algebra A such that |AutA| < πχA? Page 268.

Problem 93. Is there a semigroup algebra A such that |AutA| < IndA? Page 268.

Problem 94. Is there a semigroup algebra A such that |IdA| < |AutA|? Page 268.

Problem 95. Is there a semigroup algebra A such that |EndA| < |IdA|? Page 268.

Problem 96. Determine IncA, |AutA|, |IdA|, and |SubA| for the compact Kunen
line of Chapter 8. Page 275.

Problem 97. Determine IrrA, |IdA|, and |SubA| for the Baumgartner, Komjath
algebra. Page 275.



Index of symbols

cA, 1
χA, 2
DepthA, 2
πA, 2
πχA, 2
sA, 2
tA, 2
LX, 2
AutA, 3
EndA, 3
h-cofA, 3
hdA, 3
hLA, 3
IdA, 3
IncA, 3
SubA, 3
UltA, 3
LX, 2
k′A, 5
kH+A, 6
kh+A, 6
kmmA, 6
kS+A, 6
kS−A, 6
linfA, 6
lsupA, 6
dkS+A, 6
dkS−A, 6
kH−A, 6
kh−A, 6
kHsA, 6
kSsA, 6
kHrA, 7
kSrA, 7
IndnA, 8
[[f = g]], 9
GsS , 9
A[B], 12
A[B]∗, 12∏B

i∈I Ai, 16

DupA, 18
IA
at, 19

ExpX, 19
V (U1, . . . , Um), 19
ExpA, 20
M ↓ p, 25
M ↑ p, 25
A(x), 31
SmpA

x , 31
A ≤m B, 33
A ≤mg B, 35
len(B : A), 35
lenB, 35
InitT , 41
a <∗ b, 48
a =∗ b, 48
a ≤∗ b, 48
a �∗ b, 48
�α, 48
ρ(a, b), 48
PIA, 48
ess.sup, 56
(T), 59
Tm, 59
cH+, 64
ch+, 65
cmm, 65
cHs, 67
cSr, 75
cHr, 77
p ≤n q, 93
DepthH+, 100
Depthh+, 101
dDepthS−, 101
DepthHs, 102
DepthSr, 102
tow A, 102
DepthHr, 103
Pω/fin, 104
dH+, 111



294 Index of symbols

dh+, 111
dHs, 112
dSs, 112
dnA, 113
πH+, 119
πh+, 119
πS+, 121
πHs, 123
πSs, 122
Dedκ, 126
LengthH+, 128
Lengthh+, 132
LengthH−, 132
Lengthh−, 132
Irrmn, 144
Cardh+, 145
CardH−, 145
CardHs, 145
Freecal, 152
πχH+, 157
πχh+, 157
πχS+, 158
πχinf , 159
dπχS−, 159
wd, 159
hwd, 161
tH−, 171
dtS−, 171
tmn, 172
tm, 173
ddA, 178
sH−, 178
dsS−, 178
f ′A, 178

smA, 180
χinf , 184
χS+, 184
χH−, 184
χnpinf , 185
a, 185
hLm, 195
hdm, 217
h-cof, 226
nwdc, 227
pta, 245
ta, 245
cf, 246
dj, 246
icp, 246
ic, 246
m, 246
oi, 246
pa, 246
sa, 246
spa, 246
tla, 246
{Fincoω}-dim, 247
{IntalgR}-dim, 247
dj-dim, 247
finco-dim, 247
free-dim, 247
ic-dim, 247
int-dim, 247
mg-dim, 247
ptree-dim, 247
sa-dim, 247
sg-dim, 247
tree-dim, 247



Index of names and words

Aleksandroff duplicate, 5, 18, 26, 63,
99, 146, 183, 186, 194, 250f, 262,
265, 271f, 276f

algebraic density, 2
altitude, 185
amalgamated free products, 5, 53f,

88
Argyros, S. 46
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Szentmiklóssy, Z., 281
tail algebra, 8, 40f, 246
Takahashi, M., 15, 285
Tarski, A., 45f, 77, 219
Taylor, A., 84, 279
Tennenbaum, S., 84, 285
tightness, ix, 2, 98ff, 111, 128, 158,

164ff, 245, 258, 262, 280, 282, 289
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Todorčević walks, 59
topological density, ix, 2, 107ff, 119
tower, 102
tree algebra, 8, 25, 28ff, 47, 64, 84f,

115, 124, 132, 144, 153, 162, 173,
188, 192, 195, 238, 245, 247, 254ff,
268, 287, 291

Tsarpalias, A., 46
ultra-sup function, 4, 57, 58, 127,

133f, 150, 176, 221
ultraproducts, 3ff, 55ff, 90ff, 108f,

113, 116ff, 127, 133, 145, 148ff,
155f, 167f, 176, 183, 192, 197, 226,
232, 235, 281ff

unbounded Boolean power, 11
union of BAs, 3, 5, 54, 110, 111, 118f
V=L, 68, 75ff, 118, 168, 175f, 183,

192, 197, 221, 226
Wagon, S., 84, 279
weak products, 36, 45, 88, 98, 108f,

116, 126, 147, 154, 164, 191, 232
weakly dense, 126, 159, 161
Weese, M., 15, 281, 285
wlog, without loss of generality


	Cover
	Cardinal Invariants on Boolean Algebras
	Copyright - ISBN: 3034603339
	Foreword
	Table of contents
	0. Introduction
	Definition of the cardinal functions considered.
	Some classifications of cardinal functions
	Algebraic properties of a single function.
	Derived operations.
	Comparing two functions
	Other considerations
	Special classes of Boolean algebras

	1. Special operations on Boolean algebras
	Sheaves
	Boolean products
	Boolean powers
	Set products
	One-point gluing
	The Aleksandroff duplicate
	The exponential

	2. Special classes of Boolean algebras
	Semigroup algebras
	Pseudo-tree algebras
	Simple extensions of Boolean algebras
	Minimal extensions of Boolean algebras
	Minimally generated Boolean algebras
	Tail algebras
	Initial chain algebras

	3. Cellularity
	4. Depth
	5. Topological density
	6. π-weight
	7. Length
	8. Irredundance
	9. Cardinality
	10. Independence
	11. π-Character
	12. Tightness
	13. Spread
	14. Character
	15. Hereditary Lindelöf degree
	16. Hereditary density
	17. Incomparability
	18. Hereditary cofinality
	19. Number of ultrafilters
	20. Number of automorphisms
	21. Number of endomorphisms
	22. Number of ideals
	23. Number of subalgebras
	24. Other cardinal functions
	Functions mentioned in the previous text
	Some additional natural functions
	Dimensions of Boolean algebras

	25. Diagrams
	General case
	The main diagram, edges and “large” and “small” indications.
	The main diagram: no other relationships.
	The interval algebra diagram: the edges, indicated equalities, and the“large” and “small” indications. See below.

	Interval algebras
	The interval algebra diagram: no other relationships.
	The tree algebra diagram: the indicated equalities and inequalities, and the “large” and “small” indications. See below.

	Tree algebras
	The tree algebra diagram: no other relationships.
	The complete BA diagram: the indicated equalities and inequalities and the “large” and “small” indications. See below.

	Complete BAs
	The complete BA diagram: no other relations.
	Diagram for superatomic BAs: the indicated relations, and the “large” and “small” indications. See below.

	Superatomic BAs
	Superatomic BAs, no additional relationships:

	Atomic BAs
	Atomic diagram, edges and “large” and “small” indications.
	Atomic diagram, no other relations
	Atomless algebras.
	Semigroup algebras.
	Pseudo-tree algebras.
	Minimally generated BAs.

	Pseudo-tree algebras
	Minimally generated BAs

	26. Examples
	1. The finite-cofinite algebra on κ.
	2. The free BA on κ free generators.
	3. The interval algebra on the reals.
	4. Pκ.
	5. The interval algebra on κ.
	7. The Aleksandroff duplicate of a free BA.

	References
	Index of problems
	Index of symbols
	Index of names and words


 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
    
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




