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Abstract

Unipotent Hecke algebras

The Iwahori-Hecke algebra and Gelfand-Graev Hecke algehaae been critical
in developing the representation theory of finite groupsitidnplications in algebraic
combinatorics. This thesis lays the foundations for a thebunipotent Hecke algebras,
a family of Hecke algebras that includes both the classiedla@d-Graev Hecke alge-
bra and a generalization of the Iwahori-Hecke algebra (thleoMuma Hecke algebra).
In particular, this includes a combinatorial analysis @ittstructure and representation
theory. My main results are (a) a braid-like multiplicatmigorithm for a natural basis;
(b) a canonical commutative subalgebra that may be useddahivspace decompo-
sitions of irreducible modules. When the underlying grosiphie general linear group
GL,(F,) over afinite field?, with g elements, | also supply (c) an explicit construction of
the natural basis; (d) a generalization of a Robinson-StkdrKnuth correspondence
(a bijective proof of representation theoretic identi{jend (e) an explicit construc-
tion of the irreducible Yokonuma algebra modules using then irreducible module
structure of the Iwahori-Hecke algebra.
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Chapter 1

Introduction

Combinatorial representation theory takes abstract agebtructures and attempts to
give explicit tools for working with them. While the centrguestions may take an
abstract form, the answers from this perspective use knammbmatorial objects in
computations and constructive descriptions. This thesssnénes a family of Hecke
algebras, giving algorithms that elucidate some of thectiiral and representation the-
oretic results classically developed from an algebraicgeaimetric point of view. Thus,
a classical description of a natural basis becomes an ainstruction of this basis, and
an dficient algorithm for computing products in this basis repka classical formula.

A large body of literature in combinatorial representatibeory is dedicated to the
study of the symmetric grou$,, giving rise to a wealth of combinatorial ideas. Some
of these ideas have been generalized to Weyl groups, a lelags of groups whose
structure is essential in the study of Lie groups and Lielaige Even more generally,
the lwahori-Hecke algebra gives a “quantum” version of treyMgroup situation.

lwahori [lwa64] and Iwahori-Matsumoto [IM65] introducelde Iwahori-Hecke al-
gebra as a first step in classifying the irreducible reprigiems of finite Chevalley
groups and reductivp-adic Lie groups. Subsequent work (e.g. [CS99] [KL79] [L}B3
has established Hecke algebras as fundamental tools iephesentation theory of Lie
groups and Lie algebras, and advances on subfactors anduquanoups by Jones
[Jon83], Jimbo [Jim86], and Drinfeld [Dri87] gave Heckeelhgas a central role in knot
theory [Jon87], statistical mechanics [Jon89], matheraaphysics, and operator alge-
bras.

Unipotent Hecke algebras are a family of algebras that gdéimerthe Iwahori-Hecke
algebra. Another classical example of a unipotent Heckebalyis the Gelfand-Graev
Hecke algebra, which has connections with unipotent oflitav75], Kloosterman
sums [CS99], and in the-adic case, Hecke operators (see [Bum98, 4.6,4.8]). Inter-
polating between these two classical examples will be foreddal to my analysis.

There are three ingredients in the construction of a Hecgebah: a groups, a
subgroupJ and a charactey : U — C. The Hecke algebra associated with the triple
(G, U, y) is the centralizer algebra

H(G, U, x) = Ends(Indj (x))-

It has a natural basis indexed by a subd$gbf U-double coset representativesGn



A unipotent Hecke algebra is
H, = H(G, U, y,) = Endis(Ind5 (¥,)),

whereU is a maximal unipotent subgroup of a finite Chevall@ysuch asGL,(Fy)),
andy, is an arbitrary linear character. In this context, the dctadsilgebras are

the Yokonuma Hecke algebra [Yok69b{— v, trivial,
the Gelfand-Graev Hecke algebra [GG62}— , in general position.

After reviewing some of the underlying mathematics in Ceaf@, Chapter 3 ana-
lyzes unipotent Hecke algebras of general type. The mairitsegre

(a) ageneralization to unipotent Hecke algebras of thellwaculus used in Iwahori-
Hecke algebra multiplication. | use two approaches: the dikes “local” rela-
tions similar to braid relations, and the second gives a rghmeal algorithm for
computing products. In particular, this provides anottwutson to the dificult
problem of multiplication in the Gelfand-Graev Hecke algef{see [Cur88] for a
geometric approach to this problem).

(b) the construction of a large commutative subalgefyren H,,, which may be used
as a Cartan subalgebra to analyze the representatioHs wf weight space de-
compositions;

Chapters 4, 5 and part of 6 consider the case WhenGL,(F,), the general linear
group over a finite field witlg elements. These chapters can all be read independently
of Chapter 3, and | would recommend that readers unfamilidr @hevalley groups
begin with Chapter 4.

Chapter 4 describes the structure of the unipotent Heclebedg whets = GLy(Fy);
in this case, unipotent Hecke algebras are indexed by catigwsu of n. The main
results are

(c) an explicit basis. Suppoge, corresponds to the compositipnandN, indexes
the basis ofH,. There is an explicit bijection fronN, to the set of polynomial
matrices oveffy with row-degree sums and column-degree sums equalsee
Chapter 4 for details). In particular, this gives an explaonstruction of the
matrices inN, .

(d) a pictorial approach to multiplying the natural basieneénts, inspired by (a)
above.

Chapter 5 proceeds to develop the representation theornjpdient Hecke algebras
in the casezG = GL,(F). This chapter relies heavily on a decomposition of‘jl(ﬂ)
given by Zelevinsky in [Zel81]. The main results are



(e) ageneralization of the RSK correspondence which pes@dcombinatorial proof
of the identity
dim(H,) = dim(V)?;
g Irr;;ible
Hy-modulesv
(f) a computation of the weight space decomposition of-famodule with respect
to a commutative subalgebs, (see (b) above).

Chapter 6 concludes by studying the representation thefoyglamnuma Hecke al-
gebras (the special case whggnis trivial). The main results are

(g) areductionin general type from the study of irreduchMid&onuma Hecke algebra
modules to the study of irreducible modules for a family afty&lgebras;

(h) an explicit construction of the irreducible modules loé tYokonuma algebra in
the case&s = GL,(Fy).



Chapter 2

Preliminaries

2.1 Hecke algebras

This section gives some of the main representation thearesults used in this thesis,
and defines Hecke algebras. Three roughly equivalent stegcare commonly used to
describe the representation theory of an algdébra

(1) Modules. Modules are vector spaces on whiglacts by linear transformations.

(2) Representations.Every choice of basis in amdimensional vector space on which
A acts gives a representation, or an algebra homomorphismAro the algebra
of n x n matrices.

(3) Characters. The trace of a matrix is the sum of its diagonal entries. A abtar is
the composition of the algebra homomorphism of (2) with the¢ map.

The following discussion will focus on modules and charecte

2.1.1 Modules and characters

Let A be a finite dimensional algebra over the complex numBesn A-module Vs a
finite dimensional vector space ov@mwith a map

AxV — V
av) - av
such that
(cl)v=rcyv, ceC,
(ab)v = a(bv), abeAvey,
(a+ b)(civi + CoW) = ciavs + Cavs + Cibvy + Cobws, C1,Cr € C.

An A-moduleV is irreducibleif it contains no nontrivial, proper subspac¢ésuch that
av e V' forallae Aandv € V',
An A-module homomorphistn: V — V’ is aC-linear transformation such that

ad(v) = 6(av), forae AveV,



and anA-module isomorphisiis a bijectiveA-module homomorphism. Write

Homa(V, V') = {A-module homomorphisnig — V’}
Enda(V) = Homa(V, V).

Let A be an indexing set for the irreducible modulestofup to isomorphism), and
fix a set

{A"}ea
of isomorphism class representatives. An algebrasemisimpleaf every A-moduleV
decomposes

V = @ m,(V)A”, where m,(V) €Zs, MMV)A =As - -oA.

VEA m, (V) terms
In this thesis, all algebras (though not necessarily alldlggeebras) are semisimple.

Lemma 2.1 (Schur's Lemma). Suppose, u € A with corresponding irreducible mod-
ules XA and A'. Then

| 1, ify =4
dim(Homa (A7, A)) = 0,, = { 0 otKer\fvlise

SupposeA C Bis a subalgebra dB and letV be anA-module. TherB®, V is the
vector space ovet presented by generatdts® v | b € B,v € V} with relations

ba®v=bgay, aeAbeB,veyV,
(b1+b2)®(V1+V2) = b1®V1+b1®V2+b2®V1+b2®V2, bl,bge B,Vl,Vg eV.

Note that the map
Bx(B®sV) — B®sV
(,bev) +— (bbyov

makesB ®, V a B-module. Definenductionandrestriction (respectively) as the maps

IndS : {A-module$ — {B-modules

V (g B®AV
Res : {B-module$ — {A-modules
V > V ’

SupposeV is anA-module. Every choice of bas{s;, v,, ..., Vy} of V gives rise to
an algebra homomorphism

o A— M (O), whereM,(C) = {n x n matrices with entries i}.



Thecharacteryy : A — C associated t¥ is

xv(a) = tr(o(a)).

The characteyy is independent of the choice of basis, an¥i& V' are isomorphic
A-modules, theryy = yv.. A charactely, isirreducibleif V is irreducible. Thalegree
of a characteyy is yv(1) = dim(V), and ify(1) = 1, then a character Isear; note that
linear characters are both irreducible characters andbedemomorphisms.
Define
R[A] = C-sparfy” | y€ A},  wherey” = ya.

with aC-bilinear inner product given by
X = B (2.1)
Note that the semisimplicity ok implies that any character is contained in the subspace
Zoo-spary” | y € Al
If yv is a character of a subalgebkaof B, then let
Ind(xv) = xBeav
and if yy. is a character oB, then Re&(yy/) is the restriction of the map,. to A,

Proposition 2.2 (Frobenius Reciprocity).Let A be a subalgebra of B. Supposes a
character of A ang/’ is a character of B. Then

(Ind3(x), x> = (v, ReS(x')).

2.1.2 Weight space decompositions
SupposeA is a commutative algebra. Then
dim(A) = 1, forall y € A.

The corresponding charactgt : A — C is an algebra homomorphism, and we may
identify the labely with the charactey?, so that

av=y’(av =y(ay, forae A, ve A,
If Aisacommutative subalgebraBfandV is anB-module, then as A-module

V:@V, whereV, = {veV | av=y(a)v, ac A}.
yeA
The subspac¥, is they-weight spacef V, and ifV, # 0 thenV has a weighy.

For large subalgebra such a decomposition can help construct the moduleor
example,



1. If 0 # v, € V,, then{v,}v .o is a linearly independent set of vectors. In particular,
if dim(V,) = 1 for all v, # 0, then{v, } is a basis folv.

2. If Visirreducible, theBV, = V. Chapter 6 uses this idea to construct irreducible

modules of the Yokonuma algebra.

2.1.3 Characters in a group algebra
Let G be a finite group. Thgroup algebraCG is the algebra

CG = C-spang € G}

with basisG and multiplication determined by the group multiplicationG. A G-
module Vis a vector space oveér with a map

GxV — V
(9.v) = gv

such that
(gg)v=g9g(dVv), g(cv+cV)=cgv+cgv, forc,c e€C,0,0 €G,v,V eV
Note that there is a natural bijection

{CG-module$ «—— {G-module$
V - Vv ’

so | will useG-modules and>G-modules interchangeably. L&tindex the irreducible
CG-modules.
The inner product (2.1) oR[G] has an explicit expression
¢, RG] xRG — C

(X) g Y reEd).

geG
and ifU is a subgroup o6, then induction is given by

IndS(y): G — . C
e TIDIRA L)

xeG
xg)(leU



2.1.4 Hecke algebras

An idempotent & CG is a nonzero element that satisfés= e. Fory € G, let

_x @)

-1
& =" > x@hg ece.

geG
These are theninimal central idempotentsf CG, and they satisfy
1= Z e, €=e¢, e6=0,8, CGe =dm(G)G.
yeG

In particular, as &-module,
CG = (P cGe,

yeG

Let U be a subgroup o& with an irreducibleU-module M. The Hecke algebra
H(G, U, M) is the centralizer algebra

H(G, U, M) = End-(IndS(M)).
If ey € CU is an idempotent such thit = CUey, then

IndS(M) = CG &y CUey = CG ®cy ey = CGey

and the map
Oy :ewCGeay — H(G,U, M) where %91 CCeau—  CGey 2.2)
evgew P Pq kew —  kevgew, '

is an algebra anti-isomorphism (i @&y (ab) = Oy (b)ow(a)).
The following theorem connects the representation theb@yto the representation
theory ofH(G, U, M). Theorem 2.3 and the Corollary are in [CR81, Theorem 11.25]

Theorem 2.3 (Double Centralizer Theorem).Let V be a G-module and let{ =
End-g(V). Then, as a G-module,

V = (5 dim(#H")G"

yeG

if and only if, as ar{-module,

V= @ dim(G")H",

yeG

where{H? | y € G, H” # 0} is the set of irreduciblé4-modules.



Corollary 2.4. Suppose U is a subgroup of G. Let MCUe, be an irreducible U-
module. WriteH = H(G, U, M). Then the map

{G-submodules atGegy} — {H-module$
V = emV

is a bijection that sends G— H" for every irreducible G that is isomorphic to a
submodule ofndS (M) (G — IndS(M)).

2.2 Chevalley Groups

There are two common approaches used to define finite Chegatlaps. One strategy
considers the subgroup of elements in an algebraic groug firder a Frobenius map
(see [Car85]). The approach here, however, begins withra i) of a Lie algebray
and ag-moduleV, and constructs the Chevalley group from a variant of th@egptial
map. This perspective gives an explicit construction ofaleenents, which will prove
useful in the computations that follow (see also [Ste67]).

2.2.1 Lie algebra set-up

A finite dimensional Lie algebrg is a finite dimensional vector space ovemwith a
C-bilinear map
[.]:igxg — g
(XY) = [XY]

such that
(@) [X,X] =0, forall X € g,
(b) IX.IY.Z]] + Y. [Z X]] + [Z [X, Y]] =0, forX, X, Z € .

Note that ifA is any algebra, then the bracket p] = ab— bafor a,b € A gives a Lie
algebra structure té.
A g-module is a vector spadéwith a map

gxV — V
(X,v) > Xv
such that
(@X+ bY)v=aXv+bYy foralla,be C,X,Yeg,veV,
X(av; + bw,) = aXw + bXw, forallaabeC,Xeg,vi,o eV,

[X, Y]V = X(YV) = Y(XV), forall X,Y e g,ve V.
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A Lie algebrag actsdiagonallyonV if there exists a basis, ..., v} of V such that
XV € Cvi, forall Xegandi=1,2,...,r.
The center ofj is
Z(g) ={Xeg | [XY]=0forallY e g}.

Lety € g index the irreduciblgg-modulesg”. A Lie algebrag is reductiveif for every
finite-dimensional modul® on whichZ(g) acts diagonally,

V= @ m,(V)g’, wherem, (V) € Zo.

Y€
If gis reductive, then
g =2(3) ® gs wheregs = [g, g] is semisimple

Let g be a reductive Lie algebra. Bartan subalgebra of g is a subalgebra satisfy-
ing
(a) ¢ = [p*1,b] = 0 for somek > 1 (b is nilpotent),
(b) h={Xeg | [X H] €b,H b} (bhisits own normalizer).

If bs is a Cartan subalgebra @f, thenh = Z(g) @ b5 is a Cartan subalgebra of Let

h* = Home(p, C) and b = Home(bs, C).

As anbhs-module,gs decomposes

gs = hs® @ (gs)m where gs)a =(X€gs | [H’ X] = CY(H)X, H € bs).

O#aehs

The set ofootsof gsisR={a € h* | a # 0, (gs), # 0}. A set ofsimple rootds a subset
{aq, ao, ..., a;} € Rof the roots such that

(@) Q ®c b = Q-spanay, as, ..., a,} with {a, . . ., @/} linearly independent,

(b) Every root3 € R can be written ag = cia; + Cay + -+ + Ca, With either
{C1,...,Co} CZsgOr{Cy,...,C} CZgy.

Every choice of simple roots splits the set of roBt&to positive roots

R+:{ﬂ€R | ﬁ:C]_a’l+C26YQ+"'+Cga’g, CiGZZO}
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andnegative roots
" ={eR | B=Cia1 +Coaz+ -+ Cy, Ci € Zo}.

In fact, R = -R".
Example. Consider the Lie algebrg, = gl,(C) = {2 x 2 matrices with entries i},
and bracket-[-] given by [X, Y] = XY - Y X Write

al, = Z(gl,) @ slp,
whereZ(gl,) = {(§2) | ce C}andsl, = {X € gl, | tr(X) = 0}. Also,
s =1(39) | acClof(29) | ceCl@{(38) | ceC).
Leta € b* = {(§2) | a,b e C}* be the simple root given by (32) = a - b, so that
Rt = {a} andR = {—a}.
2.2.2 From a Chevalley basis ofs to a Chevalley group

For every pair of roota, —a, there exists a Lie algebra isomorphigm: sl, — (g4, 8_4)-
Under this isomorphism, let

xa = ¢a (8 (1)) € (gs)a, Ha = ¢a(g') _01) € Ds, x—a = ¢a 8 8) € (gs)—a-

Note that K,,X_,] = H,. The following classical result can be found in [Hum72,
Theorem 25.2].

Theorem 2.5 (Chevalley Basis)There is a choice of the¢, such that the s€iX,, H,, |
a € R 1<i < ¢}isabasis ofys satisfying

(@) H, is az-linear combination of |, H,,,..., H,,.

(b) Leta,B € R such thaB # +a, and supposet € Z.o are maximal such

B-la,....-a,B,B+a,....B+ra} CR

Then
(1 + 1)Xpep, ifr >1,

[Xer Xs] = { otherwise.

A basis as in Theorem 2.5 is@hevalley basi®f gs (For an analysis of the choices
involved see [Sam69] and [Tit66]).

LetV be a finite dimensional-module such tha¥ has aC-basis{vy, v,, ..., V;} that
satisfies

(a) There exists &-basis{H;, ..., Hy} of h such that
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(1) H[Zi € ZZO'SpaﬁHl, ceey HI’]}I
(2) Hivje Zvjforalli=1,2,...,nandj=1,2,...,r
(3) dimz(Z-spariHy, Ha, . .., Ha}) < dimc(D).

n

X .
(b) n—‘l’vi € Z-spanfvy, Vo, ...,V } forae RneZ,andi=12,...,r

(c) dimz(Z-spanvy, Vo, ..., V;}) < dime(V).

(Condition (a) guarantees th&(g) acts diagonally. 1#Z(g) = 0, then the existence of
such a basis is guaranteed by a theorem of Kostant [Hum72y&ime27.1]).
Let V be a finite dimensionalmodule that satisfies (a)-(c) above. Fbe b, let

(H): (H-1)H=2)---(H - (n+1))

n n!

e EndW).

As a transformation of the basig, v,, ..., V,, the elemenH; = diagh;,h,,...,h) €
End(V) with h; € Z. Lety € C*. Temporarily abandon precision (i.e. allow infinite
sums) to obtain

2= 1)“( ) dla@(Z(y (%), > v =10(%), Z(y 1)( h,)

n>0 n>0 n>0

= diagf™, y™,...,y") € End() (by the binomial theorem)

This computation motivates some of the definitions below.
Let
bz = Z-spariHq, Ho, ..., Hpl (2.3)

The finite fieldF, with g elements has a multiplicative groliy and an additive group
Fy. Let
Vq = Fy-spariva, vy, ..., ). (2.4)

Thefinite reductive Chevalley groupyGc GL(V) is
Gy = (X(a),hu(b) | @« € R H ez, aeFy,beFy),

where

(@)= 25)

n>0

hu(b) = dlag(t)*l(H), b®) . p*™) whereHv, = A;(H)v. (2.6)

Remarks.
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1. If we “allow” infinite sums, then

ha() = 3 (b~ 1)”(':;).

n>0

2. If g = gs, thenGy = (X, (1)).

Example. Suppose (as beforg)= gl, and let

= () ()

be the naturat-module given by matrix multiplication. Thénphas a basis

={(5 8] ravech=comn( 2 2)(3 9}

By direct computation,

xa(t):((l) tl) and h(gg)(t):(tg t?,) forabe?z,

andGy = GLy(F,) (the general linear group).

2.3 Some combinatorics of the symmetric group

This section describes some of the pertinent combinatobjgicts and techniques.

2.3.1 A pictorial version of the symmetric groupS,

Let s € S, be the simple reflection that switchieandi + 1, and fixes everything else.
The groupS, can be presented by generaterss,, .. ., S,-1 and relations

§=1 S5.1S=S:1SS:1, SS =5, forli—j>1

Using two rows ofn vertices and strands between the top and bottom verticesjaye
pictorially describe permutations in the following way.evi

ith vertex

e 1N 1]
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Multiplication in S, corresponds to concatenation of diagrams, so for example,

e [N

Therefore S, is generated by, s, ..., S,_1 with relations

1T I 5 N

2.3.2 Compositions, partitions, and tableaux

A compositionu = (us, uo, ..., i) is a sequence of positive integers. Tieeof u is
lul = pa + po + - - - + pr, thelengthof p is £(u) = r and

e = {1, 2y - - o Har ), WHETEUG = g + o + -+ + 1. (2.7)

If |ul = n, thenu is a composition of rand we writeu = n. View u as a collection of
boxes aligned to the left. If a bokis in theith row andjth column ofu, then thecontent
of xisc(x) =i — . For example, if

1= (2,534)= L],
|

then|u| = 14,¢(u) = 4, u< = (2, 7,10, 14), and the contents of the boxes are

1]2]3]
5 .
-1]0]

NN

ANE

Alternatively, u. coincides with the numbers in the boxes at the end of the rowise
diagram

1]2
3|4]5]6]7]
8[o]1 :
11]12[13]1

A partition v = (vq,vs,...,v,) IS @a composition where; > v, > --- > v, > 0. If
lv| = n, thenv is a partition of nand we writev + n. Let

P = {partitiong and P.=1{vEnhL (2.8)
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Suppose’ € . Theconjugate partition” = (v}, v,, ..., v}) is given by
vi=Cardj | v;>i}.

In terms of diagramsy’ is the collection of boxes obtained by flippimgcross its main
diagonal. For example,

if V= , then v =

Suppose, u are partitions. If; > y; for all 1 <i < €(u), then theskew partitionv/u
is the collection of boxes obtained by removing the boxgsfiom the upper left-hand
corner of the diagram. For example, if

[ [] [T1]

V= and u= , then v/u= |

A horizontal stripv/u is a skew shape such that no column contains more than one box.
Note that ifu = 0, thenv/u is a partition.

A column strict tableau Q of shapégp is a filling of the boxes o¥/u by positive
integers such that

(a) the entries strictly increase along columns,
(b) the entries weakly increase along rows.
Theweight of Qis the composition wt)) = (wWt(Q)1, wt(Q)., . ..) given by
wt(Q); = number ofi in Q.

For example,

Q= T[]z has  wtQ) =(3,1,3,0,1).
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2.3.3 Symmetric functions

The symmetric groufs, acts on the set of variablég;, X, ..., X,} by permuting the
indices. Theaing of symmetric polynomials in the variableg, x,, ..., Xn} IS

An(¥) = {f € Z[X, Xo, ..., %] | W(f) = f,we Sy}
Forr € Z.q, therth elementary symmetric polynomial

e(x:n)= Z Xi, X, -+ %, , where by conventioe (x:n)=0,ifr >n,

1<ii<ip<-<ir<n

and therth power sum symmetric polynomial

Pr(X:n) =X + X+ + X,

For any partitiorv € P, let
&,(x: N) = &,(x: e, (x: n)---e,(x: n)
p,(x:N) = P, (X: NPy, (X1 N)---py,(X:N).
The Schur polynomial corresponding tas
s(x:n) = detl,i.j(x:n)), (2.9)

for which Pieri’s rule gives

S(X:n)sp(x:n)= Z S,(x:n) [Mac951.5.16]. (2.10)

horizontal stripy/v
ly/vi=n

For eacht € C, theHall-Littlewood symmetric functiois

VivV2 V) X|_tx
P,(x:n;t) = Z W[X1X2 xn”l_[ Xi—XjJ)

WyeSpv Vi>Vj

1 vove o TTX X
~ V) Zw[xlxz o Xn 1_[ xi—xjj)’

weSy, i<j

wherey, (t) € C is a constant as in [Mac95, II1.2]; and they satisfy
P,(x:n;0)=s,(x:n), Pam (X : n;t) = ey(X: n).
Fort e C,

An(X) = Z-spane,(X : n)} = Z-sparis,(x : n)} = Z-spanP,(x : n;t)}, (2.11)
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and if we extend cd#cients toQ, then
Q® An(x) = Q-sparip,(x : n)}.
Note that fom > mthere is a map

An(X) — Am(X)
f(X, X0, ..., %) > f(Xe,...,%n,0,...,0)

which sendss,(x : n) — s,(x: M), e(x: n) — e(x: m), etc. Let{Xy, X,...} be an
infinite set of variables. Th8chur function gx) is the infinite sequence

$(X) = (s/(x:1).5(x:2),5(x:3),...),

and one can define elementary symmetric functg(e, power sum symmetric func-
tions p,(x), and Hall-Littlewood symmetric functior8,(x; t), analogously. Theing of
symmetric functions in the variablgs, X, .. .} is

A(X) = Z-spans,(X) | v € P},
and let

Ac(X) = C-spans,(x) | veP}.

2.3.4 RSK correspondence

The classical RSK correspondence provides a combinajwoaf of the identity

1

= X Knu70
]J‘L p——” %}&( )s.(y)  [Knu70]
by constructing for each > 0 a bijection between the matriceks M,(Z.o) and the set
of pairs P(b), Q(b)) of column strict tableaux with the same shape. The bipecis as
follows.

If Pis a column strict tableau anjde Z.q, let P « | be the column strict tableau

given by the following algorithm

(@) Insertj into the the first column o by displacing the smallest numberj. If all
numbers are j, then placg at the bottom of the first column.

(b) Iterate this insertion by inserting the displaced ety the next column.

(c) Stop when the insertion does not displace an entry.
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i 0, e in
ju 2 - n

and jx > jke1 If ik = ikgr. If b € My(Z50), then letb be the two-line array witl;; pairs
i

A two-line array( ) Is a two-rowed array withy < i, < --- <y

J Forb € M/(Zso), suppose

5:( iz e )
Ju ' J2 = n
Then the pairP(b), Q(b)) is the final pair in the sequence
(@, 0) = (Po, Qo), (P1, Q). (P2, Q2), . ..., (Pn, Qn) = (P(b), Q(b)),

where Py, Q) is a pair of column strict tableaux with the same shape gbyen

Qx is defined by shQy) = shPy) with

Pe=Pere e and o e new box sHDl)/shQcy).
For example,
110
b= 0 0 2 corresponds to b= 11223
010 213 32

and provides the sequence

0.0. @D .. (PR, FEEE). CEEEER)

so that

(PO, Q) = (41551 ).
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Chapter 3

Unipotent Hecke algebras

3.1 The algebras

3.1.1 Important subgroups of a Chevalley group

Let G = Gy be a Chevalley group defined withgamoduleV as in Section 2.2.2.
Recall thatR" is the set of positive roots according to some fixed set of Empots
{ag, ay, ..., a,}) Of g (Section 2.2.1). The group contains a subgroug given by

U=(X({) | «eR,teFy,
which decomposes as
U= l_l U, where U, = (X,(t) | teFy),
aeR*

with uniqueness of expression for any fixed ordering of th&tp@ roots [Ste67, Lemma
18]. For eachr € R*, the map

. — Fi
X)) -t
is a group homomorphism.
Fora € R, define the maps
S b — b*
y P y-y(Hda, 1)

H+H; —H+Hz-p(H)H,, forgeR '
TheWeyl group of GsW = (s, | @ € R) and has a presentation given by

W=(s,S....% | $=L(s5)M =11<i#[<l), Mj€Zyo S=S,.

If w=g,5,---s, withr minimal, then thdengthof wis £(w) =r.
Lethz be as in (2.3). Ify > 3, then the subgroup

T=<hu(®) | HebzteF)



20

has its normalizer iG given by
N=(W,(),h | e RheT,teFy, wherew,(t)= X (D)X o (=71 X, ().

If @ € R, thenhy_(t) = w, (t)w, (1)1, Write h,(t) = hy, (t) andhi(t) = h,,(t).
There is a natural surjection frohh onto the Weyl groupV with kernelT given by

T N — W
w,(t) - s, fora e RteF, (3.3)
h ~ 1, forheT.

Supposer € N. Then for each minimal expression
V) =s,S,-.-S,, Wwith£(z(v)) =r,
there is a unique decomposition\és
V=VVo---Vivr, wherey =w, (1) andvr € T. (3.4)
Write
& = wi(1). (3-5)

3.1.2 Unipotent Hecke algebras

Let G be a finite Chevalley group. Fix a nontrivial homomorphigmF; — C*. If

u: R — Fy

o o, satisfiegs, = 0 for all @ not simple, (3.6)

then the map
v,: U —
%) — Yluet)
is a linear character dfi. In fact, with the exception of a few degenerate specialsase
of G (which can be avoided @ > 3), all linear characters & are of this form [Yok69a,
Theorem 1].
Theunipotent Hecke algebr#( (G, U,y,,) is

#, = Endug(Ind (1,)). (3.8)

Using the anti-isomorphism (2.2), vieW, as the subset @G

(3.7)

H, = e,CGe,, where e, = ﬁ Z w.(uhu. (3.9)

ueU
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3.1.3 The choices and v

This section assumes all linear charactertJadre of the formy, for some nontrivial
homomorphisny : F; — C* andu as in (3.6).
The groupl normalizedJ,, since

hx,(H)h™ = x,(a(h)t), fora e R", t€Fg, heT,a(h) eF;.
Thus, ify : U — C* is a linear character, then

h: U — C*
%) = x(hx@h™)

is a linear character for evehye T.
Proposition 3.1. Supposg : U — C* is a linear character. Forevery b T,
IndS (v) = IndS("y).

Proof. Recall that

G (h _ -1
IncS (6,0 = o 2, ") - 2, wulhgth).

xgx~leu xgx~leu

SinceT normalizesJ, the sum over alk € G such thatxgx?® € U is the same as the
sum ovethx € G such thahxgx*h=t € U. Thus,

lndS(%)(g)—— D, wulX9x ™) = Ind§ W) ). 0

X' eG
xgx~ ley

Thetypeof a linear charactey : U — C* is the set) C {a1, a», ..., a,} such that
x (X (1)) # 1 for allt e Fy if and only if a; € J.
A unipotent Hecke algebr&/ (G, U, x) hastype Jif y has typel.

Proposition 3.2.

(@) Fix a nontrivial homomorphisnt : F; — C*. If ¢’ : F; — C* is a homomor-
phism, then there existskF, such that

' (t) = y(kt), forallt Fg

(b) The linear characterg : U — C* and"y : U — C* have the same type for any
heT.
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(c) Let J C {a1,p,...,a;} and S; = {type J linear characters of Y Then the
number of T -orbits o8; is

_ 1)
%, whereZ =theT | a(h) =1, fora € J}.
(d) The number of distinct (nonisomorphic) type J unipotdatke algebras is at
most
1Z51(q - )M
T

Proof. (a) The map
Fy — Hom(F;, C")

/R :Par - C

t > y(kt)
is a group homomorphism, and the kernel is trivial becauds nontrivial. Since
I[Hom(F;, C)| = g, the map is also surjective.

(b) SinceU,, = Fg, the restriction ofy to U, gives a linear character &,. Part (a)
implies that for everyr € R* there exist, € Fq such that

X% (1)) = Y(kt)
Furthermore, ify has typeJ, thenk, # 0 if and only ifa € J. Write

k +—

X = Y. k) wherek; = k,,.
Sincehx,(t)h™ = x,(e(h)t) forhe T,

h
X = Y(ar(ka,...ar (k)

anda(h)k, # 0 if and only ifk, # O if and only ifa € J. Thus, the action of preserves
the type ofy.

(c) Suppose a groul acts on a sef. Then by [Isa94, Theorem 4.18] the number
of orbits of theK action is

1

WZ Cardse S | 9(s) = s}.

geK

In this caseK = T acts on the set
S =85=Wkk. k) | k=0, unlessy € J}.
Furthermore,
hw(kl,kz ,,,,, k) = Yiakky ifandonlyif «ai(h)=1foralla;e J.
Finally, |S;| = (- 1)V. O
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Examples.

1. If J =0, then|J| = 0 and|Z;| = |T|, so there is a unique unipotent Hecke algebra
of type J; in this casey, is trivial andH,, is the Yokonuma algebra.

2. Acharacter isn general positionf it has typed = {a1, @y, . . ., @/}. Inthis caseZ;
is the center 065, and|J| = ¢, so the number of typé unipotent Hecke algebras

is at most
1Z(G)l(q - 1Y

Tl

3.1.4 A natural basis
The groupG has a double-coset decomposition

G= u uvy, [Ste67 Theorem 4 andB = UT] (3.10)

veN
and if
N, ={ve N | e,vg, # 0}
={ve N | uvuv!e U impliesy,(u) = y,(vuv')}
then the sete,ve, | ve N,} is a basis forH, [CR81, Prop. 11.30].

Theorem 3.7 gives a set of relations similar to those of theoWoma algebra (Ex-
ample 1, below) for evaluating the product

(3.11)

(e,ug)(e,ve,), with u,v e N,.
in any unipotent Hecke algeb¥d,.
Examples.

1. The Yokonuma Hecke algebralf u, = O for all positive rootsy, theny,, = 1L is the
trivial character andNy = N. Let T, = epvey forve N, with Ty = T, (& as in (3.5)) and
Tu(t) = Thy- If ve N has a decomposition= vV, - - - vy (as in (3.4)), then

T=T,T, T Ty (See Chapter 6)

Thus, the Yokonuma algebr&ly has generator$;, T, for 1 < i < ¢, h € T (see
[Yok69b]) with relations,

T2=q Ty, (1) + g ) T, HT, 1<iz<¢,
teFy
— —
mjj terms mjj terms
TiTh = TshTi, he T,

Tth = Thk, h, keT.
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These relations give an flicient” way to compute arbitrary productey(iep)(epver)
in Hy. There is a surjective map from the Yokonuma algebra ontdviiaéori-Hecke
algebra that sendg, — 1 for allh € T. “SettingT,, = 1” in the Yokonuma algebra
relations recovers relations for the lwahori-Hecke algebr

TP =q'+q'g-1T, TTj-- =TT
~— ~—
mj terms mj terms

Furthermore, there is a surjective map from the Iwahori ldegligebra onto the Weyl
group given by mappingd; — s andq ~ 1. Thus, by “settingl; = s andg = 1” we
retrieve the Coxeter relations &,

52:]_, SSjS"':Sjssj"'-
~— S——
m; terms m; terms

For a more detailed discussion of the Yokonuma algebra, baptér 6.

2. The Gelfand-Graev Hecke algebra.By definition, if u, # O for all simple roots

@, theny, is in general position. In this case, the Gelfand-Graev aittar In(‘tﬁ(wﬂ)

is multiplicity free as aG-module ([Yok68],[Ste67, Theorem 49]). The correspond-
ing Hecke algebraH, is therefore commutative. However, decomposing the prod-
uct (e,ue,)(e,ve,) into basis elements is more challenging than in the Yokamnease
[Cha76, Cur88, Rai02].

3.2 Parabolic subalgebras ofH,
Lety, : U —» Gbeasin (3.7). Fix a subsétc {a1, ay, ..., a,} such that
if o, # 0, thene; € J.
For example, ify, is in general position, thed = {a1, @y, ..., a.}, butif y, is trivial,
thenJ could be any subset.
Let
Wy=(seW | aecld), P;=UT,W,;) and R;=Z-spataic J}NR

ThenP; has subgroups

Ly =(T,W3,U, | «€R;y) and U;=(U, | e € R" - Ry) (3.12)
(a Levi subgroup and the unipotent radicaRyf respectively). Note that

Us;L;=P;, UjnL;=1, and,infact, P;=U;>L;.
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Define the idempotents afU,

o 1
“ L N U

> v and € = ﬁ D, (3.13)

uelLjnuU ueU,

so thate, = e,;€.
The group homomorphisms

Pr — L and P : E fOflELJ,UEUJ,

u - | lu
induce maps

Inf? :{L;-module$ — {P;-module$

M — e;M ’
Ind§, :(P;-module$ — {G-module$
M’ — CG Qcp, M’

whose composition is the map Irﬁjf Note that in the special case whé€h,e is an
irreducibleL ;-module with corresponding idempotexnthen

IndfZ : {L;-module$ — {G-module$
CL,e — CGesg,.

The mapy, : U — C* restricts to a linear character Fﬁgg(%) LynU —> C*. To
make the notation less heavy-handed, wgjte Ly N U — C*, for Reg), ().

Lemma 3.3. Lety, be as in (3.7). Then
Ind5(y,,) = IndfE, (Indy),, , (¥,)-
Proof. Recall Incﬁ(wﬂ) =~ CGg,. On the other hand,
Indg’, () = CLyg,y implies  Indf? (Indg,  (¢.)) = CGe,s€),
wheree,; is as in (3.13). Bug,;€; = €,, SO
Ind§ () = CGe, = Ce,y€; = IndfP (Indg, (1)) O
Theorem 3.4. The map

0: Endce,(ndy, () —  H,
€,0V€, — eyvg, forvel;nN,,

is an injective algebra homomorphism.
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Proof. Letve NN L;. Sincee,yve,; € CLy, €5 € CUjandL;nU; =1,
eovgy =0 ifandonlyif €e,,ve,y =0.
Becausd.; normalizedJ ;, bothe,; andv commute withe),. Therefore,
e.vey =0 ifandonlyif €e,vee,; =¢e,ve =0,

and
{egvey =0} ifandonlyif veN,NnL,.

Consequentlyg is both well-defined and injective.
Consider

6(6.0U6,0)0(€.3V€6.1) = €,UG.8,VE: = €,)€,U6,1€)VE;6,.
Sinceu commutes witre;,
0(e,sue, )0(e,ve,) = e,,€5ue,3VE e, ; = €,Ug,3VE,
= 6(e,,Ug,3VE,y),
and s is an algebra homomorphism. m|

Write
L5 = 6(End,(Indg, (1)) € H, (3.14)

The L, are “parabolic” subalgebras dff, in that they have a similar relationship to
the representation theory #f, as parabolic subgroup® have with the representation
theory ofG.

3.2.1 Weight space decompositions fok,-modules

An important special case of Theorem 3.4 is when
J=J,={a €fas,ar,...,a/} | po; # 0},
so thaty, has typel,. WriteL, = L;,, W, = W,,, etc.
Corollary 3.5. The algebraZ, is a nonzero commutative subalgebra/df.

Proof. As a character o) N L,, ¢, is in general position, so Irﬁ v, is a Gelfand-
Graev module and’, is a Gelfand-Graev Hecke algebra (anortherefore commajativ
O
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SinceL£, is commutative, all the irreducible modules are one-diri@s; let £, be
an indexing set for the irreducible modules£f. Supposé/ is anH,-module. As an
L,-module,

\= @ Vv, where V, ={veV | xv=y(X)v,x € L,}.
76.2,1

if y € £, thenV, is they-weight spaceof V, andV has a weighty if V,, # 0. See
Chapter 6 for an application of this decomposition.
Examples

1. In the Yokonuma algebrg, = 1, J; = 0 and Ly = e;CT ey.

2. In the Gelfand-Graev Hecke algebra cade= {a1,a,...,a/ and L, = H,
(confirming, but not proving, thak{, is commutative).

3.3 Multiplication of basis elements

This section examines the decomposition of products indexfithe natural basis

(eug)(eve) = > (6Ve).

VeN,

In particular, Theorem 3.7, below, gives a set of braid-fiéations (similar to those of
the Yokonuma algebra) for manipulating the products, anebl@Zoy 3.9 gives a recur-
sive formula for computing these products.

3.3.1 Chevalley group relations

The relations governing the interaction between the swgdl, U, and T will be
critical in describing the Hecke algebra multiplicationtire following section. They
can all be found in [Ste67].
The subgroup
U=(X(@t) | eeR",teFy

has generator,(t) | @ € R*, t € Fy}, with relations

X (@)%5(0) %, (8) " x5(b) ™" = 1_[ x,(z,80'), (U1)
X(8)%:(b) = X.(a + b), (U2)

wherez, € Z depends on, j,«,B, but not ona,b € F, [Ste67]. Thez, have been
explicitly computed for various types in [Dem65, Ste67]¢%¢so Appendix A).



28

The subgroufN has generator&s, hy(t) |1 = 1,2,...,¢, H € bz, t € Fy}, with
relations

& =hi(-1), (N1)
§&GE - = §&&i&ie where &)™ = 1inW, (N2)

m; terms m; terms
&ihy(t) = hswy (DS, (N3)
hu(a)hk(b) = hy(ab), (N4)
hy (a)hy (b) = hy (b)hy (), forH,H" €D, (N5)
hy(@hu (8) = b (8), forH,H" e b, (N6)

oy (t)he, () . b (b) = 1, ift/ ™™ — 1 forall1<j<n,  (N7)

whered; : ) — C depends oV as in (2.6).

The double-coset decomposition®f(3.10) impliesG = (U, N). Thus,G is gener-
ated by{x,(a), &, hu(b) | @ € R ,a€Fq,i =1,2,...,(,H € hz,b € Fy} with relations
(U1)-(N7) and

EXy(E™T = Xg(@) (Cial), wherec, = +1 (G, = —1) (UN1)
hx,(b)h™ = x,(a(h)b), forheT, (UN2)
ExM& = xEHNEHEXEY),  wherex(t) = x, () andt 0. (UN3)

where fora € Randhy(t) € T,

a(hu(t)) = to®, (3.15)
Fixay, : U - C*asin (3.7). Fok € Fg, let
e, (k) = 1 Z U(—p.kt) %, (t) with the convention e, = e,(1). (3.16)

teFq

Note that for any given ordering of the positive roots, theateposition

U= ]—[ U, implies € = l_l e,. (3.17)

aeRT acRY

In particular, given any € R, we may choose the ordering of the positive roots to have
e, appear either first or last. Therefore, simges an idempotent,

€,6, = €, = 6,6, (3.18)
If w=s,s,---s, € Wwith r minimal, then let
Ry={eeR" | wa)e R}
={ai, S (@i 1), -, S, S - Splai))
where the second equality is in [Bou02, VI.1, Corollary 2 odposition 17].

(3.19)
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Lemma 3.6. Let ve N, and let w= z(v) (withz : N - W as in (3.3)).

£6,(KET = e54(CiuK), fora e R, 1<i<n-1, (E1)
ve, vl = ey, fora ¢ Ry,ve N, (E2)
he,(h™* = e, (ka(h)™), forheT, (E3)
8% (t) = Y(at)es = Xo(t)&s. (E4)

Proof. (E1) Using relation (UN1), we have

60,6 = 2 3 UK 06" = 2 3 -k, )

teFq teFq
1 J ’
= a E W(_:uaciakt )Xsa(t) = esa(ciak)-
t'e€Fq

(E2) Suppose ¢ R,. Sincev e N,,

Yat) = Y (X% () = (VX (V) = (Ko (kD)) (by (UN1))
= Y(uwkt), for somek =€ Z.

In particularu, = ku,, and we may conclude

Vet = o ) = 2 S bk ) = e

teFq t'eFq

(E3) Sincehx,(t)h! = x,(a(h)t), we have

he,(Qh™ = % D w(kx (b)) = > w(-kta(n) )x,(1) = & (ka(h) ™).

teFq teFq

(E4) Note that

@)= 3 3 U@ = 7 Y W (a+ )

= 2 D e =0 = 2 3wl @))% (@)
= (vl’(ﬂat)eoz

Therefore, by (3.18),X,(t) = €,€,%,(t) = ¥(u.t)e,. O
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3.3.2 Local Hecke algebra relations

Letu = uiU,---uur € N decompose according s, ...S, € W. For 1< k < r define
constantsy, = =1 and rootgy € R by the equation

Xg,(Ckt) = (Ui -~ - Up) ™ Xy, (D) (Uirs - -~ ). (3.20)
Note thatR) = {81.82. . ... B} (see (3.19)). Defind, € Fylys, Yo, ..., yi] by

Hp, C1 Hp,C2 Mg, Cr
fo_ _ e
! ﬁl(UT)yl ,fJ’z(UT)y2 /J’r(UT)yr

andfork=1,2,...,r, let
ug(t) = &, (1), where &(t) = &x(t). (3.22)

Theorem 3.7.Let u = uUy--- U Ur,V = ViVo---VeVr € N, decompose according to
$,S, 'S, € Wandgss, - s, € W, respectively, as in (3.4). Then

(@)

(3.21)

(€.U8)(EVE) = o (00 L0 &.Wa(tUelt) -~ U (1) veva---vhe,

teFy
where h= vyviurve T.

(b) The following local relations gtice to compute the produ@s,ue,)(e,ve,).

Dw o HOEWDE = o N+ Y (o NOXEHER D)), (H1)
teFq tely

£i%e(1) = X5 (@) (Ca )&, (H2)

X,(Oh = hx, (a(h)™1), (H3)

€% (1) = Y (at)e, = Xa (D), (H4)

Wo W o) = Wo (f+g)(t). forf.geFlyi',....y7 ], teF,  (H5)

ha (& = £iNs @) (0. (H6)

&(a)x,(b) = ]—[xsy(cisi mZabhé(a@), wherea # o, (HT)

y=Maj+nae Rt
mn>0

Z d(a)& (@)X (b) = Z ®(a-b)(a), for some maw : Fy, — CG, (H8)

aelFg aely
h.(@)h,(b) = h,(ab). (HO9)
&GEEE; - = E&&& -+, where my is the order of s in W. (H10)

mj terms mj terms
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Proof. (a) Order the positive roots so that by (3.17)

g,ue,ve, = eﬂu(l_[ ea)eﬁleﬁ2 -+ €3, VE, (definitionpy)
a¢Ry
= eﬂ(]—[ aN[,)u%eﬁz - €5, VE, (Lemma 3.6,E2)
a@¢Ry
= €,U€;,€;5, - - - €3,VE, (Lemma 3.6, E4)
= Ul - - - U Ur €5, 65, - - - € VG,
= U1l - - - Ur €3, (5755)85, (5027) - - €5, (52 ) ur Ve, (Lemma 3.6,E3)
= uU1€y (5) U8y, (£25) - - ey, (Fy)urVe, (Lemma 3.6,E1)
= 8,18, (F5)Uz€y, (F22) - - Ury, (2 )V1 - - - VeVTV Ur Ve,
€ ot ot .
= 2 YUEED) v CEEUv - vhe, (definitione,)
t1,....tr€Fq
1
- D W o f)Beuus(ts) - Uit va - - vshe, (by (H5))
telFy

whereh = vyvlurv e T, as desired.

(b) First, note that these relations are in fact correct (thaugimecessarily sticient):
(H1) comes from (UN3); F2) comes from (UN1); f3) comes from (UN2); ¥{4)
comes from (E4);4{5) comes from the multiplicativity of; (#16) comes from (N3);
(H7) comes from (U1) and (UN1)#H8) comes from (U2);%{9) is (N4); and ¢{10) is
(N2). It therefore remains to showf&igiency.

By (a) we may write

(€U8)(EVe) = o (1o M)+~ (L) Ve

for somef € Fylys,....y] andh € T. Sayty is resolvedif the only part of the sum
depending ony is (¢ o f). The product igeducedwhen all thet, are resolved. | will
show how to resolvg and the result will follow by induction.

Use relation H2) to define the constadtand the rooty € R by

(ViV2 - - V) X, (D(VaV2 - - Vs) = X, (dt)  (wherel(x(v)) = 9). (3.23)
There are two possible situations:
Case l.y e R,

Case 2.y e R.
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In Case 1,
(e.ue)(Eve) = ;(w © HHeu(t) U, (v - whe, (by (@))
=5 ;(w @ HOG )+ U-alt-)uve - vex,(dthe, (by (H2))
== é(w o F)(De,Un(ts) - - Ura(t_2)Urva - - vshx (cy(h) 2t e, (by (H3))
== é(w o 1)(DgUn(ts) -+ Ua(t)urva - vshy( dy() 't)e, (b (H4)
é(w o )(D)8Un(tr) -+ Ur-a(tr-1)Urva - - Vsh(w o 1, cdy(h) o) (t)e,
é(w 0 Q)()8uUa(tr) -+ - U1 (tr-1)urva - - - vshe, (by (H5))

whereg = f + u,dy(h)™y,. We have resolvet in Case 1.
In Case 2y € R™, so we can no longer move (t;) past they;. Instead,

(e.Ug)(8.ve)
= % Do DUt - Uratra)ur X, (G U va - - vhe,
teFy
= % D Ut Uea(tea) D 0 DT t)UX, () va -~ vihe,
eyt treFq
=2 Ut - tealt)w o (YL OY MV, - vehe, (by (H1))
tEIF' -1
q—Zul(tl) Uata o % (6, (U, ()0 ve - whe,
t'eFyt t el
=2 S (1) - Ualt-)(¥ © DX, O)uvs - vehe,
very?
+ q—Zul(tl) Uealtd) )0 QT 1)X, (), (t)vi - vhe,
veryt t; €y

(by (H2,H3,HA4))
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whereg = f — u,dy(h)'y;* (same as in the analogous steps in Case 1).

-5 Z (¥ o F)(', 0)ur(ty) - - - Ur—a(tr—1)UrVy - - - Vshe,

veryt
+% Z ul(tl)"'ur—l(tr—l)z (W o O)(t', tr)%, (Vi - - - vshy (=t )he,,  (by (H6))
eyt treFy
23 (o . 0)us(ty) - Uroa(ta)uva - - vshe,
q veryt
Z(wow(g))(t’ t (]_[ Xs(3p(t, tr)))ul(tl) “Ura(t-p)va - - Vsh'e,
ter’ 1 BeRH

(by (H7,H8))
whereg : Fq[yi, ..., Y] = Fqlyi.....Yy:] catalogues the substitutionsgalue to (+8),

the as(y1, Y2, - - -, Yit) € Fglys, ..., Yr-1,¥:] are determined by repeated applications of
(H7) and (+{8), andh’ = h,(-t.)heT.

qr Z (o ), O)e Ua(ty) - - - Ur—a(tr—g)Ur vy - - Vshql

reryt
o 200 @ e[ | vl Dt sl vlfe,
t e].“a 1 BeRF
| (by (4))
- Z (¥ o F)(t', 0)guu(ts) - - Ur_a(t—1)Urvy - - - Ve,
qr Z (o @)(t', tr)e.us(ty) - - - Ur_a(tr—1)Va - - - Vsh'e,, (by (#H5))

whereg, = ¢(9) + X per- Hpa5(Y1s - - -, Yr-1, ¥ ). Nowt, is resolved for Case 2, as desired.
O

Lemma 3.8 (Resolvingy). Letu= uiu;---ux € N decompose according t9Qs, - - - S,

(with ur = 1). Suppose ¥ N and fe Fq[y1, Y2, ..., Y. definey € R and de C by the
equation vx, (t)v = x,(dt). Then
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Case 1If £(r(uV)) > €(n(v)), then

Do HDg(t) - - Utve,

K
telFg

= > o (f + Aoy D (ts) - - U a(ti-1) Ve

teFs
Case 21f ¢(m(wV)) < £€(m(v)), then

D Wo gt utve, = ) (¥ o N8t U a(te1)ucve,

K =k
teFg teFg,
=0

+ W o (l(F) = Ay NB8UL) - - Uea (b (Ve

7K
terq,

tkeFa

wheregy 1 FolyiL, ..., yil] — Fqlyz, ...,y is given by

Z(W o f)(t)g,un(ta) - - - U1 (tie1)%, () :Z W o @(f)) (B ua(ts) - - - Uea ().

rk k
teI‘q tqu
tkd‘:a tkeFa

Proof. This Lemma puts in the place ofurv in the proof of Theorem 3.7, (b), and
summarizes the steps taken in Case 1 and Case 2. m|

3.3.3 Global Hecke algebra relations

Fixu=uUy---uur € N,, decomposed accordirgs, - - - s, € W (see (3.4)). Suppose
v e N, and letv = urVv'.

ForO<k<r,letr = (1, 712,...,7_k) be such that; € {+0, -0, 1}, where+0, -0,
and 1 are symbols. i hasr — k elements, then theolengthof r is ¢Y(r) = k. For
example, ifr = 10 andr = (-0, 1, +0, +0, 1, 1), thent¥(r) = 4. Fori € {+0, -0, 1}, let

(iaT) = (i,Tl, T2, Tt 3Tl’—k)'

By convention, if¢¥(7) = r, thent = 0.
Suppose”(r) = k. Define

=0V = o 20 M08() - WV (S, (3:24)

telFg
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where
if Ti_kx = +0, thenti € Pq,
Fq=qteF, | fork<i<r, if rix=-0,thent =0, ; (3.25)
if Ti-k = 1, thenti € Fa
V(D) = B (ed) U7 - By ()™ Uy, (3.26)
with+0=-0=0€2Z,1=1€2Zin (3.26); andf" is defined recursively by
Hp, C1 HpC2 Hp, Cr ;
f0=f,=-— - —.— Ly (asin(3.21 3.27
) ,31(UT)y1 ,Bz(UT)y2 ,Br(UT)yr ( (3219 (3:27)
i f*+pu, d if i =+0
(i) _ My, Yks p
: - { 90k(fT) _,udeT kl, ifi=1, (328)

where (/T)‘lxmk(t)vf = X,,(d:t) and the maypy is as in Lemma 3.8, Case 2.

Remarks.
1. By (3.24) and Theorem 3.7 (&%(u,v) = (e,ue,)(e,v'e,) (recall,v = urV').

2. If £'(7) = 0 so thatr is a string of lengthr, then

(@ E7(u,v) = ir Z(w o f7)(t)e,v'e, has no remaining factors of the fou(ty),

telFg

(b) E7(u,v) = 0 unless/ (t) € N, for somet € F,.

The following corollary gives relations for expandiBg(u, v) (beginning withz°(u, v))
as a sum of terms of the for&f" with ¢¥(r’) = £¥(r) — 1. When each term has colength
0 (or lengthr), then we will have decomposed the produgig,)(e,v'e,) in terms of
the basis elements 6{,,.

In summary, while we computé” recursively byremovingelements fromr, we
compute the producg(ue,)(e,v'e,) by progressivelyddingelements ta.

Corollary 3.9 (The Global Alternative). Let uv' € N, such that u= ujUy-- - UUr
decomposes according to a minimal expression in W. ketwVv'. Then

(@) (e.ue)(e.ve,) = E°(u,V)
(b) If £¥(7) = k, then

— [ GOy, v), if £(m(uVr)) > £(m(V)),
=y = { 2C0D(U,v) + EE(U, V), if E(r(ur)) < (V).
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Proof. (a) follows from Remark 1.
(b) Supposé”(r) = k. Note that

1
ZuV =g Do YDt - UtV
telFg

1

= E Z Z(l/’ o fT)(t,, t”)eﬂul(tl) ce Uk(tk)VTeﬂ

t”e(IF{{k)T t EF'&

where Fa‘k)T = {(tys1, ..., 1) € Fa"‘ | restrictions according te} (as in (3.25)). Apply
Lemma 3.8 to the inside sum with:= 7, v := v*. Note that the Lemma relations imply

{t’ € Fgl, if in Case 1,
{t eFy | tc=0}, ifin Case 2, first sum,
{t eFs | t€Fy), ifin Case 2, second sum,

f+00)  ifin Case 1,
fT becomes { f(%9 ifin Case 2, first sum,

{t €Fs} becomes {

f9  ifin Case 2, second sum.

Vvit0D) - ifin Case 1,
Vv becomes { V%) ifin Case 2, first sum,
VLY if in Case 2, second sum.

Thus,
2609(uy, v), if Case 1,

=T - :
=Y { EC09(u,v) + E¢9(u, V), if Case 2,

as desired.
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Chapter 4

A basis with multiplication in the
G = GLn(Fq) case

4.1 Unipotent Hecke algebras

4.1.1 The groupGLn(Fy)

Let G = GL,(Fg) be the general linear group over the finite figldwith q elements.
Define the subgroups

diagonal monomial
T= . , N= : ,
matrices matrices
i 1 =
W:{ permu_tatlon}’ and U = {( ]}
matrices 0 ‘1

where a monomial matrix is a matrix with exactly one nonzertrein each row and
column (N = WT). If necessary, specify the size of the matrices by a syttssuich as
G, Uy, W, etc. Ifa e G, andb € G,, are matrices, then lete b € G, be the block

diagonal matrix
(5 2)
aob= )

0Ob

Let x;;(t) € U be the matrix witht in position (, j), ones on the diagonal and zeroes
elsewhere; write(t) = xi1(t). Leth,(t) € T denote the diagonal matrix within the
ith slot and ones elsewhere, anddee W C N be the identity matrix with théh and
(i + 1)st columns interchanged. That is,

(4.1)

x({t) =Idi_s@ (33 @ ldnics, hy(t) = 1dig @ (t) @ I,

4.2
s = 1di.a®(95) @ ldnia, (4-2)

whereldy is thek x k identity matrix. Then
W=(s.%,...51), T=(hs(t) [ I<isnteF)  N=WT, 4.3)

U=(xjt) | 1<i<j<nteFy, G=(UWT).



38

The Chevalley group relations f@ are (see also Section 3.3.1)

Xij (@)%rs(b) = xij (b)Xs(a)Xis(0jr ab) X (—disab), () E (S5 (U1)
Xij (@)% (b) = x;j(a+ b), (U2)
s=1 (N1)

SS+1S = S+15S. and §s; = §js, i—jl>1, (N2)
h,(b)h. () = h, (ab), (N4)
hg; (b)h; (@) = h;(b)h (a), (N5)
$%ij (1) = Xs s ()OS (UN1)
Xj(@h,, (t) = h,, (£)x; (T t*ia), (UN2)
sx(t)s = x(t™)sx(-t)h, (Oh,,,(-t™), t+0, (UN3)

wheregj; is the Kronecker delta.

4.1.2 A pictorial version of GLy(Fg)

For the results that follow, it will be useful to view thesemlents ofCG as braid-like di-
agrams instead of matrices. Consider the following demstiof elements by diagrams
with vertices, strands between the vertices, and variojectsbthat slide around on the
strands. View

ith vertex

N\
el
ithve{t*ex
L A S R
hgit t , 4.5
A S I A “
ith vertex jth vertex

RENDREE
Xij(ab) as H b S (4.6)
. :

where each diagram has two rowsro¥ertices. Multiplication inG corresponds to the
concatenation of two diagrams; for exampgs; is

S
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In the following Chevalley relations, curved strands imdélonger strands, so for ex-
ample (UN1) indicates thatand: slide along the strands they are on (no matter how
long). The Chevalley relations are

IR R
: r? LY T S (73
|1 | 1o S|
1]
0 R
! . “«
| = Jb (N4) g _a> ° (N5)
o v N <:
.\a qb r S
7 = > > (UN1) ; ¥ o= Al ? (UN2)
( [ C S
17

.§><a.: >< ab#0.  (UN3)

4.1.3 The unipotent Hecke algebraH,

Fix a nontrivial group homomorphisg: F; — C*, and a map

wAl ) 1 1<i<j<n — F, ) .
. th 1;; = 0 for 1. 4.7
() = i WIER A J#i (4.7)

Then
v, U —
Xit) = yluw;t)

is a group homomorphism. Sinpg = 0 for all j #i + 1, write

(4.8)

B= () B2)s - - > Hn-1)s H())s - Whereugy = i1 andy = 0. (4.7)
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The unipotent Hecke algeb#d, of the triple G, U, y,,) is

1
H, = Ends (Ind§(¥,)) = e,CGe,, where e, = 0 Dt (49)

ueU

Thetypeof a linear charactep, : U — C* is the compositiow such that
ug =0 ifandonlyif iev. (withv.asin Section2.3.2)

Proposition 4.1. Letv be a composition. Suppogeand y’ are two typer linear char-
acters of U. Then
HG, U, x) = HG,U,x).

Proof. Note that forh = diaghy, hy, ..., h)) € T,
hx;(h™ = x;(hhi't)  forl<i<j<nteF,
Thus,T normalizedJ;; = (xj(t) | t € Fy) and acts on linear characterslofoy
"v(u) = y(huh™), forhe T,ueU.
This action preserves the typeyf The map

IndS(y) = CGe, — CGe, = IndS (")
g, +— ghe,
is aG-module isomorphism, s#((G, U, y) = H(G, U, "y). It therefore stfices to prove

thatT acts transitively on the linear characters of type
By Proposition 3.2 (c), the number dtorbits of typeu linear characters is

1ZI(q- 1) |theT | hx(®)h™? = x(t), x5 # 0}(g - 1w

wherey’ ="y forhe T,

IT] (-1
_ (@-1y¥(@Q- 1)~
(q-1)
=1
ThereforeT acts transitively on the typelinear characters dfl. |

Proposition 4.1 implies that given any fixed charaeter F; — C-, it suffices to
specify the type of the linear charactgy. Note that the map (given by example)

{ Compositions } - { M= (Hys 1H(2)s - - - H(ny) }
p= (1 pos ... i) EN Ky € {0, 1} andygy = 0
1

|1
H=7
1

(4.10)

1]0] o (10,1,1,1,1,0110,111,0)

0]

RlR|(k|o
[o

= |O
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is a bijection. In the following sections identify the congtonsu = (us, ..., u¢) with
the mapu = (uq), - . ., () using this bijection.

The classical examples of unipotent Hecke algebras areakentima algebra{;n
[Yok69b] and the Gelfand-Graev Hecke algeidfg) [Ste67].

4.2 An indexing for the standard basis ofH,,
The groupG has a double-coset decomposit®n= | |, UVU, so if

N,={ve N | e,vg, # 0}

i o i (4.11)
={ve N | u,vuv- e U impliesy,(u) = y,(vuv )}

then the isomorphism in (4.9) implies that the ggve, | v € N,} is a basis forH,
[CR81, Prop. 11.30].

Suppose € M/(Fq[X]) is an¢ x ¢ matrix with polynomial entries. Led(a;;) be the
degree of the polynomial;. Define thedegree row sumand thedegree column sums
of ato be the compositions

d”(a) = (d”(@)1,d”(@)2....d”(@,) and d'(a) = (d'(@)s,d" @2, ..,d"@)),

where , ,
d”@) = ) d@@;) and d'(a); = > day).
j=1 i=1
Let
M, = {a € M(Fq[X]) | d”(a) = d*(a) = u, &; monic,&;(0) # O}. (4.12)
For example,
X+1 1 1 X+ 2 ) (1+0+0+1=2)
X+3 X3+2X+3 1 X+ 2 | @+3+0+1=5)
1 XP+4X+2 X+2 1 (0+2+1+0=3) € M(253.4)- (%)
1 1 X2+ 3X+1 X?+2 ) (0r0+242-4)

(1+1+0+0=2) (0+3+2+0=5) (0+0+1+2=3) (1+1+0+2=4)
Suppose{) = (a + arX™ + X2 + - + a X" + X") € M is a 1x 1 matrix with
ag,aq,...,a # 0. Let
(f)
Vi = | = Wiy (Wip)80 & Wip-in)@1 @ - - - & Win-ip)@r) € N, (4.13)
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where

and by conventionyy is the empty strand (not a strand). For examplgpxe.cxs.xs) IS

a a a b Cc Cc

For eacha € M, define a matrix, € N pictorially by

(@1 (@) (1) @2) (22 (a2 o @) (@) (aur)

Va

., (4.19)

whereg; is the (, j)th entry ofa, and the top vertex associated waf goes to the
bottom vertex associated wity. Note that ifa;; = 1, then both its strand and corre-

sponding vertices vanish. The fact tlaet M,, guarantees that we are left with two rows
of exactlyn vertices.

For example, ifnis as in &), thenv, is

(3+X)  (1+X) (2+44X+X2)  (B+2X+X3)  (1+3X+X3)  (2+X) (2+X?) (2+X)  (2+X)
|

3] (1] [2 4] 3 2 2] [1 3] (2] [2 2] (2] (2]
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Viewed as a matrix,

1 columns 2 columns u3 columns
0 —_ = =
0 V(a13) 0 =
o | — - — = ~
V(agp) 0 | 0 0 g
_____________________ [72]
V(a11) 0 Y 0 : 0 0
| ' I 0
| I 0 0 B
| 0 0 | Vian) | 0 0 5
0 . - -
V, = ! Vi) | 0 o |0 l 0 0 g
V@) | 0 0 ;0 : 0 o "ol o 0
| |
| | ' [ 0 I 0 O .
: | 0 I 0 O -—g-—|--=---
| 0 | 0 [ | Vezg | 0 | O 0 =
0 - -t - - — - = =
| I Vegp| 0 ' ol o, 0! o0o! o 0 2
R __J.____l___l__L__ _____ @
Mesp| 0 0 0O, 0l 0ol o| ol ol o1 o 0
T | i T f i i
[ [ [ | [ [ [ [ [
, 0,0 0 :, 0,00 , 0, 0,0
[ [ [ [ [ [ [ [ [

Theorem 4.2.Let N, be as in (4.11) and lyibe as in (4.12). The map

M, — N,
a = Va,

given by (4.14) is a bijection.

Remark. Whenu = (n) this theorem says that the mafg (- Vvt of (4.13) is a bijection
betweenM, andNp,.

Proof. Using the remark following the theorem, it is straightford/@o reconstruct
from v,. Therefore the map is invertible, and ittBaes to show

(a) the map is well-defined/{ € N,),
(b) the map is surjective.

To show (a) and (b), we investigate the diagrams of element.i Supposes € N,.
Let

Vi be the entry above théh vertex ofv,
V(i) be the number of the bottom vertex connected tdtinéop vertex
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so that{vy, v,, ..., Vy} are the labels above the verticesvodind (1), v(2),...,v(n)) is
the permutation determined the diagram (and ignoring thel$s;). By (4.8),

ut), if j=i+1 and,u(i) =1,

V(% (0) = { 1,  otherwise. (A)

Recall thatv € N, if and only if u, vuv* € U impliesy, (u) = ¥, (vuv?). Thatis,v e N,
if and only if forall 1 < i < j < nsuch thaw/(i) < v(j),
(% () = u(vx; (V)
= %(Xv(i)v(j)(Vith_l))

_ [ wvitvh), if v(j) = v(i) + 1 anduy) = 1,
N otherwise.

(B)
Compare (A) and (B) to obtain thate N, if and only if for all 1 < i < j < nsuch that
V(i) < v(j),
(1) If ug =1 anduwgy =0, thenj =1+ 1,
(i) If ugy = 0 anduwgy = 1, thenv(j) # v(i) + 1,
(iii) If wiy = peay = 1, thenj =i+ 1if and only ifv(j) = v(i) + 1,
(i) " f M) = H)) = 1 andv(j) = v(i) + 1, thenv; = vi,;.

We can visualize the implications of the conditions-(i}i) " in the following way. Par-
tition the vertices ofv € N, by . For exampleu = (2, 3,1) partitionsv according
to

V1 Vo V3 Vg4 Vg Vg
° ° | ° ° ° | °
| |
| |
° ° | ° ° ° | °

Suppose theth top vertex is not next to a dotted line and t{@th bottom vertex is
immediately to the left of a dotted line. Then condition (jplies thatv(i + 1) < v(i), so

I 0)

Similarly, condition (ii) implies

| (I
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and conditions (iii) and (iif)imply

Vi Vit1 Vi Vi

or (Vis1 = V; in the second) (1)

In the casg: = (n) condition (I11) implies that every € N, is of the form

a aa a & a a& a & o

= Wiy (QaW(iy) ® 32W(ip) © - - - ® arWi,)),

where {1,12,...,i;) EN, & € Fg andwgyy € W is as in (4.13). In fact, this observation
proves that the mapf{ — v is a bijection betweeM, andNy (mentioned in the
remark).

Note that since the diagramgsatisfy (1), () and (lll),v,y € N,, proving (a). On the
other hand, (1), (I) and (Ill) imply that eache N, must be of the fornv = v, for some
ae M, proving (b). O

Remark: This bijection will prove useful in developing a generatina of the RSK
correspondence in Chapter 5.

Let
m, = {a € M¢(Zso) | row-sums and column-sums arg

and forae m,, let
t(@=Cardg; #0 | 1<i,j <)

Corollary 4.3. Letu E n. Then

dim(H,) = )" (q- 1y@q@
acm,
Proof. Theorem 4.2 gives
dim(H,) = IM,|.
We can obtain a matria € M, from a matrixa € m, by selecting for each k¥ i, j <
¢(u), a monic polynomialfi; with nonzero constant term and degege Conversely,

everya e M, arises uniquely out of such a construction.
For a fixeda € m,, the total number of ways to choose appropriate polynonsals

]_[ Card f € Fg[X] | f monic, f(0) = 0 andd(f) = a;} = (q— 1)"@q"®@,

1<i,j<t
aiJ'#O

The result follows by summing over ale m,. m|
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4.3 Multiplication in H,

This section examines the implications of the unipotentkedealgebra multiplication
relations from Chapter 3 in the caGe= GL,(Fg). The final goal is the algorithm given
in Theorem 4.5.

4.3.1 Pictorial versions ofe,ve,
Note that the map

7 N=WT— W

wh— w, forweW,heT, (4.15)

is a surjective group homomorphism. Sindec N, adjust the decomposition of (3.4)
as follows. Letu € N with n(u) = s,---s, for r minimal. Thenu has a unique
decomposition

U= Wly...UUr, whereu, = s, ur € T. (4.16)

Fort € Fq, write uc(t) = s, X (t).
Fix a compositionu. The decomposition
[] Ui where Uy =0x(0) | teFy),
1<i<j<n
implies
1
6= || e where & =) vukix0.  (417)

I<i<j<n teFq

Pictorially, let

ikth vertex

|

ikth vertex

| >@<

ith vertex Jth vertex

g
g
R 1 e
e

U as

Uk(t) as

1L e
g

I (4.19)

(k) as



a7

Examples:
1. If u= uU,---ugur € N decomposes according $s,:553S1 4SS € W with ur =
diag@, b, c,d, ), then

a b [« d
\\\\\/’
7/ \6
- 5/ \4/ , t ) - - - Ualt -
u ( - > Uz (t1)Ua(t2) - - - Ug(te)Ur
2/ \l
e o« e

e

and

ﬂ(l)—Q—#(Z){#(E')—Q—ﬂM)
\ /8\ }
eue, = 7 7\4/ 6
N, _ >
2/ \l
4#(1;50—#(2)—041(3)50—;1(4)
2. If n=5, then (4.17) implies

*—H(1)—0—H(2)—0—H(3)—0—H(4)—e =

(6, = es5(1)ess(L)esa(1)ens(1)era(1)e2s(1)e1s(1)era(1)era(1)er2(1)).
The elements; (k) also interact withJ andN as follows (see also Section 3.3.1)

s€;j(Ks = es s (k). (E1)
e,vej(l) =e,yV, ve Ny, (7v)(i) < (7v)(j), (E2)
&;(Kh;, (t) = h,, (D&; ("t k), (E3)
e.Xij(t) = y(wjt)e, = xj(t)e,, (E4)
or pictorially,
. . r i
ity > > :>mm:>_ .WIQ
< C oo (E1) ¢ . ¢ ar <-S (E3)
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;> 3: Y(kab) & ﬁ and S kao>: Y(kab) gk (E4)
. k ¢«

and forve N,,

(()—" * —H(j-1) H(i)— * —H(j-1)

Supposal = Ul - - - U:ur € N, with ur = diagy, hy, ..., h,). Then using (4.17),
(E3), (E1) and (E2), we can rewriggue, as

rﬂ(l) HE—e—HE) - - 'ﬂ(n—l)T hh b hs e h

@ oo @ e @ )

h hy hs <. hn ; :

* ............ P ® oo, ¢ 1
=W wt)w) - ut)  (422)

Utz - - Uy gl |

g g & /i(1)—@—/1(2)—@—U(3) * * * {(n-1)®
& /i(1)—@—1(2)—@—H(3) * * * {(n-1)®

wheref, € Fy[y1, Y2, ..., Y:] is given by
fu(yl, y2’ ey yl') = _ﬂiljlhilhj_11Y1 - /’Lizjzhizhj_zlyz -t /’Lirjrhirhj_rlyl” (423)

for (i, jx) = (&, b), if the kth crossing inu crosses the strands coming from #ih and
bth top vertices.

Example (continued) Supposeu = ujUy---Ugur € N decomposes according to
SS9 95S3 € Wandur = diag@, b, ¢, d,e) € T (as in Example 1 above). Consider
the ordering

P~
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ore, = ez(1)exs(1)erz(1)ess(1)ers(1)exs(1)era(1)ess(1)exa(1)esq(1). Then

e,ug, = g,uei3(1)exs(l)erx(1)ess(1)ers(1)exs(1)era(1)ess(1)exs(1)esa(1)

= g uern(1)ess(1)ers(1)exs(1)era(1)ess(1)exa(1)esa(1) (by (E2))
= €,U1Uz. .. UgUrerp(1)ess(L)ers(1)exs(1)era(1)ess(1)e2a(1)e34(1)

= gty e e Des oo Desene(Sur by €3)

=€ u1e34(’9)Uzelz(9)u3e23(§)u4e34(9)u5e12(9)u6e45(9)u7e23(9)u3e34(§)uT (by (E1))

Z(lﬁ o f)(t)urXza(s- t1)UzX12( t2)U3X23( ts) U3X34( ts)UT,
teFg

q8
where by (4.17) f = —y1 — Y> — Yg. Therefore, by renormalizing

€
6Ug = — Z(l/’ o fu)(t")UrXaa(tr)UzXa2(t2) UsXas(ts) - - - UsXaa(ts)Ur
vers

= & Do OmE(E)s() - vl

vers

wheref, = —baly; — ed™'y, — dclys. Pictorially, by sliding thes;(1) down along the
strands until they get stuck, this computation gives

l‘(l)—Q—f‘(Z) (3)—9—/‘(47

-

1
que,= NN N\ = F Do f)() (4.24)
N 3/ > teFs
2/ \ 1
e e i e HO—S—HR)—O—H )8

wheref, = —baly; —edty,—dclyg (as in (4.23)), sincd{, j1) = (1, 2), (i2, j2) = (4,5),
(i3, j3) = (1,5), etc.
4.3.2 Relations for multiplying basis elements.

Letu = Uz ---uur € N, decompose according to a minimal expressiolMiras in
(4.16). Letv € N, and use (N3) and (N4) to writerv = w-diag(ay, ay, - - - , a,) for some
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w = (V) € W (see (4.7)). Then use (4.22) to write

J—ﬂ(l)Tﬂ(Z)TIJG)— . .#(n_l)l
6 &

.1 _______________________________________________________ :
w |
1 | |
(Gue)(eve) =& ) We O~~~ o (4.25)
teFy o Un(t)u(te) - ue(t)
E0—#(1)—0—#(2)—0—#(3)— . -#(n-l)—oE

(This form corresponds t&°(u, urv) of Corollary 3.9).

Example (continued) If uis as in (4.24) and = 5,53%,$,S, - diag(f, g, h,i, j) € N, then

(1, (2 (3 (4
f,d_()_J_C ()+h ()+i ()_e,j

(GUaVe) = 5 > (o )0

8
teFq

Consider the crossing in (4.25) corresponding{&). There are two possibilities.

Case 1the strands that cross @ do not cross again as they go up to the top of the
diagram €(u,w) > £(w)),

Case 2the strands that cross @ cross once on the way up to the top of the diagram
(C(urw) < £(w)).

In the first case,

J.l—"-j—#(i) i .#(H)Tml

¢

ugVe, = o > (00 )Y

telFy

Ul(tl) te Ur—l(tr—l)

& 11(1)-8—1(2)—8—H(3)- * * H(n-1)-®



so (UN1), (UN2) and (E4) imply

Iﬂ(l)j#(z)I#(S)- c ',ll(n—l)l
1 2

, .......... @ e @ e ¢
U W '
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e,ue,ve, = Z(‘/’ o f<+°>)(t) o (4.26)

teFy
ul(tl) e ur—1(tr—1)

/(1) 8—1(2)—8—H(3) * * H(n-1)-®

wheref®0 = f, + y;ajaty;.
In the second case,

; Tﬂ(l) *H(- l)T ql

€,Ug,vE, = Z(w o fu)(t)

teFyg

Ul(tl) te Ur—l(tr—l)

/(1) 8—H1(2)—8—H(3)- * * “H(n-1)—®

Use (UN3) and (N1) to split the sum into two parts correspogdot, = 0 andt, # O,

r Tf‘(l) M- l)T 4;

e.ugve, = Z(w o £ °>)(t)

teFy
tr 0

Ul(tl) T ur—1(tr—1)

& (1) @ (i) @[3 * * *H(n-1)@

Jl— AT—/l(l) v“(i*l)—T— Alv

\ _________
& = Y@ fu)(t)

teFf 7

trGFq — __________ _ _
Up(ty) - - - Ur_q(tioa)

& /i(1) 0128 H(3F)— * - H(n-1)—@
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wheref0 = f,. Now use (UN1), (UN2), (U2), (U1) and (E4) on the second suieto

J—ﬂ(l) N(Z)l—ﬂ@)- t '/l(n—l)l
6 ..o

S S S %
Ur W

1
eﬂueﬁvq;EZ(wof<‘°>)(t)____________§

T 5
teI‘q

=0 Uy (ty) - - - Ur—a(ti-1)

®/1(1)-@—{1(2)-@—H(3) * * H(n-1)-®

4.27
EI—-~-—T—#(i) .- -/t(j-l)—?—~-~4ll ( )
; ....... A e :
W
T 2L/ C I
95 W) Uea(ta)

"EFE : :
-/L(1)-8—/1(2)—@—H(3)- * * H(n-1)®

wheref® = ¢ (fy) + wja;aty?, ande (f) is defined by

(¥ o £)(® \74 = ) Woa(f)(® \/ - ()
(s AN

teFL
tr ey
Up(ty) - - - Ur—a(ti-1) ’ Up(ts) - - - Ur—a(tr-1)

treEFa
@ /1(1)—0—H(2)-@—H3) * * *H(n-1—@ & /i(1)—0—H(2)-@—H3) * * *H(n-1—@

Remarks:

(a) We could have applied these steps for &ny, andv, so we can iterate the process
with each sum.

(b) The most complex step in these computations is detengpipi. The following
section will develop anfécient algorithm for computing the right-hand side of

().

4.3.3 Computinggy via painting, paths and sinks.

Painting algorithm (u®). Supposeu = ujl,---U, € N decomposes according to
S,S, S, € W(assumer = 1). Paint flows down strands (by gravity). Each stepis il-

lustrated with the example= u,u, - - - ug, decomposed according 85,551 49 €
W.
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(1) Paint the left [respectively right] strand exitidg red [blue] all the way to the
bottom of the diagram.

(2) For each crossing that the red [blue] strand passesghrqaint the right [left]
strand (if possible) red [blue] until that strand eitherateas the bottom or crosses
the blue [red] strand of (1).

Let
u® = ug(ty)us(ty) - - - u(ty) painted according to the above algorithm (4.29)

Sinks and paths The diagramu® has acrossed sink at)if (i) is a crossing between a
red strand and a blue one, or

\ ..._.._-j."

@.
Note that sincel is decomposed according to a minimal expressiowWjrthere will be
no crossings of the form

.-_.® / (since ®/ would |mp|y-_-._:___

The diagramf®¥ has abottom sink at jf a red strand enterith bottom vertexanda blue
strand enters theg ¢ 1)st bottom vertex, or

for somej’ > j.)

jth vertex (j :}st vertex
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A red [respectively blue] path from a sinks (either crossed or bottom) i® is an
increasing sequence
ji<ja<--<ji=Kk

such that in/®
(a) Gw is directly connected (no intervening crossings){® by a red [blue] strand,
(b) if sis a crossed sink, thep = s,
(b') if sis a bottom sink, then

¢ in a red path, thesth bottom vertex connects to the crossifagwith a red

strand.
¢ in a blue path, theq+ 1)st bottom vertex connects to the crossingvith a
blue strand.
Let
® . _ |redpathsfro ® . _ |blue paths fro
P_(u®,s) = { sin | and P.(u%,s) = sin U (4.30)

Theweightof a pathp is

[T % ifpeP(fs),

p switches

wt — strands af)) 4. 3 1
P2V T . ifper s, @30
rands

Each sinks in u® (either crossedi) or bottom j) has an associated polynomil €
FolYi, Vo - - - Vi1, Y t] given by

gs= ), WPy 'wi(p). (4.32)
peP:(u®,s)
p’eP:(u¥,9)

Example (continued) If u = uyu, - - - ug decomposes according $5,5,%S145S: (as
in (4.28)), then

P_(U®,4) = P.(u% 4) =




55

withwt(1 < 3<5<7<8)=ys Wt(l<4<7<8)=yy;, and wi(6< 8) = 1. The
corresponding polynomial is

s = YsYa' + YiY7Ys - (4.33)

Lemma 4.4. Letu= uU,- - - U, andg, be as in (4.27) and«); suppose U is painted as

above. Then
o+ Z Ky 9j-
WimYi-gg | (D acrossed sink ; Aportom

sink

er(f) =f

Proof. In the painting,

P

% marks a strand travelled by (.

and

o
" marks a strand travelled by f .

@

Substitutions due to crossed sinks correspond to the natiahs in relation (U2), and
the sum over bottom sinks comes from applications of refg(it). O

Example (continued)Recallu = $35,55:51 45 Ss. Thenu® has crossed sinks a, (3),
and(4). The only bottom sink is at 4. Therefore,

ps(f) = f|Y4HV4*9@ + U@a)0a = f|y4o—»y4+y7y§1y6 + pia)(YsYs ™ + Yiy7Ys')-
Y379y ¥3-Y3+Ysyg v
Y2ry2 9@ Yoy2 +y§%>’6

(for exampleg, was computed in (4.33)).

4.3.4 A multiplication algorithm

Theorem 4.5 (The algorithm). Let G = GL,(Fy) and uv € N,. An algorithm for
multiplying g,ug, and gve, is

(1) Decompose & uiU, - - - U up according to some minimal expression in W (as in
(4.16)).

(2) Put gue,ve, into the form specified by (4.25), withw= w - diagfy, ay, . . ., an)
(w=mn(v) e W).

(3) Complete the following

(@) If £(usw) > £(w), then apply relation (4.26).
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(b) If £(u,w) < £(w), then apply relation (4.27), usin@hu, - - - u;)® and Lemma
4.4 to computep,.

(4) Ifr > 1, then reapply (3) to each sum with+ r — 1 and with

(&) w:=uw, after using (3a) or using (3b), in the first sum,
(b) w:=w, after using (3b), in the second sum.
(5) Set all diagrams not in ]\to zero.

Sample computation. Supposen = 3 andy = 1 forall 1 <i < 3 (i.e.. the Gelfand-
Graev case). Then

a a a

a a b a b b a b ¢
a b ¢ d e e

1. Theorem 4.5 (1):Letu = u;usur € N, decompose according 8s;s, € W, with
ur = diag@, b, c).

2. Theorem 4.5 (2):By (4.25)

Suppose

¢ —1—9 19
a b [+ d e e
(e,,>}<e,,)(e#>§<eﬂ) - = e 0

with urv = s,5; - diag(cd, ae be) (sow = s,5), andf, = —gyl — £y3 (asin (4.23)).

1 1

3. Theorem 4.5 (3b):Sincef(usw) < £(w), paintu;(t;)ux(t2)us(ts) to get (1uyus)® (as
in (4.29)),

*—1 1—
cd e he

1

= 5 2,We

3
teFg
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Now apply (4.27),

cd

- Z(w o £ °>)(t) - Z(w o f™)(t)

ter3 teF3
t3 eI‘

1 1

wheref(-9 = —2y, — ty; and by Lemma 4.4,
be b b c
O = @g(fu) + puas d)’g = ——Y1 —Y2YE1 - BY3 +Y3.
4. Theorem 4.5 (4):Setr := 2 withw := u,w = s; in the first sum anav := w in the

second sum.

5. Theorem 4.5 (3a) (3b):In the first sum£(u,s;) < €(S1), SO paintuy(t;)u,(ty) to get
(U1Up)2. In the second sun(u,s;s;) > £(s;s1), so apply (4.26),

*—1 1—e
cd e he

_ %Z(w o FCO)(t) + = Z(w o fEO)(t)

teFg ter3
t3=0 13€Fq
Z —0—1—o

wheref(0D = By, + By,yet — Rys + V3! — pe2yay;" = —2y1 — §¥s + Y5'. Now apply
(4.27) to the first sum,

e —1—8 Ell—bq
Z(Wf(w)ml, ; +—Z(wof<l (1) /

teF3 teI‘a

ty=tg=0 toeFy, t3 1 1

+ Z(w o HEON)(t)

3
tqu
t3eEFq

wherefC0=0 = 2y, — fysand F&0 = (1) + uw &' = -2va - ¥z 'va + 55"

6. Theorem 4.5 (4):Setr = 1 withw := ups; = 1 in the first sumw := s, in the second
sum, andv := $,5; in the third sum.
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7. Theorem 4.5 (3a) (3a) (3b)ln the first sum¢(s,1) > £(1), so apply (4.26); in the

second sund(s,s;) > ¢(s1), So apply (4.26); in the third suni(s;$15,$1) < €($15,51), SO
paintu,(t,) to getu?,

e e © —aet? %
Z(l/, o f(+0 -0, 0))(t)L + = Z(w o f(+01 0))(t) >_< :
t;?fo ter3 L )
cd%

lzer 13 =0

1—e
—beg

t T = S we o)
teI‘3
t3eEFq f _%1_.
wheref(0-0-0 = By, _ &y, 4 By, = Ly, and f+01-0) = Dy, 4 2871 _ y/ly . Now

apply (4.27) to the third sum

be ng_qugngl be
= —Z(wo feo-o °>)(t) . Z(wo FOoL-0) (1)
tng teF3
to=t3=0 tze].“q t3 1 1
c cd?I;_l —aeg egl
1
LA T e sty £ Do 10
g &
t1=0,t36F(’§| ty. t3eI‘q

wheref 00 = _Zy, 4 y-1 and

~1,,-1

ae , b
00 = gy (1000) 4 iy 02 ¥5" = —2vh = Yo + 5+ "+ S5

8. Theorem 4.5 (5): The first sum contains no elementsNyf, so set it to zero. The
second sum contains elements\afwhenbe = —aet,', so sett, = —2. The third sum
contains elements i, whencdt = ag so sett; = Z5. All the terms in the fourth sum



are basis elements.

—ablcd be e
1
=04+ = > (o 10030y
q3%:
12:—%.t3:0 1 1

1 1—e—1—@
_!bcd cdits ~ —aet’? " —beg?

- —Z(w o fC0+0D) () - —Zgw o f+01) (1)
tera e tera i 1
1=013=¢4 t1.t3eFy
1 be ae cd
= @w(_c_d) qzlﬁ(—m 20

1 o 1o
cdiyts ~ —aet? " -bet?

1 b c
=y w(—at1—5t3+t +1 +—dt11t31)

t1,t3€lg

59
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Chapter 5

Representation theory in the
G = GLn(Fq) case

This chapter examines the representation theory of umpdtecke algebras when
G = GLy(Fg). The combinatorics associated with the representatieoryhof G L,(F)
generalizes the tableaux combinatorics of the symmetoamrand one of the main
results of this chapter is to also give a generalization efRISK correspondence (see
Section 2.3.4).

Fix a homomorphisny : F; — C*. Recall that for any compositign = n, H,, is
a unipotent Hecke algebra (see Chapter 4). A fundamentalt mncerning Gelfand-
Graev Hecke algebras is

Theorem 5.1 ([GG62],[Yok68],[Ste67]).For all n > 0, H(, is commutative.

and it will follow from Theorem 5.7, via the representatitredry of unipotent Hecke
algebras.

5.1 The representation theory ofH,,

LetS be a set. ArS-partition 2 = (A, A1), ) is a sequence of partitions indexed by
the elements of. Let
PS = (S-partitions. (5.1)

The following discussion defines two s&@sand®, so that®-partitions index the irre-

ducible characters @& and®-partitions index the conjugacy classe<3f

Let L, = Hom(E,, C*) be the character group Bf,. If y € Lm, then let
Yo Fgme — C

r o q2r o qmir-1)
X - )/(X1+q +q7 +-+q )

Thus ifn = mr, then we may view., C L, by identifyingy € Ly, with y(y € L,. Define

L:ULn.

n>0
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TheFrobenius mapsre

F:F, — Fy ang  FiL oL
X B X y B
whereF, is the algebraic closure .
The map
{F-orbits oﬂﬁ;} — {f e Fy[t] | fismonic, irreducible, and(0) # O}
k-1
A AT fx:n(t—xq'), wherext = x ¢ F;

i=1
is a bijection such that the size of theorbit of x equals the degred{ f,) of f,. Let

f is monic, irreducible
andf(0)# 0

If n is ad-partition andl is a®-partition, then let
=Y d(Oin® and 1= lpla®)

fed =)

d = {f e C[t] | } and O = {F-orbitsinL}. (5.2)

be thesizeof n andA, respectively. Let the seR® and®® be as in (5.1) and let
PP=meP® | pl=n and PO={1€P°||1=n. (5.3)
Theorem 5.2 (Green [Gre55]).Let G, = GLn(F,).
(@) P? indexes the conjugacy classes¢f G,

(b) #? indexes the irreducible Gmodules G.

Supposel € P°. A column strict tableau P= (P«, P&2) ) of shapel is a column
strict filling of A by positive integers. That i is a column strict tableau of shape
A9 Write shP) = 1. Theweight of Pis the composition Wi) = (wt(P)1, wt(P)s, .. .)

given by
number of
@e®
If 1 €P® andu is a composition, then let

Hj = {column strict tableaul | shP) = A, wt(P) = u} (5.4)

and A A
H, ={1€P° | H; is not empty. (5.5)
The following theorem is a consequence of Theorem 2.3 anéaéim proved by
Zelevinsky [Zel81] (see Theorem 5.5). A proof of Zelevin'skheorem is in Section
5.3.

Theorem 5.3.The seﬂ%, indexes the irreduciblg,-modules; and

dim(#) = ).
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5.2 A generalization of the RSK correspondence

For a composition = n, letN, be as in (4.11) ant¥, as in (4.12).
The (H,, H,)-bimodule decomposition

H, = @wj(gm implies  [N,| = dim(H,) = Z dim(#H?)? = Z 2.
A€H, AeH, A€H,

Theorem 5.4, below, gives a combinatorial proof of this ttgn
Encode each matria € M, as ad-sequence

(@™, a ), fi e @,
wherea" € M(,(Z»o) is given by
ai(jf) = highest power of dividing &;.

Note that this is an entry by entry “factorization” akuch that
&j = l_[ Fan

Recall from Section 2.3.4 the classical RSK correspondence

Pairs @, of column strict
M (Z20) { Q) }

tableaux of the same shape

b (P(b), Qb))
Theorem 5.4.Forae M, let P(a) and (a) be thed-column strict tableaux given by
P@) = (P@™),P@™),..) and Q)= (Q@"™),Q@a"),...) for f e .
Then the map

Pairs (P, Q) of ®-column
N, — M, — { stricttableaux of the sam
shape and weight

v - a ~ (Pa) Q@)
is a bijection, where the first map is the inverse of the bigecin Theorem 4.2.

By the construction above, the map is well-defined, and salidbe steps are invert-
ible, the map is a bijection.
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Example. suppose: = (7,5, 3,2) andf, g, h € ® are such thatl(f) = 1, d(g) = 2, and
d(h) = 3. Then

g f°h 1 1
{h 1 g 1
=11 1 f f2 | Mgme
g 1 1 1
corresponds to the sequence
0200 (10009 (010 0\"
0000 0010 1000
(f1) 4(f2) _
@3- )=Ilg 01 2| loooo|l|oooo
0000 1000 0000

and

N

2"
b

[N
=

1 |(9) [1]2 |(h))( 1 3 |(f) 1]4] ()] (h))

(Pa). Q@) = ( 22

5.3 Zelevinsky’s decomposition ofndﬁ(wﬂ)

This section proves the theorem

Theorem 5.5 (Zelevinsky [Zel81]).Let U be the subgroup of unipotent upper-triangular
matrices of G= GL,(Fg), 1 E n andy, be as in (4.8). Then

Ind§(y,.) = € Card¢))G".
AeH,

Theorem 5.3 follows from this theorem and Theorem 2.3. Thefuwf Theorem 5.5
is in 3 steps.

(1) Establish the necessary connection between symmatratibns and the repre-
sentation theory o6.

(2) Prove Theorem 5.5 for the case whgn) = 1.
(3) Generalize (2) to arbitrany.

The proof below uses the ideas of Zelevinsky’s proof, butlieitly uses symmetric
functions to prove the results. Specifically, the followmtigcussion through the proof
of Theorem 5.7 corresponds to [Zel81, Sections 9-11] anaiEme 5.5 corresponds to
[Zel81, Theorem 12.1].
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5.3.1 Preliminaries to the proof (1)
Letu E nandG = G,. The group

02
P,= j | gi € G, = GL,(Fg) (5.6)
0
has subgroups

Id *

H1
Idﬂz

L,=G,®G,®---&G,, and U, = _ , (5.7)

0 d,,

whereldy is thek x k identity matrix. Note thaP, = L,U, andP, = Ng(U,). The
indflation maps a composition of the inflation map and the induction map,

Indf® : RlL,] — RP] — RG]
x e Infr) e IndS (nfl(y),

Inf“(): P, —» C
u —~ x(),

Supposel € P° andn € P? (see (5.3)). Lej* be the irreducible character corre-
sponding to the irreduciblé-moduleG* and let«” be the characteristic function corre-
sponding to the conjugacy clak$ (see Theorem 5.2), given by

where forleL,andue U,.

1, ifgeK”,

0, otherwise, for g € Gy

K'(9) = {
Define

R= @ R[G,] = C-spafy” | 1€ P®} = C-span«” | n € P°).

n>0

The spacd has an inner product defined by
<X/1,XV> = 5/11/,
and multiplication

x'ox =Indfis(y'ey’),  foraePP.vepy. (5.8)
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For eachp € ©, let{Y¥, YY), .. ) be an infinite set of variables, and let

Ac = (X) Ac(Y®),

@e®

whereAc(Y®)) is the ring of symmetric functions ih{(“’),Yg"), ...} (see Section 2.3.3).

For eachf € @, define an additional set of variablgg.”, X{", .. .} such that the sym-
metric functions in theY variables are related to the symmetric functions inXheari-
ables by the transform

p(Y?) = (LM Y E(pe (X, (5.9)

*
X € qu

where¢ € ¢, f, € @ is the irreducible polynomial that hasas a root, angbs(X() = 0

if 2 ¢ Zso. Then
AC = ®AC(X(f))

fed

Forv € P, let s,(Y¥) be the Schur function an@,(X(";t) be the Hall-Littlewood
symmetric function (as in Section 2.3.3). Define

si=[ [sw(Y¥) and P, =g [ [Pu(X";q M), (5.10)

pE® fed
wheren(y) = 3¢ d(f)n(zM) and for a compositiop, n(x) = ¥ %)(i — L)u. The ring
Ac = C-sparfs; | 1€ P° = C-spanP, | neP?)

has an inner product given by
(S1,8) = O
Theorem 5.6 (Green [Gre55],Macdonald [Mac95]).The linear map

ch: R — Ac
¥t - s, foraep®
K1 +— P, forneP®,

is an algebra isomorphism that preserves the inner product.

A unipotent conjugacy classds a conjugacy class such thgt) = ¢ unlessf =
t—1. Let
U = C-sparc” | ' =0, unlessf =t-1} C R

be the subalgebra of unipotent class functions. Note th& dy)) and Theorem 5.6,

ch@) = Ac(XED).
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Consider the projection : R — U which is an algebra homomorphism given by

Y!g), if ge Gis unipotent,

A _ Q]
(me')(Q) = { 0, otherwise AP

Thens = chomoch™: Ac —» Ac(XED) is given by

A(pYW)) = 7| (-1) Z f(X)IO%(X”*)) (by (5.9))
X € Fy, (5.11)
= (-1)“E(Dpea (X)) +0
= (=% pgy (XE).

5.3.2  The decomposition ofndS (¥ ) (2)

The representation I@dw(n)) is the Gelfand-Graev module, and with Theorem 2.3, The-
orem 5.7, below, proves thé{(, is commutative.

Theorem 5.7. Let U be the subgroup of unipotent upper-triangular matsicé G =
GL(Fgy). Then

chind(ym)) = Y s, whereht(1) = max¢(1¥) | ¢ € ).

1PQ
ht(1)=1

Proof. Let

Y:R — C ~ cht y
and YA R C. 5.12
e A IndS ) c—R— (6-12)

For any finite grougH andy, y € R[H], let

14: H

ﬁ
h —

1w i and (= " >
The proof is in six steps.

(@) P(a(YD)) = 6, where 1= 1z,

(b) ¥(x*) = dim(erG*) for A € P°,

(c) P(fg) = P()¥(g) forall f,ge Ac(YW), where 1= Ig.

(d) Porx =",
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(e) P(f(Y®)) = P(f(YD)) for all f € Ac(Y®),
() P(s) = Oht(1)1-
(a) An argument similar to the argument in [Mac95, pgs. 286}3hows that
ch(e(Y®)) = 1,

(see [HR99, Theorem 4.9 (a)] for details). Therefore, bybErous reciprocity and the
orthogonality of characters,

P(ad(YD)) = (L, INAE (W)Y = (Lu Yidui = S

(b) Since there exists an idempoterguch thaG* = CGeand Incﬁ(¢(n)) = CGep),
the map
enCGe — Homg(G', CGeypy)

Yq: CGe — CGey

fnge Xe > Xegg

is a vector space isomorphism (using an argument similaetptoof of [CR81, (3.18)]).
Thus,

P(r') = (¢, Ind () = dim(Homs(G, Ind5 (¥(m)))
= dim(ey CGe) = dim(enG").

(c) By (), (e (YM))¥(es(YD)) = 6,164. It therefore shices to show that
Ple(YM)es(YD) = 61165, (sinceAc(YW) = Cley(YW), ex(YD), .. ]).
Suppose + s=nand letP = P, . Then
Fle (YD)ei(YY)) = ¥(IndS(1p)) = dim(enCGe).
SinceT C P, ep = egnep, G = | |y UVU, andN = WT,
€nCGer = e, CGeanep = C-spangpwemer | we Wi
If there exists I< i < nsuch thaiv(i + 1) = w(i) + 1, then
ErWer) = EmWXi1 (D)€ = €m Xty wiy+2 (DWe) = Y(€rWer).

Therefore gnwean = 0 unlessw = w,. If r > 1 of s> 1, then there exists £ i < n
such thatx,1;(t) € P, SO

€W € = €nWm Xi+1i(t)er = €nXnin-ix1(DWmnep = Y(t)emWrner = 0.
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In particular,
dim(enCGep) = 0.

If r = s= 1, thenP(y 1) is upper-triangular, so
EaW2er # 0
and dimgCGe) = 1, giving'P(e (YD)es(YD)) = 6,164.
(d) By Frobenius reciprocity,
O, Indg (W) = (Reg" (), ¥m)u,
= (Reg" (*(x")), ¥(mdu, = (2", Ind (),

so¥Y =%Yon.
(e) Induct om, using (c) and the identity
n-1
(=1 pa(YD) = ney(Y®) = > (-1 " p(YD)er o (YP),  [Mac951.2.11]
r=1

to obtain®(p,(YY)) = 1. Note that
P(pu(¥)) = Pla(pa(Y))) = F(-1)" 2 pn(X2)) = PP YP)

= ¥(pi(YD)) = 1 = P(p(YW)).
Since is multiplicative onAc(Y®),
P(p,(Y)) = 1=¥(p, (YY),  forall partitionsy.
In particular, since¥ is linear andAc(Y®) = C-sparip,(Y®)},
P (YD) = P(F(YD)),  forall f € Ac(YW).
Note that (e) also implies th&t is multiplicative on all ofAc.

(f) Note that

Y(s) = ¥

[ SA(@(Y(*"’)] = [ﬂ sﬁw(Y‘”)) = [T (v®),

@e® pe® pe®

where the last two equalities follow from (e) and (c), resivety. By definitions, (YY) =
dete,_i.;(Y®)), so

~ 1, if ¢(v) =1,
@y —
P(s(Y) _{ 0, otherwise,
implies
chindiww) = ), Hs)si= ) s. :
/leP(r? /leP(ﬁ)

ht(1)=1
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5.3.3 Decomposition ofndS () (3)

Supposel, v € P°. A column strict tableau P of shapeand weightr is a column strict
filling of A such that for each € O,

Sh(P(“")) 1) and WtP(‘”)) -
We can now prove the theorem stated at the beginning of thisose

Theorem 5.5 ([Zel81])Let U be the subgroup of unipotent upper-triangular matrices of
G = GL,(Fy), # E nandy, be as in (4.8). Then

Ind§ (v,) = P Card(4)G".
AeH,

Proof. Note that 5
Indy*(,) = CP,e, = CP,e,,€,.
where

__1 1 _ 1
€ = UnL) Z Y, (U )u and €, = U Z u. (5.13)

ueunL, ueU,

Thus,

IR

Ind(,) = Inf*(Indg, (w)

Inf (Indﬁﬁ(lﬁ(m)) ® Ay (Y1) @ -+~ @ Incl (‘/’(“‘)))

IR

In particular, by the definition of multiplication iR (5.8),

I, = chnf(W,) =TTy - T,e Where T, = > s,

1eP2 ht(1)=1
Pieri’s rule (2.10) implies that fat € P2, v € P9 and htf) = 1,
SS, = Z S, o) I, = Z KiSt,
yeP2, S IH 120 AeP©
where
Cardd = Yo Cy1 Cy2C---Cyr=a | [H")| =1

(lli-f—l)
Cardcolumn strict tableaux of shapeand weightu} = |ﬁj|.

Ko

By Green’s Theorem (Theorem 5.6), ch is an isomorphism, so

Ind5(y,) = ch™([,) = > [Hiich™(s)) = P Card(H)G". O

/le‘ﬂﬂ /le‘ﬂﬂ
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5.4 A weight space decomposition off,-modules

Letu = (w1, o, ..., ue) Enand letP,, LH andU, be as in (5.6) and (5.7). Recall that

Z wu(u)u

ueU

Theorem 5.8.Forae M, let T, = e,v,e, with v, as in (4.14). Then the map

Hiy @ Hiyy ® - @ Hiy — H,
Ti® Ty ®---®T(ry = Tina(i)e-a(f) for (fi) € M,

is an injective algebra homomorphism with image= e,P,e, = e,L,€,.

Proof. Note that

Ty @@ Tty = 157 L UnLP > [l_l w06y Jle(fl)y1®'“®XfV(fc>yc-
U

Xi,Yi€Uy,

SinceU = (L, n U)(U,l), L,nU=U, xU, x---xU,, andy, is trivial onU,,,

T(fl)ea(fz)ea...e;(f[) U |2 Z Wy(X a2 l)X(V(fl) Vi) @ @V(f[))y
x,yeU
-1, -1
|U N |_ |2 Z "Dﬁ(xl yl O XY, )efﬂ]le(fl))ﬁEB <D ng(f,)ygebl],
MU xyieUy,

whereg, is as in (5.13). Sincé, < Ng(U,), the idempotent[, commutes with
XiV(fY1 @ - - - @ Xty and

Tie(te-a(f) = ILN U|2 Z (l_l Wﬂ()ﬁ YiH) J X1V(1)Y1 © - - - © XeV(1,)Ye-

X, yi€Uy \i=

Consequently, the map multiplies By, and change® to &, so it is an algebra homo-
morphism. Since the map sends basis elements to basis é¢emeralso injective. O

Remark. This is theGL,(F,) version of Corollary 3.5.

Let £, be as in Theorem 5.8. By Theorem 5.1 edd}, is commutative, sa_, is
commutative and all the irreduciblé,-modules/; are one-dimensional. Theorem 5.3
implies that A

H,) = (©-partitionsA | |A] = p;, ht(2) =1

indexes the irreduciblé{,,)-modules. Therefore, the set

L= Fliuy X Hyy X -+ X Hiy =y = V20 70) | 1 € Hi) (5.14)
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indexes the irreduciblé,-modules. Identifyy € £, with the mapy : £, — C such that
yVv = y(y)v, forallye £,,ve L.
Fory € L, they-weight space Yof an,-moduleV is
V,={veV | yv=y(y), forallye L,}.

V=PV,

76.2,1

Then

Letd e PP andy € fjﬂ. A column strict tableau P of shapeand weighty is column
strict filling of A such that for each < 0,

sh(P(“’)) =@ and WtP(“’)) (b,(sv)l b,(so) (so)|)
Where|yi(“’)| is the number of boxes in the partitioﬁ") (which has length 1). Let
H} ={PeH, | shP)=21,wtP) =y}

For example, suppose

_ (BEP(W), Bj(wz)’ H(ws))

v = (\:D(‘Pl)’ D(‘Pz), \:‘(903)) ® (D:'(sﬂl)’ \:‘(903)) ® (D(‘Pl), \:‘(902)) ® (D(‘Pz)) .

and

Then 3(w1) [ar3fe2) [gvs) 3J(2) ()()
A {(” e l“)}

; = ((m) (tpz) I(ws)) ((m) (tpz) I(ws))
Theorem 5.9. Let H; be an irreducible/,-module andy € £,,. Then
dim(#2), = Card(Hy).
Proof. By Theorem 2.3 and Proposition 2.2,
dim((H.'),) = (Reg!(H}), L) = (Re$, (G), P}) = (G', Ind, (P)),

whereP}, = Inf ”(Ly) Therefore,

dim((#;),) =c},  where s,s,---s, = Z C)St.
AePO

Pieri’s rule (2.10) implies; = |7:(;|. O
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Chapter 6

The representation theory of the
Yokonuma algebra

6.1 General type

Let 1 :U — C* be the trivial character, and let

1
= — CG 6.1
S TP (6.1)

ueU

be the idempotent so that Ifi¢ll) = CGey. Then the Yokonuma algebra

Hi = Endc(CGey) = ,CGey

has a basis
{eaver | Ve N}, indexedby N=<(,h|i=12,...,¢, heT),
where& = wi(1) = x(1)x_, (-1)x(1), andT = ¢hy(t) | H € bz). Recall that(t) =
Py, (1)
The map
CT — 7’{]1
h — ehe

is an injective algebra homomorphism (see Chapter 3 (E8))vE N, write
Ty = eqvep € Hay, with Ti=Tg, and h=T, heT.
Theorem 6.1 (Yokonuma).Hj is generated by Ti = 1,..., ¢, and he T with relations
Tih=s(h)T;,
T?=q'h(-1)+q* ) h@OT,

tely

TTTi---=T;TiTj---, where m is the order of s5; in W,
N—— N————
m; m;

Tth = Thk, h, keT.
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Proof. Consider the produgié; € N for i # j. Note that

ewitien = e[ e Jocienen (by (3.17)

aFq;

= enfi(]—[ ea)em efjer (by Chapter 3, (E1))

aFQ;

= exgiengier = (ewgien)(ensien).
Thus, ifv =viv, - - - v,vy € N decomposes according$9s,, - - - 5, € W (see (3.4)), then
Ty =eviVe - -Vivreg = Ti, Ty, -~ Tj v (6.2)

The Yokonuma algebra is therefore generatediby=1,2,...,¢,andh e T.

The necessity of the relations is a direct consequence2)f (BI3), (UN3), and (N2)
(the last three are from Chapter 3). Foffgiency, use a similar argument to the one
used in the proof of Theorem 3.5 in [IM65]. |

6.1.1 A reduction theorem

Let T index the irreducibl€T-modules. Sincd is abelian, all the irreducible modules
are one-dimensional, and we may identify the lapel T of V¥ = C-spariv,} with the
homomorphisiy : T — C* given by

hv, = y(h)v,, forheT.
Supposé/ is anHz-module. As alr-module

V=EPV,.  whereV, ={veV | hv=y(hv, heT}.

yeT

Note that

1
Hy= P Hyr,.  where 7, = T > v Hh (6.3)

yef heT
Recall the surjection : N — W of (3.3). Use this map to identify

W=5,S,...5, €W «— w=¢&&,...& €N, forr minimal. (6.4)
Thus, thew-action onT

(wy)(h) = y(w(h)), forwe W, heT,andyeT,
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implies that fory € T, v, € V,,

hTwv, = ToWw '(h)v, = y(Ww'h)T,v,  forallheT.

Thus,
Tw(Vy) € Viy. (6.5)
Let
W, ={weW | wy) =7}
and
T, = 7,Hyt, = C-spanir, Tyt, | we W,}. (6.6)
Remarks

1. Since the identity of{y is e; and the identity of7, is 7, the algebra, is not a
subalgebra of;. In fact, 7, = Endy, (Ind’2(y)).

2. If Vis anHz-module, then
V=V, andso 7,V=7)V,.
In particular,V, is an7-,-module.
Theorem 6.2.Let V be an irreduciblé{;-module such that # 0. Then
(a) V, is anirreducible7’,-module;
(b) if Mis an irreducible7”,-module, therHy ®7, M is an irreducibleHy-module;

(c) the map
Ind(V,) = Ha®r, V, — V
Tw®V, = Ty,
is anHy-module isomorphism.

Proof. (a) Let 0# v, € V,. The irreducibility ofV implies thatHyv, = V, so for any
v eV,, there exist elements,, € C such that

V= Z Cuvy TwTyVy (by (6.3))
weW

= Z Cuy TwTyVy (by the orthogonality of characters ©)
weW

= Z Cuuy Ty TwTyVy. (by (6.5) and since € V,)

weW,
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Since an arbitrarily chosewnis contained ir7,v,, we haver,v, = V,, makingV, an
irreducible7”,-module.
(b) SupposéM is an irreducibles”,-module. Let
V = Ind/*(M) = Hy ®7, M
= C-spanfTur, ®V | We Wy #yeT,ve M}
= C-spaifTy,®Vv | we WW,,ve M}
where the last equality follows from

,eV="1,®T,V=1,1,0V=00V, forv=+y.

Note thatV, = C-spafe; ® v | v € M} = M. In particular,V, is an irreducible
7,-module andHV, = V.

SupposeV has a nontrivialHz-submodulev’. SinceV is induced fromV,, there
must by soméd,, € Hj such that

Tu(V) NV, # 0.

ButV’ is anHy-module, sov’ NV, # 0. As an irreduciblé™,-moduleV, c V’, and by
the construction oY/,
HyV' 2 HyV, = V.

Therefore,V contains no nontrivialproper submodules, making an irreducibleH;-
module.
(c) Follows from the proof of (b). m|

Let T /W be the set ov-orbits inT. Identify T /W with a set of orbit representatives,
and fory € T/W, letT,, index the irreducible modules Gf,.

Corollary 6.3. The map

Irreducible | Pairs (v, 1), _
Hy-modules yeT/WAeT,

|nd$;(7*;) o (v, 1)

is a bijection.

6.1.2 The algebray,
Let B=UT be a Borel subgroup @. Since

B — T
uh » h
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is a surjective homomorphism,: T — C* extends to a linear characteof B given by
v(uh) = y(h). Note that

1 . .
ey = g Zy(b Db (eg asin (6.1))

beB

Thus,
7, = ,e1CGert, = Endss(Ind§(y)) = H(G, B, ),

where ify is the trivial characterd, then?H (G, B, 1g) is the Iwahori-Hecke algebra.

Proposition 6.4. Lety € T be such that Wis generated by simple reflections. Then
is presented by generatof$; | s € W,} with relations

T2 _ { gt +aia- DT, if y(h,®) = Lforallt € F,
-

y(he, (=1))a%, otherwise,
TiTiTi---=T;T;T;---, where ny is the order of s; in W.
N——— ——
mj mj

Proof. This follows from Theorem 6.1 and

(Z h,, (t))ry = > y(h, ()7, = { éq -, if y(hy(t) = 1forallte F;,

otherwise.
teFa te]Fa

6.2 TheG = GLy(F,) case

6.2.1 The Yokonuma algebra and the lwahori-Hecke algebra

If ¥, = 1 is the trivial character d), thenu = (1"). LetT; = egSeq and recall that
hg;(t) = Idj_1 @ (t) ® Idsj. In the casés = GLy(F,), Ha has generators;, h,,(t), for
1<i<n, 1< j<nandteF; with relations

T2 =g+, (-1) ) hy (O, (YT,
teF
TiTiaTi = TiraTiTisa, TiT; =TT, li—jl>1
h,(OTi = Tih,, (),  wherej’ = s(j),
h., (@)h, (b) = h, (ab), h; (@h.;(b) = h(b)h;(a), abel,

The Yokonuma algebra has a decomposition

1
Hy= P Har,,  where 7, = T > v Hh

»ye'f heT
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Fix a total ordering< on the seﬁ@‘(’; = {¢1, 2, ..., ¢q1} Of linear characters df,
such thatp; : Fy — C* is the trivial character. Supposes T. Sincech, (1) | teF) =
P*

q)

y(h) = y(he, (h))y(he,(h2)) - - - ¥(hs,(hn)),  whereh = diag(y, hy, ..., hn) € T,
= y1(h1)ya(h2) - - - yn(hn), wherey; € I@‘;

Thus, everyy € T can be writtery = ¢;, ® ¢, ® - -- @ ;..
Letv = (vy,v2,...,vn) E nwith v; > 0. Write

V=18 - ®P1®Pr® - QY@ - QYp®---Q¢, and Ty =Ty,
~———

v

(6.7)

y1 terms vp terms vp terms
Note that they, are orbit representatives of thé-action inT. Let

W, ={weW | W(y,) =y} =W, &eW,,®---dW,,
T, = 7, Hyt, = C-spanr, Ty7, | we W,}.

Note thatWw, is generated by its simple reflections.
If s isinthekth factor ofW, =W, @ W,, ®--- & W, , then write

s eW,,.

Lemma 6.5. Letv = nand’T,, = 7, T,7, for w e W,. ThenT, is presented by genera-
tors
{Ti | seW,}

with relations
TE=qt+a(-1a(@-1)Ti, forseWw,
T T T = "Tid Ti' Tia
TT =TT, forfi-ji> L

Proof. Note that ifs € W, theny,(h, (t)) = y,(hs,,(t)). Thus, the lemma follows from
the Yokonuma algebra relations. m|

Thelwahori-Hecke algebr& C Hj is the algebra
Tn = Hy, (recallg, is the trivial character).

In 7, write
Ii = T(n)TiT(n).
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Corollary 6.6. Lety = (v1,...,vn) E n. Index the generators &f 7, by{i | 5 € W,,}.
Then the map

T, — T, T, ® 0T,
T+ oa-Dig---0l’iele -1, forseWw,,
k- 1terms n -k terms

is an algebra isomorphism.

Proof. Let
v =(0,...,0,%4,0,...,0) £ %
~— S~—
k- 1terms n-kterms

Then the map
T — T
K)
T s el

is an algebra isomorphism by Lemma 6.5. Corollary 6.6 foidy applying this map
to tensor products. O

6.2.2 The representation theory ofr,

By Corollary 6.6, understanding the representation thebry, is the same as under-
standing the representation theory of the Iwahori-Hecgelaiasr, .

Let u + n be a partition. Astandard tableau of shapeis a column strict tableau of
shapeu and weight (1) (i.e. every number between from 1n@ppears exactly once).
SupposeP is a standard tableau of shgpelet

cp(i) = the content of the box containing

. g-1 (6.8)
Ce(l) = Tt

Theorem 6.7 ([Hoe74, Ram97, Wen88])Let G = GL,(F;). Then
(a) The irreducibler,-modulesy?) are indexed by partitiong + n,
(b) dim(7}) = Cardstandard tableau P shP) = u},

(c) LetTh = C-spanvp | shP) = u, wt(P) = (1")}. Then
live = g *Cp(i)Vp + (1 + Cp(i))Vsp

where ¢p = 0if s;P is not a column strict tableau.
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Recall from Chapter 5, af;-partition A = (449, 4%, ..., A%a9) is a sequence of
partitions indexed by;. Let

14| = |A9D] +12%D| + ... + |A¥%D)| = total number of boxes
Letv = (vy,va,...,vn) E nwith v; > 0 andy, as in (6.7). Astandardv-tableau
Q= (Q(‘Pl), Q(wz), e Q(‘Pq—l))
of shapet is a column strict filling ofd by the numbers,2, 3, ..., nsuch that
(a) each number appears exactly once,

(b) j € Q¥ if 5 € W,

Let
7 = {standard-tableauQ | shQ) = 4}, (6.9)
7, = {F;-partitiond | 7. # 0}
= {F;-partitiona | [A%)] = ). (6.10)

Example. If v = (3,0, 1,0), theny, = p1 ® ¢1 ® p1 @ p3. The setf, is
{Djj(wl), 0059, 09, gfe0) (092, gle2, ) o) @(“’1’, 0 ¢, @(¢4))} ,
and, for example,
~ ¢1) #3)
GEH2) _ (@2, 042, @), 09 , (B, 02, @+, 99))

LetQ € 7. Supposes; € W, so thatj € Q). Write

Qi = ¢ (6.11)

co(j) = the content of the box containirign Q“, (6.12)
. -1

Coli) = s (6.13)

1 — gee)—Ccali+1)
Corollary 6.8. Letv = (v1,v2,...,vn) E nwithy; > 0and{(v) = n. Then
(@) The irreducibler,-modulesy ! are indexed byt € T

(b) dim(7) = Card(7 ).
(c) Let7/ = C-sparivg | Q € 74}. Then
"Tivg = 4 1Q;(=1)Cq(i)Vo + 4 1Q;(=1)(1 + Co(i))Vs 0
where ¥ = 0if 5;Q is not a column strict tableau.

Proof. Transfer the explicit action of Theorem 6.7 across the ispmem7, = 7., ®
7,®---®7,, of Corollary 6.6. o
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6.2.3 The irreducible modules ofHy

The goal of this section is to construct the irreducibig-modules. According to Corol-
lary 6.3 and (6.7), the map

{ Pairs ¢, 4), vEE N, } - { Irreducible}

vi>0,(0v)=n1e7T, Hiy-modules (6.14)
(v, A) o Ind;*(77))
is a bijection.
Let W/v be the set of minimal length coset representatives/,. Then
Ind(7)) = Hy ®r, T,
= C-spafTy ® Vo | we W/y,sh@Q) = 2, wt(Q) = y,}. (6.15)
Note that the map
Pairs (v, Q), 3 _an
{We Wiy, O _ch} «— {tableauQ | sh@Q) = 2, wt(Q) = (1")} (6.16)
(w, Q) - wQ

is a bijection (sincav € W/v impliesw preserves the relative magnitudes of the entries
in Q¥ for all ¢). For example, under this bijection

(m (. @, .(¢3))) o ([EE, g, o)

(since 2< 3 in Q¥ on the left side, 4 6 in Q¥ on the right side). Write

Vwo = Tw ® Vo.
If |[A] = n, then let
H; = { tableauQ | sh@Q) = 1, wt(Q) = (1")}, (6.17)
7{1 = { -partitionsa | |A] = n}. (6.18)

Remarks.

1. In the notation of Chapter 5,

Hy = {©-partition | Hj # 0}.

2. The map

Pairs ¢, 1), v E n, ~
{ v >0,60)=nAeT, } — Th

(v, ) “ A

is a bijection, so by (6.147,?1 indexes the irreduciblg{;-modules.
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SupposeQ is a tableau of shapeand weight (1). As in (6.11)-( 6.13), ifQ¥ has
the box containing, then write

Qj = ¢,
co(j) = the content of the box containirign Q®,
. -1
Co()) = d

1— qrec(+D)"
Theorem 6.9.
(@) The irreducibleHy-modulesH] are indexed byt € Hy.
(b) dim(H;) = Card(#y).
(c) LetH; = C-sparfvg | Q€ ﬁﬁ} asin (6.15) and (6.17). Then
hvg = Q1(h1)Q2(hy) - - - Qn(hn)Va, for h = diaghy, hy, ..., hy) € T,

q 'vso, if Qi > Qis1,
Tivg =9 Q(-1)g*Cqli)vo + Qi(-1)a*(1 + Cq(i))Vso. if Qi = Qiia,
VsQ if Qi < Qis1,

where ¥ = 0if 5;Q is not a column strict tableau.

Proof. (a) follows from Remark 2, and (b) follows from (6.15) andi(B).
(c) Directly compute the action off; on

Hy = Ind(7)) = C-spariT,®Vq | we W/, Qe T4
For1<i < n,if £(sw) < £(w), then
TiTu® Vg = TTsw ® Vg
= 0 Tew®Vo + 4" (1) > he (O, () Tw & Vg

teFq
= 07 Taw® Vo + g (WQH(-1) ) (W OWQra(t)Tuw® Vo

teFq

Sincef(sw) < £(w) can hold only if wWQ); # (WwQ)i,1, the orthogonality of characters
implies

TTw®Vo =g Tsw® Vg + 0. (6.19)

If £(sw) > £(w), then there are two cases:
Case 1i/(swsj) < £(sw) for somes; € Wy,
Case 2£(swsj) > {(sw) for all s; € W5,
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In Case 1,

= Tsws ® Qj(—=1)q "Cq(j)Vq + Qi(—=1)a (1 + Cq(i))Vs0
= Qj(-1)4 *Cq(J) Tsws ® Vo + Qi(=1)a™ (1 + Co(j) Tsws ® Vso- (6.20)

In Case 2,

TiTW ® VQ = TSW ® VQ. (6.21)
Make the identification of (6.16) in equations (6.19), (6,28nd (6.21) to obtain the
‘Hy-action onHj. O

Sample Computations If n = 10 for Hy, then
Tv ) e e\ = V O P p——
[3[5ng¥Y [1]6]¥2 [2]¥3 [3[5[10¥Y [2]6]¥2 [1]¥¥)°
(B B ) B )
T2V BERIYY [A[E“? [E1«? = Cl_lV Z[5ad“Y [iTe/¢2 [543’
Tav 1) ) e\ = —p1(-1)q v +0
BEE0“Y [1]6]¥2) [2]¢¥3 1 (¢1) (‘PZ) (¢3) 5
(R = ) BB A B

Tav ) T2 ()_wV ST P ——
¥1. (%) ¢3)\ — Y1 ¥2 ¥3
EEE B2 E) " av1l EEET.EET)

- q
+ ‘101(_1) (q ! + CITL) V((Wl)’ (wz)’ (ws))'

A Character Tablg{; for n = 2:

a b a b
T I X
) #i(ab) ¢i(-ab)
() ¢i(ab) —pi(-ab)g
O9.09) | ei@epi0) + i@ 0
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Appendix A

Commutation Relations

The following relations are lifted directly from [Dem65,dprosition 5.4.3]. LeG be a
finite Chevalley group over a finite fiele}, with g elements, defined as in Section 2.2.2.
LetR=R" N R be asin Section 2.2.1. Let 8 € Rsuch that

B#-a and |a(Hp)l < [B(H.)I.
Letl,r € Z.o be maximal such that

B-la,....8—a,B,B+a,....B+ra}C R

Note thatl + r < 3 [Hum72, Section 9.4]. Thus, the following analysis in@sall the
possibld andr values fora andg.

e r = 0implies
%3(b)X%:(8) = X.(8)x%5(b),

| =0 andr = 1implies

X3(0)%, (@) = X, (@) Xs(0) X+ p(ab),

| =0 andr = 2 implies

Xs(0) % (2) = X, () X5 (D) Xo5(£20) Xo045(2:0%D),

| =0 andr = 3implies

X5(0) X (@) = X, (8)X3(0)Xo -+ 5(£80) Xog+5(2:820) Xy 5 (£:830) X304 25 (x8%D7),

| =1 andr = 1 implies

X3(0)%, () = X, (Q)Xs(0) X+ p(2ab),

| =1 andr = 2 implies

X5(0) % () = %o (2)%5(0) Xo45(£:280) X5 (£38°0) Xy 4 25(: 3207),

| =2 andr = 1 implies
%3(D) X% (8) = X.(8)X%5(b) Xo45(£3a1),

wherea, b € F; and+1 depends in part on the original choice of Chevalley basidema
in Section 2.2.2.
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