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Abstract
Let G be a finite group of Lie type (e.g. GL,(Fy)) and U a maximal unipotent subgroup of
G. Tf ¢ is a linear character of U, then the unipotent Hecke algebra is H,, = Endee(Ind$ (1)).
Unipotent Hecke algebras have a natural basis coming from double cosets of U in G. This
paper describes relations for reducing products of basis elements, and gives a detailed de-
scription of the implications in the case G = GL,(F,).

1 Introduction

Unipotent Hecke algebras interpolate between two classical Hecke algebras, the Gelfand-Graev
Hecke algebra [St, Yol] and the Yokonuma algebra [Yo2] (a generalization of the Iwahori-Hecke
algebra). These two classical algebras have not generally been studied from the same perspective,
and an underlying philosophy of this paper is that techniques employed in the study of one
classical algebra not only apply to the other, but also to all unipotent Hecke algebras.

The Gelfand-Graev Hecke algebra is a commutative algebra that has connections with
Chevalley group representation theory [DM], unipotent orbits [Kal], and Kloosterman sums
[CS]. Despite being commutative, computing products in the standard double-coset basis is a
challenging problem. The definition of a Hecke algebra implies [CR] that if T}, and T} are two
basis elements, then

1

Tp Ty = Zc};th, where ¢, = i Z W (uy  uy tuguy), (%)

v uq,ug,u3,ug €U

upkug=vugh~luy
but this formula is unhelpful for many applications. Using a geometric approach in [Cu], Curtis
analyzed which elements appear in the sums of (%), but computing products in the Gelfand-
Graev algebra still remains difficult.

This paper provides a uniform solution to the multiplication problem for Yokonuma Hecke
algebras, Gelfand-Graev Hecke algebras, and all unipotent Hecke algebras. The idea is that
in a unipotent Hecke algebra the ¢}, in (x) are determined by generalizations of the braid-
like relations of the Iwahori-Hecke algebra, and that the multiplication in any unipotent Hecke
algebra can be done in a manner directly analogous to the way it is done in the Iwahori-Hecke
algebra.

Let G be a finite Chevalley group with a maximal unipotent subgroup U. Suppose ¢, : U —
C* is a linear character of U. Then the unipotent Hecke algebra H(G,U,,,) is

1
H,, = Endcg(Indf (1)) = e,CGe,,, where e, = Il Z PYu(u .
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Fix a subgroup N C G of double coset representatives
G= |_| UvU, and let N,={veN | eyve, #0}.
vEN
Then the set {e,ve, | v € N,} is a basis for H,, [CR, Prop. 11.30].

Examples.

1. The Yokonuma Hecke algebra. If 1), = 1 is the trivial character, then Ny = N. Let
W = (s1,52,...,5¢) be the Weyl group of G and T' = (h;(t) | 1 <i < {,t € F}) be a
maximal torus so that N 2T x W. For w € W and h € T, let Tj,, = eyhwey. By [Yo2],
the Yokonuma algebra Hy has a basis {T},, | v € N} with relations

Ts,w,s if {(s;w) = L(w) + 1,
T0Tw=1{ ¢ ' Thciysw + 070D Thyw i L(siw) =Lw) —1, 1<i<liweW,
teFs
ThTw = Thw, heT,weW,
TyTy = Thi, h,keT,

where if w = s;,8,...5, € W for r minimal, then ¢(w) = r. These relations give an
“efficient” way to compute arbitrary products (equeq)(eqvey) in Hy.

2. The Gelfand-Graev Hecke algebra. If 1, is in general position, then the Gelfand-Graev
module Ind{(¢,) is multiplicity free as a G-module ([Yol],[St, Theorem 49]). The corre-
sponding Hecke algebra H,, is therefore commutative. However, decomposing the prod-
uct (eyue,)(eyve,) into basis elements is more challenging than in the Yokonuma case

[Ch, Cu, Ral.

Section 3 describes some of the subalgebra structure of unipotent Hecke algebras. The main
results of the paper are in Section 4:

Theorem 4.1 and Corollary 3 give relations similar to those of the Yokonuma algebra
(example 1, above) for evaluating the product (e,ue,)(e ve,), with u,v € N, in
any unipotent Hecke algebra H,,.

Section 5 applies the main results to the special case when G = GL,(F,), the general linear
group over a finite field IF, with ¢ elements. Readers unfamiliar with the discourse of Chevalley
groups may skip ahead to Section 5 (which is independent of Sections 3 and 4).

There are several natural ways to generalize unipotent Hecke algebras. In a series of papers
[Kal, Ka2, Ka3] Kawanaka has analyzed a family of modules obtained by relaxing the maximality
condition on U. There has also recently been a growing interest in a larger family of characters
known as super characters [An, ACDS]. Seeing which aspects of the techniques associated
with unipotent Hecke algebras extend to the Hecke algebras of these characters would be an
interesting continuation of this work.
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mathematics department, the time supplied by several grants (VIGRE DMS-9819788, NSF
DMS-0097977, and NSA MDA904-01-1-0032), and above all the patient help and insights of my
advisor Arun Ram. I also appreciate the thoughtful comments and insights of an anonymous
referee.



2 Preliminaries

2.1 Finite Chevalley groups

Let g = Z(g) @ gs be a reductive Lie algebra, where Z(g) is the center of g and gs = [g, g] is
semisimple. If b is a Cartan subalgebra of gs, then h = Z(g) @ b, is a Cartan subalgebra of g.
Let

h* = Homc(h, C) and b = Homg (s, C).

As an hs-module, gs; decomposes
0s 2 b ® @ (gs)a,  Where (go)o = (X €gs | [H X]=a(H)X,H € b,),
aER

and R = {a € bl | a#0,(gs)a # 0} is the set of roots of gs. Choose a set of simple roots
{aq,aa,...,az}. This choice splits the set of roots R into positive roots RT and negative roots
R~ with R~ = —R™.

For each pair of roots «, —a, there exists a Lie algebra isomorphism ¢, : slo — (g, 9—a)-
Choose these isomorphisms such that if

Xa:¢a(86)€(98)aa Ha:¢a(%]91)€h57 X—a:¢a(?8)€(98)—aa

then {X,, Hy, | @ € R,1 <i </} is a Chevalley basis of gs [Hu, Theorem 25.2].
Let V be a finite dimensional g-module such that V has a C-basis {v1,va, ..., v, } that satisfies

(a) There exists a C-basis {H1, ..., H,} of h such that

(1) Hy, € Z>o-span{H;,...,Hy},
(2) Hyvj € Zvjforall i =1,2,...,nand j =1,2,...,r.
(3) dimg(Z-span{H,, Ha, ..., Hy,}) < dimc(h).

X
(b) —‘:‘vi € Z-spanf{vy,vy,...,v.} fora € Ryn€Zspandi=1,2,...,r.
n! =

(¢) dimg(Z-spanf{vy,ve,...,v,}) < dime (V).

(Condition (a) guarantees that Z(g) acts diagonally. If Z(g) = 0, then the existence of such a
basis is guaranteed by a theorem of Kostant [Hu, Theorem 27.1]).
Let
bz = Z-span{Hy, Hy, ..., Hy}. (2.1)

The finite field F, with ¢ elements has a multiplicative group F; and an additive group F;r. Let
Vy = Fg-span{vy,va, ..., v, }. (2.2)
The finite reductive Chevalley group
Gy = (va(a),hg(b) | o« € R, H € hz,a € Fg,b e Fy),

is the subgroup of GL(V;) generated by the elements

Zol(a) = ;;0(1"7‘;‘, and (2.3)
h(b) = diag(b)‘l(H), pr2(H) ,bAT(H)), where Hv; = \;(H)v;. (2.4)



Remark. If g = g;, then Gy = (z,(t) | o € R, t € Fy).
Example. Suppose g = gl, and let

v=cam{().())}

be the natural g-module C? given by matrix multiplication. Then h has a basis

b= {(20) tavech—cam{( 1 9).(L )}

By direct computation,

a:a(t):<(1) i) and

and Gy = GLy(F,) (the general linear group).

t[l

0
2)(t)—<0 tb> for a,b € Z,

o

2.2 Important subgroups of a Chevalley group

Let G = Gy be a Chevalley group defined with a g-module V' as above. The group G contains
a subgroup U given by
U= (z4(t) | a« € RT,teF,),

which decomposes as

U= H Ua,s where U, = (z4(t) | t €Fy),

aceRt

with uniqueness of expression for any fixed ordering of the positive roots [St, Lemma 18]. For
each a € R, the map
Upo — Ff

To(t) +—
is a group isomorphism.
For a, 3 € R, define the maps
Sa: b — h* sa: b=Z(@ ®hs — )
Y ey —A(Ha H+Hy v H+ Hy—B(H)H, 20

The Weyl group of G is W = (s, | « € R) and has a presentation
W = (s1,82,...,8¢ | s? =1,(si8;)"" =1,1 <i#j5 <), mij € L0, Si = Sa;-
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If w = s;,8i, -+ 8;, with  minimal, then the length of w is {(w) = r.
Let bz be as in (2.1). If ¢ > 3, then the subgroup

T = (hu(t) | H€bz,teclFy
has its normalizer in G given by
N =(wa(t),h | a € R,heT,t €Fy), where wy(t)= To()T_o(—t ) za(t).

If a € R, then hy, (t) = wa(t)wa (1)1, Write ho(t) = hy, (t) and hi(t) = hq, (t).



There is a natural surjection from N onto the Weyl group W with kernel T given by

e N — W
wa(t)  —  Sas for a € R,t € Fy, (2.6)
h — 1, for heT.

Suppose v € N. Then for each minimal expression
(V) = 8§, 84y -+ - Sip.,  with £(7(v)) =7,
there is a unique vy € T such that
v = w;, (Dwiy (1) -+ - w;, (1)vr. (2.7)
To simplify some notation in later sections, write

vV = VU3 - - - VpUT, where v;, = w;, (1). (2.8)

2.3 Unipotent Hecke algebras

Let G be a finite Chevalley group. Fix a nontrivial homomorphism ) : F;r — C*. If

p: RY — T,

o satisfies 1o = 0 for all o not simple, (2.9)

then the map
Yy U — C*
zo(t) = P(uat)
is a linear character of U. With the exception of a few degenerate special cases of G (which can
be avoided if ¢ > 3), all linear characters of U are of this form [Yol.5, Theorem 1].
The unipotent Hecke algebra H(G,U,1,) is

H,, = Endce(Ind$ (1)), (2.11)

(2.10)

or viewed as a subset of CG,

H, = e,CqGe,, where e, = ﬁ Z PYu(u™u. (2.12)

Remark: Since T is in the normalizer of U in G, T acts on the linear characters of U by
"x(u) = x(huh™1), where w e U, h € T, and x : U — C™.

If two linear characters x and 7 are in the same T-orbit then H(G, U, x) = H(G, U, ) (although
the converse does not necessarily hold).

The group G has a double-coset decomposition

G= |_| UvU, [St, Theorem 4] (2.13)
vEN
and if
N,={veN | eyve, #0}
={veEN | u,ouw™! € U implies 1, (u) = ¢, (vuv ")}
then the set {e,ve, | v € N,} is a basis for H,, [CR, Prop. 11.30].

(2.14)

Examples (see also the Introduction).



1. The Yokonuma Hecke algebra. If ;i, = 0 for all positive roots «, then v, = 1 is the
trivial character and Ny = N. Let T;, = eyvey for v € N, with T; = T,,,;) and Ty (t) =
ThH(t). If v =v1ve -+ - vur € N according to a minimal expression s;, s, - -+ s;, € W (as in
(2.8)), then

T, = T’i1T’i2 te T’iTTUT-

Thus, the Yokonuma algebra Hy has generators {T;, T, | 1 <i < /¢, h € T} (see [Yo2])
with relations,

T} = ¢ 'T, (-1) +¢ " > T, (7 HT;, L<i<d,
teFy
TZT]TZ:T]TZTJ7 (Sisj)mij :17
—_———  ———
mi; terms m;; terms
;T = Ts,0 15, heT,
ThTy = The, hkeT.

These relations give an “efficient” way to compute arbitrary products T, T, in Hy. There
is a surjective map from the Yokonuma algebra onto the Iwahori-Hecke algebra that sends
Ty — 1 for all h € T. “Setting T, = 17 in the Yokonuma algebra relations recovers
relations for the Iwahori-Hecke algebra,

TP=q'+q¢ (=D LT =TT
—— N———
m;; terms m;j terms
Furthermore, there is a surjective map from the Iwahori Hecke algebra onto the group
algebra of the Weyl group given by T; — s; and ¢ — 1. Thus, by “setting T; = s; and
q = 1”7 we retrieve the Coxeter relations of W,

sy =1, 8i8jSi = 8j8iSj .
—_— Y=
m;;j terms m;; terms

2. The Gelfand-Graev Hecke algebra. By definition, if u, # 0 for all simple roots «, then
1, is in general position. The Gelfand-Graev Hecke algebra H,, is commutative ([Yol],[St,
Theorem 49]).

3 Parabolic subalgebras of H,

Let ¢, : U — G be as in (2.10). Fix a subset J C {a1,a9,...,a} such that

J 2 {a; simple root | fia, # 0}. (3.1)
For example, if ¢, is in general position, then J = {a1, g, ..., a}, but if ¢, is trivial, then J
could be any subset.
Let

Wy=(s;, €W | ayeJ)y, P;=(UT,W;) and Ry = Z-span{a; € J} N R.
Then Pj has subgroups

L;={(T,W;,Uy, | a€R;) and U;=(U, | a € R" — Ry) (3.2)



(a Levi subgroup and the unipotent radical of Pj, respectively). Note that
U;Ly=P;, U;NnL;=1, and,infact, P;y=Uj; x Ly.

Define the idempotents of CU,

1

“ =L,

Z Yu(uu and ¢ = ﬁ Z u, (3.3)

ueLl jNU uelUy

so that e, = euJei, is the decomposition of e, with respect to P = L;U .
The group homomorphisms

PJ — LJ and PJ — G

1 o lu forle Ly, ue Uy,

induce functors

Infﬁ {Lj-modules} — {Pj-modules} and Ind% :{Py-modules} — {G-modules}
M (S e/ M M’ —  CG ®cp, M’

whose composition is the functor Indfg‘]. In the special case when (CL)e is an L j-module with
corresponding idempotent e,

Indfsz {Lj-modules} — {G-modules}
CLje — CGee/;.

The map 1, : U — C* restricts to a linear character ReSgOLJ(%L) : LynU — C*. To make
the notation less heavy-handed, write 1, : L; N U — C*, for ResgﬁLJ (Pu)-

Lemma 3.1. Let 1, be as in (2.10). Then
~ L
Indﬁ(wu) = Indng (IndULr]wLJ(l/’u))-
Proof. Recall Indg(wu) = CGey. On the other hand,
Indé‘r’m(] (¢u) = CLje,; implies Indfg] (Indé‘r’m(] (Yu)) = CGeyel,
where e, is as in (3.3). But e,j€/; = e, so
Indf (1) = CGey, = Ceygely = Indf (Indfr, (v)). O

Theorem 3.1. The map

0+ Endey,(Indhy, (b)) — M,
L = eyvey, forve LjNN,,

18 an injective algebra homomorphism.
. . / _
Proof. Since L; normalizes U; and ejje,; = e,
_ / _
e ve, = €je,Jve e, ; = €5€,5ve,,

so the map 6 is given by multiplying e, ve,s on the left by €/;. Thus, 6 is well-defined and
injective. Because ef, commutes with e, jve,; for v € L, 0 is also a homomorphism. [l

Write
Ly =0(Endcy, (Indl, (¥,)) € Hy (3.4)

The L are “parabolic” subalgebras of H,,, in that they have a similar role in the representation
theory of H,, as parabolic subgroups P; have in the representation theory of G.



3.1 Weight space decompositions for H,-modules
An important special case of Theorem 3.1 is when
J = J, = {a; simple root | pq, # 0},
so that .J,, is minimal satisfying (3.1). Write L, = Lj,, W, = W, etc.
Corollary 1. The algebra L,, is a nonzero commutative subalgebra of H,,.

Proof. As a character of U N Ly, 1, is in general position, so Indéz qu (W) is a Gelfand-Graev
module and £,, is a Gelfand-Graev Hecke algebra (see example 2 in Section 2.3). O

Since £, is commutative, all the irreducible £,-modules are one-dimensional. Let /ju be
an indexing set for the irreducible modules of £,,. Suppose V' is an H,-module. Since £, =

Endcpr, (Indé‘a L. (¢u)), L, is semisimple, and as an £,-module,
V= EB Vy where V, ={veV | sv=~(z)v,xz € L,}.
vely
If~ve ﬁu’ then V, is the y-weight space of V', and v is a weight of V it V. # 0.
Examples.
1. In the Yokonuma algebra ¢, = 1, Jy = 0 and Ly = eyCTey = CT.
2. In the Gelfand-Graev Hecke algebra case, J, = {a1, a2, ..., a0} and £, = H,.

Remark. Since dim(V,) can be greater than one, £, is not in general a maximal commutative
subalgebra of H,,.

4 Multiplication of basis elements

This section examines the decomposition of products in terms of the natural basis

!
(epuey)(epve,) = Z Cu (euten)-
v'EN,

In particular, Theorem 4.1, below, gives a set of braid-like relations (similar to those of the
Yokonuma algebra) for manipulating the products, and Corollary 3 gives a recursive formula for
computing these products.

4.1 Chevalley group relations

The relations governing the interaction between the subgroups N, U, and T will be critical in
describing the Hecke algebra multiplication in the following section. They can all be found in
[St, §3].
The subgroup
U= (z4(t) | « € RT,teF,)



has generators {z,(t) | « € RT, t € F,}, with relations

za(@)zs(b)zala) as(d) ™ = [ wy(zi(a, B)a'd), (U1)
y=ia+jBERT
i,j€ZLq
Ta(a)ra(b) = za(a +b), (U2)

where z;;(a, 3) € Z depends on 14, j,a, 3 and a fixed order on the positive roots R*, but not
on a,b € Fy [St, Lemma 15]. The z;;(cr, 3) have been explicitly computed for various types in
[De, St].

The subgroup N has generators {w;(1), hu(t) | i =1,2,...,¢, H € bz, t € F;}, with relations

wi(1)? = hi(~1), (N1)

w;(1)w; (w;(Dw;(1) -+ - = w;(1)w;(Dw;(1)w, (1) -, where (s;5;)™7 =1in W, (N2)
wi(hp (t) = hs, () () wi(1), (N3)

hi(a)hp (b) = hy(ab), (N4)
hi(a)hg (b) = hy(b)hg(a), for H,H' € b, (N5)
hi(a)hm(a) = hgipi(a),  for H H' €, (NG)

hi, (0 hay (t2) - b (t) =1, i) i forall 1< j<r, (N7

where \; : h — C depends on V as in (2.4).

The double-coset decomposition of G (2.13) implies G = (U, N). Thus, G is generated by
{zala),wi(1),hg() | a € RT,a € Fy,i=1,2,... .4, H € hz,b € F;} with relations (U1)-(N7)
and

wi (1) 2o (t)w; (1)~ = Ts,(a) (Cial), for o # o, where ¢;o = %1, (UN1)
hzo(b)h™! = zo(a(R)b),  for heT, (UN2)
wi(1)z; (Hwi(1) = ai(—t~Hhi (=t Hw; (1) (—t 1), where z;(t) = x,,(t) and ¢t # 0, (UN3)
where for « € R and hy(t) € T,

a(hy(t)) = ), (4.1)

Note that relation (UN3) is not conjugation by w;(1),

Fix a 1, : U — C* as in (2.10). For k € g, let
1 . .
eq(k) = p Z V(—pakt)rs(t) with the convention e, = e,(1). (4.2)
teF,

Note that for any given ordering of the positive roots, the decomposition

U= H Ua implies ey = H €q- (4.3)

acRt a€ER*

In particular, given any o € R, we may choose the ordering of the positive roots to have e,
appear either first or last. Therefore, since e, is an idempotent,

euta = €y = €aly. (4.4)

9



If w = si,8i, -+ 5;, € W with r minimal, then let
={aeR" | w(a) € R™} = {ai,, 8, (i1 )5 80,80,y sy (i)} (4.5)
where the second equality is from [Bo, VI.1, Corollary 2 of Proposition 17].

Lemma 4.1. Let v € N, w = w(v) (with 7 : N — W as in (2.6)), and for a € R*, let
V20 (D)™ = 2ypalcvat), With cye = £1 as in (UN1). Then

vea (K)v™ = ewa(atighcoak), if « ¢ Ry, (E1)
veav !t = ewa, if « ¢ Ry,v € N, (E2)
heo(k)h™t = eq(ka(h)™1), forheT, (E3)
ena(t) = P(pat)e, = xalt)ey, for a € RT. (E4)
Proof. (E1) Using relation (UNl)
weg, (k)w Z (= pokt)wry (t)w Z (= pakt) Twa(Coat)
tEIF'q 9 teF,
= - Z zp(_ﬂacvakt,)xwa(t,) = ewa(ﬂaﬂ;écvak)-
1/cF,
(E2) Suppose a ¢ R,,. Since v € N,
Y(Hat) = Yu(za(t)) = Pu(vra(v™) = Yu(@wa(kt)) (by (UN1))

= Y(pwakt), for some k € Z.

In particular, since v is nontrivial, po = kftywe. Thus,

veqv Z ¢ ,U*oa xwoe kt Z 1/} Na lt )xwa(t ) = Ewa-
tE]Fq q t'€F,
(E3) Since h:z:a(t)h_l = zq(a(h)t),
heq (k)R Z V(—prakt)za o = > P(—pakta(h) N za(t) = ea(ka(h)™).
teIFq teF,

(E4) The element e, is the minimal central idempotent of CU,, that corresponds to the character
Za(t) = P (pat). Therefore, by (4.4), e xq(t) = epeaza(t) = Y(pat)e,. O
4.2 Local Hecke algebra relations

Let uw = ujug - - - upur € N according to a minimal expression s;, s, ... s;, € W (see (2.8)). For
1 < k < r define constants ¢;, = &1 and roots 3, € R™ by the equation

zg, (cxt) = (U1 ur)_lxaik () (ukt1 -+ - ur). (4.6)

Note that Ry, = {61, 02,..., 06} (see (4.5)). Define f, € Fy[y1,v2,...,y-] by

1,C1 143 C2 KB, Cr
= — - —m . 4.7
4 51(UT)y1 ﬂz(uT)y2 51“(“T)y *.7)
and for £k =1,2,...,r, and write

i (t) = wy, (D, (1) (48)
In the following theorem we evaluate polynomials f € F[y1,...,y,] at points in ¢t = (t1,...,t,) €

Fy by f(t) = f(t1,...,tr), where y;(t) = t; for 1 < j <.

10



Theorem 4.1. Let u = ujug - - upur,v = v102 - - - V57 € N, according to minimal expressions
SiySiy -+ Si, € W and sj,sj, -+ sj, € W, respectively, as in (2.8). Then

(a)
(epuey)(eyve,) = qir Zw o fu)(t) ey (ur(tr)ua(ts) - up(ty)) (viva - vg)hey,
teFy
where h = vpv~tupv € T.

(b) The following local relations suffice to compute the product (e, ue,)(e ve,).

Y @o )t (wiDzi()wi(l) = (Yo f —1) 4y (o f) (=t Nai(t)hi(ywi(Las(t), (H1)

teF, tEF:

wi(1)2a(t) = 24, () (Ciat)wi (1), (H2)

To(t)h = hao(a(h) 1), (H3)

enta(t) = Y(pat)ey = zalt)ey, (H4)

(W o )W og)(t) = (Yo (f+9))1), (H5)
ha(H)wi(1) = wi(1)hg, ) (t), (H6)

(i (1)7:(0)7a(®) = T Ty (cirzmn(ai, 0)a™8") (wi(Das(a)),  for o £ o, (HT)

(wl(l)xl(a))xl(b) = (wi(l):ni(a + b)), (H8)
ha(a)he (b) = he(ab), (H9)
ha(a)hs(b) = hg(b)ha(a) (H10)

w;i(1)? = hy(—1) (H11)
wi(Dw;(Dw;i(Lw;(1) - -+ = wi(Lw;(1)w; (Lw;(1) - -, (H12)

where f,g € Fq[yfl,...,yr ,teF, a,B¢€ R, 1 <4<V, z1(, ) =1, and myj is the
order of sisj in W.

Proof. (a) Order the positive roots so that by (4.3)

e ue,ve, = euu< H ea> €8,€8, * - €3,V€y (definition of )
ag Ry (y)
= e“< H eﬂ(u)a>ue51652 --egve, (Lemma 4.1,E2)
ag Ry (y)
= eyueg eg, - €g,ve, (Lemma 4.1, E4)

= € UIU2 "+ - UrUTER €3, * * * €3,VE,
— 1 1 1
= e uUlug - - - Ureg, (ﬁl(uT) )es, (ﬁz(uT)) T eﬁr(m)uTUeu (Lemma 4.1,E3)

= eptiCa,, (B usea,, (22 ) - - Urea,, (%)uﬂ}e“ ((4.6), Lemma 4.1,E1)

"“O‘il ﬁl(UT) I»LoziQ ﬁz(UT) Ha; ﬁr(“ )
_ 1By 1 Ko €2 . B, cr X -1
= €uliCay, (‘Ta. Bi(ur) )u2eai2 (“%‘2 ﬁ2(uT)) UrCay, (ua ﬁrr(uT)) UsUTV ~UTVEY
(&
_ K H 61t1 ugpert 43
= — E (- Jua () - - (52 ur (B Jvr - - - vshey, (definition of ey, uq(t))
t1,....tr€Fg

11



= — Z (o fu)(t)epur(ty) - up(ty)vr - - - vshey, (by (H5))

telFy

where h = vpv~tupv € T, as desired.

(b) First, note that these relations are in fact correct (though not necessarily sufficient): (H1)
comes from (UN3); (H2) comes from (UN1); (H3) comes from (UN2); (H4) is (E4); (H5) comes
from the multiplicativity of ¢; (H6) comes from (N3); (H7) comes from (Ul) and (UN1); (H8)
comes from (U2); (H9) and (H10) are (N4) and (N5); and (H11) and (H12) are (N1) and (N2).
It therefore remains to show sufficiency.
By (a) we may write
1
(epuey)(epvey) = e Z(T/) o f))epur(ts) - ur(tr)vr-- - vshey

tery,

for some f € Fylyi,...,y,] and h € T. Say t is resolved if the only parts of the summands
depending on t are (¢ o f) and h. The product is reduced when all the t; are resolved. I will
show how to resolve ¢, and the result will follow by induction.

Use relation (H2) to define the constant d and the root v € R by

(vyvg - - - fus)_lxair (t)(v1v2 - - vs) = x(dt) (where £(7(v)) = s). (4.9)
Note that v = 7(v) ~!(ay,) and d = 1. There are two possible situations:

Case 1. y€ RT,

Case 2. y € R™.
In Case 1,
(epuey)(epve,) = % tEZF;(w o f)Beur(tr) -+ wri, (tr)or -+ - vshey, (by (a))
- = ZF: wo PB)epun(ts) - i (tro1)urvy - vszy (dt ) ey (by (H2))
telF7?
= ZF: Yo f)(B)epur(t) - ur1(tro1)upvr -+ vshay (dy(h) " tr)e, (by (13))
telFy
S Z $o f)(t)epur(ty) - up—y(tr—1)upvr - - - vshp(pydy(h) 't ey (by (H4))
telfy
_ - Z (W o f)(t)epur(tr) - - i (tre1)upvr - - vsh(t) © padry (B) Ly, ) (e,
tely
. ZF: P o g)(t)euur(ty) - - tp_1 (tr—1)upvy - - - vshe,, (by (H5))
telF7?

where g = f + p,dy(h)"'y,. We have resolved ¢, in Case 1. Furthermore, since v € R,
VIVy - Uy = Up01V2 - - - Us still corresponds to a minimal expression in W.

12



In Case 2, v € R™, so we can no longer move z;,_(t,) past the v;. Instead,

(euueu)(euveu)
e _
= £ Z o f))ur(ty) - up—1(tr—1)urz;, (6 )uru, 101---v8heu
teFy

= e” > wt) - upa(tea) Y (o )t (t)upu; vy - vshey

[4S 1 ir€Fq

€

=L N w(t) - uea (o) (@ o ) 0)hi, (< Duy Mor - vshey, (by (H1))
t'cFy 1 -

+ Zul t1) w1 (tee1) Y (o F)E —t7 )i, (b hi, (tr)uras, (E)ug oy -+ vshey,
t’GFT 1 tTGF;

€

=L N w(tr) i (te—1) (@ o £, 0)uy vy - vshoy (—1)hey, (by (H6,H2))
tery !

+ u Uy tl ur—l(tr—l) (TZ) © f)(t/7 _t;l)$ir (tr)hir (tr)x—air (_tr)vl ---vghe
t'e%;1 tz%?} '

&
= M Z w of t ,0)ug (tl) ur_l(tr_l)ur_lvl e vsh_v(—l)heu

' eFy
+ — Zul (t1) - ur—1(tem1) Y (Yo g) (¥, —t; Das, (t)hi, (8 )v1 -+ vshey, (by (H3,H4,H5))
t'eIF* ! tr€lg

where g = f + p—d(—y(h)) "'y, (same as in the analogous steps in Case 1).

e _
= M Z w of t ,0)ug (tl) ur_l(tr_l)ur 1?)1 cee vsh_v(—l)heu

eyt

6

LN ) (tn) Y W og)(t, =t mi, (t)vr -+ vsh o (8 ey, (by (H6))
¢eFr -1 t,€F;

:eﬂ Z (o £, 0)0ur(tr) - up_1 (tr—1 )u; vy - - vghry (—1)hey, (by (H7.H8))

teryt

D SRR () (RO AS)) L R o

Ve ]FT 1 BERT
tTEIF

where ¢ : Fglyi,...,yr] = Fqly1, ..., yr] catalogues the substitutions to g due to (H8) and (H2),
the ag(y1,y2,...,yr) € Fgly1, ...,y are determined by repeated applications of (H7) and (H8),
and b/ = h_,(t;)h e T.

= q_l,« > Wo A, 0)epur(tr) - -1 (tr—1)uy w1 - vshn(—1)hey, (by (HA4))
t'ery !
+ q_lr Z (¢ 0 (,D(g))(t/, _t;l)eu< H ¢(Mgag(t/, tr)))“l (tl) T ur—l(tr—l)vl s ’Ushleu
t/ern—1 BERT

trele

13



= ir Z (o [)(t',0)equr(ty) - - tup—1(tr—1)uy "1 - - - vsh—y (—1)hey,

q eyt
1 _
+— Z (o go)(t',—t; 1)euu1(t1) et (tp—)vg vsh'eu, (by (H5))
q t/ery 1
tT-eIFg

where go = 0(g) + Y gep+ 1pasYLs - Yr—1,—y; ). In the first sum, use (H11) and (H12) to
reduce v} ---v._; = u lvy -+ vs into an expression that corresponds to a minimal expression in
W. Use (H9) and (H10) to simplify the expressions h’,h_(—1)h € T. Now t, is resolved for

Case 2, as desired. O

Corollary 2 (Resolving ty). Let w = ujug---u € N according to a minimal expression
SiySig -+ Si, € W (with upr = 1). Suppose v € N and f € Fyly1,vy2,...,yx]. Definey € R and
d € C by the equation v~ z;, (t)v = z.(dt). Then

Case 1. If {(m(ugv)) > £(m(v)), then

D Wo fB)eputs) - ur(te)ve, = Y (%o (f + pydyp)) (Eepur(tr) -+ up—i (th—1)uve,.

teFk teFk
Case 2. If {(m(ugv)) < £(mw(v)), then

> (Wo H)epur(tr) - ug(tn)ve, = D (o f)(t)epu(tr) - - up—1(tp—1)ugve,
teFk teIF:%
+ > (W0 (r(f) + noqdyy ) (B)epur(tr) - - ug—1(tr-1)ha, (—te)vey,

k
teFf
t, EFy

where @y, : Fylyi, ... ,y,fl] — F,lyf!, ... ,y,fl] is given by

D Wo fepur(tr) - up—a(te-v)as (—t; ) =Y (o pu(f)(Bepu (tr) -+ up—1 (te)-

o Jo
tEIFq tE]Fq
tpEFg ty, €5

Proof. This Corollary puts v in the place of urv in the proof of Theorem 4.1, (b), and summarizes
the steps taken in Case 1 and Case 2. The only slight adjustments are in Case 2: note that
ULV = hik(—l)uglfu in the first summand, and there is a renormalization of ¢; in the second
summand. O

4.3 Global Hecke algebra relations

Fix a decomposition u = ujusg - - u,ur € N, according a minimal expression s;,s;, ---s;, € W
(see (2.8)). Suppose v’ € N, and let v = ugpv'.

For 0 <k <r,let 7 = (r,72,...,7Tr—k) be such that 7; € {+0,—0,1}, where +0, —0, and 1
are symbols. If 7 has r — k elements, then the colength of T is £Y(7) = k. For example, if r = 10
and 7 = (—0,1,+0,+40,1,1), then £¥(r) = 4. For i € {4+0,—0,1}, let

(i7T) = (i7T17T27' t 7T7“—k)'

14



By convention, if £¥(7) = r, then 7 = ().
Suppose £Y(7) = k. Define

=T 1 T T
2 (u,0) = — > (o fT)()epur(tr) - up(te)v” (t)ey, (4.10)
q teFr
where
if 7 = +0, then t; € Fy,
Fp=qtelF, | fork<i<r ifrn_t=-0,thent; =0, : (4.11)
if 7 = 1, then t; € FZ
VT (8) = higyy (—tn) P up s T - Ry (=) R R, (4.12)

with +0=—-0=0€Z,1=1¢€ Z in (4.12); and f7 is defined recursively by

f@ _ fu _ Hp 1 KBy C2 . KB, Cr

S TR Rmwn® T Bt @A) (4.13)
| f7+ iy dr i, if § = +0,
FO =0 fT if i = -0, (4.14)

oe(f7) + pr,dryy t, if i =1,

where (’L)T)_llltaik (t)v" =z, (d-t) and the map ¢y, is as in Corollary 2, Case 2.

Remarks.
1. By (4.10) and Theorem 4.1 (a), Z%(u, v) = (e ue,) (e v'e,) (recall, v = urv').
2. If £V(7) = 0 so that 7 is a string of length r, then
1
(a) E™(u,v) = — Z (¢ o f7)(t)e v (t)e, has no remaining factors of the form wy(t),

teFy

(b) E™(u,v) = 0 unless v" (t) € N, for some t € F,.

The following corollary gives relations for expanding Z7(u,v) (beginning with Z?(u,v)) as a
sum of terms of the form Z7 with ¢¥(7/) = ¢¥(7) — 1. When each term has colength 0 (length
r), then the product (e,ue,)(e,v'e,) is decomposed in terms of the basis elements of H,,.

In summary, while we compute f7 recursively by removing elements from 7, we compute the
product (e, ue,)(e,v'e,) by progressively adding elements to 7.

Corollary 3 (The Global Alternative). Let u,v’ € N, such that v = ujus - - - upur decom-
poses according to a minimal expression in W. Let v = urv’. Then

(a) (equey)(epv'ey) = E(u,v),

(b) If V(1) =k, then

15



Proof. (a) follows from Remark 1.
(b) Suppose £V (1) = k. Note that

= (u,v) = % Z(?/) o fM)(t)epui(tr) - up(tr)vey

teF]

1
= § : E (Yo [, t")eypur(tr) - - ug(te)v e,
q t//e(Fgfk)T tIE]F(I};

where (F7™")7 = {(tjs1,...,t,) € Fi™% | restrictions according to 7} (as in (4.11)). Apply
Corollary 2 to the inside sum with f := f7, v := v". Note that the Corollary relations imply

{t' e F}
7
o
Thus,
as desired.

[1]
Py
£
S

Il

——
[1] [1]

{t' e IE‘]ZC , if in Case 1,

becomes {t' e FZ | tr =0}, if in Case 2, first sum,
{t'" eF, | tp €T}, if in Case 2, second sum,
FEOT) if in Case 1,

becomes FG07)if in Case 2, first sum,

fO7) 0 if in Case 2, second sum.

v+07) - if in Case 1,

becomes (=07 if in Case 2, first sum,

o7 if in Case 2, second sum.

(+077)(u,v), if Case 1,
(—077)(%@) + =) (u,v), if Case 2,

5 The case G = GL,(F,)

Let G = GL,(F,) be the general linear group over the finite field F, with ¢ elements. This
section uses braid-like diagrams to analyze multiplication in unipotent Hecke algebras. The
structure of this section is as follows.

5.1 describes the braid-like diagrams of this paper, and how the Chevalley relations translate
into diagram relations.

5.2 reviews unipotent Hecke algebras for GL,(FF,) in this context, and shows how to identify
the diagrams of unipotent Hecke algebra basis elements.

5.3 uses a 3 step process to multiply basis elements using the visual cues of the diagrams.

5.4 summarizes a complete algorithm for multiplying basis elements, and illustrates the process
with a nontrivial example.

Define subgroups

T { dlagqnal }  N= { monomlal } ,
matrices matrices
ermutation L x (5-1)
W:{p . }, and UZ{( )}7
matrices 0 ‘1

16



where a monomial matrix is a matrix with exactly one nonzero entry in each row and column.

Let z;;(t) € U be the matrix with ¢ in position (i,7), ones on the diagonal and zeroes
elsewhere; write x;(t) = x;;11(t). Let he,(t) € T denote the diagonal matrix with ¢ in the ith
slot and ones elsewhere, and let s; € W C N be the identity matrix with the ith and (i + 1)st
columns interchanged. That is,

zi(t) = Idia® (3 4) @ Idy—iz1, he,(t) = Idi—1 & (t) ® Idp—,

5.2
Si:Idi_l@(?é)@Idn—i—la 52

where Idy is the k x k identity matrix. Then
W = (s1,82,...8n-1), T = (he,(t) | 1<i<n,tel), N =WT, (5.3)

U:(xij(t) ‘ 1§i<j§n,t€Fq>, G:<U,W,T>

The Chevalley group relations for G are (see also Section 4.1)

ij(a)rs(b) = Trs(b)2ij(a)is(0jrab)ay;(—disab), (i,7) # (r.s), (U1)
xij(a)zij(b) = ij(a +b), (U2)
st =1, (N1)
si8i+1si = 5i+15i8i+1  and  s;5; = 5;5;, li — 7] > 1, (N2)
( ) hes (])( )Sia (N3)
&() (@) = hey(ab), (N4)
he;(b)he,(a) = he,(a)he, (b), (N5)
5rw35(t) = T, (3)s,.(j) (£S5 (UN1)
zij(a)he, (t) = h 'r( )Zij (t™it’ria), (UN2)
sizi(t)s; = wi(t™ ) s (—t )hai(t)h€i+1(—t_l), t #0, (UN3)

where 6;; is the Kronecker delta.

5.1 A pictorial version of GL,(F,)

For the results that follow, it will be useful to view elements of CG as braid-like diagrams instead
of matrices. The basic idea is to depict an n X n permutation matrix w as two rows of n vertices
each, with an edge (called a strand) from the ith top vertex to the jth bottom vertex if w(i) = j.
For example,

7% I corresponds to

O R O O OO
OO OO o
SO o= O OO
[l elelNel =)
[ alNell S =)
_ o O o oo

17



Matrix multiplication corresponds to concatenation of diagrams, so

A DORR)- DT ;i@}{
RS

We generalize these diagrams to GL,(F;) by adding different varieties of “beads” to these
diagrams that slide along the strands. A diagonal matrix corresponds to the identity permutation
with a bead on each strand, such as

|

hll hf hf PRPaS hf
and we depict the matrix x;;(t) by the identity permutation with directed beads on the ith and
jth strands, such as

corresponds to diag(hi, ha, ..., hy),

ith vertex jth vertex
N V4
? !
] a=Le corresponds to zi(t) for a € Fy.
. :
Note there is an implicit relation in this last correspondence given by
! v I ’
ab i = 3 b= 1 ab for a,b € F,,.
¢ o s ) s o

The advantage of this approach is that it allows a visual shortcut to computing products (such
as the permutations above) and commutations in GL,(F,). For example, we can summarize
multiple applications of (N3) by simply pushing the beads of h € T" along the strands of w € W

so that
! T ) I

I
{ :
gives
545354528351 R, (@) hey (D) hey (€)he, (d) ey (€)heg (f)
= h€5 (a)h€1 (b)h€4 (C)h€2 (d)h€3 (e)h56 (f)345334323331'
The generators of G are

ith vertex

N
o as I I >< I I (5.4
ithvo{\ox
hai(t) as I I I I I’ (5.5)
.
ith vertex Jjth vertex

¥

xi;(ab) as I I

o—oc|—@
—+o
o:—o
®—[co0—@

R



where each diagram has two rows of n vertices. In the following Chevalley relations, curved
strands indicate longer strands, so for example (UN1) indicates that 7 and ¢ slide along the
strands they are on (no matter how long). The Chevalley relations translate to

. .
11 T x v
o 2 1 a
[ r@ PO it =1 a0
3 1 4 & $ b T
P | s
. I cod oL

(the beads 7 and 7 commute unless two arrows or two circles encounter one-another on a strand).

= (N1)

X0, - MZBUW

(relations in W exactly describe what one can do by pushing the strands around the diagrams),
ol . > > \
‘ = ab (N4) < e < (N5)
| v N
(T-type beads follow strands and multiply if they hit one-another),

5 (3 > > (UN1) 3 ;: \1 > (UN2)

(beads = and » slide along strands unless they simultaneously hit a crossing (see (UN3) below),
and the circle or arrow determine how T-type beads interact with z and 3 ),

~(ap)~

o
—a

ab
t
b
o P

>< ab£0.  (UN3)

(if 7 and » get stuck between two crossings, “things explode”).

5.2 The unipotent Hecke algebra H,

Fix a nontrivial group homomorphism ¢ : F;r — C* , fix a map

w: {1,2,...,.n—1} — {0,1}

i = i

i, ifj=141,
and define y1;; = { 6‘2 otherwise.
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Then
(9 U — Ccr

5.8
zij(t) = P(uit) (58)
is a group homomorphism.
The unipotent Hecke algebra H,, of the triple (G,U,1,) is
H, = Endg (Indg(w“)) =~ ¢,CGe,, where e, = \U! Z PYu(uu. (5.9)

uelU

If Ny={veN| eyve, #0}, then {e,ve, | ve N,}is a basis for H,,.

We may characterize the elements of N, in the following fashion (for a more extensive
analysis of N, see [Th]). Suppose v € N. For each p; = 0, place a dotted line between the ith
and (i + 1)st vertices; for example, p = (1,0,1,1,0,0) gives

h1 h2 h3 h4 h5 h6
[ ] [ ]

Then e,ve, # 0 if and only if the diagram for v satisfies

hi 7.+1
[ ] | |
[ [
(1) if \ .\, then X L
| [
[ [

adjacent
adJ acent

(2) if \\ then \K ,

hi  hit1 h; hi

(3) if \, then either or
[ ]

Example. If © = (1,0,1,1,1,1,0,1,1,0,1,1,1,0) then

Note that the map

T N=WT — W
wh +— w, forweW,heT,

(5.10)
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is a surjective group homomorphism. Let u € N with 7(u) = s;, ---s;, for r minimal. Then
there is a unique up € T such that

U= ULUs . . . UplUT, where uy = s, . (5.11)

We write uy, instead of s;, because when working with diagrams, it is clear where the crossing
is located and it is more important to determine the order in which order the crossings come,

o N N ey

For t € I, write uy(t) = sikxik (t)
For any p as in (5.7), the decomposition

U= H Uij where Uij = <l’ij(t) | t e Fq>,

1<i<j<n
implies
ey = H eij(1ij), where ¢;;(k Z?/) —kt)x;(t (5.12)
1<i<j<n 1w,
Pictorially,

ipth vortox

[ 1 =

I ipth vertex ipth vertex
w- ] T R ]
e

ith vertex jth vertex ith vertex jth vertex

e THH T TV 1T
- o o

Therefore if n= 5 since 6“ = €13 0)623 175) 612(,U1)645(,U4)€15(0)€25(0)614(0)635(0)624(0)634(,&3),

o—|~o0—e@

eij(k) =

(5.17)

{1 =—=2=——[{3=— 4= —

A running example. Throughout this section I will illustrate points using the example

U = UUU3U4U5UgUTUUT € N5 according to $351525351545253 € S5, (5.18)
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with ur = diag(a, b, c,d,e). In this case,
a b c d
\\\ /
u— / N /

\ / > 1(t1)u2(t2)“‘u8(t8)uT
/ \

' \. / N
fmilm
euueui / N\ / .

%ﬂziﬂs im

The elements e;;(k) also interact with U and N as follows (see also Section 4.1)

and

sreij(k)sr = €s,(i)s, () (k)

euveq(ij) = ey, v € Ny, (mv)(7) < (7v)(j),

eij(k)hﬂ (T) = h€l (T)eij(krélir_élj)v
eumij(t) = T,Z)(/Lijt)eu = xij(t)eu,

or pictorially,
.\0 '\/\,'\/\?\.
o TETTN
.5 > Y (kab) Z > and
lc K

and for v € N, with (7v)(i) < (7v)(j),

@

<.
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5.3 Basis element multiplication using braids

When we multiply two basis elements e, ue, and e,ve,, the product e, ue,ve, has an e, “stuck”
between the v and the v, or

S At i i

e it i

We then use the Chevalley relations to piece by piece “push” the center e, to the outside of the
diagram. The first step is to push the e, as far into v as possible, as illustrated by the following
example.

Example (see (5.18)). Let u = ujug---ugup € N according to s3s1525351845283 € W and
up = diag(a, b, c,d,e) € T. By (5.17), we may write

?f@m

e ue, = / AN / =

/ \
1%#2%#3%#4

Note that the strands that e13(0) and e93(u2) connect never cross, so we can use (E2) to push
them through the diagram of u. The rest of the e;;(k) get stuck on some crossing, so we use
(E3) to first move ur through the remaining e;;(k)

_a
EpU€y =

/8\
5/7\4/6
N
2/3\)
ém%miugim
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Next, use (E1) to push the e;;(k) down into w until the strands they are on cross,

[ )
\W
@\/./ \'Q@ 7

?
e

1
.>0/ \»@/ = q_8 Z ¢(—H1§t1—u4§tz—%%ts) (5.19)
telF8
\.V\->
% % %}m
by definitions (5.15), (5.13), and (5.14).
Step 0: Push ¢, into the diagram u
. Suppose u = ujuz - - - upur € N, with up = diag(hy, ha, ..., hy). As illustrated in the example
above, use (5.12), (E3), (E1) and (E2) to rewrite e,ue, as
1 112 =% ln—1
AT J_l ______________ Lobend
UTUD * * * Uy 5 = — Z ’l]Z)Ofu u1(t1)u2(t2)"'ur(tr) (520)
. teFr : :
E/JJEHZE —ln—19 © EﬂlEﬂQE @ ln— 13
where f, € Fyly1,v2,...,y,] is given by
FaWi,y2s - ur) = =i by hgy vt — Higjo i) hyya — <+ = i, by, (5.21)

where (i, jx) = (a,b), if the kth crossing in u crosses the strands coming from the ath and bth
top vertices.

Note that relation (5.20) can be quickly computed by visually ascertaining which strands
cross in the diagram.

Step 1: Concatenate (e, ue,) with (ve,)

Let u = ujug - --u,ur € N, according to a minimal expression in W as in (5.11). Let v € N,
and use (N3) and (N4) to write upv = w - diag(aq, az, - - ,a,) where w = w(v) € W (see (5.7)).
Then use (5.20) to write

S T R S

.....................................................................

(epten) euen) = (epue)(vey) = = S (60 )0~~~ =~ — (522
: ul(tl)ug(tg)---ur(tr)

—|I=——2=— -1

(This form corresponds to =% (u, urv) of Corollary 3).

24



Example (continued). If u is as in (5.18) and v = sgs3s2s5152 - diag(f, g, h,4,j) € N, then by
(5.19) and (N3), (e ue,)(e ve,) = (e ue,)(vey) is equal to

—u LS S o B ke = e )
f de c a bi e

Step 2: Apply “braid” relations

Consider the crossing in (5.22) corresponding to u,(t,) (the top crossing of u). There are two
possibilities.

Case 1 the strands that cross at () do not cross again as they go up to the top of the diagram

(£(urw) > L(w)),

Case 2 the strands that cross at (r) cross once on the way up to the top of the diagram

(U(upw) < b(w)).
Relation 1 (Case 1): by (UN1), (UN2) and (E4), (e ue,)(ve,) is equal to

fi@ |

a; agn FH1$H2$ a,un 1Jn
E UpW
1
=D Wo it - —--------- (R])
q teFy
cw(t) ().

up(ty) - ur—l(tr—l)é

: : —l1=s={r=e—=lin—1®
LS —— —/in—19

where f1£+ = fu+ pija; ayyr Note that f(+0 = fyu unless j =i + 1.
Relation 2 (Case 2): In case 2,

FTTY

uy(ty) - up—1(tr—1)

(== == =—N=—— =} )
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Split the sum into two parts corresponding to ¢, = 0 and ¢, # 0 to get

e R EF

(euucn)(vey) = | (by (N1))
tlterFio ul(tl) “e uT—l(tT—l)
L= === =—3t— JI/SSE )
"~%ME .. '/»‘j71¥“-
JEE _____ agbr —aatlj
T (by (UN3))

- - - - - - - =2 I =

- w(t) e upa(te—a)
:EﬂlEHQE"'Eﬂnfl;:

where fé_o) = fu- Use (UN1), (UN2), (U2), (U1) and (E4) on the second sum to push the pair
(=i, ) to the top of the diagram and the pair (T, + ) to the bottom.

Eu1$u2$ =pn—19
an—1 fln

Eul(tl) Uy (tr— 1)é

t/erl 1
tr=0 —/1=—l2=e—-—eln—1@® (R2)
“'?Hz: sl — 1¥
allﬁ ailt'r —a]t 1?ln
w
b L S (o Ot e
t’e]FZ;l ul(tl) cUp— 1(tr 1)
trefy =l==lr—e— —%in—1®

where j}gl) = @ (fu) + pijaja; ty b, and @, (f) is defined by

> (@o f)(t) e\\/ =Y Wou (M) /\/\ (%)

teFy - — - - - - = L teFy - — - - - — =
t'rEFa tT-EFE
_ wr(tr) - up—1(tr—1) ui(t1) - - up—1(tr—1) :
—l=e—(r—e— —%/in-1® —l=e—(r=—e— =wlin_1®

Remarks:

(a) We could have applied these steps for any f, u, and v, so we can iterate the process with
each sum.
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(b) The most complex step in these computations is determining ¢,. The following section
develops a combinatorial method for computing the right-hand side of (x).

Step 2’: A combinatorial way to compute y.

Relation (*) pushes the beads T and t:il through the diagram until they get to the bottom. Along
the way, the beads hit crossings and we either apply relation (U1), which leads to additional
beads, or (U2), which forces us to renormalize. In the following, red paint corresponds to the
strands traversed by beads of the form 7 and blue paint corresponds to strands traversed by
beads of the form ¢. Sinks encode places where we change f (in (*)), while paths and their
weights describe how to change f. Lemma 5.1 below gives the resulting evaluation of the map
o in (%) .

Paint the strands below uy (u®) Suppose u = ujus ---ur € N decomposes according to
Siy Sig -+ i, € W (assume up = 1). Each step is illustrated with example (5.18).

(1) Paint the left [respectively right] strand exiting (k) below red [blue] all the way to the
bottom of the diagram.

(2) For each crossing that the red [blue] strand passes through, paint the right [left] strand
(if possible) red [blue] until that strand either reaches the bottom or crosses the blue [red]
strand of (1).

(5.23)

u® = the diagram uy (1 )us(ts) - - - ug(tx) painted according to (1) and (2). (5.24)

Sinks. The diagram u® has a crossed sink at @ if @ is a crossing between a red strand and a
blue one, or

\@
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Note that since u is decomposed according to a minimal expression in W, there will be no
crossings of the form

@/ (since " @/ would imply

The diagram u® has a bottom sink at j if a red strand enters jth bottom vertex and a blue
strand enters the (j + 1)st bottom vertex, or

for some j' > j.)

jth vertex (j + 1)st vertex
Example (continued) In the running example above u® has crossed sinks at @, ®), and @),

and a bottom sink at 4. Note that () is not a crossed sink since both strands are red.

Paths. A red [respectively blue] path p from a sink s (either crossed or bottom) in u® is an
increasing sequence

N<je<--<j=k,
such that in u®
(a) Gm is directly connected (no intervening crossings) to Gm+D by a red [blue] strand,
(b) if s is a crossed sink, then Gp = s,
(b’) if s is a bottom sink, then

e in a red path, the sth bottom vertex connects to the crossing (G with a red strand.

e in a blue path, the (s + 1)st bottom vertex connects to the crossing Gv) with a blue
strand.

Example (continued). The sinks with their corresponding paths for u® are

®
[ ]
Let
® . _ Jred paths from ® . _ Jblue paths from
P_(u¥,s) = { s in o ® and P.(u”,s) = 5 in u® (5.25)
The weight of a path p is
H Yi if pe P-(u®,s),
p switches
strands at (3) (526)

wt(p) = H (—y), ifpe P(u®,s).

p switches
strands at (&)
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Each sink s in u® (either crossed @ or bottom j) has an associated polynomial
gs € ]Fq[ylay27 .. 7yk—17y];1] giVen by

gs= > wt(p)y wt(p). (5.27)
PEP:(u®,5)
p'€P:(u¥,s)

Example (continued). Consider the weights of the above paths,

Sink 4 4 4 @) @)

Path |1 <3<b<T7<8|1<4<T7<8|6<8|2<H<T<8|2<3<4<6<38
Weight Ys Y1y7 1 1 —Ys

Sink 8 &) @ @

Path |3 <5 <7<8[3<4<6<8[4<T7T<8|4<6<8

Weight Ys — Y6 Y7 — Y6

The corresponding polynomials are

91 =Ysys L+ Yivrys s 9o = —Ys Y6 9 = —Ys¥s Y6 I® = —Y¥s Ve (5.28)

Lemma 5.1. Let u = ujuy - - - u, and @, be as in (R2) and (x); suppose u® is painted as above.

Then
+ E Hj95-
{y;—y; —95) | @ a crossed sink}  j q bottom

sink

(Pr(f) =f

Proof. In the painting,
o
e is a strand traveled by Qf and is a strand traveled by Q% .
»

Substitutions due to crossed sinks correspond to the normalizations in relation (U2), and the
sum over bottom sinks comes from applications of relation (E4). 0

For example (see (5.28)),

08(f) = flusvi-og + 1491 = F|,1piiums iy T HaWsYs "+ y1y755 ).
yS'_’y3fg®

y3—vy3+usvg yg
Y2-Y2-93)

Y2—y2 +y§1y6

5.4 A multiplication algorithm

Theorem 5.1 (The algorithm). Let G = GL,(F,) and u,v € N,. An algorithm for multi-
plying e, ue, and eyve, is

(1) Decompose w = ujus - - - upur according to some minimal expression in W (as in (5.11)).

(2) Put ey ueyve, into the form specified by (5.22), with urv = w - diag(ai, az, ..., a,) (w =
w(v) e W).

(8) Complete the following
(a) If L(u,w) > L(w), then apply relation (R1).

29



(b) If L(u,w) < L(w), then apply relation (R2), using (uiusz---u,)® and Lemma 5.1 to
compute @,.

(4) If r > 1, then reapply (3) to each sum with r :==r — 1 and with

(a) w = u,w, after using (3a) or using (3b), in the first sum,

(b) w = w, after using (3b), in the second sum.
(5) Set all diagrams not in N, to zero.

Sample computation. Suppose n =3 and p; = 1 for all 1 < i < 3 (i.e.. the Gelfand-Graev

case). Then
a a a a a b a b b a b ¢
a b c d e e

1. Theorem 5.1 (1): Let u = ujuguguy € N,, decompose according to spsisp € W, with
up = diag(a, b, c).

Suppose

2. Theorem 5.1 (2): By (5.22)

=—l==1=
Loy (5,
telF3
(2)
(1)
1 1
with upv = s9s1 - diag(ed, ae, be) (so w = s9s1), and f,, = —gyl — 7y3 (as in (5.21)).
3. Theorem 5.1 (3b): Since {(usw) < £(w), paint uy (t1)us(ts)us(ts) to get (uiugus)® (as in
(5.24)),
=—l==1=
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Now apply (R2),

—1——1—» FIEI

cd ae be —bety b
1 _ 1
== > (o % + = > (WofM))
q terg 1 terg
t3=0 t3€Fy
1 1 1 1

where f(-9) = —gyl — ty3 and by Lemma 5.1,

be b b c
1 1 1 1
Y = p3(fu) + prs—ys' =yt ey - Ty

b

4. Theorem 5.1 (4): Set r := 2 with w := w,w = s; in the first sum and w := w in the second
sum.

5. Theorem 5.1 (3a) (3b): In the first sum, f(uzs1) < £(s1), so paint wuq(t1)us(t2) to get
(u1u2)®. In the second sum, £(ugses;) > £(s251), so apply (R1),

1 1 1 1=
FEE{)S FE

=%Z<wof-° }{ 3Z¢O FEED) @)

q
t3=0 t3 e]F* ;CZ
1 1
EIE

Whe}rle g*o’” = =Sy Dyoyst — Sys + st — pslyays ' = — Ly — Sys + 95! Now apply (R2)
to the first sum,

—bet3

ccﬁ —aety be
1 _
=3 > (@Wo TN (1) FEmN ) /
3
tQtZEtH;qO 1 1

where f(7070) = —Ly; — £y and fO70 = o(FE0) 4y %yyt = —Lyy — gy tyr + Ly

6. Theorem 5.1 (4): Set r = 1 with w := ugs; = 1 in the first sum, w := s; in the second
sum, and w := $18281 in the third sum.

7. Theorem 5.1 (3a) (3a) (3b): In the first sum ¢(s21) > £(1), so apply (R1); in the second
sum £(s281) > £(s1), so apply (R1); in the third sum, £(s2s15251) < £(s15251), so paint ui(t1) to
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get uy’,
===i=0 & 1%151)@
Z (w o f(+0 -0, 0 1/} Of(+0’1’_0))(t)
teFy ter’
ty=t3—0 t2e]F*t; 0 1 1
FlEl =
where f(H0=0200 = —by, — €yg 4 by = —gyg and fOHOL70 = —byy 4 agy b yoly, . Now
apply (R2) to the third sum
adEl € 15be cdta l—aet; 1566
1 0,—0,—0 1 0,1,—0
= 52 o fH0T ) T3 D (o fHO)
terg teF3
to=t3=0 1 1 to€F%, t3=0 1 1
CEl 36 1—?&;1 cdtl%l—aet;il—?etgl
1 0401 1 1,40,1
+5 2 We ST + 52 e
tery teF3
t1=0,t3€F% 1 1 t1,t3€F; 1 1
where f(=0:+0.1) — —3Y3 + y3 ! and

ae _q1 _ b -
FATOD = pr (7O T s = = st i

8. Theorem 5.1 (5): The first sum contains no elements of IV, so set it to zero. The second

sum contains elements of IV, when be = —aetQ_ 1 g0 set ty = —%- The third sum contains
elements of N, when cdts = ae, so set t3 = 25. All the terms in the fourth sum are in N,,.
==
—abE be 5be
0,1,—0
=0+ Y (o fHOL)@)
tery
t2*7%,t3 0 1 1
acEl i?lbcd cdtl%gl—aet; 1%;1
1 —0,+0,1 1 0,1)
Fg D o SO + 5 2o /AT
terg te¥d
t1=0,t3=23 t1, t3€[‘ 1 1
1 1
—ab~led be
1 be 1 ae
= = (==
SU(-23) (-
1 1
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—l==1=
cdtits —aet] —bet;1

1 b C -1 -1 ae —1,—1
T2 Do vttt )
tl,tgéle
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