Problem 1: Let X be a set, and let $\mathcal{O}_{\text{coctbl}}$ be the set of all $U \subset X$ such that $X \setminus U$ is countable or the whole set X. Show that $\mathcal{O}_{\text{coctbl}}$ is a topology on X. Which topology on X is finer, the cofinite topology $\mathcal{O}_{\text{cofin}}$ or the topology $\mathcal{O}_{\text{coctbl}}$? (6P)

Problem 2: Consider the following topologies on \mathbb{R}:

(a) \mathcal{O}_1, the standard topology,

(b) \mathcal{O}_2, the topology generated by all sets of the form (a, b) or $(a, b) \setminus K$, where $a < b$ and

$$K = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\},$$

(c) \mathcal{O}_3, the cofinite topology,

(d) \mathcal{O}_4, the upper limit topology, having all sets $(a, b]$, $a < b$ as basis,

(e) \mathcal{O}_5, the topology having all sets $(-\infty, a)$, $a \in \mathbb{R}$ as basis.

Determine, for each of these topologies, which of the others it contains. (6P)

Problem 3: Let $(\mathcal{O}_j)_{j \in J}$ be a family of topologies on a set X. Show that the intersection $\bigcap_{j \in J} \mathcal{O}_j$ is a topology on X. Is the union $\bigcup_{j \in J} \mathcal{O}_j$ a topology on X? (4P)