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To my mother






Preface

This book is intended to be a self-contained. introduction to all the set
theory needed by most mathematicians. It is self-contained in the sense
that no prior knowledge of set theory is logically assumed; but the reader
should have a working ability in the elements of the subject—the topics
covered in Chap. 1. The usual elementary definitions and facts about
sets, relations, functions, unions, and so on, are covered in Chap. 1. In
Chap. 2 ordinal numbers are studied; the main topics are definitions by
transfinite recursions and the rudiments of ordinal arithmetic. Chapter
3 is devoted to a brief study of the axiom of choice; several equivalent
forms of this axiom are given, and some mathematical applications are
discussed. The heart of the book is Chap. 4, on cardinal numbers.
Besides elementary facts about addition, multiplication, and exponenti-
ation of cardinals, some more advanced cardinal arithmetic is discussed;
in particular, regular and singular cardinals are treated at some length.

The topics covered, although by no means exhausting abstract set
theory, should suffice for the purposes of most working mathematicians.
For more exhaustive treatments, see Bachmann 1967 or Sierpinski 19568
(see the Bibliography at the end of the book). Suggestions for further
reading are given from time to time for those interested more deeply in
set theory. Some sections of the book may be omitted without loss of
continuity, since they cover specialized topics. This applies to Secs. 15,
23, and 24. The exercises, although not prerequisite for any textual
material, are strongly advised in order to obtain a working knowledge
of the material; there are not many and they are reasonably easy, so
that the reader can try to work them all.

The approach to set theory here is axiomatic. Since set theory
should form the logical basis for all mathematics, it seems clear to the
author that in set theory, more than anywhere else in mathematics, one
should strive for rigor. This accounts for the somewhat formal cast of
this book. However, the author has strived not to be too pedantic.
Logical symbolism is used, but only where it is essential, or where it
seems to clarify a situation. Set theory should be based on formal logic,
but here it is based on intuitive logic. Intuitive logic is expounded in
the Introduction. For the purist who wants all the rigor attainable by
present-day standards, the Appendix develops formal logic and indicates
how to fit the set-theoretical development of the text into the formal
framework of logic. Unlike almost all books at this level, we state all
the set-theoretical axioms at the beginning, in Sec. 1. Hopefully this
gives more clarity to the development than stringing the axioms through-
out the book.

Precisely speaking, the axiomatic approach used is that of Kelley

vii
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and Morse, expounded in the appendix of IKelley 1955. It seems to the
author that the Kelley, Morse system, or the closely related system of
Godel 1940, is used more often than any others by working mathe-
maticians when any question of the foundation of set theory arises. It
has the advantage of minimizing the necessary discussion of the symbol-
ism of set theory. The axiom of choice is used freely in the book when-
ever it is needed or whenever its use shortens an exposition. We do,
however, give many informal comments on important cases in which its
use 1s essential or inessential, but no effort is made to indicate all cases
where it may be eliminated. Transfinite recursion 1s used to establish
some equivalents to the axiom of choice, shortening the usual proofs
appreciably. Metamathematical results concerning the axioms are
stated informally at various places in the book, but especially at the end
of Sec. 1.

The book developed from several courses given by the author, and
first thanks go to the students in those courses. I am also very much
indebted to Stephen Comer, Gebhard Fuhrken, James S. Johnson, and
Jack L. Hursch, Jr., for valuable comments on various versions of the
book. In addition I also wish to express thanks to Mrs. Mae Jean
Ruehlman for her expert typing. Although the material of the bookis
well known, I hope that the influence of my teacher, Alfred Tarski, is
evident in its presentation here.

J. Donald Monk
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INTRODUCTION
Intuitive Logic

Before beginning the development of set theory itself, we want to clarify
on an Intuitive basis some words of common usage that are of a purely
logical nature and are necessary in the development. Examples of such
words are “‘and,” “not,” “there exists,” and “equals.” We should indi-
cate why we feel that it is necessary to do this. In almost all fields of
mathematics we proceed from the mathematics previously developed.
Set theory, however, is intended to be at the verv foundations of mathe-
matics; aside from assuming a habituation with abstraction, it does not
depend on any prior knowledge of mathematics. It does assume a sub-
stratum of ordinary logic common to a large number of people, not all
of whom are mathematicians. Not much reflection is required to con-
vince oneself that this substratum is not universal and not without its
controversial points. Hence the purpose of this introduction: to try in a
nonrigorous way to affix precise meanings to common logical usage. To
do this in a rigorous way would require a formal, rigorous development
of logic itself, prior to a discussion of set theory. Such a development

1



2 INTRODUCTION INTUITIVE LOGIC

is given in the Appendix. Thus, by starting with the Appendix and then
proceeding to Chap. 1, the reader can see a development of set theory that
meets all modern standards of rigor. To a great extent, however, com-
mon sense subsumes logie, and its rigorous development is inappropriate
to a book on set theory. We also sympathize with those who are impa~
tient with any sign of pedanticism and wish to get right to the heart of
the matter; for them, even the present introduction may be skipped (but
see the Index of Notation at the end of the book).

Logic (technically, first-order logic) has two main parts, sentential
logic and quantifier logic. The first is easier to explain and grasp than
the second, so that we consider it first. In sentential logic we are con-
cerned with sentences, their truth or falsity, and ways of combining or
connecting sentences to produce new ones. A sentence is an expression
about which it is reasonable to assert its truth or falsity. This ‘““defini-
tion’’ looks all right but on closer analysis it not very good; in Chap. 1
and in the Appendix a better definition is given, restricted to a well-
defined artificial language but correspondingly further from the intuition
and to this extent unsuitable. Let us take some examples. ‘2 4 2 = 4"
is a sentence, in fact a true sentence. ‘‘r 1s rational” is a false sentence;
but it is not a task of logic to decide whether or not ‘‘r is rational” is true
or false. “There are infinitely many pairs of prime numbers p, ¢ such
that ¢ = p + 2 is a sentence (the twin-prime conjecture), but it is
unknown at this time whether 1t is true or false. Now consider the
expression

(1) The set of all sets not members of themselves is a member
of itself.

Offhand, it seems quite reasonable to consider this expression a sentence.
But if it is true, then so is the sentence

(2) The set of all sets not members of themselves is not a member
of itself,

which expresses the opposite of (1); and if (2) is true, then so is its oppo-
site (1). Thus it turns out not to be reasonable to assert the truth or
falsity of (1); by our definition (1) is not to be considered a sentence.
Clearly there may be cases in which it is very difficult under our definition
to determine whether or not a given expression is a sentence. Thisis a
major defect of the definition.

The paradoxical nature of the inference from (1) to (2) and from (2)
to (1) is known as Russell’s paradox. Because of its set-theoretical form
it has played a large role in the historical development of set theory. In
fact, it is mainly because of this paradox that it will be necessary in
Chap. 1 to redefine ‘‘sentence” in order not to set up an obviously con-
tradictory system.
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At least there are some expressions, like the first three of the above
examples, which are incontrovertibly sentences under our definition. So
let us proceed to a description of some purely logical ways of connecting
sentences so as to form new ones. The most useful connectives are the
following.

OR

Writing “or’’ between two sentences, we form a sentence which is true
if at least one of the two sentences is true and false if both are false. This
usage deviates somewhat from the ordinary use of “or.”” We do not
mean “‘either . . . or . . . ,” but “either . . . or . . . or both.” Fur-
thermore, by our agreement the truth or falsity of the component sen-
tences is all that matters in determining the truth or falsity of the com-
pound sentence; there does not have to be any connection between the
components. For example, the following sentences must be taken as
true, odd as they may look:

1 > 0 or 7 is not a real number.
4% = 16 or there is an z such that z? = —1.

1
[0 sin  dz = 7 or /2 is irrational.
2 =2o0r2 2

Of course if both components are false, the compound sentence is false,
for example:

2= 2o0r2 = 2
4% = 15 or 7 is rational.

We use the abbreviation V for “or.”

In order to prove a sentence of the form ¢ V ¢, where ¢ and ¢ are
component sentences, we may assume that ¢ is false and give an argumerip
that ¢ 1s true. For if ¢ is true, then ¢ V ¢ 1s true, and if ¢ is false, the
argument shows that ¢ is true and hence ¢ V ¢ is true. Symmetrically
we may assume that ¢ is false and prove that ¢ is true.

Example If p is a prime and p divides a'b, then p divides @ or p divides b. To
prove this, first assume that p i1s a prime and p divides ab. Further,
assume that p does not divide a. Then (p,a) = 1, so that there exist integers
s and ¢t such that 1 = sp + ta. [Here we use (p,a) for the greatest common
divisor of p and a.] Multiplying by b, we get b = spb + tab. Now p divides
spb and p divides tab, so that p divides b. The proof is complete.

AND

Writing “and” between two sentences makes a new sentence that is true
if both sentences are true and is false otherwise. Only the truth values
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matter, nothing else. Thus
1>0and2+2 =14
is true, but the following sentences are all false:

0 > 1 and +/3 is irrational.
12 = —1 and = is rational.
0 > 1 and +/3 is rational.

We use the abbreviation A for “and.”

IMPLIES

A sentence ¢ implies a sentence y if either ¢ is false or ¢ is true. Thus,
again, we are interested only in truth values. In mathematics this use
of the word “implies” has become more or less standard, although outside
of mathematics other meanings are probably more prevalent. The main
difference occurs in sentences like

2 + 2 = 5 implies 7 is rational,
or
2 + 2 = 5 implies 7 is irrational.

Both of these are true under our specification, since in both cases the
sentence to the left of “implies,” namely, “2 4+ 2 = 5,” isfalse. Insuch
cases we say that the implication holds vacuously.

Some further examples of our use of “implies’” are

12 = —1 implies 2 = 2. true
12 = —1 implies 2 = 3. false
22 = 0 1mplies 2 = 2. true
12 = 0 implies 2 = 3 true
We use = as an abbreviation for “implies.” In a sentence ¢ = ¢ we

call ¢ the hypothesis of the implication and ¢ the conclusion. In order
to prove a sentence of the form ¢ = ¢, we frequently take ¢ as an addi-
tional assumption (along with whatever other mathematical assumptions
we are using at the time), argue awhile, come up with the conclusion ¥,
and then ‘“discharge’” the assumption ¢, that is, state that ¢ = ¢ has
been praved, from which point we no longer have ¢ as an assumption.

Example a > 0 implies that a has a square root. To prove this, assume that
a > 0. Let b be the largest real number such that 52 < a. By a supplemen-
tary argument, it is seen that b2 = qa; that is, a has a square root. Thus we
have shown that a > 0 implies that a has a square root.
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NOT

This “connective’”’ converts one sentence into another, namely, a true
sentence into a false one and a false one into a true one. Thus “every
positive integer is a sum of four squares’ is true, and so ‘not (every posi-
tive integer is a sum of four squares)” is false, and ‘“‘not (not (every posi-
tive integer 1s a sum of four squares))’ is true. In these examples we
transgress the common rules of grammar, but the meaning should be
clear. In order to simplify the rules for combining sentences, it is fre-
quently desirable to abuse grammar in this way, and this practice is con-
tinued throughout the book.

We use 71 to abbreviate ‘“‘not’’; the sentence Tl¢ is called the
negatton of o.

Arguments involving “not” are frequently of an indirect nature,
in which we do not go directly from assumptions to a conclusion but infer
that the assumptions imply the conclusion by means of a logical trick.
We now describe two important kinds of indirect arguments.

CONTRAPOSITION

If we want to prove a sentence of the form ¢ = ¢, we may, instead of the
direct method described above in the discussion of “implies,”” prove the
sentence 1y = T1¢. Forif we have done this and if ¢ is true, then Tl¢
is false, and hence, 1¥ = TT¢ being true, it cannot be the case that 71y
is true; that is, ¢ is true. The sentence Ty = T1¢ is called the contra-
posttwe of the sentence ¢ = .

Example Let I be the ring of integers, and for any n in I, n > 1, let (n) be the
principal ideal generated by n. For any a in I, let [a] be the equivalence class
of a with respect to the ideal (n). Then I ~(n) is an integral domain implies
n is a prime. To prove this, assume that n is not a prime. Then there exist
a, b in I such that 0 <a <n, 0 <b <n, and n = a-b. Thus [a] = 0, [b]
s 0, but [a]-[b] = 0. Hence I ~(n) is not an integral domain. Therefore,
I /(n) is an integral domain implies n is a prime.

REDUCTIO AD ABSURDUM, OR ARGUMENT BY CONTRADICTION

To prove a sentence ¢, it is enough to assume ¢ and then prove some
statement 7Ty, where ¢ 1s known to be true, which amounts to proving a
contradiction ¢ A T1¢. For then the argument shows that ¢ could not
be false after all.

Example If A is a set of positive integers such that 1 isin A, and z + 1 isin 4
whenever x is in A, then every positive integer is in A. To prove this state-
ment, we assume that every nonempty set of positive integers has a least
element. To argue by contradiction, we assume that there is a positive integer
not in A. Then the set B of all positive integers not in A has a least element
m. Because 1 isin 4, we have m > 1. But then m — 1 is a positive integer,
so that, by the minimality property of m, m — 1isin A. But by the assump-
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tion on A4, this implies that m = (m — 1) 4~ 1isin A. Having already noted
that m is not in A, this is a contradiction. Hence, after all, every positive
integer is in A.

iF AND ONLY IF

We say that a sentence of the form “¢if and only if ¢’ is true only in case
both ¢ and ¢ are true, or both ¢ and ¢ are false. Thus the following two
sentences are true:

1 > 0 if and only if #2 < 20.
1 = 0 if and only if #2 < 0.

On the other hand, these sentences are false:

32 4+ 42 = 5?2 if and only if = is rational.
42 4 52 = 62 if and only if = is irrational.

We use the symbol iff or < in place of “if and only if.”” To prove
a statement ¢ < ¢, we usually prove ¢ = ¢ and then prove ¢ = ». For,
having done this, the first proof excludes the possibility that ¢ is true
and ¢ false, and the second excludes the possibility that ¢ is true and ¢
false. Hence either both are true or both are false; that is, ¢ & ¢ is true.

Example [ ~(n) is an integral domain iff n is a prime. For, as in the example
abovein the discussion of contraposition, we have (I /(n) an integral domain) =
(n is a prime). Second, suppose that n is a prime. If [k)-{I] = 0, then n
divides k-1 and hence n divides either k or I, from which it follows that (k] = 0
or (] = 0. Thus7 ~(n)isanintegral domain. Hence (n1sa prime) = (I (n)
is an integral domain), and the proof is complete.

Another method for proving ¢ < ¢ is to prove that ¢ = ¢ and
Tl = T1y; this amounts to the same method just described, because
Tl = 71y yields ¥ = ¢, by contraposition.

These five connectives—*‘‘or,” “and,” “implies,” “not,” and “if and
only if”’—are sufficient to express conveniently any sentential combina-
tions that we consider in this book. The rules for the truth values of
compound sentences formed by using these connectives, which we again
emphasize depend only on the truth value of the components, are sum-
marized in the following tables:

@ e ® ¥ eVyY o AY o2y ooy
True  False True  True True True True True
False True True False True TFalse TFalse False

False True True False True False
False Talse False False True True




INTRODUCTION INTUITIVE LOGIC 7

There are many English phrases that we consider synonomous with these
five connectives, and there are certain grammatical variations of the con-
nection process that are applied. Thus “¢ is necessary for ¢’ is con-
sidered synonymous with ¢ = ¢; ‘¢ is sufficient for ¢’ is synonymous
with ¢ = ¢; “¢ is necessary and sufficient for ¢’ means ¢ & ¢; “o Is
equivalent to ¢’ means ¢ = ; “o If ¥’ means ¢ = ¢; “‘p only if ¢
means ¢ = ¢; ‘o whenever '’ means ¢ = ¢; “if ¢ then ¢’ means ¢ = ¢;
“ojustin case¢’’ means ¢ < . Thereare, of course, many other phrases
that may be used in place of the five we singled out. Furthermore, we
may, for the sake of grammatical usage, modify the formal use of the
connectives. For example, it is nicer to write

m 1s not a rational number
than to write
not (r is a rational number)

However, as we indicated in the discussion of “not’ above, we write
ungrammatical sentences where this would seem to aid clarity.

To conclude the discussion of sentential logic, we mention that there
are some sentences that are true on logical grounds only. Rather than
trying to explain what we mean by this assertion, we give a number of
examples. The following sentences are true no matter what truth values
the component sentences ¢, ¥, x have:

eV Tle. law of excluded middle
T(e A o).
(e=¢) = (= Tlo).
T AY) = (e V 74’)-}
Te V) e (Te A TIY).
e VAN VE)A(eVl
e A W Velle Ad) V(e A X

We now turn to the discussion of quantifier logic, which revolves
around the phrases “‘there is”’ and “for every.” In mathematics these
phrases are almost universally used in conjunction with variables. A
variable 1s simply a letter of our alphabet (or perhaps of some other
alphabet, like the Greek or German alphabet) used together with these
phrases. Let us first consider the phrase ‘“for every,” which is called
the universal quantifier. As an example, consider the sentence

De Morgan’s laws

} distributive laws

(3) Foreveryz,z <Oorz=00r0 <z

All the occurrences of z in this sentence are bound up with the phrase
“for every.” Every variable has a range of values, which in this case
consists of (say) all integers. Having asserted the sentence (3), we may
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on purely logical grounds, also assert the sentence obtained from that
following the comma in (3) by replacing all three occurrences of z by the
name of some integer. Thus the following sentences follow logically
from (3):

—5<0 or —5=0 or 0< —5.
0<0 or 0=0 or 0<O.
1 <0 or 1=0 or 0<1.

As another example take the sentence
(4) For every positive real number a, a has a square root.

Here the range of values of a consists of all positive real numbers. As
special cases of assertion (4) we have

1 has a square root.
7 has a square root.
/2 has a square root.

Analogously with the case of sentential connectives there are other phrases
that in mathematics are taken to be synonymous with “for every,” for
example, the phrases ‘“for any,” “for all,” and “for each.” We also
allow grammatical variations in the process of applying “for every.”
Thus instead of (4) we might write

Every positive real number has a square root,

in which the variable is understood but not used.

Thus a variable has no meaning standing alone, but only in con-
nection with the phrases “for every’” or ‘‘there is,”” or synonymous
phrases. In mathematics constants are also used profusely. A constant
is simply a proper name of some kind. We may distinguish between
permanent and temporary constants. An example of a permanent con-
stant is w, which is used throughout this book to denote the set of all non-
negative integers. Other examples are r, 0, /2. Temporary constants
are constants used only for a short discussion, asin the proof of a theorem.
Frequently the same letters are used for temporary constants in one place
as for variables in a different context.

We use the abbreviation V for “for every.” To illustrate the use
of variables and constants, consider the task of proving a sentence of the
form Vze(z), where ¢(z) is some expression; we write ¢(z) to emphasize
that this expression is likely to involve z, although it is not necessary
that it do so. If the range of z is a set X, we frequently prove Vzo(z) by
taking an arbitrary element a in X (thus using a as a temporary constant)
and then proving (a). Nothing is wrong with saying “Let 2 be an
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arbitrary element of X’’ and then proving ¢(x), thus using z in place of a
as a temporary constant. The two uses of z, as a variable in Vze(z),
and as a constant in the argument, should be kept distinct.

Example For every rational number z, z? = 2. To prove this, let a be an arbitrary
rational number, say a = r s, where (r,s) = 1. [Again we use (r,s) for the
greatest common divisor of r and s.] Suppose, to argue by contradiction,
that a? = 2. Thus r2 = 2s2. Let r = 2%’ with (2,r') = 1 and let s = 2ug’
with (2,s") = 1. Then we easily infer that 2¢{ = 2u + 1, which is impossible.
Hence a? 5= 2 after all. Because a is arbitrary we have shown that for every
rational number z, 2% = 2.

As in the case of implications, a sentence of the form Vzep(z) may
be true vacuously. This is the case with the sentence

Every rational square root of 2 is negative,

which may be reformulated as ‘“Vz(z is a rational square root of 2 =z
< 0)"; the hypothesis of the implication is false, and hence the implica-
tion 1tself is true, for any possible value of z.

In stating theorems or axioms, frequently the universal quantifier
is omitted but is understood to be present. Thus in writing

r+y=y—+z

as a theorem, the sentence
Ve Vy@z+y =y + )

is understood.

Now let us discuss the existential quantifier ‘“‘there is,”’ for which we
use H as an abbreviation. Synonymous phrases or grammatical variants
are ‘“‘there are,”” ‘‘there exist,”” “there exists,” “for some.”” We use the
existential quantifier in the sense ‘‘there is at least one.” In order to
prove a sentence of the form Hze(x), one usually constructs, in some sense,
an object a such that ¢(a). It is possible, however to give a noncon-
structive proof of such a sentence, say by assuming 1Hze(z) and deriv-
ing a contradiction. We give an example of each procedure.

Example There is an z such that 23 — 722 4 11z — 5 = 0. Indeed, 5% — 7-52 +
11:5 — 5 =125 — 175 + 55 — 5 = 0. Thus we may take z = 5.

Example KEvery nonempty set of positive integers has a least element {we assume
the complete induction principle for positive integers); compare with the
example illustrating argument by contradiction, page 5. Let A be a non-
empty set of positive integers. To argue by contradiction, suppose that A
does not have a least element. Let B be the set of all positive integers not in
A. Then 1isin B, for if 1 were in A, it would be the least element of 4. If
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Vz(z < y = z in B), then y is in B, for if y were in A, it would be the least
element of A, Hence, by the principle of complete induction, every positive
integer is in B, and so A is empty, which contradicts the assumption above.
Hence, after all, A has a least element that is, Hz(z 1s in A and z < y for all
yin 4).

In arguments where a sentence of the form Hze(z) occurs as an
assumption, one frequently introduces a temporary constant, like a, with
the added assumption that ¢(a) holds. After drawing a conclusion that
a sentence Y, not involving a, then holds, one may logically drop the
added assumption ¢(a) and state that ¢ has been derived from the original
assumptions [which, as we said, include Hze(z)]. In introducing the
assumption ¢(a), we may use terminology such as ‘‘choose a such that
o(a)”’ or “let a be such that ¢(a).”

Example Let G be a group with identity e. Suppose that H is a nonempty subset
of G such that z-y~!isin H for all z, y in H. Then eis in H. To prove this,
we assume that Hz(z is in H), and we choose ¢ in H. Then, by the assumption
of the theorem, q-a~!'is in H. But a-a™! = ¢, so that e is in H.

Having the quantifiers available, we can add to the list of sentences
that are true on logical grounds only. All these sentences are valid no
matter what the expressions ¢(z), ¥(z), x(z,y) are:

Vzp(z) = Hze(z).

Hx Vyx(z,y) = Vy Hax(z,y)-

Vzlp(x) A ¥(z)] & Vae(z) A Vay(z).
Hafo(z) V ¢ (2)] & Tze(z) V Hay(z).
Vze(r) & T1Hz Te().

Hze(z) & T1V2 Te(x).

AVze(zr) & Hr Te(z).

TJHze(x) & Va Te(z).

Note, with regard to the first of these sentences, that a variable is always
assumed to have a nonempty range of values. Hence if the sentence
Vze(z) holds, then for a particular element a of the range of values of z,
e{a) holds, and hence Hzo(z) holds.

We conclude this introduction with a brief mention of one last
logical notion, that of equality. The sentence a = b expresses the
assertion that a denotes the same thing as b. From this “‘definition”
we see that equality possesses the following properties:

Q

= a.

=b=b = a.
a=bAb=c=a=c

Equals may be substituted for equals.

Q
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Some authors assume only these properties of equality (that is, that = is
merely a relation, between possibly distinct objects, satisfying these
conditions), but our ‘“‘definition’” seems intuitively more satisfactory.

Remark We wish to reemphasize that the treatment of logic in this
introduction has not been rigorous. For the purposes of exposition we
have been more dogmatic than is justifiable. For good elementary
treatments of logic, in which the pitfalls of the intuitive notions are con-
trasted to the rigorous approach, see Tarski 1965 and Mates 1965.% As
previously mentioned, a rigorous development of logic can be found in
the Appendix. A more advanced treatment of logicisfound in Mendelson
1964.

All these treatments have to do with classical two-valued logic.
The reader should be aware that, even with regard to basic logical facts,
there are some alternative approaches. For example, the logical truth
¢ V Tl¢ has been questioned as a reasonable principle to use in mathe-
matics; the intustiontsm of Brouwer holds this and other similar principles
in doubt, basically because in intuitionism constructions and not proofs
are taken as fundamental. For an account of intuitionism see Heyting
1966. Many-valued logic is discussed on a technical level in Rosser,
Turquette 1952.

1 See the Bibliography at the end of the book.



1
Elementary Set Theory

In this chapter we give the axioms for set theory and develop its most
elementary part. Our treatment is definitely not exhaustive; only the
facts commonly used by working mathematicians are given, and most of
these facts are so simple that in later chapters of this book we generally
will use them without reference to this chapter.

We will prove only representative parts of the results we state; the
reader should check for himself the validity of the other parts.

Since the discovery of various paradoxes at the turn of this century
it has been recognized that some kind of axiomatic approach to set theory
is necessary. Russell’'s paradox—the set of all sets not members of them-
selves both is and is not a member of itself—shows that we cannot define
sets precisely as we wish. Another famous paradox in set theory is that
of Burali-Forti: The set 4 of all ordinal numbers is a well-ordered set,
whose order type should be an ordinal number, hence a member of 4;
but then the order type of 4 is smaller than the order type of 4. Other
paradoxes are easily derived, using irrefutable set-theoretical arguments,
from the assumptions that the set of all sets exists; the set of all cardinal

12
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numbers exists; the set of all supersets of a given set exists, etc. All of
these paradoxes have a common feature: the existence is asserted of sets
that are very ‘‘big.”” To precisely proscribe consideration of such “big”
sets seems to require the formation of an axiomatic system.

Zermelo first gave a workable set of axioms for the theory of sets,
and Fraenkel added a further axiom (the axiom of substitution) which
made the axioms strong enough for almost all mathematical purposes.
The system was simplified by Skolem, and variations were made by von
Neumann, Bernays, Godel, and A. P. Morse, leading to the system
developed in this book.

1 THE AXIOMS

In this section we give all the axioms. Defined notions are introduced
only to the extent that axioms may be conveniently formulated; in later
sections these and other defined notions are discussed fully. Although
the presentation of all of the axioms at once may make the whole subject
seems rather formidable, after working with the notions in the succeeding
sections we hope that they will seem natural.

In any axiomatic development one starts from undefined notions
and axioms, although they may not be so called and the development
may be within the scope of a larger development. Geometry is fre-
quently developed explicitly in terms of undefined notions and axioms.
However, group theory, for example, is usually developed within a larger
framework, in which there are sets, functions, ete., but it may still be
considered an axiomatic development, with the group elements and group
operations as undefined notions, and as axioms the usual group axioms.
In set theory we take the explicit approach: Set theory is not a part of a
larger development, although it is based upon elementary logic.

In addition to undefined notions and axioms, it is convenient and,
as a practical matter, essential to introduce various definitions in develop-
ing set theory. In definitions we introduce new symbols that can in
principle always be eliminated in favor of the undefined symbols (see
the Appendix).

We begin by giving the undefined notions.

Definition 1.1 The primitive notions are those of a class and of member-
ship. Capital italic letters A, B, . . ., X, Y, Z stand for classes. The
membership relation is denoted by e and may or may not hold between two
classes. ¢ stands for the negation of the membership relation; thus A ¢ B
means 1(A € B).

As synonymous with the word “class” we will take “collection,” “family”’
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(especially when thinking of a class of classes rather than a class of
objects), “aggregate,’’ but not “set,” for which we reserve a special mean-
ing described in Definition 1.3. A € B is read “A ¢s a member of B” or
“A 7s an element of B,”’ but not “A contained in B” (see Definition 1.10).
Since we always assume that variables range over some nonvoid range,
we also tacitly assume that classes exist.

Axiom 1.2 (Extenstonality axtom) VAVB[VC(CeA=C(CeB)= A = B].

This axiom expresses the assertion that two classes with the same mem-
bers are equal. The classes A and B may be defined in entirely different
ways, for example,

A = set of all nonnegative integers,
B = set of all integers that can be written as a sum of four squares,

but if they have the same members, they are the same class (in this
example A = B by a well-known theorem of Lagrange). Note that the
axiom of extensionality implies that there is at most one class with no
elements. Since we are going to allow variables to range over classes
only, we thus rule out of consideration ‘“‘objects” or “Urelemente.”” The
reasons for doing this are that it is sufficient in mathematics to consider
everything a class and that it complicates the development considerably
to admit objects (see Suppes 1960). The members of classes must also,
then, be classes; the members of the members are classes, and so forth.

Examining Russell’s paradox, we see that the class considered there,
the class of all classes not members of themselves, is very big. The
standard way of getting around this paradox in axiomatic set theory is
to refuse to admit big classes, or at least not to allow big classes the same
privileges as small ones. In many developments of set theory, for exam-
ple Halmos 1960, the first alternative is followed. Big classes are not
admitted. We elect the second alternative, which is more often used in
research articles in mathematics, and we will distinguish between two
kinds of classes. We define a set as a little class and a proper class as a
big class.

Definition 1.3 A s a sef «ff there ts a B such that A e B. A 1is a proper
class ¢ff A vs not a set. Lowercase italic letters a, b, ¢, . . . , z, y, z are
used for sets unless otherwise stated.

Thus a set is a class small enough to be a member of some other class.
Proper classes are too big for this. Directly from Definition 1.3 we have
the following.
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Corollary 1.4 HB(a e B).

Note that here we tacitly assume a universal quantifier Va. Corollary
1.4 is read “for every set a, there is a class B such that a ¢ B” (see the
Introduction).

As a consequence of the axiom of extensionality we have the
following.

Corollary 1.5 Vz(ze A o zeB)=A = B.

Proof Assume Vz(zeA = zeB). Let C be an arbitrary class. If
CeA, then C is a set, and hence by the assumption, C e B. Similarly
CeB= CeA. Since C is arbitrary, it follows that VC(C e A & C ¢ B).
Thus by the axiom of extensionality, A = B.

We now wish to describe an axiom that allows us to define a class
of objects having a specified property. We wish to exclude Russell’s
paradox and thus the class of all X such that X ¢ X. There is a natural
way to make such an exclusion: We have defined a set as a class capable
of membership in another class, and we admit only classes whose mem-
bers are already known to be sets. Thus we may consider the class A
of all sets X such that X ¢ X. Then the argument giving Russell’s
paradox yields only ““A is a proper class” (see the argument following Eq.
(1) below), which is certainly not a contradiction.

To give the axiom in a rigorous form, we have to define what we
mean by “specified property’’; we prefer the terminology “set-theoretical
formula.”

Definition 1.6 The expressions

A=A A=B A=C,..., B=A4, B
= 4,

are all set-theoretical formulas, as are

AeA, AeB, AeC,. .., BeA, BeB, BeC, <
CeA, CeB, CeC,

If ¢ and ¥ are set-theoretical formulas, so are 1o, (¢ V ¥), (¢ A ¥),
(=), (¢ ), HAp, By, . . ., VA, VBy, . . . . Set-theoretical
formulas can only be obtained by (finitely many) applications of the processes
Just mentioned.

The following, then, are examples of set-theoretical formulas:

TXeX
HX (X eV A X e2)
XX e Y ANHYY eZ
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Note that the first part of 1.6 can be stated more concisely asfollows:
if @ and B are capital Roman letters, then o = 8 and « € 8 are set-theoreti-
cal formulas. Note that some expressions we have already used are not
set-theoretical formulas; for example,

ValdB(a ¢ B) Corollary 1.4

is not, because the lowercase italic letter a occurs in it. However, 1.4
is equivalent, on the basis of Definition 1.3, to

VA[IC(A ¢ C) = AB(4 ¢ B)),

which is a set-theoretical formula. In fact this is a fundamental prop-
erty of definitions already mentioned: Defined expressions can always be
eliminated in favor of primitive ones (see the Appendix). We will fre-
quently make tacit use of this obvious property of definitions, and we will,
treat Va HB(a e B), for example, as a set-theoretical formula. We also
use various signs of aggregation freely in order to prevent ambiguity,
although Definition 1.6 allows their use in restricted cases only.

Axioms 1.7 (Class-building axzioms) If ¢(X) s a set-theoretical formula
not tnvolving the letter A, then the following is an axiom:

HAVX[Xed = Xisaset N o(X)].
Similarly, if ¢(X) does not tnvolve B, then the following s an axiom:
HBVX[XeBe Xisaset A\ o(X)],

and so on for other letters. Letters other than X may also be used.

Here are some examples of class-building axioms. Letting ¢(X) be the
expression 1(X e X), we get, as an axiom,

(1) HJAVX[Xed = Xisaset A T (X e X)].

Thus the class asserted to exist in Eq. (1) is the class of all sets not mem-
bers of themselves. Let us try to reproduce Russell’s paradox. If
AeA, then A is a set and 4 ¢ A. Therefore 4 ¢ A. Hence 4 is not a
set, or 4 ¢ A. Knowing that 4 ¢ A, we conclude that 4 isnot a set. No
contradiction is involved. Next let ¢(X) be the expression X = X.
Then an axiom under 1.7 is

HBVX(XeBe Xisaset A X = X),
a logical consequence of which is

HBVX(X eB < X isa set).
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Thus B is the class of all sets. With o(X) = T1(X = X) we get
HAVX[Xed & Xisaset and T(X = X)],

and hence 4 has no elements. With ¢(X) = X eAd V X ¢ B we get
HCVX[XeCe Xisasetand (X eAd VvV X eB)],

so that C is the union of the classes A and B.
The class asserted to exist in 1.7 1s unique:

Corollary 1.8 If o(x) is a set-theoretical formula not tnvolving either of the
letters A or Band if VX(X e A = Xisaset A (X)) and VX(X eBe= X
1sa set A\ ¢(X)), then A = B. Sumilarly for formulas not involving either
A or C, B or D, eic.

Proof Under the assumptions of the theorem it follows on purely logical
grounds that VX(X e A & X ¢ B). Hence A = B by the extensionality
axiom.

Definition 1.9 For any sel-theoretical formula o(X) not involving A, let
{X : o(X)} betheunique class A suchthat VX(X e A = X 1sa set A\ ¢(X)).
Stmalarly if o(X) does not tnvolve B, C, and so on. This definition s
justified by Corollary 1.8. Again, letters other than X may be used, and even
lowercase letters (see 1.3).

The symbolism introduced in Definition 1.9 is very convenient in prac-
tice. Wemayread {X : ¢(X)} as “the class of all sets X such that ¢(X).”
The classes given in the examples following 1.7 are, in this notation,

(X :X¢X)}, (X:X=X}, [X:X=X}, {X:XeAV XeB].

The entire force of the class-building axioms is embodied in this sym-
bolism. In what follows, the class-building axioms will always be used
simply by defining classes equal to {X : ¢(X)} for some ¢(X). Further-
more, it will not be necessary to discuss set-theoretical formulas generally
any more, and we will use -only concrete formulas like those in the
examples above.

Definition 1.10 A C B & V(C(CeA=CeB). AC B s read “A is
included in B or ‘A is contained in B”; C 1s called inclusion. We say
that A 1s a subclass of B and B s a superclass of A; if A 1s a set, A is a
subset of B; if B is a set, B is a superset of A.

The reader is warned that many people use A C B where we use 4 C B.
Our usage seems more in line with traditional symbols indicating order,
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since it is a fact that A C A for any class A. No one would write z < z
for a number z to mean z less than or equal to z, and C is similar to <.

Corollary 1.11 A C Be= Vz(zxe A = x ¢ B).

Proof Certainly if A € B, then for all z, re A =z ¢ B. Now assume
that Vx(ze A = x e B). Suppose that C is a class and that C e A.
Then C is a set, so that C'e B. Since C is arbitrary, VX (X e 4 = X ¢ B).
Hence A C B.

Axiom 1.12 (Power-set axiom) Va Hb VC(C C a= Ceb).

This axiom says intuitively that, if a class 4 is “small,”’” then there is a
small class which has every subclass of A as a member. We already know
that there is a class which has every subset of A as a member, namely,
{X : X € A}. The power-set axiom assures us that there is a set with
this property, and this is important in what follows. A similar remark
applies to almost all the other axioms introduced.

Axiom 1.13 (Pairing axiom) Va Vb He(aec A bec).

Of course the set ¢ asserted to exist in 1.13 may have many other elements
in addition to a and b.

Axiom 1.14 (Unton axziom) VaHbVC(Cea= C C D).

If we think of a as a family of sets, 1.14 ensures the existence of a set b
which includes every member of a.

Definition 1.15 0 = {z : z = z}. 0 s the empty class.

Corollary 1.16 VX(X ¢0).
Proof If X €0, then X is a set and X ¢ X, which is absurd. Hence
VX(X ¢0).

Definition 1.17 ANB={x:xzeA AxeB}. AMNB 1s called the
intersection of A and B.

Axiom 1.18 (Regularity axiom) VA[A #0=HXXeAAXN4=0)]
Most of mathematics can be developed without the regularity axiom,

but it is very convenient. The regularity axiom rules out such counter-
intuitive possibilities as the existence of a class A such that 4 ¢4 or
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the existence of a sequence like - - - eDeCeBeA. Morcover, the
notion of an order type can be defined conveniently by making essential
use of this axiom, and even the notion of a cardinal can be so defined,
although we will not follow this procedure. Intuitivelv one can think
of the regularity axiom as assuring that ¢ has a property analogous to a
well-ordering: any nonempty class has a “minimal” element. In this
connection compare the notion of a well-founded relation defined in
Sec. 8.

To indicate the meaning of the regularity axiom, we give the follow-
ing theorem, which will be useful later.

Theorem 1.19 (z) A ¢ A.
(tt) There do not exist classes A, B such that Ae B e A.
(t2z) There do not exist classes A, B, C such that Ae B eC e A.

Proof Clearly (z¢¢) and (:¢) imply (). Because of the analogous
arguments involved we will establish (277) only. Assume that A ¢ B¢
CeA. Let D={z:2=AVz=Bvaz=C} Since A, B, C are
all sets, clearly for any X, Xe Dif X =AVv X=Bv X=C(C. By
the regularity axiom (since D 5 0), choose X ¢ D such that X N D = 0.
Then X = Av X=Bv X =(C. But

X=A=CeXND,
X=B=Ac¢XND,
X=C=Be¢XND,

so that we have a contradiction.

Definition 1.20 S$A = {z :ze A v z = A}. §A is called the successor
of A.

Applied to a natural number A, $A turns out to be A + 1. In con-
nection with this definition we note the following consequence, which
really expresses the only fact about § that will be used later.

Corollary 1.21 Vz(zeSa<=zea V z = a).

Proof For any class X wehave X e $aiff Xisasetand (X eaor X = a).
Thus by logic z € §a implies that zea orx = a. If zea or z = a, then,
since z always denotes a set, 2 is a set, and zea or £ = a. Hence
r e Sa. Hence, z being arbitrary, Vz(z eSa < zea V z = a).

We should note, however, another consequence of Definition 1.20, which
is more or less accidental and not very interesting.
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Theorem 1.22 If A is a proper class, then §A = A.

Proof Assume that X is any class. If X eA, then X is a set, and
XeAdorX = A; hence X e§A. If XeQA, then X e A or X = A, and
X is a set; since 4 is not a set, the possibility X = A is excluded, so that
we always have XeA. Thus VX(XeS4 & X eA), so that by the
axiom of extensionality §A = 4.

Axiom 1.23  (Infinity axtom) Hallea AN VX (X ea=8X ea)].

This axiom gets its name from the fact that the set a asserted to exist
is infinite: 0 is in a, §0 is in a, §§0 is in a, etc., and these elements are all
distinct, as seen from 9.13(iz). Of course using the power-set axiom,
we can obtain even larger sets from a.

On the basis of the axioms given so far we still cannot obtain sets
as big as we wish. For this and other technical reasons we need the next
axiom, the axiom of substitution. To formulate it, we must introduce
the notion of a function, which itself depends upon the notion of an
ordered pair, and we first work to define the latter notion.

Definition 1.24 {AB} = {zx:x=A V z = B}. {[A,B} is called the
doubleton A, B, or the unordered pair A, B.
Theorem 1.25 {a,b} ¢s a set.

Proof By the pairing axiom (1.13) let ¢ be a set such that a ec and
bec. Thus {a,b} Cc. By the power-set axiom (1.12) let d be a set
such that VX(X C ¢ = X ed). In particular we have {a,b} ed. Hence
{a,b} is a set.

Corollary 1.26 X ef{ab} =X =aV X =1.
Definition 1.27 {A} = {4,4}. {A} is called singleton A.
Corollary 1.28 {a} 7s a set.

Corollary 1.29 X e {a} & X = a.

Theorem 1.30 If {a,b} = {c,d}, thena = cand b = d, orelse a = d and
b =c

Proof From 1.26 we see that ae {a,b}. Hence by the hypothesis of the
theorem, a e {c,d}, so that by another application of 1.26,a = cora = d.
The two cases are clearly symmetric, so that we assume, say, that a = c.
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By 1.26, we have b e {a,b}, so that arguing as at first, b = c or b = d.
If b = d, the desired conclusion has been reached, so that we assume
instead that b = ¢. Thusa =b = ¢. By 1.26, d ¢ {¢,d}, so that by the
familiar argument d = a or d =b. Thus a =b =c¢ =d, and the
desired conclusion has again been reached.

Definition 1.31 (A4,B) = {{A},{A,B}}. (A,B) s called the ordered
pair A,B with first coordinate A and second coordinate B.

Since A and B enter into this definition in nonsymmetric ways, the con-
cept should depend upon the order. A little reflection shows that
Theorem 1.33 expresses the essential property one would expect of a
reasonable notion of ordered pair of sets.

Corollary 1.32 (a,b) s a set.
Proof By 1.25, 1.28, and 1.31.

Theorem 1.33 If (a,b) = (¢, d), then a = cand b = d.

Proof Since (a,b) = {{a},{a,b}}, (c,d) = {{c},{c,d}},and {a}, {a,b}, {c},
{c,d} are all sets by 1.25 and 1.28, Theorem 1.30 applies; hence we have
two cases.

Case 1 {a} = {c} and {a,b} = {¢,d}. By 1.29, a e {a}; hence a e {c},
and by 1.29 again, a = ¢. It remains to be shown thatb = d. We may
apply 1.30 to the assumption {a,b} = {c,d} to infer that either a = ¢ and
b = d, which is all right, or that a = d and b = ¢, from which it follows
that b = ¢ = a = d, as desired.

Case 2 {a} = {c,d} and {a,b} = {¢}. Now ce {cd} by 1.26, so that
ce {a}, and hence ¢ = a by 1.29. Similarly d = a and ¢ = b, so that
a=cand b = d.

Definition 1.34 (2) R is a relation iff VA(A e R = Hc Hd[A = (c,d)]).

(17) Dmn R = {z : Hy[(z,y) e R]}. Dmn R is called the domain of R.

(#112) Rng R = {y : Hx[(z,y) e R]}. Rng R s called the range of R.

(iv) F s a function iff F is a relation and Vz Vy Vz[(z,y) e F A (z,2) €
F=y =_¢]

A relation is thus simply any class of ordered pairs of sets. If (a,b) e R,
R a relation, we say that a is E-related to b. Examples of relations are
" < among real numbers, congruence of two integers modulo a third, the
set of solutions of the equation z*> — y? = 3, etc. A function is a rule F
assigning to each set a in its domain the unique b such that (a,b) € F.
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Axiom 1.35 (Axiom of substitution) If F is a function and Dmn F is a
set, then Rng F 1s a set.

Our next, and last, axiom, the relational axiom of choice, plays a special
role in mathematics. MNany of the results in this book can be obtained
without it. However, the axiom is now generally accepted as a valid
set-theoretical principle, so that we make no effort to avoid its use.

Axiom 1.36 (Relational axiom of choice) If R is a relation, then there is a
function F such that F C R and Dmn F = Dmn R.

Remark 1.37 In summary, we have introduced the following nine-axiom
schemata (eight axioms plus one infinite schema of axioms):

Axiom of extensionality
Class-building axioms
Power-set axiom

Pairing axiom

Union axiom

Regularity axiom

Infinity axiom

Axiom of substitution
Relational axiom of choice

For reference, all the axioms are given at the end of the book. The
axioms are sufficient to develop almost all of modern mathematics—
calculus, geometry, topology, real and complex analysis, etc. Only quite
recently have essential modifications and strengthenings of these axioms
been seriously considered by any large number of mathematicians; some
of these developments will be described briefly in Sec. 23. A compre-
hensive development of mathematics based on axioms much like ours
can be found in Bourbaki 1939 to the present. For a survey of approaches
to the foundation of set theory see I'raenkel, Bar-Hillel 1958. Other
axiomatic treatments of set theory are Suppes 1960, Bernays, Fraenkel
1958, Halmos 1960, Godel 1940, Klaua 1964, Rubin 1967, and the appen-
dix of Kelley 1955, where consequences of essentially the present axioms
are developed in outline form.

Once the axioms have been given, many natural questtons arise
concerning, for example, consistency, completeness, and independence. As
to consistency, these axioms have not been shown to be consistent, and
by a famous result of Gédel there appears to be little hope of doing so.
Naturally no inconsistency has been found, and we have faith that the
axioms are, in fact, consistent. For a precise exposition of the result of
Godel see Feferman 1960.
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As to completeness, the axiom system isincomplete (if consistent)—
there is a sentence ¢ such that neither ¢ nor 71 is derivable from the
axioms. An example is the continuum hypothesis discussed in Sec. 22.1
But even if we add this hypothesis, or its negation, to the axioms, they
remain incomplete. In fact, even if we add any finite number of new
axioms, or an infinite set of new axioms (as long as we can still effectively
recognize when an expression is an axiom), the axiom system remains
incomplete (if consistent). This result is also, in essence, due to Gédel;
for an exposition see Mendelson 1964.

With regard to independence we mention only the recently proved
fact that the axiom of choice is independent of the other axioms if they
are consistent; see Godel 1940 and Cohen 1963 and 1964, and the foot-
note below.

In view of the fact that the axiom system is not complete (if con-
sistent), the choice of axloms may seem rather arbitrary and capricious.
We could add more axioms, or take away some, with equal right, it
would seem. In defense the author can only appeal to the requirements
of present-day mathematics. In order to develop rigorously the over-
whelming majority of contemporary mathematics, all of the axioms are
needed. Various additional axioms we might take, like the continuum
hypothesis, are not needed for most mathematics; and it is not even
clear, with regard to the continuum hypothesis, for example, whether
it or its negation should be taken as an axiom if one wanted to extend the
system.

EXERCISES

1.38 Show that the following statement can replace the pairing axiom
in our system:

VaVbHela S c A b C o).

1.39 Prove that the infinity axiom cannot be derived from the other
axioms.
1.40 Show that, if VX(x e X =y e X), then z = v.
1.41 Show that the following are proper classes:

(@) {X :0¢X}.

(b) {X :y € X} (for any set y).

(c) {X :ye X} (for any set y).
1.42 Tet [X,Y] = {{0,X},{{0},Y}}. Show that [z,y] is a set. Show
that, if [a,b] = [c¢,d], then @ = cand b = d. (Thus [X,Y] could replace

1 Actually this has not been established for the present axiom system, but only for
related ones; but the same proof can very likely be carried out for the present axioms.

A similar comment applies to various other metamathematical observations we
make later. See Gaédel 1940, Cohen 1963-1964, Vopénka 1964.
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(X,Y) in the text. The choice between these two notions was really
quite arbitrary; the only criterion used was that the definition of (X,Y)
is simpler.)

143 Let (X,Y) = [{X},V}. Find setsaq, b, ¢, d such that {a,b) = (c,d)
and T1(a =c A b =d).

2 BOOLEAN ALGEBRA OF CLASSES

In this section we consider the elementary properties of combinations of
classes—those which can be expressed by Venn diagrams. We begin by
discussing the empty class, 0, defined in 1.15, and inclusion, defined in
1.10. Figure 1 is a Venn diagram for the inclusion 4 C B.

Theorem 2.1 O 15 a set.

Proof By the infinity axiom.

I'rom now on we call 0 the empty set rather than the empty class. From
0 we can build the sets {0}, {0 {0}}, {{0}}, etc. In acertain sense every
set, and even every class, is built from the empty set (see Sec. 15). This
may seem strange, but the implied simplicity is very useful.

Theorem 2.2 If A C b, then A s a set.

Proof By the power-set axiom choose ¢ such that VX(X € b= X e ).
Thus 4 e ¢, so that 4 is a set.

This theorem provides one of the main methods for proving that a given
class is a set; frequently we construct a class using one of the class-
building axioms 1.7 and then apply 2.2 to conclude that the class is a set.

Figure 1
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Properties of inclusion are summarized in the following.

Theorem 2.3 (z) 0 € 4.

(17) If A S0, then A = 0.

(iz1) A C A. ,
(v) If AC Band B S A, then A = B.
() IfACS Band BCC, then A S C.

Proof We prove (v) as an example. Assume that A € B and B C C.
Thus by Definition 1.10 we have

(1) VX(Xed=XeB),
(2) VX(XeB= Xe().

Now let X be an arbitrary class, and assume that X ¢ A. Then by (1),
X e B; by (2), X eC. Thus, X being arbitrary, VX(X e A = X e (), so
that using 1.10, A € C, as desired.

Theorem 2.3(2v) is frequently used in proving two classes equal. A
good rule is that, if all else fails in trying to prove two classes equal, go
back to the method of 2.3(wv).

Definition 24 A C Biff A T Band A 2 B. (C 1is called proper inclu-
ston; we say that A 1s a proper subclass of B and B a proper superclass of
A. Analogously we use the terms proper subset and proper superset when
A, or B, are sets. We also write A O B for BC A, A Q B for 1(A C
B), etc.

With regard to the notation for proper inclusion see the comment follow-
ing Definition 1.10. In Fig. 1 we have A C B if there actually are ele-
ments in the shaded part, that is, in B but not in A.

Theorem 2.5 (i) 0 C A ¢ff A = 0.

() ACO.

(iz) If AC Band B C C, then A C C.
() IfAC Band B C C, then A C C.
(v) IfACB,thenB;t_AandB@A.
(i) AQ A.

Proof We prove (zi7) as an example. Assume that A C B and B C C.
Then by 24, A € B and A # B. Hence by 2.3(v), A € C. Now if
A =(C, then A S B and B C A4, so that A = B by 2.3(7), which is
impossible. Thus A = C, so that A C C, as desired.
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An important fact is that there is no largest set; but later in this
section we will see that there 1s a largest class.

Theorem 2.6 (i) For any set a there is a set x such that = ¢ a.
(i1) For any set a there is a set b such that a C b.

Proof (i) By 1.19(2).

(17) For a given set a let x be chosen asin (z). By the pairing axiom
let ¢ be a set such that a ec and {z} e ¢ (note that {z} is a set, by 1.28).
By the union axiom let b be a set such that VX (X ec= X Cb). In
particular we have ¢ € b and {z} € b. Hence by 1.29,z ¢ b. Thus
a# b, sincex¢aand zeb. Hencea C b, as desired.

Theorem 2.6(7) will be generalized in Theorem 4.16.

We now turn to the discussion of intersection, which was defined in
1.17. TFigure 2 is the Venn diagram for an intersection; the shaded part
represents A M B.

Theorem 2.7 a M B 78 a set.

Proof If X ea™ B, then by 1.17, X ea. Thus a M B C a, so that by
2.2, aM B 1s a set.

Theorem 2.8 (1) 0M A = 0.

(iny ANMNA= A

(i) AMNB=BNA.

() AN BNC)=ANBNC.

vy ANBCA.

vy AN BCB.

(vit) If X € A and X & B, then X © AN B.
(it) ACBiff ANB = A.

(ix) IfAS Cand BES D,then AN B < CM D.

AN B 8

Figure 2
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Figure 3

Proof We prove () as an example. Ior any set X we have

XeAN(BNC) iff XeAANXeBNC by 1.17,
iff XedAAXeBAXeC by 1.17,
iff XeANBAXeC by 1.17,
iff Xe(ANBNC by 1.17.

Hence AN (BNC) = (AN B) N C, by 1.2.

Note that in the terminology of orderings, 2.8(v) to (vit) expresses
that A M B is the greatest lower bound of the classes A and B with re-
spect to inclusion (see Sec. 8); 2.8(¢¢z) and (iv) are the commutative and
assoctative laws for intersection.

Definition 2.9 C(lasses A and B are said to be disjoint if AM B = 0.
A class A is called a family of pairwise disjoint sets if any two distinct
members of A are disjoindt.

In Fig. 3, the classes A and B are disjoint. Families of pairwise disjoint
sets play an important role in mathematics; they will be discussed further
in Sec. 7 and will be essential in the definition of addition of cardinals
(Sec. 20). For now we content ourselves with a theorem giving some
degenerate cases.

Theorem 2,10 (v) 0 and A are disjoint for any class A.

(i) If a¢ A, then A and {a} are disjoint.

(771) 0 and {a} are families of pairwise disjoint sets.

(v) Fora #b, {a,b} is a family of pairwise disjoint sets ¢ff a M b = 0.
A Boolean operation that in a sense is dual to that of intersection is union.

Definition 2.11 A\UB =f{z:zeA VzeB}. A\UB 1is called the
union of A and B.
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N

A 8 . Figure 4

The Venn diagram for a union is given in I'ig. 4; the shaded part repre-
sents A \J B. Itisimportant to note that elements common to both A
and B are also elements of the union.

Theorem 2.12 o\ b 15 a set.

Proof By 1.25, {a,b} is a set. By the union axiom, let ¢ be a set such
that VX (X e {a,b} = X C ¢). By 1.26, we have a,be {a,b}, so that
aCcand bC ¢ If XeaUb, then Xea or X eb, and hence X ec.
Thus a\J b C ¢. Thus by 2.2, a\U b is a set.

Theorem 2.13 (z) AU 0 = A.

(1) AUA = A,

(i7) A\JB=B\J A,

() AU (BUC) = (AU B) U C.

(v ACAVUB.

(vip BS AU B.

i) IfACS Xand BC X, then AU BC X.
(viit) A S Biff A\U B = B.

Gz) AU (BNC) = (AUB N (AU C).
@ ANBUC) = (AN B U AN CO).
@) IfACCand BC D, then A\JU BC CU D.
(x17) Sz = z\U {z}, and Sz 75 a sel.

Proof We prove (iz) only. For any set X,

XeAUBNC) iff XeAV XeBNC by 2.11,
iff XeAV (XeBAXe() by 1.17,
iff (XeAV XeB) AN(XedV Xe()

by logic,
ff XeAUBAXecAUC by 2.11,

iff Xe(AUB N (AU C).
Thus, indeed, A \U (BN C) = (AU B)N (4 U 0).



SEC. 2 BOOLEAN ALGEBRA OF CLASSES 29

Equation 2.13(¢z) is illustrated in Iig. 5. On the left B M C is shaded //
and A is shaded W; 4 U (B M C) consists of all regions shaded in any
fashion. On the right 4 \U B is shaded #/ and A U C is shaded \\;
(AU B)M (A\J () consists of the crosshatched region X. Hence
AU BNC) =AU B N(AUC). Equations 2.13327) and (i)
express the commutative and associative laws for union. 2.13(v) to (viz)
express the assertion that 4 \U B is the least upper bound of A and B.
2.13(iz) and (x) are distrebutive laws. With regard to 2.13(zi7), recall
Definition 1.20.

Definition 2.14 V = {z : z = z}. V is called the universe.

Theorem 2.15 (i) Vz(zeV).
(n) VAACS V).

(1) VAA NV = 4).

@) VAA IV = V).

Theorem 2.16 V s a proper class.

Proof Suppose that V is a set. Then by 2.6(z) and 2.15(7) we have a
contradiction.

The last Boolean operations which we will introduce in this section are
those of complementation and relative complementation.

Definition 2.17 (i) A’ = {z : xz ¢ A}. A’ isthe complement of A.
(i7) A~B={x:zx2eAd Nz¢B}. A~B 1is the complement of B
relative to A.

B ~ A is represented by the shaded sector in Fig. 1. It is not required
in 2.17 that B € A, however.

........

X0 RN
SO 0000,
CRCRHKX

5 3
250

59X $.0.0 L
Dogeletedede e
QRIS
SRR
0letele %
E<:5§Ss;t\\

Figure 5
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Theorem 2.18 o ~ B 7s a sel.

Proof Clearly a ~ B C a, so that the result follows by 2.2.

Theorem 2.19 (1) A’ =V ~ A.
(1 A~B=ANDB.

(i) O =V.
() V' =0.
(vy A" = A.

) A~A4A=0.

(vity ACBff B C A"
(i) AC Biff A ~B = 0.
(ix) (ANBY =A4"UPB.
(xy (AUBY =A"NPB.
(zz) ANMNA =0.

(xzzz) AUJA =V.

Proof We prove (viiz) as an example. First suppose that 4 ~ B = 0.
Then thereisanz e A ~ B, so that by 2.17(%2),z ¢ A A z ¢ B. Therefore
A € B. Second assume that 4 ~ B = 0. Suppose that ze¢ A. Now
z ¢ B implies that z ¢ A ~ B, by 2.17(:7); hence z ¢ B. Since z is arbi-
trary, A € B. This completes the proof.

Theorem 2.19(ix) and (x) are known as the De Morgan laws.

Definition2.20 {4,B,C} = {4} U {B,C}, {4,B,C,D} = {4} U {B,C,D},
(4,B,C) = ((4,B),C), (4,B,C,D) = ((4,B,C),D).

Theorem 2.21 {a,b,c}, {a,b,c,d}, (a,b,c), and (a,b,c,d) are sets.

We could obviously extend Definition 2.20 further, but this is not neces-
sary for our purposes.

Remark 2.22 The operations discussed in this section—union, inter-
section, and complementation—are called Boolean operations on classes.
Intersection and union are binary operations; that is, they act upon two
classes to produce a third class. These operations will be generalized to
act upon arbitrary families of sets in Sec. 5. Many of the simple results
of this section have an algebraic flavor. The concepts of this section
can be treated purely algebraically; see, e.g., Dwinger 1961, Goodstein
1963, Halmos 1963, and Sikorski 1964. In fact, the theory of Boolean
algebras is extensive, with many interesting results as well as many open
problems. There are close relationships between this theory and the
theory of sentential logic, ring theory, and the theory of switching circuits.
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We have dealt in this section mainly with equations involving the Boolean
operations. Now there is an automatic method for determining whether
or not such an equation can be derived from the axioms (for an explana-
tion of this method see Birkhoff, MacLane 1965). We will not describe
the method, but the proof of the following rather complicated equation
may give an idea of the tricks involved:

1 AAUBYCYyVAIUBYIJAIC=V
To prove (1), we compute:

(AU B'\U Q) U (AU B) U AU C

=A4A"NB'"NCHYVA"NB)YUA UL

by 2.19(x),
=(ANBNCYJ(ANB)YJAUC

by 2.19(),
=(ANBNCYJUANBYU AU CN[VIANB)]

by 2.15(itz), (),
=(ANBNCHYUANBNCO)U ANB)YUAJCNY)

by 2.13(x),
=[ANBNCUCHIJANB)YU A UC

by 2.13(x), 2.15(212),
=(ANBNV)UANB)YUAUC

by 2.19(zxiz),

=(ANBYANBYJA IC by 2.15(i2),
=[AN(BUYB)UAUIC by 2.13(z),

=ANVYU AL IC by 2.19(zx),
=AU A UC by 2.15(z1z),
=VJucl by 2.19(x7),
=V by 2.15(w).

EXERCISES

2.23 (Concerning proper classes). Prove:
(a) If A is a proper class and A C B, then B is a proper class.
(b) If A is a proper class, then A \J B is a proper class.
(¢) There are proper classes 4, B such that 4 M B = 0.
(d) There are proper classes A, B such that A C B and B~ 4
is a proper class.
(e} V ~ ais a proper class.
2,24 Answer true or false:
(a) 0 C {0]}. (b) 0e€{0}.
(e 0 C {0} (d) 0 = {0}.



32 CHAPTER ONE ELEMENTARY SET THEORY

(e) {0} e{0}. (f) {0} ¢0.

(9) {0} € {0,{0}}. (R {0} < {0,{0}}.
@) 0¢{0,{0}}. (7) {0,0} = {0}.

(k) {0,0} = {{0}}. (0 10,{0}} = {{0},0}
(m) {0} e {{{0}}}. (n) {{0}} e {{{O}}}.
(0) {0,{0,{0,0}}} < {0,{0}}. (m {0} 0. F

(@ [10},{01} < (0,({0}}}.
2.25 Tor any classes 4, Blet A & B = (A~ B)U (B~ A) (this is
the operation of symmetric difference). Show that for any classes 4, B, C,
A B®C)=(A4@B)@C.
2.26 (Continuing 2.25). Let A be a nonempty set such that for some
set a the following conditions hold:

(1) 0O,aeA.

(2) Vz(ze A=z C a).

3) Vz(zreA=a~zxed).

(4) VaVy(zreAANyed=azUyedA ANzMNyel).
Show that with @ as addition and /M as multiplication A forms a ring.
2.27 Prove the following statements:

(o) ( AUBUCYUBUAUC=T.

0 (A UBYUB/U (B UAYUA=V.

(o ((BUCYUVAUCTUD/U A UB/UD-=Y.

d AAUA UB/UB=1V.

3 ALGEBRA OF RELATIONS

In this section we consider the basic properties of binary relations. We
will not discuss relations that are not binary, and we reserve special kinds
of binary relations, like functions, orderings, and equivalence relations,
until later. Besides giving a basis for these more special concepts, the
general theory of relations is occasionally applied in its general form in
mathematics, for example in the theory of uniform spaces.

The notion of a relation was defined in 1.34(Z), and we recall that a
relation is simply a class of ordered pairs of sets.

A relation can be pictured as in Fig. 6. The lines indicate which
pairs are in the relation. Thus (z,y), (2,3), (v,w), (v,w), etc., are in the
pictured relation. Of course the two circles of the figure may overlap.

Another way of thinking of relations intuitively is as subsets of a
plane, as in Fig. 7. We think of V, the universe, as laid out along both
the horizontal and vertical axes. The point with X-coordinate z and
Y-coordinate y is identified with the ordered pair (z,y). Relations may
thus be thought of as sets of points in the plane.

In virtue of a vacuous implication, we have the following.
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Figure 6

Corollary 3.1 0 is a relation.
The following simple theorem is quite useful.

Theorem 3.2 Let B and S be relattons. Then

) RS SeVeVy((zy) e R= (z,y) € S].

(12) (EBztensionality principle for relations). R = Siff Ve Vy [(z,y) e R &
(z,y) €S].

3¢ — —— e
Y
>

Figure 7
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Proof Clearly (i) follows from (¢), by 2.3(2v). The direction = in (4)
is obvious. Now assume that B and S are relations and Vz Vy [(z,y) e R
= (z,y) € S]. Suppose that X e . By 1.34(2), choose z, y such that
X = (z,y). Then (z,y) e B, so that (z,y) ¢ S; that is, X ¢S. Thus
VX (X e R= X ¢8), so that, by 1.10, E C §, as desired.

Theorem 3.2(z7) has an intuitive usefulness because it enables one
to prove relations equal by arguing with arbitrary ordered pairs rather
than with arbitrary sets. Intuitively speaking, ordered pairs have a
different connotation from sets, and 3.2(s7) helps in maintaining this
intuitive separation. For the same reason, it is helpful to extend the
notation of 1.9.

Definition 3.3 (7) For any set-theoretical expression ¢ not tnvolving A, let
{(x,y) : o(z,y)} = {A : there exust x, y such that A = (z,y) and o(z,y)};
similarly if ¢ does not involve B, elc., and stmilarly for {(x,2) : ¥ (x,2)}, etc.
(12) We sometimes write xRy instead of (x,y) ¢ R and xRy instead of (z,y) ¢ R.

Thus {(z,y) : ¢(z,y)} consists of all ordered pairs (z,y) such that o(z,y)
holds.

Definition 3.4 (¢) R|S = {(z,2) : there s a y such that (z,y) e R cmd
(y,2) e S}. R|S 18 the relative product of R and S.
(r) R = {(z,y) : (y,z) e R}. R~!1sthe converse or inverse of K.

Note that for any u, v, u(R|S)v iff there is a w such that uRw and wSv;
wl=% iff vRu.

Pictorially, representing R as in Fig. 7, B! is obtained from R by
reflecting in the main diagonal. To interpret R|S geometrically, imagine
Fig. 7 supplied with a third dimension and a third axis, the Z-axis. Let B
and S be two subsets of the X Y-plane, with points identified with ordered
pairs. Form the cylinders E°® and S° with bases £ and S, respectively,
and main axes parallel to the Z-axis. Thus R° consists of all triples
(z,y,2) with (z,¥) € B, and S° of all triples (z,y,2) with (z,y) ¢ S. Rotate
R° 90° about the X-axis, forming R°°; R°° is the set of all triples (x,y,2)
such that (x,2) e B. Similarly rotate S§° 90° about the Y-axis, forming
§°°; 8°° is the set of all triples (x,y,2) such that (2,y) ¢ S. Hence the
intersection R°° M S°° of the two cylinders R°® and S°° consists of all
triples (z,y,2) such that (z,2) e R and (2,y) e S. The projection of
R°° M 8°° on the XY-plane, parallel to the Z-axis, consists of all pairs
(z,y) such that for some 2, (z,2) ¢ R and (2,y) € S;i.e., the projection is B|S.

Note that Definition 3.4 makes sense even if R and S are not rela-
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tions. Usually, in fact, we will define notions in as great a generality
as possible.

Relative product and converse are the two basic operations on
relations; some fundamental properties of these notions are given in the
following.

Theorem 3.5 (2) R|(S|T) = (R|9)|T.

(@) R|(SY T) = (B|S) U (R|T) and (R\J S)|T = (R|T) J (S|T).
(wir) RI[(SNT) S (BR|S) N\ (R|T) and (R N\ S)|T € (R|T) N (S|T).
(w) IfR C S, then R|T < S|T and T|R < T|S.

() IfR, S8, T are relations, then (R|S) T = 0¢f (R~YT) NS = 0.
wi) RUYS)'=RTUSL

(vir) (R~Y)~' = R if R vs a relation.

(vizi) (R|S)-! = STYR L

Proof We prove (¢) and (v) as examples. First suppose that (z,w) e
R|(SIT). Choose y such that zRy and y(S|T)w. Choose z such that
ySz and zTw. Then z(R]S)z, so that z[(R]|S)|T]w. Hence, by 3.2(1),
R}(S]T) < (R|S)|T. The opposite inclusion 1s proved similarly, and
(z) follows.

To prove (v), first suppose that (R|S) N T 0. Say that (z,y) e
(R|S) M T. By Definition 3.4, there is, then, a z such that zRzSy.
Hence zR~x Ty, so that 2(R~YT)y. AlsozSy, sothat (z,y) e (B~YT) N S,
and (R~T) N\ S # 0. Therefore, (R|S) N\ T 5 0 implies (R=YT) N
S 5 0, and the converse is similar.

The inclusions in 3.5(z7z) cannot be replaced by equalities. To
show this for the first inclusion, let B = {(0,0),(0,{0})}, S = {(0,0)}, and
T = {({0},0)}. Then (0,0) ¢ (R|S) N\ (B|T), but SN\ T = 0 and hence
RSN T) = 0. Thus (R]S) N (R|T) # R|(S\ T). The second inclu-
sion is treated similarly. Usually when stating only inclusions in theo-
rems, it is possible to show that the inclusions cannot be replaced by
equalities.

Theorem 3.5 gives the basic and most useful properties of | and —,
but there are many more complex facts that are also easily verified.
For example, the inclusion

(1) (RIS N (TU) < BIENT) N S|UIHU

is demonstrated asfollows. Assumethat (z,2) e (R|S) N\ (T|U). Choose
y such that xRy and ySz, and choose w such that 27w and wUz. Then
yR='2Tw, so that y(R~YT)w. Also ySzU~'w, so that y(S|U~)w. Hence
(y,w) e (R~YT) N\ (S|U™Y), zRy, and wUz so that (z,2) e R|[[((R~YT) N
(SJUH)|U. The inclusion follows, by 3.2(z).
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Definition 3.6 I = {(z,y) : * = y}. [ s called the identity relation, or
diagonal.

Theorem 3.7 (v) For any relatvon R, R|I = I|R = R.
() I =1L

We now discuss briefly the concepts of domain and range of relations,
which were introduced in 1.34¢. When we think of R pictorially, as in
Fig. 6, Dmn R is the circle on the left and Rng R that on the right. In
Fig. 7, Dmn R is the projection of E on the X-axis and Rng R that on
the Y-axis.

Theorem 3.8 Let R and S be relations.
@) Dmn (RUYUS) =DmnR\J Dmn S and Rng (R\JS) = Rng R\U

Rng S.

(7) Dmn (RNS) S Dmn RN Dmn S and Rng (RN S) € Rng B N
Rng S.

(it) Dmn R ~ Dmn S € Dmn (R ~ S) and Rng R ~ Rng S € Rng
(R ~8).

(w) If R < S, then Dmn R C Dmn S and Rng R < Rng S.
(v) Dmn0=0= Rng0.

() Dmnl=V = Rngl.

(viz1) Dmn R~' = Rng R and Rng R=' = Dmn R.

(vied) Dmn (R|S) © Dmn R and Rng (R|S) € Rng S.

Proof We prove the first part of (v7z) as an example. Suppose that
xe Dmn R~ Dmn S. By 1.34(77), choose y such that (z,y) e R. Now
(z,y) ¢ S implies that zeDmn S, by 1.34(%), but 2 ¢Dmn S since
ze Dmn R ~ Dmn 8, by 2.17(z). Hence (z,4) ¢ S. Thus(z,y) e R ~ S,
by 2.17(1¢), so that x e Dmn (R ~ S), by 1.34(¢7). This completes the
proof.

Definition 3.9 Fid R = Dmn R\J Rng K. Fld R 1s called the field of K.
R 1s sard tobe on A if FId R = A.

The intuitive meaning of the notion of the field of a relation should be
clear. Fld has properties analogous to 3.8(z) to (v7). In addition we
have the following.

Theorem 3.10 Let R and S be relations.
(@) Fld (R~Y) = Fld R.
(iz) Fld (R|S) € Dmn R\J Rng S.
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Definition 3.11 AXB = {(a,b) : ae A and be B}. AXDB 1is called the
cartesian product of the classes A and B. Further, let AXBXC =
(AXBYXC, AXBXCXD = (AXBXC)XD, and AXBXCXDXE =
(AXBXCXD)XE.

A X B can be thought of as a rectangle with sides A and B; it is thus a
subelass of the plane represented in Fig. 7.

We will not state any properties of AXBXC, or AXBXC XD,
or AXBXCXDXE; they follow easily from the simple properties of
A X B, which we will give.

Theorem 3.12 aXb 18 a set.

Proof By 2.12, a\U b is a set. By the power-set axiom, let ¢ be a set
such that

1) VX(XCaUb=Xeo).
Using the power-set axiom again, let d be a set such that
(2) VXX Cc=Xed).

Now we claim that aXXb © d. Let X be any element of aXb. By Defi-
nition 3.11, choose z e @ and y € b such that X = (z,y). Thus, by Defini-
tion 2.11, xea'\Ub and yea'\Jb. Now, from 1.26 and 1.29, we infer
that {z} € aUband {z,y} & a\Ub. Hence, by (1), {z} ecand {z,y}ec.
By 1.26 again, {{z},{z,y}} C¢; i.e.,, X C¢, by 1.31. Hence, by (2),
X ed. Thus, indeed, aXb € d. Therefore aXb is a set, by 2.2.

Theorem 3.13 (1) A XB 1s a relation.

(r) AX0=0XA4=0.

(i1) If A # 0 and B % 0, then AXB = 0.

(w) If A S Cand BCS D, then AXB € CXD.

(v AXBUC) = AXB)UJAXC) and (AU B)XC = (AXC)U

(BXC).

1) AX(BNC) = (AXB)N (AXC) and (A N\ B)XC = (AXC) N
(BXC).

(ir) AX(B ~C) = (AXB) ~ (AXC) and (A ~ B)XC = (AXC) ~
(BXC).

(vitr) (AXB)™! = BXA.

(z) If BN C =0, then (AXB)(CXD) =0; of BON\C =0, then
(AXB)|[(CXD) = AXD.

(z) Dmn (AXB) = Aif B 0 and Rng (AXB) = Bif A = 0.

(zz) If R s a relation, then R C Dmn R X Rng R.
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Theorem 3.14 If r and s are relations, then r|s, r~', Dmn r, Rng r, and
Fld r are sets.

Proof By the union axiom, let a be a set such that
(1) VX Xer=X C a),

and b a set such that
(2) VXXea= X Ch).

We claim that Dmn r C b. Suppose that x e Dmnr. By 1.34(47), choose
y such that (z,y) e . Then, by (1), (z,y) € a. Now (z,y) = {{z},{z,y}},
by 1.31. By 1.26, {z} e (x,y), and hence, by 1.11, {z} ea. Hence,
according to (2), {z} € b. Using 1.11 and 1.29, we see that z e b, as
desired. Hence Dmn r € b, so that, using 2.2, Dmn r is a set. In a
similar manner one sees that Bng r is a set. Fld r = Dmn r U Rng r;
Fld ris a set, by virtue of 2.12. Now r ! € Dmn (r~!) XRng (r—') = Rng
rXDmn r, by 3.13(z%) and 3.8(viz), so that +! is a set, by 3.12 and
2.2. Finally, r|s € Dmn (r|s) XRng (r|s) € Dmn r X Bng s, by 3.13(x1),
3.8(vter), and 3.13(zv), so that rfs is a set, by virtue of 3.12 and 2.2.

We consider one more operation on relations, which plays an
important role in the discussion of functions.

Definition 3.15 R*A = {y : Hx ¢ A such that (z,y) e R}. R*A s called
the R-image of A.

When R is conceived as in Fig. 6, A is usually taken to be a subclass of
the left-hand circle; R*A consists, then, of the subclass of the right-hand
circle consisting of sets which are at the right end of a line with the left
end in A. In Fig. 7, A will be considered as a class of points on the
X-axis; we form the strip with base A parallel to the Y-axis, intersect
with R, and then project on the Y-axis parallel to the X-axis, forming
R*A.

Theorem 3.16 Let R and S be relations.
() 0*A = 0.

(77) R*0 = 0.

(117) R*(A\J B) = (R*4) U (R*B).
(v) R*(AMN B) C (R*A) M (R*B).
(v) (R*4)~ (R*B) € R*(4 ~ B).
(w?) If A C B, then R*A C R*B.
(vit) (R|S)*A = S*(R*A).

(viir) I*A = A.
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(1z) Dmn (R|S) = R~**(Dmn S) and Rng (R|S) = S*(Rng R).
(z) AXB)*C =By ANC#0; AXB)*C =0 ANC = 0.
(zi) R*A C Rng R.

Proof We prove (vit) and the first part of (iz). For (vi7), first suppose
that y e (R|S)*A. By 3.15, choose a e A such that a(R|S)y. By 3.4(2),
choose x such that aRx and zSy. Then, by 3.15, x e R*4, and so y e
S*(R*A4). Conversely, assume that ze S*(R*4). Choose te R*A such
that ¢Sz. Choose beA such that bRt. Thus b(R|S)z. Hence ze
(R|S)*4, and the proof of (vit) is complete.

For the first part of (¢x), first suppose that x ¢ Dmn (R]S). Choose
z such that z(R|S)z. Choose y such that zRySz. Thus y e Dmn S and
yR™x, so that z e R='*(Dmn S). Second, suppose that a e R71*(Dmn S).
Choose b ¢ Dmn S such that b(R~Y)a. Thus aRb. Choose ¢ such that
bSc. Thus a(R|S)c, so that a e Dmn (R]S), as desired.

Theorem 3.17 r*4 18 a sel.

Proof By 3.16(z7) and 3.14.

Remark 3.18 The general theory of relations is highly developed both
explicitly, as in this section, and algebrajcally, where one abstracts from
the actual definition of a relation. Many general theorems are given in
Schréoder 1895 and Russell, Whitehead 1925 to 1927. The algebraic
theory is developed, for example, in Tarski 1941, Chin, Tarski 1951,
Jénsson, Tarski 1952, Lyndon 1961, and Monk 1964. There is one more
very important operation on relations, the operation of forming the transi-
tive closure of a relation, which will be discussed in Sec. 11.

EXERCISES .

3.19 Show that the following statements hold for any relations R, S, T":
(@) (RIS) NT C RI(RYT) N S].
() (R|S) YT S R|RYT.
(¢ RNSN T C R|ST.
(d) If R|IT € R and R|T~* S R, then R N\ (S|T) = (R N 8)|T.
3.20 Show that none of the inclusions in 3.8(+7) and (i7¢) and 3.16(w)
and (v) can be replaced by equalities.
3.21 (Sets and classes). Prove:
(a) I1s a proper class.
(b) If Ris arelation and Dmn R and Rng R are sets, then R is a set.
(¢c) If Dmn R is a proper class, then R is a proper class.
(d) If A = 0, then AXYV is a proper class.
(e) Give an example of proper classes R, S such that R|S is a set.
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(f) If R is a relation, then R is a set iff R—* is a set.
(9) Give an example of a relation R and a set a such that R*a is a
proper class.

3.22 Prove:
(a) If A and B are proper classes, then {4,B} =0, {4} = 0, and
(4,B) = {0}.

(b) If 4 is a proper class, then {4z} = {z,A} = {z}] and (4,z) =
{0){1;} }) (:ZJ,A) = { {13} }
(c) If A and B are proper classes and R is a relation, then (4,B) ¢ R
and (4,x) ¢ R; but a relation R can be constructed for which
(z,V) € R for some z.
3.23 Show that (aXb) Xc = aX (bXc) fails in general.

4 FUNCTIONS

The notion of a function is one of the most important in mathematics.
The definition was given in 1.34(w); intuitively we think of a function F
as a rule that assigns to each x ¢ Dmn F the unique y such that (z,y) e F.
Thus a function is simply a special kind of relation. With a relation R
pictured asin Fig. 6, R is a function iff the situation illustrated by r, s, ¢
does not occur, that is, iff, given any element in the left-hand circle, there
is at most one line beginning with the element and leading to the right-
hand circle. If R is pictured as in Fig. 7, then R is a function iff each
vertical line (i.e., each line parallel to the Y-axis) meets R in at most
one point (see Fig. 8).

Two important properties of inverses of functions not shared by
other relations are the following [ef. 3.16(wv) and (v)].

Theorem 4.1 Let F be a function. Then
(7) F™*(ANB) = (F1*4) N (F*B).
(i7) F'*(A ~ B) = (F'*A) ~ (F~1*B).

Proof () In virtue of 3.16(zv), we have only to prove that (F~1*4) M
(F-1*B) C F~1*(4 M B). Suppose, then, that z e (F~1*4) M (F-'*B).
Thus ze F7'*4 and z e F~'*B. By 3.15, choose ae 4 and be B such
that (a,x) e F~' and (b,x) e F~'. By Definition 3.4(:7), we then have
(z,a) e F and (z,b) ¢ F, so that the fact that F is a function yields a = b.
Thusae 4 M B and z ¢ F~'*(A M B), as desired.

(72) In view of 3.16(v), we have only to show that F~'*(4 ~ B) C
(F~1*A) ~ (F~*B). AssumethatzeF '*(4 ~B). SinceA ~BC 4,
we infer from 3.16(vz) that z e F~1*A. To complete the proof, it is
enough to derive a contradiction from the assumption that z ¢ F~'*B.
This assumption implies that there is a y ¢ B such that (y,z) ¢ F~!; the
earlier assumption z ¢ F-1*(4 ~ B) 1mplies the existence of z¢e A ~ B
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RngF{

Dmn F

Figure 8

with (z,2) e F~'. Thus, by the definition of !, xFy and zFz; since F is a
function, y = z. But then ye B and y e A ~ B, which is impossible.

We now introduce the customary functional notation.

Definition 4.2 F(4) = {z : Vy(Ad isaset N AFy=zey)}. Instead of
F(A) one may write FA or Fa. In case A = (a,b) one may write F(a,b),
Fab, or Fa tnstead of F(4).

One reads F(A) as F of A or F applied to A. We say that F sends 4 to
F(A), or assigns F(A) to A, or makes F (A4) correspond to A. When using
the notation F4, one usually says that F is a function tndexed by I, where
I = Dmn F, or simply that F ¢s a family of sets indexed by I.

Note that F(A) is essentially defined to be the intersection of all
sets y such that AFy; if F is a function and 4 e Dmn F, then there is
only one such y, and F(A4) equals that y. Since the general notion of inter-
section has not been introduced yet, the definition must be spelled out
as in 4.2 (see Sec. 5), whose meaning is fully expressed in the following.

Theorem 4.3 Let F be a function.
(1) IfxeDmn F, then F(x) s the unique y such that (z,y) ¢ F, and hence
(x,F (x)) e F; in particular, F(z) 1s a set of x ¢ Dmn F.
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() IfxeDmn F, then F(z) = z iff (x,2) ¢ F.
(1) If A ¢ Dmn F, then F(A) = V.

Proof (1) Assume that x e Dmn F. Then we may choose y such that
(z,y) e F; y is uniquely determined. We need to show that F(z) = y.
First, suppose that ae F(z). Now z is a set and zFy, so that, by 4.2,
acy. Hence, a being arbitrary, F(z) C y. Second, suppose that a e y.
If z is such that zFz then z = y and hence a e z; hence ae F(z). Thus
y € F(x), so that F(z) = y.

(it) By (i).

(1i7) Assume that A ¢ Dmn F. If A is a proper class, then the
implication in the definition of F(A) is always vacuously true, so that
F(A) = V. If A is a set, then for any set y it is never true that AFy,
so that again the implication is vacuously true, and hence F(4) = V.

With regard to part (:7¢) of this theorem, we may mention the
peculiar fact that, if we had simplified 4.3 to read F(4) = {X : Vy(AFy
= X e y)}, then part (227) would still be true (under the assumption that
F is a funetion), but the proof would be more complex; parts (¢) and (z7)
would also remain true, with the same proofs as above.

Note that some symbols we have introduced appear to be functions
but are not. Thus §, the successor “function’ introduced in 1.20, is not
a function. § is a symbol that has no meaning apart from the context
S(A). The same appliesto {4}, introducedin 1.27. Notethat {V} = 0;
4.3(117) would be contradicted if { |} were treated as a function. Com-
pare the Appendix here. The point is that §, for example, is a part of
our symbolism and can be applied even to proper classes, although func-
tions are normally applied only to sets.

Theorem 4.4 Let F and G be functions.

(t) F =G 1f Dnn F = Dmn G and F(z) = G(z) for all x e Dmn F
(extenstonality principle for functions).

(17) F = G iff Fx = Gz for every set x.

(t17) y e F*A iff there is an x ¢ A such that F(x) = y.

() zeF 1A iff F(z) e A.

() IfF CGandxeDmnF, then Fx = Gz.

Proof Weprove (7) only. Note that (¢2) follows from (¢), sincex ¢ Dmn F
iff Fx = Viff Gz = Viff x ¢ Dmn G. The direction = follows on logical
grounds. Now assume that Dmn F = Dmn G and Vx e Dmn F[F(z)
= @(z)]. In order to apply 3.2(i%), on grounds of symmetry it is
enough to take sets z, y such that xFy and prove that xGy. By 4.3, the
assumption xFyimplies that x e Dmn F and F(z) = y. Hence G(z) = y,
so that, by 4.3, zGy, as desired.
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A

Theorem 4.5 [ s a function. For any x, I(x) = .

Theorem 4.6 If F and G are functions and Dmn F M\ Dmn G = 0, then
F U @ 1s a function.

Definition 4.7 (i) FoG = G|F. FoQ is called the composition of F and G.
(¢v7) F 18 1-1 ¢ff F and F~! are functions. One says, then, that F is one-fo-
one, one-one, or biunique.

The definition of composition is made essentially to ensure the property
expressed in 4.8(z7¢z). The function F is one-one provided that distinct
elements of its domain are sent by F onto distinet elements of its range.
Again we note that Definition 4.7 makes sense even if F and @ are not
functions (see the similar remark following 3.4).

Theorem 4.8 Let F and G be functions.

(1) Dmn (FoG) = G* (Dmn F) C Dmn G,

(i) Rng (FoG) = F*(Rng G) € Rng F.

(1) If x e Dmn (Fo@), then (Fo@) (x) = F(G(x)).

(1) The following three conditions are equivalent:
(a) F is one-one.
(b) Forallz,ye Dmn F, if F(zx) = F(y), then x = y.
(c) For all x, ye Dmn F, if x 5 y, then F(z) # F(y).

Proof (i) and (iz) follow directly from 4.4(zv), 3.16(¢xz), and 3.8(vit7).
To prove (itz), suppose that x e Dmn (FoG). Thus, by 4.7(7), x ¢ Dmn
(G|F). Choose y such that z(G|F)y; choose z such that xGzFy. Then,
using 4.3(z), G(zx) =2z and F(z) = y; le., F(G(x)) =y = (F@G)(x).
Finally, to prove (iv), first note that (b) and (c) are equivalent on logical
grounds alone. Now assume that (a) holds, z,y e Dmn F, and F(z) = F(y).
Thus 4.3(¢) implies that (z,F(z)), (v,F(z)) e F and hence (F(z),x),
(F(x),y) e FF1. Since F~! is a function, z = y, as desired. Hence
(a) = (b). Now assume that (b) holds. To prove (a), we need to show
that F~! is a function; assume, then, that xF~'y and zF~'2. Thus yFz
and zFz, so that, by 4.3(z), F(y) = x = F(z). The assumption (b) then
yields y = 2, as desired. This completes the proof.

We now introduce some important ways of speaking about functions.

Definition 4.9 (v) We say that F s a function from A into B iff F is a
function, Dmn F = A, and Rng F & B. We may also say that F maps A

. ; . . .- F
into B; we abbreviate this expression by writing F : A — B, or A — B.
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We say that a triangle

45B

H\JG
C

commutesif F : A—- B, G: B— (C,H: A— C, and GoF = H.

(1r) 4B = {f: fs a function from A into B}.

(7i1) F is a function from A onto B iff F is a function from A into B and
Rng F = B.

(2v) F is a one-one correspondence between A and B provided that F is a
one-one function mapping A onto B.

(v) F s apermutation of A if F is a one-one function and maps A onto A.

Theorem 4.10 (z) If F 1s a function, then F maps Dmn F onio Rng F.

(17) 0:0—-A4;4F:0—> A, then F = 0.

(euz) IfF :A—>0,then A =F = 0.

() IfF:A—->Band BC C,then F: A— C.

vy IfF:A—-Band G :B— C, then GoF : A — C.

(vt) IfF : A— B, then F is one-one iff forall C and all G, H, if G : C —
A, H:C— A, and Fo = FoH, then G = H.

(vity If F: A— B, then F maps onto B ff for all C and all G, H, if
G:B—C(C,H:B— C, and GoF = HoF, then G = H.

(viir) °B = {0}:¢f A = 0, then 40 = 0.

(tx) If B =0, then °B = 0.

Proof (1) to (v) are quite easy to prove. To prove (vz), assume that
F : A— B. Direction =. Suppose that F is one-one. Assume that
G:C— A H:C— A,and FoG = FoH. ThusDmnG = C = Dmn H,
by 4.9(%). If xeC, then F(G(z)) = (Fo@) (x) = (FoH) (z) = F(H(x)),
by 4.8(121) ; since F is one-one, we obtain, by 4.8(w), G(x) = H(z). Since
x is arbitrary, it follows, by 4.4(7), that ¢ = H. Direction <. Suppose
that F is not one-one. Then there exist distinct a,b e A such that
F(a) = F(b), by 48(w). Let G = {(z,y) :xeA and y = a}, and let
H = {(z,y) :xzed andy =0b}. Then G: A— A4, H: A— A, and for
any z e A, (Fo@) (z) = F(G(z)) = F(a) = F(b) = F(H(x)) = (FoH) (x);
furthermore, by (v), Dmn (FoG) = A = Dmn (FoeH). Hence, by 4.4(1),
FoG = FoH. But G = H.

The proof of (viz) is analogous. Direction =. Suppose that F
maps onto B. Assume that ¢ : B— C, H : B— (, and GoF = HoF.
Then Dmn G = Dmn H. For any b € B choose a ¢ A such that F(a) = b,
by 4.9(¢77); then G(b) = G(F(a)) = (G-F) (a) = (HoF) (a) = H(F(a)) =
H(b). Hence, b being arbitrary, G = H. Direction <. Suppose that
F does not map onto B. Choosebe B~ RngF. lLetG@ = {(z,y) : z¢B
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~ b}, y =0} U {(0,0)} and H = {(z,y) :xeB~ {b},y = 0} U {(b,{0})}.
Then ¢ : B— {0,{0}}, H : B— {0,{0}}, and hence Dmn (GoF) = Dmn
(HoF), by (v). If ae A, then F(a) e B~ {b} and hence (GoF)(a) =
G(F(a)) = 0 = H(F(a)) = (HoF)(a). Thus GoF = HoF. But obvi-
ously G # H. )

Condition (vii7) is easily proved. To prove (iz), suppose that
B # 0, and choose beB. Let F = {(z,y) :zea and y = b}. Then
clearly F 1s a function from a into B. Furthermore, F C aX {b}, so
that, by 3.12, F'is a set. Hence F ¢ *B, so that ¢B # 0.

Note that, if A is a proper class, then 4B = 0, since there is no
function f that is a set and maps 4 into B.

The following theorem is a very useful variant of the substitution
axiom. -

Theorem 4.11 If F s a one-one function from A wnto B and B 1s a sel,
then A 1s a set.

Proof Rng F C B, so that Rng F is a set, by Theorem 2.2. F-!is a
function mapping Rng F onto A, so that A is a set, by the substitution
axiom.

Definition 4.12 F[A = F N\ (AXRng F). F[A 1s called the restriction
of F to A.

Theorem 4.13 [f F is a funclion, then F[A s a function, Dmn (F[A) =
AN Dmn F, Rng (F[A) = F*(A), and for any x e A N\ Dmn F, (F[A)
(x) = F(x).

The following gives a useful method for proving functions one-one or onto.

Theorem 4.14 Suppose that F maps A into B.

(1) F maps onto B off there is a function G from B into A such that
FoG = IB.

(1) F vs one-one iff A = Qor else A # 0 and there 18 a function G from B
into A such that GoF = ITA.

(vi1) F 1s one-one onto B iff there is a function G from B into A such that
FoG = IIB and GoF = I[A; in this case we have G = F~1,

Proof (1) =. By the relational axiom of choice, let G be a funection
such that @ € F-land Dmn G = Dmn F-', ThusDmn G = RngF = B,
by 3.8(vi7). If y e Rng G, choose x such that (z,y) e G; then (z,y) ¢ F?
and consequently (y,x) e F, so thatye A. Sinceyisarbitrary, Rng G C A.
Thus G maps B into A. By 4.10(v), FoG has domain B. Assume that
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reB. Then (z,G(z)) e G, by 4.3(7), so that (z,G(z)) ¢ F~! and hence
(G(z),x) e F. Thus, by 4.3(i7), (FoG)(zx) = F(G(z)) = z. z being
arbitrary, it follows that Vz(ze B = (FoG)(z) = (I[B)(z)) (using
4.5 and 4.13), and hence Fo = I[B, by 4.4(¢). <. For this direction
we do not need the relational axiom of choice. Suppose that be B.
Then b = (I[B) (b) = (Fo@) (b) = F(G(b)). Thus (G(b),b) ¢ F, so that
beRng F. Since b is arbitrary and we are given that Rng F € B, it
follows that Rng F = B; that is, F maps onto B.

(1) =. Assume that F is one-one and 4 # 0. Choose ae 4.
Let G = F'\U {(z,y) : 2e B~ Rng F and y = a}. Then @ is a func-
tion from B into A. Clearly Dmn G = B, and so, by 4.10(v), Dmn
(GoF) = A. ForanyaeA wehaveae DmnF, (a,F(a)) eF, (F(a),a) e F7,
(F(a),a) e ¢, and hence a = G(F(a)) = (GeF)(a) = (IlA)(a). Thus,
by 4.4(i), GoF = IlA. <. To prove that F is one-one, we apply
4.8(iv) (b); suppose, then, that a,b ¢ A and F(a) = F(b). Thena = (I[4)
(@) = (GoF) (a) = G(F(a)) = G(F(b)) = (GoF) (b) = (I14) (b) = b, as
desired.

(11z) =. Let G = F~1: then ( is a function from B into 4. If
be B, then, since F maps onto B, there i1s an ae A such that (a,b) e F.
Thus (b,a) e F~'. Hence G(b) = a, and (Fo@) (b) = F(G()) = F(a) = b.
Hence FoG = I[B. Similarly GoF = IJA. &=. See the corresponding
proofs in (z) and (zz).

In proving Theorem 4.14(z), it is essential to use the relational
axiom of choice; see Rubin, Rubin 1963, pp. 5-7.

Theorem 4.15 (7) If F 1s a function, then F*a 1s a set.

(it) If f is a function, then f*A s a set.

(vir) If F is a function, then Fla 1S a set.

(w) ba 18 a set.

(v) If F 1s a function and Dmn F is a set, then F and Rng F are sets.

Proof (2) Let G = Fla. Then Dmn G = a /M Dmn F is a set, by 2.2.
Hence, by the axiom of substitution, F*(a) = Rng G is a set.

(27) Similar to the proof of (7).

(ti7) Clearly (Fla) € aXF*(a), so that Fla is a set, by 3.12 and 2.2.

(w) By 3.12, bXa is aset. From the power-set axiom, we obtain a
set ¢ such that VX(X € bXa= X ec). Thus %a C ¢, so that bais a
set, by 2.2.

(v) Since F = F[Dmn F, F is a set, by (z17). Hence Rng F is a set,
by 3.14 (or the substitution axiom).

Theorem 4.16 If A and B are sets, then there is a set C and a one-one func-
tion F mapping B onto C such that A M C = 0.



SEC. 4 FUNCTIONS 47

Proof Let F = {(z,y) : zeB and y = (x,4)}. Clearly F is a function
and Dmn F = B. Let C = Rng F. By the substitution axiom, C is a
set. If z,ye B and z # y, then Fx = (z,4) # (y,A) = Fy. Thus F
is one-one. Suppqse that ze AN C. Thusze 4, and x = Fy for some
y e B, and hence x = (y,4). Thus 4 e {y,A} ¢ {{y},{v,A}} = (y,4) =
z e A, contradicting 1.19(s72z). Hence there is no such z; that is, 4 M
C = 0. This completes the proof.

Theorem 4.16 is useful in some applications; see, for example, the
replacement theorem in algebra (van der Waerden 1940, pp. 39-42).
‘One may say that in the theorem we simply “rename’’ the elements of B
in order to “make’”’ A and B disjoint.

To conclude this section, we Introduce some special notation for
functions, expanding Definitions 1.6, 1.9, and 3.3. It is again necessary
to discuss the very foundations of our development; namely, we need to
single out a different collection of expressions from that delineated in
Definition 1.6.

Definition 4.17 (1) We define the notion of a setf-theoretical term: (a) any
capital italic letter is a term, and 0, V, and I are terms; (b) +f o, 7, p, £, = are
terms, then so are (¢ M 7), ($0), {o,7}, {a}, (o,7), Dmn o, Rng o, ¢ \J 7, o,
o ~r, {o,7p0}, {o7pt}, (0,70), (o,7,0,8), al|r, 071, Fld o, ¢ X7, 0 X1 Xbp,
o X1 XpXE o XrXpXEXn, a*r, 6(7), o7, 0, oor, "o, and 7.

(11) If o(X) isaterm and o(X) an expression, then {o(X) : o(X)} = {YV :
HX(o(X) AN Y = o(X))}, where Y does not occur in a(X) or o(X).
Similarly we use the notations {a(X,Y) : o(X,Y)}, {0(Z) : ©(Z)}, etc.

(117) (¢(X) : X eI) denotes the function {(X,0(X)) : X e I} for any term
o(X) such that o(X) 1s a set for each X e I.

A term is thus an expression that denotes a class, and a formula an
expresslon representing an assertion about classes. The notion of a term
has to be expanded as we give more definitions, but we will not do so
explicitly. The notion of a term will be used only in the context of
4.17 (47) and (777) anyway, and we will be concerned only with concrete
examples. Some examples of 4.17(47) are:

() ey} = {z: HxHyle(z,y) Az = (z,y)]}
[thus Definition 3.3 is a special case of 4.17(71)];

{gr:2zed} = {y:Hax(zed ANy = §2)};
faxXb:aeAbeB} = {x : HaHblae A AN beB ANx =aXb)}.

We meet many more examples in the course of the development of set
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theory. Note that we do not hesitate to use lowercase letters, although
Definition 4.17 allows only capital letters. Some examples of 4.17(477)
are:

{(a:beA) = {(bya) : be A} = the function with domain A that
assigns a to each be 4;

(Sx :xed) = {(2,87) : xe A} = the function with domain A that
assigns Sz to each x ¢ 4;

@Va:zed,z2Ny=0=cYa:zedN\{z:2Ny=0}) =
{zx\Ja):zed,x\y =0} = the function with domain 4 N {z :z N
y = 0} assigning z \U a to each element z of its domain.

Note that, if F is a function, then F = (F; : 1e Dmn F). Again there
will be many examples of the use of 4.17(722) later.

In case ¢(X) is a proper class for some X € I, (¢(X) : X e I) does not
have its intended meaning. Letting F = (¢(X) : X e I), it is easily seen
that FX = X ifo(X) is a proper class. Naturally we are really interested
in (0(X) : X eI) only when ¢(X) is a set for every X e I.

Remark 4.18 There are many general and abstract accounts of functions.
With regard in particular to Definition 4.17, see Church 1941 [the exact
notation of 4.17(4i7) is due to Alfred Tarski]. Funections, and in particu-
lar functions that preserve structure on sets, are abstractly considered
in the rapidly developing theory of categories; for an introductory account
see Kuro§, LivSic, éulge'lfer 1960. For the theory of categories, a special
concept of a mapping is introduced. A mapping is a triple (4,f,B) such
that f i1s a function mapping A into B. A composition of mappings
(A,f,B) and (C,g,D) is defined if and only if A = D, and then, by defini-
tion, (A,f,B)o(C,g,D) = (C, fog, B). (A,f,B) is injectwe if f is one-one;
surjectwe if B = Rng f; bijectwe if both injective and surjective. Fre-
quently the distinetion between the mapping (4,f,B) and the function f
is ignored, although it is important in many considerations of category
theory.

EXERCISES

Prove the following statements.

4.19 If F and G are functions from 4 into 4, then (4 XA4) ~ ([(A XA4)
~ Flo[(AXA) ~ () is a function.

4.20 Suppose that F maps 4 onto B, ¢ maps A into C, and for all
x,y e A, F(x) = F(y) implies that G(z) = G(y). Then thereis an H such
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that H : B— C and the triangle

45 B

ENE

C

commutes.
4.21 If Fisaone-onefunction from 4 onto ¢ and G is a one-one function
from B onto D, then

(F(a),G(®)) : (a,b) e AXB)

is a one-one function from 4 X B onto C' X D.
4,22 If fis a one-one function from a onto ¢ and g is a one-one function
from b onto d, then

(gohof= : h e %)

is a one-one function from % onto ¢d.
4.23 For any sets 4, B, C,

{f(a,b) : beB) :aed): fedXBC)

is a one-one function from “XB)( onto 4(B().
4.24 If F © AXB, then (i) F is a function iff (i) for every X C B,
F*(F1*(X)) C X, iff (it) F-|F C I.
4.25 (a) If F and G are functions and F € @, then F = G[(Dmn F).
(b) If G is a function and F C @, then F is a function.
(¢) If F and G are functions, A = Dmn F M Dmn G, and F[A =
G4, then F \U @ is a function.
4.26 If a function f maps a set A onto B, then (f~'*{b} : b e B) maps B
one-one into S4.

5 INFINITE BOOLEAN OPERATIONS

The binary notions of union and intersection discussed in Sec. 2 are not
sufficient when we want to take the union or intersection of an infinite
family of sets. The general notions are introduced in this section. The
elementary properties of the general notions are analogous to those of the
binary notions.

Definition 5.1 UA = {z : there tsaye A such that xey}. We call UA
the union of the family A.

If we represent 4 asin Fig. 9, the circles being the various members of 4,

then UA consists of all the shaded part.
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Theorem 5.2 () U0 = 0.

(@) Ula} = a.

@1) Ulab) = a\U b.

(w) IfAC B, then UA C UB.

@) U@uB) =(U4)U (UB).

i) U(4 N B) C (Ud) N (UB).

(vi7) Ifxe A, then 2 € UA.

(witi) If Vz(ze A=z C B), then UA C B.

Figure 9

Proof We prove (17) as an example. First, suppose that z e U{a}.
Choose y € {a} such that xey, by 5.1. By 1.29, y = a. Hence z ¢ a.
Second, suppose that r e a. By 1.29, a e {a}, so that, by 5.1, z ¢ U{a},
as desired.

Theorem 5.3 Ua is a set.

Proof By the union axiom, let b be a set such that VX (X ea= X C b).
Now for any z, ze UA=HUy@xeyea)=>Hylxrey Ay S b) =zeb.
Thus UA C b, so that, by 2.2, Ua is a set.

We now introduce a more standard notation for the infinite union.
Definition 5.4 U.s A: = U Rng A.

This notation is usually used when A is a function with domain I; fre-
quently, then, we use the alternate terminology, speaking of 4 as an
indexed family of sets (see 4.2). Recall that A; is simply the function
value A(7). We will occasionally stray from the exact form of Definition
5.4. Thus we may use Uaca a for UA, Uiaixo A: for Ujs B,, where
J =1~ {0} and B = A[J, etc.
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Theorem 5.5 If A is a function with domain 1, then

zeUiq Aiiff Hie I(z e Ay).

We can now formulate commutative and assoclative laws for infinite
unions.

Theorem 5.6 (Commutatie law for infinite unions) Let A be an indexed
famaly of sets, with Dmn A = I. Lel F be a function from a class J onto I.
Then

UieI Ai - Uje] AFJ-
Proof Observe, asin theremarks following 5.4, that U s Ar; = Ujer (AoF);

= U Rng (AoF), and U:iqd A: = U Rng A. Since F maps onto Dmn A,
Rng A = Rng (AoF), and the desired result follows.

Theorem 5.7 (Associative law for infinite untons) Let A be an indexed
family of sets, with Dmn A = I XJ. Then

Uigr,,u A;; = Uier (U,u Aij)-
Proof The unions involved may be interpreted as follows:

Uier.ser Aii = Urearxs As,

User (Uje] Aij) = Ui By,
where for each 7¢I, B; = Uj (C2);, Ci = (A :jed). From now on
we assume that the reader can put infinite unions in the standard of
form 5.4, if he thinks it necessary.

Suppose that e Ui jer Aij. Choose 1€ I, joe J such that z e A, .
Hence z € Ujs 4ij, so that z e Uir (Ujs 4i5). The converse is proved
similarly.

Asin 3.16(777), we have the following. )

Theorem 5.8 If R is a relation and A s an indexed family of sets with
domain I, then

R* (Ur A7) = Usr R*(A).

Theorem 5.9 If M 1s a famuly of functions having the property that (z)
for all f,g e M, fl(Dmn f ™\ Dmn g) = gl(Dmn f N\ Dmn g), then UM is a
function.

Proof Suppose that (z,y) e UM and (2,2) e UM. Then there exist
f,g e M such that (z,y) ef and (z,2) eg. Thus z e Dmn f M\ Dmn g, so
that, by (2), fr = gz; thatis, y = 2.
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Theorem 5.9 is useful in constructing functions; see, for example,
the proof of the important Theorem 13.1. Note that (¢) holds in par-
ticular if Dmn f M\ Dmn g = 0 whenever f £ g, and that 5.9 can be
applied to show that UM is one-one when Dmn is replaced by Rng and f,
g by f1, g7, where both f and ¢ are one-one.

Definition 510 NA = {z: 2z ey for all ye A}. (A 1s called the inter-
section of A.

This notion is illustrated in Fig. 10; the circles represent members of A4,
and the shaded part is the intersection of 4.

Theorem 5.11 (1) N0 = V.

@) Nia} = a.

@i1) Niad) = aMb.

@) AC B=NBCNA.

» N4 UB) = (N4) N (NB).
wi) (NA4) YV (NB) € N N B).
(vit) zeA=NAC z.

(wiir) Va(ze A =b C 2) =b C NA.

Proof We prove (iv) as an example. Assume that A € B, and z¢(1B.
To prove that z e [14, let y be an arbitrary member of A. Then y ¢ B,
so that, since ze (1B, z ey. Thus Vy(ye A =z e y), so that ze A4, as
desired.

Theorem 5.12 (z) NN(a,b) = a.
@) NNN{(ab) )t =b.

Proof NN(a,b) = NN{la},{a,b}} = N{a} = a, by 5.11(z12) and (72).
Thus (¢) holds, and (17) follows easily.

Figure 10
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Theorem 5.12 provides an easy method to pick out the first and
second coordinates of an ordered pair (a,b).

Definition 5.13 1<tz = Nz. 2z = NNN{z}~L

Of course Definition 5.13 is really interesting only when z is an ordered
pair. Directly from 5.12 we obtain the following.

Theorem 5.14 () 1*%(a,b) = a.
(77) 2nd(q,b) = b.

(177) 1%t1*%(a,b,c) = a.

() 2nd1st(a,b,c) = b.

(v) 2rnd(a,b,c) = c.

Theorem 5.15 If A > 0, then (1A s a set.

Proof Choose aeA. Then, by 5.11(vi7), NA C a, so that, by 2.2,
NA is a set.

As in the case of unions, a more common notation for intersections
will now be introduced.

Definition 5.16 [;; A; = [\ Rng A.

With regard to this definition remarks apply as to Definition 5.4. As in
the case of generalized union, we have commutative and associative laws
for generalized intersections; we state them without proof.

Theorem 5.17 (Commutative law for tnfinite intersections) Let A be an
indexed famzly of sets, with Dmn A = I. Let F be a function from a class
Jonto I. Then

Nir A = Nijes Arg.

Theorem 5.18 (Associative law for infintte intersections) Let A be an
indexed family of sets, with Dmn A = I'XJ. Then

nieI,jeJ At] = nieI (nj:] Ai]’)-
The following theorem gives analogs to 3.16(w) and 4.1(7).

Theorem 5.19 Let R be a relation, and A an indexed family of sets with
domain I. Then

B* (Muar 49 S Nir R*(49).
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If F is a function, then
F=% (N Ad) = N F¥(A4).

We now turn to relationships between general unions and general inter-
sections. First, we have De Morgan’s laws, generalizing 2.19(:z) and (z).

Theorem 5.20 Let A be an indexed family of sets with domain I. Then
() (Usr 4)" = Ner AL
(21) (nid Ai)' = Ui A:-.

Second, we give the general distributive laws.

Theorem 5.21 Let A be an tndexed family of sets with domain I XJ, where
I and J are sets. Then

(l) ﬂid U,:J Ai; = UFJJ nieI Ai,F(i)-

(”) Uul ﬂid Ai; = ﬂFJJ UieI Ai,F(i)-

Proof We will prove (i) only. First, suppose that z e s Ujer 4ij.
Let R = {(¢,7) : z ¢ A;;}. By the relational axiom of choice, let F; & R
be a function with Dmn Fy = Dmn R. Clearly Dmn R = I, so that
FqyelJ (note that Fgis a set, since R is by virtueof R C I XJ). For any
tel wehave 2z e Avp,iy. Hencez e Upas Nir Asru-

Conversely, suppose that z eUrds Nir Airey- Choose Foel
such that z e Nier Air,p- For any 7el we then have = e Ai ), and so
T € U,'(J A;,'. Thus T € n{q U,‘d Ai,'.

Remark 5.22 The discussion of infinite unions and intersections can also
be carried out within the framework of Boolean algebra; see Sikorski
1964, for example. For many mathematical purposes, only countable
unions and intersections are important (see Sec. 19 for the definition).
For collateral reading we suggest Hausdorff 1914, the introduction of
Kuratowski 1966, and Chap. I of Halmos 1950.

EXERCISES

Prove the following statements.
5.23 Let A be a function with domain 7 and B a function with domain
J. Assume that A; C B;foralliel,jeJ. Then Uir 4: C N,es By
524 If Vo e Ady e B(zx S y), then U4 C UB.
525 If Vze AHy e B(y C 2), then 1B C N A.
5.26 Let (R: : 7 ¢ I) be a system of relations. Then

(a) (U.‘J R:‘)* A = Uu’I (RTA)-

(b) (ﬂul Rf)* {2} = Nia (RF{2}).
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6 DIRECT PRODUCTS, POWER CLASSES

Definition 6.1 Let A be a function with domain I. Let PA = PMAI‘ =

{f: f1safunction with domain I, and f; e A; forall 1 e I}. P4 is called the
direct product of the family A.

Note that, if I is a proper class, then PA = 0. The notion of a direct
product will play a large role in our later development of cardinal arith-
metic, and we will prove many of the basic properties of direct products
at that time, since then they will appear more natural.

Theorem 6.2 (7) Po = {0}.

(1) If A 1s a function with domain I such that A is a set (and hence I is a
set) and A; = 0 for all 7 e I, then P,u A: %0, and PuT A; 18 a sef.
Proof (i) is obvious. To prove (7z), let R = {(4,z) : 7el and z ¢ 4.}.
If 7 e I, then there is an z € A;, so that (1,z) ¢ B; thus Dmn R = I. By

the relational axiom of choice, let F be a function with domain I such
that F € R. Thus F:e A; for all 1eI; by 4.15(v), F is a set, so that

FePir 4. NowPurdicru Rng A, so that Pir 4 is a set, by 3.14
and 5.3.

In proving 6.2(7z), it is essential to use the relational axiom of choice
(see Sec. 16).

We may think of P.r A: as an I-dimensional space; elements f of

Pir 4; are I-tuples, with 7th coordinates f: for 7e¢I. It is natural to
consider the operation of projection into the ith-coordinate space 4;.

Definition 6.3 Pr; = (f; : f a function, v ¢ Dmn f). Pr; is called the ith
projection funciion.

Thus for each 7 € V, Pr; is a function whose domain is {f : fis a function,
1 e Dmn f}, and for each f in its domain, Prf = f;.

Theorem 6.4 Let A = (4;: v el) be a family of nonempty sets, I a set.

Then Pr;fpm A; maps Pir 4: onto A;, for each 1 el. Furthermore, 1f X
18 a set and f; maps X into A: for each © e I, then there is a unique g, g . X —

Pit Ay, such that the diagram

[

P 4
/I

X N Ai Pr:

commules for each i, 1.e., such that Priog = f; for each 1.
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Proof We may define g as g = ((fi(z) :1¢l) : e X); the various
assertions of the theorem are then easily checked.

Definition 6.5 SA = {B : B C A}. SA s called the power class of A.

If A is a proper class, then so is SA (as is easily checked). We are really
interested in this notion only when 4 is a set.

Theorem 6.6 (1) 0 e SA.

(W) SO0 = {0}.

(ir) A€ B= S4A C SB.
(w) S(AMN B) = SAN SB.
() SAUSBC S(4\U B).

Theorem 6.7 Sa s a se.

Proof Power-set axiom.

About the most fundamental fact in elementary set theory is the
following theorem of Cantor. The reader will recognize another variant
of the argument involved in Russell’s paradox. The theorem implies
that, given any set, there is another set with more elements than it,
interpreting ‘“more’’ rather strictly—the large set cannot even be put in
one-one correspondence with the smaller (see Chap. 4).

Theorem 6.8 (Cantor) There does not extst a functtion mapping a onto Sa.

Proof Suppose, on the contrary, that F maps a onto Sa. Let
b={z:2zea,z¢F(x)}. Then b C a, so choose = e a such that F(z) =
b. Thenzeb=z¢F(x)=>z¢b;,z¢b=>2¢F(x)=2xeb Thisisa
contradiction.

EXERCISES

Prove the following statements.

6.9 If A is a function with domain {a,b}, a # b, then there is a function
f mapping PA one-one onto AqXAs.

6.10 Suppose that A and B are indexed families of sets with the same
nonempty domain I, A and B sets, such that B; € A; for each 7¢[.
Then Pia B; = ﬂm [(PT:‘[PM Ai)—l*Bi]-

6.11 If A4 and B are functions with domain I, I a set, and f; : A: — B;

for each 7 eI, then there is a unique function g, g : Per Ai — Pt B;,
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such that for each ¢ e I the diagram

Pir A SN Prer LB.‘

l Pr. l Pr;
J

A,'—;—" Bi

commutes; i.e., fr (Pnfpm A;) = (PanI-(, B:)eg.

6.12 SSO0 = {0,{0}}.

6.13 SSS0 = {0,{0},{{0}},{0,{0}}}.

6.14 Let A be a set, and F a function mapping SA into SA such that
for all B,CeSA, BNFC =0iff FBNC =0. Let (B;:7¢l) be an
indexed family of members of SA, with I a set. Then F (Nir B)) =
Nier F B:.

7 EQUIVALENCE RELATIONS

Among the most important concepts of elementary set theory is that of
an equivalence relation. In this section we give the simplest properties
of equivalence relations; in particular we prove the important fact that
equivalence relations and partitions amount to the same thing.

Equivalence relations arise in the following way. Frequently we
work within a given set 4 in mathematics, and for certain purposes we
wish to ‘“‘identify” various elements of 4; we are interested in only certain
properties of the members of 4 and would like to forget that there are
distinct elements having the same properties of interest. We define R
to be the set of all pairs (z,y) such that we wish to identify z and y. R
is then an equivalence relation. If z R is the set of all ¥ such that zRy,
then {z, R : z ¢ A} is a partition of 4; itis a set in which theidentification
has taken place. For a proper class A the class £ R may also be a
proper class and hence in general cannot be treated like the set z. Thus,
in this case, a more involved identification device is needed (see Sec. 15).
We now want to make these considerations precise.

Definition 7.1 (¢) R s transitive iff R 1s a relation and Vz,y,2[(x,y) e R A
(y,2) e R = (x,2) e R].

(17) R 1s symmetric iff R 1s a relation and Vz,y[(z,y) e R = (y,2) ¢ R].
(#17) R 18 an equivalence relation i1ff R is transitive and symmetric.

() R isreflexiveon A iff Ve A, (z,2) e R.

Equivalent formulations of this definition are given in the following.

Theorem 7.2 Let R be a relation. Then
() R istransttwe 1ff R|JR C R.
(12) R s symmetric off R~ C R.
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(i12) R vs an equivalence relation iff R|[R~' = R.
(tv) R isreflexwe on A iff A C R.

Proof (), (¢¢), and (sv) are trivial. To prove (i1%), first suppose that R
in an equivalence relation. Then R|R~'C R|R & R, by (1) and (47).
On the other hand, if zRy, then zRyR 'z, and hence zRz, by what was
just shown; hence zRzR~'y, by symmetry of E, so that zR[R~'y.

Conversely, suppose that R|[R™! = R. Then R~! = (R|R~)? =
(R-)"YR"'=R|R~'= R, so that R is symmetric. And R|R =
R|R~! = R, so that R is transitive.

In most treatments of elementary set theory the notion of an
equivalence relation is made relative to some class 4, but we have defined
the notion without doing so. Mostly, however, we discuss equivalence
relations on a class. Recalling from 3.9 what it means for a relation to
be on a class, we see that R 1s an equivalence relation on A iff R is transi-
tive, symmetric, and Fid R = A. By 7.4(1¢), R is then also reflexive on
4, so that the notion of equivalence relation on A has its usual meaning.

We now introduce some standard notation concerning equivalence
relations.

Definition 7.3 (1) 2 R = {y : (z,y) e R}.
(1) AR = {a:HzxeA,a =z, R}
(i71) 72 = (xR . x ¢ Fld R).

Definition 7.3 contains a couple of ambiguities we hope do not confuse
the reader.  is used in different senses in (1) and («7); two different
symbols, say ~ and /Z, should have been used. We usually use a lower-
case letter, like z, for the first sense and a capital letter for the second.
Note also that, if Fid R is a proper class, then =z may also be a proper
class. Thus mg is sometimes a proper class, although = is a lowercase
letter; this small conflict with the general convention of 1.3 should not
lead to any confusion. We reserve II for cardinal multiplication (see
Sec. 21).

For an equivalence relation R and elements x ¢ Fid R, the sets z /R
are called equivalence classes, and z is a representative of z/R. The most
useful facts about equivalence relations are summarized in the following.

Theorem 7.4 Let R be an equivalence relation. Then

(). DmnR = Eng R = Fld R.

(#17) R 1s reflexive on Fld R.

(t11) For any z,y e Fld R, zRy iff v /R = y /R.

(v) Foranyz,yeFldR,ifz RNy, R =0, thenz, R =y R.
(v) ForanyzeFldR,xzex,/R.
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(i) Foranyz,yeFIldR,if xey R, thenz R =y, R.

(i) For any z,y,2e FId R, if z,y ez /R, then xRy and z /R = y /R.

(vizi) If R is a set, then wr maps Fld R onto Fld R R and wr(z) = 2,/ R
forall z e Fld R.

Proof (1) follows by symmetry of B. To prove (u2), assume that
z e Fld R; say, by (¢), zRy. Then zRyRz, by symmetry of R, so that
zRz, by transitivity of R.

For (#1), let zRy. First suppose thatzexz “R. ThuszRz. Hence
yRzRz, by symmetry of R, and yRz, by transitivity of R, so thatzey “R.
Suppose, conversely, that zey “RE. Then zRyRz so that zRz and
zex,R. Conversely, if 2R =y /R, then yRy, by (#), implies that
y ey R; hence y ez /R; hence 2Ry.

As to (w), say that zex RNy, R. Then zRz and yRz. By
symmetry of R, zRzRy, so that zRy. Thus, by (ii2), 2R = y “R.

Condition (v) follows from (z). Condition (v7) IS an easy conse-
quence of (i2z), and (vi7) follows from (v¢) and (:77). Finally, (vite) is
obvious.

Thus two equivalence classes coincide if they have a common
representative; and z and y are representatives of the same equivalence
class iff zRy.

Definition 7.5 P 1s a partition of A «f P is a family of pairwise disjoint
nonempty sets and UP = A.

Recall the definition of famdly of pairwise disjoini sets from 2.9. Thus
P is a partition of 4 iff the following three conditions hold:

(1) VzePVyePlzx Z#y=zMNy =0).
(2) VzeP(z = 0).
(3) Uszrz = A.

In the next theorem we show that for any set A there is a natural
one-one correspondence between equivalence relations with field A and
partitions of 4. "

Theorem 7.6 Let A be any set. Let E(A) = {R : R vs an equivalence
relatron with field A} and P(A) = {P : P 1s a partition of A}. Let

® =(AR : R eE(A));
= {{(z,y) : HM e P, z,y e M} : P e P(A)).
Then
(t) Forevery ReE(A), ®(R) e P(4).
(1t) For every P e P(A), §(P) e E(A).
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(117) &o® = I[E(A).
(v) @& = I[P(4).
(v) & maps P(A) one-one onto E(A), and ® maps E(A) one-one onto P(4).

Proof (x) ®(R) is a family of pairwise disjoint sets, by 7.4(<v); it then
follows easily that ®(R) ¢ P(4).

(77) &(P) is symmetric: if z&§(P)y, then there is an M e¢ P with
z,y € M; hence y&(P)xz. §&(P) is transitive: if z&(P)y&(P)z, then there
exist M,N ¢ P with z,y e M and y,ze N. Thus M M N 0, so that
M = N and z,2¢ M, so that z&(P)z. Therefore §(P) is an equivalence
relation. Clearly Fid ¢(P) € UP = A. Now suppose that z e 4; say
zeMeP. Then z&(P)x. Thus &§(P) e E(4).

(z7) Let Re E(A). If zRy, thenyex R, and z e 2 R, by 7.4(:%),
so that z8®(R)y. Suppose conversely that z8®(R)y; say z,y ez R.
By 7.4(vi1), zRy. Thus R = &@(R).

() Let P eP(A). If M eP,then itis easily checked that M = z
E(P) for each z ¢ M; thus M e ®&(P) since M is nonempty. This shows
that P C© ®&(P). Foranyz e 4 thereisan M ¢ P with z ¢ M, and hence,
by what was ‘“‘easily checked”’ above, z,6(P) = M ¢ P. Thus ®&(P)
C P, so that, by what was already proved, P = ®&(P).

(v) Follows from (z2¢) and (i), by 4.14(222).

Remark 7.7 The notion of an equivalence relation is found useful in
almost every branch of mathematics. For relatively “deep’” facts about
equivalence relations we suggest the articles Jonsson 1953 and Janiczak
1952.

EXERCISES
Prove the following statements.

7.8 Let F be a function mapping a set A onto B. Let R = {(z,y) :
z,ye A and F(z) = F(y)}. Then R is an equivalence relation on 4.
Moreover, there is a one-one function G mapping A R onto B such that
the following diagram commutes:

R [e]

AR

7.9 Let A be a set, and R an equivalence relation on A. For S an
equivalence relation on A with R € Slet F(S) = {(z,y) : Ha,b e 4 such
that = aR, y = bR, and aSb}. Then F is a function mapping
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{S : Sisan equivalence relation on 4, R C 8} one-one onto {T : Tisan
equivalence relation on 4 “R}.
7.10 Let R be an equivalence relation on A.
(a) If B C A, then R M (BXB) is an equivalence relation on B.
(b) If F maps B into A, then {(z,y) : =,y ¢ B and (F(z),F(y)) e R}
is an equivalence relation on B.
(¢) If S 1s an equivalence relation on B, then {(z,y) : Habe A,
He,de B, ¢ = (a,c), y = (b,d), aRb and ¢Sd} is an equivalence
relation on 4 X B.
7.11 If A # 0 and each member of 4 1s an equivalence relation on a
set B, then [14 is also an equivalence relation on B.
7.12 A union of equivalence relations is not necessarily an equivalence
relation. A union of a set of equivalence relations with pairwise disjoint
fields 1s an equivalence relation.
7.13 Let R and S be equivalence relations on a set 4, and ®(R) and ®(S),
respectively, the associated partitions of 4. Then R & S iff every
M e ®(R) 1s included in some N e ®(S).

8 ORDERING

In this section we want to discuss at a very elementary level the notion
of ordering, generalizing the mathematically familiar idea of the ordering
of the integers or of the real numbers. We begin with the weakest, most
general notion of ordering—partial ordering—and proceed to the most
restrictive notion—that of a well-ordering,.

Definition 8.1 (4) R is antisymmetric iff R is a relation and for all z, y,

if xRyRzx, then x = y.

(17) R 1s a partial ordering iff R 1s a relation, R 1s reflexive on Fld R, R s
transttwe—by Definition 7.1(1)—and R is antisymmetric.

(iw1) A is partially ordered by R iff (A X A) N R is a partial ordering with
field A.

Frequently we will use a symbol suggesting ordering, such as < or <,
instead of the letter R, in discussing partial orderings. We will then
always use the symbol without the line, such as < or <, to denote the
relation

{(z)y) : 2Ry A z # y].

Clearly the relation < is transitive and wreflexive: 2 < = for all =z.
[Recall from 3.3(z2) that z 4 z simply means 71(z < z).] Actually
transitive and irreflexive relations stand in a very close relationship with
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partial orderings. Given any set 4, one can assign to each partial order-
ing < with field A the transitive and irreflexive relation F(<) = <
with field C 4; and given any transitive and irreflexive relation R with
field © A4, one can assign the relation G(R) = R\J (Il4). G(R) is then
a partial ordering with field 4. . Furthermore, Fo@ is the identity on
{R : R 1s transitive and irreflexive, and Fld R C A}, and GoF is the
identity on {R : R is a partial ordering with field 4}. Thus, according
to 4.14, both F and ¢ are one-one and onto; F = (< : < a partial order-
ing on A) establishes a one-one correspondence between partial orderings
on A and transitive and irreflexive relations with field € 4.

Partial orderings can intuitively be represented by diagrams con-
sisting of nodes and lines arranged in levels, as in Fig. 11. The points
represent elements of the field of the partiil ordering, and the lines indi-
cate the ordering itself. If we denote the ordering by <, we thushave
[<a, ¢c<b<a f<d h<e f<b and k <k, for example, but
bfefKg h Xk ete

The conditions defining a partial ordering can be more concisely
stated thus: I/Fld R C R, RIR C R, and RN R ' C I These condi-
tions always hold upon replacing B by R™!, so we see that R~ is a
partial ordering whenever R is a partial ordering. With regard to
Definition 8.1(z22), note that there exist A, R such that B 1s not a partial
ordering, although (4XA) M R 1s; by our definition, A4 is still partially
ordered by R. This is the case for 4 = 0, no matter what R is. For

a less trivial example, let R = {(z,y) : 2z ey or z =y}, and let 4 =
a
b
c d e
f g h L

Figure 11
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{0,10},{0,{0}}}. (R 1s not transitive since Oe {O} e {{0}}, although
0¢f{0}}.)

Theorem 8.2 If R is a partial ordering, then also (AX A) M R is a partial
ordering.

The most typical example of a partial ordering is inclusion. To indicate
precisely the sense in which inclusion 1s typical, we need the notion of
1somorphism of relations.

Definition 8.3 F 15 an isomorphism from R onto S iff R and S are relations,
F is a one-one function mapping Fld R onto Fid S, and Va,b e Fld R[aRb iff
(Fa)S(Fb)].

Theorem8.4 (7) {(z,y) : = C y} is a partial ordering.
(1) If R e V is any partial ordering, then there is a set A and an 1somorphism
F from R onto (AXA) N {(z,y) : x S y}.

Proof (2) Trivial.

(17) We first define F. For any ze Fld R, let Fx = {y : yRz}.
Let A = Rng F. Thus F maps Fld R onto Fid S, where S = (A XA) N
{(z,y) : 2 Cy}. If z,yeFld R and z # y, then, by antisymmetry,
z Lyory K z,and hencex ¢ Fx ~ Fy or y e Fy ~ Fzx, so that Fx # Fy.
Thus F is one-one. If 2,y ¢ Fld R and xRy, then (Fx)S(Fy). Indeed,
this means that Fx C Fy, and for any z e Fx we have zRz, which, com-
bined with the hypothesis xRy, gives 2Ry, and so ze Fy. If 2,y e Fld R
and xRy, then z ¢ Fx ~ Fy, and so (Fz)$(Fy). This completes the proof.

If welet R = {(z,y) : = € y}, then any class A4 is partially ordered
by R; we may say that A zs partially ordered by inclusion. By abuse of
notation, we may even say that C itself is a partial ordering, although
this 1s not strictly correct.

A method of obtaining partial orderings that is frequently used is
given in the following.

Theorem 8.5 Let R be a transitive relation with field a set A, and suppose
that R s reflexive on A. Let S = {(a,y) : xRy and yRz}. Then S is an
equivalence relation with field A. Further, let < = {(a,b) : Hz,ye A
(a=2/"SANb=y SAzRy)l. Then < is a partial ordering with
field A /S.

Proof If xSySz, then zRy, yRx, yRz, and zRy; hence, by the transitivity
of B, zRz and zRzx, so that x8z. Thus S is transitive. Clearly S is
symmetric, so that S i1s an equivalence relation; also, 1ts field is clearly 4
(since R is reflexive on A4).
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Next, suppose that a < b < ¢. Then there exist w,r,y,2 ¢ 4 such
that a = w, /S, b = 2,8, wRx, b =y /8, ¢ =28, and yRz. Since
z,/8S =y /8, we have 28y, and hence zRy. Thus wRxRyRz, so that,
by the transitivity of R, wRz. Therefore, a < ¢. Hence < is transitive.
Using the notation already established, if ¢ = a, then w, /S = 2,/8,
from which 1t follows that wSz and zRw. By the above wRxRy and
yRzRw; transitivity of R gives wRy and yRw, 1.e,, wSy. Thusa = w /S
=1vy,/S = b. Thisshowsthal < isantisymmetric. Clearly Fld (<) C
A/S. Now suppose that ze A. Then zRz, so that =8 < z8S.
Hence A 7S C Fld (<), and < 1sreflexive on A /S. Therefore < is a
partial ordering with field A 7S, as desired.

We now introduce some special concepts associated with partial
orderings.

Definition 8.6 Let < be a partial ordering with field A, and suppose that

XCAandae A.

(z) asa <-upper bound of X if x < a for all x ¢ X.

(1) atsa <-lower bound of X 1f a < z for all z ¢ X.

(717) a 18 a <-greatest element of X 1f a 1s a <-upper bound of X and
aeX.

(wv) asa <-least element of X if a is a <-lower bound of X and a ¢ X.

(v) aisa <-least upper bound of X, or for brevity a <-l.u.b. of X, if a is
a <-upper bound of X and a 1s a <-lower bound of the class of all <
upper bounds of X.

(vi) asa <-greatest lower bound of X, or for brevity a <-¢.0.b. of X, if
a 18 a <-lower bound of X and a is a <-upper bound of the class of
all <-lower bounds of X.

(vir) a 7s a <-minimal element of X if ae X and x € a for all z ¢ X.

(viit) a ts a <-maximal element of X if ae X and a « x for all x ¢ X.

There are some immediate properties of these concepts we state infor-
‘mally. Every element of A is a <-upper bound of 0 and a <-lower
bound of 0. There are sets without <-upper bounds or <-lower bounds,
for some partial orderings <. Such examples are not easily available
at the present state of our formal development of set theory, but the
ordering of the rationals may be cited informally. There is at most one
<-greatest element of X, but X may have many <-maximal elements;
similarly with least elements and minimal elements. There is at most
one <-l.u.b., and at most one <-¢g.l.b. of aset X. aisa <-lubof0iff a
1s a <-least element of A, and ai1s a <-g.l.b. of 0 iff a 1s a <-greatest
element of A4; ais a <-l.u.b. of 4 iff @ 1s a <-greatest element of A, and
aisa <-g.l.b. of A 1iff a1s a <-least element of A.
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The following fixed-point theorem has many applications.

Theorem 8.7 Let < be a partial ordering with field A, and suppose that
every subclass B € A has a <-lu.b. Supposethat F maps A into A in such
a way that for all x,y e 4, x < y tmplies that Fx < Fy. Then Fx = z for
some r e A.

Proof Let abethe <-lub.of B= {z:2¢A,z < Fzx}. ForanyzeB
we have both 2 < Fx and z < a, and hence both x < Fx and Fxr < Faq,
so that < Fa. Thus Fa i1s a <-upper bound for B, so that a < Fa.
Hence Fa < FFa, so that Fae B. From this it follows that Fa < aq,
and hence Fa = a.

Definition 8.8 Let < be a partial ordering. A 1is directed by < if A C
Fld (<), and for all a,b ¢ A there isace A suchthata < candb < c.

Theorem 8.9 (z) If A vs a class of functions directed by inclusion, then

UA s a function.

(1) If A 1s a class of partial orderings directed by inclusion, then A is a
partial ordering.

Proof (i) Clearly UUA is a relation. Suppose that z(UA4)y and z(U 4)=.
Say (x,y) efe Aand (z,2) ege A. Since A 1sdirected by inclusion, choose
he A such that f C h and ¢ C h. Then zhy and zhz, so that y = 2, as
desired.

(77) Again, it is clear that A is a relation. Suppose now that
zeFld (UA). ThenzRy or yRx for somey and some R e A4, i.e.,z e FId R
for some R e A, hence zRz for some R ¢ A, so that z(UA)z. Therefore,
UA is reflexive on Fld ({IJA). Next, suppose that z(UUA)y(UUA)z; say
2RySz with B,Se A. Since A is directed by inclusion, there is a T e A
such that R € T and S © T. Thus 2TyTz, so that 2Tz and hence
z(UA)z. Therefore, UA is transitive. Finally, suppose that z({JA)
y(UA)z; say xRySz with R,S e A. As before, we find a T ¢ A such that
zTyTz, and hence x = y. Therefore, JA is antisymmetric and so is a
partial ordering.

One can similarly show that UA is an equivalence relation if 4 is a
class of equivalence relations directed by inclusion.

Definition 8.10 (2) < 7s a simple ordering (or a linear ordering) iff < isa
partial ordering and for all x,y e Fld (L), xr < yory < z.
(1) A s simply ordered by R iff (AXA) M R s a stmple ordering.

With regard to 8.10(:f) remarks apply as to 8.1(zz¢). The notion of
1somorphism is frequently applied with respect to simply orderings. If
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we call two simple orderings < and < isomorphic if there is an isomor-
phism between them, and let = consist of all isomorphic pairs (<, <)
with < and < sets, then it is easy to check that = is an equivalence
relation. For each simple ordering Re V, R = is, however, a proper
class, as is easily seen. Thus the situation discussed at the beginning of
Sec. 7 has arisen; as we mentioned there, we will give a method for
“identifying’’ isomorphic simple orderings in Sec. 15.

Theorem 8.11 Let < and < be simple orderings, and suppose that F s a
mapping from Fld (<) onto Fld (<) such that for all a,b e Fld (<), if
a < b, then Fa < Fb. Then F is an wsomorphism from < onto <.

Proof Ifabe Fld (<) and a # b, then either a < b orb < a, and hence
either Fa < Fb or Fb < Fa; in particular, Fa ¢ Fb. Thus F is one-one.
Next, given a,b e Fid (<), we know, by hypothesis, that a < b 1mplies
Fa < Fb. If a € b, then b < a, and hence, by hypothesis, Fb < Fa,
and so Fa £ Fb, by antisymmetry. Thus a < b iff Fa < Fb, as desired.

Definition 8.12 (¢) R is well-founded iff R is a relation and for every non-

empty class A C Fld R there 1s an x ¢ A such that A M {y : yRx} = 0.

(1) < 18 a well-ordering iff < is a simple ordering and < 1s well-founded
(cf. the remark following 8.1).

Note the similarity of the definition of a well-founded relation with our
formulation of the regularity axiom. In fact, the regularity axiom
really says simply that the relation {(z,y) : z e y} 1s well-founded.

The ordinary ordering of the positive integers furnishes a simple
example of a well-ordering. Well-orderings will be considered in great
detail in Chap. 2, since they are intimately related to the notion of an
ordinal number. Here we content ourselves with exhibiting two equiva-
lent definitions of a well-ordering.

Theorem 8.13 For any partial ordering <, the following three conditions

are equwalent: '

(1) < 18 a well-ordering.

(71) < 18 a simple ordering, and every nonempty class A € Fld (<) has a
<-least elements.

(121) every nonempty class A C Fld (<) has a <-least element.

Proof (1) = (12) We need to show only that an arbitrary nonempty
class A C Fld (<) has a <-least element. By (), choose z € A such that
ANiy:y <z} =0. For any ye A we then have y € z, and so,
< being a simple ordering, < y. Thus z is the desired <-least ele-
ment of 4.
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(i1) = (322) This is obvious.
(17) = (¢) We first have to show that < is a simple ordering.

Given two elements z, y of Fld (<), let z be a <-least element of {z,y}.
This means that 2z = 2 or 2z = y, and hence z < y or y < z. Thus,
indeed, < is a simple ordering. Next, let A be a nonempty subclass of
Fld (<). By (u1), let x be a <-least element of A. Thus z < y, and
hence ¥y € r, by antisymmetry, for each ye A. This means that A M

{y :y <z} =0. Thus < 1s well-founded, and (z) holds.

Remark 8.14 Much of the more advanced theory of ordering is due to
Hausdorff; his basic book, Hausdorff 1914, 1s still very readable.

EXERCISES

8.15 How many partial orderings with field {a,b,c,d} are there, where
a,b,c,d are all distinet?

8.16 Show that, if A is a set of well-orderings directed by inclusion,
then UA is not necessarily a well-ordering.

8.17 Exhibit a well-founded relation R that is a proper class and is not
a partial ordering.

8.18 Let R = {(m,n) : mn are positive integers and m divides n}.
Show that R is a partial ordering such that any two positive integers
have an R-l.u.b. and an R-g.l.b.

8.19 Let R be a simple ordering with field 4, and S a simple ordering
with field B. Let T = {(x,y) : there exist a,a’ ¢ A and b,b’ € B such that
z = (a,b), y = (a',b’), and either a ¢ o’ and aRd’, or else ¢ = ¢’ and
bSb’}. Show that T is a simple ordering with field A X B and that, if
R and S are well-orderings, then so 1s T.



2
Ordinals

The more advanced aspect of set theory begins with this chapter. Ordi-
nals are certain classes which are associated with well-orderings; they
yield typical examples of well-ordenings. Here we first give the basic
properties of ordinals and then proceed to the discussion of transfinite
mduction. Speecial ordinals, the natural numbers, are then discussed.
The later development 1s facilitated by the description of normal func-
tions, which is the next topic. We then rigorously justify recursive
definitions and follow this with an exposition of the elements of ordinal
anithmetic. The chapter closes with a survey of a few more advanced
topics.

8 ORDINALS: BASIC PROPERTIES

Definition 9.1 (z) A ¢s e-fransitive iff for all x and y, xeye A =z € A.
(¢27) A is an ordinal iff A is e-transitiwe and each member of A s e-transitive.
(#47) Ord = {z : x is an ordinal}.

68
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This simple definition of an ordinal will gain meaning after we have
developed the properties of ordinals extensively; then we shall be able
to appreciate the elegance of the definition.

We may anticipate the rigorous development by an intuitive com-
ment. Ordinals constitute an extension into the infinite of the order
properties of the natural number sequence

01,2 ...

In fact, we stmply affix a new number w that comes after all the natural
numbers and begin again, counting from w:

0,1,2, ... ,0,0o+1Lw+2 ....

Furthermore, there 1s no reason to stop at any point, and we continue
indefinitely:

01,2 .. .,w,w—}-l,w—;—Z,. e, we2, we?2
1l we242 .. ..

The main use of ordinals in mathematics 1s in labeling sets so as to sys-
tematize constructions or proofs. This 1s one of the uses of natural num-
bers, as in proof by induction. The other main use of natural numbers—
indicating magnitude—is extended to the transfinite in the theory of
cardinals, which will be treated in Chap. 4.

More formally, for any A eOrd, {(z,y) : z,ye A and (x =y or
z ey)} turns out to be a well-ordering, distinet ordinals give rise to non-
isomorphic well-orderings, and every well-ordering R ¢ V is isomorphic
to some well-ordering derived as indicated from an ordinal (cf. the dis-
cussion following 8.10). These statements will all be proved in the course
of this chapter (see Theorems 13.10 and 13.11).

It may not be obvious that e-transitive classes, much less ordinals,
even exist. We first give some theorems showing that there is a pro-
fusion of ordinals.

Theorem 9.2 0e Ord.

Proof 01is a set, by the axiom of infinity; 0 is e-transitive, by a vacuous
implication; and every member of 0 is e-transitive, by a vacuous implica-
tion. Thus 0 e Ord.

Theorem 9.3 If x ¢ Ord, then Sz ¢ Ord.

Proof Assumethatz e Ord. By2.13(zt7), Szisaset, and S = = \J {z}.
If yezeSx, then either zex, yezex, yex (since x i1s e-transitive, in
virtue of being an ordinal), and y e §z, or 2 = z, y e x, y € §r; thus y e Sz
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i either case. Hence Sz is e-transitive. If y e §z, then either y ez or
y = z; = being an ordinal, y 1s e-transitive.

By 9.2 and 9.3, 0, §0, 8§80, . . . are all members of Ord. The
following theorem then enables us to obtain even more members of Ord.

Theorem 9.4 If A C Ord, then UA is an ordinal.

Proof To show that A is e-transitive, assume that x ey e UA. Thus
there 1s a ze¢ 4 such y ez. Since A C Ord, we see that z ¢ Ord, and so
z 15 e-transitive; but x e y € 2, so 1t follows that z ez. Now z € 4, so that,
finally, z e UA. Thus, indeed, UA is e-transitive.

Now take any element w of UA. Then there is a v e A such that
wev. Now A C Ord, so that veOrd. By 9.1 w, as a member of v,
is e-transitive. Hence any member of U4 is e-transitive.

This completes the proof.

Now 1t may appear that almost all sets are ordinals. This is not
true. For example, {{0}} is not even e-transitive, since 0 e {0} e {{0}}
but 0¢ {{0}}. Theseta = {0,{0},{{0}}} is e-transitive, but its member
{{0}} is not, so that a is not an ordinal. A further example, which is
sometimes useful in applications of set theory, is the following.

Theorem 9.5 (a,b) ¢ Ord.

Proof Recall that (a,b) = {{a},{a,b}}. Thus ae {a}e(a,b). How-
ever, a¢ (a,b), so that (a,b) 1s nol even e-transitive. Suppose, on the
contrary, that a € (a,b). Then either a = {a} or a = {a,b}, but

a = {a} implies that a € a,
a = {a,b} implies that a ¢ q,

contradicting 1.19(7), in each case.
We now give some useful properties of ordinals, leading up to the
well-ordering property.

Theorem 9.6 If A is an ordinal, then A C Ord.

Proof Assume that A is an ordinal and z ¢ A. Then, by Definition 9.1,
z 1s e-transitive. If y is any member of z, then, since A4 is e-transitive,
y ¢ A; then, again by 9.1, y is e-transitive. Thus z € Ord.

Combining 9.5 and 9.6, we see that no nonempty relation 1s an
ordinal, and no nonempty function is an ordinal.
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Theorem 9.7 Ord is an ordinal.

Proof Obviously every member of Ord, by virtue of being an ordimnal,
1s e-transitive. All we need to show 1s that Ord itself 1s e-transitive.
Assume that z ey e Ord. Thus y 1s an ordinal, so that, by 9.6, z € Ord,
as desired.

Theorem 9.8 Ord s not a sei.

Proof If Ord were a set, by Theorem 9.7, we should have Ord e Ord,
which contradicts Theorem 1.19(z).

Theorems 9.7 and 9.8 are related to the Burali-Fortr paradoz, a
contradiction that arises in nonaxiomatic set theory. In axiomatic set
theory these theorems do not lead to any obvious contradictions; they
simply constitute minor facts about the class Ord.

The next theorem about ordinals has the only difficult proof in our
development of the basics; the theorem is essential in discussing ordering
below.

Theorem 9.9 Ifz,yeOrd, then x = yorxey or y e x.

Proof TetA ={z:2e0rd N (Hy) (yeOrd ANz # Yy Azey A Yyez)}.
Thus we want to show that A = 0. Assume, on the contrary, that
A # 0. By the regularity axiom, choose ae A such that a M A4 = 0.
Since ae A, theclass B = {y : yeOrd Aa #y A a¢y A y¢a} is non-
empty. By the axiom of regularity again, choose be B such that
b\ B =10. Notethat a ¢ B, so that a # b.

We reach a contradiction by proving that a = b. We first show
that a £ b. Let zea. Now ae A implies that a is an ordinal, so that,
by Theorem 9.6, z 1s also an ordinal. Since aM A = 0, z1s not & mem-
ber of A, so that Vy (yeOrd=2 =9y V zey V ye2); In particular,
2=bVzebVbez Now

z=b=bea=b¢B,
a contradiction. Also, using the fact that a is e-transitive,
bez=bea=b¢B,

again a contradiction. The only remaining possibility is that zeb.
Since z is arbitrary, a C b.

To prove that b C a, suppose, conversely, that zeb. Thus z¢ B,
since b\ B = 0, while ze Ord, by 9.6, since b e B < Ord. It follows
thata =2V aez V zea. We have

a=z=aeb=b¢B,
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a contradiction, and, using the fact that b is e-transitive,
aez=>aeb=>b¢B,

the same contradiction. The only remaining possibility is that zea.
Thus b € a, so that, by the preceding paragraph, a = b. This is the
contradiction that establishes the theorem.

_The next theorem essentially gives the least-element principle in the
well-ordering of ordinals.

Theorem 9.10 If A s a nonempty class of ordinals, then N A is an ordinal,
and 1n fact (A € A.

Proof If ze[)A, then zeye A for some ordinal y (since A > 0), so
that z is e-transitive. Assume that zeye(1A. For any ze A we have
T ey ez so that x ez, since z is e-transitive. Hence z ¢ [1A. Thus N4
is e-transitive, so that [1A4 is an ordinal.

For the last part of the theorem, to get a contradiction, assume that
N4 ¢A. ForanyyeA wehave N4 C y, and hence y ¢ A4, by 1.19(2).
Since y,NA € Ord, it follows from 9.9 that N4 ey. y being arbitrary,
we get VA4 € NA, which contradicts 1.19(z).

We now state some minor set-theoretical properties of ordinals that
will be found useful later.

Theorem 9.11 Let A and B be ordinals. Then
()) AeOrdor A = Ord.

(ir) AeBiff A C B.

(42¢) If A e B, then SA = B or SA € B.

() If C C A, then UC = A or UC € A.

() If AeOrd, then USA = A.

(vi) A =8gUA4d or A = UA.

Proof (7) Suppose that A ¢Ord; thus A is an ordinal, but it is a
proper class. By 9.6, A € Ord. Assume now that Ord ~ A # 0; say
xe0rd ~ A. Then for any yeA we have yex, by 9.9 (since zey
implies that z ¢ A), so that A C x and A4 is a set—a contradiction. Hence
Ord ~ A = 0and A = Ord.

(i77) =. By e-transitivity of B,A € B. SinceAd e B~ A, A # B.
<. BeA and B = A are ruled out, by 1.19(Z) and the definition of
proper inclusion. Thusif Bis aset, 4 € B follows, by 9.9 (since 4 is then
also a set by virtue of A C B). If Bisnot aset, B = Ord, by (¢), and
A € Ord, by (7), since A C B precludes the possibility that A = Ord.

(i77) Assume that §4 = B. By 9.3, §4 eOrd. We may assume
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that B is a set; otherwise §A4 € B, by (¢). Thus by 9.9, $4 ¢ B, since
B e §A is ruled out, by 1.19, and we are assuming that §4 = B.

() We know that UC is an ordinal, by 9.4. If 4 = Ord, the
desired conclusion follows from (7), applied to UC. If A # Ord, then
A € Ord, by (z), and the desired conclusion follows from 9.9, by virtue of
the fact that A e UC easily implies that 4 ¢ UA, which contradicts 1.19
again. .

(v) Assume first that z ¢ USA4; say zeyeSA for a certain y. If
y e A, then z € A, by the e-transitivity of A, whiley = A logically implies
that x ¢ A. Thusz e A, sothat U4 € A. Ifze A, then the fact that
ze A e§A implies that x e U§A. Hence USA = A, as desired.

Finally, as to (vi), condition (7v) gives the two cases UA = 4 and
UA e A. The first case gives a desired conclusion. The second case
gives the following possibilities, by virtue of (772): § U4 = Aor§ U4 € 4.
The last possibility, however, is in fact impossible; indeed, § UA ¢ 4
implies that U4 e§ UA € A and hence UA ¢ UA. This completes the
proof.

Definition 9.12 (2) Lowercase Greek letters o, 8, v, . . . are used to denote
ordinals e Ord unless otherwise tndicated.
(1)) < =1{(z,y) :z,yeOrdand (x ey orz = y)}.

By the convention following 8.1, we have
< ={(z,y) 2,y Ord, zey}.

Thus a € 8 is equivalent to a < B; this will be tacitly assumed in much
of what follows. The symbols < and < will be reserved from now on
for their use with ordinals unless stated to the contrary.

We will feel free to define classes of ordinals by expressions like
{a : p(a)}—the class of all ordinals o such that ¢(a)—and relations by
expressions like {(a,8) : ¢(a,8)}. This extends the convention of Defini-
tion 1.9.

In the last theorem of this section we gather together all of the order
properties of ordinals that will be used in the future.

Theorem 9.13 < s a well-ordering with field Ord. Furthermore:

(z)  For any nonempty set A T Ord, A is the <-least element of A.
(i) 0 7s the <-least element of Ord.

(iie) For any a, a = {B: B < a}.

() B<§aiff 8L

(v)  For any a, there is no B such that a < 8 < §a.

(i) o <Bif a g
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(vit) For any set A of ordinals, A is the <-least upper bound of A.
(vii7) a < B iff Sa < 6.

(1x) Sa = 8B uf a = B.

() o <Biff Sa < 8B.

Proof From 1.19 we easily infer thal < is antisymmetric; it is transitive,
by the etransitivity of ordinals, and 1t is obviously reflexive on Ord,
which is its field. Thus < is a partial ordering with field Ord. Hence
if we establish (¢), by 8.13 it will also follow that < is a well-ordering,
Suppose, then, that 0 % 4 C Ord. By 910, NdeA. If ye A and
yeNA, then yey since N4 C y, contradicting 1.19. Thus, by 9.9,
NA < yforall ye A, as desired.

(77) 1s an immediate consequence of (), and (¢7) follows from the
remarks after 9.12. (W) is obvious from the definitions involved. If
a <B < 8a then a < B < a, by (), and so a < a, by transitivity,
which is impossible; thus (v) holds. (vi) is immediate from 9.11(<7).
To prove (vit), first note that if z € 4, then 2 € U4, and hence further,
by (v7) and 9.4,z < UA. Thus U4 is a <-upper bound for A. Suppose
that « is any <-upper bound for A. Thus Vg (8e A = 8 < a), so that
since a is e-transitive, V8 Vy (Bevye A =8 < a). Hence UA C ¢, so
that, by (vi), U4 < a. This proves (vii).

If a < B, then §a C B, by the e-transitivity of 8, so that Sa < 8,
by (v7); conversely, §a < 8=0a < 8a < B= a <. Thus (vii7) holds.
To prove (iz), note that a < §a = 88, and hence o < 8, by (&); by
symmetry, 8 < «a, so that @« = 8. Finally, o < g iff §a < 8, by (vii7);
iff $a < §B, by (fv). And so (z) holds.

Remark 9.14 Two standard references for detailed information on
ordinal and cardinal numbers are Bachmann 1967 and Sierpinski 1965.

EXERCISES

9.15 Show that for any set = the following statements are equivalent:
(a) x 1s an ordinal.
(b) z is e-transitive, and for all y,z ez, either yez, y = 2z, or ze y.
(¢) z 18 e-transitive, and for all y, if y C z and y 1s e-transitive,
then y e z.
(d) =0 or Oex; for all yex, either §y = =z or yez; for all
y C z, either Ny = z or Ny e 2.
() R = {(y,2) :yex,zex, and yez or y = z} is a well-ordering
with field = such that forall yex, y = {2 : 2Ry, z # y}.
Hint: It is easily seen that (a) = (b), (a) = (¢), (a) = (d), (a) = (e),
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(b) = (a), and (e) = (a). To show that (c) = (a), let = satisfy (¢) and
define y = {2: 2zex, 2e0rd}, and show that y = z. To show that
(d) = (a), let a be the least element of Ord ~ z, where z satisfies (d),
and examine Ua.

9.16 If f maps « onto UA, then the function ¢ = (f (Nf~'*z) : z e A)
has the property that gz ez for all z ¢ A.

10 TRANSFINITE INDUCTION

Theorem 10.1 (First principle of transfinite induction) If A isan ordinal,
and B is a class such that
(*) for every ae A, itf B¢ B for every 8 < «a, then a ¢ B, and A C B.

Proof Suppose, on the contrary, that A & B; then A ~ B 5 0, and
hence it has a least element a (by 9.13). Thus ae 4, and for every
B < a BeA (since A is etransitive), and hence, since 8¢ A ~ B, also
BeB. Thus by (*), a e B, which is a contradiction.

Theorem 10.1 is a generalization of the complete-induction principle
for natural numbers (see Sec. 11). To illustrate the use of the theorem,
we will prove the following statement.

1 If F is a function mapping an ordinal A into Ord and if for all a,8 ¢ A
the condition o < B implies that Fa < FB, then o < Fa for each ae A.

To prove this, let B = {a: aed,d < Fa}. Suppose that ae A and
B e B for every 8 < a. Thus for any 8§ < a we have § < FB8 < Fa, so
that, by the e-transitivity of Fa, 8 < Fa. Hence a C Fa, so that, by
9.13(v7), @« < Fa; that is, a e B. Hence, by 10.1, A = B, as desired.

Usually, rather than explicitly defining B when applying 10.1, we
simply assume a statement ¢(B) true for all 8 < « and prove it true for a.
In our example, for ¢(8) we would take the statement e A A 8 < FB.
A similar remark applies to the other induction principles that we will
introduce.

The form of transfinite induction most similar to ordinary induc-
tion on integers is a step-by-step process formulated in terms of succes-
sor ordinals and limit ordinals. We now discuss these latter notions.

Definition 10.2 (¢) a is a successor ordinal if o = B for some 3. One
then writes B = a — 1; a — 1 = a if o is not a successor ordinal.
(#) «a is a limit ordinal if o # 0 and o is not a successor ordinal.
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Theorem 10.3 (z) « s a successor ordinal iff Ua < a.
(i2) «a s a limit ordinal f Ua = a # 0.
(731) a s a limat ordinal ff VBB < a=Hy(B < v < a)] A a = 0.

Proof (i) =. Say a = §B8. Then Ua = U8 =8 < o, by 9.11(»).
. Assuming Ua < a, we then have § Ua < a, by 9.13(viie). If
S Ua < a, then Ua < §Ua < @ and hence UaeUa, contradicting
1.19(¢). Thus § Ua = «, as desired.

To prove (i7), note that Ua < «, by 9.11(%), and apply (:). The
right-hand condition of (¢77) is equivalent to o € Ua A a # 0; by
9.11(w), it is equivalent to o = Ua # 0, so that (¢77) follows from (47).

In the intuitive description of ordinals given at the beginning of
Sec. 9, successor ordinals are ordinals immediately following other ordinals;
examples are 1, w + 2, we2 + 1. Limit ordinals are ordinals coming
after an ellipsis, like w and we2.

Theorem 10.4 (Second principle of transfinite induction) Assume that A

1s an ordinal, and B 7s a class such that

(i) OeB.

(it) Forall ae A, if a e Band Sae A, then §a e B.

(¢72) For all a € A, if o 18 a limit ordinal and B8 e B for each 8 < a, then
aeB.

Then A < B.

Proof We will apply the first principle of transfinite induction. To
verify 10.1(*), suppose that « ¢ A and 8 ¢ B for every 8 < a. Definition
10.2 then gives three cases.

Case 1 a = 0. Then by (¢), e B.

Case 2 «is a successor ordinal, say a« = §8. Then 8 < «, so that g e B,
by assumption. By (), a = §8 ¢ B.

Case 8 «is a limitl ordinal. Then a € B, by (4z).

Thus a e B in any case. Hence 10.1(*) holds, so that, by 10.1, A C B.

Note that, if A is a limit ordinal or if A = Ord, then the hypothesis
Sa e A may be omitted from 10.4(¢z). If A = Ord, then the hypothesis
ae A may be omitted from both (%) and (:47). Now we will llustrate
the use of 10.4 by proving the following statement.

2 Let F be a function with domain Ord satisfying the following conditions:
(a) FO = 0.
(b) F§a = SFa (recall Definition 6.5).
(¢) if a is a limit ordinal, then Fa = Uz FB.
Then for every a and every x e Fa, x & Fa.
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We prove this “by induction on «,” using 10.4. Let B = {« : for every
z e Fa we have z € Fa}. Since FO = 0, vacuously 0 e B. Assume that
ae B, to show that Sae B, assume that ze F§a and yexz. By 2(b),
FSa = SFa, so that ze SFa; 1e,, x © Fa. Therefore, ye Fa. Since
a e B, it follows that y © Fa, so that y e SFa = FQa. Since y is arbitrary,
z € F§a. This shows that Sae B. Finally, suppose that « is a limit
ordinal, 8¢ B for every 8 < «, and z ¢ Fa. By 2(c), choose 8 < a such
that z € F3. Since e B, it follows that x & Fg, so that, by 2(c) again,
z € Fa, as desired. The conclusion of 2 now follows from Theorem 10.4.

EXERCISES

10.5 Let F be as in Item 2. Show:

(a) Fa C FS8a for every a.

(b) If « < B, then Fa C FB8.

(c) If « < B, then Fa e FB.
10.6 Suppose that u,» € *Ord and the following conditions hold:

(a) « > 0, and p0 = »0 = 0.

(b) For any g with $(8) < @ u$(8) = $(3(u8)) and +$(8) =

S(8(§(+8))).

(c) For any limit ordinal 8 < «, 8 = Usey wy and v8 = U,cp vy.
Show that for any g8 < «, ¥8 > pB if 8 is a successor ordinal, although
v8 = uB = B otherwise.
10.7 Suppose that p maps Ord XOrd into Ord and satisfies the following
conditions (for any «, 8):

(@) w(@0) =

() 1(e,8(8) = $(u(e,B)).

(c) u(a,B) = Uycpula,y)if g = UB = 0 (i.e., if Bis a limit ordinal).
Show that p(u(e,B),y) = w(a,u(B,y)) for all «, 8, yv. Hint: Use induction
on 7.
10.8 Assume that a« < 8 and that B is a class such that for all v, if
a < vy < Bandif § ¢ Bfor all § such that « < § < v, then ye B. Show
that {y : a < v < B8} € B.
10.9 Exercise 10.8 is an induection principle “from « to 8’ analogous to
10.1. Formulate and prove an induction principle from « to 8 analogous
to 10.4.
10.10 Suppose that A is aset, aisan ordinal, z e *4,and y e 4. Assume
that

Ysg = Xg ~~ U7<r3 Ly

for every 8 < a. Provethat U,sy, = U,«s 2, for every 8 < a.
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11 THE NATURAL NUMBERS

Definition 11.1 (¢) Let
w=MN{4:0e4, and Vz(x e A = Sz e A)}.

Members of w are called natural numbers.

(i) The letters 1, 3, k, I, m, n, q, p are used for natural numbers unless
otherwise stated.

(77) 1 =80,2 =81, . . .,9 =88, 10 = §9.

As for ordinals, we can define classes of natural numbers by expressions
like {m : o(m)}.

Theorem 11.2 (1) w s a set.
(717) Oew, lew, ... ,%€w, 10cw.
(112) If x e w, then §T € w.

Theorem 11.2 is immediate from 11.1; for () we use the infinity axiom.
w is an ordinal; in fact,

Theorem 11.3 w is the smallest limit ordinal.

Proof Let A = {xz:2 is an ordinal A zew A z © w}. By 11.2(),
OcA. If zeA, then Sz is an ordinal (9.3), $zrew [11.2(ze)], and
sz =x\U {z} C w;thus,§xe A. Hence, by 11.1, w € 4. This implies
that every member of w is e-transitive, in virtue of being an ordinal, and
also that w is e-transitive; i.e., w is an ordinal. Comparing 11.2(¢¢) with
10.3(z12), we see that w is a limit ordinal. If « is any limit ordinal, then
Ocaand Vz(z e a = §x e ). Hence, by 11.1, 0 € a, so that, by 9.13(v?),

w < a

From 11.3 we see a characteristic property of natural numbers
among ordinals: « is a natural number iff « is not a limit ordinal, and no
B < a1is a limit ordinal. In particular, for any m £ 0 there is an n such
that m = $n.

Specializing 10.1 and 10.4 to A = w, we obtain the usual induction
principles for natural numbers.

Theorem 11.4 (Complete induction principle) If B s a class such that
m e B whenever n € B for all n < m, then w € B.

Theorem 11.5 (Ordinary induction principle) If B is a class such that
OeB, and for all m, m e B = §m € B, then w < B.
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Now that the set w is available, we can formulate an important conse-
" quence of the regularity axiom that generalizes Theorem 1.19.

Theorem 11.6 There does not exist a function f with domain w such that
fSi € ft for every i e w.

Proof Assume that there is such a function f. By the axiom of regu-
larity, choose z € Rng f such that x M\ Rng f = 0. Then x = f7 for a
certain 7 e w. By assumption, f§(2) e x /N Eng f, which is a contradiction.

Note that the situation described in 11.6 may informally be indi-
cated thus: - - - €f3 e f2 e f1 € 0.

In the remainder of this section we discuss some topics that may be
omitted without loss of continuity. The first notion is that of the trans:z-
twe closure of a relation.

Definition 11.7 For any relation R let

TR = {(x,y) :2,ye Fld RN (Hmew ~ 1)(Hf e $"Fld R such that
fOo=ax Afm=y A Vi <m[(fi,fS?) e R])}

TR is called the transitive closure of E.

Thus z(TR)y iff = = (JOOR(f1)R - - - R(f(m — 1))Rfm = y for some
finite sequence f0, . . . , fm.

Theorem 11.8 Let R be any relation.

(i) R C TR.

(i) Fld R = Fld (TR).

(i72) TR 1is transitive.

(2v) If S s a transitive relation and B C 8, then TR C 8.
(v) If R is transitive, then R = TR.

Proof (¢) Assume that aRy. Let fe 2Fld R be such that fO = x and
f1 = y. The conditions of 11.7 are met, so that «(TR)y.

(#7) Obviously Fld (TR) € Fld R, and the reverse inclusion follows
from (z).

(772) Assume that 2(TR)y. We now show, by induction on n, that

(1) Forevery fe$Fld R,ifn > 0, f0 =y, fn = 2, and
Vi < n[(ft,fS¢) € R)], then 2(TR)z.

First we apply 11.7 to obtain m € w ~ 1 and g € $"Fld R such that g0 = =z,
gm =y, and Vi < ml(g7,987) e R]. For n =0, (1) vacuously holds.
Assume (1) true for n. Suppose that fe $8"Fld R, f0 = y, f$n = 2, and
Vi < §nl(f7.f8i) e R]. If n = 0, then we merely have yRz, and setting
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h =g\J {(§m,2)}, we see by 11.7 that x(TR)z. If n > 0, then, by (1),
for n, x(TR)(fn). Thus by 11.7 there is a p e~ 1 and an h e $*Fid R
such that h0 = =z, hp = fn, and Vi < p[(h,h§7) e B]. Letting k = h\U
{(Sp,2)}, we again see by 11.7 that z(TR)z. This completes the inductive
proof of (1). From (1), condition (777) of the theorem follows in an
obvious manner.

To prove (i), suppose that S is a transitive relation and B C S.
To show that TR C S, it is clearly enough to show by induction on m that

(2) For every fe$"FId R, if m > 0, f0 = z, fm = y, and
Vi < m{(f1,f$7) € R)], then zSy.

We omit the straightforward proof of (2). Finally, (v) follows directly
from () and (2).

Theorem 11.9 If A is a family of equivalence relations with field a set B,
then T(UA) is an equivalence relation with field B, and

T(UA) = N{S: UA C 8 and S is an equivalence relation with
field BY.

Proof The following statement is easily shown by induction:

(1) Vmew~1VfesmB(Vi < m[(f2,f$7) e UA]
= (fm)[T(UA4)1(50)).

Thus T(UA) is symmetric and hence is an equivalence relation, by
11.8(#72). Clearly Fid T(UA) = B. By 11.8(), we have

T(U4) S N{S: UA € S and S is an equivalence relation with
field B}.

The converse inclusion follows from the fact that T(LJA) itself satisfies
the condition in braces.

The final theorem of this section finds many important applications.
We do not state the most general result of this type, since the proof of
the result is so simple that the reader can easily verify other generaliza-
tions (see, e.g., Exercise 11.14).

Theorem 11.10 Let A be a set and R eV a relation. Then the following

two conditions are equiwalent, for any x:

(7) zeN{C: A CCand R*C C C}.

(¢7) There exist m ew ~ 1 and fe™V such that f(m — 1) = z, f0e 4, and
for each 1 € m ~ 1 there s a j < 7 such that (f7)R(f7).

Proof (i) = (i) Let C be the set of all z such that there exist m and f



SEC. 12 SEQUENCES AND NORMAL FUNCTIONS 81

as indicated in (¢7). The implication (¢) = (¢z) follows as soon as we
show that A € C and R*C C C. First, suppose that z ¢ A. Then with
m = 1landf = {(0,x)} we see that ze C. Thus A € C. Next, suppose
that z e C, say via m and f, and that zRy. Then ye C via §m and
f\U {(my)}. Thus R*C C C, as desired.

(i7) = (2) It is easily seen by induction that, if m and f satisfy the
conditions of (¢), then Rng f C N{C : A C C and R*C C C}.

EXERCISES

11.11 Suppose that f is a function mapping wXw into w such that the
following conditions hold for all m, n:

(a) (O,n) = §(n).

() f(§(m),0) = f(m,1).

(€) F(§(m),$()) = F(m.f(S(m),m)).
Show that these conditions then follow for all m, n:

(a) n < f(m,n).

(b) fim,n) < f(m,§(n)).

(0) f(m§(n)) < F(§(m),m).

(d) fomm) < f(S(m),n).
11.12 Show that the following conditions are equivalent:

(a) z is a natural number.

(b) ForallyeSz,y =0o0ry =8 U v.
11.13 Show that, if Ris a relation, Sis a function with domain w, S; = R,
and Sgn = R|Sn for every m e w, then TR = Umeo Sn.
11.14 Suppose that A, B, and M are sets, B C A, and suppose that for
every R e M there is an m e w such that B C $=A. Let

C=MN{D:BCDCA, andforevery Re M, fe R, and m ¢ w, if
R C 874 and Rng (ffm) € D, then fm e D}.

Show that for all ae A, ae C iff thereis a pew and a ¢ e 4 such that
gp = a and for every v < §p one of the following two conditions holds:
(a) gieB.
(b) There exist R, m, 7, f such that Re M, R C $"A, fe R, j € ™,
flm = geoj, and g7 = fm.
11.15 If R is a well-founded relation, and S = {(2,y) : 2,y e FId R and
(x = y or zRy)}, then TS is a well-founded partial ordering.

12 SEQUENCES AND NORMAL FUNCTIONS

In this section we discuss notions quite analogous to the continuous func-
tions of a real variable, which play an important role in analysis. These
notions will be important in the arithmetic of ordinal numbers.
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Definition 12.1 Let A be an ordinal (thus A = Ord or A ¢ Ord).
() A function f with domain A is called an A-termed sequence and will

sometimes be denoted by (fedeea{fedeca (if A eOrd), {fo, . . ., f
v Dteay o {fo, - o o fe o v Dteca (Gf AeOrd). If Aew, f will be
denoted by {fo, . - . , fa—1). fe well be called the tth term of f, for

teA. For an A-termed sequence of ordinals (i.e., with range < Ord)
the letter u, v, or p 1s used.

For the remainder of this definttion let u be an A-termed sequence of
ordinals.

(12) p s nondecreasing 1f Va VB(a < Be A = pa < uf).
(117) p s strictly increasing if Va VB(a < Be A = pa < pf).
() pislimiting if Va (0 3 o = Ua e A = pa = Usca uB).
(v) p s half-normal if p is limating and nondecreasing.

(vz) p ¢s normal of p s limating and strictly increasing.

Note that the two-termed sequence {a,b) is different from the ordered pair-
(a,b). 2?4 is the set of all two-termed sequences of elements of A, while
A XA 1s the set of all ordered pairs of elements of A. Usually, however,
it does not lead to confusion if (a,b) and (a,b) are identified. Note that
{a,b) = {¢,d) implies that a = ¢ and b =d, since a = ((a,b))(0) =
(e, d)(0) = cand b = (g, (1) = (ed) (1) = d.

If pa = 0 for all a € A4, then u is nondecreasing, limiting, and half-
normal, but not strictly increasing or normal. If pa = «a for all a € 4,
then u satisfies all the conditions 12.1(4z) to (v2). If u is nondecreasing,
then w0 is the smallest element of the range of u. Note, with regard to
12.1(w), that 0 % @ = Ua simply means that « is a limit ordinal.

We want to establish various simple properties of these notions.
Recalling item 1 from Sec. 10, we have the following.

Theorem 12.2 Let A be an ordinal. If u s a strictly increasing A-termed
sequence of ordinals, then a < ua for every a e A.

In 13.9 we shall see that every Ord-termed normal function u has a
fixed point, i.e., that there is an ordinal a such that a = pa.

Theorem 12.3 If u vs a strictly increasing a-termed sequence of ordinals
and Bng p C 3, then a < B.

Proof For all vy < a we have v < uyeB, and hence vy < 8. Thus
a € B, so that a < 8, by 9.13(v7).

Theorem 12.4 Let A be an ordinal. If u s a strictly increasing A-termed
sequence of ordinals, and Rng p = A, then up = ITA.
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Proof Suppose pa = a for every a < 8, where Se A. Choose ye A
such that py = 8. By 12.2, v < py = 8. v < 8 implies that pyy =
v < B, a contradiction, so that v = 8 and p8 = 8. This completes the
inductive proof.

We now prove some useful sufficient conditions for half-normality
and normality.

Theorem 12.5 Let A be an ordinal, and let u be a limiting A-termed sequence
of ordinals such that puf < uS§B whenever §Be A. Then u 1s half-normal.

Proof By induction on v, using 10.4, we prove
(1) Vy VBB <ved =us < py)

The case y = 0 is trivial, by a vacuous implication. Assume that
VBB < yeA = pB < wy), and also assume that 8 < §yeA. Then
either 8 < v and so uB < py < uSy, by the assumption of the theorem,
or 8 = v and so pB < u§v, again by the assumption of the theorem.
Thus under the assumption that V(8 < ye A= pup < py)and f < §yed
we have shown that p8 < u§vy.

Finally, suppose that vy is a limit ordinal, v ¢ A, and that for every
8 < v, and every B, 8 < 6 e¢ A implies that uB < ué. Suppose that-
B < vy. Then 8 < 6 for some & < v, and hence pB < ué. Now uy =
Uecy € 2 8, so that uwé < py. Hence pf < py. This completes the
inductive proof.

By an analogous argument, we have the following.

Theorem 12.6 Let A be an ordinal, and let u be a limiting A-termed sequence
of ordinals such that uB < pSB whenever $B e A. Then u ts normal.

A particular consequence of 12.6 is that the function (§m : m e w) is
normal and hence one-one.

Theorem 12.7 Let A be an ordinal, p an A-termed normal function, and let
aeA be alimit ordinal. Then pa 1s also a limit ordinal.

Proof We apply 10.3(z27). To this end, suppose that 8 < pa. Now,
by 12.1, pa = U, 1y, so that there is a ¥ < « such that 8 < py. But
also wuy < pa since p is strictly increasing. Thus Hé (8 < § < pa).
Also, pa # 0, since p0 < pa. Hence, by 10.3(772), pa is a limit ordinal.

Theorem 12.8 Let A be an ordinal, u a nondecreasing A-termed sequence
of ordinals, and suppose that B < ae A. Then Uycany = Uscyca -
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Proof If & < B, then ué < uB and hence ué € pB. Thus Uycapy C
Us<y<a #¥ € Uyca v, so that the desired equality follows.

For any class of functions, it is interesting to determine whether the
class is closed under composition or not. We now consider this question
with regard to the kinds of functions introduced in 12.1.

Theorem 12.9 Let A, B, C be ordinals, and let yu, v be nondecreasing func-
ttons mapping A into B and B into C respectively. Then vou 1s a non-
decreasing function.

Proof Clearly vop is an A-termed sequence of ordinals. Suppose that
a < BeA. Then yua < uB and hence vua < vuB.

Similarly, one shows the following.

Theorem 12.10 Let A, B, C be ordinals, and let u, v be strictly increasing
functions mapping A inito B and B into C respectively. Then wvou is a
strictly increasing function.

Theorem 12.11 Let A, B, C be ordinals, and let p, v be half-normal functions
mapping A into B and B inlo C respectively. Then voy 1s half-normal.

Proof By 12.9, we know thal wvou is nondecreasing, so that we have
simply to check that voy is limiting. Suppose that « is a limit ordinal
and e A. We distinguish two cases.

Case! Thereisa B8 < asuchthat uf = pyforall ysuchthatg < v < a.
Then, by 12.8, pa = Uyca uy = Us<y<ca #y = pB, and so, by the assump-
tion of this case, uy = pafor every v for which 8 < vy < a. Consequently,

Uy<a vy = Up<yca vuy since vou is nondecreasing, using 12.8;
= yua by what was just noted.

Thus, in this case, vou is limiting.
Case 2 For every 8 < a thereis a y such that 8 < v < a and pB < uy.
Then we have

1) V< palHy < af < wy < pa); in particular, pa is a limit
ordinal.

Indeed, suppose that 8 < pa. Now, p being limiting, pa = Uyca pv-
Hence choose v < « such that 8 < wy. By the assumption of this case,
there is a & such that y < § < « and py < pé. Thus py < pa. This
establishes the first part of (1). Furthermore, pa 5 0 under the assump-
tion of this case, and V8 < pa He(B < & < pa), so that, by 10.3(:?7), pa
is a limit ordinal.
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From (1) we obtain, since » is limiting,
(2 wpa = Uscua 8

If 8 < pa, by (1), choose y < asuch that 8 < py < pa;then v < yuy <
Us<a vus. Hence

vpa < U5<a vud by (2))
< vpo since vou 1s nondecreasing.

This completes the proof in this case also.

Theorem 12,12 Let A, B, C be ordinals, and let u, v be normal functions
mapping A into B and B into C respectively. T hen vou is normal.

Proof By 12.11, wop is limiting, and by 12.10 it 1s strictly increasing.
We conclude this section with an important ‘“‘bracketing’’ condition.

Theorem 12.13 Let A be an ordinal and u a half-normal A-termed sequence
of ordinals. Suppose that there exists a 8 e A such that p8 < a, and that
there exists a v e A such that a« < uy. Then there 18 a unique 8 ¢ A such
that ué < a < uSs.

Proof Let € be the least member of A such that a < ug; € exists by the
hypothesis of the theorem. Now ¢ # 0, for p0 < u8 < a. Also €isnot
a limit ordinal, for if it were, we would have a < U;., n¢, and hence
a < ptforsome £ < g contradicting thechoiceof &. Henceeisasuccessor
ordinal,say ¢ = §6. Wethenhaveus < a < p§s, which proves existence.
If ¢ 1s any ordinal in A but different from 8, then either ¢ < §, and hence
S < dand p§¢ < pé < a,oréd < §,and hence §6 < ¢fand o < p§é < ut.
Thus 8 is unique, since p{ < a < p${ is impossible.

Remark 12.14 For more on normal functions and related functions see
Bachmann 1967.

Having the notion of a-termed sequence available, it is natural to
speak also of a-ary relations and operations. R is an a-ary relation iff
R C <V, Fora = 0thismeansthat R = 0orR =1. Fora =1, 2, 3,

., we speak of unary, binary, ternary, . . . relations. Binary rela-
tions may be identified with relations as introduced in Sec. 1 (see the
comments following 12.1). fis an a-ary operation on A iff fe CHA, A
0-ary operation on A has the form {(0,a)} for some a € A ; this operation is
usually identified with a itself. Since '4 consists of all pairs (0,a), it is
frequently tempting to identify 'A with 4 itself, and hence 1-ary operations
on A with mappings from A4 into A. 2-ary operations on A are frequently
called binary operations; 3-ary operations, ternary operations, etc. We
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shall not have occasion to discuss a-ary relations and operations further.
The theory of such relations and operations is essentially the same as the
general theory of algebra.

EXERCISES

12.15 Give examples of Ord-termed sequences of ordinals showing that
there are no implications among the concepts of 12.1(37) to (vi) except
those implied by the obviousimplications (777) = (i), (v) = (w), (v) = (41),
(v1) = (v), and (1) = (122).

12.16 Prove 12.6.

12.17 Construct Ord-termed sequences g, » such that neither u nor » is
nondecreasing, while vou is nondecreasing.

12.18 Prove 12.12 without appealing to 12.11, by simplifying the proof
of the latter.

13 RECURSION

In this section we will discuss definitron by recursion, often called definition
by induction. Actually it is not a matter of definition in the usual sense,
as precisely described in the Appendix, in which, typically, the defined
notion 1s expressed explicitly in terms of known notions. For example,
recall the definition of inclusion:

ACB iff Vz(zeA=zeB).

Note that in this explicit definition, the symbol defined, C, does not
appear at all on the right-hand side of the equivalence. Recursive defini-
tions are usually restricted to ordinals, and most familiarly to w, the set
of nonnegative integers. A notion is defined for all nonnegative integers
by defining it first for 0 and then for §n, assuming that it has been defined
for n. For example, addition is usually defined as follows. For any
m,n € w,

m + 0 = m; m—+ §n = §(m + n).

Here the defined term, +, appears on both sides of the equation.

These two methods of definition are quite different. Using the first
method, it is clear that the defined term does not add any strength of 1ts
own to the discussion, since the defined notion can always be eliminated
in favor of known notions. It is not so clear that recursive definitions
do not give rise to an essentially stronger theory, although we will show
in this section that they do not (the situation here is special for set theory,
since in an autonomous development of number theory, within the first-
order logic developed in the Appendix, the above ‘““definition” of addition
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would not be eliminable). In fact, recursive definitions can be reduced to
ordinary definitions. For example, the operation of addition, 4+, of
natural numbers can be introduced by an explicit definition, provided
that we can show that there is a unique function f mapping wXw into w
such that for all m,n e w f(m,0) = m and f(m,§n) = §(f(m,n)). For then,
we simply let

+ =N{f:fe>*w A VmVn (mnew=f(m0) =m A f(m§n)
= §f(m,n))}.

Note that the set of ’s on the right-hand side of this equation is then a
singleton {f}, f the unique function mentioned above, so that 4+ =
N{f} = f, this unique function.

It is not so easy to show that such an f exists and is unique as one
might hope. A “proof”’ frequently used in elementary textbooks runs
as follows, applied, for example, to justify the recursive definition of addi-
tion. “We show by induction that m + = is defined for all m,n e w.
m + 0 = m, and so m + 01is defined. Assuming that m + n is defined,
m 4+ §n = §(m + n),and som + Snisdefined. Thusm + nisdefined for
all m,n e w.”” This argument, however, is erroneous. It mixes language
and metalanguage, since the argument talks about an expression’s being
defined on the same level as the integers themselves. Such a mixing of
language and metalanguage leads to obvious contradictions, for example,
to Richard’s paradox: “Let m be the least nonnegative integer not defina-
ble by fewer than 20 words. But we have just defined m by fewer than
20 words.” The moral of this little discussion i1s that we must try to
justify recursive definitions by using the ordinary set-theoretical apparatus
that has been developed. This amounts to showing that certain funetions
f exist and are unique; the proof consists in building up such a function
from “approximations.”

There is another consideration with regard to recursive definitions.
We want to be able to do recursion not only over w but over any ordinal.
There are even more general situations that frequently oceur in mathe-
matics where some kind of recursive definition is called for. Although
these more general situations can always be reduced to recursion over
ordinals, 1t is best simply to give a general recursion principle to cover all
the special cases. Our most general recursion principle involves recursion
over well-founded relations [recall Definition 8.12(z)]. Some of the more
special recursion principles, for example, 13.2, will seem more intuitively
clear.

In this section we shall give a general recursion principle and also
various special cases which are useful in practice. In later sections we
will apply the principles as needed; the general principle itself is used in
Sec. 15, for example.



88 CHAPTER TWO ORDINALS

Theorem 13.1 (General recursion principle) Let R be a well-founded rela-
ttom such that for all z e Fld R, {y : yRx} is a set, and let F be a function
with domawn Fld R X V. Then there is a unique function G such that
Dmn G = Fld R and for all x ¢ Fld R,

Gz = F(z,Gl{y : yRx}).
Proof Let

(1) M = {h: his a function, Dmn h € Fld R, and Vz e Dmn h
(hx = F(z,h[{y : yRz}) A {y : yRx} € Dmn h)}.

We may intuitively think of members of M as approximations of the

—~desired function @, defined only on “R-initial segments’” of Fld E. Let
G = UM. To check that G is a function, it is enough, by virtue of
Theorem 5.9, to prove the following statement:

(2) For all f,ge M, f{(Dmn f N\ Dmn g) = g{(Dmn f N\ Dmn g).

To prove (2),letf,ge M. LetA = {z : ze Dinnf N\ Dmngand fxr = gx}.
We want to show that A is empty; suppose, on the contrary, that A = 0.
By the definition of well-foundedness—Definition 8.12(7)—choose z € A
such that 4 N {y : yRz} = 0. Now, by (1), {y: yRx} € Dmn fN
Dmn g. Also, for any y with yRxz we have fy = gy, by the choice of z.
Hence by (1),

fxr = F(z,fl{y : yRz|) = F(z,glly : yRz}) = gz,

which contradicts z e A. Thus 4 = 0 after all, (2) is established, and @
is a function.

"Clearly Dmn G € Fld R. To establish the converse inclusion, we
need two more easy properties of M.

(3) If N is a nonempty subclass of M, then NN e M.

Clearly, by 5.15, N is a set, (1 is a function, and Dmn (AN C Fld R.
Suppose that x ¢ Dmn (IN. Then z e Dmn h for each h e N, so that, by
(1), {y : yRx} € Dmn h for each heXN, and so {y : yRz} C Dmn NN,
by (2). Let h be any element of N. Then z e Dmn h, and ((IN) (z) =
hx = F(x,hf{y : yRz}) = F(z,(NN)[{y : yRz}). This establishes (3).

(4) If N is a subset of M, then UN € M.

Indeed, UN is then a set, by 5.3, and it is a function, by (2) and 5.9.
Suppose that z e Dmn UN. Then there 1s an h ¢ N such that z e Dmn h.
By (1), {y : yRx} € Dmn h € Dmn UN. Also by (1),

(UN)z = ha = F(z,h[{y : yRz}) = F(z,(UN)[{y : yRz}).
This establishes (4).
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Now let us return to the main part of the proof. We need to show
that Fld R € Dmn (. Suppose that this is not the case, and by the
definition of well-foundedness choose z e Fld R ~ Dmn G such that
(FId R ~ Dinn @) N {y : yRz} = 0. If yRz, then y e Dmn G and hence
{h:heM AyeDmnh} = 0;further,by (3),N{h : heM AyeDmnh}eM.
Now we define H to be the function with domain {y : yRz} such that for
each y such that yRz,

(5) Hy=N{h:heM A yeDmn hj.

Now Dmn H = {y : yRz} 1s a set by the hypothesis of the theorem, so
that, by the axiom of substitution (1.35), Rng H is a set. By (4), U
RngHeM. Letk = RngH. From (5) weeasilyinfer that {y : yRa} C
Dmn k. Now let

h =k \J {(z,F(z,kl{y : yRz}))}.

Clearly then he M. Butz e Dmnh, so that x ¢ Dmn G, which contradicts
"our choice of . This contradiction establishes that Dmn G = Fid R.
If z e Fld R, then x ¢ Dmn G and so z ¢ Dmn h for some 2 ¢ M, so that

Gz = hx = F(z,hf{y : yRz}) = F(z,Gl{y : yRz}).

Thus we have finished the proof that G' has the desired properties.

As to uniqueness, suppose H also satisfies the conditions of the
theorem. Let A = {z:xeFld R A Gx = Hz}. Assume that 4 = 0,
choose z ¢ A such that A M {y : yRz} = 0. Then Gy = Hy whenever
yRz, and hence

Gz = F(z,Glly : yRz}) = F(z,H[{y : yRz}) = Hax,

which contradictsxz e A. Hence A = 0, s0 that @ = H. This completes
the proof.

We want to give at once our most limited recursion principle. We
give two proofs for this principle: one based on 13.1, the other more
involved, in which a simplified version of the proof of 13.1 appears. The
second proof should be useful in seeing the idea of the proof of 13.1 clearly.
Theorem 13.2 (The uteration principle) Let A be any set, ae A, and f a
function mapping A into A. Then there is a unique function g mapping w
nto A such that g0 = a and g§m = fgm for all m € w.

First proof Let R = {(mn) :m < n}. Clearly R is a well-founded
relation such that {y : yRz} is a set for each z € Fld R; indeed, the first
fact is true since < is a well-ordering, and the second follows since
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FldR = wand m = {n : n < m] foreach m e w. Let F be the function
with domain w XV such that for any m e w and z ¢ V,

a if z =0,
F(mx) = { flz(U Dmn z)]- if x(U Dmn z) € 4,
0 in any other case.

To understand the second part of this definition, recall the functional
notation from 4.2: x(lJ Dmn z) is the unique y such that (U Dmn z,y) ez
if there 1s such a unique y. In case such a unique y does not exist, we are
not really interested in the result, as will be seen. .

Now let G be as in Theorem 13.1, and let ¢ = Glw [g 1s a set by
4.15(z27).] Thus ¢ maps w into V. By induction on m, we show that
gme A for all m e w:

g0 = GO = F(0,G10) = F(0,0) = ae A;

)

assuming that gm ¢ A, we have

ggm = Ggm = F(gm, Gy : y <§m,yew}) = F(gm, Glgm) = fGm
= fyme A

Here we have used the fact that US$m = m for any m e w [see 9.11(v)];
this, of course, motivated the strange-looking definition of F. Thus
g: w— A, and the above argument also shows that g has the properties
desired in the theorem.

For uniqueness of g, assuming that h also satisfies the conditions of
the theorem, it 1s easily shown by induction that gm = hm for every m ¢ w.
Alternatively, one can argue using the uniqueness of G.

Second proof Let

(1) M = {h : his a function, Dmn h ew, Rng h © A, and for all
meDmn h, hm = aif m = 0 and hm = fhn if m = §nl.

Let g = UM (since M C Unmew ™4, M is a set). Now
(2) For all hk e M, h[(Dmn h N Dmn k) = kf(Dmn h M\ Dmn k).

To prove (2), let h,k ¢ M be given, but suppose that the conclusion fails.

Let m be the least integer n € w such kn ¢ hn. Then m # 0, since A0 =

= k0, by (1). Hence thereisa pewsuchthatm = §p. Thus, using (1),
hm = fhp = fkp = km,

a contradiction. Thus (2) holds, so that, by 5.9, g 1s a funcltion. Now
we prove, by induction, that for every m e w,

(3) meDmngand gm = aif m = 0, and gm = fgn if m = §n for
some 7.
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Suppose that (3) holds for all m < p. If p = 0, note that {(0,a)} ¢ M,
and hence (3) holdsforp. If p = §nforsomen, thenglp\J {(p,fgn)} e« M,
and so p e Dmn g and gp = fgn, and (3) holds for p. Hence, by complete
induction, (3) holdsforall m ¢ w. Thiscompletes the proof of the existence
of g. Uniqueness is proved as in the first proof.

We can now derive other useful recursion prineiples quickly. In
the next two principles, as well as in the iteration principle, for simplicity
the given functions have only one argument rather than two as in the
general recursion theorem.

Theorem 13.3 (General recursion principle for ordinals) Let A be an
ordinal, and let F be a function with domain V. Then there is a unique
function G with domain A such that, for every e e A, Ga = F(Gla).

Proof Let R = {(a8) : a < BeA}. Let F’ have domain Fid RXV,
with F'(z,y) = Fyforany ze FId R, ye V. Then the hypotheses of 13.1
hold, so that there is a function G such that Dmn G = Fld R and Vz €
Fld R[Gx = F'(2,G[z)]. Thus Vz e Fld R[Gx = F(Gfz)]. If 1¢ A, then
Fld R = A and G'is as desired. If1¢A, then A = 0or A = 1 and the
existence of G is trivial. The uniqueness of G is easily shown, either
directly or by appealing to 13.1.

Theorem 13.4 (Usual recursion principle for ordinals) Let A be a nonzero
ordinal, B a class. Suppose that a e B, F ©s a function mapping B into B,
and G is a function mapping C into B, where C = {f : fe 2B forsomeae A}.
Then there is a unique function H mapping A into B such that

(x) HO = a.

(12) HSa = FHa for every a for which Sa e A.

(i77) HB = G(H[B) for every limit ordinal 8 € A.

Proof We want to apply 13.3, and to this end we define a certain function
F° with domain V. Namely, for any set z we let

a if z = 0;
F(z(U Dmn z)) if z is a function whose domain is a
o successor ordinal in 4 and Rng 2 C B;
Fex = . . . .
Gz if z 1s a function whose domain is a
limit ordinal € A and Rng 2 & B;
0 1n any other case.

Note that such a function F° does exist. The only question that might
occur 1s in the second case. If z is a function whose domain is Sa e A4,
and Rng 2 € B, then Dmn z = $a, U Dmn 2 = o, by 9.11(v), z(U
Dmn z) ¢ B, and hence z({J Dmn z) e Dmn F.
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Now, by 13.3, let H be a function with domain 4 such that for every
aedA, He = F°(H[a). We now claim that H maps 4 into B. If this
is not true, choose a e A minimal such that Ha¢B. Since HO = F°(H[0) =
F°0 = aeB,wehavea 0. If a = g8 forsome B, then Rng (Hla) & B
and so Ha = F°(H[a) = F(H[a)8 = FHp ¢ B, contradicting the choice
of @. Finally, if ais a limit ordinal, then Ha = F°(H[a) = G(H[a) € B,
again a contradiction. Thus such an a does not exist, so that H : 4 — B.
A repetition of the preceding argument shows that H has the desired
properties also. The uniqueness proof is easy.

Note that for A = w, condition (#2¢) of Theorem 13.4 drops out, and
we obtain the iteration principle again.

We now want to give versions of the recursion principles in which
parameters appear. This i1s frequently desirable in applications.

Theorem 13.5 (General recursion principle, with a parameter) Let R be a
well-founded relation such that, for allz e FId R, {y : yRx} is a set, and let F
be a function with domain VXFld RXV. Then there is a unique function
G with domain V X Fld R such that, for every x ¢ V and y ¢ Fld R,

G(zy) = F(z,y,G1{(z,2) : 2Ry}).

Proof LetS = {((z,y),(z,2)) : yRz}. Then Siswell-founded: Suppose
that 0 2 A C FidS. Let B = {2 q :aed}. (Recall, from 5.13, that
20d (zy) = yfor any xz,y e V.) Then 0 3 B C Fld R, and so we choose
y e Bsuch that {v : uRy} M B = 0. Thereisanz e V such that (z,y) ¢ 4.
Then {b : bS(z,y)} N 4 = 0. Indeed,if bS(z,y) and b e 4, then (274b)Ry
and 274 b ¢ B, which 1s impossible. Thus S 1s well-founded.

Also, {a : aSb} is aset for any b ¢ FId S. Indeed, let b = (z,y) with
zeV,yeFldR. Then {a: aSb} = {z}X{u : uRy}, so that the hypothe-
sis of the theorem implies that {a : aSb} 1s a set.

Note that Fid S = VXFId R. Hence F maps Fld SXV into V.
Now we can apply 13.1. Let G be the function with domain Fid S such
that, for all a e FId S, Ga = F(a,G[{b : bSa}). Thus, for any z e V and
Y e Fld R,

G(z,y) = F(z,y,G[{b : bS(z,y)})
= F(z,y,Gl{(z,2) : 2Ry}),

as desired. The uniqueness of G is easily established.

Theorem 13.6 (General recursion principle for ordinals, with a parameter)
Let A be an ordinal, and let F be a function with domain VXA XV. Then
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there s a unique function G with domain VXA such that, for all x and all
ael,

G(z,0) = F(2,0,G[{(z,8) : B < a}).

We leave the proof as an exercise (cf. the proof of 13.3).

Theorem 13.7 (Usual recurston principle for ordinals, with a parameter)
Let A be an ordinal, B a class. Suppose that F is a function mapping B
into B, G 15 a function mapping BXAXB tnto B, and H is a funclion
mapping BXAXV into B. Then there is a unique function K mapping
B XA into B such that, for all x € B,

(7) K(z,0) = Fz.

(77) K(z,8§a) = G(z,0,K(x,a)) for every o for which $a e A.

(#7) K(z,8) = H(z,8,K[{(z,v) : v < B}) for every lumit ordinal 8 ¢ A.

Proof Since the proof is analogous to the proof of 13.4, we will sketch it
only. The idea is to apply 13.6. To this end we define a function F°
with domain VXA XV. Ifz,yeV and a e A, we set

Fz if « = 0 and z ¢ B;
G(z,Ua,y(z,Ua)) if z € B, a is a successor ordinal,
o _ and y € {z)XQB;
2 @e9) =4 g ay) f 2 e B, o is a limit ordinal, and
yeV,
0 otherwise.

The remainder of the proof 1s straightforward.

Theorem 13.8 (Primzitive recursion) Let B be a set, f a function mapping
B into B, and g a function mapping BXwX B wnto B. Then there is a
unique function h mapping BX w tnto B such that, for all x ¢ B and all m,
(?) h(z,0) = fz.

(22) h(z,§m) = g(z,m,h(z,m)).

Theorem 13.8 is obtained from 13.7 by specializing to A = w.
We now give some important applications of recursion.

Theorem 13.9 (Fized-point theorem for normal functions) Let p be an
Ord-termed normal function. Then for every B there its an o > B such that
po = .

Proof We define a function » by iteration. Let »0 = ug8 and v§m =
pvm. Also, let v = Ume, vm. Since for any m, by 12.2, ym < pym =
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v§m, v is a half-normal function, by 12.5. Hence so is uov, by 12.11, and
hence

v < prw = Umea pym = U mew v§m % v,

so that vw is the desired a (note that 8 < pg < u§B = v0 < wvw, so that
B < ww).

The construction in the proof of 13.9 gives the least @« > g such that
pe = a. In fact, assume the notation of the proof, and let v be any -
ordinal > g such that uy = y. By induction, it is easily seen that »m < v
for every m e w; hence vw < v, as desired.

From 13.9 it follows that the class A of fixed points of any Ord-
termed normal function g 1s a proper class. Indeed, if A is a set, then
UA e Ord, and 13.9 yields a fixed point & > UA4A. Thusa < U4 < «a, a
contradiction.

The next theorems show that ordinals fully represent well-orderings,
as indicated at the beginning of this chapter. These theorems, then,
really give the essence of what ordinals are; any reasonable notion of
ordinal would have to satisfy them.

Theorem 13.10 If < is a well-ordering, < a set, then there is a unique o
and a unique function f such that f is an tsomorphism from {(B,vy) : 8 <
v < a} onto <.

Proof We apply the general recursion theorem for ordinals (13.3). By
2.6(2), choose a ¢ Fid (<). For each set i let Fh = <-least element of
Fld (<) ~ Rng h, if Fld (<) ~ RBEng h £ 0, and Fh = a otherwise. By
13.3, let G be the function with domain Ord such that, for every «,
Ga = F(Gla). Now

(1) If « < g and Ga = a, then G = a.

Indeed, if Ga = a, then F(Gla) = Ga = a, so that Fld (<) ~ Rng
(Gla) = 0. But Gla € G[B, so that Fld (<) ~ Rng (G[B) = 0 also; 1t
follows that GB8 = F(G|B) = a. This establishes (1).

(2) If a < 8 and GB * a, then Ga < GB.

Indeed, by (1), we then have Ga > a also. Hence Ga = F(Gla) =
< -least element of Fld (<) ~ Rng (Gla), and GB = F(G[B) = <-least
element of Fld (<) ~ Rng (G[B). Since Gla C G[B, we have Fld (L) ~
Rng (GIB) € Fld (<) ~ Rng (Gla) and hence GB € Fld (<) ~ Rng (Gla).
Thus Ga < GB since Gu is the <-least element of Fid (<) ~ Rng (Gla).
On the other hand, Ga ¢ Bng (G[B), so that the fact that GB e Fld (<) ~
Rng (G[B) implies that Ga s GB. This establishes (2). Next,

(3) There is an « such that Ga = a.
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For, otherwise, by (2), G would be a one-one mapping of Ord into Fid (<);
since Fld (<) 1saset by 3.14, Ord would be a set, by4.11, contradicting 9.8.
Hence (3) holds. Letting o be the least ordinal such that Ga = aq, it
is then clear, using 8.11, that f = G[a satisfies the conditions of the
theorem. As to uniqueness, suppose that 8 and g also satisfy the condi-
tions. Then g—lof is a strictly increasing a-termed sequence of ordinals,
and Rng (g~ 'f) € B, so that, by 12.3, < 8. Similarly 8 < «, so that
a = 3. Then, by 12.4, g7'of = f~log = Ifa, so that f = g.

Theorem 13.11 For any well-ordering <, let 7( <) be the unique ordinal o
gwen by Theorem 13.10. Then < is tsomorphic to <’ iff (<L) = 7(<’).
Euvery ordinal a has the form (<) for some well-ordering <, namely, for
< ={Bv) :B<y <al

Proof Let < and <’ be two well-orderings, with f, g isomorphisms from
{B,v) : B < v <7(L)} and {(B,7) : 8 < v <7(L)} onto < and <’
respectively. If A is an isomorphism from < onto <’, hof is an iso-
morphism from {(8,y) : 8 < v < 7(<)} onto <’, and so, by 13.10, (<) =
7(<’). Ontheotherhand, if 7(<) = 7(<’), then gof~'is an isomorphism
from < onto <'.

The last statement of the theorem is obvious.

Thus isomorphism restricted to well-orderings is an equivalence rela-~
tion, and the ordinals pick out exactly one representative from each
equivalence class. Furthermore, there is at most one isomorphism
between two well-orderings. If § is an ordinal and T C 3§, then {(a,8) :
a < B, ael, BT} is isomorphic to {(,8) : « < Bevy} for some v < 6
(see Theorem 12.3). If R and S are well-orderings, then either (7) there
is a b e Fld S such that R is isomorphic to {(z,y) : zSySb A y = b} or (z1)
R isisomorphic to Sor (z¢¢) thereisana e Fld R such that {(z,y) : ztRyRa A
y % a} is isomorphic to S.

We conclude this section with a discussion of the Peano postulates
for natural numbers.

Definition 13.12 (¢) If A 7sa set, a € A, and f is a function mapping A into
A, we say that (A,f,a) is a model for the Peano postulates provided that the
following three conditions hold:
P1 fxr % a forallzeA.
P2 Forallzyed, if fx = fy, thenz = y.
P3  For every subset B of A, if a e B and of Vz(x ¢ B=> fx ¢ B), then
B = A.
(#) If (A,f,a) and (B,g,b) are models for the Peano postulates, then (4, f,a)
18 1somorphic to (B,g,b) provided that there is a one-one function h
mapping 4 onto B such that ha = b and Vz ¢ A (hfz = ghz).
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The notion of isomorphic models for the Peano postulates extends the
notion of isomorphism of relations introduced in 8.3.

Theorem 13.13  (v,f,0) ¢s a model for the Peano postulates, where fm = $m
for every m.

Proof (P1) 1s obvious, (P2) follows from 9.13(:z), and (P3) follows from
the definition of w (11.1).

Theorem 13.14 Any two models for the Peano postulates are isomorphic.

Proof Clearly 1t suffices to show that, if (B,g,b) is a model for the Peano
postulates, then (w,f,0) is isomorphic to (B,g,b), where f is defined as in
13.13. By the iteration principle (13.2), let 2 be the function mapping w
into B such that R0 = b and hSm = ghm for all m. We have only to
show that h is one-one and has range B. Suppose that h is not one-one.
Let m be the least integer such that there is an integer n > m with
hm = hn. Thus n = §p for some p, and so hn = hSp = ghp. Now
m % 0; otherwise, ghp = hn = hm = h0 = b, contradicting (P1) for
(B,g,b). Thus there is a ¢ such that m = §¢. Now hm = h§q = ghgq,
so that ghq = ghp. By (P2) for (B,g,b), hg = hp. But, from 9.13(2),
we know that ¢ < p, so the fact that ¢ < m contradicts the choice of m.

To show that h has range B, we apply (P3). Since h0 = b, b e
Rng h. Suppose that x e Rng h, say = hm. Then h§m = ghm = gz,
and so gz e Rng h. Thus, by (P3) for (B,g,b), B = Rng h. This com-
pletes the proof.

Remark 13.15 The general recursion principle (13.1) is due to Montague,
Scott, Tarski 1956, who proved an even more general result. For a
detailed discussion of the iteration principle and its proof, and of the
Peano postulates, see Henkin 1960.

Theorem 13.14 gives rise to a seeming paradox when combined with
a result of Godel 1931. By Godel’s result, set theory (if consistent) has
two distinet models; a certain number-theoretic statement holds in one,
but not in the other. But, by 13.14, any two systems of integers are
isomorphic, and hence any statement that holds of one holds of the other
also. Thus we conclude that 13.14 applies only to a definite and fixed
universe of sets. It is only when several possible universes of sets are
compared that different properties of integers are possible. More for-
mally, 13.14 may be viewed as simply an expression derivable from our
set-theoretical axioms, although Goédel’s result states the existence of a
number-theoretical expression ¢ such that neither ¢ nor ¢ can be derived
from our axioms. Theorem 13.14 is a statement about sets, functions,
etc., while Godel’s theorem is a metamathematical result about our set
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theory. It is a mixing of language and metalanguage that leads to the
paradox.

EXERCISES

13.16 Prove 13.6.
13.17 Fill in all details in the proof of 13.7.
13.18 Show that there is a function g mapping Ord into Ord such that
for any a, p0 = 0, pS§a = §Sua, and pa = Ugc, p8 for a a limit ordinal.
13.19 Show that there is a function f mapping w Xw into w such that the
following conditions hold for all m, n:

(a) f(O,n) = §n;

(b) f(§m,0) = f(m,1);

(c) F(Sm.§n) = fim,f(m,m)).
Hint: Let B = {((mn),(p,q)) :m < por(m=pAn<ql}.

14 ORDINAL ARITHMETIC

In this section we introduce ordinal addition, multiplication, and expo-
nentiation and prove basic facts about them. As indicated in Sec. 13,
these operations will be defined recursively, which means that the recursion
principles in Sec. 13 will be applied to prove the existence and uniqueness
of the operations. We begin with addition.

Theorem 14.1 There s a unique functron K mapping Ord X Ord into Ord
such that for all a, 8, v,

(7) K(a,0) = a.

(1) K(a,88) = $(K(a,8)).

(2) K(a,v) = Uscy K(,8) of v = Uy = 0.

Proof We apply 13.7, the usual recursion principle for ordinals, with a
parameter. Let Fa = a for all a. Let G(a,8,y) = §y for all o, 8, v.
For any «, 8 and any fe Vet H(a,8,f) = Uzepmn s f2 if fis a function with
Rng f € Ord, and let H(a,8,f) = 0 otherwise. Then choose K mapping
Ord X Ord into Ord in accordance with 13.7. For any «, 8, v with v =
Uy 5 0 we then have

K(a,0) = Fa = a.
K(a,88) = G(a,8,K(a,B)) = §(K(a,B)).
K(a,v) = H(a,v,Kl{(a,8) : 8 < v}) = Us<r K(a,9).

This completes the proof (uniqueness is easy).

Definition 14.2 + s the unique function K of Theorem 14.1. We write
a + B instead of +(a,B).
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We reserve the ordinary + for cardinal addition (see Sec. 20). Note
that « + 1 = §(a + 0) = S, so that we can now write the more sug-
gestive o 4+ 1 for Sa.

Definition 14.2 and Theorem 14.1 can be reformulated as follows.

Theorem 14.3 For any «a, 8, v with v = Uy = 0,
(?) a+0=a

(@) «+ 88 =8(a+8).

(i50) @+ 7 = Usey (@ + 9).

Theorem 14.4  For every o, {a + B : g e Ord) s a normal function.
Proof By 12.6.

This theorem is extremely useful in elementary ordinal arithmetic.

It will help the intuitive picture of the addition of ordinals if we give
an equivalent definition. For this purpose it is helpful to develop further
our intuitive comments at the beginning of the chapter to the effect that
ordinals are associated with well-orderings. Recall that, for any ordinal
v, {(@,8) - a < B8 < v} is a well-ordering. In the other direction 13.10
tells us that every well-ordering is isomorphic to an ordering of this special
form. Thus + corresponds to a certain operation on well-orderings,
which we give in the following.

Theorem 14.5 For any «a, B, lad B = {((0,7),(1,8)) : yeadep} U
{((0,7),(0,8)) : v £ 8 < a} U {((L,y),(L,8) : v <8 < B}. Then R is a
well-ordering, R is a set, and there is a unique tsomorphism F of R with
{(v,0) 1y <8 < a4 8}

Thus « + 8 is ordered by first putting all elements of « in their natural
order and then adjoining the elements of 8 in their natural order.

Proof It is straightforward to check that K is a well-ordering. Let

= (0,7 s vea} U [((L,y)a+v) 1 veB}. Clearlya S RngF C
a 4+ B, using 14.4 for the last inclusion. Toshow that Rng F = a + 8, it
suffices to show that any e (e + 8) ~ « is in the range of F. Since
d¢a,ie, d < a we thus have @ < & < « + 8. Applying 12.13 to the
normal function (o + v : v < $8) (cf. 14.4), we obtain a y < $8 such
that « +v < 8 < o + §y. Since a + §y = §(a + 7), it follows from
9.13(v) that « + v = 3, as desired. Therefore, Rng F = « + 8. Using
the normality of (a 4 v : v < B) again, we easily see that zRyiff Fx < Fy
and that F is one-one. This shows the existence of F. Uniqueness
follows from 13.10.

Some commonly used properties of ordinal addition are as follows.
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Theorem 146 (3) a + (B8 +v) = (« +8) + 7.
(17) a < B iff there ts a v > 0 such that a + v = .
(ti2) If « < B, thena +v < B + v.

(i) §(a) = a 4 1.

(v) 0 4+ o = a.

(v)) 8 < a8 _ .

(vit) If 8 < v, then o« + 8 < a + 7.

Proof (i) By transfinite induetion on v:

at B+0)=at+p=(a+p+0
at B+ 8y)=a+8B+7y) =8a+ (B+7)
= §((e+B8) +v) = (a+8) + Sv;

for y = Jy # 0, we need to use 12.12. Let u = (o + 6 : 6 ¢ Ord) and
v =(8+ 8:68e0rd). Then

at @+v) =wy = U§<~, #Vf? by 12.12,
= Us<r [@ + ® + 6)]
= sy [(@ 4+ B) + 8] by induction assumption,
= (a8 +~ by 14.4.

To prove (i%), note that « + 0 = a < g, although 8 < §8 < « + 88, by
12.2. Applying 12.13, we obtain a y such that « + v < 8 < o + 8.
Since a + gy = $(a + v), it follows that a + v = 8. (4%) is easily
shown by transfinite induction on v, and (v) by transfinite induction on a.
For (), a« +1 = a4+ §0 = §(a +0) = §a. (vi) and (vif) are imme-
diate consequences of 14.4 and 12.2.

Note that we can now prove that 2 + 2 = 4: until now we could
not even formulate this fact. Indeed,2 + 2 = 2 4 §50 = §(2 + $0) =
$$(2 4+ 0) = §82 = 4. In Sec. 19, where we discuss finite sets, we
recapture several other elementary facts about integers. See also the
discussion in Sec. 15 of Cantor normal form. Observe, to answer an
obvious question, that a + 8 £ 8 + « in general. In fact, w + 1 =
Sw > w. On the other hand, 1 + w = w, as follows from Theorem 14.9.

Theorem 14.7 m + 7 ¢ w.

Proof By induction on n.

Theorem 14.8 m 4+ n = n + m.
Proof By induction on m:

0O+n=n=n+40 by 14.6(v).



100 CHAPTER TWO ORDINALS

Assuming Va(m 4+ n = n + m), we show Va(§m 4+ n = n + gm) by
induction on n:

Sm+0=gm=0-+8gm by 14.6(),
§m + §n = §(§m + n) = §(n + §m) .
= 88(n + m) = $8(m + n) = g(m + $n)
= §(&n + m) = §n + §m.

Theorem 149 o < aif 1 + a = a.

Proof TFirst we show that 1 + & = w. Indeed, w < 1 4 w, by 14.6(v?),
while

l'i‘w:Um(w(l-i—m)gw)

by 14.7. Thus 1 + o =w. If o <« then a = w 4 8 for some B,
using 14.6(¢7), and hence 1 +a =14+ (w+8) = 1 4+ w) +8=0w +
8 = a. If on the other hand, @ < w, then, by 14.8 1 +a = a 1  a.
This completes the proof.

We now turn to ordinal multiplication.

Definition 14.10 « s the unique function mapping Ord X Ord into Ord such
that for any o, B, v with v = Uy = 0,

(’I,) a-O = 0

() as§B = (asf) + a.

(171) asy = Usey (a0d).

Again, we reserve the usual multiplication symbol - for cardinal multi-
plication (see Sec. 21).

Theorem 14.11 If a 2 0, then {asg : 8 € Ord) ts a normal function.

Proof It is sufficient to observe that as§8 = as + a > asp, by 14.4,
and to apply 12.6.

It follows from 14.11 that (asg8 : g e Ord) is always half-normal.
The following theorem expresses ordinal multiplication in terms of the
well-orderings {(v,8) : v < § < af and {(v,8) : < & < B8}.

Theorem 14.12 Let < = {((v,8),(§0)) : v,€ e a;8,f € B; and either § < ¢,
orelsed = fandy < €}. Then < is a well-ordering, and there 1s a unique
tsomorphism F of < with {(v,8) : v < § < asB}.
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Thus asf is ordered by substituting a copy of a for each element of S.

Proof We may assume that «,8 5% 0. It is straightforward to check
that < 1s a well-ordering. For any v e a,8 € 8, let F(y,8) = (asd) + .
Then (aed) + v < (aed) + a, (by 14.4) = ae$d < aeff (by 14.11). Thus
F(v,0) easf. F maps onto aeB: Suppose that €easf. We have
asd) = 0 < ¢ and € < «ef. Hence, by 12.13, there is a 6 such that
aed < € < ae§d. Clearly 6 < 8. Now (aed) + 0 < ¢ and (aed) + a =
@e§d > €, so that, again by 12.13, there is a vy such that (aed) v < & <
(aed) + Sy. Clearly v < o and F(y,8) = (aed) + vy =¢. Thus F
maps onto asB. Next, if (7,6) < (g,f), then either & < {, and hence
F(v,8) = (aed) 4+ v < (0ed) + o = 2e§8 < el < (asf) 4 € = F(g,0), or
8 = fand vy < ¢, in which case F(y,8) = (aed) + v < (@ed) + € = F(g,0).
By 8.11, the proof of the existence of F is complete. Uniqueness follows
from 13.10.

We now give basic properties of ordinal multiplication:

Theorem 14.13 (1) as(8 + 7) = (aef) 4 (coy).
() arlBey) = (@B)er.

(777) Qs = e = 0.

() cel = lea = a.

(v) If a 5% 0, then 8 < as.

(i) If o = 0and B < v, then asf < asy.
(wir) If a =2 0and B > 1, then a < adf.
(vier) If o < B, then asy < fey.

(1z) o2 = a + a.

() Ifaf > 1, then a + B < asb.

(zt) If a,8 5~ 0, then asf = 0.

Proof (%) and (22) each involve a straightforward transfinite induction
on v, similar to the proof of the associative law for addition, 14.6(z). In
proving (1), it is helpful to use (7). Vea(0sa = 0) is also easily shown by
induction on a; V(a0 = 0) is known. For (zv), note first that asl =
ae§0 = (ae0) + a = 0 + o = «, using 14.6(v). The fact that lea = a for
all « is shown by an easy transfinite induction on «. (v) and (v7) are both
immediate consequences of 14.11, also using 12.2 for (v). (viz) follows
immediately from (vi) and (). (vi17) is easily seen by transfinite induc-
tion, using 14.6(¢27). As to (z), we have as2 = ae§l = (ael) + o =
a 4+ «, using (<). We prove (z) by transfinite induction on 8, assuming
a>1. a+2< a4 a= a2 and, assuming that 8 > 1,

a4 §6 = §(a + 8) < §(asf)  using 9.13(z),
= (aef) + 1 < (aeB) + a = a:gB
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Finally, if 8 1s a limit ordinal, then

a+t g = U7<5(a—i—7)
= U1<7<8 (e + y) < U1<7<8 (asy)
= U7<8 (asy)
= Of',B,
since (a 4+ v : v € Ord) is strictly increasing. Thus (z) holds. Finally
(z7) follows immediately from (v).

Simple arithmetic using multiplication can now be carried out. For
example, 203 = 2.2 = (2:2) +2 =242 +2=4F2=g¢@ +1)
= §8$4 = 6. Again, the commutative law for multiplication fails. This
results from the fact that 2ew = w, although we2 = w + w > w, by
14.13(7z). The first fact, 2e0 = w, follows from 14.15.

Theorem 14.14 (7) men € w.
(1,1,) menn, = MNeM.

Proof (2) is easily seen by induction on n, using 14.7. We prove (i17)
by induction on n. The casen = 01s given by 14.13(772). Now assume,
inductively, that Vm (men = nem). We prove Vm (me§n = $(n)sm) by
induction on m. The case m = 0 1s again given by 14.13(z:7). Finally,

Sme§n = Smen + Sm = ne§m + Sm
= (nem + n) —I— sm
(men + n) + sm
= (men + §m) + n by 14.6(z), 14.8,
= [(men +m) + 1] +n by 14.6(w), 14.6(7),
= (Mme§n + 1) + n
= (§nem —I— 1) +n
= §nem + §n by 14.6(7), 14.6(w),
= §ne§m.

Theorem 14.15 If m 5 0, then mew = w.
Proof By 14.13(v), w < mew. On the other hand,
Mow = (Jnew (Men) C w.

Thus mew = w.

Note that mea 1s not equal to a for every a > w; for example,
200 +1) =0+ 25 0+1

The next theorem, the division algorithm, specializes to the ordinary
division algorithm in the case of natural numbers. It plays a central
role in the advanced development of ordinal arithmetic.
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Theorem 14.16 (Diviston algorithm) If a and B are given, with B = 0,
then there exist unique v and & such that a = Bey + 6 and v < a, § < 6.

Proof We have 0 = 0 < o and Be§a > Bea > «, using 14.13(v7) and
(v). Hence, by 14.11 and 12.13, there is a unique vy such that By < a <
Be§y. SinceBey + 0 = Boy < wand Bey + 8 = Be§y > @, we may apply
12.13 in conjunction with 14.4 this time to obtain a unique & such that
Bey + 8 < a < Boy + §6. Since Bey + S8 = §(Bey 4 8), it follows that
o = fey 4+ 8. Now a < v implies that « < v < By, by 14.13(v), and
this contradicts our assumption above; hence vy < «. Similarly, § < 8.
This proves existence. If v' and & also satisfy the conditions, then
By < a < Bey’ 4 B = Be§7', and hence ¥ = v/, by the uniqueness of v.
Also, then, Bey 4 8 = a < Bey 4 §¥', so that § = &, by the uniqueness
of 8. This completes the proof.

Theorem 14.17 The following three conditions are equivalent:
(z) o salumit ordinal.

(17) o = weB for some g #~ 0.

(111) For every mew ~ 1, mea = a, and o # 0.

Proof (4) = (7) By the division algorithm, choose 8, m such that
a = wef 4+ m. If m £ 0, then m = gn for some n, and a = §(wel + n),
which 1s impossible. Thus m = 0 and a = wes.

(17) = (172) Meax = Me(wef) = (Mew)ef = wef, by 14.15.

(i11) = (1) Suppose that (¢iz) holds but (4) fails; say « = §8. Then
a = 200 = 288 = 2.8 + 2 > 8 4 2;thus §88 < §B, which isimpossible.

We now turn to the last basic operation on ordinals, exponentiation.

Definition 14.18 Let be the unique functron mapping Ord XOrd tnto Ord
such that, for any «, 8, v with v = Uy #= 0,

(r) «a®=1.

(17) a8 = abea.

(191) a7 = sy @

We write exponentiation without the dot only for cardinal exponentiation,
introduced in Sec. 22.

Theorem 14.19 If « > 1, then {a® : B e Ord) is a normal funcizon.

Proof Note first that a8 £ 0 for all 8 (transfinite induction on 8). Thus
a8 = qfea > afel = b, using 14.13(v7). Now 12.6 yields the desired
result.



104 CHAPTER TWO ORDINALS

Again, it 1s clear that (¢ : 8 e Ord) is also half-normal if « = 0.
We will not express the well-ordering of «f explicitly in terms of « and 3,
as we did for a + 8 and as8 (14.5 and 14.12), because of the rather com-
plicated expression involved; see Bachmann 1967 or Sierpinski 1965.
The simplest properties of exponentiation are given in the following.

Theorem 14.20 (2) O« = 1 ¢f a = 0 or if « ts a limit ordinal.
(12) O« = 0 ¢f a 15 a successor ordinal.

(ve1) 1@ =1,
() a®=1.
(v) al = a.

(v7) ol = aea.

(vir) If @ > land B > 1, then a < o,
(v1re) If a > 1, then 8 < ab.

() Ifa>1andB < v, then af < a.
(z) If a < B, then av < G7.

(£7) @G+ = qBea if o 5= 0.

(z17) (aB)r = @) 3f o £ 0.

(zir) If 1 < a, B, then 1 < a8,

(xw) If 1 < o, B, then asf < a.

Proof (7) and (22) are easily established together by transfinite induction;
(127) also follows by an easy transfinite induction. Further, (), (v), and
(v7) are all straightforward. (vi72) and (vz) follow from 14.19, and (viz)
from (v) and (). An easy transfinite induction suffices to establish (z).
The inductive proofs of (z7) and (ziz) are similar to the proof of 14.6(z),
but since some steps are more involved, we will sketeh the proof of (x7).
We have

aB+) = o8 = gh] = qea® by (w) and 14.13(w),
= a'ﬂ.(a"Y.a) = a‘ﬂ.a'S'Y.

Now assume that y = Uy 0. Letpu = (8+08:06e0rd),» = (a® : 5 ¢
Ord), and ¢ = (absd : 8 € Ord). By (¢i7), we may assume that « > 1, so
that »is normal. Then, by (@) and (vei7), ¢ is normal; and without any
special conditions we know that u is normal. Hence

a8t = puy = Uq<7 b
= U6<7 o@D = Ua<7 (aBacx®)
= Uscy &0 = try = aBea™.

Next, (z717) is true since a'! = « > 1 and (a? : g € Ord) is strictly increas-
ing. Finally, (zw) can be established by an easy induction on 8.
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Theorem 14.21 (1) m™ € w.
(12) (lem)™ = ["™em™.

Proof Both statements are easily seen by induction on n.

Remark 14.22 TFor more detailed information on ordinal arithmetic see
Bachmann 1967, Sierpinski 1965, and Tarski 1956.

EXERCISES

14.23 Prove 14.6(z17).
14.24 Prove 14.6(v).
14.25 TFor every 8 5= 0 the function (a + 8 : a e Ord) is not limiting.
Hint: There is a least « > w such that « 4+ 8 > 8; this a is a limit ordinal,
and the function is “not limiting at o.”
14.26 Show that m + w = w.
14.27 Justify Definition 14.10.
14.28 Show that not every limit ordinal has the form asw.
14.29 Justify Definition 14.18.
14.30 Show that there is a function * such that, for all «, 8, vy, with
Y = U'Y = 0)
(1) a* =g
(2) a*sf = a-(a*ﬁ),
(3) o* = Usey a*’.
Prove
(@) If « > 1, then (a*® : 8 ¢ Ord) is a half-normal function.
(b) If m > 1, then ¢ 2 w iff m** = w.
(¢) If « > 1 and 8 > o, then o™ = a*.
14.31 Show that (262)7« 5= 2.2,
1432 If 6 2 w, mew, and new ~ 1, then (6—}—m).n=5.n—i—m.
14.33 If & 5% 0, then dew = Soew.
14.34 For every § > 1 the function (asf : a e Ord) is not limiting.
14.35 If §is a limit ordinal, n e w, and m e w ~ 2, then (§ + n)™ < §me2.
14.36 If & is a limit ordinal, then (8 4 n)® = §v.
14.37 For every 8 > 1 the function (a'# : a e Ord) is not limiting.

15 SPECIAL TOPICS

In this section we will give a brief survey of several somewhat advanced
topics in the theory of ordinal numbers. We begin with a rather techni-
cal lemma and a theorem useful in what follows.

Lemma 15.1 Suppose that o = y¥ugy + Cowith 8o < a, 0 < & < v, and
(0 < ’7'60 and that B = 7'61081 + O with 8 < ,8, 0<eg <« v, and {1 < 7"51.
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Then a < B 1ff one of the following three conditions holds:
(z) &0 < 6y

(22) 6o = 6, and &4 < €.

(112) 8o = 81, €¢ = €, and ¢o < .

Proof If 6, < 6, then

o = ylugg + Fo < yoege + y%
= y%e(€o + 1) < yloey
= 7‘(60+1) S ‘Y"Sl S 7.6“81 S ﬁ

If 6 = 61 and €, < €4, then

a=70-€o—f—§'o<7°'€o‘i‘7
—70¢(€0+1)<’70¢€1<6

Finally, if 8¢ = 81, €& = &1, and {y < {3, then obviously o« < 8.

If, conversely, (¢) to (z2z) all fail, then either (1) 8, = 61, €4 = €;, and
{o = {1, so that & = 8 and o 4 3, or (2) one of (z) to (222) holds with 0
and 1 interchanged, so that 8 < «, by the first part of the proof, and
hence o 4 8.

Lemma 15.1 is used in proving the following supplement to the
division algorithm.

Theorem 15.2 If o > 0 and 8 > 1, then there exist unique v, 8, € such
that o = 376 + &, v < o, 0 < 8 < B, and € < B.

Proof We have %=1 <« and 88 > Sa > a. Hence, by 12.13,
choose vy such that g~ < a < §8*. By the division algorithm, 14.16,
choose 8, € such that a = 87+6 4 ¢, with 6§ < o and € < 8v. Clearly
v < a (see the first sentence of this proof). If § = 0, then « = ¢ < 8,
a contradiction. Finally, 8 < 6 implies a 2> 870 > 373 = 87, a
contradiction; hence & < 8. This proves existence, and uniqueness
follows by 15.1.

Theorem 15.2 will be applied later in the decimal representations of
ordinals. Now we find it useful in discussing certain peculiarities of
ordinal arithmetic.

The integers obey cancellation laws with respect to the arithmetic
operations: m +n=m -+ p=n=1p, mn=mp Am=0=n=p,
and m™ = m? Am > 2= n = p (these facts are easily established by
induction). For ordinals in general these facts no longer hold. There
are even ordinals « > » such that 8+ o = « for all 8 < « (hence
1 + o =2 4+ «); we say then that « additively absorbs 8. We want to
give a fairly complete picture of which ordinals absorb others, with
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respect to addition, multiplication, and exponentiation. Beginning with
addition, we first exhibit many ordinals absorptive with respect to
addition.

Theorem 15.3 If a < w, then a + w? = w'™.
Proof First we show
(1) If v < B, then w* + wf = wb.
Indeed, by 14.6(¢7), choose & such that 8 = vy + 6. Then
W+ wb = w7 + wTrew? by 14.20(xz),
= w7e(l 4 w?) by 14.13(1),
= w7ew? by 14.9,
= @b by 14.20(zz).

Here we know that w?® > wsince § > 1 and w'! = w, by 14.20(v). By an
easy induction on m, we now have

(2) If y < B, then wYem + b = wb for all m.

Now we turn to the main part of the proof; hence suppose that « < w,
The case 8 = 0 is trivial, as is that of @ < w, by an obvious induction
using 14.9. Hence assume that w < a. Write @ = w¥em + §, by 15.2,
with m £ 0, § < w”. Then clearly v < 8. Hence

wl < a4 wb= (wrem + 8 + wf < wr(m + 1) 4 wb
by 14.6(:27),
= w? by (2).

This completes the proof.
Theorem 15.3 suggests the following,.
Definition 15.4 « s a y-number iff 8 -+ a = o for all g < o.

Thus « is a y-number provided that it is a fixed point of every normal
function (8 + v : v e Ord) with 8 < « (cf. 13.9). By 15.3, wfisalwaysa
v-number, and obviously so are 0 and 1. These are the only ones:

Theorem 15.5 The following three conditions are equivalent.
(1) o 1s a y-number.

(G7) Forally < a, B+ v < a

(111) « = 0, or a = w8 for some B.

Proof (¢) = (1) Wehave + v <8+ a = a.

(27) = (727) Assume that a ¢ 0,1. Then, by (17), w < a. By 15.2,
choose 8, m, v such that a = wfem + v with m < 0 and v < wb. If
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v #% 0, then whem < o and v < w? < whem < a, and wbem + v = a,
contradicting (¢7). Thus y = 0. If m > 1, then m = n + 1 for some
n, and when + wf = a, with wfen < « and w® < @, again contradicting
(12). Thus o = w.

(2212) = (v) By 15.3.

Next we deal with absorption for multiplication.

Definition 15.6 o« s a d-number iff for all B with 0 < 8 < o we have
Beax = q.

Theorem 15.7 The following conditions are equivalent.
(1) a8 a d-number.

(12) For dll B,y < a, By < a.

(i71) ae {0,1,2}, or @ = w”® for some B.

Proof (i) = (17) Assuming that 8, v < «, we have 8 5 0 and By <
Beax = aorfB = 0 and By = 0 < a.

(17) = (112) Assume that « ¢ {0,1,2}. Then «a ¢w, since otherwise
o = m - 1 for some m > 2 and then mem > «. This fact, that mem >
m 4 1 for every m > 2, is easily established.

Hence w < a. Next

(1) «1is a y-number.

Indeed, suppose that 8, v < a; we want to show that 8 + v < a. We
may assume that 1 < 8, y. Then 8 + v < Bey < o, using 14.13(z).
Thus (1) holds. Hence a = w” for some v. If §, € < v, then w?
w*® < w7, 50 that wfw® < w?; that is, 0 @+9 < wr. This implies that
8 + € < y. Henceyisa y-number. Say y = w?¥; then a = wo?.

(127) = () It suffices to show that w«#is a -number. Assume that
0 <vy<webf If vy <w then yewe? = wef by 14.17 (117) —w?® s
easily seen to be a limit ordinal by transfinite induction on 8. Thus
assume that w < y. Since vy < w*®?, this implies that 8 > 0, and hence
w# is a limit ordinal (this last statement is easily seen by induction on g).
By 15.2, choose 8, m, € such that m > 0, € < »?, and v = w?«m + €.
Then 6§ < ¥, hence § + 1 < w’f, and

w9 < yewef = (wlam + €)ewe?

< (w-a.m + w‘a)-w““'ﬁ
= wle(m + 1)ewe?
< (34D gy

— W GiDEeB — w8 by 15.3.

This completes the proof.

Finally, we can ask about fixed points for exponentiation.
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Definition 15.8 « s an c-number 1ff ¢ = aforall Bsuchthatl < 8 < a.

We do not have a precise arithmetical expression for e-numbers like
15.5(z22) for y-numbers and 15.7(z17) for é~-numbers. We can give an
analog of 15.5(zz) and 15.7(77), but first we need the following.

Theorem 15.9 Every e-number 1s a é-number.

Proof Assume that « is an €-number and that 0 < 8 < a. If 8 = 1,
then Bea = «. If 1 < 8, then, by 14.20(zw), a = lea < fea < B = q
so that Bea = a. Thus « 1s a d-number.

Theorem 15.10 T'he following conditions are equivalent.
(z) « s an e-number.
(77) « = 1, or for all B,y < a, B7 < a.

Proof (2) = (1) Clearly we may assume that « >0, 1, 2. If g8 = 0,
then 87 < 1 < a;if 8 =1, then 87 =1 < a; and if 1 < B, then 87 <«
B« = «a, so that (iz) holds.

(12) = (¢) Again it is clear that we may assume that « = 0, 1, 2.
Note from (z7) and 14.20(zw) that

(1) e«1s a é-number.

Suppose that 1 < 8 < a. If a = §y for some v, then o« < g2 = g8 =
Bre < a, by (¢7) and (1), which is impossible. Thus « is a limit ordinal,
and so o < g« = U, ., 8" < a, by (47), so that & = 8=, as desired.

Theorem 15.11 0, 1, 2, and w are e-numbers, and these are the only
e-numbers < w.

Theorem 15.11 is easily shown, using 15.9 and 15.7(z2z). The following
theorem enables one to manufacture larger and larger e-numbers. In
Exercise 21.28 we shall see further that every infinite cardinal number is,
as an ordinal, an e-number (and hence also a é~number and a y-number).

Theorem 15.12 For each o > 1, the least e-number > o 1s the ordinal vw,
where v is recurswely defined as follows: v0 = «, v(m 4+ 1) = ym>™ for
mew, and vo = Umne vm.

Proof First, let 8 be any e-number > «. It is easily shown, by induc-
tion on m, that ym < B for every m e w, making use of 15.10(sz7). Hence
w < B. Second, wehave to show that vwisitself an e-number. Suppose
that v, 8 < vw. Then there exist m,n e w such that v < vm and § < wvn.
Say m < n. Thus

v < o < nr = p(n 1) < v(n + 2) < .
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This completes the proof.

If we apply 15.12 to ¢« = w, then we get the first e-number > w.
In this case v0 = w, v1 = w*, and

y2 = (wu)-w"" = ¢ (@ (@) by 1420(2322)

= w'(w""),

since w* is a é-number. In general, one can show by induction that
m = we’ w, where m + 1 w’s occur on the right-hand side. Hence the

first e-number > w is naturally written as " , and it is customary to
call this number €,. In many mathematical situations transfinite induc-
tion up to &, is called for; we may mention, for example, Gentzen’s proof
of the consistency of arithmetic (see Gentzen 1936). The reason that €,
plays such a central role in arguments by transfinite induction is connected
with the representation of ordinals in Cantor normal form. We will now
discuss this normal form and then indicate informally why g, is a “critical
number’’ for transfinite inductions.

Theorem 15.15 shows that any ordinal can be expressed in “decimal
form” with respect to any ordinal 8 > 1 as base; Cantor normal form
corresponds to the choice 8 = w, and for natural numbers with 8 = 10
we get the usual school form. To formulate this theorem, we need the
notion of a finite sum of ordinals.

Definition 15.13 If u e "Ord for some m, and n ts any integer, we define

E(p,n) by recurston as follows:

E(F’-)O)z
E(#’"“*‘l E(#, +oun if m > n;

otherwise.
We write Ei<n ut tnstead of Z (u,m)

Theorem 15.14 (Associative law) If upe™0rd, and n < m, then

E£<m ’“/ = Zi<n "”: + E.‘n<i<m }17/

Note that En<,<m pt is to be interpreted as E,<p vi, where p is the unique
integer such that n 4 p = m [see 14.6(:7)] and v = (u(n +7) : 7 < p).
Theorem 15.14 is then easily shown, by induction on p. Theorem 15.14
is not the most general associative law (see Exercise 15.31 at the end of the
section), but it 1s sufficient for most purposes.

Now we can state the base-expansion theorem.
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Theorem 15.15 (Base-expansion theorem) Let 8 > 1. Then for any

ordinal a there exist unique m, v, § satisfying the followtng conditions.
(x) v, 6 e™Ord.

(,”) o = Ei<m B 100

(7i2) For all i < m, a > vi, and if © + 1 < m, then v; > yija.

(w) Forallt <m, 0 < b <8,

Proof If « =0, let m =+v =6 =0. Now assume that « > 0. We
define v°, 8°, € by recursion. Let €, = a. If €, has been defined, apply
Theorem 15.2, in case €, 5 0, to obtain v, 85, €1 such that

m)

(1) If €, > O0; then €, = §7edS, + iy, With 75, < &y,
0 < 682 < B, and €1 < g7 1f €, = 0, then
Emi1 = ’Y:., = 5; = 0.

From (1) 1t follows that, if €, > 0, then €, > €.4:. Hence, by 11.6,
€m = 0 for some m. Let m be chosen minimal with this property. Let
v = v°[m, & = 6°Im. Thus () holds; by (1), (=) and the first part of
(117) hold. Since & > &1 for ¢4+ 1 < m, (1) and 15.1(z) imply that
vijr < vio  If vif1 = v, then

€ij1 = Bviediiy + &de 2> B > &y by (1),

a contradiction. Thus v < 7vi, so that (727) holds. Now, by induc-
tion on z, it is easily seen that

(2) Foralli < m, € = );c; f7ind; + &

With 7 = m in (2) we obtain (:7). This finishes the existence proof.
As to uniqueness, suppose that 7, 4, § also satisfy the conditions of the
theorem. By induction on p, one easily proves

(3) Foralliwithes +1 <, if ( +1) &+ p = i, then

Zs‘+1<:‘<n‘z (BHie) < B,
Now one can use (3) and 15.2 to prove, by induction on %, that for all

1< m, m >1 and y; = %, 8 = 6;. Uniqueness now easily follows.
This completes the proof.

If we take c¢ew and 8 = 10 in 15.15, we get the usual decimal
expansion of «. Here it is customary to make a certain sequence u
correspond to a. The domain of uis n = (U,cm 7<) + 1, and for each
J<m, pjis 0if j¢Rng v and py: = §; for every ©+ < m. Thus 309 =
3102 4 94109 in this case, Theorem 15.15 gives m = 2, v = (2,0), and
6 = (3,9). In this way we recapture an important part of elementary
mathematics in a rigorous framework. It is not too difficult to prove
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the usual rules for “carrying’ in addition and for multiplying; we leave
this for an exercise.

By 15.15, any ordinal can be expressed to base 10. Thus w = 10,
w4+ 13 = (10 4 10) + 3, we2 = 102. For infinite ordinals it is
more interesting to use base w; in this case, the representation given in
Theorem 15.15 1s called the Cantor normal form of a:

o= Ef<m (e meny),

with a 2 y¢> v1 > * -« > ym_: and n; % 0 for all 7 < m. One can
again express the exponents vq . . . , Ym_1 in Cantor normal form, and
express their exponents in Cantor normal form, and so forth. An impor-
tant property of €, the first &~number > w, is that for @ < g, this process
must stop after finitely many steps. Thus with each ordinal < &, one
can associate a certain configuration of natural numbers, so that, in g
sense, up to €, we have not gone beyond the integers. In particular,
transfinite induction up to €, does not, loosely speaking, transcend ordi-
nary induction over integers.

Turning to another topie, we will now discuss the important notion
of the rank of sets. Roughly speaking, we want to assign an ordinal pz
to each set z in such a way that the magnitude of pz measures the com-
plexity of z. Our only criterion for complexity is that x is more complex
than each of its members.

Definition 15.16 o 7s the unique function with domain V such that for any
set z,

px = {a : py < o for each y e z}.
We call pzx the rank of the set x.

Thus pz is the least ordinal > py for each yez. Definition 15.16 is
easily justified, using the general recursion theorem, since {(z,y) : = ¢ y}
is a well-founded relation. Note that 0 has rank 0, 1 has rank 1, {1} has
rank 2. Some useful properties of the rank function are the following.

Theorem 15.17 (v) If z e y, then px < py.
(77) If = C y, then px < py.

(711) p(z Jy) = pz U py.

() p(Uz) = Ulpy : yez} < pz.

(v) plz} = pz 4 1.

(v?) p(Sz) = pz + 1.

(vi7) pa = a.

Proof Conditions (z), (#2), and (v) are obvious, and (vt?) is easily estab-
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lished by transfinite induction on «. For (217), the inequality px \U py <
p(x U y) follows by (¢2). Ifzexz U y, then either z e x and hence pz < px <
px \J py, or ze y and hence pz < py < px U py. Therefore pz < pz U py
whenever z e  \U y, so that the inequality p(x U y) < px U py also holds,
and (27¢) is established. To prove (), first note that for any ze Uz we
have zeyex for some y, and hence, by (), pz < py < Ufpy : yex}.
Hence pz < U{py : yex} for each ze Uz, so that p(Uz) < Ulpy : yex].
Obviously Uf{py : yex} < pz. Finally, if zex, then z € Uz and hence
pz < p(Uz). Therefore, U{py : yex} = p(Uzx). Asto (v2), sincez e Sz,
we have pz 4+ 1 < p(Sz). On the other hand, if y e Sz, then y C z and
hence, by (1), py < pz < pz + 1; 1t follows that p(Sz) < pz + 1. This
completes the proof.

Theorem 15.18 For every o, {z : px < a} ts a set, and
{x 1 px < a} = Upca S{z : oz < B}.

Proof We proceed by induction on «. Suppose that the result is known
for all 8 < «. Thus, in particular, S{z : px < 8} is a set foreach 8 < «,
and Ugca S{z : px < B} 1s a set. Hence it is enough to prove the equa-
tion in 15.18. If y e Ugca S{z : pr < B}, then thereis a 8 < o« such that
yeS{z : pr < B};thatis,y € {x : px < 8}. Therefore, px < g for each
z e ¥, and 1t follows that py < 8 < «. This establishes one desired inclu-
sion. Now suppose that py < a, and let 8 = py. For any z e y we have
pr < py = B, by 15.17(7); hence y C {z : px < B}, and hence ye S{z :
pr < B} and so y e Upca S{z : px < B}. This establishes the otherinclu-
sion, and the proof is complete.

Definition 15.19 For every o, M, = {z : px < af.

Theorem 15.20 (7) M, = Uscoa SM,.

(W) (M) = «.

(iv) If xe M,, then x C M,.

() If « < B, then M, C Mg and M, e M.

(v) SM,= M,;,.

(vi) If a is a limet ordinal, then M, = Ugc, M.
(U’I,’I,) V = Ua(Ord M,_,.

Proof (2), (212), and (vi7) are easily established, using the previous results
on p. As to (22), if x € M,, then px < «, by the definition of M,; hence
p(M,) < «, by the definition of p. If § < «, then 8 = p8 < pa = «, by
156.17(viz), and so B e M,. Thus « & M,, so that a = pa < p(M,), by
15.17(¢%). Therefore (22) holds. (w) follows immediately from (¢z). By
(1), Upcair SMg = SM,, so that (v) follows, using (7). (v7) isimmediate
from (v) and (7), and this completes the proof.
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Theorem 15.20 has a fundamental significance for the philosophy
of set theory. The following facts follow from 15.20. We have M, = 0,
M, =S80, M,=SM,, ..., M,=Upn, M, M =SM, ...
Every set appears in some M,. Thus we may say that all sets are built
up by a simple inductive procedure from the empty set using just two
operations: forming the set of all subsets, and taking the union of preceding
steps.

One of the main uses of the rank function p isin justifying definitions
by abstraction. Asindicated in Sec.7, onefrequently wishes to “identify”’
certain elements of some class K. Rigorously, an equivalence relation R
with field K is given, and we want to “identify’”’ equivalent elements of
K. If K is a set, KR does the trick. If K is a proper class, this no
longer works. Using the rank function, however, we can also take care of
this case.

Definition 15.21 [If R ¢s an equivalence relation with field K, then for any
zeKletrpr = {y : xRy and py = (\{pz : 2Rx}}. rrz s called the R-type
of x.

Theorem 15.22 Under the assumptions of 15.21, rrx ts a set, and trx = 0.
Furthermore, for any y,z € K we have yRz off try = 7r2.

Proof Let a = (\{pz : zRx}. Thus py = a for each yerzz, so that
7R © M3 M, is a set, by Theorem 15.18, so that rgx is a set. Now
a is the least element of {pz : zZRz}. Hence thereis a z such that a« = pz
and zRx. Thus z e gz, and so gz % 0.

Now assume that yRz. Then, for any u, uRy iff uRz, since R is an
equivalence relation. It follows that N{pu : uRy} = N{pu : uRz} and
ey = trz. On the other hand, suppose that rry = rzz. Choose u e 7ry.
Then uRy and uRz, so that yRz, as desired.

Theorem 15.22 expresses the essential properties of R-types. As a
special case we obtain order types. Let R consist of all pairs (S,T) such
that S,7 ¢ V and S and T are isomorphic simple orderings (see 8.10). It
is easily checked that R is an equivalence relation. For this R we call
R-types order types. We could have taken ordinals to be the order types
of well-orderings and developed the whole theory of ordinals on this basis.

Remark 15.23 For advanced ordinal arithmetic see Bachmann 1967,
Sierpinski 1965, and Tarski 1956. Definition 15.21 is essentially due to
Dana Scott.
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EXERCISES

Prove the following.

15.24 TFor any a > 0, asw is the smallest y-number greater than a.
15.25 If ais a y-number, then a'f is a y-number.

15.26 If 8 is a limit number, then o is a y~-number.

15.27 For any a > 1, a“ is the smallest -number greater than a.

15.28 If « is a -number and 8 is a y-number, then «'# is a -number.
15.29 For any a > 2, a is an ¢-number iff a = 2-«

15.30 Justify Definition 15.13 by using an appropriate recursion theorem.
15.31 Suppose that u e "Ord, v e m, m > 1,n > 1, vis strictly increasing,
»0 =0, and v(n — 1) = m — 1. Then

21’<m M = [21’<n——2 2v1$3’<v(i4—1) }-"j] + Zv(n—Z)S;{Sv(n—l) H,

15.32 Justify the recursive definition given in the proof of 15.15.
15.33 Prove the usual rules for ““carrying’’ in addition of natural num-
bers, and the usual rules of multiplying.
15.34 Write the following in Cantor normal form:

(@) [(wed + @ T)ew ¥ew'2.

(0) (o + 0 @D(e + 1).
15.35 Give convenient, rules for adding, multiplying, and exponentiating
numbers in Cantor normal form.
15.36 Show that addition, @, of order types can be defined so that if R
is of type a and S of type 8, then a @ B is the order type of

{((a,0),(b,0)) : aRb} U {((a,0),(z,1)) : a e Fld R,z e Fld S}
U {((z,1),(y,1)) : zSy}.



3
The Axiom of Choice

In this short chapter we give various equivalent forms of the axiom of
choice and show some typical applications.

16 EQUIVALENTS OF THE AXIOM OF CHOICE

In Axiom 1.36, we gave the relational axiom of choice. This postulate
is a very strong form of the axiom of choice that is frequently convenient
to have in our system of set theory. However, for most applications a
somewhat weaker axiom suffices; this weaker form has more intuitive
appeal, and is more widely known, than Axiom 1.36. We will refer to it
as the axiom of choice, although it is not really an axiom of our system and
1s not equivalent to 1.36, which we will always refer to as the relational
axtom of choice.

Axiom of choice For any set A of nonempty sets, there is a function F
with domain A such that Fz e z for every z € A.

116
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The function F is called a choice function for A. Note that, speaking
intuitively, the existence of F' implies a simultaneous choice of elements
for each member of A, and A may well have infinitely many members.
The axiom does not imply that ¥ can be constructed in any practical
sense. Historically, considerations of this kind have led to controversy
about the advisability of using the axiom of choice, but, as stated earlier,
it seems to be a generally accepted principle now. For further discussion
see Iraenkel, Bar-Hillel 1958.
The following theorem comes as no surprise.

Theorem 16.1 The axiom of choice holds.

Proof Let A be any set of nonempty sets. Set B = {(z,y) : yex e A}.
Since each member of A is nonempty, Dmn B = A. By the relational
axiom of choice, let F' be afunction suchthat ¥ C Rand DmnF = DmnR.
Thus F is a choice function for A.

We now give what we consider to be the most useful principles
equivalent to the axiom of choice.

Multiplicative principle If A is a function with domain 7 ¢ V and if
A; = 0 for every 7 e, then PieI A; = 0.

Zermelo’s principle If P is a partition of a set A4, then thereisa B C A
such that B M M has exactly one element for every M ¢ P.

This formulation of Zermelo’s principle only apparently involves the
notion of a cardinal number (which we have not yet introduced), namely,
the cardinal number 1. The last phrase in the statement of the prineciple
can be restated as follows:

There is an z € B M M such that, forallye BN\ M, z = y.

Counting principle For every set A there is an ordinal « and a one-one
function F that maps « onto A.

Well-ordering principle For every set A there is a well-ordering with
field A.

Zorn’s lemma If a set A is partially ordered by a relation R, and every
subset of A simply ordered by R has an R-upper bound in 4, then 4 has
an R-maximal element.
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Zorn’s lemma should really be called Kuratowski’s lemma. Note that the
hypothesis of Zorn’s lemma implies that A £ 0, since the empty subset
of A must have an R-upper bound in A. Any element of 4 is an R-upper
bound of the empty set. Thus Zorn’s lemma can be equivalently formu-
lated as follows:

If a nonempty set A is partially ordered by a relation R, and every non-
empty subset of A simply ordered by R has an R-upper bound in A4,
then A has an R-maximal element.

Alsorecall that A partially ordered by arelation R meansthat (4 XA4) N\ R
is a partial ordering. Clearly we may assume that R itself is a partial
ordering, and that FId R = A.

Maximality principle If A is a set of sets, and every subset of A simply
ordered by inclusion has an C-upper bound in A, then A has an C-
maximal element.

We note at once that the maximality principle is simply a special case of
Zorn’s lemma, and that frequently only the maximality principle is applied
when Zorn’s lemma is cited in a proof.

Kuratowski’s principle If E is a partial ordering, ReV, and S is a
simple ordering such that S € R, then there is an C-maximal simple
ordering 7' such that SC T C K.

Trichotomy principle For any two sets A and B, there is a one-one map-
ping either from A into B or from B into 4.

The trichotomy principle does not, on the face of it, involve three alterna-~
tives. However, if it holds, then one of the following three conditions
holds, for any sets A and B:

1 There is a one-one function mapping A into B, but none mapping B
into A.

2 There is a one-one function mapping B into 4, but none mapping 4
into B.

3 There is a one-one function mapping 4 into B, and also one mapping
B into A.

The trichotomy principle has played an important role in the development
of the theory of cardinal numbers. Condition 3 is equivalent to the
assertion that there is a one-one function mapping A onto B, and this
equivalence can be proved without using the axiom of choice (see Chap. 4).
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Mapping principle For any two nonempty sets A and B, there is a
function mapping either A onto B or B onto A.

Theorem 16.2 All the preceding principles are equivalent to the axiom of
choice (this we prove, of course, within the set theory based on all the axioms
except the relational axiom of choice). They are all valid under the assump-
tron of 1.36, the relational axiom of choice.

Proof The second assertion of the theorem is an obvious consequence of
the first part and Theorem 16.1. For the first assertion, we treat the
multiplicative principle and Zermelo’s principle separately, since both
are easily seen to be equivalent to the axiom of choice. For each impli-
cation we assume the notation in the definition of the principle to be
established.

Axiom of choice = multiplicative principle {A;:7el} is a set of non-
empty sets (it is a set by the substitution axiom), so, by the choice
principle, let F be a choice function for it. For each 7¢7 let Gi = FA,.

Then clearly G e Pm 4.

Multiplicative principle = Zermelo’s principle Let C = I[P. Since
P C SA, Pis a set; thus C is a function whose domain is a set. By the

multiplicative principle, choose f e PMeP Cu = PMEP M. ClearlyRngfC A
and Rng f M M has exactly one element for every M e P.

Zermelo’s principle = axiom of choice Let K = {(z,y) : yexe A}, and
let P = {{(z,y) : yex} :zeA}. Thus P is a partition of K. Choose
F C K such that F M M has exactly one element for every M e P. Itis
then easily checked that F is a choice function for 4.

We prove the equivalence of all the other principles with the axiom of
choice by one big circle of implications.

Axiom of choice = counting principle ILet f be a choice function for
SA ~ {0}. By 2.6(z), choose a ¢ A. By recursion, there is a function H
with domain Ord such that for every «,

Heo — f(A ~ H*a) if A ~ H*a 0,

“Tla otherwise.

(Compare the proof of Theorem 13.10.) Now
(1) If a < Band Ha = a, then HB = a.

Indeed, H*a C H*B, so that, if Ha = a, then A ~ H*a = 0 and so
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A~H*3 =0and HB = a. Also
(2) If o« < B and HB 5~ a, then Ha = HB.

For Hae H*8 and HB e A ~ H*B, so that Ha = HE.

By (2), there is an « such that Ha = a, since otherwise H would be
a one-one function from Ord into A and so Ord would be a set, by 4.11,
contradicting 9.8. Choosing « minimal such that Ha = q, it is clear,
by (2), that H[a is a one-one function mapping « onto 4, as desired.

Counting principle = well-ordering principle Choose «, f such that f is
a one-one function mapping « onto A. Let R = {(a,b) : a,be A and
fla < f~b}. It is easily checked that R is a well-ordering with field A.

Well-ordering principle = Zorn’s lemma We may assume that
Fld R = A. Let S be a well-ordering with field A. By 2.6(¢), choose
d ¢ A. By recursion, there is a function F with domain Ord such that,
for any «,

S-least element of {a : bRae A
Fa = { and b £ a, for every be F*a) if this set 1s nonempty,
d otherwise.

(Again compare this with the proof of 13.10.) Clearly we have
(3) If « < B and FB 5= d, then (Fa)R(FB) and Fa = F§.

From (3) we see, by a familiar argument, that there is an « such that
Fa = d. Choosing such an a minimal, we infer that

(4) {a:bRaeA and b # a, for every b e F*a} = 0.

From (3), however, we see that F*« is simply ordered by B. Hence, by
the hypothesis of Zorn's lemma, choose an R-upper bound ae A of F*a.
Then a is an R-maximal element of A. For, if aRb and a 5 b, we would
have cRb and ¢ ¢ b, for every ¢ € F*a, since cRa for every such ¢, and this
would contradiet (4).

Zorn’s lemma = maximality principle Obvious.

Maximality principle = Kuratowski’s principle Let A = {7 : T is a
simple ordering and S € T C R}. Every subset B of A simply ordered
by inclusion has an C-upper bound in 4, namely, UB. Hence, by the
maximality principle, let T be an C-maximal element of A. Obviously
T satisfies the conclusion of Kuratowski’s principle.

Kuratowski’s principle = trichotomy principle Let B = {(f,g) : f and
g are one-one functions, Dmn f C Dmn g C A, Rng f C Rng ¢ C B, and
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f € g}. Clearly Ris apartial ordering. By Kuratowski’s principle, with
S = 0, let T be an C-maximal simple ordering such that 7 C R. By
Theorem 8.9(%), U Fld Te FIdR. Letf= U FIdT. If Dmnf s A and
Rng f % B, choose ae A ~ Dmn f and be B~ Rng f, and let ¢ = f\U
{(a,b)}. Clearly, then, fRg and f=g. Let T =TWU {(hyg) : he
Fld T} U {(g,9)}. Then T"is asimple ordering, and T C 7" C R, a con-
tradiction. Therefore Dmnf = A or Rngf = B. In the first case, fis a
one-one mapping from A into B. In the second case, f~! is a one-one
mapping from B into A.

Trichotomy principle = mapping principle By the trichotomy principle
suppose, by symmetry, that thereis a one-one function f mapping 4 into B.
Choose ae A. Let ¢ = f~1\U {(b,a) : be B ~ Rng f}. Clearly g maps
B onto A.

Mapping principle = axiom of choice Let M = {R : Ris a well-ordering
with field € SUA}. Then M is a set, since M C S(S UAXS UA).
For each R € M, let FR be the unique « such that R is isomorphic to
{(8,7) : 8 < v < a}, and let GR be the unique isomorphism from the
latter set onto B. FR and GR exist by Theorem 13.10. LetI' = Rng F.
Thus T is a set. Furthermore

(6) T = {a: there is a one-one function f mapping « into S U4 }.

Indeed, if @ ¢ T, say a« = FR, then GR is a one-one function mapping «
into S UA. On the other hand, if f is a one-one function mapping « into
SUA, let R = {(fB,fy) :B<v<al;thenRe M, FR = «, and GR =],
so that a e . This establishes (5). Let8 = UT -+ 1. Then thereis no
one-one function mapping 8 into S JA; otherwise, by (5), 8 ¢ ' and hence
g C Ur, 8 < UT < B, a contradiction. Thus, indeed,

(6) There is no one-one function mapping 8 into S UJA.
Furthermore
(7) There 1s no function mapping UA onto 8.

Indeed, if f maps UA onto 8, then {(f~1*{a} : « < B) maps § one-one into

S UA, contradicting (6). Therefore (7) holds. We now apply the map-

ping principle to infer from (7) that there is a function ¢ mapping 8 onto

UA. Let & be the function with domain A such that hz = g(Ng~'* z)

for each x ¢ A. It is easily checked that A is a choice function for A.
This completes the proof of Theorem 16.2.

In connection with the multiplicative principle one should note the
following theorem, which is easily established by induction on m, without
using the axiom of choice.
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Theorem 16.3 For every m, ¢f A s a function with domain m and A; = 0
for every ¢ < m, then P,-em A; # 0.

Thus a choice can always be made from finitely many nonempty sets
without using a principle equivalent to the axiom of choice.

Remark 16.4 Many equivalents of the axiom of choice are known; for a
comprehensive account see Rubin, Rubin 1963. Our derivation of Zorn’s
lemma from the well-ordering principle is, we think, quite simple and
natural. Most authors use a much more complicated proof that does not
rely on ordinals but really contains, as a consequence of this, many of the
steps in the proof of the recursion theorem. See, for example, Halmos
1960, pp. 62 to 65.

It is appropriate here to repeat the fact mentioned in Remark 1.37,
that the axiom of choice is known to be independent of the other axioms
of set theory; see Cohen 1963 to 1964.

EXERCISES

16.5 Give as direct a proof as possible for the following implications:
(@) Axiom of choice = trichotomy principle.
(b) Zorn’s lemma = axiom of choice.
(¢) Zorn’s lemma => well-ordering principle.
16.6 Show that each of the following statements is equivalent to the
axiom of choice (without using the relational axiom of choice).
(a) If A is a set and R eV is a relation, then there is a maximal
B C 4 such that BXB C R.
(b) If A is a set, then there is a maximal B € A such that for all
z,yeB, x Ny =0o0rzx =y.
(c) If A is a set, then there is a maximal B € A4 such that for all
z,ye B, x My = 0.

17 APPLICATIONS OF THE AXIOM OF CHOICE

The axiom of choice is applied in many situations in mathematies, and
many of these applications are essential, in that the other axioms do not
suffice to obtain the desired result. In this section we will illustrate such
applications, restricting ourselves to a few cases in which it is possible to
introduce the necessary mathematical notions rapidly. The applications
we give are illustrative only, and will not be used in succeeding sections.
However, in Chap. 4 the axiom of choice will be applied several timesin an
essential way. For those with a broad background the following list of
results for which the axiom of choice is needed may be of interest:
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There 1s a set of real numbers that is not Lebesgue-measurable.
A product of compact topological spaces is compact.

Any vector space has a basis.

A countable union of countable sets is countable.

The Hahn-Banach extension theorem for linear functionals.

A divisible subgroup of an Abelian group is a direct summand.
In every ring with identity there is a maximal ideal.

Every Boolean algebra 1s isomorphic to a field of sets.

The completeness theorem for first~order logic.

The Banach-Tarski paradox.

11 Every partial ordering can be extended to a simple ordering.

W oo N O U N
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Among the applications we give in this section are items 3 and 7. Item
11 is given as an exercise.
We begin with some simple applications in set theory itself.

Theorem 17.1 (Principle of dependent chotce) Let R be a relation with
field A, A € V and suppose that for every a e A there is a b e A such that aRb.
Further, suppose that age A. Then there is a function f with domain w such
that fo = ag and (fm)Rf(m -+ 1) for every m e w.

Proof Let g be a choice function for SA ~ {0}. By recursion, there is a
function f with domain w such that fo = agand f(m 4 1) = g{y : (fm)Ry}
for every m. Obviously f is the desired function.

Theorem 17.2 If A s a funciion with domain w and A; C A, for every <,
then there is a one-one function f mapping w into U<, A: such that Rngf 9; A;
for every ¢ < w.

Proof Let g be a choice function for S(Uic, 4:) ~ {0}. Foreach: < w
let f; = g(A:31 ~ A.). Clearly f is the desired function.

Theorem 17.3 For any partial ordering R e V there exist S, T satisfying

the following conditions.

(z)’. R=8S8VYT, SNT =IFldR, and S and T are partial orderings
each with field = Fld R.

(12) There s no function f mapping w tnto Fid S such that Vmn(m < n=
(fm)S(fn) A fm 5 fn).

(227) There ts no function g mapping w into Fld T such that Vm,n(m < n =
(fr)T(fm) A fm 5 fn).

Proof Let U be a well-ordering with Fld U = Fld R. Define S =
{(z,y) : zRy and yUz} and T = {(z,y) : zRy and zUy}. The desired
properties are now easily checked.
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Theorem 17.4 If R e V s a transitive relation that is reflexive on ts field,
then there is a partial ordering S & R such that for every x ¢ Fld R there is a
yeFld S such that xRy and yRx and S are tsomorphic to the relatton < of
Theorem 8.5.

Proof Let T = {(x,y) : xRy and yRx}. Itiseasily checked that T'is an
equivalence relation with field Fid R. Let P = FId R,/T. Thus Pisa
partition; by Zermelo’s axiom, choose A C Fld R such that A M M has
exactly one element for every M eP. Let S=RMN (AXA). The
desired properties of S are easily checked.

We now turn to the two algebraic theorems 3 and 7. We will
introduce only enough of the notions involved to prove these results
conveniently.

Definition 17.5 A ring with identity s a siz-termed sequence A = (A, -,
—,0,1) such that A eV, A 5= 0 (here 0 denotes the empty set, but not else-
where in this definition), + and - map A XA into A, — maps A inio A,
0,1 ¢ A, and the following conditions hold for all ab,ce A.

(z7) o4+ b+c)=(a+b) +ec

(#7) a-+b=>b+ a.

(122) a + 0 = a.

() a4+ —a=0.

(v) a(bc) = (ad)ec.

(vt) a +¢c)=adb+ ac.

(viz) (b 4+ c)-a=ba-+ ca.

(vitz) a'l = 1'a = a.

In Definition 17.5 we use standard notation, which conflicts with our set-
theoretical notation. Thus, in 17.5, 1 is used for an element that is not,
in general, the integer 1, and 0 is used in two different senses. — 1s used
differently from its previous use for the predecessor of an ordinal, and +
and - do not mean the operations on cardinal numbers which will be
introduced in Chap. 4. We believe this “abuse of notation’ will not lead
to any confusion.

Lemma 17.6 If U is a ring with dentity, with notation as in Definitron
17.5, then b0 = 0:b = 0 for any be A.
Proof We have
b0 4 b0 = b0+ 0) = b0.
Hence

b0 = b0+ 0= b0+ (b0 + —(b0))
= (b0 4 b:0) + — (b0) = b0 + — (b:0) = 0.
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This establishes part of our assertion, and the other part is similarly
proved.

Definition 17.7 Let ¥ be a ring with tdentity, with notation as tn Definition
17.5. By an ideal in A we mean a nonempty subset I of A satisfying the
following two conditions.

() For all a,b el we also have a + —be l.

(iz) Forallael and be A we have a-bel and b-ae .

The ideal I ¢s said to be a maximal ideal +f I = A and there 1s no ideal J
such that I C J C A.

Theorem 17.8 In any ring with tdentity having at least two elements there
18 a mazrimal tdeal.

Proof Let @ = {I : I'isanidealin A and I ¢ A}. Now
1) {0} ea.

For clearly {0} ¢ 0. Since 0 + —0 = 0, 17.7(¢) holds. Lemma 17.6
assures us that 17.7(77) holds. Thus {0} is an ideal. By the hypothesis
that A has at least two elements, {0} ¢ A. Thus, indeed, (1) holds.

Suppose ® is a subset of @ simply ordered by inclusion. If ® = 0,
then, by (1), {0} is an C-upper bound of @ in @. Assume that & = 0.
Then, we claim, U® is an C-upper bound of ® in @. Obviously I € U®
for every I e®, so that it is simply a matter of showing that U® € Q.
Since ® = 0, choose I e®; since I 5% 0, by 17.7, choose aelI. Then
a e U®, so that UB ¢ 0. Now suppose that a,b e UB. Then there exist
J,Ke® with aeJ and be K. Since ® is simply ordered by inclusion,
we may by symmetry suppose that J € K. Thus a,b e K. By 17.7(z)
for K, a + —beK. Hence a + —beU®, and this shows that 17.7(7)
holds for U®. Next, suppose that ae UB and be A. Say aeJ e ®.
Then abeJ and b-aed, so that abe UB and bae UB, so 17.7(i2)
holds for UB. Thus U®is anidealin . Suppose that U = 4. Then
le UB; say 1eJ e®. For any ae A we then have a = a1 €J, so that
J = A. Thus J ¢@; but this contradicts Je® € @. This proves,
finally, that U® is an C-upper bound of ® in @. The hypotheses of the
maximality principle are now met, so that we conclude that @ has an
C-maximal element J. Clearly J is a maximal ideal in 9.

Definition 17.9 Let A be a ring with tdentity, using the notation of Defini-
tion 17.56. W isafield if A has at least two elements, a-b = b-aforall a,be A,
and for every a € A with a 5= 0 there 1s a b e A such that a-b = 1.

Let A be a field. A vector space over U is a five-termed sequence
B = (B,+',7,—',0") such that BeV, B 5 0, +' 7s a mapping of BXB
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into B, < is a mapping of AXB into B, —' maps B into B, 0’ ¢ B, and the
following conditions hold for any a,b e A and z,y,z ¢ B.

) z+ Y+ =@+ Y+ 2

(ir) z4+'y=y+"=

(t3) = +'0 = .

() z+" ="z =0.

) (a+b)'r=a’z+ bz

() a'(z+'y) =a'z 4+ a'y.

(viz) 1z = z.

(vei?) (ab)'z = a’'(b'x).

Lemma 17.10 Let U be a field, and B a vector space over U, using the nota-
tion of Definttions 17.5 and 17.9. Then for any elements a,be A and x ¢ B
we have
(z) —ab= —(ab).
(1) —a'z = —'(a'x).
(z17) 0’z = 0.
(w) a’0 =10".
Proof (¢) We have, using Lemma 17.6,
ab+ —ab=(a+ —a)yb=0>b=0.
Hence

—ab=—ab+4+0= —ab+ (ab+ —(ab))
= (—ab+abd) + —(ad) = (ab + —ab) + —(ab)
=04+ —(ab) = —(ab) +0 = —(ab).

Thus () holds. (222) and () are established analogously to the proof of
17.6, and then (¢%) 1s proved much like (7).

Definition 17.11 Let I and B be as tn Definttions 17.5 and 17.9.
() If mew~1 and z e™B, we define the expression zq, +" - -+ +'
for 1 < m — 1 by recurston.

Tg +I ot +I Lo = To,
xO +/ .. +/ xi-i—l = (xo +I A +I xi) +I xi-i-l .
fori+1<m — 1.

(1z) A subset C of B ts independent if for every m e w ~ 1, every one-one
x e™C, and every a € ™A, the equation

2
a’zo + - -+ A1’ T = 0

tmplies that a; = 0 for every © < m.
(172) A subset C of B is a basis for B if C vs independent and for every y ¢ B
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there exist m e w ~ 1, a one-one x ¢ *C, and a e A such that

Yy =a'zo+" - 4 Gn1'Tmoa.

We will assume without proof some simple properties of the general sum
zo +’ - - - 4’ 2m_1, such as the associative law, and generalizations of
17.9(vz).

Theorem 17.12 Every vector space with at least two elements has a basts.

Proof We assume the notation of Definitions 17.5 and 17.9. Let @ =
{C : C1sanindependent subset of 8}. In order to apply the maximality
principle, suppose that ® is a subset of @ simply ordered by inclusion.
Clearly U® is an C-upper bound for @, so that we simply need to show
that U® € @, i.e., that UB isindependent. To do so, we need the following
statement:

(1) Forany mew ~ 1 and any C e "®, there is an « < m such that
for every 7 < m, C; C C:.

This statement is easily shown by induction on m. Now, to prove that
U® is independent, assume that m ew ~ 1, z is one-one and z ¢ "U®,
aem™A, and

(2) aO‘IxO +I D +I am—l‘lxm—l = Ol-

Then there is a C € "® such that z; € C; for every ¢ < m; indeed, C can be
obtained even without applying the axiom of choice, by appealing to 16.3.
By (1), choose ¢ < m such that for every 7 < m, C; £ C;. Then z e "C,,
and since C; is independent, (2) yields a; = 0 for every 7 < m. Thus,
indeed, U® is independent.

Hence we may apply the maximality principle to obtain an C-
maximal element C of @ To show that C 1s a basis for B, let ¥ be any
element of B; we need to find mew ~ 1, a one-one z e™C, and ae™A4

such that
(3) y = ao‘lxo +I e +I am—l'lxm—l-

If y e C, we may choose m = 1, z = {(0,y)}, and a = {(0,1)}; obviously
(3) then holds. Suppose that y ¢ C. Then C C C\U {y}, so that C'\U {y}
is not independent. Therefore there exist m e w ~ 1, a one-one z € »(C'\UJ
{y}), and a e A such that

(4) aO'IxO +I L +I am—lem—l = OI

and a; £ 0 for a certain j < m. If ye¢Rng z, or if z; = y and a; = 0,
we easily conclude that C is not independent, a contradiction. Hence
there is an ¢ such that z; = y and a; = 0, and without loss of generality
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we may assume that ¢ = m — 1. Choose b such that a,_y'b = 1. Then,
multiplying both sides of (4) by —b,

(—bag)'ze +" + + + +' (=bam)'Tma = 0"
But(_b'am—l)Jxm—l = _(b'am—l).lxm—l = _lem—l = _I(lem—l) = _I:Um—l
= —'y. We easily infer that eitherm = 1l andy = 0’, or m > 1 and

y = (—b‘ao)‘lxo 4+ 4 (—b'am—z)‘lxm_z;

in either case the proof is finished.

EXERCISES

17.13 For every partial ordering R € V there is a simple ordering S such
that R € S and Fld R = Fld S.

17.14 Suppose that A is a set such that for every m there does not exist
a function mapping m onto A. Show that there is a one-one function
mapping « into A.

17.15 Let %A be a ring with identity, with notation as in Definition 17.5.
A subset B of A is a subring of A if B £ 0, a + —b e B whenever a,b e B,
and a'b e B whenever a,b ¢ B. Show that for any subring B of 9 the set
{C : Cis asubring of 4, BN C = {0}} has an C-maximal member.
17.16 If R e V is a simple ordering, then there is a set A C Fld R well-
ordered by R such that for every z € Fld R there 1s a y € A such that zRy.
17.17 (Extending Exercise 17.13). For every partial R eV we have
R =N{S:RCS8, Sis asimple ordering, Fld B = Fld S}.



4
Cardinals

We now begin the most important topic in this book, namely, the theory
of counting. We generalize the usual finite cardinals m to the infinite
case in order to have criteria for comparing the size of any sets (abstracted
from any other aspects). We begin with the basic definitions and sim-
plest properties of cardinals. Then we introduce the usual operations
of cardinal arithmetic. In Sec. 23 we discuss singular and regular cardi-
nals, which play an important role in abstract set theory. Section 24
is devoted to some applications.

18 CARDINALS: BASIC DEFINITIONS

Definition 18.1 (¢) A s equipotent with B <ff there is a one-one function

mapping A onto B.

(17) A is a cardinal number, or stmply a cardinal, if A € Ord and A s not
equipotent with any a e A.

(¢i7) Card = {a : a s a cardinal}.

(w) Lowercase German letters m,n,p,q, . . . are used for cardinals.

129
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Equipotence between sets is clearly an equivalence relation, and in speak-
ing about counting, or about the ‘“‘size” of sets, one wants to identify sets
equivalent under this relation. It is not hard to see that every equiva-
lence class except that of the empty set is actually a proper class. Indeed,
for any set A the relation B, = {(a,z) : £ € A} is clearly equipotent with
A, for any a. Thus for A # 0 (B, : a € Ord) maps Ord one-one into the
equivalence class of A, and so, by Theorem 4.11, that equivalence class
is a proper class. Thus equivalence classes under equipotence are not
suttable for the above identifying process since we cannot combine them
into bigger collections (compare with the discussion following 8.10). So
we pick one representative from each equivalence class under equipotence,
and use these representatives to describe the size of sets. The represen-
tatives are the cardinal numbers, and the intuitive facts just mentioned
are formally the following statements: (1) distinct cardinal numbers are
nonequipotent (18.2); (2) every set is equipotent with some cardinal
(18.3).
Immediately from 18.1 we obtain the following.

Theorem 18.2 If m £ n, then m and n are not equipoteid.

Theorem 18.3 For any set A there is a unique cardinal m such that m and
A are equipotent.

Proof By the counting principle, there is an ordinal o equipotent with
A. The least such «a is clearly a cardinal, m. The uniqueness of m
follows from 18.2.

Clearly Theorem 18.3 is actually equivalent to the counting principle
and hence to the axiom of choice. It is also possible to get around the
difficulty mentioned prior to 18.2—that equipotence equivalence classes
are proper classes—without using the axiom of choice, by applying the
method described in Sec. 15, which we will refer to as Scott’'s definttion
(see Montague, Scott, Tarski 1956). This means, of course, giving a
different definition of cardinal. The theorems of this chapter that depend
on 18.3, including those formulated using the following Definition 18.4,
depend upon the axiom of choice. Many theorems in this chapter would
not depend upon the axiom of choice using Scott’s definition. For impor-
tant theorems we will indicate its dependence or not on the axiom of
choice under Scott’s definition.

Theorem 18.3 justifies the following important definition.

Definition 18.4 For any set A, let |[A| be the unique m equipotent with A.
|A| is called the power, or cardinality, or number of elements of A.
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Alternative notations for |A| are 4 and #(A4). |A|is a uniquely deter-
mined representative of A under the equipotence equivalence relation.
As such, |A| has properties analogous to the properties of equivalence
classes given in 7.4:

Theorem 18.5 (2) x s equipotent with y iff x| = |y|.

(i7) If z and y are both equipotent with z, then  and y are equipotent, and
ol = Iyl

(112) x s equipotent with |z|.

(w) If x is equipotent with |y|, then x is equipotent with y.

Since cardinals are defined as special kinds of ordinals, it is also useful to
state some general properties of |af.

Theorem 18.6 (7) |a| < o

(47) If a and A are equipotent, then [A| < a.
(117) « s a cardinal iff |a| = a.

(w) If w < a, then |a + 1| = |af.

Proof Only (w) is nontrivial. Assuming that o < «, the function
(i+1:17ew) U [INa~ @)U {(a,0)} clearly is one-one and maps a 4 1
onto a.

We now give two important theorems comparing the size of sets.
These theorems will be used very frequently in what follows, frequently
without citation.

Theorem 18.7 If A C B eV, then |A| < |B|.

Proof Let m = |B], and let f be a one-one function mapping B onto m.
Let R = {(a,8) : « < B < mand a,8€ef*A}. Then R is a well-ordering.
By 13.10, there exist « and g such that g is a one-one function mapping «
onto Fld R and for all B,y e a, 8 < v iff (g8)R(g9v). Now g is a strictly
increasing a-termed sequence of ordinals, and Rngg = FIdR = f*A C m,
so that, by Theorem 12.3, « < m. But f~log is a one-one function map-
ping a onto A4; i.e., « and A are equipotent. By 18.6(47), [4] € a < m,
as desired.

Theorem 18.8 The following three conditions are equivalent for any sets
A, B.

@ |4l < [B.

(17) There is a one-one function mapping A into B.

(iit) A = 0, or there is a functzon mapping B onto A.
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Proof (2) = (11). If f1s a one-one mapping of A onto |[A| and g is a
one-one mapping of |B| onto B, then gof is a one-one mapping of 4 into B.

(17) = (117). Assume that A4 ¢ 0. Let f be a one-one mapping
of Ainto B. LetaeA, andletg =f'\U{(a:beB ~Rngf). Theng
is a function mapping B onto A.

(127) = (v). Assume that A 0. Let f map B onto A. By
Theorem 4.14(7), let ¢ map A into B with fog = IfA. Then g is one-one.
Therefore |[A| = |g*A| < |B|, using 18.5 and 18.7.

Corollary 18.9 (Cantor-Bernstein theorem) If A and B are sets such that
A 18 equipotent with a subset of B and B is equipotent with a subset of A,
then A and B are equipotent.

Corollary 18.9 follows immediately from the equivalence of 18.8(7) and
(12) (recall that < is a simple ordering). However, a direct proof of 18.9
not involving the axiom of choice (as this one does, if traced backwards)
is instructive because of the methods involved in the proof. Letg map A
one-one into B, and let A map B one-oneinto A. LetR = {(X,Y) : X C
Y A}. For any X CT A4 let FX = A~ h*(B~g¢*X). Then for
any X,Y € SA,

X CV=¢*X Cg*Y = B ~g*¥ C B~ g*X
= h*(B ~ g*Y) C h*(B ~ ¢*X) = FX C FY.

Thus all the hypotheses of Theorem 8.7 are met, and we conclude that
FX = X for some XeSA. Now A ~X =4 ~FX = h*(B ~ g*X).
Thus A '[(A ~X) maps A ~ X onto B~ g*X. Also, g[X maps X
onto ¢g*X. By Theorem 4.6 g[X \U h~{(A ~ X) is a one-one function
mapping 4 onto B.

We have not yet exhibited even one cardinal. In the remainder
of this section we will show that many ordinals are cardinals. In fact,
Card is a proper class.

Theorem 18.10 w C Card.

Proof We prove Vm(m e Card) by induction on m. The case m = 0
follows by a vacuous implication—see 18.1(7z). Now assume that
m e Card. If m 4 1is not a cardinal, then there is an n < m -+ 1 such
that n is equipotent with m 4 1; that is, there is a one-one function f
mapping m + 1 onto n. Obviously n 2 0. Let g be the permutation
of nsuch that gfm = n — landg(n — 1) = fm,and gz = iif i = n — 1,fm
(thus ¢ = I'n if fm = n — 1). [Recall from 4.9(v) that a permutation
of A is a one-one map of A onto itself.] Then gof is a one-one map of
m + 1 onto n such that gfm = n — 1, so that (gef)[m is a one-one map
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of m onto n — 1. By the induction assumption, m = n — 1. Hence
m + 1= (n—1) 4+ 1 = n, a contradiction. This completes the proof.

Theorem 18.11 w e Card.

Proof By 18.6(1), |w| < w. For any m e w we have m & w, and hence
m = |m| < ||, by 18.10 and 18.7. Hence |w| = w, so that wis a cardinal.

Theorem 18.12 For any set A, |A| < |SA].

Proof The function {{a} : ae¢ A) is a one-one map from A into SA, so
that, by 18.8, [4] < [SA|. Equality is impossible because of Theorem 6.8.

Corollary 18.13 For any o there vs an m such that a < m,

Corollary 18.13 indicates that there are many cardinals. To formulate
this fact more precisely, we need one more result.

Theorem 18.14 If I <s a set of cardinals, then UT is a cardinal.

Proof Suppose, on the contrary, that |Ul'| < UT [compare with 18.6(417)].
Thus |UT| eneT for some n. But thenn € UT, and son = [n| < |UT,
a contradiction.

Definition 18.15 () For any ordinal a, ot s the least cardinal > «a.
(21) T he function X s defined by transfinite recurston:

No = w.

Noj1 = X+

X, = Uﬂ<7Nﬂ if v = Uy = 0.

Theorem 18.16 N s a normal function and maps Ord onto Card ~ w.
Hence Card s a proper class.

Proof N is clearly a normal function and maps Ord into Card ~ w.
Let meCard ~ w. By Theorem 12.2, m < X,, < X,,. Let « be the
least ordinal such that m < NX,. Clearly « is not a limit ordinal and
a # 0. Thus a = g8 for some B. Then, by the minimality of «,
Ns < m < Rgs. Then 18.15(z) gives m = N, so that me Rng X.  Thus
X maps onto Card ~ w, as desired.

We will state informally some easy consequences of 18.15. Thus
m<niff m*<n,and m <t iff m <n. By 18.12, m* < [Sm|; the
possibility of equality here is a conjecture, the generalized continuum
hypothests, which is discussed further in Sec. 22. Since X is a normal
function, by 13.9 it has fixed points; these are ordinals « such that
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NX. = a (and such an « is actually a cardinal). Looking at the proof
of 13.9, we see that the first fixed point of N is the least upper bound of
the sequence

R, Ry R - - - -

These cardinals, and indeed all cardinals greater than Ni, say, may seem
too large to be of genuine mathematical importance; but it turns out that
many important mathematical questions, for example, in abstract meas-
ure theory or in the theory of Abelian groups, essentially involve very
large cardinals.

EXERCISES

Prove the following statements.

18.17 For any set 4, |A] < |4 X2].

18.18 If R is an equivalence relation on a set 4, then [A “R| < |A].
18.19 If A and B are sets such that (4| < |B|, then |[SA| < |SB|.

18.20 If Y € X eV and Y is equipotent with Y \U Z, then X is equi-
potent with X \U Z.

18.21 For a given set A, with |[A| > 3, let B = SA ~ {{a} :ae Al.
Then [4]| < [B|.

18.22 |w + m| = w for every m.

18.23 |w ~ m| = w for every m.

18.24 mt = {a: |a] < m} for every m.

18.25 If I' C Ord and T is a proper class such that UA e ' whenever
A C T and A eV, then there is a normal function mapping Ord onto T.

19 FINITE AND INFINITE SETS

In this section we will prove various basic theorems about finite and
infinite sets, although some theorems of great importance about them
will be postponed until later sections.

Definition 19.1 Let A be a set. Then A is finite if |A| < No; infinite if

|A| > N,; denumerable if |A| = Ro; countable if |A] < Ro; and un-
countable +f |[A| > No.

We begin with some easy consequences of this definition.

Theorem 19.2 If A C B, or ¢f there is a function mapping B onto A, then
A 1s finite of B ¢s fintte, and A s countable if B 1s countable.
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Theorem 19.3 (1) « 1s finile iff @ < w.
(17) If m 1s infindte, then m 7s a limit ordinal.

Thus w consists of all finite ordinals, and finite ordinals and finite cardinals
are the same things. With regard to 19.3(:7), we will see later that not
every limit ordinal is a cardinal; by Exercise 21.28, every cardinal is even
an enumber. By 18.6(w), « -+ m is denumerable for every m e w; Sw
is a simple example of an uncountable set, by 18.12.

Theorem 19.4 (1) l{x |
(12) If x #= y, l l

Proof (%) {(O,:v)} is a one-one function mapping 1 onto {z}.
(#7) {(0,x),(1,y)} is a one-one function mapping 2 onto {z,y}.

We now turn to some ‘“deeper’’ facts about finite and infinite sets.

Theorem 19.5 If A is a finite set and B C A, then |B| < |A].

Proof Let m = |A|, and let f be a one-one function mapping A onto m.
Choose be A ~ B. Let g bethepermutation of msuch that gfb =m — 1,
gim — 1) = fb, and g1 =7 if 75 fbm — 1. Thus ¢*f*(4 ~ {b}) C
m — 1, so that (gof)[B is a one-one function mapping B into m — 1 (note
that B € A ~ {b}). Hence, by 188, [B| <|m —1|=m -1 <m =
|A|. This completes the proof.

Theorem 19.5 gives a characteristic property of finite sets, as the
following theorem of Dedekind shows.

Theorem 19.6 A set A s infintte iff A is equipotent with a proper subset
of tself.

Proof < By Theorem 19.5.

= Assume that 4 is infinite; that is, X, < |4]; that is, 0 < [A].
By 18.8, since |w| = w, there is a one-one function f mapping w into A.
Let g = (i +1:4ew) and h = (fogof 1) U I[(A ~ Rng f). It is easily
checked that h is a one-one function mapping A onto its proper subset
A ~ {f0}, as desired.

Theorem 19.6 essentially depends on the axiom of choice, even under
Scott’s definition (compare with the remark following 18.3). Note that
“A infinite” should be redefined as ‘‘there is no one-one correspondence
between A and a natural number m” for a definition of “infinite” not
depending on the axiom of choice.
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The last two theorems of this section give slightly more subtle
results about finite sets; they are frequently useful.

Theorem 19.7 If A and B are finile sets, |A| = |B|, and f maps A into B,
then f maps A onto B iff f 1s one-one.

Proof <= Assume that fis one-one. If f does not map A onto B, then
f*A C B, and so, by 19.5, |A| = |f*4| < |B], a contradiction.

= Let g be a mapping of B into 4 such that fog = It B, by Theorem
4.14(7). Then ¢ is one-one, and hence, by the first part of this proof, ¢
maps B onto A. Thus f = fogeg7! = (IIB)og~! = g7}, so that f is
one-one.

Theorem 19.8 If < s a finite partial ordering, then < s well-founded and
there 18 a <-maximal element. In particular, if < 8 a finite stmple order-
ing, then < 1s a well-ordering and there is a <-greatest element.

Proof Suppose that < is a finite partial ordering and < is not well-
founded. Then there is a nonempty subset A of Fld (<) such that
AN{y:y <z} #=0forevery zeA. ChooseaeA. Letf be a choice
function for SFld (<) ~ {0}. We define a function ¢ mapping w Into
Fld (<) by

g0=a
gm +1) =f{b:bedb < gm}

for any m e w. The above assumption on A implies that {b : b < gm}
is nonempty for each m. By induction on n, it is easily seen that, for
all n and m, if m < n, then gn < gm. Hence ¢ is a one-one mapping
of winto Fld (<), so that {(g(m + 1), gm) : m ew) is a one-one mapping
of w into <. Hence|<| > w, by Theorem 18.8, contradicting the
assumption that < is finite. Thus < is well-founded after all.

The proof that there is a <-maximal element is entirely analogous,
and will be omitted; and the second part of the theorem follows easily
from the first.

Remark 19.9 A very readable discussion of finite sets is Tarski 1924.
Among important facts about finite and infinite sets that we will prove
in later sections are: a finite union of finite sets is finite (20.10); the
pigeon-hole principle (20.11); a countable union of countable sets is
countable (21.15); and a finite cartesian product of finite sets is finite
(21.21).

EXERCISES

Prove the following statements.
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19.10 The following four statements are equivalent:
(a) A is finite.
(b) A belongs to every class K such that 0 e K and B\U {z} e K
whenever B ¢ K and z 1s a set.
(c) Every nonempty set of subsets of A has an ©-minimal element.
(d) Every proper subset of A is finite.
19.11 Let @ 5 0 be a set satisfying the following condition:

VA[A @< VB(B finite A BC A = Beq)].

Then @ has an C-maximal member.
19.12 « is finite iff > M (aXa) is a well-ordering.

20 CARDINAL ADDITION

The first of the arithmetical operations on cardinals, addition, will be
discussed in this section. For ordinals, a binary operation of addition
suffices for most purposes, although an infinitary operation could have
been defined, but for cardinals a general infinitary operation is needed.

Throughout the next three sections I and J are arbitrary sets. By
a system of sets we mean a function whose domain is a set.

Definition 20.1 Let m = (m; : ¢t €I) be a system of cardinals (any function
with range © Card and domain a set). The cardinal sum of m, denoted by
Eia m;, 18 the cardinality of the set

Ui.[ {(i,a) L a em{}.
w2 T 18 denoled by mo + my; n general, Y. m; is denoled by m, +
[N + Mm—1.

Note that m 4 n is, by definition, [{(0,a) : ¢ em} U {(1,a) : a en}|.
In the general case, {(7,a) : @ e m} is the relation whose inverse is the
unique function that maps m onto {7}. For 7,jel,i %7, we have
(1,a) #~ (7,8) for any «a,8; further, (7,a) = (3,8) if a = B.

In the general case, intuitively, we imagine I disjoint copies of the
cardinals m; laid out, and we count the elements in the union. We first
show that not merely the particular way of “disjointing’’ the m/s given
in 20.1 gives the sum, but so does any other way.

Theorem 20.2 If (A;:7€el) and (B:: 1€el) are systems of pairwise dis-
joint sets, such that A: zs equipotent with B: for each v eI, then Ui A: is
equipotent with U;.[ B..

Proof By the multiplicative principle, let fe Pigl {g : g is a one-one
function mapping A: onto B;}. Thus for each 7€ I, f; is a one-one func-
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tion mapping A; onto B;. It follows, from Theorem 5.9, that Ui f: is a
one-one function mapping U: 4: onto Ui B

Corollary 20.3 If |A; = m; for each T el, and if (A: : T el) is a system of
pairwise disjoint sets, then EM m; = | Usr 4:

.

The next theorem is of fundamental importance in cardinal arithmetic.

Theorem 20.4 For any system (A; : 71 e I) of sets,
l Uie[ Ai S E;J lAzl

Proof Let |A;] = m: for each 7¢I, and, using the axiom of choice, let
f: be a one-one function mapping m; onto A; for each 1e 1. Let

g = Ui {((,0),fia) 1 a < my}.

Using Theorem 5.9, it is easily checked that g is a function mapping
Uir {(1,0) : @ < mi} onto Uia Ai. By Definition 20.1 and Theorem
18.8, the inequality of the theorem is immediate.

If we apply Theorem 20.4 to a system (m; : 7€ I) of cardinals, we
obtain the following corollary.

Corollary 20.5 U;;s m; < Eiel m;.

(Recall from Theorem 18.14 that Uiz m: is a cardinal.) We now give
some easy properties of addition.

Theorem 20.6 (i) )., 0 =0.

(”:7’) E[ei m; = E[“‘,m,-;éo M.
(117) Eieo m; = 0.
(w) If 1 & J, then EM m < ) M

(v) If m; < n;for eachiel, then EM m; < EM ..
(v1) Ea<m1 = m.

Proof (1) to (#7) are immediate from the definition of addition. ()
and (v) follow directly from Definition 20.1 and Theorem 18.8. As to
(1), {(a,(a,0)) : aem} is a one-one function mapping n onto Ugcm
{(B,a) : ael}, so that, by 20.1, EKml = m.

We now prove general commutative and associative laws for addi-
tion that will be used in later discussions without citation. The ordinary
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laws m+n=n+m and m + (n4+p) = (m +n) + p easily follow
from 20.7 and 20.8, as do their generalizations to any finite sum. Note
especially that addition of cardinals is commutative, in contrast to ordinal
addition. Thus, in particular, the cardinal sum -+ of cardinals is, in
general, distinct from the ordinal sum - (see the comment prior to Theo-
rem 14.7). For natural numbers the two sums coincide, by Theorem
20.9. Similar comments apply to cardinal multiplication and exponen-
tiation, introduced later.

Theorem 20.7 (General commutative law) Let (n; : 1 e I) be a system of
cardinals, and f a one-one function mapping some set J onto I. Then

Tel m; = jeJ mfi‘

Proof As is easily checked, the desired one-one function mapping
User {(7,8) : B emy,} onto Ui {(7,e) : o et} (see Definition 20.1) is

User {((5:8),(f7,8) : B emy,}.

Theorem 20.8 (General assocrative law) Let m e ¥X7Card. Then

Eie[ ( jeJ mff) = Eie[,jc] UL
Proof For each 7¢I and jeJ let
Ay = {((n)),0) + aemy}.

Then, clearly, for a given v e I, (4:; : j € J) is a system of pairwise disjoint
sets such that [A;| = my for each j € J; consequently, by Corollary 20.3,

(1) ’ U:reJ AiJ

ier Mij for each v e .

Also, (Ujes Aij : 1€I) is a system of pairwise disjoint sets; by (1) and
Corollary 20.3, we obtain
= Eie[ ( jeJ miﬂ')'

(2) ‘ Uie[ UjeJ Aij
But Usr User Ay = Uiajer A5, by Theorem 5.7, and ‘ User,ser A4
Ei.[,,u mg;, by Definition 20.1. Hence the theorem follows from (2).

We now connect our discussion of addition with the earlier material
on natural numbers and finite sets.

Theorem 20.9 m + n=m -+ n

Proof We proceed by induction on n, proving VaVm(m + n = m + n).
For n = 0, we havem + 0 = m, and obviously m + 0 = m [20.6(s%) may
be applied]. Next we takethecasen = 1. Thefunction {(0,7) : 1 em)\J
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{(m,(1,0))} maps m 4 1 one-one onto {(0,2) : 1em} U {(1,0)}. Hence

m _i_l — |m+ 1| by 18.10,
= {(0,2) : sem} U {(1,0)}]

Now we take the general case, assuming inductively that Vm(m + n =
m + n). We have

midgn=m4®mE+1)=m+n +1 byldé®),

=(m+n) 41 by the inductive
assumption,

=(m-+n)+1 by the above,

=m+ (n+1) by 20.8,

=m+ (n+1) by the above,

=m + §n.

This completes the proof.

Note that Theorem 20.9 implies that, for any m, §m =m + 1 =
m + 1 = m7 [recall Definition 18.15(z)].

Theorem 20.10 If A and B are finite, then so s A\J B. More generally,
a finite union of finite sets is finite.

Proof |A\J B| < |A| + |B|, by 20.4, and |A| + |B| < w, by 20.9. It
is easily shown, by induction on |I|, that U.r 4: is finite whenever I is
finite and A is finite for each 1 ¢ 1.

The final theorem of this section is a form of the pigeon-hole prin-
ciple, or the shoe-box principle.

Theorem 20.11 If P is a partition of A, |P| = |A4|, and A is finite, then
|M| = 1 for each M € P.

Proof By the multiplicative axiom, choose f e Puer M. For eachz e A
let gz = f(x R), where R is the equivalence relation with field A asso-
ciated with P (see Theorem 7.6). Now fis a one-one function mapping
P into A, and |P| = |A|. Hence, by Theorem 19.7, f maps P onto A.
Since (xR : x e A) maps 4 onto P, it follows that ¢ maps A onto A.
Hence, again by Theorem 19.7, g is one-one. This implies immediately,
from the definition of g, that [M| = 1 for each M ¢ P.

There are several facts about cardinal addition that we have not
mentioned. For example, m 4+ m = m for any infinite cardinal m.
These facts are more easily proved after the introduction of cardinal
multiplication, so we defer them to the next section. We also save
exercises on addition until then.
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Remark 20.12 For this and the next two sections see especially Bachmann
1967 and Sierpinski 1965.

21 CARDINAL MULTIPLICATION

Definition 21.1 For any system {m, : v e I) of cardinals we let
er[ m; = ' PieI m; |

If I = 2, we write mym; for HM m,.

As for addition m-n is ' Piex pi |, where po = m and p; = n.

Theorem 21.2 If |A,| = |B:| for every i e I, then
[ Pie[ Al = ‘ Piel’ B;

Proof Using the axiom of choice, let f be a function with domain 7 such
that, for each 7¢I, f, is 1tself a one-one function, mapping 4: onto B:.

The desired one-one mapping of P.r A: onto Pie[ B; is then
ho= (fai:iel): xePur 4,

as is easily checked. Note that, for z e Pia Ay, ha is 2 member of Pia B
in fact, for each 7¢I, we then have (hx); = fix: e B..

Corollary 21.3 If (A; : v e I) is any system of sets, then
‘ Pie[ Ai| = Hier |Ai|-

Proof ! Pm Ai! = ‘ Put | 4. ‘ by 21.2,
= [Ls 144 by 21.1.

Theorem 21.4 |AXB| = |4}|B|.

Proof {((a,b),{(a,b)) : ae Abe B} is a one-one function mapping 4 XB
onto P;<2 C;, where Cy = 4 and C; = B. Hence 21.4 follows from 21.3.

Theorem 21.5 (3) If m: = O for some i ¢ I, then [l;y mi = 0.
(1) ieom: = 1.

(221) [Tor mi = Hi,,,ml.#l M.

() Lot =1.

(v) Emm = |I|'m.

(i) If m: < w; for each eI, then iy mi < Il ns.
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Proof (7) Since then Pir m: = 0.

(45) Since Piom; = {0).

(i7i) The funetion (f[{i:iel,mi 1} : fePirm) is a one-one
function mapping PM m; onto Puz,m‘#l ms, and (722) follows.

(wv) Pi 1 has just one element, namely (0 : 7€ I).
(v) Since I Xm = Uia {(5,) : a em}, it follows that

[I|'m = |I Xm]| by 21.4,
= Y.rm by 20.1.
Finally, (v?) is trivial since Pir m: C P. n: under the assumption

of (vi).

Next we give the general commutative, associative, and distributive
laws. Again, the wusual laws mmn = nm, m-(np) = (mn)p, and
m-(n + p) = mn + m-p are easily derived from them.

Theorem 21.6 (General commutative law) If f is a one-one function
mapping J onto I, and 1f (m: : 1¢e1) 1s a system of cardinals, then

HieI m; = H,u My,
Proof The desired function mapping P.r m; onto P,u my; 1s
{z:jed)y ze Pie[ ).

Theorem 21.7 (General associative law) If (my; 1 (v,7) e I XJ) is a system
of cardinals, then

HM (H,'EJ mij) = Hz‘d,je] ;.
Proof By Corollary 21.3, we have
H{J (ng] mf,-) = l PieI (PjeJ mij) ‘,
el geJ My = | Fiel,jes My |-

Hence it suffices to exhibit a one-one function mapping Pig[,je] m;; onto
Pur (P,-EJ m,~,~). Such a function is

{zij 7 ed) : 1eD) : o€ Prarger ).

Theorem 21.8 (General dustributive law) Let (m;; 1 1 el,jeJ) be a system
of cardinals. Then

err EjeJ my = E/«’J Hie[ My, i-
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Proof Using Corollary 21.3, as in the preceding proof, and using Defini-
tion 20.1, we see that we need to exhibit a one-one mapping between the

set P Ujer {(J,@) : aemy} and the set yeor {(f,a) @ ae I1... m; si}.
For any z ¢ P.cr Ujes {(J,a@) : @ e my;} and any 7€ I, there is a unique j e J
such that x; e {(J,a) : « e m;;}. Hence there is a function F that makes
correspond to any such z and 7 the element F.; e J such that z; e { (F.;,a):
a e Myp,.}. Furthermore, using the axiom of choice, there is a function

G such that, foreach fe IJ, Gf is a one-one function mapping PM My onto
Hie[ m;, sq. Now for any re Pu[ UJ'EJ {(],a) lae m,-,-} we let

Hz = ((Fa : 1€ I),(G(Fai ¢ i€ I))(204z; : 1¢ 1))

Recall that 204(a,b) = b for any b (5.14.) Thus for z and 7 as above, 2dx;
is the unique a € m;¢_ such that x; = (Fi,a); hence (22d2; : 1€ I)e P Mig,,.
Thus H maps Pir User ((ia) © @ ems) into Uses {(f,a) : aellia ma ).
To show H maps onto this last set, let f ¢ ZJ and a e Hm M. If we let

y = ((fL,((GN)~')s) = ie D),

it is easily checked that y e Dmn H and Hy = (f,«), as desired. To show
that H is one-one, assume that z,y e Dmn H and x £ y. Then thereis an
lel such that x; £ y,. Say z: = (J,a) with jeJ and aemy;, and that
v = (k,B) with keJ and 8emyu. Thus Fu=jand Fyy = k. If j # k,
then (Fg:1el) = (Fyi:1eI), and it is clear that Hx > Hy. Since
z1 # i, the other possibility is that % 8. Now 224z, = a and 224y, = G,
so that we again infer easily that Hx # Hy. This completes the proof.

Although the general distributive law 21.8 is frequently needed, in
most of its uses the following special case is sufficient.

Theorem 21.9 If (n; : 7 el) is a system of cardinals, then
m'zidni = Eie[ (m-n).

Proof To apply 21.8, we first ignore the trivial case I = 0. Let le[.
Let po = m, and pu = 0 if 7e 1 ~ {I}; and let pi; = n; for every 2 1.
It is then clear, using 20.6(z7), that

(1) H,-éz Eigr by = m'ziel ;.
By Theorem 21.8, we have

(2) HjeZ Zie[ Py = Zml Hiez Dj. 15+

Now, by Theorem 21.5(1), H,'Ez p; ;7 = 0 unless fO = [. Hence, using
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20.6(z1) again,

E/e’rnfez D= E/Jr.fo=z Hiez D
= E‘icl (meg) ;
combined with (1) and (2) this gives the desired result.

We now turn to relatively deeper matters. The following theorem
gives one of the most fundamental properties of infinite cardinals, and it
plays an important role even in routine cardinal-number calculations in
mathematics.

Theorem 21.10 For any infinite cardinal m, m-m = m.

Proof We suppose that the theorem 1s false, and we let m be the least
infinite cardinal such that m-m 2 m. Let < be the set of all pairs
((a,8),(v,8)) such that a,8,v,6 ¢ m and one of the following four conditions
holds:

{1) a=+vyandg = §;

(2) aUB<yUs;

B) alUB=yUdsand a <7;

4) aUB=yUs a=4xvandp <.

We claim that < is a well-ordering with field m Xm. Itis obviousthat <
is reflexive on mXm and antisymmetric. If we assume that (a,8) <
(v,8) < (&%), we easily conclude that (a,8) < (&) in each of these cases,
which exhaust all possibilities:a U B <y U dory U d<e U aUB =
yUs=ceU¢fanda <vyory<galBf=~yUs=cUla=vy=E¢,
and B <8 or 8 <¢; (aB) = (v,8) = (§¢). Thus < is transitive.
Clearly (a,8) < (v,8) or (v,8) < (a,8), for any a, 8, v, 6, and clearly <
has field mXm. It remains to show that a nonempty subset T' of mXm
has a <-least element. Let vy be the least element of {a\U B : (a,8) e T'},d
the least element of {a : (a,8) ¢ T for some 8 with a\U 8 = v}, and ¢
the least element of {8 : (8,8) eT'}. Clearly (5,€) is then the <-least
element of I'. Thus, indeed, < is a well-ordering with field mXm. By
Theorem 13.10, let « be an ordinal and f an isomorphism of {(8,7) : 8 <
v < a} onto <. If a < m, then

mm = |[mXm| by 21 .4,
=|a] <|ml =m=ml<mm  using 21.5,

giving m-m = m, contradicting the initial assumption on m. Hence
o >m. ThusmeDmnf;sayfm = (8,y). Leté = (8\U ) + 1. Note
that 8 < m, since m is a limit ordinal, by Theorem 19.3(z7). Now g\U
v < 8, so that (8,y) < (6,8). Infact, for any € < m we have fe < fm <
(5,8), and fe 5 (3,8); henceiffe = (5,n), weget&,n < ¢ Uy < BU v < .
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Hence ffm is a one-one function mapping m into X §; therefore
m < [8X 8| = |8]]9] by 21 .4.

But § < m, so that |8 < m, and so, by the choice of m, either § < w and
8 =8|, |8]'|8] < @ £ m, which contradicts the above, or w < § and
|8]-]8] = |8] < m since & < m, which is again a contradiction. These
contradictions show that the initial assumption was untenable, so that
the proof is completed.

Note that the axiom of choice is not involved in the proof of 21.10.
Introducing <, as in the proof, it is easily seen that < is a well-ordering
of mXm that is isomorphic to {(a,8) : a < g < m}—compare with
Exercise 21.31 also.

Many useful corollaries follow at once from Theorem 21.10. They
are used in the subsequent work without special citation. They show
that addition and multiplication of two cardinals are essentially trivial
operations when infinite cardinals are involved.

Corollary 21.11 Ifm > worn > w, then m + n = m \U n; of in additron
ms 0 n, then mn = m\Jn. In particular, for m > « we have m +
m=m=mm. Forany a, 8 we have X, + Ng = Ros = No'Np.

Proof TFirst assume that m > worn > w; say, by symmetry, m > w and
m > n. Then

m+n<<m+m=m2 by 21.5(v),
<mm=m by 21.10,
< m -+ n.

Thus m +n = m = m\U n (the maximum of m and n). Now assume
that m ¢ 0 £ n (and still that « < m > n). Then

by 21.10,

so that mn = m = m\U n also. The final equations of the corollary
follow from the first part of the corollary, by observing that X, \J X, =
Neus-

Corollary 21.12 Let m be an infinite cardinal and (A; : 1 e I) a system of
sets with |As < m for each eI and |I| < m. Then | Uig 4:| < m also.

Proof We have
I UieI Ai

Yt | A4l by 20.4,

<
< Zie[ m = |I|'m by 21.5(v),
<mm=m by 21.10.
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To formulate the next corollary of Theorem 21.10 conveniently, we
need the following.

Definition 21.13 A cardinal m is said to be regular +f, for all T < m, of
IT| < mthen UT < m. If m is not regular, it is said to be singular.

Corollary 21.14 w 15 regular, and for any infinite cardinal m, m+ 1s regular.

Proof Assume that T € w and |[T| < w. Then, by Theorem 19.8, T has
a greatest element m. It is clear that UT = m, so that UT ew. There-
fore, wisregular. Now suppose that mis aninfinite cardinal, and suppose
that T € mt with |[T'| < mt; that is, [T| < m. For each a ¢ I" we have
a < m* and hence || < m*; that is, |a] < m. Therefore, by Corollary
21.12, \ User @ l < m. Since Ugr a = UT is an ordinal, it follows that
UT < m*, as desired.

An example of a singular cardinal is N, since X, = Unew NXa and
w < N,. In fact, by Corollary 21.14, X, is the first infinite singular
cardinal.

As a special case of 21.12 we have the following important corollary.

Corollary 21.15 A countable union of countable sets 1s countable.

Next we want to give an equivalent definition of a cardinal’s being regular.
The equivalence depends upon a lemma.

Lemma 21.16 If (m, : a e n) s a system of infinite cardinals such that for
all a, 8, a < B < n implies that m, < Mg, then

MU acn Ma = D Mer
If actually m, < mgz whenever a < 8 < 1, then 1'U,eq Ma = Ugen Ma.

Proof We have

MU e Ma < n-EKn m, by 20.5,
<1Yecn (Uucama) by 20.6(v),
= 11U pen Ma by 21.5(v),
= ﬂ'U,_,<n Mg.

Here the last equality follows immediately if n is infinite, or if n = 0; if
0 <1 < w, then *U,ep My = U my since U,y m, is infinite, so that
the equality again follows. Now

= aenl by 21.5(v),
< DacaMa by 20.6(0);
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together with the above calculation this easily yields n-lU,., m, =

Zu<n m, If actually m, < m, whenever o < 8 < n, then mis a strictly
increasing function; by 12.2, @ < m, for each o < n, andson < U, m,
and n < Ugcp M. This gives 1-Uyen Me = Ugen Ma

Corollary 21.17 If (A, : a en) is a system of infinite sets such that, for all
a, B, a < B < nimplies that A, © Ag, then

| Uscn A | = 0 U acn [4a] = Dacn |4a]-
If in addition |Ad| < |As| whenever o < g <, then |UucqAs
Uaz<n |Aa| = l U'-7!<“ A"" l

Proof The equality n'lUqc, [4e] = E,Kn |A4| 1s immediate from 21.16.

Since for any aen we have 4, C Uscn Aa we get |4, < \ Uscn 44 ',
and so

(1) Ua<n |Aa| _<_ ‘ Uaz<n Aa .

AlS0, | Uscn A | < Y acn |4ul, by Theorem 20.4, so that

n'za<n |Aa|
N Uacn |4l
n Ua<n |Aa|

TI'I Ua<nAa| by (1),

n l Uscn 4a ‘

A

IA

so that n-‘ Uscn Aa| = m'Upcn |[Aal, as desired. Under the additional
assumptions, 'Uacn |[4al = Uacn |4al, by 21.16, and

Ua<ﬂ |Aa| —<— \ Ua<n Aa

Zaz<n |A'1|
N-Uacn |44l
= Ua<u |Aa|)

and the proof is complete.

by (1)

VAN

Now the equivalent definition of regular cardinal is given by the
following theorem.

Theorem 21.18 For m infintte, m is regular iff for every system (n; : 1 ¢I)
of cardinals with n; < m for each ve I and |I| < m we have EM n; < m.

Proof = Suppose the conclusion fails; let I be a set of minimum cardi-
nality for which there is a system (n; : 7 ¢ I) of cardinals such that n; < m

foreachiel,|I| < m,and st > m. Clearly Iisinfinite. Let|I| = p,
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and let ¥ be a one-one mapping of p onto I. For each a < p, let q, =

Eﬂsa f,g; since a + 1 < p = |I|, it follows, by the choice of I, that
g < m for every a < p. IFurthermore, q. < qs whenever a < g8 < p.

Hence, by 21.16, an G = P"Upep Gar But g, < m for each o < p, and
p = |I| < m, so that, by the regularity of m, U,<p q. < m. It easily

follows that p-Ua<p g2 < m, so that Ea<p e < m. But clearly n,, < q,
for every a < p, so that

Eie[ n = Ea<p Nya
S Ea<p Qo < m,

a contradiction of the assumption on 7.
< Assume that ' € m and || < m. Then

lUr| < Saerlaf <m,

so that we must have U’ < m, since UT" is an ordinal.

We will discuss regular and singular cardinals in more detail in
Sec. 23.

The next theorem gives an important tool in more advanced cardinal
arithmetic.

Theorem 21.19 (Zermelo’s tnequality) If m; < n; for all 7 eI, then
Eie[ m; < [l e,

Proof First we want to prove the nonstrict inequality <. By the

multiplicative principle, choose fe Pi (n: ~m;). We define a function
g with domain U.a {(7,a) : @ e m;} and range C Prer ne by setting, for
1el, aem;, andjel,

fi g

a if 7 = 1.

w@wb={

We claim that ¢ is one-one. Suppose that g(z,a) = ¢(7,8), with 7,j e I,
aem; and Bem;. If ¢ # j, then [g(7,0)]; = f; ¢ m;, and [g(4,8)]; = B e m;,
a contradiction. Hence © = j. Therefore, a = [g(z,)]: = [g(z,8)): = B.
This proves that g is one-one. Hence the inequality < follows.
Keeping the preceding notation, suppose also, to get a contradiction,
that ZM m; = [[., n. Then there is a one-one function h mapping

U;J {(1,a) Iae m;} onto PieI . Let
k= {(hx)::ze{(@,a) :aem):tel).

Thus k is a function with domain I such that k: maps {(7,a) : a e m;}
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into n; for each e . Since |{(7,0) : @ e m:}| = n; < 1y, also [kF{(5,a) :
a e m;i}| < n;, and so kF{(4,a) : @ e m;} £ n.. Therefore, again using the
multiplicative principle, there is a function ! with domain I such that
Len;~kX{(i,a) : aem;} for every ¢ I. Since, thus, le P n;, and A
maps onto Per n;, there exist 7¢I and « e m; such that A(z,a) = I. But
then

lt' = [h(l;a)]i = ki(i5a) € k:k{(l)ﬁ) : B € mf})

contradicting the choice of I.  This completes the proof.
We conclude the section with an easy pair of theorems on finite sets.

Theorem 21.20 men = m-n.

Proof We proceed by induction on n. me0 = 0, and m-0 = 0, so that
the case n = 0 works. Now assume that men = ni'n. Then

MeSN = Men —}— m

=mn+m by the induction assumption, and 20.9,
=m(n+ 1) by 2138,
= m-§n by 20.9.

Corollary 21.21 A finite product of finite cardinals 1s finite. If A; 1s
fintte for each © e I, and I 1s finite, then Per A:4s finate.

EXERCISES

21.22 If m is an infinite cardinal, |A] = m, and 0 < n < m, show that
there is a partition @ of 4 into n pairwise disjoint sets, each of power m.
21.23 Prove that, for any a, Eﬂ<a Ns = X..

21.24 Give an example of a system (A::7el) of distinct infinite sets
for which equality fails in Theorem 20.4. Can this be done for 7 finite?
21.25 Show that |« + 8| = |a| + |8|.

21.26 Show that (e8| = |al'|8]-

21.27 Show that, if « > 1 and 8 2 w, then |« = |a| U |B].

21.28 If mis an infinite cardinal, prove that misan e-number (seeSec.15).
21.23 Show that, if mi < > 1 for every 7el, then Y. m: < [, ne
21.30 Give a direct proof of 21.9, not depending on 21.8.

21.31 Show that for any infinite cardinal m there is a function ¢ mapping
mXm into m such that for all aem, (1) ¢(a,0) = a; (2) VB < mVy <
mle(B,y) = a=6 < «a]; 3) {(B,y) : d(8,v) = «} is finite. Hint: Ana-
lyze and modify the proof of 21.10.
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22 CARDINAL EXPONENTIATION

We finish our exposition of the fundamentals of set theory with a dis-
cussion of the third common operation on cardinals, exponentiation.

Definition 22.1 m" = |"m|.

Thus the cardinal m" is, by definition, the power of "m, the set of all
functions mapping n into m. We first give a pair of theorems that expand
this definition.

Theorem 22.2 |/I| = |I|V.

Proof TFor brevity let [I| = m, |J| = n. Thus |[I|V! = |*m|. Thus it
suffices to show that /I and "m are equipotent. Let f be a one-one funec-
tion mapping m onto I, and let ¢ be a one-one function mapping n onto J.
As is easily checked, the following function is one-one and maps "monto 77 :

(foxog™! : x e "m).
Corollary 22.3 If |I| = |K| and |J| = |L|, then |VI| = |EK]|.
Quite trivial properties of exponentiation are given in the following.

Theorem 22.4 (i) m® = 1.
(77) m! = m.

(77) If m # 0, then O™ = 0.
(w) 1™ = 1.

@ [, m = ml.

Proof (i) is clear, since °4 = {0} for any set A. Thefunction ({(0,a)} :
a e m) is one-one and maps m onto 'm, and this establishes (7). (747) is
clear, since 40 = 0 if A is any nonempty set. () follows from the fact
that (0 : a e m) is the only member of ™1, for any m. To establish (v),

we must exhibit a one-one function mapping P.: m onto Im, by Theorem
22.2; but actually PM m = 'm, so that I[(PM m) is the desired function.

Theorem 22.5 If (n;:7el)1s a system of cardinals, then

(1/) mz-iefnf — Hiér mn'..

(v2) (HieI n")m = [L, ™

Proof (1) By Theorem 22.2, Corollary 21.3, and Definition 20.1, it suf-

fices to find a one-one function mapping 4m onto P “m, where 4 =
Uier {(4,0) T @ en:}.  As is easily checked, the following function works:

{({(f(t,a) :aeny s Tely: fedtm).
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(77) It suffices to find a one-one function mapping '"(Pm nf) onto
Pir ™1 The following function is as desired:

<<<f"‘l taemyitel):fe m(PieI ﬂi)>.
Theorem 22.6 (m")® = m"™".

Proof By Definition 22.1, Theorem 22.2, and Theorem 21.4, it is enough
to find a one-one function mapping *("m) onto ®*™m; and such a function
18

((fa(B) * (a,B) epXn) : fe®("m)).

Theorem 22.7 Ifm < p = 0 and n < q, then m" < pi.

Proof For any fe"m, let ft = f\U (0 : aeq~mn). Thus fte%, and if
f,g € "m with f £ g, then f* = g*. Hence (ft : fe"m) is a one-one func-
tion mapping "m into %. Therefore, by Theorem 18.8, |"m| < ||, and
we infer, by Definition 22.1, that m" < p°.

The hypothesis that p 5 0 is essential in 22.7, since 0° = 1, and
0' = 0. However, itis only the casein whichm = n = p = 0andq = 0
that the implication (im < p A n < g= m" < p% breaks down. But this
implication is of little interest when p = 0, anyway.

Theorem 22.8 N.™ = N, for m = 0.
Proof By induction on m, using 21.10.

Theorem 22.9 For any set A, |SA| = 2/4l,

Proof It is enough to exhibit a one-one correspondence between SA
and 42. Infact, here we need the notion of a characteristic function, which
proves useful in many situations in mathematics. With each B © A we
associate its A-characteristic function xg defined by

1 aeB,

a=
XB 0 a¢B,

for every ae A. Then x is a one-one correspondence between SA and
42, as 1s easily checked.

Combining 22.9 with an earlier observation about SA (Theorem
18.12), we obtain the following important theorem.

Theorem 22.10 m < 2™

If we recall our earlier definition of m* as the least cardinal greater than m,
22.10 suggests the obvious question whether m* = 2™ or not. For m



152 CHAPTER FOUR CARDINALS

finite this is easily answered: 0t = 20 = 1, 1t = 21 = 2, but for v >
m > 1, mt < 2™ (see Exercise 22.28). For m infinite the situation is
more complicated. The case m = N, is of special interest since it can be
shown that the set of real numbers has power 2X°. The statement 25 = X,
is known as the continuum hypothests; the statement 2™ = mt for every
infinite cardinal m is known as the generalized continuum hypothesis. It is
known that these two hypotheses are independent of our axioms—neither
can be derived from our axioms, nor can their negations be derived from
our axioms, assuming always that our axioms are consistent. On the one
hand it is consistent to assume that 2% = X;, and on the other hand it is
consistent to assume that 2%° = R, (or N3, Ny, . . ., but not N,; see
Theorem 22.12). Here again, as in the case of the integers (cf. Remark
13.15), we run into a seeming paradox. For it is known that the set
of real numbers can be characterized up to isomorphism, as an ordered
field satisfying Dedekind’s postulate, but it appears that we definitely
get two 1somorphic fields of real numbers by settling on one of the two
assumptions 2% = N, or, say, 2% = N.. Again, the paradox is only
apparent, for the isomorphism of any two fields of real numbers can be
proved without taking either assumption as an axiom, although one may
say that, within any given fixed conception of set theory, only one of the
two possibilities can be true. At any rate, it is not clear which hypothesis,
the continuum hypothesis or its negation, should be taken as an axiom.
We will see in Sec. 23, however, that under the assumption of the gen-
eralized continuum hypothesis cardinal arithmetic is greatly simplified.

In connection with this discussion the following two theorems are
significant (see Sec. 23 also).

Theorem 22.11 N, < XX

Proof By Lemma 21.16 and the definition of X,, we have N, = Emw N
Now R, < N, for every m, so that

N, <[l XN, by Zermelo's inequality (21.19),

mew

= X X by 22.4(v),

as desired.

Corollary 22.12 2%° = N..

Proof If 2% = R,, then 2% < (@¥:)®e = oXeRe _ oRs 3 contradiction.

The following equality is another of the very useful facts in cardinal
arithmetic.
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Theorem 22.13 If 1 < m < n > Ny, then m" = 2",
Proof We have
m" < @2™m" by 22.7,

gm-n by 22.6,
= on by 21.11,
<m" by 22.7,

and this completes the proof.

We now give two rather special equalities that are sometimes useful
in calculations.

Theorem 22.14 (Hausdorff) Niil = N X6-R_i,.

Proof We consider two cases; first suppose that « +1 < 8. Then
N1 < Np < 2%, and so

Naxﬁ.xa:i-l = Zxﬂ.xa'i—l by 22'135

= 288 by 21.11,
= X%, by 22.13.

The other caseis @ + 1 > 8. Now
(1) RoN o1 = U7<xa;1 )y,

Indeed, the inclusion D is obvious. On the other hand, if fe ®X_i,,

then |Rng f| < |Dmn fl = Xy < Noi1, so that, by Corollary 21.14,
URngf < Ro31. Withy = U Rngf + 1 we have, by 19.3(22), v < N.;).
Thus f e Xy, as desired. Hence (1) holds. It follows that
N:ﬁw'kl - ‘ U7<Ka+1 () ‘ by (1)

< Ev<xa.'ﬂ |')’|K'S

=< E‘Kxah R

= N'-’!Kﬁ.xot-;l

S Nif_l.xa‘}'l

— X%

a1’

and this completes the proof.

Corollary 22.15 (Bernstein) N, * = 2¥«.X,..

Proof We proceed by induction on m. We first have N« = 28« =
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2%« X, using 22.13 and 21.11. Assuming our result for m, we obtain

Rhey = KXo Ko by 22.14,
= 28N, Npt1 by the induction assumption,
= 2Ra.NR, by 21.11.

This completes the proof.
The following theorem is easily established by induction on n.
Theorem 22.16 m™ = m".

We have now developed all of the cardinal arithmetic needed for most
routine cardinality calculations in mathematics. We conclude this sec-
tion with two examples of such calculations. More examples are found
in the exercises.

Theorem 22.17 For any infinite set A, A is equipotent with the set of all
finite subsets of A.

Proof We first prove
(1) [{F:F C A, F finite}| < | Unew ™4 |.

Indeed, for each m and each fe™A let Ff = EBng f. Then F is clearly a
function with domain Une, ™4 and range {F : F C A, F finite}, so that
(1) follows from Theorem 18.8. Next

(2) |A| L |{F : F € A, F finite}|.
For ({a} : ae A) is a one-one function mapping A into {F : F C A, F
finite}. Now, using (1) and (2),
|A| < [{F : F C A, F finite}] < | Unew ™A | < Dmew |A|™
< Yoo |41 = 4]Ro = |4],

and the proof is complete.

For the last theorem, recall the definition of a ring with identity
(Definition 17.5).

Theorem 22.18 For any infinite set A, there are at most 2'4} rings with
identity of the form A = (4,4,-,—,0,1).

Proof A ring with identity 2 of the kind described is a six-termed
sequence, i.e., a function with domain 6. If we assign to any such ring U
the pair

((((+5>5 _);0)51)5
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we define a one-one function from the set of all such U into the set
(AXAA) X(AXAA) X(AA) XAXA

(cf. Definitions 17.5 and 3.11). Hence it suffices to show that the latter
set has power at most 2/4l. And, indeed,

|(4%44) X (4X44) X (44) X A X A|
= (|A|IAI-IAI).(|A||A|-|A|).|A||A|.|A|.|A|
= |A|IAI.|A|IAI.|AIIAI.|A|
= |AIIAI = glAl,
as desired.

Remark 22.19 For further discussion of the continuum hypothesis see
Cohen 1963 to 1964, Gédel 1940 and 1947, and Solovay 1964.

EXERCISES
Prove the following.

22.20 There are 2!4! partitions of an infinite sel A.
22.21 X% = RINoym.

a+m

22.22 If m is infinite, then Ha<m N. = X,.,™. Hint: Using Zermelo’s

inequality, the exercise quickly reduces to showing that (HKm Na)m =

Ha<m X.. This is easily seen by observing that Ha<m H,Km N =
y<m H,(ﬁ'a)m, Ng, where o is as in Exercise 21.31.

22.23 For every «a there is an m > a with m®° = m.

22.24 Tor every « there is an m > « with m®¥* > m.

22.25 An infinite set A has |A|™ subsets of power m, for any cardinal

m < [A].

22.26 For any infinite cardinal m, let A = {f : fe ™m, and {a : fa 5 0}

is finite}. Then |4| = m.

22.27 Let % = (A,+,,—,0,1) be a field, and let B be an infinite set.

Then the number of vector spaces over U of the form (B,+’,",—",0’) is at

most 2/4lV 1Bl

22.28 mt < 2™ form > 1.

23 REGULAR AND SINGULAR CARDINALS

In this section we give a few further theorems about regular and singular
cardinals (see Definition 21.13).

Definition 23.1 « is cofinal with B if there is a strictly increasing function f

with domain B such that

U‘y(ﬂ (f'Y + 1) = a.



156 CHAPTER FOUR CARDINALS

Thus if « is a successor ordinal 6 + 1, then « is cofinal with 1 (via the
function f = {(0,8)}). If aiscofinal with 8 and « is a limit ordinal, then
B is a limit ordinal, and in this case, if f is an increasing function with
domain 8 such that Uy<s (fy + 1) = o, then Uy<s (fy + 1) = Uy<s fr-
Obviously an ordinal « is always cofinal with itself. The notion of
cofinality is connected with the previously defined notion of regular cardi-
nal by the following.

Theorem 23.2 For any infinite ordinal o, o 18 a regular cardinal iff « is
not cofinal with any ordinal < a.

Proof = By Definition 21.13.
< By the above remarks, « is a limit ordinal. Now it suffices to
prove the following statement:

(1) Forany I' C q, if [T| < @, then UI' < a.

Indeed, if (1) holds, then, taking I' = «, we infer that |a| = «, because
Ua = «; thus « is a cardinal, and then (1) yields that « is regular.

To prove (1), let h be a one-one correspondence between |I'| and T,
and for any 8 < |I'| let, by recursion,

k3 = N{y : k*3 € v and a8 < v}.

Then one sees, by transfinite induction on 8, that kg is strictly increasing
and kB e a for every 8 < |I'|. Thus k itself is strictly increasing, and,
since h@ < kB for each 8 < |T'|, UT € Ug¢ir k8. Since this latter union
is less than « by virtue of the assumption of the theorem, we get UT" < «,
as desired.

By the proof of 23.2, we could have defined an ordinal a to be regular
if condition (1) of the proof held; then we would have as a theorem that
every infinite regular ordinal 1s a cardinal.

We can now extend Theorem 13.9, concerning fixed points of normal
functions.

Theorem 23.3 Let p be an m-termed normal function with range T m, m
an infinite reqular cardinal > Ro. Then for every a < m there 18 a 8 with
a < g < mandpB = 8.

Proof We proceed just as in the proof of Theorem 13.9. We define a
function v by iteration:

W0 = pla + 1);
v(m + 1) = pym.

Also, let vw = Umew vm. Note that a < a + 1 < p(a + 1) = 40, by
Theorem 12.2.
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By induction on m, 1t is easily seen that ym < m for every m < w,
and so, by the regularity of m, vo = Umco vm < m. Furthermore, »is a
half-normal function, and so

v < prw = U mew pym = U mew v(m + 1) = »o,

so that prw = yw, as desired.

As with 13.9, the proof of Theorem 23.3 yields the least fixed
point > a. Also, from Theorem 23.3 itself, it is easy to see that the set
of all fixed points has power m.

Another important property of regular cardinals is given in the fol-
lowing, concerning regressive functions.

Definition 23.4 Let p be an A-termed sequence of members of A, where A 18
an ordinal. We say that p 1s regressive if u0 = 0 and pa < a for all
aeA ~ {0}.

Theorem 23.5 Let pu be a regressive function mapping A into A, where
A = Ord or A 1s an uncountable reqular cardinal. Then there 18 a fe A
such that:

(1) If A = Ord, then {a : pa = B} is a proper class.

(#1) If A is an uncountable regular cardinal, then |{a : pa = B} = A.

Proof We define a function f with domain A by transfinite recursion.
Choose a ¢ Ord [for example, a = (0,0); see 9.5]. For each ae 4, let

[ NB:BeAANTVYB<veA=0 < py)} if such a B exists,
0 = a otherwise;
, N{g:B8ed Nfa<8
flae+1) =3 AVYB < vyed = a < puy)} if such a B exists,
a otherwise;

fa = Usca /8 if a = Ua 0.

Assume, now, that the conclusion of the theorem fails to hold. Then
a# faeA for all «e A, as we now show by transfinite induction on a.
First consider the case « = 0. If fa = a, then VB e AHY(8 < yve A A
py = 0), from which it is easy to infer that {y : uy = 0} is a proper class
if A = Ord, or has power A if A 5 Ord; both conclusions contradict the
assumption. Now assume that a 3% fa e A, and o + 1 ¢ A; we want to
show that a = f(a + 1) e A. If this is not the case, then VB8 e A(fa <
B=HyB <ved Apuy < a)). Let Ts=1{y:fa<yeA A py =8},
for each 8 < @. Then it is easily seen that Us<a I's is a proper class if
A = Ord, or has power A if A £ Ord. It follows that thereisa é < «
such that T's is a proper class if A = Ord, or has power A if A & Ord, and
this contradicts the assumption. Thusa # f(a + 1) e A. Thelimit step
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1s trivial, so that Va e A(a % fae A). It easily follows that

(1) For any a,8€ A, if fla + 1) < B, then a < pg.
(2) For any a,8e A, if < 8, then a < uff.

Statement (2) follows from (1) since for @ < 8 we have « + 1 < B,
f(a 4+ 1) < f8, and hence o < ufB.

Now fis a normal function, so that, by 13.9 or 23.3, let a ¢ A be a
fixed point of f: fa = a. For 8 < a we then have, by (2), 8 < ufa;
hence @ < pfa = pa < a, a contradiction. This completes the proof.

Definition 23.6 For any ordinal a, cfa, the cofinality character of «, is the
least ordinal B such that « is cofinal with B.

Theorem 23.7 If a s a limit ordinal, then cfa is a regular cardinal.

Proof Clearly ¢fa > w, so that it 1s enough to use 23.2; to do so, we
need to show that ¢fa is not cofinal with any ordinal <cfa. Suppose, on
the contrary, that cfa is cofinal with 8 < ¢fa. Then there exist strictly
increasing functions f, ¢ with domains c¢fa, 8 respectively such that
Uycerafy = aand Uys g, = ¢fa. But then fog is strictly increasing with
domain g and, as is easily checked, Uy<sfg, = a. This contradicts the
choice of cfa.

Note that ¢fX, = Ro; ofRy, = Ri; ¢fRg, = Xo. We can now gen-
eralize Theorem 22.11.
Theorem 23.8 For any infinite cardinal m, m/™ > m.

Proof Let f be a strictly increasing sequence of members of m, with
Dmn f = ¢fm and Uaceym fo = m.  Thus

m = Ua<cfmfa < Zaz<cfm. lfal < Ha<c/mm = mcf"‘,

as desired.

Theorem 23.8 enables us to compute exponentials of infinite cardi-
nals easily, under the assumption of the generalized continuum hypothesis.

Theorem 23.9 Assume the generalized continuum hypothesis. and suppose
that m and 1 are infinite cardinals. Then

(7) Ifn < ¢fm, then m™ = m.

(27) If ¢fm <n < m, then m" = m+.

(247) If m < n, then m" = nt.

Proof (7)) Assume that n < ¢fm. If fe"m, then fe"a for some a < m.
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Hence
m <" = 'mf < | Uacm "e |
< D [af”
< Dacm (la] U m)dalomw
= Y cm (Ja] Un)* by 22.13,

< Ea<mm =mm=1m,
as desired.

(17) For ¢fm < n < m we have
m<m/m < m" < mm=mt

so that me/™ = mt+.
(227) follows directly from 22.13.

Definition 23.10 (¢) m s weakly inaccessible if m = R, for some limit

ordinal a, and m s regular.

(1) m 1s strongly inaccessible if m > N, m s regular, and 2" < m
whenever n < m.

Clearly every strongly inaccessible cardinal is also weakly inaccessible,
and the two concepts coincide if we assume the generalized continuum
hypothesis. It is consistent with our axioms to assume that inaccessibles
do not exist, but it is known to be impossible to prove the consistency of
the existence of inaccessibles. Despite these negative results, the notion
of an inaccessible cardinal seems natural. They have turned out to
play an important role in many mathematical discussions. We shall give
only one indication of their importance, in justifying the related concept
of a universe, introduced below.

The notion of a strongly inaccessible cardinal is perhaps made a
little more intuitive by the following result.

Theorem 23.11 Let m be an uncountable cardinal. Then m s strongly
tnaccesstble iff the following condation holds:

(1) For every n < m and for every system (p. : a < 1) of cardinals with
pa < m for every a < n, we have an P < m and Ha<n Pa < m.

Thus m is strongly inaccessible iff it cannot be attained by arithmetic
operations formulated exclusively in terms of preceding cardinals.

Proof = We have E,Kn p. < m, by 21.18. Second, with q =
(Ua<n pa)Un,

Ha(n Pa < Ha(n (Uﬂ<n pa) = (Uﬂ<n pa)n
<q*=2<m.
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< Obviously m is regular, by 21.18. For any n < m we have
2" = Haz<n2 <m,

so that m is strongly inaccessible.

Closely connected with the notion of an inaccessible cardinal is the
following notion of a universe.

Definition 23.12 A s a universe if the following conditions hold.

(1) A s a set.

(17) weA.

(172) Forallz, y, ifxeye A, thenz e A.

(t2v) Forallz,ifxe A, then Sz e A.

(v) Forallz,1f x & A and there is no one-one correspondence between x
and A, thenx e A.

This notion is not to be confused with the concept of the universe V,
introduced earlier (2.14). The few properties required of a universe are
very strong. We give two theorems that indicate their strength.

Theorem 23.13 Let A be a universe. Then

(7) IfzeA,then x| < |A]

(1) o < |A].

(ti1) Ifx CyeAd,thenxzeA.

(1v) Ifz,yeA, then {z,y} e A.

(v) IfzyeA, then (z,y) e A.

(vi) Ifz,yeA, thenzXyeA.

(viz) Ifz e A and fisa function mapping x into A, then Bngfe Aandfe A.
(vii?) |A] is strongly Tnaccessible.

(ix) IfzeA, then Ur e A.

(x) If{(z::2el) is a system of members of A, and I € A, then U;q xi e A

and Pm x; € A.

Proof (1) If ze A, then Sz ¢ 4, by 23.12(v), Sz € A, by 23.12(7%), and
so |x] < |Sz| < |A].

(i3) By (4), since we A by 23.12(41).

(i5) If 7 C ye A, then zeSyeAd, by 23.12(i), so that z ¢ 4, by
23.12(417).

() If z,ye A, then {z,y} € A4, and |{z,y}] &% |4], since o < |4],
by (i7). Thus, by 23.12(v), {z,y} € A.

(v) Directly from (w).

(vi) Assume that z,ye A. Forany uex and vey, we have u,v e 4,
by 23.12(47%), and hence (u,v) € A, by (v). ThuszXy € A. Now |4]is
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an infinite cardinal, by (7). By (9), |z] < |4]| and |y] < |A]. We infer
from all of this that [z Xy| = |z|-|y| < |4|. Now it follows from 23.12(v)
that x Xy e A.

(vir) Assume that xz ¢ 4 and fis a function mapping x into A. Then
Rng f € A and |Rng f| < |z| < |A], by (7), so that Rng fe A, by 23.12(v).
Hence f © x XRng fe A, by (v7), so that fe A, by (77).

(viti) By (i), |A} is uncountable. |A]| is regular. To prove this,
suppose, on the contrary, that ¢f|4| < [A| (recall Definition 23.6 and
Theorem 23.2). Then there is a subset of X of A such that |X| = c¢f|A].
By 23.12(v), X € A, and then, by (viz), ¥A C A. But then

|A] < |44 by 23.8,
= [¥A] < |4],

a contradiction. Therefore |A]| is regular. If m < |A4]|, then [X| = m
for some X ©€ A. Applying, in succession, 23.12(v), (iv), and (7), we get
XeA; SX e A;|Sz| < |A]; ie., 2m < |A|. Thus (viz7) holds.

(ix) Assume thatz e A. Forany y, ye Uz impliesthatvezexz e A
for some z; hence y ez e A, by 23.12(247), and finally y ¢ 4, by 23.12(%%%).
Thus Uz € A. Furthermore

Uz < 3, 1ol < 141,
since |A] is regular, where we use (7). Hence, by 23.12(v), Uz € 4.
(r) By 23.12(v), {z.:7el}e A, so that, by (ix), Uirz. e A. By

(wii), Pir 2 € A, and | Prr z: | < |A[, by () and (vizi). Hence Prur 2: € 4,
by 23.12(v).

Theorem 23.14 A 1s a universe iff A = M, for some strongly inaccessible
cardinal 6.

For the definition of the function M, see 15.19.

Proof = Let 6 = |A|. By 23.13(vitz), 0 is strongly inaccessible, so that
we need establish only that A = M,. Suppose that My & A. Let z
be a set of least rank such that x ¢ A. Thuspzx < 6. Now, by transfinite
induction on «, one easily establishes

(1) For every a < 6, |[M,| < 6

(see Theorem 15.20). Since z e M,.i1, it follows, using 15.20(777), that
|z] < 6. By the choice of z, ye A for each yex; ie., x £ A. But
23.12(v) now yields z ¢ A, a contradiction. Thus we must have My C A
after all. Next, we claim

(2) For all z,if x ¢ A, then px e A.
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For if (2) is not true, choose x ¢ A with px minimal such that px ¢ A. Thus
[{oy : yex}| < 6,by23.13(2),and {py : yex} & A. Hence, by 23.13(x),
UyezpyeAd. Leta = Uyezpy. Thenpr = aorpr = a 4+ 1. By 23.13(w)
and (iz), we know that « +1 = a\U {a} e A. Thus pz € 4, a contradic-
tion. This establishes (2).

Now (2) implies that |pz| < 6 for each z ¢ A, which in turn implies
that px < |pz|* < 6, since 6 is strongly inaccessible. Thus A & M,,
and the equality A = M, has been established.

< The conditions of 23.12(¢) to (iv) are all easily checked for
A = M,, 6 a strongly inaccessible cardinal. To check 23.12(v), suppose
that * © M, |z| < |Ms|. As above, in proving (1), it is seen that
|Ms| = 6. Thus |z] < 6. 6 being regular, it follows that U, py < 6,
and hence pxr < (Uyespy) + 1 < 6, as desired. This completes the
proof.

Theorems 23.13 and 23.14 indicate that essentially all the usual set-
theoretical operations can be performed completely ‘“inside” a given

universe; thus, for example, the direct product P.r z: does not lead out-
side a universe so long as the z.’s as well as the index set [ are in the given
universe. For this reason many mathematicians have, implicitly or
explicitly, suggested working within universes rather than within the full
scope of set theory. A big advantage of this procedure is that in rare
instances when it is desirable to go “outside’’ a universe, it is perfectly
legal to do so. For example, one might wish to consider an algebraic
structure of the form (4, X), where A is the class of all rings with identity
and X is the operation of direct product. In our full set theory this is
illegal: (4, X) cannot be considered as a two-termed sequence with 0-term
A and 1-term X, since A and X are both proper classes. But by restrict-
ing A to be the set of all rings with identity in a given universe and X the
operation of direct produet restricted to A the construction becomes
quite normal. {4, X) then lies outside the given universe, but it can be
discussed within the full set theory, or in a “higher universe.”

However, as follows from 23.14 and our previous remarks, our
axioms do not guarantee the existence of universes. The desired addi-
tional axioms can be put in one of two forms, in accordance with the next
theorem, whose proof is obvious on the basis of Theorems 23.14 and
15.20(7v).

Theorem 23.15 The following two conditions are equivalent.
(7) For every cardinal m, there is an i1naccessible cardinal § > m.

(27) For every set A, there is a universe B such that A ¢ B.

Condition 23.15(#7) will be called the universe axiom. It has the advan-



SEC. 24 APPLICATIONS 163

tage over 23.15(7) of being formulated in very elementary terms. As
indicated in Sec. 1, normally one does not take this as an axiom of set
theory, but in special situations it may prove valuable. Concerning its
consistency and independence, the remarks above following 23.10 are
all applicable.

For the notion of universe see Tarski 1938. For further discussion
of inaccessibles see Keisler, Tarski 1963.

EXERCISES

23.16 Strengthen Theorem 23.3 by replacing the assumption that m is
regular by the condition X, < ¢fm.
23.17 If n > c¢fm, then p" = m.
23.18 2%« = N, iff 8 is the least ordinal v such that X,%* < Nfil.
23.19 The generalized continuum hypothesis is equivalent to the condi-
tion that, for all m > N,, m¥/™ = mt.
23.20 If m is strongly inaccessible, then m» = m for every n < m.
23.21 For any set 4 the following conditions are equivalent:
(a) A is a universe;
(b) The following conditions hold:
(1) wed.
(2) Forallz, f,if ze A and fe=A, then U Rng fe A.
(3) Forallz, y,if x ey e 4, then z € 4.
(4) For all z, if x ¢ A, then Sz e A.

24 APPLICATIONS

In this section we give four important theorems of abstract set theory to
indicate something of its flavor when developed beyond the basic facts
presented so far. Each of the four theorems has been generalized con-
siderably in the literature; each represents a first step in a well-developed
area of interest in abstract set theory.

We begin with the notion of almost disjoint sets.

Definition 24.1 Two sets A and B are almost disjoint if A (\ B 1s finile.
Theorem 24.2 (Sierpinski) There 1s an uncountable family A of infinite

patrwise almost disjoint sets of natural numbers.

Proof Let C = Umco (™2). Thus C is the set of all finite sequences of
0’s and 1’s. By induction on m, it is easily seen that m < 2= for every m,
and it follows that m < |C| for every m; that is, C is infinite. Further

IC| < me 2m < mew = ww = w;
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hence |C| = w. Thus it is sufficient to find an uncountable family of
pairwise almost disjoint subsets of C.

For each z €2 let fr = {c:ceC,c S z}. Clearly U{fzr : z €2}
= (. Suppose z,y €2 and z 5 y. Then there is an m ¢ » such that
Tm # Ym- If ce fx M fy, then Dmn ¢ < m, for if m e Dmn ¢, we should
have, from ¢ € = M y, that zm = ¢» = ym. Thus

fil? M fy g Unsm n2)
and this union is finite, according to Theorem 20.10. Thus Rng f is the

desired uncountable family of pairwise almost disjoint subsets of C.

Theorem 24.2 can be found in Sierpinski 1928, and various generali-
zations of it in Tarski 1928 and Tarski 1929. The results have found
varied applications in mathematics.

The second theorem is a classical and basic result in the theory of
infinite graphs.

Definition 24.3 For any set A, let (g) = {X : X C 4,|X] = 2}. (é) v

called the complete graph on A; subsets of (é are referred to as (undirected)
graphs over A.

ORIV

Theorem 24.4 (Ramsey) If A is infinite and ( ) = M \U N, then one

of the following two conditions must hold.
(2) There is an infinite subset B of A such that (g) c M.

(17) There is an infinite subset B of A such that (g) C N.

Proof Assume that (7) is false; we shall show that (¢¢) must hold. For
any nonempty subset B of A and any z ¢ B we set S(B,x) = {y:ye
Bz ## y, and {z,y} e N}. We claim

(11 If B is an infinite subset of A, then there is an z ¢ B such that
S(B,z) is infinite.

F
2
that () fails, we know that every member of A is finite. It is clear that
UB € A for any subset B of A simply ordered by inclusion, so that, by
Zorn’s lemma, A has a maximal element " under inclusion. For any
yeB ~F we have F \U {y} ¢ A4, by the maximality of F, and it follows

To prove (1), let A = {F : F C B, ( ) c M} Since we are assuming
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(becauSe (g) C M but (F U2 {y}) g_f M) that thereis an x ¢ F such that

{z,y} ¢ M; that is, {z,y} e N. Restated, this means that B ~ F C U..r
S(B,r). Because B ~ F is infinite, U..r S(B,z) is infinite, and because
F is finite, S(B,z) must be infinite for some x ¢ F. This establishes (1).

Now let f be a choice function for nonempty subsets of A. We
define functions x, T by recursion. Let x4 be an element of A such that
S(A,zo) 1s infinite—such an element exists, by (1)—and let Ty = S(4,z,).
If z, and T, have been defined, we let

| flz : 2 € Tw and S(T,2) is infinite} if such a z exists;
Tmil = otherwise;

and we let Thi1 = S(Tm,xm+1). One can easily establish, by induction,
that for every m, the ‘‘otherwise’’ case above does not happen, T, is
infinite, and zm41 € Twm. Note that for m < n we have T, C T, (induc-
tion on n), Tm % T, and {zTmx.} e N. Thus with B = Rng = we have

(123) C N, as desired.

For extensions of Ramsey’s theorem see Erdés, Rado 1956, and
Erdés, Hajnal, Rado 1965. Ramsey’s theorem has had many important
applications, particularly in metamathematics.

The third topic is the theory of trees, or ramification systems,
closely related to graph theory.

Definition 24.5 A tree is a pair A = (A,<) such that < s a partial
ordering with field A, and forallz e A, {y : y < z} iswell-ordered by <. A
branch of A is an C-mazimal subset of A simply ordered by <. For each
z e A, the unique ordinal o such that for some function f, 8 < v < a iff
8 < fy < x, is called the level of the element x of A (see Theorem 13.10).

A tree is finitary provided that, for each m, there is an element of level m,
but there are only finitely many such elements, although the tree has no
elements of infinite level.

Theorem 24.6 (Konig) Any fintlary tree has an infinite branch.

Proof Let A = (4,<) be a finitary tree. Let f be a choice function for
nonempty subsets of A. We define a function z by recursion. Suppose
that z. has been defined for all m < n. Then we set

fly = yis of level n, zm < y for all m < n, and
{z : y < 2} is infinite} if such a y exists;
0 otherwise.

Tn
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As usual, we want to establish that the “otherwise’”’ case never occurs;
that is, we prove the following statement by induction on n:

(1) =z, is of level n, z, < z, for all m < n, and {z:z. < 2} is

infinite.
Assuming (1) true for all m < n, we then have zo < - - - < z,_1. Let
{40, . - -, Yp_1]} be all the elements of 4 of level n all > z,._; (in case

n = 0, only all the elements of level 0). Then
{2 12,00 < z} = {yo - - . yyp—l} v Ui(v fz .y < z}

(in case n = 0, the left side of this equation is replaced by A4). Since
{z:2o00 < 2} (or A4, if n = 0) is infinite, there is an ¢ < p such that
{z : y: < 2z} isinfinite. This shows that in our definition of z, we obtain
an element satisfying the conditions of (1).

From (1) it follows, of course, that {z; : 7 € w} 1s an infinite branch
of A, as desired.

The fourth, and last, topic is a celebrated theorem of Cantor con-
cerning dense orderings. The method of proof is more important than
the theorem itself; it has since been applied in many diverse situations.

Definition 24.7 A dense ordering, without first or last elements, 1s a
stmple ordering < such that the following three conditions hold.

(1) Forevery x e Fld (<), there is a y such that x < y.

(17) For every y e Fld (<), there 1s an = such that z < y.

(177) For all z, y, if x < y, then there is a z such that x < z < y.

Theorem 24.8 (Cantor) Any two denumerable dense orderings without
first or last elements are isomorphic.

Proof Let < and <’ be denumerable dense orderings without first or
last elements, with fields {a, : m e w} and {b.. : m e w} respectively, where
a and b are one-one functions. We define sequences {(cm : m € w) and
{dn : m e w) by recursion. Let ¢y = ao and do = bo. Assume that com
and da» have been defined; we now define comy1, dams1, Comsz, A0d damyo.
Let c2my1 = @n, where n is the first element of {p : a, ¢ {co, . . -, Cam}}.
We now distinguish three cases.

Case 1 a, < c;for each 7 < 2m. Let dapmyr = by, q the least element of
{p : b, <’ d; for each 7 < 2m}.

Case 2 ¢; < a, for each 7 < 2m. Let dapy1 = by, ¢ the least element of
{p : d; <’ b, for each 7 < 2m}.

Case 3 ¢; < an < ¢ for certain 7,j < 2m. Choose %, j so that ¢; is a
<-maximal element of {cx : cx < a.} and ¢; is 2 <-minimal element of
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{Ck a, < Ck}. If dl {I d_,‘, WwWe let d2m+1 = 0. If di '<I dj, let d2m+1 = bq,
q the least element of {p : d, <’ b, <’ d;}.

damye and Camye are defined similarly, interchanging the roles of <
and <’, the a’s and b’s, and the ¢’s and d’s. The following facts are
now easily established by induction on m:

(1) {(e;yds) 1 1 < m} is an isomorphism of < M (¢*m Xc*m) onto
<’ M (d*m Xd*m);
(2) a*m C c*(2m) and b*m & d*(2m).

From (1) and (2) it follows at once that {(c;,d:) : 7 < w} is the desired
isomorphism between < and <’.

EXERCISES

Prove the following statements.

24.9 Let m be an infinite cardinal, and let n be the least cardinal such
that m < 2" Suppose that A and I are sets such that [A] > m and
|I| = n. Then there is a set F C T4 such that |F| = 2" and |[{7 : 7 ¢ [,
fi = gi}| < n for any two distinet f,g e F.
24.10 If A is a denumerable set simply ordered by a relation <, then A
has an infinite subset B such that B is well-ordered either by < or >.
There is a set A of power R, simply ordered by a relation < such
that no subset of A of power X, is well-ordered by < or > (compare
Theorem 17.3).
24.11 There is a set A of power X; such that (é
R U S, with neither R nor S including a complete graph on a set of
power Nj.

)can be written as



APPENDIX
Axiomatic Logic

This appendix is devoted to a rigorous development of a portion of mathe-
‘matical logic sufficient to found axiomatic set theory on. Because of
the many symbols used in axiomatic set theory, it is necessary to give a
fairly general description of the underlying logic involved. And because
the present precise development of logic is intended to precede the
development of set theory in the text, we wish to assume as little as
possible; in particular, the mathematical or set-theoretical apparatus we
use in this appendix is to be understood strictly in the naive intuitive
sense. For a more thorough treatment of logic using minimum mathe-
matical apparatus we suggest Church 1956.

The fundamental idea in making logic precise is to fix on a formal
language, in principle different from English, for which we describe various
notions (like term, sentence, theorem, and so on) with complete precision,
and no ambiguity as in ordinary languages. Even so, we want the possi-
bility of expanding our language from time to time. Thus in set theory
we start with a very limited language, having only the symbol € in addi-
tion to logical symbols, but we soon introduce many other symbols, like

168
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<, M, §, and so on, by definitions. Hence we need to describe, in a
precise way, not a single language, but a whole class of languages, which
have, however, many essential properties in common.

A given formal language has the following primaitive symbols.

1 Indiwidual variables. A, B, C, ..., 4, A, B, (', ..., K6 2/, A",
B”, C", ...

2 Logical symbols. Vv, A, =, 1, <, V,H, =, (,).

3 Operation symbols. These vary from one language to another in
number (perhaps even none are in a particular language), shape, and
rank; with each operation symbol there is associated an integer 0, 1, 2,
3, 4, or 5 called its rank (it is not necessary here to assume general
properties of integers as known, because we speak of the first six
integers only). An operation symbol of rank 0 is called an individual
constant.

4 Relation symbols. These again vary from one language to another,
and each has a rank that is a positive integer 1, 2, 3, 4, or 5.

No other symbols than these are allowed, and the specification of
the symbols (along with the ranks of the operation and relation symbols
involved) determines the formal language completely.

Given a formal language, we define the notion of a ferm, which
corresponds roughly to the notion of a name in ordinary languages.

5 Every individual variable is a term.

6 If O is an operation symbol of rank m, and oy, . . . , ¢n_1 are terms,
then O (¢g, . . . ,0m1)isaterm. In particular, if O is an individual
constant, then O itself is a term. :

7 Terms can only be formed by finitely many applications of rules 5
and 6.

Next we define the notion of a formula, which corresponds roughly
to the notion of a sentence in ordinary languages; we give a special
technical meaning to the word sentence later on.

8 If o and 7 are terms, then (¢ = 7) is a formula.
9 If R is a relation symbol of rank m and oy, . . . , om_1 are terms,
then R(oy, . . . , 0m—1) 1S & formula.
10 If ¢ and ¢ are formulas, then so are (¢ V ¥), (¢ A ¥), (e =),
(_]<P)) and (‘P <:>¢)
11 If ¢ is a formula and o is a variable, then (Vap) and (Hay) are
formulas.
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12 Formulas can only be constructed by finitely many applications of
rules 8 to 11.

To explain the next terminology, sentential combination, we must expand
the preceding definition. Let ¢q, . . ., ¢m_1 be formulas (again it is
enough for our purposes to take 0 < m < 6).

13  ¢; 1s a sentential combination of ¢o, . . . , @m_1, for e =0, . . .,
m — 1.

14 If x and 6 are sentential combinations of ¢g, . . . , ¢m_1, then so are
x V80, x A8, Kx=0,(Tx),and (x & 6).

15 4y is a sentential combination of ¢y, . . . , ¢m—10nly by finitely many

applications of rules 13 and 14.

Now suppose that values T and F are assigned to ¢q, . - . , ¢m—1 1D SOmMe

way; sav 1, assigned to ¢o, . . . , Im_1 assigned to ¢n._1, each ¢; either T

or F. We then assign values to any sentential combination of
., om—1 by the following rules.

16 o, has the value 4, for any 7 < m.

17 If x has the value k, k = T or k = F, then (71x) has the value F
or T respectively.

18 If x has the value & and 6 has the value [, then (x V 6), (x A ),
(x = 6), and (x & 6) have values given in the following table, depend-
ing on k and {:

k l (x V 6) (x N\ 6) (x = 0) (x = 6)

T T T 7 T T

T F T F F F

Fo T T F T F

F F F F T . T

-19 Values are assigned to serttential combinations of ¢g, . . ., Em-1

only by finitely many applications of rules 16 to 18.

A formula ¢ is a tautology iff there exist formulas ¢o, . . . , @m—1 Such that
¥ is a sentential combination of o, . . ., ¢m—1 and ¢ receives the value
T for any assignment of values to ¢o, . . . , Pm—1.

Some typical examples of tautologies are the following formulas
(where ¢, ¢, and x are arbitrary formulas): N
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¢S o= (Tle=y{)

eV e Tle A o)

(e VY)WV e o AP = o

e AW VXISEAYA(AX Tl AY) e e V Y
o= VY (e V) e e ATy

Here, typically, we omit various parentheses that should have been put
in, in the hope that the formulas are more readable and no confusion
results.

We still need more concepts before we can formulate the axioms for
logic. A specific occurrence of a variable « in a formula ¢ is said to be a
bound occurrence of a in ¢ provided that the oceurrence is within a formula
", itself a part of ¢, ¥ of one of the two forms (Vay) or (Hax); we say that
the occurrence of a is within the scope of the quantifier Va or Ha respec-
tively. If an occurrence of a in ¢ is not a bound occurrence, then it is
called a free occurrence of o in ¢. A formula ¢ is said to be a sentence if
no variable oceurs free in it.

The axioms for logic (in a fixed but arbitrary language, as with the
whole discussion) are as follows, where ¢ and ¢ are arbitrary formulas,
a 1s an arbitrary variable, and ¢ and 7 are arbitrary, terms (all subject
to limitations mentioned in the axioms).

Al o, if ¢ is a tautology.

A2 (Hap) & Vo Je.

A3 Vap =y provided that ¢ is obtained from ¢ by replacing every free
occurrence of @ in ¢ by ¢, where no free occurrence of a in ¢ is within
the scope of a quantifier on a variable occurring in o.

Ad YVa(p=¢) = (¢= Vay) provided that o does not occur free in ¢.

A5 o = a.

A6 ¢ =71= (p & ¢) provided that y is obtained from ¢ by replacing one
or more occurrences of ¢ in ¢ all simultaneously by r, provided that
none of the occurrences of ¢ in ¢ have occurrences of variables bound
in ¢, and similarly for the occurrences of = in .

At this primitive level of mathematics, 1t is not enough simply to
give axioms. For logic itself we must even specify precisely what we
mean by proof and theorem.

In a language we usually expect not only logical axioms but also a
body of nonlogical axioms that express the mathematical content of the
theory we are interested in. Hence we now assume, in addition to the
logical axioms, a collection I' of sentences as given. Now, by a I'-formal
proof we mean a finite sequence Yo, . . © , Ym—1 of formulas (where, this
time, we must allow m to be quite large in general) such that for each
1 < m one of the following conditions holds.
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20 ; is a logical axiom.

21 y;is a member of T.

22 There exist 7,k < 7 such that y; is the formula yix = y; (rule of modus
ponens, or detachment). )

23 There is a 7 < 7 and a variable « such that y; is the formula Vay;
(rule of generalization).

We then say that ¢y, . . ., ¥m_1 is & I'-formal proof of ¥n,_1, and we
abbreviate the existence of such a I'formal proof by writing I' F¢,—_1; then
Ym_1 1s called a I-formal theorem. If T is empty, we write Fym_; and call
Ym—1 & formal theorem,

We now give some common formal theorems that are found useful
in practice. Throughout the remainder of the discussion, ¢, ¢, x, £ denote
arbitrary formulas, «, 8, v arbitrary variables, and o, r, p, ¢ arbitrary
terms. As a special case of axiom A3 we get

24 |"Va<p = @.
25 ¢y = Hap if ¢ is obtained from ¢ in the manner, and with the
restrictions, of A3.

Indeed, a formal proof of ¢ = Hae is supplied by the sequence

Ya e = 1Y,

(Va To= 1Y) = [(Hap & TTVa T¢) = (Y = Hay)],
('Ha<p<=> Vo _]<p)=>(5[/=>g.a<p),

Hap & 1Va T,

¢=>E[a<p.

As a special case of 25 we get

26 |—-<p = 'chp.

27 FVap = Hae.

28 FValp=1y) = (Vap = Vay).

To prove 28, observe the following facts in succession:

(@ FVap=o¢ by 24,

(b)) Fa(e=y) = (¢=1) by 24,

(© FValo =) = (Voo = ¢) by (@), (¥), AL
(@) FVa[Vale =¢) = (Vap = y)] by generalization,
(&) FWale=y¢) = Va(Vap =) by (d), A4,

() FVa(Vap =¢) = (Vap = Vay) by A4,

(@) Fale=y) = (Vap= Vay) by (e), (f), Al

29 FVa(e A YY) © Vap A Vay.



Proof
(a)
(b)
()
(d)
()
(f)
(9)
(R)
(7)
)
(k)
D

FYa(e AY) =0 A Y
FVa(e A Y) =0
FVa[Va(e A ¥) = ¢]
FVa(e A ¥) = Vap
FVa(e A ¥) = Vay
FVa(e A ¢) = Vap A Vay
FVap A Vay = Vap

FVap A Vay = ¢

FVae A Vay = ¢

FVap A Vay = ¢ A ¢
FVae A Vay = Va(e A )
FVa(e A ¥) & Aap A Vay

30 Fla(e V ¢) & Hap V Hay.

Proof
(a)
(b)
(e)
(d)
(e)

Fla(e V ¥) & T1Va (e V ¥)

Fllev)e Te ATy

FVa (e V) & Va(Tle A 1Y)
FVa(Te A T¢¥) & Va e A Va 1y

Fda(e V ¢) & Hae V Hay
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by 24,

by (a), AL,

by (b), generalization,
by (c), A4,

similarly,

by (d), (), Al,

by Al,

by (9), 24, Al,
similarly,

by (h), (), AL,

by generalization, A4,
by (f), (k), Al.

by A2,
by Al,
by 28, Al,
by 29,

173

by (a), (c), (d), A2,

Al.

31 |¢ & Vae provided that « does not occur free in ¢.

Proof
(a)
(b)
(c)
(d)
(e)

i—chp = @

FVa(e = o)

FVa(e = ¢) = (¢ = Vap)
Fe = Vap

Fo & Vag

32 |-Va VA= VB Vag.

Proof
(a)
(&)
(e)
(d)
(e)
(f)
(9)

by 24,

by Al, generalization,
by A4,

by (b), (¢),

by (a), (d), AL

FVa Ve = VB by 24,

FVa V8p = o by (a), 24, Al,

FVa(Va Ve = o) by (b), generalization,

FVa VBe = Vae by (¢), A4,

FVa VBe = VB Vap by (d), with similar reasoning,
FVB Vae = Va Ve similarly,

FVa Ve & VB Vae

by (o), (f), Al
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33 Fa VBp = VB Hae.

Proof
(CI,) 1'_V6<P = ¢ by 24,
(5) Fo=Hap by 26,
(©) Vo= Hayp by (a), (o), AL,
(d) }— _]E{C“P = _]VB<P by (C)) Al)
(e) } THae = Va 1VBe by generalization, (d), A4,
(f) HFia VBe = Hayp by (e), Al, A2,
(@) FHa VBp = VB Hayp by (f), generalization, A4.

We now give a series of formal theorems concerning equality.

34 If « does not occur in o, then FHa(a = 7).

Proof
(@) Fo=0=Hala =0) by 25,
b Fala = a) by A5, generalization,
(© Fo=o by (v), A3,
@ Hla(a = o) by (a), (¢).

35 }—a=5=>5=a.

Proof
(¢) Fa=8=(a=a=8 = a)
@) Fa=a=(a=8=8=a)
(c) fa=B=83=a

36 fFa=8AB=v=a=17.

Proof
(@ B=a=B=y=a=17)
®) la=8=8=a
() Fa=BAB=vy=a=1v

by A6,
by (a), Al,
by (b), AS.

by A6,
by 35,
by (a), (b), AL

37 }o = 7= p = 6 provided that 6 is obtained from p by replacing one
or more occurrences of ¢ in p by r all simultaneously.

Proof
(@ Fo=1=(p=p=p=019)
b)) top=p=>(@=7=0=190)
() Fp=0»
(d) Feo=r=p=190

by A6,

by (a), AL,

by A5, generalization, A3,
by (b), (c).

The formal theorems 24 to 37 form a useful basis for beginning the
development of the mathematics one is really interested in within a
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language, and their proofs are typical of purely logical arguments and
should be valuable in trying to prove additional logical theorems that
may be needed in a mathematical development. We now want to give
a few more results of a deeper nature that will be useful in connecting
our development of logic in general with set theory, as developed in the
main text.

3838.If 'l =y, then I'}x < £ provided that £ is obtained from x by
replacing one or more occurrences of ¢ in x by ¢.

Proof We parallel the definition of formula—8 to 12—proceeding thus
by induction on the length of x. If x satisfies clause 8 or 9, then we
obviously have x = ¢ and £ = ¢, and nothing needs proving. Proceeding
inductively, suppose that x is the formula x’ v x”. Two cases present
themselves.
Case 1 ¢is x' V x'" also, and then £ is ¢, so that, again, nothing needs
proving.
Case 2 ¢ has the form ¢ Vv &/, where £ (respectively £’) is obtained
from x’ (respectively x’’) by replacing zero or more occurrences of ¢ in
x' (respectively x’/) by ¢. By the induction hypothesis, I' ¢’ < ¢ and
I' " & ¢’. An easy application of Al yields T'}x & £ as desired.
If xis a formula x” A x”, X’ = x’/, 7x’, or x’ © x’/, the procedure
is the same as the case just treated. Now suppose that x is the formula
Vax’. Again we may ignore the trivial case in which ¢ = x. In the
nontrivial case, ¢ has the form Vaf’, where £ is obtained from x’ by
replacing one or more occurrences of ¢ by . By theinduction assumption,
I'ix' @ ¢. Generalization, 28, and Al are then easily used to obtain
I bx < ¢, as desired. The case in which x is Hay' is treated similarly.
We get T'lx' & £, as above; T} T1x’ & ¥, by Al; I'FVa 1) &
Va 18, by using 28; and then Al and A2 yield I' FHay' & Hat’, as
desired.

We are mainly interested in applying 38 in conjunction with the
following more elementary result.

39 If 8 does not occur in ¢, and if ¢ is obtained from ¢ by replacing each
free occurrence of a in ¢ by 8, then FVap & VY.

Proof
(CI,) }—Va‘P =y by A3)
(B) FVap = Vgy by (a), generalization, A4,
(c) FVBYy = Vagp similarly,
@ FVapoVoy by (), (o), Al
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Using 38 and 39, we can change bound variables in any formula;
for example, if we want to banish all bound occurrences of « in a formula, ©,
we choose a new variable 8, look at an innermost quantifier on « in ¢,
and replace a there and in the scope of that quantifier by 8. 39 together
with 38 guarantees that the formula so obtained is provably equivalent
t0 . The process is repeated until all bound occurrences of « are wiped
out.

The next ‘“‘deeper’” result allows us to eliminate unwanted mathe-
matical axioms (at an expense, of course).

40 (Deduction metatheorem) If T''U {o} is a set of sentences and T U
{‘0}}—5[’) thenPl—‘PZ}'\[’- *

Proof Letxo . .. ,xm-1bea (I'U {p})-formal proof of y. Wereplace
each part x; of the sequence to get a I'-formal proof of ¢ = ¢. In accord-
ance with definitions 20 to 23 of formal proofs, one of the following
cases holds for an arbitrary part x; of the above sequence.

Case I x; is a logical axiom, or x; is a member of I'.  We replace x; by
the three formulas

Xiy
Xi = (‘P = Xf))
© = X

Case 2 xi18s ¢. We replace x; by ¢ = o.
Case 3 There exist j,k < 7 such that x; is the formula xi = x:.. We
replace x; by the three formulas

[ = (xx = x:)] = [(¢ = xx) = (0 = 1)),
(¢ = xx) = (¢ = x1),
@ = Xi.

Case 4 There exist j < 7 and a variable a such that x; is Vay;. We
replace x: by the three formulas

Va(‘P S XJ'))
Vale = x5) = (¢ = Vaxj),
¢ = Vax;.

It is then easy to check that we get a I-formal proof of ¢ = ¢, as desired.

As discussed in the Introduction, a frequent method of arguing using
a mathematical axiom of the form Hae is to introduce a ‘“‘constant’
which plays a role of the object assumed to exist in the axiom, deduce a
conclusion not involving the object, and then get rid of the constant. We
now want to explain and justify this within our axiomatic logic. The
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deduction theorem clearly plays a big role here. The following easy
result is also important.

41 If ¢ 1s an individual constant, o« does not occur bound in ¢, ¢ is
obtained from ¢ by replacing every free occurrence of a in ¢ by o,
I' ¢ = x, and o does not occur in any sentence of T, in ¢, or in y,
then T' Fdae = x; and also T' |y = x refers to provability in a lan-
guage of which ¢ 1s a symbol, and T }FHae = x to provability in a
language of which o is not a symbol.

Proof Let 6y, . . ., 0n_1bea I-formal proof of y — x. Let 8 be a new
variable, one that does not occur in ¢, ¥, x; 8 5 «; 8 does not occur in any
of 6y, . . ., 0m_1. Replace ¢ by 8in each of 8;, . . . , 6m_1, obtaining
6, . .., 6 _,. By checking Al to A6 and 20 to 23, we see that
9, ..., 0 _,is a I-formal proof in a language without . Because
On_11S ¥ = x, 0,,_, is ¢/ => x, where ¢/ is obtained from ¢ by replacing ¢
everywhere by 8. Thus I' i)/ = x in the o-less language; moreover, g8
does not oceur in x, because ¢ doesnot occurin x. Hence '} T1x = 1¢/;
CRVB(TIx = T1¢¥); TF x=V3 ¢/, T}FIBY = x. Now « does not
oceur in ¢/, so that, by change of bound variable, we get T FHap = x.

Clearly 41 justifies the intuitive procedure previously described. If,
in addition to the assumptions of 41 we have I' FHay, then we can con-
clude that T |x.

Only one topic remains to be discussed to found our set-theoretical
development properly on axiomatic logic. This is the role of definitions
in an axiomatic development. Working within a language, we frequently
wish to expand it by introducing new symbols, but defining them in
terms of the old ones. The procedure differs slightly, depending on
whether the new symbol is a relation symbol or an operation symbol.
Suppose I'is a set of sentencesin a language L. We expand L by adjoining
a new relation symbol R (say of rank m) by a definition ¢ provided that the
following condition holds.

42 In the language with R adjoined, we take I' \U {¢} as axioms, where

Y 1s the sentence VaoVa; - © * Vam_1 (¢ = R(ay, . . ., am_1)),
where ¢ has exactly m variables ay, . . . , am_1 Occurring free in it
(ag, . . . , am—11n their natural alphabetic order).

In case of an operation symbol O (say of rank m), we require the following
conditions to hold.

43 ¢ has exactly m 4+ 1 variables ag, . . . , a. Occurring free in it
(a9, . . . , am in their natural alphabetic order).
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48 T|Vay: Vap1 B Van(e < an = B), for 8 £ ag, . . . , 0.
45 In the language with O adjoined, we take ' U {y} as axioms, where
¥ 1s the sentence

Vag * © - Vau(e = O(ag, - . ., me1) = am).
The following two results are the basic facts about definitions.

46 If L is expanded to L' by adding a definition, then for every formula
Y in L’ there is a formula x of L such that I'U {¢} ¢ < x (using the
above meaning of ¢).

Condition 46 is easily proved by induction on the length of y.

47 Under the assumptions of 46, if ¢ is a formula of L and ' U {¢} 1,
then T' |y.

Condition 47 is proved essentially by replacing the defined symbol by
its definition throughout a (I' \U {¢})-formal proof of y; the details are
left to the reader.

This completes our exposition of axiomatic logic.

In the remainder of this appendix we want to indicate how the main
part of the text can be brought into the framework of axiomatic logic as
we have developed it here. Theoretically, our development of set theory
begins within a language with only one nonlogical symbol, the binary
relation symbol e [and we have preferred to write « ¢ 8 instead of e (,8),
as in the general case of this appendix]. A sequence of definitional
expansions of this simple language then occurs throughout our book.
Although we have not tried to keep the set-theoretical development
within the rigid axiomatic logic described here, we hope the reader has
little trouble in seeing that this is possible in principle. To aid the reader
in this regard, we give a series of disconnected remarks concerning typical
difficult points that arise in fitting the text into the axiomatic logic
framework.

Remark 1 Definition 1.3 has three parts. The first two may be con-
sidered definitions of the one-place relation symbols “is a set” and “is a
proper class.” The third cannot be put into the framework of this
appendix. Instead, one should imagine lowercase letters eliminated
throughout the text: Vae(a) replaced by VA(A is a set = ¢(4)), Hae(a)
by HA(A is a set A ¢0(4)). We could have developed logic with several
“sorts’” of variables, and then such a replacement would not have been
necessary; but such a development is complicated.
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Remark 2 The notion of set-theoretical expression defined in Definilion
1.6 is the same as that of a formula in the language with sole nonlogical
constant e. Axioms 1.7 have the form

Ha VBB ea = B isaset A ¢),

where ¢ 1s a formula, a and 8 are distinct variables, and « does not occur
in ¢. The symbolism {X : ¢(X)} again does not fit into the framework
of this appendix; one should replace phrases like “let 4 = {X : o(X)}”
in the text by “let A be aclasssuchthat VX(X e 4 & X isaset A o(X)).”
Again we could have developed logic so as to encompass this notion
formally (technically, by using a description operator), but we preferred
simplicity.

Remark 3 §, introduced in Definition 1.20, is a one-place operation
symbol. It should be distinguished from the function F = ($z : x a set),
which is a certain set of ordered pairs.

Remark 4 Definition 1.24 introduces a binary operation symbol { , |.

Remark 5 Definition 3.9 introduces a binary relation symbol R 7s on A.
Of course we do not adhere closely to a formal language in the text, and we
allow a phrase such as ‘““let R be on A4.”

Remark 6 In Definition 4.9, : — is to be considered a ternary relation
symbol.

Remark 7 Definition 4.17(2) coincides, of course, with the definition of
term given in this appendix. It is necessary to eliminate all lowercase
letters in favor of capital letters in the use of Definition 4.17 (as in
Remark 1), and one must eliminate uses of Definition 4.17(2%) and (777)
entirely, as in Remark 2.

Remark 8 Definitions 5.4 and 5.16 again cannot be formalized in the
logic described in this appendix. U:q 4: should always be eliminated in
favor of U Rng A, for example.

Rematk 9 Definition 6.1 defines PA only for functions A. P is to be
treated as an operation symbol; hence, to make the definition completely
rigorous, PA should be defined for any class 4. How it is defined for
classes A that are not functions is of no importance. A similar comment
applies to some later definitions.

Remark 10 As in Remark 1, the use of special variables «, 8, v, . . .,
as introduced in Definition 9.12, would have to be proscribed.



Axioms of Set Theory

1.2 Extensionality VA VB[VC(CeA & (CeB) = A = B).

1.7 Class-building HA VX (X e A & X is a set A (X)), where A does
not oceur in ¢(X).

1.12 Power set Valb VC(C S a= C ed).

1.13 Pairing Va VbHc(aec A bec).

1.14 Union VaHdAbVC(Cea=C C D).

1.18 Regularity VA[A 2 0=HXX eA A XN A =0)].
1.23 Infinity Ha[0ea A VXX ea = §X ea)].

1.35 Substitution If F is a function and Dmn F is a set, then Rng F is a
set.

1.36 Relational axiom of choice If R isa relation, then there is a function
F such that F € R and Dmn F = Dmn R.
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Index of Notations'

V 3
A 4
= 4
T 5
= 6
v 8
C1 9
A, B, , X, Y Z 13
€ 13
¢ 13
a,byc, ...,z Yy 2 14
{X (X))} 17
o 17
0 18
M 18

! Entries are listed in the order in which they are defined in the text.
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