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These are largely self-contained notes developing set theory, following Jech. For Jech
Chapters 1-8 these notes are sketchy; just hitting a few points in Jech that we found needed
more discussion. Starting with Jech Chapter 9 we essentially rewrite Jech, supplying proofs
for most exercises. Some chapters are missing or not fully developed.
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1. Elementary set theory

A partial ordering of P is a binary relation < on P such that

Vp e P(p £ p).
Vp,q,r € P[p < q and ¢ < r imply that p < r].

We say that (P, R) is a poset in the second sense iff R is transitive, reflexive on P,
and anti-symmetric: Vp,q € P[p<q<p—p=q|.

Proposition 1.1. (i) If (P, <) is a poset, define p < q iffp < q or p=gq. Then (P,<) is
a poset in the second sense.

(ii) If (P, <) is a poset in the second sense, define p < q iff p < q and p # q. Then
(P, <) is a poset.

(iii) If (P, <) is a poset, definep < q iff p < q or p=q. Then (P, <) is a poset in the
second sense, and if we define p <" q iff p < q and p # q, then <=<'.

(i) If (P, <) is a poset in the second sense, define p < q iff p < q and p # q. Then
define p <" q iff p < q orp = q. Then <=<'.

Proof. (i): Clearly < is transitive and reflexive on P. Suppose that p < g < p. Thus
(p<qVp=q)A(g<pVq=p). Then logically we have the following cases.

Case 1. p < q < p. Then p < p, contradiction.

Case 2. p < p, contradiction.

Case 3. p=q.

(ii): Clearly Vp[p £ p|. Suppose that p < ¢ <r. Then p <q,p # q, ¢ <r, and q # q.
Hence p < r. If p =17, then p < ¢ < p, so p = q, contradiction. Thus p # r, so p < r.

(iil): p <" qiff (p < gAp# @) iff (p<qVp=q@ Ap#q) iff (p <qgnp#q)iffp<q.
(iv: p<'qiff (p<qVp=q)iff (p<qgADP#q)Vp=yq)iff p<q. O

We define

(o, B) < (v,0) iff max{a,B} < max{y,d} or
max{a, f} = max{v,d} and a <7y or
max{cq, f} = max{y,0} and «a=+ and (<.

It is easily shown that < is a well-order of ON x ON. TI'(«, ) is the order type ofl'(«, 5)
{(&n): (&m) < (a, B). Clearly

Lemma 1.2. I'(a+1,a+ 1) =(o,a) + -2+ 1. O

Lemma 1.3. I'(n,n)) = n? for alln € w.

Proof. Induction on n, using Lemma 1.2. (
Lemma 1.4. I'(w,w) = w. O

Theorem 1.5. Vo[I'(a, o) < w?].



Proof. Induction on «. It is clear for o < w. Now assume it for o > w. Then

Wl = 0% W > WY WY+ WY+ W
>wtat+a+l=w+a-2+1
>TNa+1,a+1).

Thus our statement holds for @ + 1. Now suppose inductively that v is a limit ordinal.
Then

T(v,7)=JT(ea) < | w*=w. O
a<y a<y
Lemma 1.6. If o < f3, then (a,7y) < (8,7).

Proof. Case 1. 7 < a. Then max(a,7v) = a < f = max(8,7), so («a,7) < (8,7).

Case 2. a <y < 8. Then max(a,v) = v < f = max(8,7), so (a,7) < (8,7)-

Case 3. <. Then max(«,vy) =~ = max(8,7) and a < 3, so («a,7) < (8,7). O
Lemma 1.7. If a < 3, then (v,a) < (v, ).

Proof. Case 1. v < a. Then max(y,a) = a < f = max(y, 8). So (v,«a) < (v, 5).

Case 2. a <y < (. Then max(a, ) = v < = max(y, ), so (v, a) < (v, 5).

Case 3. f <. Then max(v,a) =~ =max(y, ) and a < 3, so (v,) < (7, B). ]
Lemma 1.8. g <T'(5,0).

Proof. In fact, (0,0) < (1,0) < (2,0) < --- < (£,0)--- for £ < B. O

Lemma 1.9. g+ <T'(8,7).

Proof. Induction on . It holds for v = 0 by Lemma 1.8. Assume it for 7. Then
LB,v+1)>T(B,y) >B+~,s0(B,vy+1) >+~ +1. Now assume that it holds for
all 6 <, with 7 limit. Then I'(3,v) > sups.., I'(3,6) > sups (8 +9) = B+ 7. 0

Lemma 1.10. If['(a, @) = a and B,y < «, then B+ v < «.
Proof. By Lemma 1.9, 8+~ <T'(8,v) < '(a, ) = a. O

Lemma 1.11. IfT'(o,a) = « and B,y < a, then B-v <T(B+~v,58+7).

Proof. Induction on . It is clear for v = 0. Assume that v+ 1 < o and g-~v <
L(8+7,8+7). Then

FB+v+1,8+v+1)=TB+7,8+7)+(B+7)-2+1
>B-v+B=0(y+1).
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Now suppose that v is limit and V6 < y[3-d < T'(B+ 9,8+ J)]. Then

TB+7v8+v) = JT(B+68+93)

o<y
> JB-6=81. O
o<y
Theorem 1.12. IfI'(a, ) = «, then a = 0 or there is a  such that o = we” ]

Theorem 1.13. If « =0 or a = w* for some &, then T'(a, o) = av.

Proof. We may assume that a = w*® with £>0.
Case 1. £ =n+ 1 for some 7. Note that

n+1 n, n,
Ww¥ — W — U W
necw

n

(1) Vn € w\1VB < w*" ™ [[(B,5) <w<"" - A].
For a fixed n € w\1 we prove this by induction on . It is clear for § = 0. Assume it for
B. Then
FB+1,8+1)=TB,8)+B8-2+1<w""-B+8-2+1
<w" B4 =0T (B4 1).

Now assume that 8 < w*"™ is limit, and for all § < 3, I'(6,6) < w®" " - §. Then

T(B,8)=JT6,0) < [ Jw"" - 6)=w"-8.

o<p i<

This proves (1). If follows that V3 < «o['(8, 8) < .
Case 2. £ is limit.

(2) Vi € E\1VB < w*"[[(B, B) < w*" - B].
The proof is like that for (1). O

Theorem 1.14. There is a well-ordering < of <“On such that for every ordinal o, <“

1 an initial segment under <, of order type w,.

Wa

Proof. First we show by induction on n that there is a well-order <,, of "On such
that for every cardinal k, <,, N(k x k) is a well-order of "x.

n=0: °On = {0}

n = 1: Let <;=<. Then

<3 Nk x k) ={(a, B) : a < B < K},
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which is a well-order of .
n > 1; define

f<ny1g iff  f,g€"'On and max(rng(f)) < max(rng(g))
or max(rng(f)) = max(rng(g)) and Im <n

[Vp < m[f(p) = g(p)] and f(m) < g(m)]

Clearly <,.1 is a well-order of "*1On. If k is a cardinal, clearly <, 1 N(k X k) is a
well-order of "*1k.
Now we define, for f,g € <“On, f < g iff

f=0#g or
dn € w\{0}[f,g € "On and f <,, g or
Im,n € w\{0}/m <n and f € ™On and g € "On

and max(mg(f)) = max(mg(g))]].

Clearly < is as desired. O

Lemma 1.15. If P is perfect, then there exist real numbers r < s such that P N (—oo,r]
and P N [s,00) are perfect.

Proof. Let a = inf(P) and b = sup(P); perhaps a = —oo or b = oo, or both. We
consider two cases.

Case 1 (a,b) C P. Then choose r,s with a < r < s < b. To check that this works,
note that
la,7] ifaeP,
(a,r] otherwise (so that a = —o0),

PN (—o0,r] :{

so clearly (—oo,r| is perfect. Similarly, [s,00) is perfect.
Case 2 (a,b) Z P. Choose z € (a,b)\P. Since P is closed and = ¢ P, choose ¢, d with
¢c<xz<dand (¢c,d)N P =10. Then

(1) a<e.

For, suppose that ¢ < a. Since a < z, this implies that (a,x) C (¢,d). But (a,z) NP # 0
by the definition of a; so (¢,d) N P # (), contradiction. So (1) holds.
Similarly,

(2) d <b.

In fact, suppose that b < d. Since x < b, this implies that (z,b) C (¢, d). But (z,b)NP # ()
by the definition of b; so (¢,d) N P # (), contradiction. So (2) holds.
Now take 7, s such that ¢ <r <z < s < d. We claim that (—oo,r] N P is perfect. It
is nonempty by (1). Since (—oo,r] N P = (—o0,r) N P, clearly it has no isolated points.
Similarly, [s, 00) N P is perfect. O

Lemma 1.16. If P is perfect, then there exist a < b such that P N [a,b] is perfect.
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Proof. By Lemma 1.15, choose r such that PN (—oo,r] is perfect. Applying Lemma
1.15 to PN (—o0, ], we obtain s such that PN[s,r] = PN (—o0,r]N[s, 00) is perfect. O

Lemma 1.17. If P is perfect, then there exist disjoint closed intervals [a,b] and [c,d] such
that P N [a,b] and P N [c,d] are perfect.

Proof. By Lemma 1.15, choose r < s with P N (—oo,r] and P N [s,00) perfect. By
Lemma 1.16 choose a, b, ¢,d so that P N (—oo,r| N [a,b] and P N [s,00) N [e, d] are perfect.
Now PN (—o0,r]N]a,b] = PN[a, min(r,b)] and PN[s,c0)N]c,d] = PN[max(s,c),d]. O

Theorem 1.18. FEwvery perfect set has cardinality 2.

Proof. Let P be perfect. We define perfect sets QQ, for each s € <“2 by recursion
on dmn(s). Let Qp be a bounded perfect subset of P, by Lemma 1.17. If @5 has been
defined, let Q5o and Q41 be disjoint perfect subsets of (), by Lemma 1.18.

For each t € “2 choose r; € ﬂn€w Q¢n- This gives 2% elements of F'. ]

Theorem 1.19. If F is an uncountable closed set, then there exist a perfect set P and a
countable set S such that FF = PUS.

Proof. Let F be an uncountable closed set. For every A C R let A’ be the set of all
limit points of A.

(1) A’ is closed.

For, suppose that a € A’. Thus for any b, ¢, if b < a < ¢ then (b,c) N A’ # 0, and hence
(bye)NA#(. Thus a € A’. So A’ is closed.

Now let
FO = F,
Foy1 = Fég;
F, = ﬂ F, for a limit.
v<a

Thus Fy O Fy O - -+, so there is an ordinal 0 such that Yo > 0[F, = F})|. Let P = Fj.
2) IF\P| < w.

For, let (Ji : k € w) enumerate all intervals (r, s) with < s and r, s rational. Now F\ P =
Up<co(Fa\FY,). Thus for any a € F\P there is a unique o, < 6 such that a € F,,\F},, .
a is an isolated point of F, \F}, , so there is a k, € w such that Jy, N (F,, \F), ) = {a}.
Clearly k(a) # k(b) for a # b, so k is a bijection from w onto F'\ P. So (2) holds.

Now F' = PU (F\P). Clearly P is closed with no isolated points. O

Theorem 1.20. (Baire category theorem) If D,, is a dense open set of reals for n € w,

then D % N

Proof. Let (Ji : k € w) enumerate all intervals (r,s) with r < s and r, s rational.
Say Jr = (rg,qx) for all k € w. Let K be any nonempty open interval; we show that

new Pn 1s dense.
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DNK # (. Let Iy = K. Suppose that I,, has been defined, so that it is a nonempty
open interval. Then I,, N D,, is nonempty and open. Let k(n) be the smallest integer such
that [qu(n), "k(n)] € In N Dyp and [T4(n) — Qremy| < % Then set I,y1 = (qk(n)> Tk(n))- Thus
I,,+1 C I,,. This finishes the construction.

(1) If n < m, then [gr(m)» Tk(m)] € (@r(n)> Th(n))-
For, [qr(m), "km)] € Im € Int1 = (Qr(n) Th(n))-
(2) (qr(n) : n € w) is Cauchy.

In fact, let ¢ > 0 be given. Choose a positive integer n such that % < e. Then for any
m,p > n, by (1) we have qum), Gr(p) € (T(n)> Th(n)), and hence |grim) — qey| < =. So (2)
holds.

By (2), let a = limy, 00 q(n)- Then a € K, since for all n > 0 we have, by (1),
Gk(n) € [ak(m)s Te(m)] S (@h0): Tr(0) € [k(0): Th(o)]; 80 @ € [ar(0), Tr(0)] € To = K. Also, for
each n we have a € D, since for any m > n we have, by (1), qxm) € [qk(m),rk(m)] C
(@r(n)> Tr(n)) S [Qr(n)s Th(n)); 80 @ € [Qr(n)s Th(n)] S Dn-

The Baire space is “w with the product topology, in which the sets O(s) def {fe“w:s5C

f} form a basis, where s is a finite sequence of natural numbers.
Let d(f, f) = 0 for any f € “w, andd d(f,g) = Qn—1+1 where n is minimum such that

f(n) # g(n) for f # g.

Proposition 1.21. d is a metric, and the topology determined by d is the standard topol-
0gy.

Proof. Condition for the metric. Let f, g, h be given distinct functions. Let p,m,n
be the least difference places for f, h; f, g; g, h. Then f(p) # g(p) or g(p) 7é h(p). Som <p
or n < p. Hence 2m*1 < 2P*1 or 271 < 9P+1 hence 2p1+1 < leﬂ or 2p+1 < 27}“; hence
d(f,h) <d(f,g) or d(f,h) < d(g,h). Thus the triangle inequality holds.

The metric topology coincides with the indicated topology: first we show that O(s)
is open in the metric topology. Let f € O(s). Let ¢ = 2% Suppose that g € S.(f). Then
d(f,g) < e, so g agrees with f on n, and so g € O(s), as desired. Conversely we show for
any positive € that S¢ is open in the indicated topology. Suppose that f € S.. Choose n
such that 557 <e. Let s = f [ n. For any g € O(s), the least m such that f(m) # g(m) is
at least as blg as n; s0 d(f,g) < z5r. Hence g € S., as desired.

Separability: let C' be the collection of all eventually constant sequences, and suppose
that O(s) is given, with notation as on page 40. Let f O s be eventually constant. Then
f € O(s), as desired.

Completeness: Suppose that (f,, : m € w) is a Cauchy sequence. For each n € w let
N (n) be smallest such that Vm, p > N(n)[d(fm, fp) < 52r7)- Define g(n) = fy(nt1)(n) for
all n € w. Now

(1) N(n) < N(n+1) for all n.
In fact, for all m,p > N(n + 1) we have d(fm, fp) < 5o < gmrrs 80 N(n) < N(n+1).

(2) d(g, fN(nt1)) < Qn—lﬂ for all n.



We prove (2) by induction on n. It is trivial for n = 0. Assume it for n. Then g | n =
fN(+1) | n by the definition of d, and g(n) = fn@my1y(n), s0o g [ (n+1) = fnmen) |
(n+1). We have d(fn(nt1), [N(n+2)) < garz since N(n+1),N(n+2) > N(n+ 1), so
Inmany T (n+1) = fymee) [ (n+1). Hence g [ (n+1) = fymie) [ (n+1). Thus (2)
holds.

Now suppose that € > 0. Choose n so that 2% < e. Then for any m > N(n + 1) we

have
1 1 1

d(g, fm) Sd(gafN(m—l))+d(fN(n+1)7fm> < W‘FW = on U
We now give a proof that “w is homeomorphic to the irrationals. Let a = (ag, aq,...) be
an infinite sequence of integers such that a; > 0 for all + > 0. We want to give a precise

definition of the continued fraction

ag +

ay +
az +
CL3+

1
a4+...

To start with, we assume that a is a sequence of positive real numbers with domain either
w or some positive integer. We define [ay, . .., ;] for each | < dmn(a) by recursion:

[CLO] = ap;
1

[a07-~-7ak+1] :a0+ )
[al, . .,a;H_l]

We want to be very explicit as to how these approximations can be written as certain
fractions. To this end we make the following recursive definitions:

p(a,0) = ao;  q(a,0) =1L
pla,1) =agpa1 +1; q(a,1)=a;.

For k > 2:

p(a, k) = axp(a,k — 1) + p(a, k — 2);

(1) q(a, k) = apqla,k — 1) + q(a, k — 2).

Also, let a’ = (a1, as,...). Now we claim that for all ¢ € w,

pla,i+1) =agp(d, i)+ q(d’,i);
q(a,i+1) = p(a’, i)

We prove these equations by induction on ¢. For ¢ = 0 we have

p(av 1) = apaq + 1= aOp(a/7 0) + Q(a/7 0)7
q<CL, 1) =a1 = p(a/7 0)7
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as desired. For ¢ =1,

p(a,2) = asp(a, 1) + p(a,0)
= apaiaz + az + aop
= ap(araz + 1) + az
= agp(a’, 1) +q(d’, 1);
q(a,2) = azq(a, 1) + q(a,0)
=ajaz +1

=p(d’, 1),

as desired. Now we do the inductive step for ¢ > 2:

p(a,i+1) = a;t1p(a,i) +pla,i—1)
=a;r1(app(a’,i— 1) +q(a’,i— 1))+ app(a’,i —2) + q(a’,i — 2)
= ao(a;+1p(a’,i — 1) +pla’,i —2)) + aiy1g(a’,i — 1) + q(a’,i — 2)
aop(a’, i) + q(a’, 1);
q(a,i+1) = ai19(a,i) +qa, i — 1)
=a;y1p(a’,i— 1)+ p(a’yi—2)
=p(a’, ),

as desired. So the above equations hold.
Note by an easy induction that p(a, k), q(a, k) > 0 for all k. Now we claim:

p(a, k)
2 ag,...,a| =
? o= )
for every k € w. We prove (2) by induction on k. For k = 0, we have
p(a,0)
ap] = ap = ,
l2a] = a0 q(a,0)

as desired. For £k = 1, we have

B 1 apar+1  p(a,l)
[ag, a1] = ag + R = @)

as desired. Inductively, for k£ > 2,

[ao,---,ak]:a°+m

Q(alvk — 1)
pla’,k—1)
_aop(a’,k—1)+q(a',k—1)
B pla’,k—1)

:a0—|—




as desired.
From now on we shall write pg, g in place of p(a, k), q(a, k) if a is understood. We
also define p_; = 1 and g_; = 0. Then the equations (1) also hold for k£ = 1, since

aipo+p_1=apa1 +1=p; and
ai1qo +q—1 = a1 = q1.

Next we claim that for k > 1,

(3) QkPr—1 — Prk—1 = —(qk—1Pk—2 — Pk—1qK—2)-

In fact, multiply the equations (1) by gx—1 and pi_; respectively:
Prkqk—1 = QkPrk—1qk—1 + Pk—2qk—1;
qkPk—1 = QkAk—1Pk—1 + qk—2Dk—1-

Subtracting the first of these equations from the second gives (3).
Now qop—1 — pog—1 = 1, so by (3) and induction we get, for & > 0,

(4) QkPe—1 — Prear—1 = (—1)".

Hence for k > 1 we have

(5) pect_pe_ (U
qk—1 qk qrqk—1

Next, for any £ > 1,

(6) QePr—2 — Prqr—2 = (1) tay .

To see this, multiply the equations (1) by gx_2 and pi_o respectively:

PrkQk—2 = QkPr—19k—2 + Pk—2qk—2;
QkPrk—2 = QpqQr_1Pk—2 + qk—2Pk—2-

Now subtract the first from the second and use (4): (6) follows.

From (6):
™ Pz P _ (D)
dk—2 4k 4k qk—2

Hence:
P2k . . .

(8) <— ke w> is an increasing sequence;
2k

(9) <p2k:+1 k€ w> is an decreasing sequence;
q2k+1

10



Next we claim

42k q2i+1

for all k,1l € w

In fact, let m = max(k,!). Then

@2k 92m
< P2mAl o (5)
2m+1
< P2i+1 by (9)
q2i+1
So (10) holds. Next we claim:
(11) Pk < Pr+1 and qr+1 < qrao  for all k € w.

In fact, this is clear from the recursive definitions.

Now we assume that our sequence a is infinite, and all a; are positive integers. It
follows from (8), (9), (10), (11), and (5) that the approximations L& converge, and by
definition the limit is the value of the infinite continued fraction described at the beginning.
For ay a negative integer but all a; positive integers for i > 0, we define a’ = (1, a1, as,...)
and define the continued fraction to be

. pld k)
ao =1+ klggo q(a’, k)

Now we want to see how to represent any real number as a finite or infinite continued
fraction. We make a recursive definition for any real number a« > 1. Let r(a,0) = a.
Suppose that we have defined r(«,i) > 1. Write r(«,i) = a(a, i) +s(a, i+ 1) with a(a, i) a
positive integer and s(a, 7+ 1) a nonnegative real < 1. If s(a, i+ 1) = 0, the construction
stops. Otherwise we define r(«a,i+ 1) = m This finishes the construction. Let («)
be the index i such that s(a,i+ 1) =0, or [(«) = w if there is no such index. We need the
following technical fact.

(12) If @ > 1 and I(«) > 1, then I(r(a, 1)) = I(a) — 1, and for each j < I(a)) — 1 we have
r(r(e,1),7) = r(e,j + 1) and a(r(a, 1), j) = ala, j + 1).

The second equality of the conclusion follows from the first, so we do not worry about
it. By induction on j we prove that r(r(a, 1), j) is defined and equals r(«, j + 1) for each
j <l(a)—1. For j = 0 we have r(r(a, 1),0) defined and it equals r(a, 1), as desired. Now
assume our result for j, with j + 1 <I(a) — 1. Then

r(r(a,1),j)=r(a,j+1) =ala,j+ 1)+ s(a,j + 2).

Thus a(r(a,1),7) = a(a,j + 1) and s(r(a,1),7 4+ 1) = s(a,j +2). Now 5+ 2 < I(«a), so
s(a,j +2) > 0, and hence by definition, r(«,j + 2) = m Hence r(r(a,1),j+ 1) =
r(a,j 4 2), as desired.
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Finally, if j = l(«), then r(«,j) = a(a, j), and hence r(r(a,1),5 — 1) = r(a,j) =
a(a,j+ 1) and so I(r(a,1)) = j — 1, as desired in (13).

(13) If &« > 1 and n < I(«), then a = [a(«,0),a(a, 1),...,a(a,n —1),r(a,n)].

We prove this by induction on n. For n = 0, [r(«,0)] = o. Assume that our condition is
true for n, and n + 1 < [(«). Then

[a(c,0),a(a, 1),...,a(a,n),r(a,n+ 1)]

= a(a,0) + L
la(a, 1), a(e, 2),...,a(a,n),r(a,n+ 1)]
1
= a(,0) + [a(r(e, 1), 0Ya(r(a, 1), 1), - ., a(r(a, 1),n — 1), 7(r(e, 1), 1)]
1
=a(a,0) + o 1)
=a(a,0) + s(a, 1)

completing the inductive proof.

(14) If o > 1 is rational, then the above definition of 7(«, 7)’s terminates after finitely many
steps.

In fact, it suffices to show that if r(«, i) = g with b, ¢ positive integers and g.c.d(b,c) =1,
and r(a,i + 1) is defined, then r(a, i+ 1) has the form £, with d and e positive integers
with e < ¢. To prove this, recall that r(«,i) = a(a,i) + s(a,i + 1), with s(a,i+ 1) a

nonnegative real < 1, and r(a,i+ 1) = m Thus

b
- =r(ayi) =ala,i) + s(a,i+ 1) and hence
c

b= ca(a,i)+cs(a,i+1);

rla,i+1) =

- 1
cs(a,i+1) by (15),

and cs(a, i+ 1) is a positive integer < ¢, as desired.
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(16) If « is rational, then there exist integers ag, a1, ..., a, with a; > 0 for all ¢ > 0 such
that « = [ag, a1, ..., an)].

In fact, let m be an integer such that o« + m > 1; if a > 1, let m = 0. By (14),
n [(ac +m) is finite. We then have r(a +m,n) = a(a+ m,n). Hence by (13) we have
a+m = [a(a+m,0),...,a(a+ m,n)], and the desired conclusion follows.

(17) If (ap,a1,...) is a sequence of rational numbers each greater than 0, then also
lag, a1, ..., ay] is rational for each n.

This is clear from the basic definition, by induction.

(18) Let a > 1 be irrational. Then by (17), the sequence

b (a(a,0),a(a, 1),...)

never terminates. We claim that for each positive integer n,

_ p(b,n — 1)r(a,n) + p(b,n — 2)
q(b,n —)r(a,n) + q(byn —2)°

(0%

We prove by induction that for every positive integer n, this holds for all irrationals o > 1.
First, the case n = 1:

as desired. Now we assume our statement for n. In fact, we apply it to r(«, 1) rather than
a. Note that r(«, 1) > 1, and it is irrational by (17) and (13). Let

c=(a(a,1),a(c,2),...)
= (a(r(e, 1),0),a(r(a,1),1),...),

by (12). Hence, starting with the inductive hypothesis,

r(a,1),n)+p(c,n —2)
r(a,1),n)+q(c,n —2)
a,n+ 1)+ ple,n —2)

a,n+ 1)+ q(e,n—2)°

o~
NN /N

o

S

—_
S— [ — — [ ~—

3
/N /N



Hence, using the equations following (1),

a=r(x,0)
=a(,0) + s(a, 1)
1
BN
— ala q(e,n—Dr(a,n+1) 4+ q(e,n —2)
=l ’0>+p(c,n—1)r(a,n+ 1)+ p(e,n — 2)

a(a,0)p(e,n— Dr(a,n+ 1) + a(e, 0)p(e,n — 2) + g(c,n — )r(a,n+ 1) + g(e,n — 2)
ple,n—Dr(a,n+1) 4+ ple,n —2)
~ p(b,n)r(a,n+1)+p(b,n —1)
q(b,n)r(a,n+1)+q(by,n—1)’

which finishes the inductive proof of (18).
We now omit the parameter b, as it is understood in what follows.

(19) Let o > 1 be irrational. Then for every positive integer n,

]ﬁ (pn—1Qn—2 - Qn—lpn—2>(rn - an)

dn (Qn—lrn + Qn—2>(Qn—1an + Qn—2> .

To prove this, first note by (18) and (1) that

(20) o — ]ﬁ _ Pn—1Tn — Pn—2 B Pn—1Gn +pn—2
dn dn—1Tn + dn—2 dn—10an + dn—2

Now we have

(pn—lrn - pn—Q)(Qn—lan + qn—Z) - (pn—lan + pn—Q)(Qn—lrn + qn—2)
= DPn-19n—10nTn + Pn—19n—2Tn + Pn—2Gn—10yn + Pn—2qn—2
— Pn—-14n—-1anTn — Pn—149n—20n — Pn—24n—1Tn — Pn—24n—2

= (pn—IQn—Q - qn—lpn—Q)(rn - an)-
Hence from (20) we get (19).
(21) For irrational o > 1 we have
a = [a(a,0),a(a,1),..].

In fact, note from (4) that p,_1¢n—2 — gn_1Pn_2 = (—1)""1, while by definition we have
r(a,n) —a(a,n) = s(a,n+ 1) < 1. Hence by (19),

1 1
< < ;
(Qn—lrn + Qn—Q)(Qn—lan + Qn—2> QTQL_Q

’ Pn
a — —
In
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and hence (21) follows from (11).
Now for any irrational o > 1, define

f(a) = (a(a,0),a(a,1),...).

Then by the above results, f is a one-to-one function mapping the set A/ of irrationals >
1 onto the set “(w\1). The latter set is clearly homeomorphic to “w.

(22) The set of irrationals > 1 is homeomorphic to the entire set of irrationals.

To see this, define g by setting, for each irrational z > 1,

(x>:{x+m if0<m<z<m+1withm € w,
g z+3m+1 if —m<zxz<-—-—m+1withm € w.

Then g maps (m,m + 1);;; one-one onto (2m,2m + 1), for each positive integer m, and
(—=m, —m + 1);;; one-one onto (2m + 1,2m + 2);,, for each m € w. Clearly g is the desired
homeomorphism.

Thus to finish this digression it suffices to show that f, defined above, is a homeomor-
phism. To do this, we need the following fact.

(23) Suppose that ag,...,an,bg, . ..,b,_1 are positive integers and r is a real number > 1.
Assume that

[ag, ..y an_1] <[bo,y .. bp_1,7] <lag,...,a,] if nis odd

[ag, .-y an_1] > [bo, .- bp_1,7] > lag,...,a,] if nis even

Then a; = b; for all i < n. Cf here (2), (8), (9), (10).

We prove (23) by induction on n. For n = 1 the assumption is that ag < by + % < ag+ %
So clearly ag = by. Now assume (23) for an odd n; we prove it for n + 1 and n + 2. So,
first suppose that

[ag, ..., an] > [boy-- . bn, 7] > [ag, ..., ani1].

Thus
1

aop + T,
[ah .- -,an+1]

> by + > ag +

[bl,...,bn,r]

[al,...,an]

and it follows that ag = by and
[al,...,an] < [bl,...,bn,r] < [al,...,an+1];

then the inductive hypothesis yields a; = b; for all+ = 1, ..., n, which proves our statement
for n + 1.

The inductive step to n + 2 is clearly similar. So (23) holds.

Now to show that f is continuous, suppose that s € "(w\1); we want to show that
f71O(s)] is open. We may assume that n = 2m + 1 for some natural number m. Let
a € f71Oq]. Define a; = a(a,i) for all i. Thus ag = Sg,...,ad2m = S2m- By (2) and
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(8)—(10) we have [ag, ..., a2m] < a < [ag, ..., a2m+1]. Choose ¢ so that [ag,. .., a2,]+e <
a<a+e<ag,...,a2m+1]. We claim:

(24) For every irrational 8 > 1, if |a — 3| < ¢, then 8 € f~1[O(s)].

This will prove continuity of f. To prove (24), assume its hypothesis, and let b; = b(S,1)
for all 7.

Case 1. B < a. Thus a — 8 < €. Hence |[ag, - .., a2m] < [ag, ..., a2m] +e < a < B+e¢,
so [ag, ..., a2m] < B. If [ag,...,asms1] < B, then by (8)—(10), o < f, contradiction. So
B < [ag,...,a9m+1]. Now B = [bg,...,b2m,T2m+1] by (13), so by (23), a; = b; for all
1 < 2m, as desired.

Case 2. a < . Thus f —a < e, s0 8 < a+e. Hence

[ao,...,agm] <a<fB<a+e< [ao,...,a2m+1],
and the argument is finished as in Case 1.
So (24) holds, and f is continuous.
(25) f is an open mapping.

For, suppose that a > 1 is irrational, and ¢ is a positive real number; we want to show
that f[S:(«)] is open. Let b € f[S:(a)]; we want to find a finite sequence s such that
be O(s) C f[S:(a)]. Say b= f(5) with 8 € Sc(«). So | — | < e. Choose m such that

1

aGzmalbam 1) ~ ¢l Ak

This is possible by (11). Let s = (bg, ..., bam+t1). So b € O(s). Now suppose that ¢ € O(s).
Then

[bo, ceey bgm] = [Co, ey Cgm] < [C] < [C(), Ceey Cgm+1] = [bo, Ceey b2m+1]
by (8)—(10). Also,

[0, -+ -5 bam] = [co, - - -, Cam] < B <[co, .-, Cama1] = [bo, - bam1]
by (8)—(10). Now

p(b,2m+1)  p(b,2m

~—

[bo, .. .,b2m+1] — [bo,. . .,bgm] = q(b, 2m+ 1) — q(b, Qm) by (2)
B 1
~ q(b,2m)q(b,2m + 1)
<e—|a—p|

Hence
[e] —al <|[d] =B+ |8 —al <&,

and so ¢ = f([c]) € f[S:(a)], as desired.

In summary:
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Theorem 1.22. “w is homeomorphic to the irrationals. L

Seq is the set of all finite sequences of natural numbers. A sequential tree is a subset T' of
Seq such that Vt € TVn € w|[(t | n) € T]. If T is a sequential tree, then

T)={f€e“w:Ynew|[(fIn)eT}.

Proposition 1.23. [T] is closed in “w.

Proof. Suppose that f € “w\[T]. Choose n € w such that (f | n) ¢ T. Then
feO(f In) CUw\[T]. =
Proposition 1.24. If F is a closed subset of “w, then

TFd:ef{SESeq:EIfEF[SQf]}

is a sequential tree, and [Tp] = F'.

Proof. Clearly TF is a sequential tree. Now suppose that f € [Tr] but f ¢ F. Since
F is closed, choose s such that f € O(s) and O(s) N F = (). Say s has length n. We have
s C f. Since f € Tr we have s = f [ n € Trp. Choose g € F such that s C g. Then
g € O(s) N F, contradiction.

If fe Fandn € w, then (f [ n) € Tr. Hence f € [TF]. ]

A sequential tree T is perfect iff Vt € T3s1, 80 > t[s1 £ so and so £ s1].

Proposition 1.25. Let ' C “w be closed. Then F' is perfect iff T is perfect.

Proof. Let F' C “w be closed. First suppose that Tr is not perfect. So there is a
t € Tk such that all elements above t are comparable. Let f € F witht C f. We claim that
{f} is open in F; hence f is isolated in F' and so F' is not perfect. Clearly O(t)NF = {f}.
Now suppose that F' is not perfect. Choose f € “w such that O(f)NF = {f}. So there
is a t € Tr such that all elements above ¢ are comparable. Hence T is not perfect. L

Lemma 1.26. Let T be a sequential tree. Define
T = {t €T :3s1,82 > t[s1 and ss are incomparable.]}.

Then |[TI\[T']] < w.

Proof. For each f € [T)\[T"] let sy = f [ n, where n is minimum such that (f [ n) ¢
T. Clearly sy = s, implies that f = g. Hence (sy : f € [T]\[T"]) is one-one. O

Now let T be any sequential tree. Define

TO = T,
Toy1 = Tég;
T, = n Tz for o limit.
B<a
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Since T' is countable, there is a § < wy such that Ty = Tp.

Proposition 1.27. [T)|\[T}] is countable.
Proof.

(1) Va || () Ts| = () [T4]

B<a B<a

In fact,

fel|()Ts| iff Vnew|(fIn)e ) Ts

B<a B<a
iff VnewVB <al(fn)elp]
iff VB < aVn € w[(f | n) € Tg]
iff VB < a[f € [15]]

iff f € () [Ts).
B<a
Thus (1) holds.
(2) [T\[To] = | ([Tu]\T2))-
a<o

For, suppose that f € [T]\[Ty]. Let 8 be minimum such that f ¢ [T;3]. If § is limit, then

FelTsl =) Tal| = [)[Tal,

a<f a<p

and so there is an o < f such that f ¢ [T,], contradiction.

So 3 is a successor o + 1. Since clearly § < 6, we have o < 0. Now [1] = [T}], so
f € [Tu]\|T7]. This proves C.

For D, note that if a < 0, then [T)] = [To+1] 2 [Tp], and D follows.

Hence (2) holds, and so [T]\[Ty] is countable. O

Clearly Ty = Typ. Thus [T] = ([T1\[Tb]) U [Tp] is a decomposition into a countable set and
a perfect set.

Theorem 1.28. “w X “w is homeomorphic to “w.

Proof. Let f be a bijection from w onto w X w. Define F': “w X “w — “w by

(F(z,9)(n) = f~ (z(n),y(n)).

18



F is one-one: suppose that (z,y) # (2/,y’). Say wlog z(n) # 2/(n). Then (F(x,y))(n) =
f=H=(n),y(n)) # fH(@'(n),y'(n)) = (F(2",y)(n).

F maps onto “w: suppose that z € “w. Define z(n) = 15(f(2(n)) and y(n) =
274 (f(z(n)) for all n. Then for any n € w,

(F(z,y))(n) = fHz(n),y(n) = F7HA(f(2(n), 2"(f(2(n))) = [ (f(2(n)) = z(n).

F is continuous: suppose that s C w X w is a finite function, and (z,y) € F~![{z € :
s C z}]. Let dmn(u) = dmn(s) with u(n) = 15*(f(s(n)), and let dmn(v) = dmn(s w1th
v(n ) = 2"4(f(s(n)). Then s C F(z,y), and so for any n € dmn(s), s(n) = (F(z,y))(n) =
7" (2(n), y(n)), and hence u(n) = 1°((s(n)) = x(n) and v(n) = 2%(f(s(n)) = y(n). So
(x,y) € U, x U,. Suppose that (w,t) € U, x U,. Then for all n € dmn(s),

(F(w,t))(n) = fH(w(n), t(n)) = f~H(u(n),v(n)) = fHA*(f(s(n))), 2" f(s(n)) = s(n).

Thus U, x U, C F71[{z € “w: s C 2}]. So F is continuous.

F is open: Suppose that u,v C w X w are finite functions and z € F[U, x U,].
Choose x € U, and y € U, so that z = F(x,y). Let n be greater than each member of
dmn(u) U dmn(v). Let w(i) = z(i) for all ¢ < n. Then z € U,. We claim that U, C
F[U, x U,]. Suppose that t € U,. Let a(i) = 151(f(t(7)) for all i, and b(i) = 2"¢(f(¢(3))
for all <. By “onto” above, t = F'(a,b). Now a € U,, since if i € dmn(u), then

a(i) = 17 (f(t(3))) = 1" (f(w(i))) = 1 (f (=(2))) = 1" (F((F'(2,9))(0))) = (i) = u(i).
Similarly, b € U,. O

Theorem 1.29. “(“w) is homeomorphic to “w.

Proof. Let B = {U : 3F € [w]|<¥3V[V is a function with domain F' and VYm € F[V,,
is an open subset of “w and U = {z € “(“w) : Ym € Flz,, € V;»]}]]. B is the standard
base for the topology on “(“w). Let C = {U : 3F € [w]<*“3Ja,G[G : F — [w]<¥ and a is
a function with domain F and for all m € Fla,, : G, — w] and U = {z € “(“Yw) : Vm €
Flam C zm]}]}

Lemma 1. C is a base for the topology on “(“w).

Proof. First, every member of C' is open. For, let U € C, with associated F|a,G.
For each m € F let V,,, = {y € “w : a;, C y}. Then V,, is open in “w. We claim that

U={zxe““w):Vm € Flz,, € V,,]},

so that U is open. In fact, if x € U, then Vm € Fla,, C z,,], and so Vm € Flz,, € V,,].
Conversely, if Vm € F[x,, € V,,], then Ym € Fla,, C z,,], and hence x € U.

Second, every member of B is a union of members of C'. For, suppose that U € B,
with associated F,V. Take any x € U. For m € F we have x,, € V,,, so there exist
G € [w]<¥ and a,, : G, — w such that x,,, € U,,. C Vi SO @, C X4,. Thus x € V' with
V={ye? w):Ym € Flam C yml}},and V CU. O
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Let g : w — w X w be a bijection. Define H : “(“w) — “w by setting, for any z € ¥(“w),

(H(@))n = 2100 (g(n) (27 (9 ().

H is one-one: suppose that H(x) = H(y). Take any m,p € w. Then

Tm(p) = (H(Z))g-1(m.p) = (HY))g-1(m.p) = Ym (D)

H is onto: suppose that y € “w. Define z € “(“w) by setting, for any m,p € w, x,,(p) =
y(g~*(m,p)). Then for any n € w,

(H(@)n = 212t (g(n) (2" (9())) = y(n).

H is continuous: suppose that b : K — w with K finite, and z € H'[U}], where U, =
{y € “w:bCy}. Thus H(z) € Up, so b C H(z). Thus

Vn € K[bn = xlst(g(n))@nd(g(n)))]

Let F = {m : dn € K[15%(g(n)) = m|}. For each m € F let G,, = {p € w: In €
Klg(n) = (m,p)]} and define an(p) = by-1(myp) for all m € G, and p € G,,. Let
V={ye““w):¥Ym € Flay, C yn]}. SoV € C. For all m € F and p € G,,, we have
am(n) = xm(n),sox € V. For all y € V and n € K we have

(H () = Y12t (g(n) (2" (9(n))) = @10t 4n)) (2" (9(1))) = bn,
so H(y) € Up. Sox € VC H™[U,).
H~! is continuous: suppose that U € C with associated F,a,G, and = € H[U]. Say
x = H(y) with y € U. Thus

Vn € wlz, = ylst(g(n))(Qnd(g(n)))] and Vm € FVp € Gplam(p) = ym(p)-

Hence
Vm € FVp € Gulam(p) = Tg-1(m p))-

Now let K = {n € w:3m € FIp € Gyu[n = g 1 (m,p)]}. For each n € K let s(n) =
a1st (g(n)) (24 (g(n))). Then for any n € K, s(n) = ajst(4(n))(2"4(g(n))) = z,. So z € U,.
Suppose that y € Us. Define z,,(p) = y(g~(m,p)) for all m,p € w. Then for all n € w,
y(n) = 21t (g(n)) (2" (g(n))), so y = H(z). For any m € F and p € Gy,

am(p) = s(g(m.p)) = y(g~" (M, p)) = 2m(p)),

and hence z € U. Thus x € Us C H[U]. ]

Proposition 1.30. If X\ is an infinite cardinal, (ko : @ < A) is a sequence of nonzero
cardinals, and Yo, f < Na < = ko < kg, then

- ()

a<A a<
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Proof. Let pn = J ) Ka
(1) IfT € [N, then u <]

In fact, I' is cofinal in A, so for any 5 < A there is an o € I" such that § < a. Hence
kg < [laer Ko, and (1) follows.
Now write A = |, ., [, with each Ty of size X and Vo, B < Ao # 8 — T'o NT'g = 0].

o [ < TLims = T o< I I oo = I e e

a<A a<A a<A a< pel, a<A

aGI‘

Proposition 1.31. If s is a limit cardinal, then 2% = (2<%)°f(%),
Proof. Write K =)

i<ct(k) Ai, with each \; < k. Then
_ 221<cf(ﬁ) H A < H 9<r _ 2<n cf(x) < <2n)cf(n) < 9%, .
i<cf(k) 1<cf(k)

Proposition 1.32. If k is singular and 3u < kKYv € [u, k)[2Y = A], then 2% = A.
Proof. We may assume that cf(x) < . Then 2<% = X\ = 2 and so

o — (2<H)Cf(li) — <2u)cf(r$) — O — ). 0

Assume that x is a limit cardinal and Yu < k3v € [u, k)[2"* < 2¥]. Let A = 2<". Then
cf(\) = cf(k) and 2% = XN, O]

Proof. Let (0¢ : £ < cf(k)) be a strictly increasing sequence of cardinals with supre-
mum . Now we define by recursion (p¢ : § < cf(k)) with each pg < k. Assuming that
pn has been defined for all n < &, with § < cf(x), let 0 = J, _¢ py. Then o < &, so by
assumption there is a p¢ € [0 U 0;,/{) such that 27 < 2°¢. Now V¢ < cf(k)[fe < pe], so
Ugccr(n) Pe = K. Also, (27 1 £ < cf(k)) is strictly increasing, so cf(A) = cf(x). Then
oK — (2<K>Cf(ﬁ‘,) — )\Cf()\). ]

Proposition 1.33. Define J(r) = (%),
(1) If Kk is a successor cardinal, then 2" = 1(k).
i) If k is a limit cardinal and 3u < kKVv € [u, K)[2Y = 2], then 2% = 2<% . J(k).
It p
i11) If k is a limit cardinal and Vp < kv € (u, k)[2* < 2], then 28 = J(2<%).
(1) If 7 s :
Proof. (i) is clear. For (ii), 2% = 2# = 2<%, Also, J(r) = x*f(*) < 2% so (ii) follows.

For (iii), see above. O

Proposition 1.34. Let k, A be cardinals > 1, with at least one of them infinite. Then one
of the following holds:
(i) k* = 2*.
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(ii) K = K.
(i4i) There is a pu such that cf(pu) < X < p and k* = pfW,

Proof. If x is finite, then )\ is infinite, and k* = 2*. So assume that & is infinite. If
\ is finite, then x* = k, so assume that A is infinite. If K < ), then x* = 2*. So assume
that A < x. Let g be minimum such that g* > x; so u < k. Note that

(1) p* = &M
(2) Vv < plv? < ul.

In fact, otherwise p* < v* < p?, contradicting the minimality of .
Case 1. ;1 < X\. Then * = p* = 2N

Case 2. \ < p.
Subcase 2.1. X < cf(p). Then k* = p* = p < K, s0 pu = K.
Subcase 2.2. cf(u) < A. Then r* = p? = pt), O
Proposition 1.35. If k is strong limit, then 2% = (%) ]

Proposition 1.36. If x < QCf(“), then kcf(s) — ocf(k)
Proof. r°f(®) < (20f(R))ef(x) — gcf(r)), 0
The singular cardinal hypothesis, SCH, is the statement

¥ singular k[2¢(F) < k — ) = k],

Proposition 1.37. (SCH) If k is singular and Y < k3v € [u,k)[2" < 2Y]. Then

oK — <2<m)—|—_
Proof. In fact, of(2<%) = cf(k) and 2% = (2<%)°f™") and 2°f(2™") = 2¢f(w) < 2<x
so 2% = (2<%))* by SCH. O

Proposition 1.38. If2 < k < 2, then k* = 2.
Proof. For, i* < (2M)* = 2* < k. O

Proposition 1.39. (SCH) If 2* < k and X < cf(k), then k* = k.

Proof. Case 1. 3u < k[k < p?]. Let p be smallest with this property. Then
KN < p? < kA so kN = p? Now Vo < pfr? < k). If v < pand p < v, then k < p? < 02,
contradiction. So Vv < p[v* < p]. In particular, A < 2* < p.

Subcase 1.1. cf(p) > X. Then p* = p. Hence k> < p* = u < k. So k* = k.

Subcase 1.2. cf(p) < X. Then p* = pfW . Now if p < 2*, then £ = p?
contradiction. So 2* < y, and hence 2°/(") < . Hence by SCH, x* = p* = pcf <
K, as desired. ]

Case 2. Vu < k[p* < k]. Hence k* = k, since A < cf(k). O

Proposition 1.40. (SCH) If 2* < k and cf(k) < X, then Kk = k.
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Proof. We have 2°f(®) < . so by SCH, (%) = x*.

Case 1. 3u < K[k < p*]. Let p be smallest with this property. Then x* < p? < k?,
so kN = p*. Now Vv < u[v? < k). If v < pand p < v*, then k < p* < v, contradiction.
So Vv < u[v? < ).

Subcase 1.1. cf(u) > A. Then pu < k since cf(k) < A\. Now x* = p* = p < &,
contradiction.
Subcase 1.2. cf(u) < A. Then x* = pt = pt),
Subsubcase 1.2.1. 2°FW) < 1. Then by SCH, k < &’ = pfW = pt < g,
contradiction.
Subsubcase 1.2.2. u < 2cf(k) | Then k* = ;ﬁ‘ <2 < K, contradiction.
Case 2. VY < k[p* < k. Hence k* = (%) = gt O

Proposition 1.41. (The Milner-Rado Paradox) For every ordinal o < k™ there are sets
X, C « forn € w such that o = |J X, and for each n € w the order type of X, is
< g™

ncw

Proof. We proceed by induction on a. The conclusion is obvious if a < &, so suppose
that x < «, inductively. If @ = 8+ 1, by the inductive hypothesis write 8 = (J,,c,, Xn
with each X, of order type < k™. Define Yy = {8} and Y,,41 = X, for all n € w. Then
a= Unew Y,, and each Y,, has order type < k".

Now suppose that « is a limit ordinal. Let (8¢ : £ < cf(a)) be a strictly increasing
continuous sequence with supremum «. Note that cf(«) < k. By the inductive hypothesis,
for each § < cf(a) write Be = U, ., X¢ where each X¢& has order type < s™. For
each n € w and £ < cf(a), let Vi1 = X5\ Be. Let Zy = 0, and for each n € w let
Zn+1 = Ugcet(a Y+t For each n € w and € < cf(a) let f& be an isomorphism of Y
onto an ordinal < k™. For any n € w we define g : Z,, ;1 — k"1 as follows. Let v € Z,, 1.
Choose ¢ < cf(a) such that B¢ <+ < Bey1. Then v € V5T and we set

g(y) = K" &+ 5T ().

Clearly g is a strictly increasing function. So the order type of Z,,; is at most x"*!.

Now take any v < a. Choose £ < cf(a) so that B¢ < v < B¢11. Choose n € w such that
v € X&H. Then v € Y5+, and so v € Z,,41. This finishes the inductive proof. L

Proposition 1.42. [ __N, =R,

n<w - 'M

Proof.

e (£ (1<)

necw nw nw

= HN%: H(2M'Nn)

nw nw

:HQW.HNn

n<w n<w
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n<w n<w n<w

Proposition 1.43. J] .. .., Na =R
Proof.

IT Re < (Rogw)® _<ZN> <HNa>w:HN‘;

a<wtw a<wtw a<wtw a<wtw
w w
IR I | CERS R (L=
n<w n<w necw necw
—xe T we=T0%e I %= IT N 0
a<w+tw new a<w+w a<w+w

Proposition 1.44. If Va[2%e = R, 5], then B < w.
Proof. Suppose that f > w. Let a be minimum such that a4+ > 5. Then 0 < a < £.
(1) o is limit.

For, suppose that a = v+ 1. Then y+ 3 <8, s0 v+ 1+ 8 =~ + B < 3, contradiction.
Let kK = Ngqq. Then cf(k) = cf(a) < K, so k is singular. For each £ < a we have
£+ = B, and hence 2%+¢ =R, ¢ 5 =R, 5. So 2Vt =R, 5. But a+a+ 3> a+ 0,

50 No43 < Nota+s, Which contradicts the assumption of the proposition. L
Proposition 1.45. [, ., 1, Na =N, .

Proof. First we prove
(1) For any infinite cardinal £ we have N =[], ., Ra.

In fact, write k = ', with the I',’s pairwise disjoint and of size k. Then

a<k
=JIRe=1 Do < I I R =[] Re <5
a<k a<k BeT, a<k BeT, a<k

Hence

Ny Ny
RE = (Z Nw1+n> = <H Nwﬁn) = [I®0+

ncw necw new

= H (Ngi ’ Nm-ﬁ-n NNl H Nwﬁ-n

new new

= J] ®a by (1)

a<witw

S H Nw1+w - Nii—kw a

a<wi+w

24



Proposition 1.46. Nt = N . 2¢1
Proof.

Nt < [N = [T R -2%) =28 TR, < 2% - R <N O

necw new new

Proposition 1.47. If o < wq, then NG = N - 2%,
Proof. Induction on a. For a < w,
N N N AR SR AIEG

Now suppose, inductively, that w < o < wi. If a is a limit ordinal, then

< [Ty = [T -2 =20 - [ e < 2% - () = 2% e <
B<a B<a B<a

Finally, if « is a successor ordinal, write « = 8 + n where § is a limit ordinal and n > 0.
Then
NI = Rg - NG =R - RE° - 2% < NJe - 2™ < R O

Proposition 1.48. If a < wa, then Rg2 = N&t . 292,
Proof. Induction on a. For a = 0,
Ny2 = Rt - 282,

Now suppose inductively that « is a limit ordinal. Then

wpz < [T = [T 2%) < JT 0 -2™) = nir - 2™ < wie.
B<a B<a B<a

Finally, suppose inductively that « = § + 1. Then

NgzzNgz.Na:Ng1_QNQ_NO‘:N?‘QNQ. 0

Proposition 1.49. If k is reqular limit, then k<% = 2<%,

Proof.
K<RZZKA:ZZ|)\Q|SZZQ)\:2<>\§/{<A. 0

A<k A<k a<lk A<k A<k

Proposition 1.50. If k is reqular and strong limit, then k<" = k.

Proof.

<K — 2</1

K = K. [l
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Proposition 1.51. If k is singular and not strong limit, then k<" = 2<% > k.

Proof. There is a A < & such that 2* > k. Then s* = 2 for all y € [\, K)card. SO

K < pocf () < k<E = Z kP = Z KM = Z Q< O<E L o< n
pu<kK A<k A<u<k
Proposition 1.52. If x is a limit cardinal and \ > cf(k), then k* = (Up<n p)eE),

Proof. Let k = Z(ch(m) ko with each k, < k. Then

A cf(k)

K < H Ko = H mé < U mé < (KA)Cf(“) = K. O

a<cf(k) a<cf(k) a<cf(k)

Proposition 1.53. If k is singular and strong limit, then 2<% = k and k<" = ("),

Proof. Clearly 2<% = k. Now if A\, u < k, then p* < k. It follows that x* = k(%)
for all A such that cf(k) < A < k. Hence

K<K _ Z KJ)\ — Z KJ)\ _ Z K_ch(,%) _ /{Cf('%). n

A<k cf(r)<A<kK cf(r)<A<kK
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2. Advanced set theory

The collection principle is the statement

VX, p1, .., pp3YVu € X [Fvp(u,v,p1,...,pn) = F0 € Yo(u,v,p1,...,0n)l-

Proposition 2.1. In ZFC the collection principle holds.
Proof. Let ¢(u,a,p1,...,pn) be the formula

[ﬁav[cp(u7 U?pl? AR 7p’fb>] /\ o = 0]\/
[Fv[e(u,v,p1,...,0n)] Aais an ordinal A Jv € V,[p(u,v,p1,. .., pn)]A
Vp[5 is an ordinal A Jv € Va[o(u,v,p1,...,pn)] = a < S]]

Let X,p1,...,pn be given. Clearly Vu € X3la[y(u, a, p1,...,pn)]. Hence by the replace-
ment axiom, choose I' such that Vu € Xda € I'[¢)(u, o, p1, ..., pn)]. Nowlet Y =, p{v €
Vot (u,v,p1, ..., pn)}t. Suppose that v € X and Jvp(u, v, p1,...,pn). Choose a € T" such
that ¥ (u, o, p1,...,pn). Then there is a v € V,, such that (u,v,p1,...,pn). Sov €Y as
desired. ]

Proposition 2.2. The replacement azxioms are derivable from the other axioms plus the
collection principle.

Proof. Suppose that X,pi,...,p, are given, and Yu € X3lwp(u,v,p1,...,Pn)-
Choose Y so that

Vu € X[Fvp(u,v,p1, .., 0n) = Fv € Yo(u,v,p1,...,pn)]-
Then Yu € X3v € Yp(u,v,p1,...,pn)|, as desired. O

Proposition 2.3. Z, Q, and R are in V1.

Proof. We have rank(w) = w. Thus w € V,11. A definition of Z runs as follows.
Define (m,n)E(i,j) iff m,n,i,j € w and m + j =i+ n. E is an equivalence relation. Let
Z'=(wxw)/E, and W = {[(m,0)]g : m € w}. Then

(1) wn (Z\w') = 0.

For, suppose that [(m,n)]g € w. Then (m,n) € [(m,n)|g, so (m,n) € w. Clearly (m,n) #
0, so 0 € (m,n), contradiction.

Now we define Z = wU (Z'\w’). To see that rank(Z) < w+w, first note that if i,j € w
then rank((i,5)) < w. Hence w x w C V,, and so w X w € V4. For each a € Z' we have
aCwxw\V,,soa€V,1. SoZ' CV,yq, and hence Z'\w' C V,,41. Thus Z C V41, and
SO0 Z € Viy4a.

Now we consider Q. Define (a,b)F(c,d) iff a,b,c,d € Z, b,d # 0, and ad = bc. Then
F' is an equivalence relation on Z x (Z\{0}), and we define Q' = (Z x (Z\{0}))/F. We
also define Z" = {(a,1) : a € Z}.
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(2)Z2nQ =

In fact, suppose that x € ZNQ'. Say x = [(a,b)]p.

Case 1. x € w. Now (a,b) € x, so (a,b) € w, and this gives a contradiction, as above.

Case 2. x ¢ w. Say x = [(m,n)|g. Now (m,n)E(m+ 1,n+ 1), so also (m,n)F(m +
1,n+1). Hence mn + m = nm + n, and so m = n. Now (m,m)E(0,0). It follows that
(0,0)F(0,0), and so (0,0) € Z x (Z\{0}), contradiction.

Thus (2) holds. We define Q = Z U (Q'\Z"). Now for any (a,b) € Q" we have
a,b € Z, and hence a,b € V,42. So {a},{a,b} C V4o and so {a}, {a,b} € V,+3. Hence
(a,b) C V43, hence (a,b) € V4. Hence Q' C V4. Hence Q C V44 and so Q € V5.

Next comes the real numbers. A subset A of Q is a Dedekind cut of rationals provided
the following conditions hold:

(3) Q£ A#0;
(4) For all ;s € Q, if r < s and s € A, then r € A.
(5) A has no largest element.

Let R’ be the set of all Dedekind cuts. For each rational number a, let D, = {r € Q : z <
a}. Clearly D, is a Dedekind cut. Let Q" = {D, : a € Q}.

(6) QNR' =0.

For, suppose that x € Q NR’. If z € w, a contradiction follows since each Dedekind cut is
infinite. Suppose that x € Z\w. Say x = [(m,n)]g. Now (m,n) € z, so (m,n) € Q. But
each rational is clearly an infinite set, while (m, n) has at most two elements, contradiction.
A similar contradiction is obtained if z ¢ Z. Hence (6) holds.

We define R = QU(R\Q"). For the rank of R, note that each Dedekind cut is a subset
of @, which is a subset of V4. So R C V5. Hence R C V,,,5 and so R € V1. O

Proposition 2.4. Let A be an infinite set. For each P € [A]< let P ={Q e [A]<¥:
P C Q}. Let F be the set of all X C [A]<¥ such that AP € [A]<¥[P C X. Then F is a
nonprincipal filter on [A]<%.

Proof. This is clear, except possibly that F' is nonprincipal. Suppose that F' is
principal; say F'={X C S: Xo C X}. So Xy € F; choose P € S such that P C Xy. Let
PcQeS. Then Q € F, so X, C Q. HencePCQ But Pe P,so Pe @ and Q C P,
contradiction. 0

Pr0p051t10n 2.5. Let X € F iff Mx def {n : A,\X is infinite} is finite. If X C Y, then

Vn[A,\Y C A,\X], and hence My C Mx. Soif X € F and X CY, then Y € F. Now
Vn[AN\N(X NY) = (A \X)U (A,\Y)]; so Mxny = Mx UMy. Hence X,Y € F implies
that X NY € F. Note that My = w; hence 0 ¢ F. Thus F is a filter. We take D to be
any ultrafilter containing F.

Then D 1is not a p-point.

Proof. For any n we have
M4, = {m: Ap N A, is infinite} = {n};
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so w\A4, € FF'C D, and hence A,, ¢ D. Now suppose that X € D and X N A,, is finite for
all n. Thus
M\ x = {n: A, N X is infinite} = 0,

and so w\X € F C D, contradiction.

Proposition 2.6. If 2* = wq, then a p-point exists.

Proof. First we note that there are exactly 2¢ partitions of w. First, there are at
least 2¢ partitions into exactly two sets. Namely, for each A C w\1 let ¥4 = {A,w\A}.
Clearly this gives at least 2“ partitions into exactly two sets. Now for each o € (w + 1)\1
there at most H5<a 2% = 2% partitions of w into « sets. So there are exactly 2 partitions
of w.

Let (<7, : @ < w1) be an enumeration of all partitions of w. We construct by recursion
a sequence (X, : a < wi) of infinite subsets of w. Suppose that X, has been defined. If
there is a Y € &7, such that X, NY is infinite, we take the least such in some well-order,
and define X1 = X, NY. Suppose that X, NY is finite for all Y € 47,. Then we let
Xat1 € X, be such that | Xop1 NY| =1 for all Y € o, such that X, NY # (.

Now suppose that « is limit, and Xz has been defined for all § < « so that if
f <y <athen X, C* Xg. Let (8, : n < w) be a strictly increasing sequence of ordinals
with supremum «. Define

in, = least element of ﬂ Xg,, \{im :m < n};

m<n

then let X, = {i,, : n <w}. So X, C* X, for each v < . This finishes our construction.
Now we define
D={Y Cw:X,C"Y for some o < wy}.

If m € w, then Xy C* w\{m}, so w\{m} € D. Clearly D is a filter on w. Now suppose
that Y Cw. If X, C*Y for some a < wy, then Y € D. Suppose that X, €* Y for all
a < wi. If Y is finite, then w\Y € D by the above. So, suppose that Y is infinite. Let 7,
be the partition {Y} U {{i} : i € w\Y}. Then X, has exactly one element in common
with Y, hence w\Y € D. Thus D is an ultrafilter.

Finally, suppose that <7, is a partition of w into infinitely many infinite parts, and
B ¢ D for all B € «7,. Then by construction we have |BN X,41| <1 for all B € 47,, as
desired. O

Proposition 2.7. The completion of a BA is unique up to isomorphism.

Proof. Let C' and D be completions of B. Define 7 : C' — D by

B

W(c):Z{uEB:ugc}.

Clearly if ¢ < d then mw(c) < w(d). Now suppose that ¢ £ d. Choose u € B with
0<u<c-—d. Then u < 7(c),and u-d =0, so u-7w(d) = 0; so 7(c) £ w(d). In particular,
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7 is one-one. It remains only to show that = maps onto D. Suppose that d € D. Let
c= Zc{u € B:u <d}. We claim that 7(c) =d. If u € B and 0 # u < 7(c) - —d, then
u-d=0,s0 u-e=0 whenever e € B and e < d, so u - m(c) = 0, contradiction. If u € B
and 0 # u < d-—m(c), then u < d and u < 7(c), contradiction. O

Theorem 2.8. Fvery Boolean algebra has a completion.

Proof. Let A be a BA. A set U C AT is a cut iff
Vpe AtVge Ulp<q—peUl.
For every p € At let U, = {z € A" : x < p}. Note that U, is a cut. A cut U is regular iff
Vpe AT\U3q € AT[U,NU = 0].

Vp € AT[U, is regular]

In fact, if ¢ € AT\U,, then ¢ £ p, so with r = ¢ - —p we have U, N U, = 0.

Now let B be the set of all regular cuts. We claim that under inclusion B is a complete
BA, and A can be isomorphically embeded as a dense subalgebra in B.

AT is a regular cut.

(1) The intersection of a family of regular cuts is a regular cut.

For, let o/ be a family of regular cuts. Clearly ()< is a cut. Now suppose that p €
AT\N . Thus p € Uy (AT\U). Choose U € & such that p € (AT\U). Then choose
q € At such that U, NU = . Hence U, N« = 0. So ()« is a regular cut.

For any cut U let U be the intersection of all regular cuts containing U.

(2) For any cut U, U = {p: Vq < p(U,NU # 0}.

For, let W = {p:Vq < p(U,NU # 0}.

C: it suffices to show that U C W and W is a regular cut. If p € U and g < p, then
U, CU,s0U,NU # 0. Thus U C W. Clearly W is a cut. Suppose that p ¢ W. So there
is a ¢ < p such that U, NU = 0. Clearly then U, N W = 0.

D: it suffices to show that if U C V and V is a regular cut, then W C V. Suppose
that p € W\V. Since V is regular, choose ¢ < p such that U, NV = (). By the definition
of W we have U, NU # (). Take any r € U, N U; then r € U, NV, contradiction.

This proves (2).

For u,v € B, let u-v=uNwv and u+ v = uUw. Then clearly u - v is the g.l.b. of u and
v under C, and u + v is the L.u.b. of u and v under C. So the commutative, associative,
and absorption laws hold. Next note:

(2) u+u=u.
In fact, u+u=u+u-(u+u) = u.
(3) u-u=u.

In fact, u-u=u-(u+u-u) =u.
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Now note that the second distributive law can be proved once we prove the first one:
(u+v) (ut+w)=v-u+tu-w+v-Uut+v-w=u+v-w.

To prove the first distributive law, note that the direction O is clear. Now suppose that
pEu-(v+w). Sop € wand p € v+ w, so by (1), Vg < p[lvUw)NU, #0. So if
q < p, choose r € (Uw)NUyg; sor € (vUw)andr € u, sor € un (vUw)NU,. So
we have shown that Vg < plun (vUw)NU, # 0. So by (1) again, p € uN (v Uw). Thus
u-(v+w) Cu-v+u-w, and the distributive law holds.

Next, for any regular cut u let —u = {p: U, Nu = 0}.

(4) —u is a regular cut.

In fact, clearly it is a cut. Now suppose that p ¢ —u. Then U, N u is nonempty, and we
let ¢ be a member of it. Clearly U, N —u = (), as desired.

To show that u-—u = 0, suppose that p € uN—u. Then p € U,Nu = 0, contradiction.

To show that u + —u = 1, suppose that v is a regular cut, u U —u C v, and v # 1.
Say p ¢ v. By the definition of regular cut, choose ¢ < p such that U, Nv = 0. Thus
Ug N (wU —u) =0. But then ¢ € —u by definition, contradiction.

So we have checked that a BA is obtained. Since B is closed under arbitrary intersec-
tions, the meet of any set of elements exists. Thus B is complete.

It remains to show that A is isomorphic to a dense subalgebra of B. Note that we
can define Uy = (). For any p € A let f(p) = U,. Clearly U, N U, = U,.q, so f preserves -.
If pe A, then

~Up={q:UsNU, =0}

={q¢:p-q=0}
={q:q9 < —p}
—U_,.

Hence f preserves —. Clearly f is one-one. Clearly f[A] is dense in B. O

Proposition 2.9. Assume that U is an ultrafilter on S and f : S — T. Let f,(U) =
{(XCT:fYX]€U}. Then f.(U) is an ultrafilter on T.

Proof. f~![T] =S e€U,soT € f.(U). Suppose that X € f.(U) and X CY CT.
Then f~1[X] € U and f~1[X] C f![Y], so f71[Y] € U and hence Y € f.(U). Suppose
that X, Y € f.(U). Thus f~1[X], f}[Y] € U, hence f}[XNY] = f1X]|nf Y] eU,
so XNY € f.(U). f710) =0 ¢ U,sob ¢ f.(U). If X CY, then either f~1[X] € U,
hence X € f,.(U), or S\f'[X] = f'[Y\X] € U, hence Y\X € f.(U). I

Proposition 2.10. Let U be an ultrafilter on w, and let a € “R be bounded. Then there
is a unique U-limit ¢ such that Ve > 0[{n € w: |a, —¢| < e} € U].

Proof. Since {a, : n € w} is bounded above, there is a b such that A, o {n:a, <b}
is infinite. Since {a, : n € w} is bounded below, there is a d such that d < b for each b
such that Ap is infinite. Let ¢ be the glb of all b such that A; is infinite. For each ¢ > 0

31



let C. ={n:a, € (c—¢e,c+¢)}. Note that if £ < § then C. C Cs. Each C. is infinite.
In fact, {n:a, <c—e} = A._., so A._. is finite, as otherwise ¢ < ¢ — . Now there is a
b such that Ay is infinite and b < ¢ + €, since ¢ + € is not a lower bound for all b with A4,
infinite. So C. is infinite. The collection of all sets C. has fip, so let U be an ultrafilter on
w containing all sets C.. For any € >0, {n:|a, — ¢/ <e} =C. € U.

For uniqueness, suppose that {n : |a, —e| < e} € U for all ¢ > 0, with, say, ¢ < e.
Choose m € {n : |ap, —c] < (e—¢)/3}N{n : |a, —d| < (e —¢)/3}. Then e — ¢ <
lc — am| + |e — am| < 2(e — ¢)/3, contradiction. O

Proposition 2.11. Let D be a nonprincipal ultrafilter on w. Then the following are
equivalent:

(i) D is a p-point.

(ii) VA € wD[Ag D A1 D -+ — 3X € DVn € w[X\ A, is finite ].

Proof. First suppose that the definition of p-point holds. Assume that Ag O A; D ---

are members of D. If this sequence is eventually constant, the desired conclusion is clear.
So assume that it is not eventually constant. Let

P = {w\Ag, A\A1, ..., [ Am}\{0}.

mew

So P is a partition of w with w members. None of them is in D, except possibly (,,c., Am;
and if it is in D, the desired conclusion is clear. So assume that none of them is in D.
Then by the p-point property let X € D such that X NY is finite for every Y € P. Now
the desired conclusion follows by induction.

Second, suppose that the condition of the propositiom holds, and we are given a
partition (A, : n € w) of w into infinitely many parts, each not in D. Then

(wW\4g) 2 (W\(AgU A7)) D +--,

and each w\(ApU ... A,) isin D, so we get X € D such that X N (4ApU...A,) =0 is
finite for all n, as desired. ]

Proposition 2.12. If (P, <) is a countable linearly ordered set and D is a p-point on P,
then there is an X € D of order type w or w*.

Proof.

(1) If 0 # X € D and (z,00) N X € D for every x € X, then D has a member of order
type w.

In fact, X does not have a largest element, so let (z; :

0}
sequence of members of X cofinal in X. Then (x;41,00)
Choose Y € D such that Y C* (x;,00) N X for all i. Then

< w) be a strictly increasing
NX C (x,00) N X for all 4.

Y N (—o0, ) is finite;
YN [.’132', .’,EZ'_|_1) is ﬁnite;
Y N{y:x; <y for all i} is finite.
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The last thing holds because Y N{y : z; <y for all i} C Y\ X. Thus Y is a member of D
of order type w, proving (1).

(2) If0) # X € D and (—o0,z) N X € D for every x € X, then D has a member of order
type w*.

The proof is very similar to that of (1): X does not have a smallest element, so let
(r; 1 1 < w) be a strictly decreasing sequence of members of X coinitial in X. Then
(—00,2i41) N X C (—00,z;) N X for all i. Choose Y € D such that Y C* (—o0,z;) N X for
all 7. Then

Y N (zg, 00) is finite;

Y N [ziy1,x;) is finite;

Y N{y:y < for all i} is finite.

The last thing holds because Y N{y : y < x; for all i} C Y\ X. Thus Y is a member of D
of order type w*, proving (2).

Now we use these two facts. Let M = {x : (z,00) € D}.

Case 1. M = (). Thus (—oo,z] € D for all z, and hence (—oo,z) € D for all z. So we
can apply (2) with X = P.

Case 2. M # (0, and M does not have an upper bound. One can take X = P and
apply (1).

Case 3. M # (), and M has a least upper bound x, and z is the largest element of P.
Let X = P\{z} and apply (1).

Case 4. M # 0, M has a least upper bound z € M, and z is not the largest element
of P. Thus (—o0,y] € D for all y > x, hence (z,y] € D for all y > x. We can apply (2)
with X = (z, 00).

Case 5. M # (), and M has a least upper bound = ¢ M, and x is not the largest
element of P. Then (y,z| € D for all y € M, and we can apply (1) with X = (—o0, z].

Case 6. M # (), and M has an upper bound, but no least upper bound. Let N = P\ M.
If M € D, apply (1), while if N € D apply (2). O

Proposition 2.13. An ultrafilter D on w is Ramsey iff every function f :w — w is either
one-one on a set in D or constant on a set in D.

Proof. =: Assume that D is Ramsey, f : w — w, and f is not constant on any set
in D. Then (f~'[{i}] : i € w, f[{i}] # 0) is a partition of w with no entries in D. Hence
there is an X € D such that X N f~![{i}] has just one element, for every i € w for which
f71{i}] is nonempty. Hence f is one-one on X.

<: assume the indicated condition, and suppose that (A,, : n € w) is a partition of w
with no entries in D. For each i € w let f(i) be the n such that i € A,,. Then f is not
constant on any element of D, so f is one-one on some element X of D. Let X C Y be
such that [Y N A,| =1 for every n € w. So Y € D and it is as desired. O

Proposition 2.14. If f : w — w, D is an ultrafilter on w, and D = f.(D), then
{n: f(n)=n}eD.
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Proof. Let X = {n: f(n) <n}and Y ={n:n < f(n)}. We want to show that
X,Y ¢ D. For each n € X the sequence (n > f(n) > f(f(n)) > ---) is finite; let I(n) be
the length of this sequence. Let Xo = {n € X : l(n) is even}, and X; = {n € X : l(n)
is odd}. Then Xo N f~1[Xo] = 0, since if n € Xy N f71[Xo] then f(n) € Xo, and
so f(n) > f(f(n)) > f(f(f(n))) > --- (of even length), and n > f(n) so n ¢ Xo,
contradiction. It follows that X ¢ D, as otherwise also f~![Xo] € D. Similarly, X; ¢ D.
Therefore X ¢ D.

Let Y ={n:n < f(n) < f(f(n)) < ---is a finite sequence}. As above, Y ¢ D

Let Z ={n:n < f(n) < f(f(n))--- is infinite}. Define m = n iff m,n € Z and
Ji, j[f*(m) = f7(n)]. Then = is an equivalence relation on Z. In fact, it is clearly reflexive
on Z and symmetric. Suppose that m = n = p. Say fi(m) = f(n) and f*(n) = fi(p).
If j < K, then f+4=3(m) = f*(n) = f{p). 1f k < j, then fi(m) = f3(n) = f19%(p).
So = is transitive. For each n € Z let a, be a representative of the equivalence class of
n, and let [(n) be the least integer m such that there exist i, j such that m = i + j and
fi(n) = f/(an). Let 2/ ={n € Z :1l(n) is even} and Z"” = {n € Z : I(n) is odd}. Then
f7YZ'1 C Z". Infact, let p € f1[Z’]. So f(p) € Z', so l(f(p)) is even. Say I(f(p)) =i+
with f*(f(p)) = f/(asp)). Then p = asqy, 50 ap = afqy. Thus f71(p) = f7(ap).

Case 1. p = f“(a,) for some u. Then f™1*%(a,) = fI(a,), so i+ 1+ u = j. Now
flp) = f*"(ay),s0i+j<u+1. Thusi+i+1+u<u+1,s0i=0. Hence j =u+ 1.
Suppose that f5(p) = f'(a,) with s +t < u.

Subcase 1.1. s #0. Then u+1<s— 1+t < u — 1, contradiction.
Subcase 1.2. s = 0. Then t = u but also t < u, contradiction.
Thus I(p) = u. Now j =u+ 1 is even, so [(u) is odd, as desired.

Case 2. p # f*(ap) for all u. Suppose that f*(p) = f%(a,) with k +u < i+ 1+ j.
Then k # 0. Now f*1(f(p)) = f“(ap), s0i+j <k—1+wu Nowk—1+u<i+j
contradiction. It follows that I(p) =i + 1 + j, which is odd, as desired.

It follows that Z’ ¢ D. By symmetry, Z” ¢ D. Hence Z ¢ D, so {n: f(n) =n} € D.

L

Proposition 2.15. If D < E and E < D, then D =F.

Proof. Note that (f o g). = f« o g, since for any X,

X e(fogU) iff (fog) '[X]eU
iff g '[f'X]]eU

it FX] € g.(U)

i X € fu(g.(U).

Now suppose that D < E < D. Say f,g:w — w with £ = f,(D) and D = g,(E). Then

E = f(9+«(FE)) = (f 0 9)«(F). By Proposition 2.14 it follows that M o {n: flg(n)) =
n} € E. First suppose that M is finite. Then E is principal; say {m} € E. Then for any
X Cw,

X € D iff g7 '[X] € E iff m € g '[X] iff g(m) € X;

34



so D is principal with {g(m)} € D. Let h be any permutation of w such that h(m) = g(m).
Then
X € D iff g(m) € X iff h(m) € X iff m € h}[X]iff ! [X] € E;
so hy(FE) = D, as desired.
Second, suppose that M is infinite. Note that g [ M is one-one. Write M = My U M,

where My, M; are disjoint and infinite. Say My € E. Then there is a permutation h of w
such that h[My] = g[My]. For any X C w,

XeD iff ¢glX]eE
iff Myng '[X]€E
iff Mynh '[X]eFE
iff h '[X] € E;

so D = h,(FE), as desired. O

Proposition 2.16. An ultrafilter D on w is minimal iff it is Ramsey

Proof. First suppose that D is Ramsey and £ < D, with both D and E nonprincipal.
Let f:w — w be such that £ = f.(D). If f is constant on X € D, say with value m, then
X C f71[{m}], so f~[{m}] € D and hence {m} € E, contradiction. Hence f is one-one
on some member X of D. Let g : w — w be such that go f = Id | X. Then for every
Y Cuw,

Y € g.(E) iff g7[Y] € E iff f1[g7[V]] € Diff (go f) Y] NX € D iff y € D.

Thus D < F, so D = E by Proposition 2.15.

Second, suppose that D is minimal. Let f : w — w, and suppose that f is not
constant on any member of D; we show that f is one-one on some member of D. In fact,
f«(D) < D, so f.(D) = D. Hence there is a permutation g of w such that g.(f.(D)) = D.
Thus (g o f).(D) = D, so by Proposition 2.14 {n : g(f(n)) = n} € D. Obviously f is
one-one on this set, as desired. ]

Proposition 2.17. If w, s singular, then there is no nonprincipal w,-complete ultrafilter
on wq

Proof. Suppose that D is a nonprincipal w,-complete ultrafilter on w,, with w,
singular. Say wa = Ug<ct(q) 8 With each kg a cardinal less than w,. For each f < cf(a),
and each § € kg, {¢} ¢ D, so wa\{{} € D. Hence wa\kpg = (Nee,, {€} € D. So 0
Np<ct(a)(Wa\rp) € D, contradiction.

O

Proposition 2.18. Suppose that k is a reqular cardinal, |A| > K, and
F={XClA]*":3P e [A]""{Q € [A]*": P C Q} C X]
Then F is a k-complete filter on [A]<".
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Proof. If P € [A]<", then {Q € [A]<": P C Q} # 0, and hence () ¢ F. Now suppose
that X € F and X CY C [A]<¥. Choose P € [A]<" so that {Q € [A]<": P C Q} C X.
Then {Q € [A]<F : P C Q} CY,s0Y € F. Now suppose that &7 € F<*. For each
X € & choose Px € [A]<" so that {Q € [A]<": P, C Q} € X. Let P = Jyc, Px-
Then P’ € [A]<", and {Q € [A]<": PP CQ}C(«,s0o(« € F. O

Proposition 2.19. Let A be a subalgebra of a BA B and let w € B\A. Then there are
ultrafilters F,G on B such that w € F\G and FNA =GN A.

Proof. We claim that {a € A: —a < u}U{u} has fip. Otherwise let ag,...,a,—1 € A
be such that —a; <wu foralli <mand ag-...- amm_1-u=0. So

u< —ag+ -+ —am-1 < u,

contradiction. So the claim holds. Let F' be an ultrafilter containing {a € A : —a <
u} U{u}. So u € F. Now we claim that (FF N A) U {—u} has fip. Otherwise we get
a € FN A such that a-—u = 0. So a < u, and hence —a € F, contradiction. So this claim
holds. If G is an ultrafilter such that (FF'NA) U {—u} C G, the desired conclusion of the
Proposition holds. U

Proposition 2.20. If B is k-complete and k-saturated, then B is complete.

Proof. Suppose that X C B. Let X' = {a € B : a < z for some x € X}. Let
Y C X’ be maximal pairwise disjoint. Then > Y exists. If x € X and z £ > Y, then
x-—>,Y #0, so there is a nonzero a € X’ such that a <z-—> Y. Then Y U{a} C X’
is pairwise disjoint, so a € Y, hence — > Y < —a and so a < —a, contradiction. Hence

> Y is an upper bound for X;s0 ) YV =5 X. ]

Proposition 2.21. Let B = Z(k)/Ins. Thus X =Y iff XY C k and XAY €
Ins defines an equivalence relation, and B consists of all equivalence classe, with natural

Boolean operations. The equivalence class of Y C k is denoted by [Y]. For a system
X € " P (k) the g.l.b. of {[Xa] : @ < Kk} is [Na<rnXal-

Proof. First we show that it is a lower bound. Suppose that § < k. Let C' = {¢ :
B < & So Cis club, and if £ € (ApcrXa\X3) N C, then £ € Xp, contradiction. Now
suppose that [Y] < [X,] for all @ < k. Let C, be club such that (Y\X,)NC, = 0, for
each a < k. Then it is enough to show that

(Y\AOZ<K,XOA) N Aa<,§0a =0.

Suppose, to the contrary, that £ is a member of this intersection. Choose o < £ such that
£ ¢ X,. But £ € C,, so this contradicts (Y\X,) N C, = 0. O]

Proposition 2.22. Suppose that w < A < k. Then EY is the union of Kk pairwise disjoint
stationary sets.

Proof. Let W C EY be stationary. For every o € W let (ag : £ < A) be strictly
increasing with sup a.
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(1) There is a v < A such that for all n < k the set {a € W : a$ > n} is stationary.

In fact, suppose not. Thus for all v < A there exist a 7, < xk and a club C, in x such
that for all « € W N Cylay < ). Let p = sup,_yn,. Then for all a € [, ., C, NW
and all v < X we have aff < p. Hence for all o € (,_, C, N W we have a < p. Since
|Ny<x Co NW| =k and p < &, this is a contradiction. So (1) holds.

Let v be as in (1). For each a € W let f(a) = af. So f is regressive. So by Fodor’s
theorem, for every n < k there exist a stationary set S, contained in the set of (1) and a
o, > n such that f(a) = o, for all @ € S,. If 0,, # o,, then S, N S,y = (. Since & is
regular, the range of ¢ has size k, and the result follows. L

Theorem 2.23. If k is a reqular uncountable cardinal, then every stationary subset W of
{a < k:cf(a) < a} is a union of k disjoint stationary sets.

Proof. For each limit ordinal & € W let f(a) = cf(a). By Fodor’s theorem there
is a A < k and a stationary subset W’ of W such that f takes the value A on W’. Thus
W' C E? and the result follows from the above generalization. O

Theorem 2.24. Let k be an uncountable reqular cardinal. Then every stationary subset
of k is the disjoint union of k stationary subsets.

Proof. Let A be a stationary subset of k. If AN {a < k : cf(a) < a} is stationary,
then the above theorem applies, and so AN {a < k : cf(a) < a} is a disjoint union of
stationary sets. We can take the union of one of them with A\{«a < & : cf(a) < a} to
get the desired decomposition of A. So we can assume that AN {a < k : cf(a) < a} is
not stationary; let C' be club such that AN {a < K :cf(a) < a}NC =0. Then ANC is
stationary with every element a regular cardinal. It suffices now, as above, to show that
AN C is a disjoint union of k stationary subsets. We may assume that w ¢ AN C. So

AN C is stationary set of regular uncountable cardinals. By Lemma 8.9 of Jech the set

W {a € ANC : ANC Na is not a stationary subset of a} is stationary. For each

a € W let Cy be a club in a such that ANCNC, = 0. Now let (ag : { < a) be the
strictly increasing enumeraton of C,,.
Now we claim

(1) I < w¥n < kl{a € W:§ < aand ag > n} is stationary].

For, assume not. Then for every & < k there is an 7(§) < k and a club C¢ such that
Va € WNCel§ < a—af <n)]. Let D= A¢cCe. Then D is club, and V3 € DVE <
B[B € C¢]. Hence VB € DNWI[E < B — af <n(&)].

def .
(x) E = {ye D:V¢ <v[n§) <~]} is club.
For closure, suppose that a < k is a limit ordinal and E N « is unbounded. Then o € D
since D is club. If £ < a, then there is a € E'Na such that £ < 8. Hence (&) < f < a.
Soa € FE.
For unbounded, suppose that a < k. Choose By € D with a < 9. Having defined

Bn, let v = U{n(§) : £ < Bn} and choose B, 11 > B,y with B, € D. Let 6 = (J,,c,, Bn-
Then 6 € D, and clearly also § € E. This proves (x).
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Now let 7 < a be two ordinals in WN E. Then V¢ < vy[ag < n(§) <]. Hence a5 =17.
But v € W and a ¢ W, contradiction. So (1) holds.

We take ¢ as in (8.6). For each n <k let W, = {a € W :{ < a and af > n}; so Wy,
is stationary. For each av < r let f(a) = ag. Then for each < r the function f [ W, is
regressive, so there is a stationary subset W, of W, and an ordinal v, such that f(a) =,
for all € W,. Thus for all n < k, take any a € Wy; then v, = f(a) = ag > 1. Now
we define 1(0) for § < k by induction. Let n(0) = 0. If n(6) has been defined for all J, ¢,
let n(e) = Us<e(1m(s) +1). Then for all 6, < &, if § < e then 7,5y < n(e) < Yy(e). Now
suppose that § < € and a € Wén(é) N Wén(g). Then v,5) = f(a) = Yy (), contradiction.

O

Theorem 2.25. Suppose that (ko : o < () is the strictly increasing enumeration of the
first B inaccessibles. Then for each o < B, if @ < kg, then the set of all regular cardinals
less than k. s nonstationary.

Proof. Since o cf(Uecq kie) < a, we have 3 < kq. Let C be the set of all strong
limit cardinals in the interval (8, ko). Clearly C is club and has no regular cardinals as
members. U

Theorem 2.26. If k s a Mahlo cardinal, then the set I of all inaccessibles below k s
stationary.

Proof. Suppose not, and let C' be club in s such that C' NI = (). The set D of all
strong limit cardinals is club in k. Let B be the set of all regular cardinals below . Then
BNCND =), contradiction. d

Theorem 2.27. Let k be Mahlo, and let (\¢ : £ < a) be the increasing emumeration of
all inaccessibles, where o is an ordinal or « = ON. Say k = A\¢. Then § = k.

Proof. By Theorem 2.25, \¢ < &. By induction, n < A, for all 7. L

Theorem 2.28. If k is weakly Mahlo, then the set I of weak inaccessibles below K 1is
stationary.

Proof. Suppose not, and let C be club in x such that C NI = (. The set D of
all limit cardinals is club in k. Let B be the set of all regular cardinals below x. Then
BNCND =, contradiction. d

Theorem 2.29. If k is uncountable and regular, then the club filter on Kk is k-complete,
normal, and contains all complements of bounded subsets of k.

Proof. Let F' be the club filter on k. Suppose that |I| < k and (c; : i € I) is a system
of members of F. For each i € I let C; be club with C; C ¢;. Then ﬂiel C; is club, and
Nicr Ci € Nies G-

Next, suppose that ¢, € F for all a < k. For each a < k let C,, be club with C, C ¢,.
Then Aq<Co C Apcrcq. In fact, suppose that 5 € Ayc,Co. Then V€ < B[ € C¢l, so
VE < B[P € ce]. Hence € AgcrCq. It follows that F' is normal.
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If AC Kk and Va € Ala < (] with 8 € &, then [8, k) C (k\A), and so k\A € F. ]

Functions f, g on a regular cardinal u are almost disjoint iff there is an a < p such that

f(B) # g(B) for all § € [a, p).

Lemma 2.30. Suppose that  is singular and cf(k) > w. Assume that \'%) < k for all
A < k. Let (vy : a < K) be a strictly increasing continuous sequence of infinite cardinals
with supremum k. Suppose that F C [] Ay is an almost disjoint family of functions
such that the set

a<cf(k)
{a <cf(k) : |Aa| < va}
is stationary. Then |F| < k.

Proof. We may assume that each A, is a set of ordinals, and A, C v, for all a in
some stationary subset S of c¢f(k), with each o € S a limit ordinal. Now for all f € F' and
all o € S we have f(a) < v,, and so there is a g(a) < a such that f(a) < vy So g is
regressive on S. Let S be a stationary subset of S and let 8¢ < cf(«) such that g(a) = By
for all « € S¢. Define Z(f) = (S¢, f | Sf). Now for any stationary 7', and any distinct
fyhe F if f T =h|[T,then f = h since f and h are almost disjoint. Hence .% is
one-one. Hence it suffices to show that [rng(.#)| < k. Suppose not. Now

mg(F) = | J {(Sp.f18Sp):Sp=T}

TCcf(k)

and |2 (cf(k))| = 2°8(®) < K, so there is a T C cf(x) such that & < [{(Sy, f | Sf): Sy =
T}H. Let 9 ={f € F : S5y =T} so 4| > k. Next, ¥ =, p{f €9 : Br =},
so there is a v < cf(k) and an 2 C & with |#| > k such that Vf € #[3; = 7]. Now
|| < acer(ny Vv = I/f;f(ﬁ) < Kk, contradiction. ]
Lemma 2.31. Suppose that  is singular and cf(k) > w. Assume that X¥%) < k for all
A < K. Let (vy : a < cf(k)) be a strictly increasing continuous sequence of cardinals with
supremum k. Suppose that F' C Ha<cf(m) A, is an almost disjoint family of functions such
that the set
{a<cf(k):|As] < v}

is stationary. Then |F| < rT.

Proof. Assume the hypotheses. Let U be an ultrafilter on cf(x) extending the club
filter. If S € U, then S is stationary, as otherwise C NS = () for some club C, hence
cf(k)\S would be in the club filter and hence in U, contradiction. Wlog each A, C v7.
Now we define

f<g iff f,ge€ Fand{a<cf(k): fla)<gla)}el.
Then < is a linear order of F', since {a : f(a) # g(a)} € U for distinct f,g € F, as they
are almost disjoint. Now for each f € F let Gy = {g € F : there is a stationary T such
that Va € T'[g(a) < f(a)]}. For each g € G choose a stationary set T, with the indicated
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property. We claim that |G| < k. For, suppose that |G¢| > k. Now Gy = Ugcer(){9 €
Gy : Ty = S}, so there is an S C cf(k) such that G = {g € G : Ty = S} has size > .
Let G = {g | S: g € G}}. Then G is an almost disjoint set of functions, since F' is.
Now Vh € G't[h € [],cg Val, so this contradicts Lemma 2.30. This proves the claim that

a€eS
Gyl < k.
If (fo : a < o) is a cofinal sequence in F' with respect to <, then we must have 0 < k™,
as otherwise |Gy | > k™. Hence |F| <> _ |Gy, | < kT, as desired. O

Lemma 2.32. Suppose that k is singular and cf (k) > w. Assume that \'%) < k for all

A < K. Let (vy : a < cf(k)) be a strictly increasing continuous sequence of cardinals with

ng(ua )

supremum k. Suppose that {a < cf(k) : = v} is stationary in cf (k).

Then kE(F) = k.

Proof. Assume the hypotheses. For every h € (") define f;, = (k! : a < cf(k)),
where dmn(k?) = cf(x) and

kh(ﬁ) — {h(f) if h(€) < Va,
“ 0 otherwise.
Let ' = {f, : h € f®g}. Then
(1) If h and A’ are different members of (*)k then f;, and f), are almost disjoint.

In fact, say h(§) # h'(€). Choose a < cf(k) such that h(¢),h'(§) < v,. Then for all
B € |a,cf(k)) we have kg(f) =h(&) #n (&) = k‘g (&), and so hg # k% as desired in (1).
Now note that F' C Ha<cf(m) cf(r)y,,.

(2) {a < cf(k) : v is a limit ordinal and VA < v, (M%) < 1,)} is club in cf (k).

In fact, it is clearly closed. Now suppose that ag < cf(k); we want to find an ordinal

B € (ap,cf(k)) such that g is in the above set. We may assume that aq is a limit ordinal.

Suppose that «a,, has been defined. Now for all 8 < «,, we have V;f(r") < K, so there is

a v(B) < cf(k) such that ) o, Let Oym+1 be a limit ordinal < cf(k) such that
B v(8) +

A < Qy1 and ¥(8) < ayp for all B < . Then the ordinal 6 def Uimew @m is in the
set of (2). In fact, clearly d is a limit ordinal. Now suppose that A < v5. Choose m € w
such that A < v, . Now oy, < oyp41, S0

Acf(R) < u;ﬂg“) < Vy(am) < Vamir < Vs
Thus (2) holds.
(3) {a < cf(k) : ) < Veo+1} 1s stationary.

In fact, let C be the set of (2), and let S = {a < cf(k) : yeive) — v}, So S is stationary

by assumption, and hence S’ e {a e CNS:cf(k) < vy} is stationary. Take any a € 5.
Now we apply Jech Theorem 5.20 with &, A replaced by v,, cf(x). By the definition of S’,
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f(K) < Va. If it < g, then uf®) < vy by (2). Hence by Jech Theorem 5.20, &™) = 1,
or ng(ya) =vt.

Now by Lemma 2.31 we get |F| < x. But clearly |F| = (%), so x°f(%) = g+, O

Theorem 2.33. If k is a singular cardinal such that cf(k) > w and ¥V cardinals X < k[2* =
AT, then 27 = k.

Proof. For any A < k we have A < Af) < 2% = \* 50 by Lemma 3, k(%) = g+,
By Theore 5.16(iii), x°f(®) = 2", O

Theorem 2.34. If the singular cardinals hypothesis holds for all singular cardinals of
cofinality w, then it holds for all singular cardinals.

Proof. We prove by induction on « that, under the indicated assumption, if 2¢/(%) < x
then x°f(*) = x+. This is given for cf(k) = w. Assume that cf(k) > w and it holds for
smaller cardinals. So we assume that 2¢/(") < x. Then

(1) If A < w, then Af(®) < .

We prove this by induction on A. It is obviously true for A < cf(k), so suppose that
cf(k) < A If p < Xand A < pf%) | then A% < pof() < k by the inductive assumption.
So, suppose that pf(®) < X for all p < A. Recall that cf(x) < A\. Hence Theorem 5.20(iii)
applies.

Case 1. cf(\) > cf(k). Then A(*) = X\ < k by Theorem 5.20(iii)(a).

Case 2. cf(\) < cf(k). Then M%) = Xf(X) by Theorem 5.20(iii)(b). Now 2N < ),
so by the inductive hypothesis on &, AfV) = AT < k.

This proves (1). Let (p, : @ < cf(k)) be a normal sequence of infinite cardinals with limit

k. Then the set § % {a < cf(k) : cf(po) = w and 2¥ < p,} is stationary. In fact, if
C C cf(k) is club, let (be : £ < cf(k)) enumerate the members ¢ of C' such that 2 < by.

Then b, € S. By the hypothesis, pgf(p“) = p for each o € S. Hence by (1) and Lemma 3
we have kf(") =k, completing the inductive proof. ]

Proposition 2.35. Suppose that cf(a) > w and S C «. Then the following are equivalent:

(i) S is stationary in a.

(i) For every normal function f : cf(a) — a with rng(f) unbounded in «, the set
f7L[9] is stationary in cf().

(iii) For some normal function f : cf(a) — « with rng(f) unbounded in «, the set
f719] is stationary in cf().

Proof. (i)=(ii): Suppose that S is stationary in « and f : cf(a) — « is a normal
function with rng(f) unbounded in a. Let C be club in cf(a). Then clearly f[C] is
unbounded in «. To show that it is closed in «, suppose that 8 < « is a limit ordinal
and f[C] N B is unbounded in 8. Let v = sup{d € C : f(d) < B}. Then clearly v is a
limit ordinal, and C' N~y is unbounded in . So v € C. Clearly f(v) = . So g € f[C],
as desired. So f[C] is club in a. Choose 6 € SN f[C]. Write § = f(e) with € € C. Then
e € f1[S] N C. This shows that f~![9] is stationary in cf(a).
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(ii)=-(iii): obvious.

(iii)=-(i): Suppose that f : cf(a) — « is a normal function with rng(f) unbounded
in « such that f~1[9] is stationary in cf(a). We want to show that S is stationary in a.
So, let C be club in a. Clearly f~![C] is unbounded in cf(a). To show that it is closed in
cf(a), suppose that 3 < cf(a) is a limit ordinal, and f~![C] N B is unbounded in 3. Then
clearly f(5) is a limit ordinal, and C'N f(/) is unbounded in f(8). So f(5) € C, and hence
B e f1C]. So f7YC] is club in cf(a). Hence we can choose v € f~1[S] N f~1[C]. So
f(y) € SNC, as desired. O

Proposition 2.36. If S and T are stationary and SAT is nonstationary, then also
Tr(S)ATr(T) is nonstationary.

Proof. Let C be club in x such that (SAT)NC = 0. Thus SNC =T NC. Let
C’ be the set of all limits of members of C. So C’ is club in x and C’ C C. We claim
that (Tr(S)ATr(T))NC" =0, as desired. For, suppose that « € Tr(S) N C’; we show that
a € Tr(T), and by symmetry we are through. Thus cf(a) > w and S N « is stationary in
a. We show that T'N « is stationary in «, completing the proof. For, let D be club in a.
Then also C N D is club in «, since a € C'. SoTNCNDNa=SNCNDNa#0,soin
particular T Na N D # (), as desired. 0

S < T iff the following two conditions hold:
(1) {a € T : cf(a) < w} is nonstationary in k.
(2) {a € T': SN« is nonstationary in a} is nonstationary in .

We do not assume that S and T are stationary.

Proposition 2.37. Ifw <A <p <k and A\, u, k are regular. Then ES < EJ.
Proof. let C = (u, k). We claim that

{a € B : E{ Na is nonstationary in a} N C = 0.

In fact, suppose that « is in the indicated intersection. Let D be club in «a such that
EfND =0. Now a € E}, so cf(a) = p. Hence by an easy construction, D has a member
B with cofinality A. So 8 € E¥ N D, contradiction. O

Lemma 2.38. (i) A <Tr(A).
(i) If A< B < C then A< C.
(iii) If A< B, A= A" mod Ing, and B = B’ mod Ing, then A’ < B’.

Proof. (i): first we note that {a € Tr(A) : cf(a) < w} =0, and so it is nonstationary
in k. Second,

{a € Tr(A) :AN « is nonstationary in x}
={a < k:cf(a) >w and AN« is stationary in

and A N « is nonstationary in K} = 0;

Hence {a € Tr(A4) : AN« is nonstationary in } is nonstationary.
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(ii): The assumptions A < B < C' mean

{a € B : cf(a) < w} is nonstationary in &;
{a € C : cf(a) < w} is nonstationary in k;
{a € B : aN A is nonstationary} is nonstationary;

{a € C': aN B is nonstationary} is nonstationary.
We want to show
{a € C': N A is nonstationary} is nonstationary.

Our assumptions give us a club M in k such that

{a € B:cf(a) <w}nM = (;
{aeC:cf(a) <w}n M = 0;

{a € B: aN A is nonstationary} N M = () and
{a € C: N B is nonstationary} N M = 0.

Let M’ be the set of all limits of members of M; so also M’ is club in k. Now it suffices
to show that
{a € C: N A is nonstationary} N M’ = .

So, suppose that a € C' N M’; we show that a N A is stationary in «. To this end, let P
be club in a, and let P’ be the set of all of its limit points. Now o« € C' N M, so a N B is
stationary. Since o € M’, it follows that o N M is club in a. So M N P’ is club in «, and
so we can choose f € aNBNMNP'. Now € BNM, so N A is stationary in 3. Since
B e P, it follows that PN 3 is clubin 8. So BN AN P # (0, hence AN P # (), as desired.

(iii): Assume that A < B, A ~ A’ mod Ing, and B ~ B’ mod Ins. Thus AAA’
is nonstationary, and BAB’ is nonstationary. We want to show that A’ < B’. Choose
stationary sets M, N, P such that

{a € B: AN« is nonstationary} N M = (;
(AAAYAN = 0
(BAB')N P =0.

It now suffices to take any &« € M N N’ N P N B’ and show that A’ N « is stationary. Let
Q@ be club in a. Now also N N« is club in «, so @ N N is club in a. Since o € PN B/,
we have a € B. Then since a € M, we see that A N « is stationary. Now since Q N N is
club in o, we get B € ANQNN. Since 5 € ANN, we get € A". Thus 8 € A’ NQ, as
desired. ]

Proposition 2.39. If A < B, then there is a club C such that BN C C Tr(A).

Proof. Assume that A < B. Thus by definition, {a € B : cf(a) < w} is nonstationary
in k, and also {a € B : AN« is non-stationary in a} is non-stationary in x. Hence there
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is a club C in k such that CN{a € B : c¢f(a) <w} =0 and also CN{a € B: ANais
non-stationary in a} = (). Hence the Proposition holds. L

Theorem 2.40. < on stationary sets is well-founded.

Proof. Suppose to the contrary that there are stationary sets A,, for n € w such that
Ag > Ay > ---. By Proposition 2.39 there are clubs C), such that A,, NC,, C Tr(A,,4;) for
n € w. For each n € w let

B, = A, NC, NLim(Cy41) N Lim(Lim(C42)) N - - -
Clearly each B,, is stationary. Also,
Vn € w[By, C Tr(Bp+1)].

For, suppose that a € B,,. Then a € A,,NC,,, so a € Tr(A,+1). Socf(a) > wand A, 11N
is stationary in a. Now «a € Lim(C),41) N Lim(Lim(Cj42)) ..., so Cpp1 NLim(Chy2) ... is
club in a, and hence A4,,11NaNC,+1NLIM(C),42) . . . is stationary in . Thus a € Tr(By,41).-

Now for each n € w let a;;; = min(B,,). Now By, +1Nav, is stationary. Hence v, 11 < v
Thus ag > a1 > - - -, contradiction. ]

The rank of a stationary subset of k under < is called its order.

o(A) =sup{o(X)+1"X < A};
o(k) = sup{o(A) +1: A C k, A stationary}.

In addition we set o(w) = 0 and o(«) = o(cf(a)) for every limit ordinal «.

Proposition 2.41. Assume that k is reqular and uncountable. If |A| = K, then the set
k C [k]<" is closed unbounded in [k]<". O

Proposition 2.42. Suppose that k is uncountable and regular. If F' is the club filter on k
and K is the club filter on [k]<", then F = K N P (k).

Proof. Suppose first that X € F. Let C be club on x with C' C X. Then C is also
club on [k]<"*, so X € K. Second suppose that X € K N Z(k). Let D be club on [k]<"
such that D C X. Let C be the set of all limits of members of |JD. So C' is club in k.
We claim that C' C X; this will show that X € F', as desired. For, let o € C'. Since « is a
limit of members of | JD and D C X C k, a must actually be a member of D, as a union
of members of D. Hence o € X, as desired. ]

Theorem 2.43. Let k be uncountable and regular. The closed unbounded filter on [k]<"
18 k-complete.

Proof. Clearly if C' and D are club, then so is C'ND. So the club filter consists exactly
of those sets which include a club. So to show that this filter is k-complete it suffices to take
any sequence (C¢ : § < a) of clubs, with o < x, and show that (,_,, C is club. Clearly it
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is closed. Let x € Z,.(A). We define (y¢ ., : £ < a,m € w) by recursion on m, and within
that by recursion on £. Suppose that y, , has been defined, a member of &, (A), for each
n < m and 7 < a. Let yp,, be a member of Cy such that Un<m’n<a Yn.n € Yo,m. Note
that this works for m = 0. If y,, ,, has been defined for each n < £, where £ > 0, let y¢ .,
be a member of C¢ such that U77 <¢Ynm € Yem- This finishes the construction. Finally,

let 2 = U¢cn.mew Ye,m- Clearly z € (e, Ck. O

Theorem 2.44. If f is a function defined on a stationary set S C [A|<" such that f(z) €
for every nonempty x € S, then there exist a stationary T C S and an a € X such that
Ve € T[f(x) = al.

Proof. Assume the hypotheses, but suppose that the theorem is false. So for every
a € Atheset {x € S: f(z) = a} is nonstationary. Hence there is a club C, such that
Con{z €S : f(z)=a} =0. Let D = AuexCs. So D is club. Hence SN D # (. Choose
a € SN D. Suppose that x is a nonempty member of P,(\). If a € x, then z € Cy, and so
f(x) # a. Thus f(z) ¢ x, contradiction. O

Proposition 2.45. If D is a closed subset of [A]<", then for every directed set D € [C]<F
we have |JD € C.

Proof. We proceed by induction on |D|. It is obvious if D is finite, and an easy
inductive construction works if |D| = w. So suppose that w < |D|.

(1) If £ C D, then there is a directed subset F' of D such that |F| < |F| + w.

For, define F, = E. If F,, has been defined, for each pair a,b € F,, adjoin a set ¢ € D
such that a,b C ¢, forming Fy, 1. Then (J,, ., Fin is as desired.

Let D = {ao : @ < |D|}. Now we define a sequence (E, : o < |D|). If E3 has been
defined for all 8 < a, by (1) let E, be a directed subset of D such that (J;_, EsU{aa} C Eq
and |E,| < |a| + w. By the inductive hypothesis, | JE, € D for every a < |D|. Clearly

UE. CUEgifa<B,soUD=U,pUEs €D. O
Let f: [A]< — [A]<". x € [A]<" is a closure point of f iff Ve € [z]<“[f(e) C z]. Cy is

the set of all closure points of f.

Proposition 2.46. Cy is a club of [A]<".

Proof. Obviously Cy is closed. To show that it is unbounded, suppose that = <
P, (A). We define y,, € Z,(A) by recursion. Let ygp = = and

Yn+1 = Yn U U f(e)

e€[yn]<v

Clearly = C |J,,c,, yn € Cf. O

Note that J,,c,, ¥n is the smallest closure point of f that contains z. This will be used
below.
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Proposition 2.47. For every club C C [A]<" there is a function f : [A]<¥ — [A]<" such
that Cf Q C.

Proof. Let f()) be any member of C. If f(e) has been defined whenever |e| = n, let
le|l = n + 1. For each x € e choose f(e) € C so that (J ., f(e\{z})Ue C f(e). Clearly
CyCC. O

Suppose that |A| > k and A C B. For X C [B]<" the projection of X to A is

X1AY {(znA:ze X}

For Y C [A]<" the lifting of Y to B is

Y? déf{mE[B]Q‘:xﬂAeY}.

Theorem 2.48. Suppose that |A| > k and A C B. Then
(1) If S is stationary in [B]|<", then S | A is stationary in [A]<".
(ii) If S is stationary in [A]<%, then SP is stationary in [B]<".

Proof. (i): Suppose that C' is club in Z,(A). We show that C? is club in 2, (B).
Suppose that zg C --- C x¢ C --- are elements of CP for ¢ < a < k. Thus z¢g N A € C
for all £ < a, so U€<a zg N A e C and so U€<a z¢ € CB. For unboundedness, suppose
that © € Z,(B). Then N A € Z,(A), so there is a y € C such that t N A C y. Then
rCzUyand (zUy)N A=y and soxUy e CB. This shows that CP is club in £, (B).

Now for (i), suppose that S is stationary in &, (B). Let C be club in £, (A). Then
by the preceding paragraph, C'® is club in £, (B). Hence there is an x € SN CB. So
xNAe (S|A)NC, as desired.

(ii): We prove:

(1) If C is club in Z,;(B), then C|A contains a club in Z;(A).

For, by Proposition 2.47 we get Cy C C for some f : [B]<¥ — Z,,(B). We now define
g : [A]~Y — Z.(A). To do this, first let cl be the function above such that for any
x € P(B), cl(z) is the smallest closure point under f containing z. Note:

(2) cl(z) = J{cl(e) : e € [x]<“}.

In fact, it is clear that the set on the right is the smallest closure point under f containing
x.
Now for each e € [A]<¥ we let g(e) = cl(e) N A.

(3) Cy I A=C.

In fact, let z € Cy | A. Then there is a y € Cf such that x = yN A. If e € [2]<¥, then
e € [y]<¥, and hence e C y € Cy, so e C cl(e) C y. Hence e C cl(e) N A = g(e). This shows
that x € Cy.
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Conversely, suppose that € Cy. Then (J{g(e) : e € [z]<“} C x since z € C,. Now

U{g(e) e € [x]<Y} = U{cl(e) NA:ec€[z]<“}

= AN U{cl(e) re € [z]°}
=Ancl(z) by (2)

Thus g(x) = ANcl(z) =z, and so z € C¢|A. This proves (3).

Now by (3) we have Cy = Cf [ A C C|A, proving (1).

Now to prove (ii), suppose that S is stationary in &2;(A) and C is club in Z,(B).
By (1), C' | A contains a club D. Choose a € SN D. So a € C | A; choose z € C such
that a = x N A. Thus x € C N SB, as desired. O

Proposition 2.49. If X C k is nonstationary, then there is a regressive function f on
X\{0} such that Vv < k[{a € X\{0}: f(a) <~} is bounded|.

Proof. Let C be club such that C N X = (. For each o € X let f(a) = sup(C' N av).
Here sup(0) = 0.

Let v < k; we want to show that {a € X\{0} : sup(C Na) <~} is bounded. Choose
§ € C with v < . We claim that Vo € X[§ < o — sup(C Na) > ~]. In fact, if @ € X and
J < «, then 7 < 6 <sup(C Na). O]

Proposition 2.50. Let S be a stationary subset of wy. For all a,y < wy with a # 0 there
is a closed subset A of S such that v < min(A), A has order type a, and sup(A) € S.

Proof. Induction on a. The case a = 1 and the successor step are easy. So suppose
our statement is true for all § < «a, where « is a limit ordinal. Let (8, : n € w) be a
strictly increasing sequence of successor ordinals with supremum «, and let v, be such
that 8,41 = B, + v for all n.

(1) For every ¢ there is a closed subset A of S of order type a such that 6 < min(A).

In fact, by the inductive hypothesis define B,, inductively so that By is a closed subset of
S of order type [y with § < min(By), and B, 11 is a closed subset of S of order type 7,
with sup(B,) < min(B,,y1). Then let A =J, .., Bn. Clearly A is as desired in (1).

Now by induction using (1) there is a sequence (A¢ : & < wq) of closed subsets of

S, each of order type «, such that 7 < min(Ap) and sup (Un<§ An) < min(A¢) for each

§ <wi. Let A\¢ = sup (Un<£ An) for each £ < wi. Then A is a normal function, and so

there is a & such that A\ € S. Let (1, : n € w) be a strictly increasing sequence of ordinals

with supremum . Let Cj be an initial segment of A, of order type By, and let C, 11 be

an initial segment of A,  of order type 7,. Then D of Unew Cn is a closed subset of

C' with order type « such that v < min(D) and sup(D) = A¢ € S, finishing the inductive
proof. ]

Lemma 2.51. If k is Mahlo, then {a < k : «v is inaccessible} is stationary in k.
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Proof. Let C be club in x. Define f : & — & by: f(0) = 0; f(a+ 1) = 2f(@),
and f(a) = Ug., f(B) for a limit. Note that f maps into x because x is inaccessible.
Since f is a normal function, its range is club in k. Let C' be any club in k. Then

C Nrng(f) N{a < k : a is regular} is nonempty, and any member of it is inaccessible, as
desired. 0

Proposition 2.52. Suppose that k is the first inaccessible such that there are k inacces-
sibles below k. Then k is not Mahlo.

Proof. Suppose that x is Mahlo. Let S = {& < k : o is inaccessible}. Let (i¢ : £ < k)
enumerate in increasing order all of the inaccessibles below k. For each a € S there is a
unique £ < k such that i¢ = «, and we set f(a) = £. By the choice of , f is regressive.
Since it is one-one, Fodor’s theorem gives a contradiction. L

Proposition 2.53. If k is (limit, reqular limit, weakly Mahlo) and {\ < Kk : X is strong
limit} is unbounded in K, then k is (strong limit, inaccessible, Mahlo).

Proof. Limit: Choose A < k strong limit with g < A\. Then 2* < \ < k.
Regular limit: By the above, k is strong limit. Since k is regular,  is inaccessible.

Mahlo: {\ < k : A regular} is stationary in x. By the above, & is inaccessible. Hence
x is Mahlo. OJ

Recall that
NocXa ={a<k:a€ ﬂ X3}

B<a
= {a < r:VB < alac Xz)}.

Now we define the diagonal union:

VacXa={a<k:ac€ U Xg}.

B<a

Then clearly kK\Ap<xXa = Vacr(K\Xa)-

Propositioon 2.54. An ideal I on k is normal iff it is closed under diagonal unions.

Proof. In fact, suppose that I is normal and (X, : @ < k) is a system of members of I.
Then Ay<x(K\Xa) € I, and so kK\Aq<x(k\Xa) € I. Clearly k\Ap<r(k\Xa) = Vacr Xa-
The converse is proved similarly. L

Theorem 2.55. A k-complete ideal I on k is normal iff for every Sy ¢ I and any
regressive function f defined on Sy there is an S C Sy with S ¢ I such that f is constant
on S.

Proof. =: Suppose that I is a k-complete ideal on &, it is normal, Sy ¢ I, and
f is regressive on Sy. Suppose that the conclusion fails. Then for every v < k, the
set f7'{y} is in I, and hence V<. f '[{y}] € I. Thus So € V< f [{7}]; choose
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a € So\V,<rf [{7}]. Then for every v < o we have a ¢ f~[{~}, contradicting f being
regressive.

<: Assume the indicated condition. Suppose that X, € [ for all a < k, but
Va<xXa ¢ I. Now for each 8 € Vo X, there is an f(8) < (8 such that 8 € Xy pg).
By the condition, let S be a subset of V. X, on which f takes a constant value v, with
S ¢ 1. Butif g€, then f(8) =+, and so S C X, € I, contradiction. O

Proposition 2.56. There is no normal nonprincipal filter on w.

Proof. Suppose that F' is a normal nonprincipal filter on w. Thus F' is closed under
diagonal intersections.

(1) If X € F, then there isa Y € F such that Y C X.

In fact, X does not generate F', so there is some Z € F such that X € Z. So XNZ C X
and X NZ € F, as desired in (1).

I il i i+1 2
(2) There is a sequence (X; : i € w) of members of F' such that X; D X,y for all ¢, and
ﬂiew Xl g_ﬁ F.

In fact, we can construct by induction a strictly decreasing sequence of members of F',
taking intersections at limit steps if the result is in F'. The sequence eventually stops,
and by (1) it stops at a limit ordinal because some intersection is in F. Then a cofinal
subsequence gives what is desired.

Next, we define a sequence (i, : m € w) of integers by recursion so that

() m & (e, X implies that m ¢ X .
(k%) n <M = iy, < -

Case 1. 0 € (e, X&- Let ig = 0. So (x) and (**) hold.

Case 2. 0 ¢ (e, Xk Let ig be such that 0 ¢ X;,. So (*) and (*) hold.
Now suppose that i,, has been defined so that (%) and (xx) hold.

Case 1. m+1 € (¢, Xx. Choose iy,1 € (W\(im +1)). So () and (+*) hold.

Case 2. m +1 ¢ (e, Xk Say m+1 ¢ X,. Then Vt > s[m + 1 ¢ X;]. Let ipq1 be
such that i,,41 > s,4,. So (x) and (**) hold.

Now we define Y,,, = X for all m € w.

im+1
(3) Amewym - miEw X; U {0}

In fact, suppose that n € A, cYim, n # 0, and n ¢ N
contradiction. So (3) holds.

Now because [, X; is not in F, it follows from (3) that 0 ¢
such that 0 ¢ X;. Then (,., X; = X; N (N

icw XZ Then n € Yn—l = Xin7
icw Xi- Choose X
X; U{0}) € F, contradiction. O

1EW 1EW

Proposition 2.57. If k is singular, then there is no normal ideal on k that contains all
bounded subsets of k.
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Proof. Suppose that F' is a proper normal filter on x, where k is singular. Say that
(e = a < cf(k)) is strictly increasing with supremum k. For a < « let

Y K\lo if a < cf(k),
“ | k\ao  otherwise.

If cf(k) < B < kand B € AqgcrXa, then B € k\p, for all o < cf(k), contradiction. Hence
Nqy<xXq is bounded and so F' is improper, contradiction. ]

For S,T stationary, we define S < T iff ({@ € T : S N « is non-stationary in a} is
non-stationary in &) and ({a € T : cf(a) < w} is non-stationary). Also, we define for
any set S, Tr(S) = {a < Kk : cf(a) > w and S N « is stationary}. For A regular < k,
Ef ={a < k:cf(a) = A}

Proposition 2.58. If S,T C k are stationary and S C T, then Tr(S) C Tr(T). O

Proposition 2.59. If S,T C k are stationary, then Tr(SUT) = Tr(S) U Tr(T).

Proof. D follows from Proposition 2.58. For C, suppose that a € Tr(S U T)\Tr(S5).
Since « ¢ Tr(S), there is some club C in « such that SNaNC = 0. Now take any club D
in @. Then also CNDisclubina,so#(CND)N(SUT)=CNDNT. soac Tr(T),
as desired. OJ

Proposition 2.60. If S C k is stationary, then Tr(Tr(S)) = Tr(S).

Proof. Suppose that o € Tr(Tr(S)). Hence cf(a) > w and Tr(S) N« is stationary in
a. We want to show that S N« is stationary in «. To this end, suppose that C' is club
in . So also C’ is club in «, so Tr(S) Na N C’" # (); choose B in this set. So SN S is
stationary in 3, and 8 € C’ and hence C' N B is club in 3, so SN C # (), as desired. O

Proposition 2.61. If S,T C k are stationary and S ~T (mod Iyg) then Tr(S) ~ T.

Proof. Suppose that S ~ T (mod Iyg). Let C be club in k with (SAT)NC = 0.

Let C’ be the set of all limits of members of C. So C’ is also club in k. Suppose that

e (Tr(SO\Tr(T))NC"). Then cf(a) > w, SN« is stationary in «, and T N « is not

stationary in . Say D is club in « with TN D = (). Then C’' N D is club in «, so
SNC'ND #(. But (S\T)NC"=0,s0 SNC" CT. Hence T'N D # (), contradiction.

Hence (Tr(S)\Tr(T))NC") = (. By symmetry, (Tr(S)ATr(T))NC" = 0. So Tr(S) ~

Tr(T). O

Proposition 2.62. Tr(E%) = {a < k: cf(a) > AT}

Proof. First suppose that a € Tr(E¥). Suppose also that cf(a) < X. Now cf(a) > w.
Let (B¢ : € < cf(a)) be strictly increasing and continuous with supremum a. Then rng(f)
is club in o and E§ Nrng(5) = 0, contradiction.

Second, suppose that o < x and cf(a) > A*. Let C be club in a. Let (8, : £ < cf(a))
be the strictly increasing enumeration of C. Then 8 € EY NC. O
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Theorem 2.63. Tr(EY) = {a < r:cf(a) > AT}

Proof. First suppose that a € Tr(E¥). Suppose also that cf(a) < X. Now cf(a) > w.
Let (B¢ : € < cf(a)) be strictly increasing and continuous with supremum a. Then rng(f)
is club in a and E¥ Nrng(s) = 0, contradiction.

Second, suppose that o < k and cf(a) > AT, Let C be club in . Let (B, : £ < cf(a))
be the strictly increasing enumeration of C. Then ) € EY NC. O

Theorem 2.64. S < T iff there is a club C such that T N C C Tr(S5).

Proof. =: Assume that S < T. Let C be club in k such that {a € T : SN« is
non-stationary in a} NC =0 and {a € T : cf(a) <w}NC = . Suppose that a« € TN C.
Then by definition, S N« is stationary in « and cf(«) > wy. Hence a € Tr(S).

Conversely, suppose that C'is club and TNC C Tr(S). Then Vo € TNC[cf(a) > w1,
so {a € T: cf(a) < w1} NC = 0. Suppose that 5 € {a € T : SN« is non-stationary in
a}NC. Thus g € T and SN is non-stationary in 5. Since 5 € T'NC, we have g € Tr(S).
Hence S N f is stationary in 3, contradiction. ]

Corollary 2.65. If S < T and X is a stationary subset of T, then S < X.
Proof. By Theorem 2.64. L

Theorem 2.66. If Tr(A) is stationary, then so is A.

Proof. Let C be club. Let C be the set of all limits of members of C; it is club too.
Choose aw € C'NTr(A). Then a N A is stationary in o. Now C' N « is unbounded in «, so
anAnC #10. O

Theorem 2.67. If S is stationary of order v and u < v, then there is a stationary T of
order p such that T < S.

Proof. Induction on v. Suppose that it is true for all v/ < v, and now assume that
p < v and S is stationary of order v. By definition there is a stationary 7" of some order
p < v such that © < p and 7" < S. By the inductive hypothesis there is a stationary U of
order p such that U <T or U =T (if p = p). Thus U < S. O

A stationary set E is weakly canonical of order v iff the following condition holds:

(%) If X is stationary of order v, then F N X # ().

Theorem 2.68. If E is weakly canonical of order v and S is stationary of order v + 1,
then S NTr(E) # 0.

Proof. Suppose that SNTr(E) = (. Let T be stationary of order v such that T' < S.
Let F' be club such that

(1) SN F C Tx(T).

Now we define A=TNE, B=TNTr(E),and C =T\(AUB). Now A C E, so Tr(A) C
Tr(E), and hence S NTr(A) = (). Also, B C Tr(E), hence Tr(B) C Tr(Tr(E) C Tr(E), so
also S NTr(B) = 0.
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(2) SN F C Tr(C).

In fact,

SAF=SNFAT(T)=5NFNT(AUBUC)
=SNFN(Tr(A)UuTr(B)UTr(C)) =SNFNTr(C).

Now if D is any club, then ) # SN FND C Tr(C)N D. So Tr(C) is stationary, and hence
by Theorem 4, C' is stationary.

It follows that C' < S. Since C' C T, by Corollary 3, VX[X stationary and X < T
imply X < C]. Hence o(C) > o(T) = v. Since CNE = () and FE is weakly canonical, C
must have order > v. Since C' < S and S has order v 4 1, this is a contradiction. O

Corollary 2.69. If E is weakly canoniical of order v and S is stationary of order v + 1,
then B2 < S.

Proof. Suppose not: so T def {a € S : @ N E is nonstationary} is stationary. Thus

T NTr(E) =0, contradicting Theorem 2.68. O

Theorem 2.70. If A < p, then E < EJ.

Proof. By Theorem 2.63 Tr(EY) = {a <  : cf(a) > AT} D E, so E{ < EJ} by

Theorem 2.64. [l

Theorem 2.71. If EY is weakly canonical of order v, then EY, is of order v+ 1.

Proof. Since Ef < EY, by Theorem 2.70, we have o(E},) > v + 1. Suppose that
o(EY.) > v+ 1. Then there is an § < E¥, such that o(S) = v + 1. By Corollary 2.69,
Ef < S. Then there is a club M in x such that

{a € Ef; : SN« is non-stationary } N M = {);
{a € S: E{ N« is non-stationary } N M = (.

Let M’ be the set of limit points of M. Choose o € M' N Ef,. Then S N« is stationary.
Let D C « be club with order type A' consisting of limit ordinals. Then M’ N D is club
in . Choose f € SNanNM' ND. Then cf(8) < A. Since g € SN M, it follows that
E% NP is stationary. Let U be club in g of order type cf(8). Choose v € E¥NSNU. Then
cf(v) = A. But cf(y) < A since cf () < A. This is a contradiction. O

Proposition 2.72. If EY is weakly canonical of order v and X is stationary of order
v+1, then EX, N X #0.

Proof. By Corollary 2.70, Ef < X. Hence by Theorem 2.64 there is a club C such
that C N X C Tr(E¥). So by Theorem 2.63 Vo € C N X[cf(a) > AT], Suppose that
Va € C N X[cf(a) > AT]. Then C N X C Tr(EY,) by Theorem 2.63. Thus by Theorem
2,64 Ef, < X. Since o(E{;) = v+ 1 by Theorem 2.71, this is a contradiction. Hence
Ef. NX #0. O
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Corollary 2.73. If EY is weakly canonical of order v, then EY, is weakly canonical of
order v + 1. ]

For the next few results we assume:

(x) A is singular, A" is the v-th regular cardinal, and for each regular 1 < A which is the
n-th regular cardinal, £} is weakly canonical of order 7.

Proposition 2.74. Assume (x). Suppose that S is stationary of order v. Then there is a
club U such that Voo € SN U [cf(a) > AT].

Proof. For each regular p < A, p the n-th regular cardinal, let T}, be stationary of
order n* such that T, < S. By Corollary 7, E, <Tyu;s0 E;f < S. Let U be club such that
SNU C Tr(Ey) for all regular 1 < A. Then by Theorem 1. Voo € SNU[cf(a) > A*]. O

Proposition 2.75. Assume (x). Then E{, has order v.

Proof. Suppose not; so o(E{,) > v. Let S be stationary of order v with S < E{,.
Let U be a club as in Proposition 2.74, and let D be a club such that E{, N.D C Tr(S).
Thus Yo € Ef. N DjaN S is stationary in o]. Take any o € Ef,. N D and let V' be club

in « of order type A*. Take any 8 € VNU'NS. Then cf(8) < A but also cf(8) > AT,
contradiction. O

Proposition 2.76. Assume (x). Suppose that X is stationary of order v. Then for all
reqular p < A\, By < X.

Proof. Choose Y < X stationary of order n+ 1, where p is the n-th regular cardinal.
By Corollary 2.69, E; < Y. O
Proposition 2.77. Assume (x). Suppose that X is stationary of order v, then E{, NX #
0.

Proof. By Proposition 2.76, Theorem 2.63, and Theorem 2.64, there is a club C
such that Vo € X N CVu < Al regular — cf(a) > pl. So Va € X N Clef(a) > AT]. If
Vo € X NClcf(a) > AT, then by Theorem 2.63, X NC C Tr(E%, ), hence E¥, < X. Since
X has order v, this contradicts Proposition 2.75. ]
Corollary 2.78. Assume (x). Then EY. is weakly canonical of order v. O
For the next few results we assume:

(%) A is regular limit, is the v-th regular cardinal, and for each regular p < A which is the
n-th regular cardinal, £ is weakly canonical of order 7.

Proposition 2.79. Assume (xx). Suppose that S is stationary of order v. Then there is
a club U such that Vo € SN U [cf(a) > A

Proof. For each regular © < A, p the n-th regular cardinal, let T}, be stationary of
order n* such that 7, < S. By Corollary 2.70, E <Ty;so Ej; < S. Let U be club such
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that SNU C Tr(E};) for all regular 4 < A. Then by Theorem 2.63. Vo € SNU[cf(a) > Al
L

Proposition 2.80. Assume (xx). Then EY has order v.

Proof. Suppose not; so o( E§) > v. Let S be stationary of order v with S < E¥. Let
U be a club as in Proposition 2.74, and let D be a club such that E{ N D C Tr(S). Thus
Va € EfND[aNS is stationary in «]. Take any o € EYND and let V' be club in « of order
type A. Take any 8 € VNU'NS. Then cf(5) < A but also cf(5) > A, contradiction. O

Proposition 2.81. Assume (xx). Suppose that X is stationary of order v. Then for all
reqular p < A\, By < X.

Proof. Choose Y < X stationary of order n+ 1, where p is the n-th regular cardinal.
By Corollary 2.69, E; < Y. ]

Proposition 2.82. Assume (xx). Suppose that X is stationary of order v, then E¥ NX #
0.

Proof. By Proposition 2.76, Theorem 2.63, and Theorem 2.64, there is a club C
such that Voo € X N CVu < A[p regular — cf(a) > p]. So Va € X N Clef(a) > A]. If
Va € X N Clcf(a) > A, then by Theorem 2.63, X NC C Tr(E¥), hence Ef < X. Since X
has order v, this contradicts Proposition 2.75. L

Corollary 2.83. Assume (xx). Then EY is weakly canonical of order v. L

Lemma 2.84. If « is a limit ordinal with cf(a) = w, and X C «, then X is stationary in
a iff 3B < of(B, @) € X].

Proof. =: Suppose =35 < «[(f,«) C X]|. Then there is a cofinal subset of « of
order type w such that C N X = (). Note that C is club in «.
<: obvious. 0

Lemma 2.85. There is no stationary set S such that S < Ef.
Proof. {a € Ef : cf(a) < w} = Ef, which is stationary. So the second condition in
S < Ef; fails. ]

Proposition 2.86. If S,T are stationary and S ~ T mod Ings, then o(S) = o(T).

Proof. Suppose that X < S. Let C be club with SN C C Tr(X). Let D be club
with (T\S)ND =0. Then TNCND=TNSNCND C Tr(X). Hence by symmetry
o(S) = o(T). O

Proposition 2.87. E is canonical of order 0.

Proof. For (1), suppose that X C Ef, X stationary. If YV is stationary and ¥ < X,
let C be club with X NC' C Tr(Y). Then Vo € X N Clcf(a) > w and Y N« is stationary
in a]. Since cf () = w, this is a contradiction.
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For (2), suppose that X is stationary of order 0 and EXNX = (). Then Va € X[cf(a) >
w]. We claim that E" < X (contradiction). For, let @ € X Nk. Then cfa) > w and Ef Na
is stationary in «, as desired. ]

Proposition 2.88. o(E[ ) = 1.

Proof. By Lemma 2.69, o(Ef ) > 1. Now suppose that A < B < Ef with A, B
stationary. Then

{a € B : cf(a) < w} is nonstationary in &;
{a € B: aN A is nonstationary} is nonstationary;

{a € EJ :an B is nonstationary} is nonstationary.
Thus there is a club M in k such that

{a € B:cf(a) <w}nM = (1)
{a € B: aN A is nonstationary} N M = () and
{a € E} : aN B is nonstationary} N M = (.

Let M’ be the set of all limits of members of M; so also M’ is club in k. Suppose that
a € B NM'. Thus cf(a) = wi. Then a N B is stationary. Let U be a club in « of order
type wi. Since « € M', M N« is club in . Choose § € aN BNU N M’'. Then cf(8) > w
by (1), but cf(5) = w since € U, contradiction. ]

Lemma 2.89. o(Ef) = 2.

Proof. Clearly o(E[,) > 2. Now suppose that A < B < C < Ef,. Then there is a
club M in x such that

{aeC:cf(a) <w}n M =10 (1)
{a € B:cf(a) <w}nM = (; (2)
{a € Ef;, : anC is nonstationary} N M = () and

{a € C: an B is nonstationary} N M = () and

{a € B : aN A is nonstationary} N M = (.

Let M’ be the set of all limit points of members of M'. Take any o € M' N Ef . So
cf(a) = wy. Let U be club in a with order type ws. Now a N C is stationary. Let
BeanCNM NU. Then B has cofinality < wy.

Case 1. cf() = w. This contradicts (1).

Case 2. cf(8) = wy. Let V be club in 8 with order type wy. Then M'NU' NV’ is
club in 8. Now N B is stationary, so choose v € BNU’'NV’. Since v € V', we have
cf(v) = w. Since v € M’ this contradicts (2). O

Theorem 2.90. o(k) > k iff k is weakly inaccessible.
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Proof. First suppose that x is not weakly inaccessible. Since x is assumed to be
regular, this means that x = u™ for some p. Suppose that o(k) > k. Choose A C k be
stationary such that o(A) > p. For each regular v < k we have o(Ef) < v < o(A). Say
o(EF) = 1. Let B < A be stationary such that o(B) =1+ 1. By Corollary 2.70. Ef < B,
hence Eff < A. So, choose C,, club in k such that ANC, C Tr(E}). By Theorem 2.63, this
implies that each member of AN C, has cofinality greater than v. Now the intersection D
of all C,’s is still club, since there are at most u < x of them. So each member of AN D
has cofinality greater than each regular cardinal less than , contradiction.

Suppose that s is weakly inaccessible. Then k = [J{\ : A < k, X regular}, since k is
regular limit. So k is the x-th regular cardinal. For each v < k choose E stationary of
order v. Hence o(k) > k. O

Theorem 2.91. o(k) > k + 1 iff k is weakly Mahlo.

Proof. Suppose that x is weakly Mahlo. So A def {\ < Kk : Xis regular} is stationary.
Now by definition,  is weakly inaccessible. If A < & is regular, then AN (k\AT) is a subset
of Tr(EY). For, if p € AN (k\AT), then p is regular and greater than A, hence pu € Tr(EY).
This shows that E{ < A. So o(A) > k. Hence o(k) > k + 1.

Finally, suppose that o(k) > k+ 1. Then k is weakly inaccessible by the above. There
is a stationary A with o(A) = &, and hence by Corollary 2.70 we have Ef < A for every
regular A < k. Let (u¢ : £ < k) enumerate in increasing order all of the regular cardinals
less than k. For each £ < r there is a club C¢ such that AN C¢ C Tr(E},). The set D of
all cardinals less than s is a club. Let £ = A¢c,(D N C¢). Take any v € EN A. Then
for all { < v we have v € DN Cy, so v N Ej_is stationary in v, and hence cf(v) > pe. If
cf(v) < v, then cf(v) < pes) < cf(v), contradiction. So cf(v) = v. That is, v is regular.
Thus N A is a stationary set of regular cardinals, so x is weakly Mahlo. L

Suppose that F' is a normal k-complete filter on [A]<%, A set X C [A]<F is F-positive iff
[A]S"\X ¢ F.

Proposition 2.92. Suppose that F is a normal k-complete filter on [A]<*, and X C
P, (A) is F-positive. Also suppose that g is a function with domain X and Vz € F[g(x) €
[x]<“]. Then g is constant on some F-positve Y C X.

Proof.
(1) There is an m € w such that {x € X : |g(z)| = m} is F-positive.

In fact, otherwise the set Vj, & {z € X : |g(x)] # m} is in F for all m € w, and

hence by k-completeness and because (implicitly) x is uncountable and regular, we get
0 =new Ym € F, contradiction.

So we can assume that |g(z)| = m for all x € X, and proceed by induction on m. The
case m = 0 is trivial. Now assume inductively that m > 0. For each z € X let h(x) be the

least member of g(z). We claim that there is an a € A such that {x € X : h(x) = a} is

F-positive. Otherwise, the set Y, % {z € X : h(x) # a} isin F for all a € A. Then also

z NgeaYq € F. Take any z € Z. Then for all a €  we have x € Y,, hence h(z) # a,
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contradiction. Hence our claim is true. Choose such an a, and let W = {x € X : h(z) = a}.
Define ¢'(z) = g(z)\{a} for all x € W. Then the inductive hypothesis applies and gives
the desired result. OJ

Proposition 2.93. If F is a normal k-complete filter on [A]<", then F contains all clubs.

Proof. Let C' C [A]<" be club. By Lemma 8.26 there is an f : [A]<¥ — [A]<" such
that Cy C C, so it suffices to show that Cy € F. Suppose not. Then the set [A]<"\Cf is
F-positive. For all z € [A]<*\C} there is a g(z) € [z]<“ such that f(g(x)) € x. Hence by
exercise 8.16 there is an F-positive set P C [A]<"\C} such that g has constant value, say
u, on P. Thus for all x € P we have u € [z]<“ and f(u) € . Now f(u) € [A]<". For each
a € f(u) the set t, = {z € [A]*" :a € z} isin F, and so [,¢ s(,) ta € F'. Now

(] ta€F={xec[A<": f(u) Ca} C[A""\P,
a€ f(u)

contradicting P being F-positive. L

Proposition 2.94. For every F : [A]<¥ — A there is a countable x closed under F'.

Proof. Define (y; : i < w) by recursion. Let yo = {a} for any a € A. If y; has been
defined, let

yir1 =y U J{F(2) s 2 € ] =}

Clearly each y; is countable, and |J;, ¥; is as desired. L

Proposition 2.95. If D is a p-point and Xo, X1,... € D with Xg O X7 D ---, then there
is aY € D such that ¥n € w[Y\X,, is finite].

Case 1. (V;,c, Xi € D. Then apply the P-point condition to {X;\X;11 : i € w} U
{\Niew Xi}-

Case 2. (V;,c, Xi € D. Then apply the P-point condition to {X;\X;1 : i € w} U
{Miew Xi} U{w\Xo} O
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9. Combinatorial set theory

Suppose that p is a nonzero cardinal number, (A, : @ < p) is a sequence of cardinals, and
o, Kk are cardinals. We also assume that 1 < o < A\, < k& for all & < p. Then we write

k= (Aot < p))?

provided that the following holds:
For every f : [k]7 — p there exist a < p and I’ € [k] > such that f[[T]°]] C {a}.

In this case we say that I' is homogeneous for f. The following colorful terminology is
standard. We imagine that « is a color for each o < p, and we color all of the o-element
subsets of k. To say that I' is homogeneous for f is to say that all of the o-element subsets
of I' get the same color. Usually we will take ¢ and p to be a positive integers. If p = 2,
we have only two colors, which are conventionally taken to be red (for 0) and blue (for 1).
If 0 = 2 we are dealing with ordinary graphs.

Note that if p = 1 then we are using only one color, and so the arrow relation obviously
holds by taking I' = k. If  is infinite and ¢ = 1 and p is a positive integer, then the relation
holds no matter what o is, since

n=fo<n: fdad) =i},

i<p

and so there is some i < p such that [{a < k: f({a}) =i}| =k > \;, as desired.
In case Ao = p for all a < p we write k — (1)

Proposition 9.1. If Kk — (A\)?, and k < K'. then k' — (A)I.

Proof. Let F : [s']* — m. Let F' = F | [s]". Choose H € [x]* such that F' | [H]"
is constant. Then F' | [H|® = F' | [H]™ is constant. O
Proposition 9.2. If Kk — (A\)?, and 0 <n' < n. then K" — (A)7,.

Proof. Let F : [s']* — m. Let F' = F | [s]". Choose H € [x]* such that F' | [H]"
is constant. Then F' [ [H]|" = F' | [H]" is constant. O

n

Theorem 9.3. (Ramsey) If n and r are positive integers, then w — (w).

Proof. We proceed by induction on n. The case n = 1 is trivial, as observed above.
So assume that the theorem holds for n > 1, and now suppose that f : [w]**! — 7. For
each m € w define g, : [w\{m}|™ — r by:

gm(X) = f(X U {m}).

Then by the inductive hypothesis, for each m € w and each infinite S C w there is an
infinite H3 C S\{m} such that g,, is constant on [H3]". We now construct by recursion
two sequences (S; : i € w) and (m; : i € w). Each m; will be in w, and we will have
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Sog 2 51D ---. Let Syp = w and mg = 0. Suppose that S; and m; have been defined, with
S; an infinite subset of w. We define

Si—l—l = H;%Z and

m;y+1 = the least element of S;;1 greater than m;.

Clearly Sp 2 57 2 -+ and mg < my < ---. Moreover, m; € S; for all i € w.
(1) For each i € w, the function g,,, is constant on [{m; : j > i}|".

In fact, {m; : j > i} C S;y1 by the above, and so (1) is clear by the definition.
Let p; < r be the constant value of g,,, [ [{m; : j > i}|", for each ¢ € w. Hence

w:U{iew:pi:j};

j<r

so there is a j < r such that K def {i € w:p; =7} is infinite. Let L = {m; : 1 € K}. We
claim that f[[L]""1] C {j}, completing the inductive proof. For, take any X € [L]"*!; say
X ={m;,,...,m;, } with ig <--- <i,. Then

F(X) = gm,, ({miys - - ma, }) = pig = J. O

Theorem 9.4. (Ramsey) Suppose that n,r,lo,...,l._1 are positive integers, with n < I;
for each i < r. Then there is a k > l; for each i < r and k > n such that

k — (lo, ceey lr_l)n.

Proof. Assume the hypothesis, but suppose that the conclusion fails. Thus for every
k such that k > [; for each i < r with k > n also, we have k 4 (lo,...,l.—1)", which means
that there is a function fy : [k]® — 7 such that for each i < 7, there is no set S € [k]%
such that fi[[S]"] C {i}. We use these functions to define a certain g : [w]|™ — r which
will contradict the infinite version of Ramsey’s theorem. Let M = {k € w : k > [; for each
i<randk>n}.

To define g, we define functions h; : [i]™ — r by recursion. hg has to be the empty

function. Now suppose that we have defined h; so that S; o {seM: fs|[i]" = h;}is

infinite. This is obviously true for ¢ = 0. Then

Si= |J {keSi:fulli+1"=s},
sifi+1]m—r
and so there is a h;jq : [i + 1] — r such that S;y; o {kesS;: fu |[i+1]" = hit1} is
infinite, finishing the construction.
Clearly h; C hiy1 for all i € w. Hence g = (J,;¢,, hi is a function mapping [w]" into
r. By the infinite version of Ramsey’s theorem choose v < r and Y € [w]“ such that
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g[[Y]"] C {v}. Take any Z € [Y]*. Choose i so that Z C i, and choose k € S;. Then for
any X € [Z]™ we have

fi(X) = hi(X) = g(X) = v,

so Z is homogeneous for f, contradiction. 0

Theorem 9.5. Let D be a nonprincipal ultrafilter on w. Then the following are equivalent:
(i) D is Ramsey.
(ii) For all positive integers n and k and all F : [w]™ — k there exist X € D andi < k
such that F([X]™) C {i}.

Proof. First assume (ii). Let o/ be a partition of w such that VX € &/[X ¢ D]. We
will find X € D such that VA € &[|X N A| < 1]. Define F : [w]®> — 2 by

F({x y}):{l if 3JA,B € @/[A# B and x € A and y € B]
’ 0 otherwise.

Choose X € D and i < 2 such that F([X]?) C {i}. If A € & and x,y are distinct members
of XN A then clearly F({z,y}) = 0. Hence F([X]?) C {0}. Hence X C A for some A € &.
Hence A € D, contradiction.

Now suppose that D is Ramsey.

(1) If Xo O X7 2 with each X; € D, then there exist ag < a; < --- each in w such that
{ag,a1,...} € D, ap € Xo and Vn € wlan4+1 € Xq, ]

For, suppose that Xy O X; O with each X; € D. Since D is a p-point, thereisa Y € D
such that Vn[Y C X, is finite]. Now define

yo = least z € Y such that Vy > z[y € Xq];
y1 = least z € Y such that z > yo and Vy > z[y € X, ];

Yn = least z € Y such that z > y,_; and Vy > z[y € X, ,];

Foreachn € wlet A, = {2z €Y :y, <2z <yni1}. Each A, is finite and hence is not in
D. {z: z <y} along with the A,’s is a partition with each piece not in D. Since D is
Ramsey, there is a z € “w such that rng(z) € D and Vn € w[z, € A,].

(2) Vn € w[zn42 € X, ]

For, z, 42 € A, 42 and hence z,, 19 > y,42. It follows that z,,5 € X
so Xy, ., € X, . Hence z,,2 € X, , and (2) holds.

Now for all n € w let a,, = 22, and b, = 29, +1. Then either {a,, : n € w} € D or
{bp, :n€ew}eD.

Case 1. {an : n € w} € D. Choose a; € Xo and let a],,; = apti. Then a),,; =
Upt1 = Zont2 € X4y, = Xy, as desired in (1).

Case 2. {b, : n € w} € D. Choose b € Xg and let b}, = by 1. Then b}, | = b1 =
Zonts € X = Xy, , as desired in (1).

yng1s NOW Ypi1 > 2p,

Z2n41
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Thus (1) holds.

Now to prove (ii), we proceed by induction on n. For n = 1, suppose that F': w — k.
Then w = J,_,, F~*[{i}], so choose i < k such that F~1[{i}] € D. Then F[F~'[{i}]] = {i},
as desired.

Now assume the result for n, and suppose that F : [w]"*! — k. For each a € w define
F, : [w\{a}]™ — k by F,(b) = F(bU {a}). By the inductive hypothesis choose H, € D
and i, < k such that Fy[[Ha]"] C {ia}. Then w =J; ;{a € w: i, = j}. Choose j <k so

that K% {a € w:i, = j} € D. Fix a € K. Then H,NK € D and for all b € H, N K we
have Fy[[H, N K|"] C {j}.
Now for each n € wlet X,, = HLNKNHyNH;N---NH,. By (1) choose ag > a; < ---

such that ag € X and Vn € wlan4+1 € X,,, and L def {ag.ai,...} € D.
(3) Vi € wla; € L and {a,, : m > i} C Hy,].
For, obviously a; € L. If m > ¢, then m—1 > i, hence a,,—1 > a;, and a,, € X,,,

(4) Vi € wVz € {am : m > i}]"[F,, (z) = j].

C H,,.

—1

In fact, suppose that i € w and =z € [{a,, : m > i}|". Now for m > i we have a,, €
Xa,_, € H,NK. Hence x € [H, N K|". Clearly a; € H, N K. Hence F,,(z) = j. O

Theorem 9.6. For any infinite cardinal k we have 2% 4 (3)2.

K

Proof. Define F : [*2]? — &k by setting F({f,g}) = x(f,g) for any two distinct
fyg € 2. If {f,g,h} is homogeneous for F' with f,g,h distinct, let « = x(f,g). Then
f(@), g(a), h(a) are distinct members of 2, contradiction. O

Theorem 9.7. For any infinite cardinal k, the linear order ®2 does not contain a subset
order isomorphic to kT or to (kT,>).

Proof. The two assertions are proved in a very similar way, so we give details only for
the first assertion. In fact, we assume that (f, : & < k1) is a strictly increasing sequence
of members of #2, and try to get a contradiction. The contradiction will follow rather
easily from the following statement:

() Iy <k, Te [/i+]“+, and fo [ v < fg | v for any o, 8 € T" such that a < 3, then there
exist § <y and A € [F]“+ such that f, [ 0 < fg [ 0 for any o, 8 € A such that o < §5.

To prove this, assume the hypothesis. For each a € T" let f! = f, | 7. Clearly I" does not
have a largest element. For each o € T let o be the least member of T' which is greater
than a. Then

r=J{ael:x(fo, fo) =€)

§<y

Since |T'| = T, it follows that there are § < v and A € [[]*" such that x( Lo fl)) =6 for
all « € A. We claim now that f/ | 0 < fé [ § for any two «, 8 € A such that a < 3, as
desired in (1). For, take any such «, 8. Suppose that f,, [ 0 = f5 [ 6. (Note that we must
have f;, [ 6 < f5 16.) Now from x(f, fi) =0 we get fi,(0) =1, and from x(f5, fz:) =9
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we get f5(0) = 0. Now f, [ 0= fo, [ 6= f519,soweget fz < f,, < fz, contradiction.
This proves (1).

Clearly from (1) we can construct an infinite decreasing sequence k > 71 > 2 > - -+
of ordinals, contradiction. O

Theorem 9.8. For any infinite cardinal k we have 2% 4 (k*,k1)2.

Proof. We consider #2 under the lexicographic order. Let (f, : @ < 2") be a one-one
enumeration of #2. Define F': 2% — 2 by setting, for any a < § < &,

if «@ )
Fla ) ={\ ST

If 2¢ — (k*,k*)? holds, then there is a set I' € [2¢]*" which is homogeneous for F.
If F({a,B}) = 0 for all distinct a < 8 in I, then (f, : @ € T') is a strictly increasing

sequence of length o.t.(I"), contradicting Theorem 9.7. A similar contradiction is reached
if F'({a,B}) =1 for all distinct a < in I O

Theorem 9.9. (Erdés-Rado) For every positive integer n, 35 — (Ry)7+L,

Proof. First assume that n = 1. Let x = (2¥)" and F : [k]?> — w. For each a € & let
F, be the function with domain x\{a} defined by F,(z) = F({a,z}).

Claim. 34 ¢ [k]>"VO € [A]*Vu € k\CIv € A\C[F, | C = F, | C].

Proof of claim. We construct an wi-sequence A9 C A; C --- C A, C --- of
members of [/i]QW. Let Ag = 2. For limit « let A, = U5<a Ag. To construct A1, for
each countable C' C A, define u = v iff u,v € K\C and F,, | C = F, | C. Since there
are at most 2¢ functions from C into w, there are at most 2 equivalence classes. Let K¢
have one member from each equivalence class. Thus Yu € k\C3Iv € K¢[F, | C = F, | C].
Let A,41 be A, union the union of all such sets K. Since |4, | < 2, there are at most
2% sets C', so Ayq1 is as desired. Let A = Ua<w1 A,. O

Now fix a € kK\A. Fix 9 € A. Given {25 : 8 < a} = C with a < wy, choose
o € A\C so that F, [ C=F, [ C. Let X ={x,: a <wi}. Now define G: X — w by
G(x) = Fy(x).

(1) If @ < B < wy, then F({zq,28}) = G(x).

For, F({za,75}) = Fpy (7o) = Fu(vg) = G(x). Now rng(G) is countable, so there is an
H € [X]“* such that G is constant on H. Hence F is constant on [H]?. This finishes the
case n = 1.

Now assume that n > 2 and the result holds for n — 1. Thus 3% , — (w;)?. Let

k = 3} and assume that F : [k]"*! — w. For each a € k let F, : [k\{a}]"w be defined by
Fo.(z) = F(xU{a}). We claim:

JA € [TF]7mVC € [A]PrYu e TH\CTw € A\C(F, | [C]" = F, | [C]).

-+ each of size J,,. Let
Ay = 3, and for « limit let A, = | s<o Ap. Now suppose that A, has been defined,

In fact, we construct a sequence (A, : a < I ) of subsets of I
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and C € [Ay)?"'. Define u = v iff u,v € IF\C and F, | [C]" = F, | [C]"). Now
each }[C]nw} = 1, so there are at most J,, equivalence classes. Let K¢ have exactly one
member from each equivalence class. Let A,y1 = A, U {KC :C e [Aa]jnfl}. Since
:17::"_1 = Jp, we still have [Aq 1] = 3y, Finally, let A = J,.o+ Aq. Clearly A is as
desired.

Now choose a € k\A. Construct X = {z,:a <3t |} C A so that Va < It |[F,. |
Hzg: B < a}l]” =F, | [{zs: B < a}]". Define G : [X]" — w so that G(z) = F,(x). By
the inductive hypothesis there is an H € [X]** such that G is constant on H with value
b. Then if ag < --- < oy, all in H, then

F{zag, - Ta,}) = Fy.. {zags - Ta,_1})
=F.({zag, -+ %o, 1}) = G{Zagy, -+ Ta,_,}) =0 O

Theorem 9.10. (Dushnik, Miller) For any infinite cardinal k we have k — (k,w)?.

Proof. Suppose that f : [k]? — 2; we want to find a set X € [k]" such that
f[X]?] = {0}, or a set X € []* such that f[[X]?] = {1}.
For each x € k let B(x) = {y € k\{z} : f({z,y}) = 1}. Now we claim:

Claim. Suppose that for every X € [k]" there is an x € X such that |B(z) N X| = &].
Then there is an infinite X C & such that f[[X]?] C {1}.

Proof of claim. Assume the hypothesis. We define x,,,Y,, for n € w by recursion.
Let Yo = k. Assume that Y,, € [k]® has been defined. Then by supposition there is an
xn €Y, such that |B(z,) NY,| = k. Let Y41 = B(z,) NY,. Now if n < m < w, then
Tm € Yo41 € B(xy,), and hence f({zn,xn}) = 1. Thus {z, : n € w} is an infinite subset
of k such that f[[{z, :n € w}]?] C {1}, as desired. ]

First suppose that & is regular, and assume that there is no X € [k]" such that f[[X]?] C
{0}. We will verify the hypothesis of the claim; this gives the desired conclusion. So,
suppose that X € [k]®. By Zorn’s lemma let Y C X be maximal such that f[[Y]?] C {0}.
Thus |Y| < k by assumption. Now

X\Y c [JfzexX\YV: f({z,y}) =1} = |J By n(X\Y)].

yey yey

Since |Y| < k and k is regular, there is a y € Y such that |B(y) N X| = . This verifies
the hypothesis of the claim.

Second suppose that k is singular, and suppose that there is no infinite X C x such
that f[[X]? C {1}. Then by the claim,

(%) X € [k]"Vx € X[|B(x) N X| < K]

Let (A¢ : €& < cf(k)) be a strictly increasing sequence of regular cardinals with supremum
x and with cf(k) < Ao, and let (Yz : £ < cf(k)) be a system of pairwise disjoint subsets of
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X such that V€ < cf(k)[|Ye| = X¢]. By the regular case, Ae — (A¢,w)? for each & < cf(k).
It follows that for each & < cf(k) there is a Z¢ € [Y¢]*¢ such that f[[Z¢]?] C {0}. Now for
each & < cf(k), by (%),

Ze= |J {z€Z:|Bx)nX| < Ao}
a<cf(k)

Since [Z¢| = A¢ > cf (k) and A¢ is regular, there is an h(§) < cf(x) such that

def
Wg = {.’B € Zg : \B(x) ﬂX‘ < )\h(g)}

has size A¢.

Now we define a sequence (og : § < cf(x)) of ordinals less than x by recursion. If «,,
has been defined for all n < &, with & < cf(k), then the set {a, : 1 <} U{Apy) 10 < &}
is bounded below s and so there is an a¢ < k greater than each member of this set. Thus
if n < & then a,; < ag and Ap(y;) < ag. Now for any § < cf(k) let

ngW%\U Bx)NnX :zx € UW%

n<§

Note that if n < £ < cf(k) then [W,, | = Ao, < Ao, and € < cf(k) < Ao < Ay, 8O
‘Un<£ Wa, | < Aae- Moreover, if n < £ and x € W, , then [B(z)NX| < Ay(a,) < A¢. Hence
for each = € U, ., Wa, we have |B(z) NX| < Aq,. Hence |S¢| = Ao, Let T' = U g Se-

So |T| = k. We claim that f[[T]?] C {0}. For, suppose that x,y € T with x # y.
Case 1. There is a § < cf(x) such that z,y € S¢. Now S¢ € W,, C Z,,, so

f({z,y}) =0.
Case 2. There exist n < £ < cf(k) such that x € S, and y € S¢. (The case x € S¢

and y € S, is treated similarly.) Then x € W, , so y & B(x),ie. f({z,y})=0. ]

A cardinal & is weakly compact iff it is uncountable and xk — (k)2.

Proposion 9.11. Fvery weakly compact cardinal is inaccessible.

Proof. To show that « is regular, suppose to the contrary that x = )" _, jta, where
A < k and p, < K for each @ < A. By the definition of infinite sum of cardinals, it follows
that we can write k = (J, .\ Ma, where [M,| = pq for each o < A and the M,’s are
pairwise disjoint. Define f : [k]?> — 2 by setting, for any distinct a, 8 < &,

F{apy) = {0 T8 € Me for some & <2,

1 otherwise.

Let H be homogeneous for f of size k. First suppose that f[[H]?] = {0}. Fix ag € H, and
say og € M. For any 3 € H we then have 8 € M also, by the homogeneity of H. So
H C Mg, which is impossible since |Mg| < k. Second, suppose that f[[H]?] = {1}. Then
any two distinct members of H lie in distinct M¢’s. Hence if we define g(a) to be the
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£ < A such that a € M, for each o € H, we get a one-one function from H into A, which
is impossible since \ < k.

To show that & is strong limit, suppose that A < s but x < 2*. Now by Theorem
9.8 we have 2* /4 (AT, AT)2. So choose f : [2}]? — 2 such that there does not exist an

X € [22) with f | [X]? constant. Define g : [k]2 — 2 by setting g(A) = f(A) for any
A € [k]2. Choose Y € [k]* such that g | [Y]? is constant. Take any Z € [Y]A+. Then
f I [Z]? is constant, contradiction.

A tree is a partially ordered set (T, <) such that for each ¢t € T, the set {s € T': s < t} is
well-ordered by the relation <. Thus every ordinal is a tree, but that is not so interesting
in the present context. We introduce some standard terminology concerning trees.

o (t])={seT:s<t}; (1) ={seT:t<s}

e For each t € T, the order type of {s € T': s < t} is called the height of ¢, and is denoted
by ht(¢,T") or simply ht(¢) if 7" is understood.

e A root of a tree T is an element of T of height 0, i.e., it is an element of T" with no
elements of T" below it. Frequently we will assume that there is only one root.

e For each ordinal «, the a-th level of T, denoted by Lev, (T), is the set of all elements of
T of height a.

e The height of T itself is the least ordinal greater than the height of each element of T'; it
is denoted by ht(T").

e A chain in T is a subset of T linearly ordered by <.

e A branch of T is a maximal chain of T'.

e For each a < ht(T') let To, = Us_,, Levs(T).

e An antichain is a collection of pairwise incomparable elements.

e T'is a Suslin tree iff the height of T' is wy, every branch is countable, and every antichain
is countable.

e For a < w1, a normal a-tree is a tree T satisfying the following conditions:

(i) The height of T" is w;.

(ii) T has only one root.

(iii) Each level of T' is countable.

(iv) If z € T is not maximal, then there are infinitely many elements greater than x
at the next level.

(v) For each x € T and each level | greater than the level of x there is an element >
x at that level.

(vi) If B < a is a limit ordinal, = and y have level 5, and {z: z < z} = {2z : 2 < y},
then z = y.

Note that chains and branches of T' are actually well-ordered, and so we may talk about
their lengths.
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Lemma 9.12. If there is a Suslin tree, then there is a normal Suslin tree.

Proof. Let T be a Suslin tree. For any tree S and any s € Slet S ts={t € 5 :s <t}.
Now define
Ty ={z €T :T 1z is uncountable}.

Obviously there is a root of T" which is in 77, so T3 is nonempty. We let T} have the order
from T. So Tj is a tree. Clearly if s < t € Ty, then also s € T;. Hence the level of an
element of T3 in T} is the same as its level in 7. Now we claim that (v) holds for T;. For,
suppose that t € T, and take an « greater than the level of ¢t. Then

T1t={s€Ti1t:shaslevel less than a}
UU{TTs:SGTthandshas level a}.

Since the first set here is countable, it follows that there is an s € T 1 t at level a such
that T' 1 s is uncountable. So s € T1, as desired. Thus 7} is a Suslin tree satisfying (v).
An element s € T} is a branching point iff it has at least two immediate successors.

(1) There are uncountably many branching points above each member of T;.

In fact, suppose that s € 77 and the set B of branching points above s is countable. Let
a be a level above the level of all members of BU {s}. Then for each ¢ above s at level a,
Ty 1t is a chain, and hence is countable. So | J{T1 1t : t is above s at level a} is countable,
and (v) is contradicted for s. So (1) holds.

Let T5 be the set of all branching points of T;. So we still have a Suslin tree, and (v)
continues to hold. Moreover, every element of 75 is a branching point in 75, for if x € T5
and ¥, z are distinct immediate successors of z in T', let 3/, 2’ be the least branching points
of T} above y, z respectively. Then v/, 2’ are distinct immediate successors of z in T5.

Next, let € be the collection of all C' C T5 satisfying the following conditions.

(2) C'is a chain, and Vt €e ToVz € Clt <z — t € (.
(3) C has limit length a¢, and there are at least two elements x € T of level a¢ such that
Vy € Cly < zJ.

For each C' € ¥ we introduce a new element [~ producing T3, and extend the order on T5
by defining for any x € T, and C1,Cy € €

v < lo, iff zeCi
lo, <z iff VyeCly<al;
l01 <! l02 ifft Cy C Cy.

Clearly <’ is irreflexive. To see that it is transitive, suppose that x,y,z € T3 and x <’
y < z.

Case 1. x,y,z € Ty. Clearly z <’ z.

Case 2. v,y € Ty, z =Ilc. Then y € C, so x € C; hence z <’ 2.

Case 3. x,z € Ty, y =lc. Then x € C, hence z < z.
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Case 4. x € Ty, y =l¢,, 2 =lc,. Then x € C; C Oy, so x € Cy and hence = <’ z.

Case 5. © =lc, y,z € Ty. Then Yw € Clw < y], hence Yw € Clw < 2], so z <’ z.

Case 6. x =lc,, y € Ty, z = lc,. Then YVw € C1[w < y|, and y € Co, so C; C Cs. So
x <z

Case 7. x =l¢y, y =lc,, 2 € To. Then C7 C Cy and Yw € Ca[w < z]. hence x <’ z.

Case 8. © =l¢,, y=lc,, 2 =1c,. Then Cy C Cy C C3, 80 x <’ 2.

Next, T3 is a tree. For, suppose that xq >’ 1 >’ --- with each z; € T5. If Vm € win >
m[z] € Ty], a contradiction follows. Suppose that Im € wVn > mz!, ¢ T»]. Say for
n > m that z, =lc,. Then C,, D Cpy1 D ---. Choose y,, € C,\Cp41 for all n € w. Then
Vn € wVz € Cpy1]z < Ynl, SO Yn > Ypy1 > - - -, contradiction.

Next, suppose that (x, : a < wi) is strictly increasing in T5. If Va < w38 €
la,wi)[zg € T], we get a contradiction because T3 is Suslin. Suppose Ja < wVf €
[, w1)[xp ¢ Tp]. For each 8 € [a,wi) say w3 = lg,. Then C3 C Cgq1 C ---. Choose
yp € Cpy1\Cp for all § € [a,wy). Then yg < yg41 < ---, again a contradiction.

Now suppose that (r, : @ < wi) is incomparable in T3. If Va < w138 € [a,wr)[zp €
T5], we get a contradiction because T is Suslin. Suppose Ja < w1 VB € o, w1)[zp ¢ T3]
For each 8 € [a,w;) say 23 = lg,. For each 8 € [a,w:) let yg be at level ac, such that
Vz € Cglz < yg]. Then yz and y, are incomparable for 3 # v, contradiction.

Thus T3 is Suslin. Clearly (v) holds for T3, and each element of T3 has at least two
immediate successors. Suppose that (w, : v < ) is a chain in T3 of limit length 3, and
u # v are at level 8 such that Vy < flw, < w and wy < v]. If Vy < 3§ € (v, B)[ws € T3]
then the chain is in ¥ and we get a contradiction. Suppose 3y < Y6 € (v, 5)[ws ¢ To].
Say ws = l¢, for 6 € (v, ). Then U&e(v,ﬁ) Cs € € and again we get a contradiction. Thus
(vi) holds for T5.

Now let Ty be the set of elements at limit levels in 75. Then all conditions except
(ii) hold. Finally, let T5 be all elements of T5 above a fixed root. Then all conditions
hold. ]

e A subset U of a linear order L is open iff U is a union of open intervals (a, b) or (—o0, a)
or (a,00). Here (—o00,a) ={be L:b<a} and (a,00) ={b€ L:a <b}. L itself is also
counted as open. (If L has at least two elements, this follows from the other parts of this
definition.) Note that if L has a largest element a, then (a,00) = ); similarly for smallest
elements.

e An antichain in a linear order L is a collection of pairwise disjoint nonempty open sets.

e A linear order L has the countable chain condition, abbreviated ccc, iff every antichain
in L is countable.

e A subset D of a linear order L is topologically dense in L iff D NU # () for every
nonempty open subset U of L. Then dense in the sense at the beginning of the chapter
implies topologically dense. In fact, if D is dense in the original sense and U is a nonempty
open set, take some non-empty open interval (a,b) contained in U. There is a d € D with
a<d<bsoDNU#0. If ) # (a,00) C U for some a, choose b € (a,00), and then choose
d € D such that a < d < b. Then again D NU # (). Similarly if (—oo0,a) C U for some a.
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Conversely, if L itself is dense, then topological denseness implies dense in the order
sense; this is clear. On the other hand, take for example the ordered set w; w itself is
topologically dense in w, but w is not dense in w in the order sense.

e A linear order L is separable iff there is a countable subset C' of L which is topologically
dense in L. Note that if L is separable and (a, b) is a nonempty open interval of L, then
(a,b), with the order induced by L (x < y for z,y € (a,b) iff z < y in L) is separable.
In fact, if C' is countable and topologically dense in L clearly C'N (a,b) is countable and
topologically dense in (a,b). Similarly, [a,b] is separable, taking (C' N [a,b]) U {a,b}. This
remark will be used shortly.
e A Suslin line is a linear ordered set (.5, <) satisfying the following conditions:

(i) S has ccc.

(ii) S is not separable.

Theorem 9.13. If there is a Suslin tree then there is a Suslin line.

Proof. By Theorem 9.12 we may assume that 7" is normal. Take any linear order < of
T'. To show that A(T, <) is ccc, suppose that 27 is an uncountable collection of nonempty
pairwise disjoint open intervals in %(T, <). For each (B, () € & choose E(g ¢ € (B,C).
Remembering that each branch has limit length, we can also select an ordinal a(p ) such
that
d(B, E,0)), d(E,c),C) < a,c) < len(E(p,c))

We claim that (b¥(5(a(p ) : (B,C) € &) is a system of pairwise incomparable ele-
ments of 7', which contradicts the definition of a Suslin tree. In fact, suppose that (B, C)
and (B’,C") are distinct elements of o/ and bE(B’C)(oz(B’C)) < bE(B/’C/)(oz(B/’C/)). It
follows that ap .y < a(p/, ¢y and

(1) bEEO(B) = bEEC)(B) for all B < o .0

Hence

(2) I B < d(B, E(p,c)), then § < a(p,¢), and so b%(8) = b¥=.0)(8) = bEer.en (B).
Now recall that d(B, E(p,cy) < a(p,c). Hence

bP(d(B, E(p,c))) < b"®(d(B, E(p,c))) = b"® <" (d(B, E(s.c))),
and so B < E(p/ cn. Similarly, E( g/ ¢y < C, as follows:
(3) If B < d(C, Ep,c)), then 8 < a(p,¢), and so bC(B) = bFm.or(B) = bE<B”C’>(B).
Now recall that d(C, E(p,c)) < a(p,c). Hence

b (d(C, Ep.cy)) = bE®(d(C, E(p o)) = bP# e (d(C, E(p.c)),

and so C > E(p/ cvy. Hence Epr ¢y € (B,C). But also E(p ¢y € (B',C"), contradiction.
To show that A(T, <) is not separable, it suffices to show that for each § < w; the
set {B € B(T,<) : len(B) < ¢} is not dense in A(T, <). Take any = € T of height 4.
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Since {y : y > x} has elements of every level greater than §, it cannot be a chain, as
this would give a chain of size w;. So there exist incomparable y, z > x. Similarly, there
exist incomparable u,v > y. Let B,C, D be branches containing u, v, z respectively. By
symmetry say B < C. Illustration:

u, B v,C

(4) ht(y) <d(B,C)
This holds since y € BN C.
(5) d(B, D) < ht(y) and d(C, D) < ht(y); hence d(B, D) < d(B,C) and d(C, D) < d(B,C).

In fact, y € B\D, so d(B, D) < ht(y) follows. Similarly d(C, D) < ht(y). Now the rest
follows by (4).

(6) d(B, D) = d(C, D).

For, if d(B, D) < d(C, D), then b° (d(B, D)) = bP(d(B, D)) # b?(d(B, D)), contradicting
d(B, D) < d(B,C), part of (5). If d(C, D) < d(B, D), then b?(d(C, D)) = b (d(C, D)) #
b¢(d(C, D)), contradicting d(C, D) < d(B, C), part of (5).

By (6) we have B,C < D, or D < B,C. Since we are assuming that B < C, it follows
that

(7Y B<C<DorD<B<C.

Case 1. B < C < D. Thus (B, D) is a nonempty open interval. Suppose that there is
some branch F with len(E) < 6 and B < E < D. Then d(B, E),d(E,D) < §. By Lemma
92.9 one of the following holds: d(B,D) = d(B,E) < d(E,D); d(B,D) = d(B,E) =
d(E,D); d(B,D) = d(E,D) < d(B,FE). Hence d(B,D) < . Since x € BN D and z has
height 9, this is a contradiction.

Case 2. D < B < C. Thus (D, () is a nonempty open interval. Suppose that there is
some branch F with len(E) < § and D < E < C. Then d(D, E),d(E,C) < . By Lemma
22.9 one of the following holds: d(D,C) = d(D,E) < d(E,C); d(D,C) = d(D,E) =
d(E,C); d(D,C) =d(E,D) < d(D, E); hence d(D,C) < §. Since x € CN D and x is of
height d, this is a contradiction. 0

Let (L, <) be a linear order. We say that a linear order (M, <) is a completion of L iff the
following conditions hold:

(C1) L € M, and for any a,b € L, a < biff a <.
(C2) M is complete.
(C3) Every element of M is the lub of a set of elements of L.
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(C4) If @ € L is the lub in L of a subset X of L, then a is the lub of X in M.

Theorem 9.14. Any linear order has a completion.

Proof. Let (L, <) be a linear order. We let M’ be the collection of all X C L such
that the following conditions hold:

(1) For all a,be L,if a < b€ X then a € X.
(2) If X has alub a in L, then a € X.

We consider the structure (M’, C). It is clearly a partial order; we claim that it is a linear
order. (Up to isomorphism it is the completion that we are after.) Suppose that X, Y € M’
and X # Y; we want to show that X C Y or Y C X. By symmetry take a € X\Y. Then
we claim that Y C X (hence Y C X). For, take any b € Y. If a < b, then a € Y by (1),
contradiction. Hence b < a, and so b € X by (1), as desired. This proves the claim.

Next we claim that (M’,C) is complete. For, suppose that 2~ C M’'. Then |J Z
satisfies (1). In fact, suppose that ¢ < d € |J 2. Choose X € 2 such that d € X. Then
ce X by (1) for X, and so c € |J Z". Now we consider two cases.

Case 1. |JZ does not have a lub in L. Then |J £ € M’, and it is clearly the lub of
Z.

Case 2. |J Z has a lub in L; say a is its lub. Then

3) U2 U{a} = (—00,d].

In fact, C is clear. Suppose that b < a. Then b is not an upper bound for | J 2", so we can
choose ¢ € | J 2" such that b < ¢. Then b € |J 2 since |J 2" satisfies (1). This proves (3).

Clearly (—o0,a] € M'. We claim that it is the lub of .Z". Clearly it is an upper bound.
Now suppose that Z is any upper bound. Then |JZ C Z. Ifa ¢ Z, then JZ = Z,
contradicting (2) for Z. So a € Z and hence (—o0,a] C Z.

Hence we have shown that (M’, C) is complete.

Now for each a € L let f(a) ={b€ L:b<a}. Clearly f(a) € M.

(4) For any a,b € L we have a < b iff f(a) C f(b).

For, suppose that a,b € L. If a < b, clearly f(a) C f(b), and even f(a) C f(b) since
b e f(b)\f(a). The other implication in (4) follows easily from this implication by assuming
that b < a.

(5) Every element of M’ is a lub of elements of f[L].

For, suppose that X € M’, and let 2" = {f(a) : a € X }; we claim that X is the lub of 2 .
Clearly f(a) C X for all a € X, so X is an upper bound of 2". Suppose that Y € M’ is
any upper bound for 2". If a € X, then a € f(a) CY,s0a € Y. Thus X C Y, as desired.
So (5) holds.

(6) If a € L is the lub in L of X C L, then f(a) is the lub in M’ of f[X].

For, assume that a € L is the lubin L of X C L. If z € X, then z < a, so f(z) C f(a).
Thus f(a) is an upper bound for f[X] in M’. Now suppose that ¥ € M’ and Y is an
upper bound for f[X]. If b € L and b < a, then since a is the lub of X, there is a d € X
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such that b < d < a. So f(d) C Y, and hence d € Y. Since b < d, we also have b € Y.
This shows that f(a)\{a} CY. If a € X, then f(a) € f[X] and so f(a) C Y, as desired.
Assume that a ¢ X. Since a is the lub of X in L, there is no largest member of L which
is less than a. Now suppose that a ¢ Y. If u € Y, then u < a, as otherwise a < u and so
a €Y, contradiction. It follows that Y = {u € L : u < a}. Clearly then a is the lub of Y.
This contradicts (2). It follows that a € Y. Hence f(a) C Y. So (6) holds.

Thus M’ is as desired, up to isomorphism.

Finally, we need to take care of the “up to isomorphism” business. Non-rigorously,
we just identify a with f(a) for each @ € L. This is the way things are done in similar
contexts in mathematics. Rigorously we proceed as follows; and a similar method can be
used in other contexts. Let A be a set disjoint from L such that |A| = |M'\ f[L]|. For
example, we could take A = {(L,X) : X € M'\ f[L]}; this set is clearly of the same size
as M'\ f[L], and it is disjoint from L by the foundation axiom. Let g be a bijection from
A onto M'\ f[L]. Now let N = LU A, and define h : N — M’ by setting, for any x € N,

flx) ifzxel,
hw) = {g(x) if x € A.

Thus h is a bijection from N to M’, and it extends f. We now define x < y iff x,y € N
and h(x) C h(y). We claim that (N, <) really is a completion of L. (Not just up to
isomorphism.) We check the conditions for this. Obviously L C N. Suppose that a,b € L.
Then a < b iff f(a) C f(b) iff h(a) C h(b) iff a < b. Now h is obviously an order-
isomorphism from (N C) onto (M’ C), so N is complete. Now take any element a of N.
Then by (5), h(a) is the lub of a set f[X] with X C L. By the isomorphism property, a is
the lub of X. Finally, suppose that a € L is the lub of X C L. Then by (6), f(a) is the
lub of f[X]in M’ i.e., h(a) is the lub of A[X] in M’. By the isomorphism property, a is
the lub of X in N. O

Theorem 9.15. If L is a linear order and M, N are completions of L, then there is an
isomorphism f of M onto N such that f | L is the identity.

Proof. It suffices to show that if P is a completion of L and M’, f, g, h, N are as in
the proof of Theorem 9.14, then there is an isomorphism g from P onto N such that g | L
is the identity.

For any = € P let ¢'(z) = {a € L : a <p z}. We claim that ¢'(z) € M’. Clearly
condition (1) holds. Now suppose that ¢’(z) has a lub b in L. By (C4) for P, b is the lub
of ¢’(z) in P. But obviously z is the lub of ¢’(z) in P, so b =z € ¢’'(z). So (2) holds for
g'(x), and hence ¢'(z) € M’.

Now we let g(z) = h=1(g'(z)) for any x € P. If z € L, then ¢'(z) = f(x) = h(z), and
hence g(z) = z.

If v <py, clearly ¢'(z) C ¢'(y), and hence g(x) <y g(y). By (C3) for P and y, there
is an a € L such that z <p a <p y. So a € ¢'(y)\¢'(x). Hence ¢'(z) C ¢'(y) and so
g(x) <y g(y). Thus Vz,y € Plz <p y — g(x) <y g(y)]. Hence x £p y iff y <p x iff
9(y) <~ g(z) itf g(z) £n g(y). So Vz,y € Plx <py < g(x) <n g(y)]-

It remains only to show that ¢ is a surjection. Let z € N. Set y = supph(z). If
a € h(z), then a <p y and so a € ¢'(y). Thus h(z) C ¢'(y). Now suppose that a € ¢'(y).
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So a <p y. If a <p y, then there is a z € h(y) such that a <p z <p y. It follows that
a € h(y). If a = y, then a € h(x) by (2). So ¢’(y) C h(y), showing that ¢'(y) = h(z).
Hence g(y) = h™'(g'(y)) = 2. O

Corollary 9.16. Suppose that L is a dense linear order, and M s a linear order. Then
the following conditions are equivalent:
(i) M is a completion of L.
(ii) (a) L C M
(b) M is complete.
(¢) For any a,b € L, a <y, b iff a <p; b.
(d) For any x,y € M, if x <p; y then there is an a € L such that x <p; a <ps y.

Proof. (i)=-(ii): Assume that M is a completion of L. then (a)—(c) are clear. Suppose
that x,y € M and = <;; y. By (C3), choose b € L such that x <p; b <p; y. If x € L, then
choose a € L such that z < a <p b; so z <pr a <ps y, as desired. Assume that = ¢ L.
Then by (C4), b is not the lub in L of {u € L : u < z}, so there is some a € L such
that a <z b and a is an upper bound of {u € L : u <js x}. Since by (C3) z is the lub of
{u € L:u<y x}, it follows that x <p; a <pr b <ps y, as desired.

(ii)=-(i): Assume (ii). Then (C1) and (C2) are clear. For (C3), let z € M, and let
X ={a € L:a <z} Then x is an upper bound for X, and (ii)(d) clearly implies that
it is the lub of X. For (C4), suppose that a € L is the lub in L of a set X of elements of
L. Suppose that x € M is an upper bound for X and z < a. Then by (ii)(d) there is an
element b € L such that x < b < a. Then there is an element ¢ € X such that b < ¢ < a.
It follows that ¢ < x, contradiction. ]

Theorem 9.17. The following conditions are equivalent:

(i) There is a Suslin line.

(ii) There is a linearly ordered set (L, <) satisfying the following conditions:
(a) L has no first or last elements.
(b) L is dense.
(c) Every nonempty subset of L which is bounded above has a least upper bound.
(d) No nonempty open subset of L is separable.
(e) L is ccc.

Proof. Obviously (ii) implies (i). Now suppose that (i) holds, and let S be a Suslin
line. We obtain (ii) in two steps: first taking care of denseness, and then taking the
completion to finish up.

We define a relation ~ on S as follows: for any a,b € S,

a~b iff a=0b,
or a < b and [a, b] is separable,

or b < a and [b, a] is separable.

Clearly ~ is an equivalence relation on S. Let L be the collection of all equivalence classes
under ~.
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(1) If I € L, then I is convex, i.e., if a < ¢ < b with a,b € I, then also ¢ € I.
For, [a,b] is separable, so [a, c| is separable too, and hence a ~ ¢; so ¢ € I.
(2) If I € L, then I is separable.

For, this is clear if I has only one or two elements. Suppose that I has at least three
elements. Then there exist a,b € I with a < b and (a,b) # 0. Let .# be a maximal
pairwise disjoint set of such intervals. Then .# is countable. Say .# = {(z,,yn) : n € w}.
Since x,, ~ Yy, the interval [z,,y,] is separable, so we can let D,, be a countable dense
subset of it. We claim that the following countable set E is dense in I:

E = U D,, U{e : e is the largest element of I}

ncw

U{a : a is the smallest element of I}.

Thus e and a are added only if they exist. To show that E is dense in I, first suppose
that a,b € I, a < b, and (a,b) # (). Then by the maximality of .#, there is an n € w such
that (a,b) N (2n,yn) # 0. Choose ¢ € (a,b) N (2, y,). Then max(a, z,) < ¢ < min(b, y,),
so there is a d € D,, N (max(a, ), min(b,y,)) C (a,b), as desired. Second, suppose that
a € I and (a,00) # 0; here (a,00) ={x € [ : a < x}. We want to find d € F with a < d. If
I has a largest element e, then e is as desired. Otherwise, there are b, c € I with a < b < c,
and then an element of (a, c) N E, already shown to exist, is as desired. Similarly one deals
with —oo. Thus we have proved (2).

Now we define a relation < on L by setting I < J iff I # J and a < b for some a € 1
and b € J. By (1) this is equivalent to saying that [ < J iff I # J and a < b for all a € I
and b € J. In fact, suppose that a € I and b € J and a < b, and also ¢ € [ and d € J,
while d < ¢. If d < a, then d < a < b with d,b € J implies that a € J, contradiction.
Hence a < d. Since also d < ¢ this gives d € I, contradiction.

Clearly < makes L into a simply ordered set. Except for not being complete in the
sense of (c), L is close to the linear order we want.

To see that L is dense, suppose that I < J but (I, J) = (). Take any a € T and b € J.
Then (a,b) C I UJ, and I U.J is separable by (2), so a ~ b, contradiction.

For (d), by a remark in the definition of separable it suffices to show that no open
interval (I, .J) is separable. Suppose to the contrary that (I, .J) is separable. Let </ be a
countable dense subset of (I,.J). Also, let Z={K € L:1 < K < J and |K| > 2}. Any
two distinct members of # are disjoint, and hence by ccc & is countable. In fact, each
K € % has the form (a,b), [a,b), (a,b], or [a,b]. since |K| > 2, and in each case the open
interval (a,b) is nonempty. So ccc applies.

Define ¢ = o/ UABU{I, J}. By (2), each member of ¥ is separable, so for each K € €
we can let Dy be a countable dense subset of K. Let £ = (Jxc Dr. So E is a countable
set. Fix a € I and b € J. We claim that £ N (a,b) is dense in (a,b). (Hence a ~ b and so
I = J, contradiction.) For, suppose that a < ¢ < d < b with (¢, d) # 0.

Case 1. [c] d]~ = 1. Then Dy N (e,d) # 0, so EN(c,d) # 0, as desired.

Case 2. [c] d]~. = J. Similarly.

Case 3. I < [c]~ =[d]~ < J. Then [c]. € # C ¥, so the desired result follows again.

o=
o=
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Case 4. [c]~ < [d]~. Choose K € & such that [c]. < K < [d]~. Hence ¢ < e < d for
any e € Dy, as desired.

Thus we have obtained a contradiction, which proves that (I, .J) is not separable.
Next, we claim that L has ccc. In fact, suppose that &7 is an uncountable family of

pairwise disjoint open intervals. Let 2 be the collection of all endpoints of members of
o/, and for each I € 2 choose ay € I. Then

{lar,ay): (1, J) € &}

is an uncountable collection of pairwise disjoint nonempty open intervals in .S, contradic-
tion. In fact, given (I,J) € &/, choose K with I < K < J. then ax € (ar,ay). So
(ar,ay) # 0. Suppose that (I,.J),(I’,J’) are distinct members of 7. Wlog J < I’. Then
ay < ay, and it follows that (ar,a;) N (ap,ay) = 0.

This finishes the first part of the proof. We have verified that L satisfies (b), (d), and
(e). Now let M be the completion of L, and let N be M without its first and last elements.
We claim that N finally satisfies all of the conditions in (ii). Clearly N is dense, it has no
first or last elements, and every nonempty subset of it bounded above has a least upper
bound. Next, suppose that a < bin N and C' is a countable subset of (a,b) which is dense
in (a,b). Choose ¢,d € L such that a < ¢ < d < b. For any u,v € C withc<u <v <d
choose ey, € L such that u < ey, < v; such an element exists by Corollary 21.15. We
claim that {ey, : u,v € C, u < v} is dense in (¢,d) in L, which is a contradiction. For,
given x,y such that ¢ < z < y < d in L, by the definition of denseness we can find u,v € C
such that * < v < v < y; and then x < ey, < y, as desired.

It remains only to prove that N has ccc. Suppose that <7 is an uncountable collection
of nonempty open intervals of N. By Corollary 21.15, for each (a,b) € &/ we can find
¢,d € L such that a < ¢ < d < b. So this gives an uncountable collection of nonempty
open intervals in L, contradiction. ]

Theorem 9.18. If there is a Suslin line, then there is a Suslin tree.

Proof. Assume that there is a Suslin line. Then by Theorem 9.17 we may assume
that we have a linear order L satisfying the following conditions:

(1) L is dense, with no first or last elements.
(2) No nonempty open subset of L is separable.
(3) L is ccc.

Now we define by recursion elements a, b, of L, for a < wy. If these have already been
defined for all § < a, then the set {ag : B < a} U{bs : B < a} is countable, and hence
by (2) it is not dense in L. Let (¢,d) be an open interval disjoint from this set, and pick
Ga,ba SO that ¢ < a, < b, < d Thus for any & < a one of these conditions holds:

ag < aq < by < bg;

(o < bo < ag < b;

ag < bg < aq < by.
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Hence
(1) VE, o <wil€ < a = [[aa; ba] € (ag, be) or [aa, ba] N (ag, be) = 0].
Now we define a relation < on w; as follows: for any &, a < wi,

€< aiff £ <aand [aq,ba] C (ag, be).

If £ << q then £ <7 < a, hence £ < «, [ay,by] C (ag,be), and [aq, bs] C (ay, by),
hence [aq, bs] C (ag,be); so € < a. Thus < is transitive. Clearly it is irreflexive. So < is a
partial order on w;.

Now suppose that £ < a, n < «a, and £ # n. We show that £ < n or n < &; hence
(w1, <) is a tree. Wlog & < 1. Now [aq, ba] C (ag,be) N (ay,by), so (ag,be) N (ay, by) # 0,
so by (1) [ay,by] C (ag,be). Thus & < n, as desired.

Now suppose that (a(§) < £ < wi) is <-increasing. Thus (a(§) < £ < wy) is <-
increasing and V&, n < w1[§ <1 = [[aa(y), ban)] € (@a(e), ba(e))- Then

((aa(e), bae)\[@a(e+1): ba(ern)] : & <wi)

is a system of w; pairwise disjoint open sets in L, contradiction.

Finally, if (a(§) : & < wy) is a system of pairwise incomparable elements under <,
then by (1), ((aa(e), ba(e)) : ¢ < wi) is a system of pairwise disjoint open intervals in L,
contradiction. 0

An Aronszajn tree is a tree of height w; with all levels countable and no uncountable
branches.
Theorem 9.19. There is an Aronszajn tree.

Proof. We start with the tree
T ={s € ““'w: s is one-one}.

under C. This tree clearly does not have a chain of size w;. But all of its infinite levels
are uncountable, so it is not an wi-Aronszajn tree. We will define a subset of it that is the
desired tree. We define a system (S, : @ < wy) of subsets of T' by recursion; these will be
the levels in the new tree.

Let Sp = {0}. Now suppose that o > 0 and Sz has been constructed for all 5 < « so
that the following conditions hold for all 8 < a:

(1s) S CPwnT.
(2p) w\rng(s) is infinite, for every s € Sg.

(3g) For all v < B, if s € S, then there is a t € Sz such that s C ¢.
(45) [95] < w.

(6g) If s € S, t €T, and {y < B :s(y) # t(y)} is finite, then ¢t € S;.
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(6g) If s € Sgand v < 3, then s [ vy € S,.

(Vacuously these conditions hold for all < 0.) If « is a successor ordinal € + 1, we simply
take
Sa ={sU{(e,n)} : s € Sc and n ¢ rng(s)}.

Clearly (15)—(65) hold for all § < o + 1.

Now suppose that « is a limit ordinal less than w; and (15)—(65) hold for all 5 < a.
Since « is a countable limit ordinal, it follows that cf(«) = w. Let (J,, : n € w) be a strictly
increasing sequence of ordinals with supremum «. Now let U = B<a Sp. Take any s € U;
we want to define an element ¢ts € *w NT which extends s. Let f = dmn(s).

Choose n minimum such that § < §,,. Now we define a sequence (u; : i € w) of
members of U; u; will be a member of S5 .,. By (35,), let ug be a member of S5, such
that s C ug. Having defined a member u; of Ss, ., use (35,,,,,) to get a member ;44
of Ss,.,,, such that u; C ;1. This finishes the construction. Let v = UiEw u;. Thus
s Cv € *wNT. Unfortunately, condition (2) may not hold for v, so this is not quite the
element t; that we are after. We define t; € “w as follows. Let v < a. Then

to(y) = v(d2n42i) if ¥ = 9,4, for some i € w,
s\7 () if v ¢ {Sp4i i €w).

Clearly ts € “wNT. Since v(dapt2i+1) & rng(ts) for all i € w, it follows that w\rng(ts) is
infinite.
We now define

Se = U {we®wnT:{e<a:w(e) #ts(e)} is finite}.
seU

Now we want to check that (1,)-(6,) hold. Conditions (1,) and (3,) are very clear.
For (2,), suppose that w € S,. Then w € “w N T and there is an s € U such that
{e < a:w(e) # ts(e)} is finite. Since w\rng(ts) is infinite, clearly w\rng(w) is infinite. For
(44), note that U is countable by the assumption that (4g) holds for every § < «, while
for each s € U the set

{we“wnT:{e<a:w(e) #ts(e)} is finite}

is also countable. So (4,) holds. For (5,), suppose that w € S,, x € T, and {y < « :
w(y) # x(y)} is finite. Choose s € U such that {¢ < a : w(e) # ts(¢)} is finite. Then of
course also {¢ < a : z(g) # ts(e)} is finite. So x € S,, and (5,) holds. Finally, for (64),
suppose that w € S, and v < a; we want to show that w [ v € S,. Choose s € U such
that {e < a:w(e) # ts(e)} is finite. Assume the notation introduced above when defining
ts. Choose i € w such that v < d,,4;. Then

{e€ < Onti:w(e) #uile)} ={e < Onyi :w(e) #v(e)}
C{e < Opyiw(e) #ts(e)} U{0ny; 1 J < i},

and the last union is clearly finite. It follows from (55 that w € S,. So (64) holds.

n+1)
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This finishes the construction. Clearly [ J S, is the desired Aronszajn tree. 0

a<wi
A collection o7 of sets forms a A-system iff there is a set r (called the root or kernel of
the A-system) such that AN B = r for any two distinct A, B € o/. This is illustrated as
follows:

root

Theorem 9.20. (A-system theorem) If k is an uncountable regular cardinal and < is a
collection of finite sets with |o/| > k, then there is a B € []" such that B is a A-system.

Proof. First we prove the following special case of the theorem.

(%) If o is a collection of finite sets each of size m € w, with |&/| = &, then there is a
P € [/]" such that £ is a A-system.

We prove this by induction on m. The hypothesis implies that m > 0. If m = 1, then
each member of &7 is a singleton, and so .o/ is a collection of pairwise disjoint sets; hence
it is a A-system with root (). Now assume that (x) holds for m, and suppose that < is a
collection of finite sets each of size m + 1, with |«7| = k, and with m > 0. We consider
two cases.

Case 1. There is an element z such that € % {A € o : x € A} has size k. Let
2 = {A\{z} : A € €}. Then Z is a collection of finite sets each of size m, and |Z| = k.
Hence by the inductive assumption there is an & € [Z]" which is a A-system, say with
kernel r. Then {AU {z}: A € E} € [«/]" and it is a A-system with kernel r U {z}.

Case 2. Case 1 does not hold. Let (A, : @ < k) be a one-one enumeration of <.
Then from the assumption that Case 1 does not hold we get:

(xx) For every z, the set {a < Kk : 2z € A,} has size less than k.
We now define a sequence (a(f) : B < k) of ordinals less than x by recursion. Suppose

that (/) has been defined for all § < v, where v < k. Then T def UB<7 Aq(p) has size

less than k, and so by (¥x*), so does the set

U{5<K:$€A5}.

zel
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Thus we can choose a(y) < x such that for all x € T we have x ¢ A,(,). This implies
that Ay(y) N Aqg) = 0 for all B < . Thus we have produced a pairwise disjoint system
(Aap) : B < k), as desired. (The root is () again.)

This finishes the inductive proof of (x)

Now the theorem itself is proved as follows. Let 2/’ be a subset of & of size k. Then

o' = |J{Aed :|Al=m}.

mew

Hence there is an m € w such that {A € &’ : |A| = m} has size k. So (x) applies to give
the desired conclusion. U

Theorem 9.21. (general A-system theorem) Suppose that k and \ are cardinals, w <
Kk < A\, A is reqular, and for all « < A, |[a]<"| < X\. Suppose that < is a collection of sets,
with each A € o of size less than k, and with |.</| > X. Then there is a % € [2/] which
s a A-system.

Proof.
(1) There is a regular cardinal u such that K < u < A.

In fact, if & is regular, we may take p = k. If £ is singular, then kKt < |[k]<"| < A, so we
may take u = K.

We take p as in (1). Let S = {a < A : v is a limit ordinal and cf(a) = p}. Then S is
a stationary subset of .

Let a7 be a subset of & of size A\. Now ’UAGWOA} < A since K < A. Let a be an
injection of (J, ¢, A into A, and let A be a bijection of A onto <. Set b, = a[A,] for
each a < A. Now if a € S, then |b, N | < |by| = |Aa] < k < p = cf(a), so there is an
ordinal g(«) such that sup(b, N«) < g(a) < a. Thus g is a regressive function on S. By
Jech Theorem 8,7, there exist a stationary S’ C S and a 5 < A such that g[S’] = {8}. For
each a € 8" let F(a) = by, Na. Thus F(a) € [B]<", and |[5]<"| < A, so there exist an
S" € [8']* and a B € [B]<" such that b, N = B for all a € S".

Now we define (a¢ : & < A) by recursion. For any & < A, a¢ is a member of S” such
that
(2) oy < ag for all np < &, and
(3) 0 <ag forall 6 € U, ¢ ba,-

< A, this is possible by the regularity of .

Since )Un<g ba,,

Now let @ = A[{ag : € < A}] and r = a~![B]. We claim that C' N D = r for distinct
C,D € &. For, write C = A,, and D = A,, . Without loss of generality, n < §. Suppose
that € 7. Thus a(z) € B C by, so by the definition of b,, we have v € A,, = C.
Similarly x € D. Conversely, suppose that z € C'N D. Thus z € A,, N A,,, and hence
a(z) € bag N ba,. By the definition of ag, since a(r) € by, we have a(x) < ag¢. So
a(z) € b, Nag = B, and hence x € r.

Clearly |21 | = A. O

A, B € [w]“ are almost disjoint iff AN B is finite.
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Theorem 9.22. There is a family of 2% pairwise almost disjoint infinite sets of natural
numbers.

Proof. Let X =, ., "2. Then |X| = w, since X is clearly infinite, while

necw
|X\§Z2”§w-w:w.

necw

Let f be a bijection from w onto X. Then for each g € “2 let z; = {g [ n : n € w}.
So x4 is an infinite subset of X. If g,h € “2 and g # h, choose n so that g(n) # h(n).
Then clearly z, Nxp € {g [ i : ¢ < n}, and so this intersection is finite. Thus we have
produced 2% pairwise almost disjoint infinite subsets of X. That carries over to w. Namely,
{f 'z, : g € “2} is a family of 2% pairwise almost disjoint infinite subsets of w, as is
easily checked. ]

For k a regular cardinal, functions f,g € "k are almost disjoint iff [{a < Kk : f(a) =
g(@)}] < .

Proposition 9.23. If k is a reqular cardinal, there is an almost disjoint family of k™
members of "k.

Proof. For each ¢ < k define f¢ € *k by f&(a) = £ for all @ < k. Clearly {f¢ : ¢ < k}
is an almost disjoint family.

Now suppose that {g, : n < k} is an almost disjoint family. It suffices to find a function
h almost disjoint with each g,. For each a < k choose h(a) € kK\{g, (@) : v < a}. O

A tree T is a Kurepa tree iff T has height wq, each level is countable, and T" has more than
wq branches.

Lemma 9.24. There is a Kurepa tree iff there is a set F C P(wy) such that |.F| > wi
and Vo < wi[{X Na: X € F} <w].

Proof. «<: suppose that .% is as indicated. Let

T = U {Xxna : X € F},

a<wi

where x xneo is the characteristic function of X N« within a. Clearly this gives a Kurepa
tree.

=: Assume that T is a Kurepa tree. Now |T'| = wy, so we may assume that 7" = wy.
Let .% be the set of all branches of length w; in T |.%| > wfr. For each o < wq fix § < wy
so that @ C Ts. Now for each X € % let (x? : £ < wq) enumerate X in increasing order.
Define f(xf) = {xé( : B < 8} = XNTs. Since {zf : X € F} is a subset of Levy,
which has size less than w, it follows that {X N7T5 : X € .#} has size less than w,. For
eachY e {XNT5: X €. F}let gly) =Y Na. Then g maps {X NT5 : X € F} onto
{XNa:XeZ}. Hence {XNa: X e ZH<H{XNTs: X € F} < ws. O

e A cardinal x has the tree property iff every k-tree has a chain of size k.
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Equivalently, x has the tree property iff there is no k-Aronszajn tree.

e A cardinal k has the linear order property iff every linear order (L, <) of size k has a
subset with order type x or * under <.

Lemma 9.25. For any regular cardinal k, the linear order property implies the tree prop-
erty.

Proof. Assume the linear order property, and let (7, <) be a k-tree. For each x € T
and each «a < ht(x,T) let % be the element of height o below x. Thus z° is the root
which is below z, and 2"®) = z. Foreach z € T, let T | z = {lyeT :y<az}. If z,y are
incomparable elements of T', then let x(z,y) be the smallest ordinal o < min(ht(x), ht(y))
such that z® # y®. Let <’ be a well-order of T. Then we define, for any distinct z,y € T,

x <"y iff =z <y, orzandy are incomparable and zX(*¥) <’ yX(@)

We claim that this gives a linear order of T'. To prove transitivity, suppose that z <" y <”
z. Then there are several possibilities. These are illustrated in diagrams below.

Case 1. t <y < z. Then z < z, s0 z <" z.

Case 2. © < y, while y and z are incomparable, with yX(¥:*) </ zx(¥:2),

Subcase 2.1. ht(z) < x(y,z). Then z = z"®) = yht(@) = (=) 5 that o < z,
hence x <” z.

Subcase 2.2. x(y,z) < ht(z). Then z and z are incomparable. In fact, if z < z
then z < y, contradicting the assumption that y and z are incomparable; if x < z, then
Yt @) = g = ght@) = 1) contradiction. Now if a < y(z,z) then y® = z® = 2%; it
follows that x(z,z) < x(y, 2). If & < x(y, 2) then a < ht(z), and hence x® = y* = 2%; this
shows that x(y,2) < x(x,2). So x(y,2) = x(z,2). Hence zX(@2) = yx(@2) — 4x(y.2) /
2XW2) = 2x(=.2) and hence = <” 2.

Case 3. x and y are incomparable, and y < z. Then = and z are incomparable. Now
if @ < x(z,y), then & = y® = 2*; this shows that y(z,y) < x(=,z). Also, zX(*¥) </
yX@v) = 2x(@Y) " and this implies that x(z,2) < x(z,y). So x(z,y) = x(x, 2). It follows
that aX(#:2) = px(@v) < yx(@y) = 2x(2:2) and hence z < 2.

Case 4. x and y are incomparable, and also y and z are incomparable. We consider
subcases.

Subcase 4.1. x(y,z) < x(x,y). Now if a < x(y,z), then z* = y* = 2% so
x(y,2) < x(z,2). Also, 2XW:2) = yx(:2) </ x¥:2) 5o that y(z,2) < x(y,2). Hence
x(z, 2) = x(y, 2), and xX@2) = yx@:2) </ 2X(¥:2) and hence z <” 2.

Subcase 4.2. x(y,2) = x(x,y). Now zX@v¥) </ yx@y) — 4xW:2) < x(y:2) =
2X(@Y) Tt follows that y(x,2) < x(x,y). For any a < x(z,y) we have 2% = y® = 2 since
x(y,2) = x(x,9). So x(z,y) = x(x,2). Hence zX(*2) = gx@y) </ yx(@y) — 9x(y:2) </
XW:2) = ox(:2) g g < 2.

Subcase 4.3. x(z,1y) < x(y,2). Then 2X@¥) </ yx@y) = 2x(=Y) andif a < x(z,y)
then x® = y® = 2. It follows that x <” z

Clearly any two elements of T are comparable under <", so we have a linear order. The
following property is also needed.
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(M)t <z,yand z <" a <"y, then t < a.

In fact, suppose not. If a < ¢, then a < x, hence a <” z, contradiction. So a and t are
incomparable. Then x(a,t) < ht(t), and hence x <" y <" a or a <" = <" y, contradiction.

Now by the linear order property, (T, <") has a subset L of order type x or k*. First
suppose that L is of order type . Define

B={teT:3z€LVae Ljx <" a—t<d}

[ 4 Yy z y z x z
[ 3] "
e e
Case 1 Subcase 2.1 Subcase 2.2 Case 3
x Yy z x Yy z x Yy z
®
Subcase 4.1 Subcase 4.2 Subcase 4.3

We claim that B is a chain in T of size k. Suppose that ty,t; € B with tg # t1, and choose
xo,x1 € L correspondingly. Say wlog xg <” z1. Now tg € B and zg <" x1, so ty < z7.
And t; € B and x1 < x1, so t; < x1. So tg and t; are comparable.

Now let a@ < k; we show that B has an element of height a. For each ¢ of height « let
Vi={x e L:t<az}. Then

since there are fewer than x elements of height less than «, this set has size k, and so there
is a t such that ht(t) = « and |V;| = k. We claim that ¢ € B. To prove this, take any
x € V; such that ¢t < z. Suppose that a € L and z <" a. Choose y € V; with a <" y and
t<y. Thent <z, t<y, and x <" a <" y. If x = a, then ¢t < a, as desired. If z <" a,
then ¢ < a by (*).
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This finishes the case in which L has a subset of order type k. The case of order type

k* is similar, but we give it. So, suppose that L has order type x*. Define

B={teT:3z€LVae Lia<" z —t<d}

We claim that B is a chain in T of size k. Suppose that ty,t; € B with tg # t1, and choose
xo,x1 € L correspondingly. Say wlog xo <” z1. Now tg € B and xg < xg, so ty < zg. and
t1 € B and g <” x1, so t; < xg. So tg and t; are comparable.

Now let o < k; we show that B has an element of height a. For each ¢ of height « let
Vi={x € L:t<z}. Then

since there are fewer than k elements of height less than x, this set has size x, and so there
is a t such that ht(t) = a and |V;| = k. We claim that ¢ € B. To prove this, take any
x € V; such that ¢t < . Suppose that a € L and a <” z. Choose y € V; with y <” a and
t<y. Thent <z, t<y, and y <’ a <" x. If a = x, then ¢t < a, as desired. If a <" =z,
then ¢t < a by (*). ]

Theorem 9.26. For any uncountable cardinal k the following conditions are equivalent:
(i) k is weakly compact.
(ii) K is inaccessible, and it has the linear order property.
(iii) K is inaccessible, and it has the tree property.
(iv) For any cardinal X such that 1 < X\ < k we have k — (K)3.

Proof. (i)=-(ii): Assume that x is weakly compact. First we need to show that « is
inaccessible.

To show that x is regular, suppose to the contrary that x = ) _, pta, where A < &
and p, < Kk for each o < A. By the definition of infinite sum of cardinals, it follows that
we can write Kk = Ua<>\ M., where |M,| = po for each a < A and the M, ’s are pairwise
disjoint. Define f : [k]? — 2 by setting, for any distinct o, 8 < &,

f{a,B}) = {O if o, 8 € M¢ for some £ < A,

1 otherwise.

Let H be homogeneous for f of size k. First suppose that f[[H]?] = {0}. Fix ag € H, and
say og € M. For any 3 € H we then have 8 € M also, by the homogeneity of H. So
H C Mg, which is impossible since |[Mg| < k. Second, suppose that f[[H]?] = {1}. Then
any two distinct members of H lie in distinct M¢’s. Hence if we define g(a) to be the
§ < A such that a € M; for each o € H, we get a one-one function from H into A, which
is impossible since \ < k.

To show that & is strong limit, suppose that A < s but x < 2*. Now by Theorem
20.7 we have 2* /4 (AT, A1)2. So choose f : [2*]2 — 2 such that there does not exist an

X € [2)]*" with f | [X]? constant. Define g : [k]2 — 2 by setting g(A) = f(A) for any
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A € [k]%. Choose Y € [k]" such that g | [Y]? is constant. Take any Z € [Y]A+. Then
f I [Z]? is constant, contradiction.

So, k is inaccessible. Now let (L, <) be a linear order of size k. Let < be a well order
of L. Now we define f : [L]?> — 2; suppose that a,b € L with a < b. Then

0 ifa<b,
f(a,b}) = {1 it b > a.
Let H be homogeneous for f and of size k. If f[[H]?] = {0}, then H is well-ordered by <.
If f[[H]?] = {1}, then H is well-ordered by >.

(ii)=-(iii): By Lemma 9.25.

(iii)=(iv): Assume (iii). Suppose that F : [k]?> — X, where 1 < A\ < k; we want to
find a homogeneous set for F' of size k. We construct by recursion a sequence (t, : @ < k)
of members of <#k; these will be the members of a tree T. Let to = (). Now suppose
that 0 < a < k and tg € <"k has been constructed for all § < a. We now define t,
by recursion; its domain will also be determined by the recursive definition, and for this
purpose it is convenient to actually define an auxiliary function s : kK — k+1 by recursion.
If s(n) has been defined for all n < &, we define

F({p,a}) where f < « is minimum such that s [ £ = tg, if there is such a £,
s(§) =

K if there is no such g.

Now eventually the second condition here must hold, as otherwise (s | £ : £ < k) would
be a one-one function from x into {tg : f < a}, which is impossible. Take the least £
such that s(§) = &, and let t, = s | £ This finishes the construction of the t,’s. Let
T = {t, : @ < Kk}, with the partial order C. Clearly this gives a tree.

By construction, if @ < k and £ < dmn(t,), then t, | £ € T. Thus the height of an
element t,, is dmn(ty).

(2) The sequence (t, : a < k) is one-one.

In fact, suppose that § < « and t, = tg. Say that dmn(t,) =& Then t, =t, [ £ = 13,
and the construction of ¢, gives something with domain greater than £, contradiction.
Thus (2) holds, and hence |T'| = .

(3) The set of all elements of T of level £ < k has size less than .
In fact, let U be this set. Then
Ul <J[r=X <k
n<¢

since k is inaccessible. So (3) holds, and hence, since |T'| = k, T has height x and is a
Kk-tree.

(4) If tg C ty, then f < a and F({f, a}) = to(dmn(tg)).

This is clear from the definition.
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Now by the tree property, there is a branch B of size k. For each £ < X let
He ={a<k:ty, € Bandt, (§) € B}.

We claim that each H¢ is homogeneous for F'. In fact, take any distinct «, 8 € H¢. Then
ta,tp € B. Say tg C to. Then 8 < «, and by construction ¢, (dmn(tg)) = F({«, 5}). So
F({a, B}) = £ by the definition of He, as desired. Now

{a<m:taEB}:U{a<m:ta€H£},
E<A

so since |B| = k it follows that |H¢| = s for some £ < A, as desired.
(iv)=-(i): obvious. O

For x an infinite cardinal, o < k a limit ordinal, and 2 < m < k, we write

<w
m

Kk — ()

to mean that for every F : [k]<“ — m there is a set H C & of order type a such that for
each n € w, F is constant on [H|". A cardinal  is Ramsey iff k — (k)<“.

Proposition 9.27. Every Ramsey cardinal is weakly compact.

w

Proof. Suppose that F : [k]™ — 2. Extend F' in any way to a function mapping [x]<
into 2. U

Proposition 9.28. Fvery infinite poset either has an infinite chain or an infinite set of
patrwise incomparable elements.

Proof. Let P be an infinite poset. Let < be a well-order of P. Define F : [P]* — 2
by

2 ifr<yand z <y,
F{z,y})=191 ifz<yandy <z, OJ
0 otherwise.

For any infinite cardinal x we define

26 = K;

201 = 2(2) for all n € w.

Theorem 9.29. For every infinite cardinal k and every positive integer n, (28_,)T —
(k).

Proof. Induction on n. For n = 1 we want to show that k™ — (k7). and this is

obvious. Now assume the statement for n > 1, and suppose that f : [(2£)T]"T! — k. For
each a € (27)" define F,, : [(28)T\{a}]" — & by setting F,(z) = f(x U{a}).
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(1) There is an A € [(2%)T]?» such that for all C' € [A]?»-1 and all u € (2%)*\C there is a
v € A\C such that F,, | [C]" = F, | [C]™.

®_1)T) of subsets of (2%)*", each of size
2%, Let Ag = 27, and for o limit let A, = Uy, As. Now suppose that A, has been

defined, and C € [A4]?"-1. Define u = v iff u,v € (2%)*\C and F, | [C]* = F, | [C]™
Now |[€I"k| = 2%, so there are at most 2% equivalence classes. Let K¢ have exactly one
element in common with each equivalence class. Let Aqy 1 = Aq U {K¢ : C € [Ay)2-1}.
Since (2£)%n-1 = 2% we still have |A, 1| = 2. This finishes the construction. Clearly
AL UaS(Qf;_l)* A, is as desired in (1).

Take A as in (1), and fix a € (2£)T\ A. We now define a sequence (z, : a < (25_,))

of elements of A. Given ¢ & {zg : B < a}, by (1) let z, € A\C be such that F,_ |
[C]™ = F, | [C]™. This defines our sequence. Let X = {z, :a < (28_,)T}.

Now define G : [X|" — k by G(z) = F,(z). Suppose that ap < -+ < v, < (28_1)7.
Then

To prove this, we define a sequence (A, : a < (25

fZag, - Ta, }) = ann {ZTag) s Tan_1})
=F.({zags -+ Ta,_1})
=G{Tags- - Ta,_1})-

Now by the inductive hypothesis there is an H € [X ]“+ such that G is constant on [H]".
By the above, f is constant on [H]" "1, O

Proposition 9.30. w; — (wy,w + 1)?

Proof. Let {A, B} be a partition of [w1]?. For each limit ordinal « let K, be a
maximal subset of a such that [K, U {a}]? C B. If some K, is infinite, this is as desired.
So suppose that each K, is finite. For each m € w let T;;, = {a < wy : « is a limit

ordinal and |K,| = m}. The set S o {a < wy : « is a limit ordinal} is stationary, and
S = Umew T, so there is an m € w such that T, is stationary.

First suppose that m = 0. Then for any o < 3, both in T},,, we must have {a, 5} € A,
since Kp is empty. Thus [T,,,]? C A, as desired.

Now suppose that m > 0. For each a € T},, let f(a) be the largest element of K,,.
Then there is a stationary subset U of T}, such that f takes on a constant value, say -,
on U. We can repeat this argument with the next largest elements of the K, ’s, etc., until
finally we reach a stationary set V such that K, has a constant value, say L, on V. Let ~
be the largest element of L. We claim that [V\ (v + 1)]? C A, as desired.

For, suppose that a < 3, with o, € V\(y +1). Then [L U {a,3}]*> € B since
L = Kg, while [L U {8}]? C B since L = Kz and [L U {a}|? C B since L = K,. Hence
{a, B} € A. ]

Proposition 9.31. For all infinite cardinals k, k 4 (w)*.

Proof. Define s =t iff s,t € [k]* and {n : s(n) # t(n)} is finite. Clearly = is an
equivalencd relation on [w]¥. Pick a representative from each equivalence class. Now define
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F : [w]* — 2 by setting F(s) = 0 iff |sAt| is even, where t is the representative in [s].
Suppose that H is a homogeneous set, with |H| = w. Let t be the representative in [H].
Then H Nt is infinite, since H\(H Nt) = H\t C HAt is finite. Choose m € H Nt. Then
|(H\{m})At| is even iff |HAt| is odd, contradicting homogeneity. In fact, (H\{m})\t =
H\t while t\(H\{m}) = (t\H) U {m}. O

Theorem 9.32. (Koénig) If T is a tree of height w such that each level is finite, then T
has an infinite branch.

Proof. We define ¢y < t; < --- by recursion. T has finitely many roots. Let tg be a
root such that ¢¢ 1 is infinite. Having constructed ¢,, so that ¢, 1 is infinite, let ¢,,,1 be an
immediate successor of T;, such that t,,; 1 is infinite. L]

Proposition 9.33. If T is a normal a-tree, then T is isomorphic to a tree T whose
elements are sequences with domain B < «, ordered by C.

Proof. We define the isomorphism f by defining f [ leve(T") by induction on §. The
definition is done so that if a has level &, then f(a) € Sw, and if a < b then f(a) C f(b).
Let f | levo(T) = 0. If f [ leve(T') has been defined and a € leve(T), let g, be a one-one
function from the set of immediate successors of a onto w, and for each immediate successor
bof alet f(b) = f(a)”(ga(b)). If £ is a limit ordinal and f [ lev, (7') has been defined for
every n < &, take any element a of level £. Let b,) be the predecessor of a at level 7, for
every n < §. Then define f(a) =, ¢ f(by). O

Proposition 9.34. If T is a normal tree of height wy and T has an uncountable branch,
then T' has an uncountable antichain.

Proof. Let (z, : @ < wy) be such that if @ < § < w; then a <7 5. For each o < wy
choose an immediate successor Yo, >1 Ty With yo L1 Tat1. Then {yo @ @ < wi} is
an antichain. In fact, if o < 8 and yo <y yg/, then y, and x3 are comparable, hence
Yo! <T To+1, contradiction. O

Theorem 9.35. There is an Aronszajn tree T such that there is a function ¢ : T — Q
with Vs, t € Y[s <pt — ¢(s) < p(t)].
Proof. Let T' = w;. The levels are as follows:
Levg = {0};
Levy = w\{0};
Levyi1 ={w-n+k:kew} for0<n<uw;
Levy, ={w-a+k} forw<a<w;.

Now we define the tree order <7 and the function ¢ by induction on the level, so that

Va < wiVa € wiVq € Q[ht(z) < a and p(x) < ¢ —
Jy € Lev(a)[z <r y and ¢(y) = q]]. (%)
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Let ¢(0) = 0. The immediate successors of 0 are the members of L;. Given L, with
0 < a<w,let <E§+1 : £ € L,) be a partition of L,1, let the members of Eg_H be the

immediate successors of &, and let ¢ map E§+1 one-one onto Q N (¢(§), ). Clearly if (x)
holds for « then it also holds for o + 1.

Now suppose that v is a limit ordinal and the construction works for smaller ordinals.
Let ((zx,qx) : k € w) enumerate all pairs (z,q) with € T, and ¢ € Q N (¢(x), 00).

(1) For each k € w there is a path Py through T, such that z; € P, and sup{e(y) : y €
Pi} = qx.

To prove (1), suppose that k € w. Let (a,, : n € w) be strictly increasing with ht(zy) < g
and sup,,c, an, = 7. Also, let (r,, : n € w) be a strictly increasing system of rationals
with ¢(z) < ro and sup,,c., 7 = qx. Now we apply (¥) with «, z, ¢ replaced by ag, z, ro.
This gives 29 € Lev(ag) such that z <7 zp and ¢(29) = ag. Now suppose that z, has
been defined so that z, € Lev(ay,) and ¢(z,) = a,. Apply (%) with «, z, ¢ replaced by
Qnt1s Zny Tnt1- This gives z,41 € Lev(ap41) such that z, <7 z,41 and @(zp41) = Qpy1.
Let P = U, co(2n )

We put w - v+ k directly above Py and let p(w -7y + k) = qi. Clearly (%) continues to
hold. O

A special Aronszagn tree is an Aronszajn tree T such that there is a function f : T — Q
such that Vs, t € T[s <r t — f(s), f(1)].

Lemma 9.36. Any countable linear order can be isomorphically embedded in Q.

Proof. Let L be a countable linear order. Say L = {a,, : n € w}. We define f(ag) = 0.
Suppose that f(a,,) has been defined for all m < n so that it is an isomorphism into Q.

Case 1. ay, <p, an for all m < n. Let f(a,) be a rational less than each f(a,,) for
m <mn.

Case 2. a,, <p, a, for all m < n. Similar to Case 1.

it Case 3. Otherwise. Let A = {an, : m < n,an, < a,} and B = {a,, : m < n,a, <
am}. Let f(a,) be arational ¢ such that Vo € Az < f(a.n,)] and Vo € B[f(am) < x]. ]

Proposition 9.37. An Aronszajn tree T is special iff T is the union of w antichains.

Proof. First suppose that T is special. Let f : T — Q be such that Vs, t € T[s <p
t — f(s) < f(t)]. For each rational number r let X,, = {s € T : f(s) = r}. Clearly each
X, is an antichain (possibly empty), and T' = UreQ X O

Now suppose that 7" = | J,,c,, An With each A,, an antichain. Let B, = A,\ U,,,<,, Am-
Then each B,, is an antichain, and T = __  B,. Let f[B,] = n for each n € w. For any
teT and n € w let

ncw

gt(n):{l ifn< f(t)and {s €T :s<rt}NB, #

0 otherwise.

Suppose that s,t € T and s <p t. Say s € B,, and t € B,,. Then m # n.
Case 1. m < n. Then ¢g;(n) =1 and gs(n) = 0. So g; # gs. Let p be minimum such
that g:(p) # gs(p). Thus p < n. Suppose that g;(p) = 0 and gs(p) = 1. Then p < m
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and {u e T :u <p s}NB, #0. Say u <p s and u € B,. Now p < n and ¢;(p) = 0, so
{fveT:v<pt}nB,=0. But u <7 t, contradiction. So ¢g:(p) = 1 and g(p) = 0, as
desired.

Case 2. n < m. Then gs(m) = 1 and g;(m) = 0. So g+ # gs. Let p be minimum
such that g.(p) # gs(p). Thus p < m. Suppose that g:(p) = 0 and gs(p) = 1. Then
{veT:v<ps}nNB,#0. Say u <p s and u € B,. Since ¢;(p) = 0 and p < n, we have
{seT:s<ptynNB,=0. But u <p t, contradiction.

(1) {g+ : t € T'} is countable.
In fact, it suffices to show that {g; : t € T, f(t) = m} is countable, for any m € w,
{g: €“2: f(t) =m} C{zx € “w:VYn > mlz(n) =0],

and hence {g; € “2: f(t) = m} is finite. Hence (1) holds.
Now by Proposition 9.36, the desired conclusion follows. ]

Proposition 9.38. If 2<" = k, then there is an &/ C [k|® such that |&/| = 2% and
VA,B € @/[A# B — |AN B| < K].

Proof. Let F': <"k — k be a bijection. For each f € "2 let Xy = {f [ 2 : 2 € <"k}.
Let o = {F[X¢]; f € r2}. O

Proposition 9.39. If there is a family F of almost disjoint functions from wy into w
with |.%| = wa, then there is a family % of pairwise disjoint stationary subsets of wy with

|y‘ = W2.

Proof. If f € .7, then there is an ny € w such that Sy et {a < wi: fla)
is stationary. Otherwise, for each n € w let C,, be club such that {a < w1 : f(«)
n} N Cy, = 0. Then (N, ., Cy is still club; but it is empty, contradiction. Now .7 =
Umeutf € Z :ny = m}, so there is an m € w such that [{f € .F : ny = m}| = Vy. Say
G ={feZ :np=m}. If f,g €4 with f # g, then Sy NSy, = (. In fact, by almost
disjointness choose 5 < w; such that Va € [5,w1)[f(a) # g(a)]. Then choose o € [, w1)
with a € Sy NS,. Then f(a) =m = g(a). Thus Sy N S, is countable.

Write & = {fo : @ < wa} with f one-one. For each a < wq let

S, =S5\ | S,

B<a

I
S
Il <=

Now for any o < wa, Sy, N U5<a S}, is countable, so S, is stationary. Clearly S7, N ng =0
for a # . O

Proposition 9.40. w A (w)<¥“.

Proof. Assume otherwise. Define F : [w]|<¥ — 2 by
0 otherwise.
Suppose that H € [w]¥. Let n € H with n # 0. Suppose that F' is constant on [H]|™. If

n € x € [H]" then F(z) =1. If x € [H]" with n ¢ z, then F(x) = 0. So F is not constant
on [H]". ]

88



10. Measurable cardinals
A measure space is a triple (X, X, u) such that:
(1) X is a set
(2) X is a o-algebra of subsets of X.
(3) p is a measure on X.

Given a measure space as above, a subset A of X is a p-null set iff there is an E € ¥ such
that A C E and u(E) = 0.

Theorem 10.1. If (X,3, 1) is a measure space, then the collection of p-null sets is a
o-ideal of subsets of X.

Proof. Let I be the collection of all y-null sets. Clearly ) € I, and B C A € I implies
that B € I. Now suppose that (A4; : i € w) is a system of members of I. For each i € w
choose E; € ¥ such that A; C E; and p(E;) = 0. Then | J,o; A;i € U,;¢; Es, and

7 (U Ez) <> wE;)=0. [

(S
An outer measure on a set X is a function p : Z(X) — [0, 00] satisfying the following
conditions:

(1) u(®) = 0.
(2) If AC B C X, then pu(A) < u(B).
(3) For every A € “P(X), (U, co, An) < D e #(An).

If 6 is an outer measure on a set X, then a subset F of X is #-measurable iff for every
ACX,

0(A)=0(ANE)+0(A\E).
Note that every subset E C X such that 0(F) = 0 is automatically #-measurable.

Theorem 10.2. Let 6 be an outer measure on a set X. Let > be the collection of all
0-measurable subsets of X. Then (X,%,0 | ¥) is a measure space. Moreover, if E C X
and §(E) =0, then E € 3.

Proof. Note that X is obviously closed under complementation. Obviously
(1) If A,E C X, then 0(A) <H(ANE)+0(A\E).
Clearly ) € ¥ and X is closed under complements. Next we show that ¥ is closed under
U. Suppose that E, F € ¥ and A C X. Then
OAN(EUF)+0(A\(EUF)) <0((AN(EUF)NE))+0(AN(EUF)\FE)))

+0(A\(FUF))
ANE)+0((A\E)NF)+0((A\E)\F)
ANE)+60(A\E)

AN(EUF) +0(A\(EUF)) by (1).
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This proves that £ U F' € 3. Thus we have shown that X is a field of subsets of X.
Next we show that ¥ is closed under countable unions. So, suppose that F € ¥, and
let K =, ., En. Forevery m € w let

ncw

G = U E,.

n<m

Then clearly each G, is in . Now we define Fy = Gg, and for m > 0, F,,, = G, \Gp—1.-
Then also each F, is in ¥. By induction, |, «,, Frn = Gm. Hence U, c, Fn = U, co, En-
Now temporarily fix a positive integer n and an A C X. Then

0(ANG,) =0ANG,NGr_1)+0(ANG\Gp—1) =0(ANG,_1) +0(ANE,);

hence by induction 0(ANG,) =>", ..
Now we unfix n. Now AN K =J

G(AN Fy).

new (ANF,), so

OANK) <> 6(ANF,) = lim. > 0(ANF,) = lim 0(AN Go).
new m<n

Also, note that if m < n then G, C G,,, hence X\G,, C X\G,,, and so

0(A\K) =0 (A\ U Gn> = (ﬂ (A\Gn)> < inf 0(A\Gy) = lim (A\G,,).

ncw necw

Hence

O(ANK)+0(A\K) < lim (ANGy) + lim 9(A\G,)

n—oo

= lim (0(ANG,)+0(A\G,))
n—oo
=0(A)
<OHANK)+0(A\K).
This proves that K € X, so that ¥ is closed under countable unions.
Finally, suppose that (F,, : n € w) is a system of pairwise disjoint members of 3.

Let K = {U,c,, £n- Hence 0(K) < > . 0(E,). Conversely, for each n € w let G,, =
U<, Em- Then

G(Gn-i-l) = G(Gn-i-l N En—H) + Q(Gn+1\En+1) = H(En—H) + 9<Gn)~

Hence by induction, 6(G,) =}, <, 0(Ey,) for every n, and hence

0(K) > 0(G) = Y 0(Ew).

m<n
and so O(K) > > . 0(Ey).
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For the “moreover” statement, suppose that £ C X and (F) = 0, Then for any
ACX,0(A) <O0(ANE)+60(A\E)=0(A\E) <6(A). O

For any a,b € R let [a,b) = {z € R:a <z < b}. Note that if a > b, then [a,b) = (). Note
that if [a,b) = [¢,d), a < b, and ¢ < d, then a = ¢ and b = d. For any a,b € R we define

_J0 ifa >0,
)\([a’b))_{b—a if a < b.

A set of the form [a,b) is called a half-open interval.

Lemma 10.3. Suppose that I is a half-open interval, (J; : i € w) is a system of half-open
intervals, and I C U, Ji- Then

1EW

AI) <) OA).

Jjew

Proof. If I = () this is obvious. So suppose that I # (). Then there exist real numbers
a < b such that I = [a,b). Let

A=<z € |a,b] :x—aSZA(Jjﬂ(—oo,x))

JEW
Obviously a € A, and A is bounded above by b, so ¢ o sup(A) exists. Now

c—a=sup(z—a)
z€A

< sup Z)\(Jj N (—o0, x))
wGAjew

< Z A(J; N (=00, ¢)).
JEW
Hence ¢ € A. Now suppose that ¢ < b. Thus ¢ € [a,b), so there is a k € w such that ¢ € Jj.

Say Ji = [u,v). Then z o min(v, b) > ¢. Then A(J; N (—o0,¢)) < A(J; N (—o0,x)) for
each j, and A\(Jx N (—o0,z)) = A(Jx N (—00,¢)) +  — c. Hence

D AN (=00, 7)) = Y AN (=00,0) +x —c
JEW JEW
>c—a+r—c=x—a.
Here we used the above inequality on ¢ — a. Thus we have shown that x € A. But
x > ¢ = sup(A), contradiction.

Hence ¢ = b, so b € A. ]
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Now for any A C R let

0'(A) = inf { Z A(L;) : (I : j € w) is a sequence of half-open intervals

JeEw

such that A C U Ij}.

JEW
Lemma 10.4. (i) 0" is an outer measure on R.

(ii) 0" (1) = \(I) for every half-open interval I.

Proof. (i): Clearly (1) and (2) hold. Now for (3), suppose that (A; : i € w) is a
sequence of subsets of X. Let B = J,.,, Ai. For each i € w let (I;; : j € w) be a sequence
of half-open intervals such that A; C |J jew I;; and

S AIy) < (A + 23
JEW

Note that this holds even if §’(A;) = co. Let p: w — w X w be a bijection.

(1) B C U Tyst (p(my),2nd (p(m))

mew

In fact, if b € B, choose ¢ € I such that b € A;, and then choose j € w such that b € I;;.
Let m = p~1(i,5). Then

b € T1st(p(m)),2nd (p(m))

as desired in (1).

(2> Z /\(Ilst(p(m)),Q"d(p(m))> < ZZ/\(IZJ)

mew €W JEW

In fact, let m € w, and set

n = max({1*(p(i)) : i <m} U{2"(p(3)) : i <m}).

Then
> AUt 2napomy) < DY M) 0D Ali),
i=0 i=0 j=0 iCw jEw

and (2) follows.
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Hence using (1) we have

0’ (U A,.> = ¢'(B)

1EW
< D At (pimy),2na(p(my)

mew
< Z Z A(1ij)
1EW JEwW
< ; (o) + )
S04+ Y 23
= g 0'(A;) + ;iw
1EW

Hence (3) in the definition of outer measure holds.
Clearly 6'(I) < A(I). The other inequality follows from a Lemma above. O

Corollary 10.5. For 0’ the explicit outer measure defined above on R, and with

Y1 ={E CR: for every A C X,
0'(A) =0 (ANE)+0(A\E)},
the system (R,31,0" | 1) is a measure space. O

The measure space of this corollary is Lebesgue measure.

Lemma 10.6. (—oo, ) is measurable for every x € R.
Proof. First we show
(1) M) = A N (=00, x)) + A(I\(—o00, z)) for every half-open interval I.

This is obvious if I C (—oo,z) or I C [x,00). So assume that neither of these cases hold.
Then with I = [a,b) we must have a < < b. Then

AIN(=00,2)) + AI\(—00,2)) = A([a,x)) + X[z, b))
= M[a,2)) + A([z, b))

So (1) holds.
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Now for the proof of the lemma, let A C R and let ¢ > 0. We show that 6'(A N
(—o0,z)) + 0'(A\(—00,x)) < 0'(A) + ¢, which will prove the lemma. By the definition
of ¢, there is a sequence (I; : j € w) of half-open intervals such that A C Ujew I; and
Yjew MIj) < 0'(A) +e. Now ([; N (—o0,z) : j € w) and (I;\(—o0,z) : j € w) are
sequences of half-open intervals, A N (—o0,z) C U;¢,,(I; N (—00,2)), and A\(—o0,z) C

Ujew(lj\(_oov CL’)), S0

/(AN (—00,2)) + 0/ (A\(=00,2)) £ 3" M1 (1 (—00,)) + D M\ (—00,2))
=0

<
I
o

AI;) < 0'(A) +e. O

.

<
I
o

Theorem 10.7. Every Borel subset of R is Lebesgue measurable.

Proof. It suffices to show that every open set is Lebesgue measurable. It then suffices
to prove the following:

(1) If U is a nonempty open subset of R, then there is a family .7 of half-open intervals
with rational coefficients such that U = |J .

To prove (1), let o7 be the set of all half-open intervals contained in U. Now take any
x € U. Since U is open, there are real numbers y < z such that = € (y,z) C U. Choose
rational numbers 7, s such that y < r <z < s < z. Then x € [r,s) C U, as desired. O

Corollary 10.8. FEwvery Lebesgue null set is Lebesgue measurable. FEvery singleton is a
null set, and every countable set is a null set. O

Lemma 10.9. Suppose that i is a measure and E, F,G are pu-measurable. Then

W(EAF) < W/(EAG) + u(GAF).

EAG) 4+ u(GAF). O

Lemma 10.10. If E is Lebesque measurable with finite measure, then for any € > 0
there is an open set U 2O E such that 0'(FE) < ¢'(U) < 0'(E) + . Moreover, there is a
system (K : j < w) of open intervals such that U =J,_, K; and 0'(U) < >°,_, 0'(K;) <
0'(E) +e.
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Proof. By the basic definition of Lebesgue measure,

0=0(F)=inf { Z 0'(1;) : (I; : j € w) is a sequence of half-open intervals

JEW
such that A C U Ij}.

JEwW

Hence we can choose a sequence (I : j € w) of half-open intervals such that £ C | jew
and

0 L <S o) <0(E)+ =
U _Z (L) < 0'(E) + 5

Write Ij = [CL]', bj) with a; < bj. Define

Corollary 10.11. (i) If A is Lebesgue measurable and 0'(A) is finite, then 6'(A) =
inf{0"(U) : U open, A CU}.

(ii) If A is Lebesque measurable with finite measure, then 6'(A) = sup{€’(C) : C
closed, C C A}.

(1i3) If A is measurable and 0'(A) = oo, then sup{€'(C) : C closed, C C A} = oco.

Proof. Only (iii) needs a proof. Let € > 0. For each n € w let

Aop = M,

bo, = n +1;
agny1 = —n —1;
b2n+1 = —N.
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For each n € w let C,, be a closed subset of [a,, b,) N A such that
0’ ([an,b,) NA\C,) <

Then

=Y 0'(Jan,bn) N A)

necw

_ 711%0’([[@0,60) NAJU... U [[an, b) N A))

- g}é 8/ ([[ao, bo) N A\Co] U . . . U [[an, bn) N A\Cy])
+0'(CoU...UuCy)

- ;Lfi}(l) 0/ ([[ao, bo) N A\Co] U . .. U [[an, bn) N A\Cy])
+ lim_ 0 (Cou...UCh)

=¢e+ lim ¢ (CoU...UC,),

n— oo

as desired.

Theorem 10.12. Fvery set of Lebesgue measure 0 is included in a Gs set of measure 0.

Proof. Let X be Lebesgue measurable of measure 0. By the above for every positive
integer n there is an open set U,, such that X C U, and u(U,) < ~. Then V =, . U,
is as desired. D

Theorem 10.13. If X is Lebesgue measurable, then one can write X = U U N with U a
Gs and N of measure 0. O

Lemma 10.14. Let 0’ be as in the definition preceding Lemma 10.4. For any A C R and
ceRlet A+c={x+c:xzec A}. Then ¢'(A) =0'(A+c).

Proof. Let (I; : j € w) be a sequence of half-open intervals such that A C {J;,, I
For each j € w, I; + c is a half-open interval, and A + ¢ C U ,Ij +c). For each € > 0
choose (I : j € w} such that ¢'(A) + ¢ > Z]Gw A(Z;). Note that )\(I ) = A(I; + ¢). Hence

(A)+e>> M) =Y AIj+c¢) >0 (A+o).

JEW JEW
Hence 6'(A) > 6'(A + ¢). Similarly, /(A +c¢) > 0'(A+c—c) =0'(A). O

Theorem 10.15. If X is Lebesgue measurable then so is X + ¢, and u(X) = u(X + ¢).

Proof. Since X is measurable, for each Y C R we have
p(Y) =p(XNY + p(Y\X).
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Then for all ¢, x € R we have

reYN(X+¢) iff zeYandarxeX+c
iff zeYandz—ceX
iff z—ceY —-—candx—ceX
iff z—ce(Y—-cnX
iff ze(Y—-c)nX)+e.

Thus Y N (X +¢) = (Y —¢) N X) + ¢. Hence by Theorem 10.14,
pY N (X +0) = p(((Y =) N X) +¢) = u((Y =) N X).
Similarly,

reY\(X+c¢) iff zeYandaz¢g X +c
iff zeYandaex—cé¢ X
iff z—ceY—-candx—c¢ X
iff z—ce (Y —c)\X
iff ze (Y —o)\X)+ec

Thus Y\(X +¢) = ((Y — ¢)\X) + ¢. Hence by Theorem 10.14,
pYAX + ) = u(((Y = \X) +¢) = p((Y = )\ X).
Hence

p(Y 0 (X +0)) + u(YN(X +¢) = p((Y —¢) N X)) + u((Y = c)\X)

7
(Y —¢) = (Y. O

Theorem 10.16. There is a subset of R which is not Lebesgue measurable.
Proof. Let X have exactly one element in common with each element of R/Q. Then
(1) Yu,v € X[u# v — v — u is irrational].

Let qo,q1,--. enumerate the rational numbers in [—1,1]. Let X’ = X N[0, 1]. For each
m € w let Y,, = X' + ¢,,. Then

(2) 0,1 ¢ ¥ Cl-1,2].
kEw

In fact, for the first inclusion let r € [0,1]. Let v € X’ be the representative of [r]. Then
r — v is rational, and clearly r — v € [—1,1]. Say r — v = ¢x. Hence r = qx + v € Yy,
as desired. The second inclusion is clear. If m # n and x € Y, NY,,, then there exist
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x,y € X' such that z + ¢, = y+ ¢,. Then z — y is rational, contradicting (1). So the Y;,s
are pairwise disjoint. Hence

contradiction. m

Proposition 10.17. An ultrafilter U on S is o-complete iff there is no partition of S into
countably many disjoint parts S = .., Xn such that X,, ¢ U for alln € w.

necw

Proof. =: obvious.

<: Suppose that U is not o-complete. Then there is a system (X, : n € w) of members
of U such that (1, ., X, ¢ U. For each i < w let V; = ﬂj@ X;. Let Z; = Y;\Yiy1. We
claim that (Z; : i < w) ™ ([, Xi) is a partition of S; since clearly none of these sets is in
U, this will show that the indicated condition fails. Clearly the sets are pairwise disjoint.
Now suppose that s € S. We may assume that s ¢ [, ., Xn. Let ¢ be minimum such that
s ¢ X;. Then s € Y}, as desired. O

For any set S, a it full measure on S is a measure on Z(.S) which gives singletons measure
0. A two-valued measure is a measure which takes only the values 0 and 1.

Theorem 10.18. If p is a full two-valued measure on S, and U ={X C S : u(X) =1},
then U is a o-complete ultrafilter on S.

Proof. Clearly S € U, and if X € U and X C Y, then Y € U. Now suppose
that X, Y € U. Now X UY = (X\Y)UY\X)U(XNY). If w/(XNY) =0, then 1 =
wX)=pw(XNY)+u(XNY)=pwX\Y); similarly 4(Y\X) = 0 and hence u(XUY) = 2,
contradiction. Hence u(XNY) =1and XNY € U. Forany X C S we have S = XU(S\X),
and it follows that X € U or (S\X) € U. Hence U is an ultrafilter on S. U is o-
complete: we prove this by using Theorem 10.17. In fact, suppose that (X,, : n € w) is
a partition of S such that X,, ¢ U for all n € w. Then u(J,,c,, Xn) = D, c, #(Xn) =0,
contradiction. O

Theorem 10.19. IfU is a nonprincipal o-complete ultrafilter on S, define for any X C S,

M(X):{l if X e U,

0 otherwise.

Then p is a two valued measure on S.

Proof. Clearly i takes only the values 0 and 1. Clearly u(0)) = 0. Now suppose that
XCY CS. If u(X) =1, clearly u(Y) = 1. So u(X) < u(Y). Since U is nonprincipal,
clearly p({a}) = 0. If (X,, : n € w) is a pairwise disjoint system of subsets of S, then
(Upew Xn = 1iff U, ¢, X € U iff exactly one X, is in U iff ) . p(X,) = 1. O

If i is a measure on a set S, a subset A C S is a p-atom iff (A) = 0 and for every B C A,
either u(B) =0 or u(B) = u(A).
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Proposition 10.20. If i is a measure on S and p has an atom A, then

UE{XC8:u(XNA)=pu(A)}

is a o-complete ultrafilter on S.

Proof. Obviously ) ¢ U, and S € U. If X €e U and X CY C S, clearly Y € U.
If X C S, then p(A) = p(X NA) + p((S\X)N A); hence X € U or (S\X) € U, but
not both. If X,Y € U, then pu(A) = p(X NA) = p((X\Y)NA)+pu(X NY NA); since
p((X\Y)NA) < u((S\Y)NA) =0, it follows that u(A) = up(XNYNA), sothat XNY € U.

Finally, suppose that X; € U for each i < w. Define Yy = Xy and Y;41 = X;11 NY;.
Thus Vi € w[Y; € U]. Since Y;11 N (Yi\Yiy1) = 0, it follows that u(Y;\Y;41) = 0, since A
is an atom. Hence

H(A) = (Yo N A)

= [ (ﬂ Xi ﬁA) U U((Yz\YzH) N A))

1Cw )

=u( () Xin A) + > p((Yi\Yign) N A)

1EW 1EW

= ﬂXiﬁA>,

as desired. O

Lemma 10.21. If s is an infinite cardinal and U is a nonprincipal ultrafilter on k, then
the following conditions are equivalent:

(i) U is not k-complete.

(ii) There is a v < k and a partition (X, : a <) of k such that Vo < y[X, ¢ U].

Proof. (i)=(ii): Choose v < k and a system (X, : a < ) of elements of U such
that (., Xo & U. For each a < vy let Yo, = (k\Xa) N5, Xp. Then {¥, : a <
7} U{Na<, Xa} is a partition of £ with all members not in U.

(ii)=-(1): obvious. O

Lemma 10.22. Let k be the least cardinal such that there is a o-complete ultrafilter U on
k. Then U 1is k-complete.

Proof. Suppose that U is not k-complete. By Lemma 10.21, there is a v < k and a
partition (X, : a < 7) of k such that Va < y[X, ¢ U|. Define F : kK — v by: F() = the
a such that § € X,. Clearly F' maps onto . Define D C Z(v) by

ZeD iff flZ]el.

Since f~![y] = k, we have v € D. Clearly if Z C Z’ and Z € D, then Z’ € D. If
Z,7” € D, then f~YZNZ=fYHZInft[Z])€U,so ZNZ € D. For any Z C v we
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have k = f~[y] = f1Z]U f~1[y\Z], and it follows that Z € D or (y\Z) € D. Thus D
is an ultrafilter on . Clearly it is o-complete. Suppose that a < v and {a} € D. Thus
X, = F7Y{a}] € U, contradiction. This contradicts the minimality of . O

A cardinal k is measurable iff k is uncountable and there is a k-complete nonprincipal
ultrafilter on k.

Corollary 10.23. If k s the least cardinal such that there is a nontrivial two-valued
measure on Kk, then k is measurable.

Theorem 10.24. Fvery measurable cardinal is inaccessible.

Proof. Let x be measurable. Say that D is a nontrivial k-complete ultrafilter on k.
If X € [k]<" then X ¢ D. Clearly & is regular. Now suppose that A < k < 2*. Let S be
a set of functions mapping A into 2 such that |S| = k. Let U be a nonprincipal ultrafilter
on S. For each a < A let

Xa:{{fES:f(a)ZO} if this set is in U

{{f €S : fla) =1} otherwise.

Since U is k-complete, Y def Na<r Xo- But this set has at most one member, namely the

function g such that for each a < A,

O i X,={feS: fla) =0} €U,
9(0‘>—{1 i {feS: fla)=1}eU.

This is a contradiction. [l

Let i be a nontrivial measure on a set S. We define
I, ={X CS:pulX)=0}.

A o-complete ideal I on a set S is o-saturated provided that
(i) Vo € S[{z} € I];
(ii) Every family of pairwise disjoint sets each not in I is countable.

Proposition 10.25. Let i be a nontrivial measure on a set S. Then I, is o-saturated.
O

Proposition 10.26. If x is the least cardinal having a nontrivial o-additive measure pu,
then 1,, is k-complete.

Proof. Suppose that I, is not k-complete. Let (X, : @ < ) be a system of null
sets such that (J X, has positive measure. For each a < 7y let Y, = X, \ Uﬁ<a Xg.

Then the Y,s are pairwise disjoint and Z L U,cro Xa =U,..Yse. Let m = pu(Z). Let

aly ‘o a<ly "«
f+Z — ~ be defined by

a<y

f(z) = the a <y such that z € Y,,.
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Define v : Z(vy) — RT by

Then v is clearly a measure on ~. It is nontrivial, since v({a}) = u(Y,) = 0. This
contradicts the minimality of . ]

Proposition 10.27. If k s the least cardinal such that there is a o-complete o-saturated
tdeal I on K, then I is k-complete.

Proof. Suppose not. Say v < k and (X, : @ < 7) is a system of elements of I such

that Ua<7 Xq ¢ I. Let f be as in the proof of Proposition 10.26. Define an ideal J on ~
by

XeJ iff fHX]el
Clearly J is a o-saturated o-complete ideal on 7, contradicting the minimality of I. [l

If (r; :i € I) is a system of real numbers, then

Zri = Sup{Zri :J e [I]<“’}.

iel eJ

Let x be an uncountable cardinal. A measure p on a set S is k-additive iff for every v < k
and every system (X, : @ < ) of subsets of S,

u (U Xa> =) Xa).

a<ly a<y
Corollary 10.28. If i is a k-additive measure, then I, is k-complete.

Proposition 10.29. If u is a measure on S and I, is k-complete, then u is k-additive.

Proof. Let 7 < k and let (X, : @ < 7y) be a system of subsets of S. For all a < ~ let
Yo = Xo\Up<o Xp- Then U, ., Xo =U,<, Ya. Write

{Yo:a<yt={Z,:newlu{W, :a<n~}

where each W, has measure 0. Since I,, is k-complete we have

s(Un) (U)oU)

= Z H’(Zn)

= Z H’(Zn) + Z M(Wa>
= u(Ya) O
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Corollary 10.30. Let k be the least cardinal such that there is a nontrivial o-additive
measure p on k. Then p is k-additive. 0

An uncountable cardinal & is real-valued measurable iff there is a nontrivial s-additive
measure on K.

Proposition 10.31. If k is real-valued measurable, then k is regular.

Proof. Let p be a k-additive measure on x. Since p is nontrivial and k-additive,
every subset of k of size less than x has measure 0. So k is not the union of fewer than s
sets each of size less than k. 0

Proposition 10.32. If there exists an atomless non-trivial o-additive measure, then there
1s a non-trivial o-additive measure on some k < 2%,

Proof. Let i be an atomless non-trivial o-additive measure on a set S. We construct a
tree of subsets of S, ordered by D. Let the Oth level be S. Now suppose that X € T has been
defined so that X has positive measure Then there isa Y C X such that 0 < pu(Y) < pu(X).
Let Z=X\Y. We add Y and Z to T. If « is a limit ordinal, then the a-th level consists
of all intersections ﬂg <o X¢ where each X¢ is at level § and the intersection has positive
measure.

The levels consist of pairwise disjoint positive measure sets, and so each level is count-
able.

If b is a branch, then (., X has measure 0. Clearly every branch is countable.

Hence T has height at most wy.

(1) There are at most 2 branches.

In fact, it suffices to show that for each v < w; there are at most 2* branches of height ~.
By the above there are countably many elements of T' of height less than . Let A be the
set of elements of T' of height less than . Then the number of branches of height ~ is at
most |YA|. (1) follows.

Let (b, : @ < k enumerate all branches b = (X¢ : £ < ) such that ({X¢ : & <~} is
nonempty. For each o < k let Z, = ([{X € by}. Then {Z, : @ < K} is a partition of S
into K nonempty sets, each of measure 0. Now we define f : § — k and v with domain

P(S):

We claim that v is a non-trivial o-additive measure on k. Clearly p(0) = 0 and p(x) = 1. If

W CV, clearly v(W) < v(V). For anya < k we have v({a}) = p(f{a}] = n(Za) = 0.

Now suppose that Wy, W1, ... are pairwise disjoint subsets of k. Then

(U] (i um]) =n (U rm) = St - S eon
ncw new new new ncw D
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Corollary 10.33. it If x4 is an atomless non-trivial o-additive measure on a set .S, then
there is a partition of S into at most 2“ null sets. L

Proposition 10.34. If there is an atomless non-trivial o-additive measure on some set
S, then there is an atomless non-trivial o-additive measure on R.

Proof. Let iy be an atomless non-trivial o-additive measure on Y C R; see Proposition
10.31. For any Z C R define p/(Z) = p(Y N 2). O

Lemma 10.35. If I is a o-complete, o-saturated ideal on S, then either there exists

Z C S such that I | Z def {X C Z:X €1} is a prime ideal or there exists a o-complete,

o-saturated ideal on some kK < 2%,
Proof. Suppose [ is as indicated. Assume
(1) For every Z C S, the set #(Z) NI is not a maximal ideal on Z.

We construct a tree T' of subsets of S by recursion. Each member of T"is not in I. The Oth
level of T'is {S}. If X € T, then by (1) there is a subset Y of X such that Y, X\Y ¢ I;
we let Y and X\Y be the successors of X in the tree. If o is a limit ordinal, then the
a-th level of T' consists of all intersections ﬂg <o X¢ such that each X¢ is at level £ and
Neco Xe £ 1.

Each branch of T" has countable length, since if (X¢ : € < «) is a branch, with each
X¢ at level &, then (X¢\Xeq1 : € < @) is a pairwise disjoint system of elements of &2(S)\I1
so « is countable by the o-saturation of 1.

It follows that 7" has at most 2¢ branches. Let (b¢ : £ < k) enumerate all of the
branches of T' such that (b # 0, and let Zg = [ be. Clearly (Z¢ : £ < k) is a partition of
S into k nonempty sets, all in 1. Now let

J=<KWCk: UZ,EGI
Eew

Clearly J is a o-complete ideal on k. Since Z, € I, we have {a} € J for each o < k. J is
proper since [ is proper. Suppose that 7 is a family of pairwise disjoint subsets of x each
not in J. Then {|JA: A € &/} is a family of pairwise disjoint subsets of S each not in I,
so o/ is countable. Thus J is o-saturated. U

Lemma 10.36. Let i be an atomless measure on S. If u(Y) > 0, then there is a W CY
such that 0 < (W) < 2u(Y).

Proof. Since p is atomless, there is a V' C Y such that 0 < u(V) < p(Y). Then
u(V) < su(Y) or p(Y\V) < 5u(Y), and 0 # u(V), p(Y\V). O

By repeated applications of this lemma we get

Lemma 10.37. If p is an atomless measure on S, u(Y) > 0, and 6 > 0, then there is a
W CY such that 0 < u(W) < 4. O
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Lemma 10.38. If p is an atomless measure on S and p(Y) > €, then there is a V C Y
such that e < pu(V) < u(Y).

Proof. By Lemma 10.37, choose W C Y such that 0 < u(W) < pu(Y) —e. Then
p(Y) = p(W) + u(Y\W), hence

p(Y) > p(YAW) = p(Y) — p(W) > . O
Lemma 10.39. If p is a measure on S, B is a countable limit ordinal, and Yy, Y1, ... €
dmn(p) and Yo C Y1+ C Y, C--- for a < 3, then p(U, 5 Ya) = sup{u(Ya) : @ < B}.

Proof. Define W, = Y,\ U,Ka Y, for all @ < 8. Then (W, : a < f3) is disjointed,
Va < 5[U7§a Wo =Y,], and Ua<5 W, = Ua</3 Y,,. Hence

plUYa | =n | UWa| =D pWa)=sup ) pW,)=suppuYs). O

a<p a<p a<p <y <a a<p

Lemma 10.40. If u is a measure on S, Yy, Y1, ... € dmn(u) for a < B, with B a countable
limit ordinal; and Yo 2 Y1 --- 2 Yy 2 -+ for a < B, then p((,5Ya) = inf{u(Ya) : a <
B}

Proof. We have S\Yy C S\Y1 C - -+ hence u(lU,.5(5\Ya) = sup{u(5\Ya) : o < B}.
Hence

pl () Ya| =08 —p| JS\Ya

a<f a<p
= p(S) —sup{u(S\Ya) : o < B} = inf{u(Ya) : o < B} O

Lemma 10.41. Suppose that p is an atomless measure on S and Zg C S. Then there is
a Z C Zy such that n(Z) = (1/2)u(Zo.

Proof. If u(Zy) = 0, we are through, so suppose that p(Zy) > 0. We construct Z,
for & < wy by recursion, so that always ;1(Z,) > $4(Zo). If Z, has been constructed, let
Zot1 = Zo if W(Zs) = 21(Zy). Suppose that p(Z,) > $4(Zo). By Lemma 9.131, choose
Zat1 C Zo such that $4(Zo) < p(Zas1) < p(Za).

If 8 is limit and Z,, has been constructed for all o < 3, let Zg = ﬂa<5 Zs. By Lemma
9.133 $1u(Zo) < 1(Zp).

The sets Z,\Zq+1 are pairwise disjoint and of positive measure. Hence the construc-
tion stops at some a < wy. Then pu(Z) = $(Z). O

Theorem 10.42. If there is an atomless o-additive measure on a set S, then there is a
o-additive measure on R which extends Lebesgue measure.
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Proof. Let y be an atomless o-additive measure on R. Now we define
)ﬁ):ﬂR;

W Xs—0y) = m(Xs~1y)) = §M(Xs)3

So X is defined for all s € <“2. Now define 11 € “2 by

reo{uffser))

(1) vy is an atomless o-additive measure on “2.

For, clearly 11(0) = 0. For any r € R let f € “2 be such that r € Xy}, for all m € w.
Then r € Xy. Hence |J{X; : f € “2} = R and so v1(¥2) = 1. Clearly Z; C Z; implies
that v1(Z1) < v1(Z2). For each f € “2 it is clear that u(Xy) = 0, so v1({f}) = 0.
Now suppose that (Z, : n € w) is a pairwise disjoint system of subsets of “2. Then
(U{Xs:feZ,}:new)is a pairwise disjoint system of subsets of R, and so

() (ofo )

=u<U U{XfifGZn}>

necw

= 1 (U{Xf f e Zn})

Clearly v; is atomless.

(2) Clearly there is a bijection F' from “2 onto [0,1]. Now for each X C [0, 1] define
vo(X) = v1(F71[X]). We check that v is a non-trivial atomless measure on [0, 1]. Clearly
o(0) = 0. If X C Y, then 15(X) < 1»(Y). For each z € [0,1] we have |F~[{z}]| < 2;
so vo({z}) = 0. If (X,, : n € w) is a pairwise disjoint system of subsets of [0, 1], then
(F71[X,] : n € w) is a pairwise disjoint system of subsets of “2. Hence

o (Ux) (U s]) = (U )
= Z yl(F_l[Xn]) = Z va(Xn).

necw necw

So v4 is a nontrivial o-additive measure on [0, 1]. Clearly it is atomless.
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(3) If k + 1 < 27, then wo([k/2", (k +1)/27)) = 1/27.

For, let (k/2") = .fofi-+ fn---. Thus f,, = 0 for all m > n. Let Z =
(h [ (n+1)) = f}. Then F[Z] = [k/2",(k + 1)/2™) Hence vs([k/2", (k +
vt (P /2%, (k4 1)/27) = w1 (Xp) = 1/2"

(4) The collection of Borel subsets of [0, 1] is the o-algebra of subsets of [0, 1] generated by
{la,b) : 0 <a<b<1}.

In fact, each [a,b) as here is Borel, since [a,b) = {a} U (a,b). If U is open, then U =
U{[a,b) : [a,b) CU,a,be Q}. So (4) holds.

(5) It follows that v5 coincides with Lebesgue measure on the collection of Borel sets. U

{h € “2:
1)/2m)) =

An Ulam (AT, A)-matrix is a function (A, , : @ < AT, < A) with the following properties:
(1) Va < ATV < N4, C AT
(2) Vo, B < ATV < Na # 8 — [Aan N Az, =0].
(3) Vo < A+ A+\UU<AAM‘ <A

Theorem 10.43. An Ulam (AT, \)-matrices exist.

Proof. For each £ < AT with & # 0 let f¢ be a function mapping w onto §. For
a< AT and n < \let

Apn={E< AT :£#£0and fe(n) = a}

Clearly (1) and (2) hold. For (3), note that if & < AT then V& > a3n < A[fe(n) = of;
hence (A"\ U, -\ 4¢,n) € o+ 1, proving (3). O

Theorem 10.44. There is no AT -complete o-saturated ideal on A\ .

Proof. By Theorem 10.43, let (4, , : @ < AT,n < A) be an Ulam (AT, \)-matrix.
Suppose that I is a AT-complete o-saturated ideal on AT. For each a@ < AT there is
an n < A such that A, ¢ I; otherwise |J, , Aoy € I. It follows that there exist a

W e [)\+]>\+ and an 7 < A such that Voo € W[A,,, ¢ I]. Now for distinct o, 8 € W we have
Aqn N Ag,y = 0, contradiction, since W is uncountable. ]

Theorem 10.45. (Ulam) Suppose that there is a nontrivial o-additive measure on a set
S. Then one of the following holds:
(i) There is a two-valued measure on S, and |S| is > the first inaccessible cardinal.
(i) There is an atomless nontrivial measure on 2*, and 2% is > the first reqular limit
cardinal.

Proof. Let y be a nontrivial o-additive measure on S.

Case 1. i has an atom. By Proposition 10.20, there is a o-complete ultrafilter on S.
Then by Theorem 10.19 there is a two-valued measure on S. By Corollary 10.23, |S| is
> than the first measurable cardinal, and by Theorem 10.24 that measurable cardinal is
inaccessible.
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Case 2. p is atomless. By Proposition 10.34 there is an atomless nontrivial measure
on 2¥. Let x be minimum such that there is an atomless nontrivial measure p on k. By
Proposition 10.30 u is xk-additive. By the argument in the proof of Proposition 10.31, « is
regular. By Theorem 10.44, x is a limit cardinal. O

For f.g € “w, we write f <* g iff In € w¥m > n[f(m) < g(m)]. A sequence (f, : @ < K)
is a r-scale iff the following hold:

(i) Vo < K[fo € “w].

(ii) Vo, B < kKl < B = fo <* f3].

(iii) Vg € Ywia < klg <* fa.

Lemma 10.46. If there is a k-scale, then k is not real-valued measurable.
Proof. Let (f, : a < k) be a scale. We define A : w x w — Z(k) as follows:
a€ Ay iff fo(n) =k.

Now Vn € wVa < K3k € wla € Aptl, s0 Vn € wlUye, Ank = K.
Now suppose that p is a nontrivial k-additive measure on k. For eachn € wlet k,, € w

be such that .

,u(An()UAnlu...UAnkn)21—2n+1.

Let B?’L = A?’LO UAnl J--- UAnkn and C = ﬂnew Bn.
Now note that

(1) For any measure p on a set X we have pu(UJ,c., Cn) < >, e, #(Cn) (where the sum
may be infinite). In fact, define D,, = C,,\ U,,~,, Cm- Then J,,c,, Cn = U, co, Dn, and so

s(Ue)=e(un)

= ZN(DH)

new
<> u(Cn),
new
as desired.
(2) p(C) = 1/2.
In fact,

u(k\C) = p ( U (%\Bn)>

necw

<Y u(r\Bn)

necw

1
< Z an+2

necw




This proves (2).
(3) Yo € CVn € w[foa(n) < ky].

In fact, suppose that « € C and n € w. Let k = f,(n), Now a € B,,, so there is an i < k,,
such that a € A,,;. Hence f,(n) =i, proving (3).

By (3), for each a € C we have k, £* f,. Since u(C) > 0, C has size k. This
contradicts (f, : @ < k) being a scale. O

Theorem 10.47. Assuming CH, there is an wi-scale.

Proof. Suppose that fg has been constructed for all 8 < a. If @ = 0, just let fo(m) =
go(m)+1forallmew. If a=p+1,let fo(m) = max(gg(m), fz(m)) + 1 for all m € w.
If « is a limit ordinal, let (8 : n € w) be a strictly increasing sequence of ordinals with
supremum «, and for each m € w let f,(m) = max({fga(m) +1:n < m}U{ga(m)+1}).
Then

(x) For all B < o € wy, fg <* fo and go < fa.

In fact, the second condition in (x) is obvious. We prove the first condition by induction
on a. Suppose that it is true for all o/ < «, and now suppose that § < a. So a # 0.
Suppose that a is a successor ordinal v + 1. If 8 < «, then fg <* f, by the inductive
hypothesis, and f, < f, by definition, so fg <* f,; and 8 = = is clear. Finally, suppose
that a is a limit ordinal. Then there is an n € w such that 8 < 8y; we have fz <* fsza by
the inductive hypothesis, and clearly fga <* fq, s0 fg <* fa.

Corollary 10.48. If there is measure on 2%, then 2% > Ny. ]

Theorem 10.49. If k is measurable, then it is weakly compact.

Proof. Let k be a measurable cardinal, and let U be a nonprincipal k-complete
ultrafilter on k.

Since U is nonprincipal, k\{a} € U for every a < k. Then k-completeness implies
that k\F € U for every F € [k]<".

Now we show that k is regular. For, suppose it is singular. Then we can write
K = Uper T, where A < x and each I, has size less than x. So by the previous paragraph,
k\I'n € U for every a < k, and hence

0= ) (x\Ia) €U,

a<A

contradiction.
Next,  is strong limit. For, suppose that A < x and 2* > k. Let S € [*2]*. Let

(fa : @ < k) be a one-one enumeration of S. Now for each 5 < A, one of the sets
{a<k: fo(B) =0} and {a < k: fo(B) = 1} is in U, so we can let €(83) € 2 be such that
{a<k: fo(B)=¢(B)} € U. Then

Nf{a<r: fa(B) =e(B)} € U;

B<A
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this set clearly has only one element, contradiction.

Thus we now know that s is inaccessible. Finally, we check the tree property. Let
(T, <) be a tree of height x such that every level has size less than x. Then |T'| = k, and
we may assume that actually 7= k. Let B={a<k:{te€T:a <t} € U}. Clearly

any two elements of B are comparable under <. Now take any a < k; we claim that
Levo(T) N B # (). In fact,

(1) k={teT ht(tT)<a}U U {seT:t=<s}.
teLev, (T)

Now by regularity of x we have [{t € T : ht(¢,T) < a}| < k, and so the complement of
this set is in U, and then (1) yields

(2) U {seT:t=<s}el.

teLevy (T)
Now |Lev,(T)| < k, so from (2) our claim easily follows.
Thus B is a branch of size k, as desired. ]

A normal measure on k is a normal k-complete nonprincipal ultrafilter on k.

Lemma 10.50. If D is a normal measure on k, then every set in D 1is stationary.

Proof. By Lemma 8.11, every club is in D. L
Theorem 10.51. IfU is a nonprincipal k-complete ultrafilter on k, then there is a function
f:r— K such that f.(U) ={X C k: f~1[X] € U} is a normal measure on k.

Proof. For f,g € "k we define f =g iff {a <k : f(a) = g(a)} € U. Clearly = is an
equivalence relation on “k. We define f <* g iff {a < k: f(a) < g(a)} € U. Clearly <*
is irreflexive and transitive. Moreover,

(1) If f,g € "k and f # g, then f <* g or g <* f.
In fact, {a < k: f(a) =g(a)} ¢ U, so {a < k: f(a) # g(a)} € U. Since

{a<r:fla) #g(@)} ={a<r: fla) <gla)}U{a<r:gle) <fla)}

(1) follows.
(2) There is no infinite sequence fo > f1 > - -.

For, suppose there is, and for each n € w let X,, = {a < k : fut11(a) < fu(a)}. Choose
@ € (V,cp, Xn- Then fp11(a) < fr(a) for all n, contradiction.

Now let *r/ == {[f]: f € ®k}. For x,y € "r/ = define x < y iff 3f € z3g € y[f <*
gl-

(3) [f1 <lgliff f <* g.
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In fact, < is clear. Now suppose that [f] < [g]. Say f = f', g =¢’, and f' <* ¢’. Then

{a<k: fla)=fa)}n{a<k: fl(a) <g(@)}n{a<k:gla)=g(a)}
Cla<k: fla) <gla)},

and = follows.
(3) < is a well-order of “r/ =.

This is clear, using (3).

Let d(a) = a for all @ < k. Then for all v < k, {a < k : d(a) > v} € U. Now let z
be minimum in “x/ = such that there is an f € x such that for all v < k[{a < Kk : f(a) >
~} € U]. This is possible because [d] satisfies this condition. Fix such an f € 2. We claim
that f is as desired in the theorem.

Clearly f.(U) is closed upwards, is k-complete and is an ultrafilter on k. Suppose that
{8} € f.(U). Thus f7{B} ={a < k: f(a) =B} €U. Butalso{a < k: f(a) > 3} € U,
so ) € U, contradiction. So f«(U) is a nonprincipal k-complete ultrafilter on x.

Now to show that it is normal, by exercise 8.8 (page 104) it suffices to show that if
X € D with 0 ¢ X and h is a function which is regressive on X, then there isa ¥ C X
such that Y € D and h is constant on Y. Define g : kK — k by setting, for any a € &,

o) = @ ifozgéf_l[X],
gle) = {h(f(a>) if o e 0],

If « € f71X], then g(a) = h(f(a)) < f(a), so f7HX] C {a <k :g(a) < f(a)}. Now
f7YUX]eU,so{a<k:g(a)< f(a)} €U. Thus g < f. By the minimality of f it follows
that {a < Kk : g(a) >~} ¢ U, so {a < k: g(a) <~} € U. By the s-completeness of U it
follows that there is a § < ~ such that ¥ & {a <k:g(a) =0} € U. Also, Y\{0} € U.
For v € Y\{d} we have g(a) = § # «, so § = g(a) = h(f(«)). Thus h is constant on

FIY\{0}]. Now fH[f[Y\{d}]] 2 Y\{0}, so f~'[f[Y\{0}]] € U, and hence f[Y'\{d}] € D.
Finally, note that Y\{d} C f~'[X], and so f[Y\{6}] C X. O

Corollary 10.52. If k is a measurable cardinal, then there is a normal measure on
K. U

Lemma 10.53. Let A be a set of infinite cardinals such that for every regular cardinal
K, the set AN K is non-stationary in k. Then there is a one-one regressive function with
domain A.

Proof. We proceed by induction on ~ def |JA. Note that v is a cardinal; it is 0 if
A = (). The cases v =0 and v = w are trivial, since then A = () or A = {w} respectively.

Next, suppose that v is a successor cardinal k. Then A = A’ U {x™} for some set A’
of infinite cardinals less than k™. Then |J A’ < kT, so by the inductive hypothesis there
is a one-one regressive function f on A’. We can extend f to A by setting f(x™) = k, and
so we get a one-one regressive function defined on A.

Suppose that v is singular. Let (u¢ : £ < cf(y)) be a strictly increasing continuous
sequence of infinite cardinals with supremum ~, with cf(v) < po. Note then that for every
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cardinal A < v, either A < pg or else there is a unique § < cf(vy) such that pe < A < pres1.
For every £ < cf(y) we can apply the inductive hypothesis to A N p¢ to get a one-one
regressive function g with domain A N pue. We now define f with domain A. In case
cf(v) = w we define, for each A € A,

go(A) +2 if A < po,

pe + ger1(A) + 10 pre <A < pey,
FA) =9 ne if A= prgqr,

1 lf)\:uo,

0 if A=~ € A

Here the addition is ordinal addition. Clearly f is as desired in this case. If cf(v) > w, let
(ve + & < cf(7)) be a strictly increasing sequence of limit ordinals with supremum cf(7y).
Then we define, for each \ € A,

go(A) +1 if X < po,
\) = J Hetgern () + 1 i pe <A< g,
FA) =47 £
3 1 = H¢,
0 if A=~ € A

Clearly f works in this case too.

Finally, suppose that v is a regular limit cardinal. By assumption, there is a club C'
in v such that C Ny N A = (. We may assume that C Nw = ). Let (ue : £ < 7) be the
strictly increasing enumeration of C. Then we define, for each A € A,

go(A) +1 if A < pio,
FON) = q te +9e1(N) + 1 i pe <A< ey,
0 ifA=~€ A
Clearly f works in this case too. L

Lemma 10.54. Suppose that k is weakly compact, and S is a stationary subset of k. Then
there is a reqular A\ < k such that S N\ is stationary in \.

Proof. Suppose not. Thus for all regular A < x, the set S N A is non-stationary in
A. Let C be the collection of all infinite cardinals less than k. Clearly C is club in &, so
S N C is stationary in k. Clearly still SN C N A is non-stationary in A for every regular
A < K. So we may assume from the beginning that S is a set of infinite cardinals.

Let (A¢ : € < k) be the strictly increasing enumeration of S. Let

T=<¢s:3 <k sEHAnandsisone—one
n<¢

For every £ < k the set S N A¢ is non-stationary in every regular cardinal, and hence by
Lemma 10.53 there is a one-one regressive function s with domain S N A¢e. Now SN A =
{A, im <&} HenceseT.
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Clearly T forms a tree of height x under C. Now for any o < k,

|
H Mg < (Sup /\[3> < K.

B<a f<a

Hence by the tree property there is a branch B in T of size k. Thus |J B is a one-one
regressive function with domain S, contradicting Fodor’s theorem. L

Theorem 10.55. FEwvery weakly compact cardinal is Mahlo, hyper-Mahlo, hyper-hyper-
Mabhlo, etc.

Proof. Let k be weakly compact. Let S = {\ < K : A is regular}. Suppose that C
is club in k. Then C' is stationary in k, so by Lemma 10.54 there is a regular A < s such
that C'N A is stationary in A; in particular, C'N A is unbounded in A, so A € C since C' is
closed in k. Thus we have shown that SN C # 0. So  is Mahlo.

Let S = {\ < K : X is a Mahlo cardinal}. Suppose that C is club in k. Let
S"” = {X < Kk : X is regular}. Since k is Mahlo, S” is stationary in k. Then C' N S”
is stationary in x, so by Lemma 10.54 there is a regular A < x such that C N S” N\ is
stationary in A. Hence A is Mahlo, and also C'N A is unbounded in A, so A € C since C' is
closed in k. Thus we have shown that S’ N C # (). So x is hyper-Mahlo.

Let S = {X < k : A is a hyper-Mahlo cardinal}. Suppose that C is club in . Let
S% = {\ < Kk : X is Mahlo}. Since k is hyper-Mahlo, S* is stationary in x. Then C' N S
is stationary in s, so by Lemma 10.54 there is a regular A < & such that C' N S™ N\ is
stationary in A\. Hence )\ is hyper-Mahlo, and also C'N A is unbounded in A, so A € C since
C is closed in k. Thus we have shown that S’ N C # (). So k is hyper-hyper-Mahlo.

Etc. ]

Theorem 10.56. Let k be a measurable cardinal, and let D be a normal measure on k.
Suppose that X < k and F : [k]<¥ — X. Then there is an H € D homogeneous for F.
Hence every measurable cardinal is Ramsey.

Proof. It suffices to prove that for each n € w\{0} there is a set H,, € D such that F
is constant on [H,|"; then ﬂnEw\{O} H,, is as desired. We prove this by induction on n. It
is clear for n = 1. Now assume it for n. For each a@ < k define F,, with domain [rk\{a}]"
by Fy(z) = F(xU{a}). By the inductive hypothesis, for each o < k there is a set X, € D
such that F,, is constant on [X,]", say with constant value i,. Define

Y:{a<m:a€ﬂX7}.

Since D is normal, we have Y € D. Now ify < a3 <--- < anparein Y, then {aq,...,a,} €
[X4]™; hence

F({v,a1,...,an}) = F,({a1,...,an}) = is.
Now there exist a j € A and a H € D with H C Y such that Vy € H[i, = j|. Hence
Vz € [H|" T F(x) = j]. O
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A cardinal k is strongly compact iff k is uncountable, regular, and for any set S, every
r-complete filter on S can be extended to a x-complete ultrafilter on S.

Theorem 10.57. Fvery strongly compact cardinal vs measurable.

Proof. Let x be strongly compact. Define F' = {X C k: |[k\X| < k. Clearly F'is a k-
complete filter. Its extension to a x-complete ultrafilter shows that k is measurable. ]

Now assume that |A| > k. Let .Z 4, be the filter on [A]" generated by the sets

P QA" PCQ).

for P C [A]". Clearly %4, is a proper k-complete filter on [A]*. An ultrafilter on [A]"
extending %4, is a fine measure for k, A.

Proposition 10.58. If x is strongly compact and |A| > k, then there is a fine measure
for k, A. O

A fine measure U for k, A is normal for k, AiftVf : [A]® — A[VP € U[f(P) € P] — 3P :€
Ulf is constant on {Q € U : Q C P}]].

Proposition 10.59. Let U be a fine measure for k, A. Then the following are equivalent:
(i) U is normal for k, A.
(1) VX € AU NpeaXo & {w e [A] 1 2 € N,ex Xa} € U]
Proof. =: Assume that U is normal for k, A, X, € U foralla € A, and A,ea X, ¢ U.

Thus M & {ze[A]~" 2 ¢ (N,ep Xa} € U. Fix a € A. For each x € M, choose f(z) € ©
such that = ¢ Xy(,y; let f(x) = a for x € [A]<"\M. Then f is constant, say with value a,
onsome N € U. Thus Ve € MNN(z ¢ X,). Sod =MNNNX, €U, contradiction.

<: Assume closure under diagonal intersections, and suppose that f : [A]<% — A such
that f(x) € x for all z € M, where M € U. For alla € Alet X, = {z € [A]~" : f(x) # a}.
It suffices to get a contradiction from the assumption that X, € U for all a € A. Choose
T € NgeaXa N M. Then x € (e, Xa € Xyz), so f(x) # f(x), contradiction. O

A cardinal k is supercompact iff k is unbounded, regular, and for every A with |A| > &
there is a normal measure for A, k.

Lemma 10.60. If k is an uncountable cardinal and p is a k-additive measure on S, and
if (Xo:a <) is a system of subsets of S with v < k, then

§ (U Xa> <Y nlXa).

a<y a<y

Proof. Define Y, = Xo\ Ug., X for all « <. Then U, Xa = U, Ya, and

u(UXa>=u<UYa>=Zu(Ya)SZu(Xa)- O

a<ly a7y a<ly a<l?y
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Proposition 10.61. Suppose that p is a two-valued measure and U is the ultrafilter of all
sets of measure 1. Then p is k-additive iff U is k-complete.

Proof. Assume that p is a 2-valued measure on S. Note that since p is 2-valued, for
any disjoint X,Y C S either pu(X) =0 or u(Y) =0.

=: Suppose that X, € U for all @ < v, where v < k. Then u(S\X,) = 0 for all
a <1, and hence u(U, ., (S\Xa)) <>, #(S\Xa) =0, and so (., Xa €U.

<: Suppose that (X, : a < ) is a system of pairwise disjoint subsets of S, with v < k.
If 1(Xa) = 0 for all a <, then (S\X,) € U for all a <, hence 1, (5\Xa) € U, and
50 p((Np<ry(9\Xa)) = 1 and hence p(J, ., Xa) = 0, as desired. Otherwise, u(X,) =1 for
exactly one a < . So, using what has just been shown,

pl| U Xs | =nXa)+u| U Xs | =n(Xa)+ D u(Xs) = n(Xp). O

< B<y B<y <
B<y bl bl B<y

Proposition 10.62. A measure U on k is normal iff the diagonal function is the least
function f such that ¥y < kl{a: f(a) <~} € Ul].

Recall that by definition that U is normal iff it is a x-complete nonprincipal ultrafilter
on k. The diagonal function d is defined by d(a) = « for all & < k. f < g means that
{a<k: f(a) <g(a)} € U. By exercise 8.8, U is normal iff every regressive function on a
set in U is constant on a subset which is in U.

Proof. =: Suppose that U is normal. Then for each v < k, the set {a : @ > 7} is
in U, because U is nonprincipal and s-complete. So d is a function of the sort mentioned.
Now suppose that f : kK — k and {«a : f(a) > v} € U; we want to show that d < f.
Suppose not. Then {«a : f(a) < a} € U, so by the equivalent of normality, there isa v < &
such that {a: f(a) =~} € U. But also {a: f(a) > v} € U, contradiction.

<: Suppose that S € U and f is regressive on S; we want to find Sy C S with
So € U such that f is constant on Sy. Suppose that there is no such Sy. Then for every
v, {a: f(a) > v} € U. Hence by assumption, {a : a < f(a)} € U. The intersection of
this set with S is empty, contradiction. ]

Proposition 10.63. Let D be a normal measure on k and let f : [k]<“ be such that

f<x>={° ifo =0 or (v £ 0 and min(x) = 0) or
f(z) <min(z) ifx#0 and 0 < min(x).

Then there is an H € D such that Vn € w[f is constant on [H|"].
Proof. It sufices to show that

(%) For all n € w\1 and all f: [k]™ — &, if f(s) =0 or f(s) < min(s) for all s € [k]™, then
there is a H € D such that f is constant on [H]".
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In fact, suppose that (x) holds, and suppose now that f : [k]<¥ — k and f(s) = 0 or
f(s) < min(s) for all s € [k]|<“. For each positive integer n, apply (x) to f [ [k]™ to get
H, € D such that f is constant on [H,]". Then (), ¢\, Hn is as desired.

Now we prove () by induction on n. For n = 1, f is regressive on k\1, and we can
apply the comment before 10.19.

Assume that () holds for n > 1, and suppose now that f : [k]"*! — & such that
f(s) =0 or f(s) < min(s) for all s € [k]""1. For each a < r define f, : [k]® — & by

[0 if o £ min(s),
fa(s) = {f({a} Us) if a < min(s).

Clearly fo(s) = 0 or f,(s) < min(s) for all s € [k]". Hence by the inductive hypothesis
there is an X, € D such that f, is constant on [H,]", say with value v,. Let X = Ag<pnXa-
So X € D. Now 7, < « for all nonzero a < k. In fact, choose s € [H,]" such that
a < min(s). Then v, = fo(s) = f({a} Us) < a. Thus 7 is regressive on X\{0} € D,
so there is a K C X\{0} such that K € D and 7, = 7 for all « € K. We claim that
f I [K]"™ is constant, with value v. For, take any ¢ € [K]"™1, and write t = {a} Us
with « the least element of ¢ and o < min(s). If 5 € S, then a < /3, so by the definition
of diagonal intersection, § € X,. Thus s € [X,]". Hence f(t) = fo(s) = Ya = 7, as
desired. OJ

Proposition 10.63. If k is measurable, then there is a normal measure on [k]<".

Proof. Let U be a normal k-additive nonprincipal ultrafilter on . (See Corollary
10.52.) We define
D={XCI[k]<": XNkeU}

Clearly D is an ultrafilter on [£]<*. It is nonprincipal, since for any a € [k]<" we have
([k]*"\{a}) Nk ={a<k:a#a} 2{a<k:sup(a) <aecU.
Clearly D is rk-complete. To show that D is fine, suppose that a € [k]<". Then
ank={aecr:aca={a<rk:aCa}l={ack:sup(a) <a}eUl,
and hence @ € D. Finally, suppose that f : [k]<" — k and f(P) € P for all P € X, where
XeD Then XNeelU, fl(XNk): XNk — K, and f(a) < a for all « € X N k.

Hence there is a Y € U with Y C X N k such that f is constant on Y. Then Y € D is as
desired. OJ

115



11. Borel and analytic sets

A Polish space is a space which is homeomorphic to a complete separable metric space.
By the proof of Proposition 1.21, “w is a Polish space.

Lemma 11.1. For any Polish space X there is a continuous mapping from “w onto X.

Proof. Let X be a complete separable metric space. We construct a mapping f of
“w onto X as follows. Let Seq= <“w. For each s €Seq we define a closed ball C so that:

(i) C
(ii) dlam( ) < 1/n, where n is the length of s.
(i) n6(Cs) € Upew Cs—(ry

(iv) If s C ¢ then center(Cy) C C.

Suppose that s € Seq and C have been constructed, where s has length n. Let D be a
countable dense subset of X, and let E = DNCs. Say E = {ey, : k € w}. For each k € w let
Cs~ 1y be the closed ball about e, with radius m Clearly (ii) and (iv) hold. For (iii),

suppose that z € int(C;). Choose k so that ex, € Sy /5(5,41)(2). Thus d(z,ex) <
x € Cy~ (1), as desired. This completes the construction.
Now let a € “w. Then by condition (iv), for every k € w we can choose z) €

Nin<k Catm- We claim that (zj : k € w) is Cauchy. For, let € > 0 be given. Choose n
so that ? < €. Suppose that k,I > n. Then zy,2; € Copn, s0 d(xg, ;) < n%rl < g,
as desired. Let y be the limit of (z} : & € w). We claim that y € [, Cajn- Suppose
that n € w and y ¢ Cqpp. Since Cyyy, is closed, there is a positive integer m such that
S1/my) N Capn = 0. Choose M such that for all k > M, d(y, xx) < % Then if £ > M, n,
we have d(y, xx) < —, but also z € Cqpp, contradiction. Thus our claim holds. We also
claim that (), Cajn does not contain any other elements. This is clear from (ii). For
each a € “w we deﬁne f(a) to be the unique point in ({Cs : s C a}.

To show that f is continuous, suppose that a € f~'[S)/,(x)] we want to find a
positive ¢ such that a € Sz(a) € f![S/n(x)]. Since f(a) € Sy/n(x), choose m such that

S1ym(f(a)) € Si/n(z). Now
(1) Ca[(m—|—1) C Sl/n(x)
For, we have f(a) € Cqj(m+1), and for any y € Cyjmy1) we have d(f(a),y) < #H <
by (i), so y € S1/n(z). Thus (1) holds.

Now we claim that S1/(m42)(a) C f71[S1/n(x)], as desired. For, let b € S1/(mi2)(a).
Thusa [ (m+1)=b[ (m+1),s0 f(b) € Cyrmi1) = Catim+1) € S1/n(), as desired.

So f is continuous.

To show that f maps onto X, take any x € X. Suppose that s has been defined so that
x € int(Cy). Take € > 0 so that Sc(z) C int(Cs), and € < m Take e, € EN (Sc(x)).
Then z € int(Cs~(y), as desired. O

Let X be a Polish space. A C X is a Borel set in X iff it belongs to the smallest o-field
of subsets of X containing all closed subsets. Now we define

1
2(n+1) 5O

1
m

X329 = the collection of all open sets
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XTIY = the collection of all closed sets

for >0 %) =< | JAp:Vnew |4, e | ¥

n€w B<a

for & > 0: XTI2 = the collection of all complements of sets in ~ X0

We omit the superscript ¥ in what follows.

Proposition 11.2. In any metric space, every open set is the union of countably many
closed sets.

Proof. Let U be open. For each positive integer n and each x ¢ U let V, , be an
open ball around x of radius 1/n. Let W,, = ngéU Ven. So X\U C W, for each n. Let
F, = X\W,. So F, is a closed set contained in U. We claim that U = Unew\l F, (as

desired). For, let y € U. Choose a positive integer n and an open ball W about y of radius
1/n such that W C U. We claim that y € F,,. For, suppose not. So y € W,,, and so we can
choose x € X\U such that y € V, ,,. Thus d(z,y) <n,soxz € W C U, contradiction. ]

Proposition 11.3. For all o, 3, if 1 < a < (3 then
0 0
s e
(3) 10 C 50,
a = “p»
(4) Ty, C 113,
(5) Z% ={U,ecw Bn : Vn € w[B, € Ua<5 o]},
(6) H% = {Npew Bn : Vn € w[B,, € Ua<5 ¥01}.
Proof. For g =1, (1)-(6) hold vacuously.
Now assume (1)—(6) hold for 3; we prove them for 5+ 1. (5) holds by definition. For

(6),
Y ellp,, iff (X\Y)eXj,

iff IBev| ] I, [(X\Y)= ] Bn

a<fB+1 L new
iff IBev| ] M|V =[)(X\Bn)
a<fB+1 L new

iff 3Be“( ] B |Y =) Bn

a<f+1 L new

This gives (6) for 8+ 1. (2) follows. For (1) we take two cases.

Case 1. a = 1. Then XY C X%, by Lemma 11.2.

Case 2. a > 1. Suppose that A € ). Hence A € 33, by definition. So (1) holds.
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(4) is clear by (1). For (3), if A € II), then A € ¥, by definition.

Now assume inductively that § is limit. (5) and (3) are true for 8 by definition. For
(2), if A € X% with a < 8, then X\A € T2, hence X\A € Z% by definition, and so
A € TIj. For (1), suppose that A € ¥, with o < 8. Then A € I, ; by (2), hence A € ¥
by definition. For (4), if A € TI;, with a < 8, then X\ A € %7, hence X\ A € X3 by (1), so
Ae H%. For (6),

Y elly iff (X\Y)eXj

iff IBev | JIm |(X\Y)= | Bn

a<f L necw

iff 3Bev |1 |Y = [)(X\B)

a<f L new

iff IBev 20|V =()Bn

a<f L new

Theorem 11.4. For any Polish space X the union of all sets X0 and TIY is the set of
Borel sets.

Proof. By induction, each X9 and IT consists of Borel sets. Clearly the union of all
these sets is a o field of sets. OJ

Proposition 11.5. Fach X0 is closed under finite unions. ]

Proposition 11.6. Each 19 is closed under finite intersections.

Proof. This is clear for « = 1. Suppose that @« > 1 and A,B € TI%. Then
X\A, X\Be X% so (X\A)U(X\B)e X% so ANB = X\((X\A)U(X\B)) € I1?. O

Proposition 11.7. Each X0 is closed under finite intersectins.

Proof. This is clear by Propositions 11.3 and 11.6. ]

Proposition 11.8. Each 1Y is closed under finite unions.

Proof. This is clear by Proposition 11.7. 0

Proposition 11.9. Let X, Y be Polish spaces and f : X — Y be continuous.
(i) fW e YX,, then f71[W] € X¥x0.
(i) If W € Y11, then f~1[W] € XI10.

Proof. (i) and (ii) are clear for &« = 0. Assume that they are true for a. Suppose
that W € ¥YX0,,. Write W = [, An, Where each A, € YII}(Y). Then f~*[W]
Unew /A, and by the inductive hypothesis each f~[A,] is in X*TI2(X), so f~{[W]

X339 ,1(X). The other inductive steps are similar.

Om i
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Proposition 11.10. Let d be a metric on a set X. Define

d(z,y)

cZ(x,y) = m

Then:
(i) d is a metric on X.
(ii) d and d induce the same topology on X .
(iii) d(z,y) < 1 for all z,y.
(iv) Vo € “ X[z Cauchy under d implies that = is Cauchy under d|.

Proof. (i): Clearly d(x,y) = 0 iff z = y, and d(z,y) = d(y, z). Next,

d(z,y)+d(y,z) —d(z,z) >0 iff

d(z,y) d(y, 2) d(z, z) .
1+d(x,y)  14+d(y,z) 1 +d(z, z) 20 iff
d(z,y) + d(z,y)d(y, 2) + d(z,y)d(z, z) + d(z, y)d(y, z)d(z, 2)
+d(y, z) + d(y, 2)d(z,y) + d(y, 2)d(z, z) + d(y, 2)d(z,y
—d(z,2) — d(z, z)d(z,y) — d(z, 2)d(y, z) — d(=, )d(x,y)d( ) >0 iff
d(z,y) + d(z,y)d(y, 2) + d(y, 2) + d(y, 2)d(z,y) + d(z,y)

~—
/%
K
N
~—

and the last statement is true. R
(ii): Bg(x,e) is open in the topology determined by d: First note that By(x,e) C
Bj(z,¢), since for all y € By(x,c) we have

7 d(.f,y)
d =——_<d
(z,y) T+ do.y) = (z,y) <e
It follows that Bj(x,¢) is open in the d-topology. Now suppose that y € Bd(x e). We
want to find § such that Bj(y,d) € By(z,€). Let 5’ =¢e—d(z,y)and § = £-. So d < 1.
Hence § 4 0¢’ = €', hence €’(1 — ) = §, hence ¢’ = t%. Suppose that z € B(y, ). Thus
d(y, z) < & hence _dy:2) < 6 hence d(y, z) < § + dd(y, z) hence
1+d(y, z)
d(y,z)(1 —6) < 0 hence d(y, z) < U hence d(y, z) < €' hence

1-6
d(y, z) < e—d(x,y) hence d(z,2) < d(y,z) + d(z,y) < e.

(iii): clear. (iv): finally, suppose that x € “X is Cauchy under d but not under d. Say
e > 0, and for all N € w, there exist m,n > N such that d(z™,z™) > . Choose N € w
such that Vm,n € wl[d(z™, z,) < e. Choose m,n > N such that d(z™,z™) > . Then

d(z™, z™)

d(xm,mn) <e<e< CZ(CEm,,CEn> = m

< d(z™, z"),
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contradiction. N

Theorem 11.11. If Xo, Xy,... are Polish spaces, then [], ., Xn is Polish.

Proof. Suppose that d,, is a complete metric on X, such that Vz,y € X, [d(z,y) < 1].
Define d on [], .., X, by

necw

d(r,y) = 3 oy da(e(n), y(n))

ncw

Clearly d(z,y) = 0 iff z = y, and d(z,y) = d(y, z). Next,

e, y) + A7) = Y o dalen), ym) + 3 o du(y(n), 2(n)
= 3 sty (), y(n) + dy(m), 2(n)
> 3 pda(an), =) = d(x, 2)

Next, suppose that (z™ : n € w) is a Cauchy sequence. Take any m € w. We claim that
(x™(m) : n € w) is a Cauchy sequence. For, take any ¢ > 0, let & = —f— and choose N

om—+1
so that Vn > N[d(zN,2") < €']. Thus for all n > N,

Z %dp(xN(P),wn(p)) <.

pPEW

Then sy dy, (2 (m), 2™(m)) < €/, and hence d,, (z™ (m)z"(m)) < e.
This proves the claim. For each m € w let y(m) = lim,, ¢, 2™(m). Then lim, ¢, 2™ = y.
For, let € > 0. Choose M so that QLM < 5. Note that

1 €
ZW—2—<§-
m>M

Choose N > M so that for all i < M and all m > N, d;(z*(m),y(m)) < 557. Then for
any n > N,

A" y) = 3 sy (m), y(m))

mew
, 1
< di(z*(m),y(m)) + Z YRS
i<M izM
<f+f—5
—92 ' 2 7
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Thus d is a complete metric on ], ., Xn. Next, d determines the usual topology on
[I,.c, Xn. For, let U be basic open in ], ., X»n. Then we can write U = [],,.,, Yn, where
each Y, is open in X,, and there is a finite F' C w such that Y,, = X,, for all n ¢ F. Let
z € U. We want to find an € > 0 such that Bj(z,e) € U. Choose € > 0 so that for all
n € F, Bq, (zn,e) CY,. Let
, €
| HnGF 2n+l’

Suppose that y € Bj(x,<’). Thus d(z,y) < €, ie.,

) Qn%dn(fﬂ(n),y(n)) <¢.

ncw

If n € F, then wrd,(z(n),y(n)) < €, and hence d,(z(n),y(n)) < e. It follows that
BJ(CL’, 8) - U.

Conversely, given € > 0 and = € Hnew X,,, we want to find a basic open subset V' of
[I,.c Xn such that z € V C Bj(x,¢). Choose N so that

1
ZW<§7

n>N

and then define
, €

T ANTL,_y 2

For each n < N let Y,, = By, (z(n),¢’) and Y;, = X, for all n > N. Then z € []
Bj(x,¢).

It remains only to show that [], . X, is separable. For each n € w let D, be a
countable dense subset of X,,. For eachn € w let a,, € X,,. Let E = {z € Hnew X, : there
is a finite F' C w such that Vn € Fz,, € D,]| and ¥n € w\F[z, = a,]. Thus F is countable.

€

Y, C

ncw

Let U be a basic open subset of [], . X,. Say F' C w is finite and U =[], ., V» with
each V,, open in X,, and V,, = X, for all n ¢ F. Clearly there isan z € ENU. O
Corollary 11.12. “2 is a Polish space. ]

Lemma 11.13. “2 has a subspace homeomorphic to “w.

Proof. Clearly “w is homeomorphic to “(w\{0}). Now let M = {x € “2 : z has
infinitely many 0’s and infinitely many 1’s, starting with 1, and with no two 0’s in a row}.
For each = € M write x = 1"®001"@ ... TLet f(z) = (n(x,0),n(x,1),...). Clearly f
is a bijection of M onto “(w\{0}). Now suppose that U is basic open in “(w\{0}). Say
U={ze“ (w\{0}) : s C x where for some m € w, s € "(w\{0}). Then

U = {z € M : (50,0,51,...,0,5,_1) C x},
an open set in M.

121



Finally, suppose that U is basic open in “2. Say s € <“2 and U = {x € “2: s C z}.
Let t = (50051 ...08m—1), where m = dmn(s). Let V. ={xz € M : ¢t C z. Then V is basic
open in M, and f[V]=U. O

Lemma 11.14. If X s an uncountable Polish space, then for every decreasing sequence
Fy 2 Fy 2 --- of nonempty closed subsets of X with diam(F,) — 0 the intersection
Nhew Fn is a singleton.

Proof. For each n € w choose z,, € F,,.
(1) x is Cauchy.

For, suppose that ¢ > 0. Choose N € w such that Vn > N[diam(F},) < €]. Suppose that
m,n > N. Then z,,,z, € Fy, so d(zy,,x,) < €.
By (1), let y = lim,,_,, xp,.

(2) ¥y € Nyew Fu-

In fact, take any n € w. Let € = diam(F;,). Choose N € w so that Vm > N[d(z,,y) < €].
Then y € F,,. This proves (2).

If z # y, choose n so that diam(F},) < %d(y, z). Then choose m > n so that d(y, z,,) <
%d(y, z). Suppose that z € F,,,. Then

1 1
contradiction. O

Lemma 11.15. If X is a dense-in-itself Polish space, then X has a subset homeomorphic
to “2.

Proof. We define Us C X for s € <“2 by induction on dmn(s). Let Uy = X. If Us
has been defined and is a nonempty open set, choose distinct xg, 1 in Us; this is possible
since X is dense-in-itself. Let € > 0 be such that ¢ < 3d(zo,21) and S.(z;) C U, for e € 2.
Let Us~ (o) = Se(z.) for e € 2. If y € B.(x0N B:(71), then d(xg, 1) < d(zo,y) +d(y, v1) <
2d(zo, z1), contradiction.

Now for each f € “2let {ys} = {cl(Us) : s € <“2,s C f}. This is possible by Lemma

11.14 and our construction. We claim that g def (yg : f € “2)is a homeomorphism from “2
onto rng(y). Clearly g is a bijection. Suppose that f € ¢71[S.(2)]. So f € “2 and 2z € X.
Choose s € <¥2 with s C f so that diam(Us) < & — d(yys,2). Thus f € {k € “2:s C k}.
If s C ke “2, then d(yk, 2) < d(yk,ys) + d(ys,2) < e. Thus g is continuous. Suppose
that w € g[{f : s C f}] with s € “2. Say w = y; with s C f. Say diam(U,) = ¢ and
d(zs,yf) =0 < e. If d(yr,yr) < e — 6, then d(yi,xs) < d(yk,yr) + d(ys,zs) < e. Thus
also ¢! is continuous. O

Lemma 11.16. If X is an uncountable Polish space, then there exist disjoint Y, Z with
X =Y UZ,Y countable, and Z closed with no isolated points.
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Proof. Let {U, : n € w} be a countable base for X. Define Y = |J{U, : U,
countable}, and Z = X\Y. If z € Z is isolated, then there is a U,, with ZNU, = {z}.
Then U,, CY U{z}, hence U, is countable, so U,, C Y, contradiction. O

Lemma 11.17. If X s an uncountable Polish space, then X has a subset homeomorphic
to Yw.

Proof. By Lemmas 11.13, 11.15. L

Lemma 11.18. If X, Y are Polish spaces, x € X, and A C X xY, let A, ={yeY:
(x,y) € A}. Let a > 1.

(i) fACX xY is X0 and x € X, then A, is X0.

(ii) fAC X xY isTI% and x € X, then A, is I10.

Proof. Induction on a. For a = 1, suppose that A C X xY is open. Take any x € X.
Suppose that y € Y and (z,y) € A. Let U x V be an open ball with (z,y) € U x V C A.
Then y € V C A,. So A, is open.

Still with « = 1, suppose that A C X x Y is closed. Then (X x Y)\A is open. For
any ¢ € X, ((X xY)\A), is open in Y. Now

YN(X X YNz ={y €Y : (2,9) ¢ (X xYNA)}={y €Y : (x,y) € A} = Aq,

and so A, is closed.
Now suppose inductively that o > 1. Suppose that A C X x Y is 2. Say A =
U,hco Bn with each B, H% for some B < a. Take any x € X. Then for any y € Y,

ye A, iff (z,y)e A iff TInecwl(r,y) € B, iff Inecwlye (Bn),

and by the inductive hypothesis each (B,,), is II3 in Y. So A, is ) in Y.

Now suppose that A C X x YV is IY. Thus (X x Y)\A4 is 22, so also ((X x Y)\A),
is X9, Now

ye (X xY)NA), iff (r,y)e (X xY)\A iff (z,y)¢ A iff y¢& A,.
Hence A, is T12. O

Lemma 11.19. Suppose that X is an uncountable Polish space and o« > 1. Then there
exist U,V C “w x X such that:
(i) U e and VA C X[A € X0 « Jx € “w[A = U,]].

(ii) V e 1Y, and VA C X[A € TI?, « Fz € “w[A = V,]].

(o4

Proof. Induction on «. First we take o = 1. Let (W,, : n € w) enumerate a base for
X. Then we set

U:{(m,y)e“’wxX:ye UWx(n)}.

ncw
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Clearly U, is open for any z € “w. If A C X is open, write A = J,,c,, Wa(n). S0 A = U,.
Next we show that U is open in “w x X. Take any (z,y) € U. Choose n € w such that
Yy € Wx(n). Then

(z,y) e {w € “w:w(n) =x(n)} x Wy, CU.

This shows that U is open.
Now let V = (Yw x X)\U. Then V is closed. If A C X is closed, choose x € “w such
that (X\A) = U,. Then for any y € X,

yeV, iff (x,y)eV iff (x,y)¢U iff y¢U, iff yeA.

This takes care of a = 1.

Now assume inductively that a > 1.

Case 1. « is a limit ordinal less than wy. Let (5, < n € w) be a sequence of ordinals
> 1, each less than «, with supremum «. For each n € w let V,, C “w x X be a H%n set
universal for H%n. For each x € “w and n € w define 2™ € “w by

" (m) =x(2"(2m+ 1) — 1).

(1) For each n € w the function f, : “w — “w defined by f,(z) = 2™ is continuous.

In fact, suppose that n € w, s € %w, and x € f, }[{y € “w: s C y}]. Thus s C f,(z) = 2™,
so Ym < g[s(m) = 2™(m) = z(2"(2m + 1) — 1)]. Let t = « | (2"(2¢ + 1) — 1). Thus
reE{z€w:tCz} If z€“wandtC z then s C f,(2), since for any m < g we have
s(m) =2z"(m) = z(2"(2m + 1) — 1). Thus (1) holds.
Now define
U={(z,y) € “wx X :In[(z",y) € V,].

Now fix n € w. Define g : “w x X — “w x X by g(z,y) = (z",y) = (fu(x),y). Clearly g

is continuous. Now U}/ o {(z,y) € “wx X : (2™, y) € Vo } is in IIY, , since U}/ = g~ '[V,,].

Hence U = {J,,¢,, U/ € 2.

Now to see that U is universal, suppose that A C X is ¥%. Then we can write
A = U, e, Bn where each B, is H%n. Choose z, € “w such that B,, = (V,,),,. Define
z(2"(2m + 1) — 1) = z,(m). Then for any y € X,

yeA iff Inecwlye B, iff Incwlye (Vy).] iff Inecw(z,,y) eV,
iff  [(z",y) € V,] iff [(z,y) e U] iff [yeU,].

This takes care of 0. Suppose that B € I12. Then we choose U for (“w x X)\B. Then
(Yw x X)\U is as desired.
The non-limit case is similar. U

Lemma 11.20. Suppose that'Y is a subspace of X and o > 1.
(i) ¥X0 ={ynU:U € Xx0}.
(ii) YTIO ={Yy NnU : U € X11%}.
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Proof. Induction on «a. First, & = 1: The conditions (i) and (ii) hold by the definition
of subspace. Second, suppose inductively that o > 1. Then for any A C Y,

A:UBn

necw

Y0 oo w Y 170
Ae¥xs) iff 3Bev ) Vm
B<a

iff 3Bev | )*my|A=J(B.NY)

B<a

necw

iff 3Bev | )*my|A=vn (] B,
B<La L n€w
iff 3C € Xx[A=CNY]
Ae¥YIl iff (Y\4)e¥x?
iff IV e X0 Y\A=VnY]
iff IV eX¥’[A=(X\V)NnY]
iff IW e XM [A=Y NW] O

Theorem 11.21. Suppose that X s an uncountable Polish space and o« > 1. Then:

(i) There is a X2 subset U of X x X such that for every X0 subset A of X there is
an x € X such that A =U,.

(ii) There is a 112 subset V of X x X such that for every 70 subset A of X there is
an © € X such that A =V,.

Proof. (i): By Lemma 11.17, X has a subset Y homeomorphic to “w. By Lemma
11.19 let U C Y x X be X0 such that VA C X3y € Y[U, = A]. By Lemma 1.18
let VC X x X be X2 such that VN (Y x X) = U. Clearly V is as desired.. (ii):
Similarly. O
Proposition 11.22. IfU is X0 in X x X, then {x € X : (z,2) € U} is % in X.

Proof. Let f(x) = (z,z) for all z € X. Then f is continuous. In fact, suppose that
U and V are open in X and z € f~}U x V]. Thenz € UNV C f7HU x V]. ]

Corollary 11.23. For every a > 1 there is a set A C “w which is X% but not 112.
Proof. Let U be as in Theorem 11.21(i) with X = “w. Let

A={zre“w: (z,z) e U}.
By Proposition 11.22, A is 2 in X. Suppose that also A € TI2. Then X\A4 is X%. By
Theorem 11.21(i) choose x € X such that X\ A = U,. Thus Va € X[a ¢ A iff (a,z) € U].
Hence z € A iff (z,x) € U iff x ¢ A, contradiction. O

Corollary 11.24. For every a > 1 there is a set A C “w which is Hg but not Eg.
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Proof. Let U be as in Theorem 11.21(ii) with X = “w. Let
A={zre“w: (z,z) e U}.

By the proof of Proposition 11.22, A is 12 in X. Suppose that also A € X%. Then X\A
is I12. By Theorem 11.21(ii) choose z € X such that X\A = U,. Thus Va € X|[a ¢ A iff
(a,x) € U]. Hence z € A iff (z,x) € U iff © ¢ A, contradiction. O

A subset A of a Polish space X is analytic iff there is a continuous function f : “w — X
such that A = rng(f). A projection onto X of set S C X xY is P={zx € X : Jy €
Y((z,y) € S}

Proposition 11.25. FEvery closed set in a Polish space is analytic.

Proof. Let C be a closed subset of a Polish space X. Clearly C' is a Polish space.
Hence C' is analytic by Theore 11.1. O

Theorem 11.26. For any Polish space X and any A C X the following are equivalent:

(i) A is analytic.

(ii) There is a Polish spaceY, a Borel set B in'Y, and a continuous function f:Y —
X such that A = f[B].

(iii) There is a Polish space Y and a Borel set B in X XY such that A is the projection
of B onto X.

(iv) There is a closed set C' in X X “w such that A is the projection of C onto X .

Proof.
(*) In any Polish space X, every Borel set is the projection of a closed subset of X x “w.

In fact, let P be the set of all subsets of X that are the projection of a closed subset of
X X “w.

(1) Every closed subset of X is in P.

For, let C' be a closed subset of X, and take any f € “w. Then C x {f} is a closed subset
of X x “w with projection C.

Now we recall from the proof of Theorem 1.29 the implicit definition of a homeomor-
phism from “w onto “(“w). Let g : w — w X w, and for each a € “w and n € w define
a(n) € “w by CL(m(k‘) = a(g_l(n, k‘))

(2) P is closed under countable unions and countable intersections.

For, suppose that A,, € P for all n € w. For each n € w let F}, be a closed subset of X x “w
such that A4, = {x € X : Jy[(z,y) € F,]}. Then for all x € X,

x € U A, iff Inecwdye“w[(z,y) € F,)]

iff  3a,b € “w((z,a) € Fyo)]
iff  Jc € “(“w)|(z,c(0)) € Feay)0);
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x € n A, iff VYn €wda € “w[(x,a) € F,]

iff  Je € “(Yw)Vn € wl(z,c(n)) € F,]
iff  Jee“(“w)(z,c) € (({(z,d):d € (“w), (z,d(n)) € F,}.

necw

(8) Y = {(z,¢) € X x “(“w) 1 (x,¢(0)) € Fleqay)(o)} is a closed subset of X x (“w).

To show this, suppose that (y,d) ¢ {(z,c) : (z,c(0)) € Ficayy0)}- So (y,d(0)) & Fraay)o)-
Let U,V be open so that (y,d(0)) € U x V and (U x V) N Fgayyo) = 0. Let

W = {h e “(“w): h(0) = d(0)}

Then (y,d) € U x W. Suppose that (z,e) € U x W. Then (z,e(0)) = (2,d(0)) e U x V,
and hence (z,e(0)) & Fla1))0)- So (z,e) ¢ Y. This proves (3).

It follows that (J, .., An is the projection of a closed subset of X x “(“w). Since “(“w)
is homeomorphic to “w, | A,, is the projection of a closed subset of X x “w. Thus
Unecw An € P.

Also, (,,c., An is the projection of a closed subset of X x “w. Thus ()
Hence (2) follows.

ncw

A, € P.

necw

(4) Every Borel set is the projection of a closed subset of X x “w.
(5) Every Borel set is analytic.
(6) Every continuous image of a Borel set is analytic.

Proof of Lemma 11.26: (i)=-(ii): obvious

(ii)=-(i): Suppose that A is a continuous image of a Borel set B. By (6), A is analytic.

(i)=(iv): If A is analytic, let f be a continous mapping of “w onto A. The set
{(f(x),z) : v € “w} is a closed set in X x “w. In fact, if (u,v) € (X x “w)\{(f(x),z) :
x € “w}, then u # f(v). Let U,V be disjoint open sets with v € U and f(v) € V. Then
(u,v) € U x f7HV] C (X x “w)\{(f(z),z) : * € “w}. In fact, if (v/,v") € U x f~1[V],
then ' € U and v' € f~1[V], hence f(v') € V, and so v’ # f(v'). So {(f(z),x) : x € “w}
is a closed set in X x “w. Now A = {u € X : Jv € “w[(u,v) € {(f(x),x) : z € “w}.

(iv)=-(iii): obvious.

(iii)=-(ii): obvious. O

Recall the following definition: SEQ is the set of all finite sequences of members of w. For
each s eSEQ, Us = {f € “w : s C f}. Suppose that (A : s ESEQ) is given. We define

Proposition 11.27. For any system (B : s € SEQ) we have

A ((By:s€SEQ)) = | J (BrroN By N...N Bp). O

fEYwWNEW
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A system (B; : s € SEQ) is special iff Vs, t € SEQ[B; C By].

Corollary 11.28. For any system (As : s € SEQ) there is a special system (B : s € SEQ)
such that
o ((As: s € SEQ)) = o/ ((Bs : s € SEQ)). O

Theorem 11.29. A set A in a Polish space X is analytic iff A is the result of the operation
o/ applied to a family of closed sets.

Proof. First we show that if Fy, s € Seq are closed sets then A Lot o/ ((Fs : s € Seq))

is analytic. For any x € X we have

x e A iff Elae“’w[xe ﬂFa[n

necw

Y

iff  Ja [(w,a) € ﬂ B,

ncw

where for each n € w. B,, = {(z,a) : x € Fy,,}.
(1) Vn € w[B,, is closed].

In fact, for each s € "w, the set Fs x Uy is closed. Then observe that B,, =
From (1) and the above equation it follows that A is analytic.

Conversely, suppose that A is analytic. Then there is a continuous function f : “w —
X such that A = rng(f).

Fy xUs).

senw(

(2) Va € “w | () flUatnl = () fWUarn] = {f(@)}] .

necw necw

In fact, clearly f(a) € (,c,, f[Uatn], Suppose that b € (", f[Uatn], and b # f(a).
Let U be open such that f(a) € U and b ¢ U. Thus a € f~}[U]; choose n such that
Uatny C f7HU]. Now b € f[Uan); choose @ € U,y such that b= f(z). Then z € f~[U],
so b= f(x) € U, contradiction. Thus (,,c,, f[Uan] = {f(a)}.

Now suppose that f(c) € (,c, f[O(a [ n)] and f(c) # f(a). Let U,V be disjoint
open sets with f(a) € U and f(¢) € V. Choose n so that &(a | n) C f~}U]. Thus
fl@(a | n)] CU. Choose w € VN f[0(a | n)]. Then w € VNU, contradiction. Hence
Myew f1O(a I n)] ={f(a)}.

Thus (2) holds. Clearly

A= J N alUap] O

ac¥Yw ncw

If F is a collection of subsets of X, then
A(F) ={A(A) : A maps ““w into F}.
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Lemma 11.30. F C A(F).
Proof. For any A € F and any s € <“w let By = A. Then

U () B =4 O

ac“wnecw

Lemma 11.31. There are bijections u : w X w — w, v : Yw X “(Yw) — “w and functions
0, “Yw — Yw such that for all (a,7y) € “w X “(“w) and all B,s,m,n, if v(a,y) =
and s = f [ u(m,n), then ¢(s) = a | m and P(s) = vm | n.

Proof. Define u(m,n) =2™(2n+ 1) — 1. Clearly u is a bijection. Note that
(1) m<2m—1

In fact, this is clear for m = 0. Assuming it is true for m, then m+1 < 2™ —-14+1=2" <
2m .2 =2t and so m+1 < 2m+t — 1.

(2) m < u(m,n).
This is clear by (1).
(3) If n < p, then u(m,n) < u(m,p).

For, u(m,n) =2"(2n+1) -1 <2™(2p+1) — 1 = u(m,p.
For each k € w let I(k), (k) be such that k = u(l(k), r(k)).
Define (v(a,7))(k) = u(a(k), v (r(k))). Thus v:“w x “(“w) — “w.

(4) v is one-one.

For, suppose that («, ) and (o/,7") are distinct members of “w x ¥ (“w). If a # o/, clearly
v(a,y) # v(a,v). If v # 4/, choose s € w such that v4 # .. Say ~vs(t) # v.(t). Let
k= u(s, ). Then v (r(£)) = % (£) # 7(5) = 7 (r(k))- S0 v(e,7) £ v(e’s7/). Thus v

is one-one.
(5) v maps onto “w.
In fact, let 8 € “w. Define o € “w and v € ¥(“w) by
a(k) = L(B(k));
Tn(m) = r(B(u(n, m))).

Then for any k € w,

(v(e, 7))(F) = ula(k), vicr) (r(F)))
= u(l(B(k)), r(B(u(l(k),r(k)))))
= u(l(B(k)),r(B(K))) = B(k)

This proves (5).
So v is a bijection.
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Now we define ¢. For s € <“w, by (2) we have [(dmn(s)) < u(l(dmn(s)), r(dmn(s))) =
dmn(s), and we let ¢(s) = 1o (s [ [(dmn(s))).

To define 9, let s € <“w. For ¢ < r(dmn(s)) by (3) we have u(l(dmn(s)),i) <
u(l(dmn(s)), r(dmn(s))) = dmn(s), and we define

¥(s) =ro (s(u(l(dmn(s)),i)) : i < r(dmn(s))).

Now suppose that «,~, 3, s, m,n are given with (a,7) € “w x “(“w), v(a,vy) = B, and
s =B [ u(m,n). Then dmn(s) = u(m,n), {(dmn(s)) = m, and

(s)

o(s]l(dmn(s)))=1lo(s|m)
o ( lo

l
=lo(B1m)=1lo((v(a,7))m)
= (l((v(a, 7)) (@) =i < m)
= (l(U(Oé( i), @) (r(4)))) = i <m)

a | m.

Finally,

(
= (Y (i) : i < n)
[

Theorem 11.32. A(A(F)) = A(F).

Proof. By Lemma 1, A(F) C A(A(F)). Now suppose that B € A(A(F)). Say
B = A(C), where C' maps ~“w into A(F). Thus B = J,cw, (pnew Catn- Now for each
s € “Ywlet Dy map <“w into A(F) such that Cs = A(D5). Thus Cs = U, cwy, Npew Psatn-
Hence

r e B iff FJae€“wWm e wlr € Cyum)
iff 3Ja € “wVm € wib,, € “wV¥n € w(x € Dapmp,, tn]-

Now for each s € <“w let Eg = D (s) 4 (s)- Dote that
(2) A(E) = Uceww ﬂpéu} Eep = Uceww ﬂpEw Dy (crp)ap(elp)-

We claim:

(3) B = A(E).

130



In fact, first suppose that x € B. Choose a € “w such that x € [, ., Catm. Then for any
m € w, € Cypm; so there is a by, € “w such that € (), ¢, Datm,b,, jn- Let 8 = v(a,b).
Take any k € w and let m,n be such that & = u(m,n). Then (5 | k) = a | m and
V(B k) =by [ n. Sox € Eypk),uppik)- This shows that z € A(E).

Second, suppose that x € A(F). Choose ¢ € “w such that z € ﬂpew E.)p, using
(2). Choose (a,7) so that v(a,vy) = c¢. Take any m,n € w and let k = u(m,n). Then

Eectp = Dyerp)wietp)- Now @(c [ p) = a [ mand ¥(c [ p) = Ym [ 7. S0 2 € Dajm iy, in-
By the equivalents for x € B at the beginning of this proof, this shows that x € B. ]

Theorem 11.33. The collection of all analytic sets in a Polish space is closed under
countable unions and intersections, continuous images, inverse images, and <7 .

Proof. Closure under countable unions and intersections was proved in the proof of
Lemma 11.26. Clearly the collection of analytic sets is closed under continuous images.
To show that it is closed under inverse images, suppose that f : X — Y is a continuous
function from a Polish space X to a Polish space Y, and A C Y is analytic. Then A is the
projection of a closed set C'in Y X “w. Thus A = {a € Y :there is an z € “w such that
(a,z) € C}. Define g : X X “w — Y X “w by setting g(a, z) = (f(a), z). Then g is clearly
continuous. Hence g~1[C] is closed in X x “w. We claim that f~![A] is the projection of
g~ 1[C] (and hence f~![A] is analytic). For,

be fHA] iff f(b)e A
iff  there is an = € “w such that (f(b),z) € C
iff (a,7) € g O]
Closure under «7: Theorem 11.32. 0

Now for any Polish space X we define

31 = the collection of all analytic sets;
IT{ = the collection of all complements of analytic sets;
3! .1 = the collection of all projections of IT}-sets in X x “w;
IT} ., = the collection of all complements of X}, ;-sets in X;
Al =31 NIT.

Proposition 11.34. In any Polish space,

(1) 25, C s

(2) I, CII,, 4y ;

(3) If A€ XL, then A x “w is in XL in X x “w.
(4) If A € 1, then A x “w is in 11} in X x “w.
(5) Bn Sy
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(6) I, € 3541

We prove this by induction on n First we consider n = 1. For (1), suppose that A is
analytic. Then by Lemma 11.26, A is the projection of some closed set C' in X x “w. Since
open sets are analytic, C' is the complement of an analytic set, so that C € II}. Hence
A € ¥} by definition.

For (2), let B € TI}. Then X\B is analytic, so X\B € X1 by (1). Hence B € 11} by
definition.

For (3), suppose again that A is analytic. By Lemma 11.26, let B be a closed set in
X X “w such that A = {z € X : there is a y € “w such that (x,y) € B}. Then B x “w
is closed in X X Yw X “Yw, and A X “w = {(z,y) € X X “w : there is a z € “w such that
(z,y,2) € B x“w}. So A x “w is analytic in X x “w.

For (4), suppose that B € II}. Then “w\B is analytic, and so (“w\B) x “w is analytic
in X x “w by (3). Now note that

(“w\B) X “w = (X X “w)\(B x “w);

So B x “w is in II} for the space X x “w.

Next we take (6). Suppose that B € II1. Then by (4), B x “w is in II] too. Clearly
B is its projection, so B € X.3.

For (5), suppose again that A is analytic. Then X\A € IIi, so by (6), X\A € Xi.
Hence A € T13.

This finishes the case n = 1. Now assume (1)—(6) for n; we prove them for n + 1.

For (1), suppose that A € ¥} ;. Then A is the projection of some B € II},. By (2)
forn, BeIl} ;. So Ae X! ,.

For (2), suppose that B € II! ;. Thus X\B € X} ;. By (1), X\B € %5, so
Bell} .

For (3), suppose that A € X%, ,. Say A is the projection of B, where B is in I}, in
X x“w. By (4) for n, B x “w is in IT} for X x “w x “w. Clearly A x “w is the projection
of BX“w,s0 Ax“wisin X} .

For (4), suppose that B € II}, ;. Thus X\B € %, 4, so by (3), (X\B) x “w is in
Y41 for X x “w. Etc., as in (4) for n = 1.

For (6), suppose that B € IT}, . ;. Then B X “w is in II}, ,; too by (4), and B is clearly
its projection, so B € X} .

Finally, for (5), suppose that A € ¥ ;. Then X\A € II} ., so by (6), X\A € T} _,.
Hence A € 11}, .

Theorem 11.35. For all n € w\{0} there is a U C “w x “w such that U € XL and for
every A € XL there is a v € “w such that

A={zxe“w: (z,v) e U}.
Proof. We proceed by induction on n. By Theorem 1.28 let h be a homeomorphism of
“w X “w onto “w. For n = 11let V be a 3-set for “w x “w such that for every X9-set A

in “w there is an = € “w such that A = V,; V exists by Theorem 11.21(i). For n > 1 let V'
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be a 3% | -set for “w x “w such that for every 30 ;-set A in “w there is an x € “w such
that A = V,; again V exists by Theorem 11.21(i). Define

(1) U={(z,y) € “wx*w:3a € “w[(h(z,a),y) ¢ V]}

For n = 1 the set {(z,y,a) : (h(x,a),y) € V} is open. In fact, define k(z,y,a) =
(h(z,a),y). Clearly k is a homeomorphism from “w X “w x “w onto “w x “w. Now
{(x,y,a) : (h(z,a),y) € V} =k 1[V]. It follows that {(x,y,a) : (h(z,a),y) € V} is open,
so {(x,y,a): (h(z,a),y) & V} is closed. Therefore U is analytic, i.e. U € X1.

For n > 1, U is X,,_1 by the same argument.

(2) If A is 31 then there is a closed set B such that
(3) x€A iff Jae€“w[(x,a)€ B]
(4) If n > 1 and A is X! then there is a I, _; set B such that (3) holds.

Now let A be 1. Then C = e “w\h(B) is open (if n = 1) or =L _, (if n > 1). Choose v so
that C' = {u: (u,v) € V}. Then

reA iff Fae“w[(r,a)€ B]
iff  Ja € “w[h(z,a) ¢ C|
iff  Ja € “w([(h(x,a),v) ¢V
it (z,0) € U. 0

Lemma 11.36. If f : Y — X is a continuous function between Polish spaces, then for
any n > 1, the inverse image under f of a X1 set is XL ; similarly for IT%.

Proof. By induction on n. First suppose that n = 1. For X1, we want to show that
if A is analytic in X, then f~![A] is analytic in Y. By Lemma 11.26, there is an closed
set C'in X X “w such that A = {x € X : there is a y € “w such that (z,y) € C}. Let
g:Y xX%w — X x“w be defined by g(y,z) = (f(y),z). Clearly g is continuous, and so
g 1[C] is closed. Now

Al={yeY:fy) €A}
={y €Y : thereis a z € “w such that (f(y),z) € C}
={y €Y : thereis a z € “w such that g(y,2) € C}
={y € Y : there is a z € “w such that (y,2) € g *[C]},

and so f~1[A] is analytic.
If B is I1}, then X\B is analytic, and hence

fHB] = fHXN\X\B)] = Y\ [~ [X\B]
shows that f~1[B] € II}.
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This takes care of n = 1. Now take A € ¥}, inductively. Then there is a II}, set
C such that A is the projection of C'. The argument clearly now proceeds as in the case
n = 1. L

Corollary 11.37. For each n € w\{0} there is a set A C “w which is 3. but not II}.

Proof. Let f(z) = (z,z) for all z € “w. Then f : Yw — “w X “w is continuous,
and A = f~1[U], so by Lemma 11.36, A is ¥1. Suppose that A is II}. By Lemma 11.35,
choose U and v € “w such that “w\A = {z € “w : (z,v) € U}. Then v € A iff (v,v) € U
iff v ¢ A, contradiction. O

Let X be a Polish space and A, B two disjoint analytic subsets of X. We say that A and B
are it separated by a Borel set iff there is a Borel set D such that A C D and B C X\ D.

Theorem 11.38. Let X be any Polish space. Any two disjoint analytic sets in X are
separated by a Borel set.

Proof.

(1) If A= U,e,An and B = J,,c,, Bn are such that for all m and n, A,, and B, are
separated by a Borel set, than A and B are separated by a Borel set.

For each m and n let D,,,,, be a Borel set such that A,, C D,,, and B,, C X\D,,,. Then

let
D= U ﬂ D

ncw mecw

Now first suppose that x € A. Say x € A,,. Then = € ﬂ;.j:o Dy €D. So AC D. Next
we want to show that D C X\B. So take any n € w. Now X\B = () -_,(X\B,,). Each
Dy, is a subset of X\ By, 50 (Vo _o Dnym C (Vo (X\Bm) = X\B. Hence D C X\B.

Now let A and B be disjoint analytic sets. Let f and g be continuous functions with
domain “w such that A = rng(f) and B = rng(g). For each s € Seq let A, = f[Us]
and By = g[Ug|. Clearly each A; and B; are analytic. For each s € Seq we have A, =
Unew As—ny and By =, c,, Bs—(n)- For each a € “w we have

{f(CL)} = ﬂ f[Uarn] = ﬂ AS[?’M

new ncw

and similarly for g and B.

Now let a,b € “w. Since rng(f) Nrng(g) = 0, it folows that f(a) # g(b). Let G,
and G} be disjoint open neighborhoods of f(a) and g(b) respectively. Since a € f~ 1G],
there is an s € Seq such that a € U, C f~![G,]. There is an n such that s = a | n. so
Agin = flUs] € G,. Similarly for b; so we may aasume that By, = g[Us] € Gp. Hence
Ay and Byyy, are separated by the Borel set G,.

Now suppose that A and B are not separated. Since A = |J,, Ainy and B = (J,, By,
by (1) there exist ng, mo € w such that A,,, and B,,, are not separated. Similarly there are

n1, mp such that A,,,,, and By, m, are not separated. Continuing, we get a def (ng,ni,...)
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and b % (mo, mq,...) such that for every k, A pn,..n, and Byym, ...m, are not separated.
This contradicts the above. O

Theorem 11.39. (Suslin) If both A and X\ A are analytic, then A is Borel.

Proof. Assume that both A and X\ A are analytic. By Theorem 11.38 let B be a
Borel set such that A C B and X\A C X\B. Then B C A, so A= B. O

Proposition 11.40. Lebesgue measure is o-finite. That is, if A is measurable, then there
exist measurable sets A, for n € w such that ¥n € w[u(A,) < oo] and A=, ., An-

necw *°n

Proof. Recall from Theorem 10.2 that the collection of Lebesgue measurable sets
forms a field of sets. Hence for A measurable we have

A= J@An[-n,n) O

ncw

Proposition 11.41. If E C [0.1] is measurable, then there exist a Gs U and an F, F
such that F C E CU and p(U\F) = 0.

Proof. For each n € w let U, be an open set such that £ C U, and pu(U,) <
w(E) + HLH U, exists by Lemma 11.11(i). Let U = . U,. Then u(U) = pu(E). Since
w(U) = pu(E) + p(U\E), it follows that u(U\E) = 0.

Applying this argument to [0,1]\F we get a Gs H such that [0,1]\F C H and
w(H\([0,1]\E) = 0. Then [0,1]\H is an Fy, [0,1]\H C E, and p(E\([0,1]\H) = 0. O

necw

Corollary 11.42. A C R is measurable iff there is an F, F and a G5 G such that
F C ACG with G\F a nullset.

Proof. =: Suppose that A is measurable. Choose U as in Proposition 11.41. Then
H(AAU) = p((A\U) U (U\A)) = n(U\A) = 0.

<: Let & be the set of all A C R such that there exist an F, F' and a Gs G such
that ' C A C G with G\F a nullset. It suffices to show that .o/ contains all closed sets
and is closed under complementation and countable unions.

Every closed set is an F, and a Gy, so clearly every closed set is in 7.

Now suppose that A € 7; we show that R\A € &/. Let F be an F, and G a G such
that F C A C G and u(G\F). Then R\F is a G5, R\G is an F,,, R\G C R\A C R\ F, and

PR\ (R\G) = p(G\F) = 0.

Finally, suppose that A € “o/. Then there exist an w-sequence G of Gss and an
w-sequence F of F,s such that Vn € w[F, C A, C G,] and u(G,\F,) = 0. Then

U clJa.can

necw ncw ncw
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and

(UeaUn) <X o g

ncw ncw ncw

Lemma 11.43. Let B be the o-algebra of Borel sets, M the o-algebra of measurable sets,
I, the ideal in B of null sets, and I, the ideal in M of null sets. Then B/I,, = M/I},.

Proof. For each A € B let f([A]r,) = [A]r,. Then f is well-defined and one-one. It
is onto by Lemma 11.42. Clearly then it is the desired isomorphism. L
Proposition 11.44. Let B be the BA of Borel sets, and I the ideal of measure 0 Borel
sets. Then B/I is o-complete.

Proof. Let ([A,] : n € w) be given. Clearly [, 4] is an upper bound for
([An] : n € w). Let [C] be any upper bound. Then Vn € w[A,\C has measure 0]. Hence
(Unew An)\C has measure 0. ]

Proposition 11.45. Let B be the BA of Borel sets, and I the ideal of measure 0 Borel
sets. Then I s o-saturated.

Proof. Clearly every singleton is in I. Suppose that S is an uncountable collection
of pairwise disjoint subsets of R each not in I. Then

s=Y {sesiu> =1

necw

so there exist an uncountable S’ C S and a n € w such that Vs € S'[u(s) > n%rl . Let

S” C S’ have more than p(1)(n + 1) elements. Clearly this is a contradiction. O

Proposition 11.46. Let B be the BA of Borel sets, and I the ideal of measure 0 Borel
sets. Then B/I is complete.

Proof. Suppose that X C B. Let Y be maximal such that Y is pairwise disjoint and
Vy € Ydxr € X[y < z]. By Proposition 11.45 Y is countable. By Proposition 11.44 XY
exists. We claim that XY is the supremum of X. Suppose that z € X and z - —XY # 0,
Then Y U {x - —XY} contadicts the maximality of Y. Thus XY is an upper bound for X.
Suppose that z is an upper bound for X, but XY - —z £ 0. Then choose y € Y such that
y-—z # 0, and choose z € X such that y < 2. Then z—2z # 0, contradiction. ]

Proposition 11.47. Vn € w\{0}VX C "R3IA D X[A is measurable and VZ C A\X[Z
measurable implies that Z is null)].

Proof. For X CY C "R we define p*(X,Y) = inf{u(A) : A is measurable and ¥ D
AD X}

Case 1. p*(X,Y) < co. Let A be such that Y O A D X, A is measurable, and u(A)
is minimum among all such A. Suppose that Z C A\ X and Z is measurable. If u(Z) >0
then A\Z contradicts the minimality of pu(A).
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Case 2. u*(X,Y) = co. Now let

Zy={ze"R:Vi<n[-1<ax; <1] and, for m >0,
IZm={ze™R:Vi<n[-m—-1<z;, <morm<z; <m-+1].
Thus (Z; : i < w) is a system of pairwise disjoint sets, and "R = |J,,,c., Zm- Note that
Vm € w[|Z,| = 2"]. Hence p*(X N Z,,,Y NZy,) < 0o. We apply Case 1 to X N Z,,, and
Y N Z,,: there is a measurable A,, O X N Z,, such that A,, C Y N Z,, and u(4,,) is
minimum. Let A = (J,,c, Am- Then Y O A O X and A is measurable. Suppose that

W C A\X. Then for each m € w we have W N Z,, C (A,\X) N Z,,, so W N Z,, has
measure 0. Hence so does W. O

For any topological space X, Y C X is nowhere dense iff X\Y is dense.

Proposition 11.48. A is nowhere dense iff X\ A contains a dense open set.

Proof. =: Assume that A is nowhere dense. Now A C A, so X\Z C X\A, as
desired.

<: Assume that D is dense open and D C X\ A. Then A C X\ D, and X\D is closed,
so A C X\D, hence D C X\A. Since D is dense, so is X\ A. So A is nowhere dense. O

Proposition 11.49. A is nowhere dense iff for every nonempty open set G there is a
nonempty open set H C G such that AN H = ().

_Proof. =: Assume that A is nowhere dense and G is a nonempty open set. Since
X\A is dense, we have G\A # (), and G\ A is open, as desired.
<: Assume the indicated condition. To show that X_\A is dense, let G be a nonempty
open set, and suppose that (X\A4) NG = (). Thus G € A. Choose H open, H C G, with
H N A=(. This contradicts G C A. O
Proposition 11.50. If F' is closed, then F\int(F') is nowhere dense.
Proof. We use Proposition 11.48. In fact, X\ (F\int(F)) = (X\F) Uint(F) is clearly
open dense. ]

Proposition 11.51. If G is open, then G\G is nowhere dense.
Proof. We use Proposition 11.48.

X\(G\G) = (X\G) UG,

and this set is open dense, since if a nonempty open set H is such that G N H = (), then
HNG =10 too, and so H C X\G.

Proposition 11.52. The collection of all nowhere dense sets is an ideal in P (X).

Proof. Clearly () is nowhere dense.
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Suppose that A and B are nowhere dense. Choose dense open sets C, D such that
C C X\Aand D C X\B. Then C N D is clearly dense open, and C N D C (X\(AU B).
Thus AU B is nowhere dense.

Suppose that A is nowhere dense and B C A. Then X\ A C X\B. Hence by Propo-

sition 11.48 B is nowhere dense. U
Proposition 11.52. For x € "RU%YwU¥2, {z} is nowhere dense.

Proof. We use Proposition 11.48.
"R: Clearly "R\{z} is open. It is also dense. For, let U C "R be nonempty and open.
If z € U, then there is a S.(z) C U. Let y; = x; + 5, for each i <n. Then

-2
d(z,y) = Z(lﬂz’ —yi)? = HZ An2 <€
i<n i<n
So "R\{z} is dense.

“w: For, again “w\{z} is open. If U is basic open, say U = {y : s C y} with s € <“w.
Choose y € U\{z}. So “w\{x} is dense.
w?2: similarly L

A set is meager iff it is the countable union of nowhere dense sets. A has the Baire property
iff there is an open set GG such that AAG is meager.

Theorem 11.53. The sets having the Baire property form a o-algebra.
Proof. First,
(%) ANG C (AAG) U (G\G).
In fact, if z € A\G, obviously z € A\G C rhs. If z € G\A, then either z € G, hence
r € G\A Crhs, or z ¢ G, hence z € G\G C rhs. So (*) holds.
It follows that if AAG is meager, then so is AAG. Hence
(X\ADA(X\G) = (X\A)NG)U((X\G)N A= (G\A) U (A\G) = AAG.

Thus X'\ A has the Baire property.
For unions, note that

(UAJA(U@)QUMAQ) O
€W 1EW 1EW
Corollary 11.54. Every Borel set has the Baire property. L

Proposition 11.55. The following are equivalent:
(i) A has the Baire property.
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(ii) There is an open set G and a meager set P such that A = GAP.
(iii) There is a closed set F' and a meager set P such that A= FAP.

Proof. (i)=-(ii): Assume that A has the Baire property. So there is an open set G
such that AAG is meager. Now A = GA(AAG).

(ii)=(i): Assume (ii). Let G be open and P meager such that A = GAP. Then
AANG = (GAP)AG = P.

_ (ii)=(iii): Assume (ii) with G, P as indicated. Now @_\G is nowhere dense, so @ f
(G\G)AP is meager, using Proposition 11.53. Now G = (G\G)AG and hence
A=GAP = ((G\G)AG)AP = GAQ.

(iii)=-(ii): Assume (iii) and let F, P be as indicated. Then N ot F\int(F') is nowhere
dense. So NAP is meager, and

A =FAP = (NAint(F))AP = int(F)A(NAP). O

Proposition 11.56. The collection of all sets having the Baire property is the o-field of
subsets of X generated by the open sets and meager sets.

Proof. Call this collection 7. Clearly &/ contains the open sets and meager sets.
Each A with the Baire property is clearly in the indicated o-field. L

Proposition 11.57. Let B be the o-algebra of Borel sets, I the ideal of meager Borel sets,
C the o-algebra of sets with the Baire property, J the ideal of meager sets. For each a € B
let f([a]r) = [a]y. Then f is a well-defined isomorphism of B/I onto C/J.

Proof. Everything is clear except f being onto. Take any a with the Baire property.
By Proposition 11.55 there exist an open set b and a meager set ¢ such that a = bAc.
Then a/Ab = ¢, so [a] = [b]. O

Lemma 11.58. Suppose that A C ?R is meager. Then {x € R : A, is not meager} is
meager.

Proof. It suffices to prove
() If A is nowhere dense, then {z € R: A, is not nowhere dense} is meager.

In fact, suppose that (x) holds. Let A be meager. Write A = J, o, B, with each B,
nowhere dense. Then for each n € w, {x € R : By, is not nowhere dense} is meager. Now
for any x € R,

A, ={yeR:(z,y) e A} ={yeR: (z,y) € UB"}

ncw

— U{yER:(w,y)eBn}: Uan~

new new
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Hence Vn € w[B,,, is nowhere dense] — A, is meager, so {z € R : A, is not meager} C
Uncotz € R: By, is not nowhere dense}. This big union is meager, so {x € R : A, is not
meager} is meager, as desired.

Now to prove (%), suppose that A is nowhere dense. Let {V,, : n € w} be an open
basis for the topology on ?R. Let G' = 2R\ A. So G is open dense. For each n € w let

H,={z eR:3JyeV,[(z,y) € G]}.

(xx) H, is an open subset of R.

In fact, suppose that =z € H,. Choose y € V,, so that (z,y) € G. Since G is open, there
are intervals U, W such that z e U, y € W C V,,, and (z,y) €e U x W C G. Then U C H,,,
since for any u € U we can choose w € W and then w € V,, and (u,w) € G. so u € H,.
So () holds.

(* % %) H,, is dense.

In fact, let U C R be a nonempty open set. Then G N (U x V,,) # 0 since G is dense. For
(x,y) € GN (U x V,,) we have x € H, NU. So (* * ) holds.
From (*#), (* * *) and the Baire category theorem it follows that (), ., Hy is dense.

(x x*x) Vo € (,,c,, Hn[G is dense open in R].

In fact, G, = {y € R: (z,y) € G}, so clearly G, is open. Now let W C R be a nonempty
open set. Choose n € w such that V,, C W. Since x € H,, there is a y € V,, such that
(x,y) € G. Hence y € G, N'V,, € B, NW. So (% * *x*) holds.

Now for all z € (), .,, H,[R\G, is nowhere dense]. Hence

ncw

{z : R\G, is not nowhere dense} C U (R\H,,),

necw

and this big union is meager by (xx) and (x * x).
Note that R\G, = {y e R: (z,y) ¢ G} ={y € R: (z,y) € A} = A,. Hence (%)
holds. 0

Lemma 11.59. Let A, B C R, and suppose that A is meager in R or B is meager in R.
Then A X B is meager.

Proof. By symmetry suppose that A is meager in R. Say A = |J,, ., A, with each
Al nowhere dense. Then for each n € w, R\ A/, is dense open in R. Then (R\A}) x R is
dense open in 2R. Hence A/, x B is nowhere dense in 2R. So A x B is meager. ]

Lemma 11.60. If A C 2R has the property of Baire and {x € R : A, is not meager} is
meager, then A is meager.

Proof. Assume the hypotheses, but suppose that A is not meager. Write A = GAP
with U open and P meager. Write G = J,,c,,(Un x V3,), with U, V;, open. Then there is
an ng such that U, xV,,, is not meager. Then by Lemma B, U,,, and V,,, are not meager.
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(%) Vo € Upy [V \Pe C Azl

In fact, suppose that © € U,, and y € V,,\P,. Then y € V,, and (z,y) ¢ P, so
(x,y) € Upy X Vi € G. Thus (z,y) € G\P C GAP = A, and hence y € A,. So (x) holds.

Now if V;,,\ P, is meager, then V,,, = (V,,, N Py) U (V},,\Py) is meager, contradiction.
Thus Va € U,,[A; is not meager]. So U,, C {z € R: A, is not meager}; but this last set
is meager by hypothesis, and U, is not meager, contradiction. L

Lemma 11.61. Let A C R xR have the Baire property. Then A is meager iff {x € R : A,
is not meager} is meager,

Proof. By Lemmas 11.58 and 11.60. 0
Lemma 11.62. For any set S in a Polish space X there exists a set A O S which has the
Buaire property and is such that whenever Z C A\S then Z is meager.

Proof. For S C X let
D(S)={ze X :VYU € Oz € U - UNS is not meager|}.
Then

X\D(S)={x € X :3U € O[x € U and U N S is meager]}
= U{U € 0:UNS is meager}.

Thus X\D(S) is open, so D(S) is closed. Also note that
S\D(S) = U{Sﬂ U:Ué¢€0 and UNS is meager}.
Since € is countable, it follows that S\ D(S) is meager. Let
A=SUD(S).

So S C A. Now A = (S\D(S)) U D(S), so A is the union of a meager set and a closed
set. Hence A has the Baire property by Lemma 11.63. Now suppose that Z C A\S has
the Baire property; we want to show that Z is meager. Suppose not. Choose G open such
that ZAG is meager. Since Z is not meager, G # (). Choose () # U € € with U C G.
Thus U\Z is meager. Now Z C D(S)\S, so S C X\Z, hence UNS CU\Z. SoUNS is
meager.

Now U is not meager, by the Baire category theorem. Since U\Z is meager, it follows
that U N Z is not meager, and hence U N Z # (). Take any z € UN Z. Now Z C D(S), so
it follows that U NS is not meager, contradiction. ]

Theorem 11.65. Fvery analytic set of reals is Lebesgue measurable.
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Proof. Let A be an analytic set of reals. Let f : “w — R be continuous with range
A. For each s € Seq let A = f[Us]. Then

(1) A=/ ((As:s €Seq)) = o ((A; : s € Seq)).

In fact, suppose that a € A. Say f(x) = a. Now

A ((As:se€Seq)) = | () Ay

ye“wnew

Now Vn € wlz € Uzppl, so Vn € wla € f[Ugn]], so ¥n € w[z € Aypy]. This shows that
x € o ((As: s €8Seq)). Clearly o/ ((As : s € Seq)) C %((A s € Seq>)

Suppose that a € &7 ((A, : s € Seq)). Choose = € “w such that a € ¢, Azjn- Thus
a € (,ew flUzn]. Suppose that a # f(z). Let V, W be disjoint open sets such that aeV
and f(x) € W. Now x € f~1[W], so there is an open Z such that x € Z C f~1[W].
There is an n € w such that * € Uy, € Z. Now f(z) = a € V, s0 z € f71[V].
Hence there is an m € w such that * € Uy, C f71[V]. Let p = max{m,n}. Then

» C 7Y W]n f71V] = 0, contradiction.
This proves (1).

(2) Vs € Seq [A = Unew As“(n)] .
For, Us = |J

new A(”) SO

A =

U Us"\(n

necw

U f ’“(n = U As’“(n)

new new

Now by Proposition 11.47, for each s € Seq let B; 2 Ag be measurable such that every
measurable Z C B\ A, is null. For each s € Seq, Ay is measurable. Let By = B, N A,
then Ag C Bl C A and every measurable Z C B.\ Ay is null. Now by (1) we have

A= ((B.:s e Seq)).

Hence

Bé)\A = Bé)\ U ﬂ lezfn

aEYw nEw

Now we claim that

o) 5o 1 N B U (B;\UB;W).

aEYw ncw s€Seq kew

For, suppose that = € Bé is in the right side but not in the left side. Then for every x € “w
and every s € Seq, if z € B/ then s € B;A<k> for some k € w. Hence there is a kg such

that « € By, , then there is a ki such that z € Bj; ., ,, etc., producing a % <k0, ki,...)
such that z € N s SO that z is not in the left side of (3) Thus (3) holds.

new
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It follows that

(4) BN\AC (Bé\ U Bg“(k))

sESeq kEew

(5) Vs € Seq

B\ | Bl i null] :
kew

For, let s € Seq and let Z = B\ Uy, Bi~ 1)- Then

Z = B\ U B~ 4y € B\ U A~ (k) = B\ As.
kEw kew

Since Z is measurable and Z C B!\ A,, Z is null. This proves (5). Hence by (4), B{\A4 is
null. Since A C B{, and Bj{, is measurable, also A is measurable. O

Theorem 11.66. Fvery analytic set has the Baire property.

Proof. Let A be an analytic set of reals. Let f : “w — R be continuous with range
A. For each s € Seq let A; = f[Us]. Then (1) and (2) in the proof of Theorem 11.65 hold.
By Lemma 11.64, there exists for each s € Seq a set By O Ag with the Baire property
such that every set Z C B,\ A, with the Baire property is meager. Now A, is closed, and
hence by 11.56 has the Baire property. For each s € Seq let B, = B, N A,. Since By has
the Baire property, it suffices to show that Bj\A is meager, for then A = By\(Bj\A) has
the Baire property.

Now by Lemma 11.62, for each s € Seq let Bs have the Baire property such that
B, D A, and whenever Z C B,\A, then Z is meager. Let B, = B, N A,. Then B’ has
the Baire property and whenever Z C B\ A, then Z is meager. Now by (1) we have

A=/ ((B.:s € Seq)).

Hence

By\A=By\ {J () Bujn-

aEYw nEw

Now we claim that

o) 5o 1 N B U (B;\UB;W).

aEYw ncw s€Seq kew

For, suppose that = € Bé is in the right side but not in the left side. Then for every x € “w
and every s € Seq, if z € B, then s € B;A<k> for some k € w. Hence there is a kg such

that x € szw, then there is a kq such that x € szo ky)o €LC-, producing a def (ko, k1, ...)

such that € ¢, By, 50 that z is not in the left side of (3). Thus (3) holds.
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It follows that

(4) BNAC (Bé\ U Bg“(k))

sESeq kew

(5) Vs € Seq

BI\ U B~y is meager] .
kEw

For, let s € Seq and let Z = B\ Uy, Bi~ (). Then

Z =B\ | Bl € B\ | A~y = B\
kew kew

Since Z C B!\ As, Z is meager. This proves (5). Hence by (4), B{\A has the property
of Baire. Since A C B{, and B{, has the property of Baire, also A has the property of
Baire. L

Proposition 11.67. Every separable metric space has a countable base for its topology.

Proof. Let D be dense, Define
%:{Ul(x):xED,nzl}.

Now suppose that V' is an open set and x € V. Choose m > 0 such that By, (z) C V.
Choose y € D N By jom(x). Then x € By /9 (y) € Bijm(x) C V. For, let 2 € By (y).
Thus d(z,2) < d(z,y) +d(y,z) <1/2m+1/2m = 1/m. ]

Suppose that X is a Polish space and F' C X is closed. Then we define
I'F)=F
It (F) = {x € T*(F) : z is not an isolated point of T'*(F)}

I“(F) = n TP(F) for a limit.
B<a

Proposition 11.68. Suppose that X s a Polish space and F C X is closed. Then
Va[I'*(F) is closed. O

Proposition 11.69. Suppose that X s a Polish space and F C X 1is closed. Then
Vo < wi[T(F)\I'“T(F) is countable).

Proof. Let & be a countable base for X. T'*(F)\I'*"!(F) consists of the isolated
points of '“(F). For each & € T*(F)\I'**!(F) let U, € & be such that U,NI'*(F) = {z}.
Since < is countable, so is T%(F)\I'**1(F). O
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Proposition 11.70. If TY(F) = F, then F is perfect, and T*(F) = F for all a < wy.

Proof. T''(F) = F implies that F' does not have any isolated points; hence it is
perfect. I'*(F') = F for all & < w;y by an easy induction. O

Proposition 11.71. There is an ordinal o < wy such that T*(F) = ToTY(F).

Proof. Suppose not. For each o < wy let U, be such that U, NT¥(F)\[*TH(F) is
a singleton. Clearly n : w; — w is one-one, contradiction. ]

Theorem 11.72. Let X be a Polish space and ' C X closed. Then there exist a perfect,
or empty, P and a countable A such that F = PUA and PN A = (.

Proof. Let o be minimum such that I'“(F) = I['**1(F). Then

F=T*F)u | J@PEN(F)). O
B<a

Lemma 11.73. Let X be a Polish space and A C X uncountable. Then there are disjoint
open sets Vi and Vo such that ANV, and AN Vy are uncountable.

Proof. Suppose not.

(1) For each n > 1 there is an open cover U,g, Uy, ... of X, each U,; an open ball of

radius 1.
n

In fact, with D C X countable and dense, for each = € D let V, have radius % with x € V.
Now given any y € X, let W be an open ball with center y and radius % There is an
z € DNW. Then d(z,y) < 5-, and so y € V,. This proves (1).

Now for each n > 1 choose z(n) € w such that U,y N A is uncountable. For
each n > 1let A, = A\U,y(n). For each n, if A, is uncountable then “Suppose not” is
contradicted. So each A,, is countable. Now

A\ 4w =) Unatn).

n>1 n>1

But clearly Una(n) has at most one element. Hence A is countable, contradiction.

O

n>1

Theorem 11.74. For any Polish space X and any uncountable analytic subset A C X,
there is a perfect set P C A.

Proof. Let f:“w — X be continuous with range A.

(1) If V C “w is open and f[V] is uncountable, then there are disjoint open subsets W3
and Wy of V such that f[W;] and f[W5] are uncountable.

For, by Lemma 11.73 there are disjoint open subsets Uy and U; of X such that f[V]N Uy
and f[V]NU; are uncountable. Now let Wy = f~1[Up]NV and Wy = f~[U;]NV. Clearly
(1) holds.
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(2) There is a function 7 : <“2 — <“w such that
(a) Ty = @
(b) If 01 C 09, then 7,5, C 7,,.
(c) Vo € <“2[f[{z € “w : 7, C x}] is uncountable.
(d) Vo € <92[f[{zr € “w: T~y C 2} N fl{r € “w: 7o~y C a}] = 0.

We construct 7 by recursion. 75 = () clearly satisfies (a)—(c). If 7, has been defined, we
apply (1) with V' = {z € Yw : 7, C x}; this gives disjoint open W7, WJ contained in V.
Both W] and W) are the union of countably many basic open subsets of “w, giving the
desired extension of V.

Now define g : “2 — “w by g(r) = U,,c,, Tztn- To see that g is continuous, take any
basic open set U, of “w and suppose that x € g~[U,]. Then there is an n € w such that
Y C Tupn. Then x € Uy, C g7 U,

Now rng(f o g) is closed, by Theorem 3.1.12 of Engelking. Hence by Theorem 11.72,
X has a perfect subset. O

Proposition 11.75. The operations | J,,c,, and [ are special cases of < .

necw

Proof. (i) Define A; = Bqmn(s) for every s € seq. Then

A 5= U N Aa

necw ac¥Yw necw

(ii) Let Ap = U, ., Bn, and for each nonempty s € seq let Ay = B,(g). Then

Usi= U N Aan

necw acYw new

necw

Proposition 11.76. Suppose that (As : s € Seq) is a system of Borel sets such that
(i) Vs, t € Seq[s C t implies that Ay C Ag],
(ii) Vs € Seq¥m,n € wim # n implies that Ag~ ;) N Ag~(ny = 0.

Then < ((As < s € Seq)) is a Borel set.
Proof. We claim that

U ﬂ Agin = ﬂ U{AS :dmn(s) = n}.

ac¥Yw ncw necw

For, first suppose that z is in the left side. Choose a € “w such that € (1, ¢, Aa(n-
Suppose that n € w. Then x € Ag,p,,. Thus x is in the right side.

Now suppose that x is in the right side. For each n € w choose s,, with domain n such
that x € A, . Clearly m < n implies that s,, < s,,. Hence z is in the left side. ]

Proposition 11.77. Suppose that A,, for n = 0,... are pairwise disjoint analytic sets.
Then there exist pairwise disjoint Borel sets D,, forn =0, ... such that Vn € w[A,, C D,].
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Proof. For each n, A, and {J,, £n A,, are disjoint Analytic sets. Hence by Lemma
11.38 there is a Borel set B,, such that A, € B, and B, N Um;én A, = 0. Let C,, =
B, N ﬂm;ﬁn(X\Bm). Then C), is Borel. If x € A,, then z € B,, and for all m # n,
x € (X\B,). So A4, C C,,. Clearly C,, N C,, = 0 for m # n.

Proposition 11.78. If A has the Baire property then there exist a G5 set G and an F,
set F' such that G C A C F and F\G is meager.

Proof.
(1) Any meager set is contained in a meager F, set.

For, let A be meager. Say A =, .,
nowhere dense, and A C Unew B,,.

Now suppose that A has the Baire property. Let G be open such that AAG is meager.
By (1) let @ be an F, such that @ is meager and AAG C Q.

(2) A= (G\Q)A(ANQ).

In fact, G\A C @, so G\Q C A; hence G\Q C A\Q. Similarly, A\G C @, so A\Q C G;
hence A\Q C G\Q. So A\Q = G\Q. Note that G\Q is a Gs. So

(G\Q)A(ANQ) = (AQAMANQ) = (AQ)U(ANQ) = A.

Since A\@ and A N @ are disjoint, we have A equal to the disjoint union of a G5 and a
meager set.

Applying this to the complement of A, we get X\A = H U K with H a G5 and
K meager. Hence A = (X\H) N (X\K). Now X\H D Ais an F,, and (X\H)\A4 =
(X\H)N(HUK) = K\H is meager.

B,,, each B,, nowhere dense. Then also each B,, is

Proposition 11.79. If A has the Baire property then there exists a unique reqular open
set U such that AAU is meager.

Proof.
(x) If H is open, then int(cl(H))\H is nowhere dense.

For, let H be any open set. Let G = int(cl(H)). Then G is regular open. Now suppose
that U is a nonempty open set and U N (X\cl(G\H)) = . Then U C cl(G\H), so
UCcG)=G, and also U C X\H; soU C G\H C cl(H)\H. But cl(H)\H is nowhere
dense by Fact 1 on page 93, so this is a contradiction. Therefore (x) holds.

(+*) Any open set H has the form H = G\cl(N) where G is regular open and N is nowhere
dense.

For, let G = int(cl(H)) and N = G\H. Now G\H C cl(G\H), so G\cl(N) = G\cl(G\H) C
G\(G\H) =H. If HNcl(N) # 0, then HN N # (), contradiction. So H Ncl(N) = 0 and
so H C G\cl(N). Thus H = G\cl(V). By (), N is nowhere dense.

Now for the proposition, let A have the Baire property. So let G be open with P ©fAnG

meager. Let N = int(cl(G))\G. By (x), N is nowhere dense. Clearly NAint(cl(G)) = G.
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PAN is meager. Now AAIint(cl(G))AN = P. So AAint(cl(G)) = NAP is meager. This
proves existence.
For uniqueness, we prove

(x x x) If GAP = HAQ with P,Q meager, G regular open, and H open, then H C G.
(Uniqueness follows.)

We have H\cl(G) C HAG = PAQ. So H\cl(G) is open and meager, hence is empty. So
H C cl(G). Hence H C int(cl(G@)) = G, as desired. O

Now suppose that k,l € w. Let X = *w x {(“w). Define

Sy {(m,o) :m e *w. and ¢ € '(**w)}.

Now a Borel code for a subset of X is a pair (7,1) such that
(1) T C~“w,peT,and Vo € TVy € ““w[y Cx —y € T).

(2)1:T — ({0} x{0,1})U ({1} x Sx) and for all o € T,
(i) If 1(0) = (0,0), then {0} € T and Vn > 1o {n} ¢ T.
(ii) If 1(0) = (1, (m, o)) for some (m,o) € Sx, then Vn € wlc™{n} ¢ T.
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12. Models of set theory

We assume a basic knowledge of model theory. The language of set theory is the first-order
language Z;.+ with just one non-logical constant, the binary relation symbol €. If M is a
class, F is a binary relation, and ¢(Z) is a formula of Z;.; then we define the relativization
©ME of o to M and E as follows:

(xey)MP is xEy;
(=y)"E is z=y
(Bze)MF is Jx € MpMF,
(Vo) M¥ similarly;
S

NV, =, & similarly.

The incompletenss theorems of Godel are roughly as follows:

First incompleteness theorem. If I' is a computable set of sentences proving a sufficient
amount of number theory, then there is a sentence ¢ such that neither ¢ nor —¢p is provable
from TI'.

Second incompleteness theorem. If I' is a computable set of sentences proving a
sufficient amount of number theory, then the consistency of I', formulated in number
theoretic form is not provable from T'.

Tarski’s theorem about truth does not involve the notion of proof. We formulate it and
give a complete proof modulo some background in recursion theory. We need a definitional
expansion of ZFC having an individual constant 0 and a one-place function symbol S; 0
is defined as (), and S is the function assigning = U {z} to each set x. For simplicity we
assume that the symbols are certain natural numbers. Then we define, for any formula o,

#w)= [ »f

i<dmn(p)

where p is the sequence of primes; pg = 2,p1 = 3,p2 = 5,.... Terms n are defined by
recursion for each n € w:

ol
I

0;
S™0 that is, n S’s followed by 0

n+1

We say that a formula T'(z) with one free variable z is a truth definition iff the following
hold:

ZFCHVz[T(z) = x € w|;
if o is a sentence, then ZFC I o « T(#0)

Theorem 12.1. (Tarski) A truth definition does not ezist.
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Proof. Suppose it does. Let ¢q, ¢1, . .. enumerate all formulas with one free variable
x. For each m € w let f(m) = #(¢m(m)). Then f is a recursive function, and so is
represented by a formula y(z,y) in ZFC. This means that

ZFC F x(m,n) and
if f(m) = n, then
ZFC = VYy[x(m,y) =y =n].

Let ¢ (x) be the formula Jy[x(z,y) A =T(y)]. Say that ¢ is ¢,,. Let o be the sentence
©m(m). Thus f(m) = #(o). Hence ZFC F x(m, #(0)), so ZFC + =T (#(0)) — ¥ (m), i.e.,

(1) ZFCt =T'(#(0)) — o.

On the other hand, ZFC - x(m,y) — y = #(0), so ZFC - =T'(y) A x(m,y) — =T (#0),
and hence
ZFCF o — =T (#0),

which together with (1) gives

ZFCF —T(#(0)) + o.

This contradicts our assumption that

ZFCHT(#(0)) ¢ o,

since we assume that ZFC is consistent. [l

We take Lo$’s theorem as follows.

Theorem 12.2. (Lo$) Suppose that £ is a first-order language, A = (A; : i € I) is a
system of £ -structures, F is an ultrafilter on I, and a € “],.; a;. The values of a will be
denoted by a®,at,.... Let 7 : [Licr Ai = Il;cr Ai/F be the natural mapping, taking each
element of [ [, Ai to its equivalence class under =4. Foreachi € I let pr; : [lier A5 — A
be defined by setting pry(x) = x; for all x € [[,c; A;s. Suppose that ¢ is any formula of £ .
Then
HE/F):(,O[WOCL] iff {icI:A; = o[pr;oal} €F. ]
icl
Now let A be any structure, S any set, and U an ultrafilter on S. For each a € A let ¢ be
the function with domain S such that ¢2(x) = a for all x € S. Then define j°(a) = [c,]
for all @ € A, where [c,] is the equivalence class of ¢, in the ultrapower A /U.

Theorem 12.3. j° is an elementary embedding of A into SA/U.

Proof. By Lo$’s theorem, SA/U | ¢[j®(ag),...,j%(an—1)] iff {z € S : A
vlag, ..., an—1]} € U iff A E plag,...,an—1]. O
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e Suppose that M C N are classes and ¢(z1,...,x,) is a formula of our set-theoretical
language. We say that ¢ is absolute for M, N iff
Yoy, .. x, € M[e™M(zy, ... x,) iff N (21, ..., 20)].

An important special case of this notion occurs when N = V. Then we just say that ¢ is
absolute for M.

More formally, we associate with three formulas p(y, w1, ..., wn), v(y,w1,..., wy),
o(z1,...,x,) another formula “p is absolute for u, v”, namely the following formula:

Vay,. .., oy /\ w(xy) = [ (z1, ..o xn) < (21, ..., xn)]
1<i<n

In full generality, very few formulas are absolute, as we will see later. Usually we need to
assume that the sets are transitive. Then there is an important set of formulas all of which
are absolute; this class is defined as follows.

e The set of Ag-formulas is the smallest set I" of formulas satisfying the following conditions:
(a) Each atomic formula is in T'.
(b) If ¢ and ¢ are in I', then so are —¢ and ¢ A 1.
(c) If ¢ is in T, then so are 3z € yp and Vz € yp.

Recall here that dx € yp and Vx € yp are abbreviations for Jz(z € y A ¢) and Vz(z €
y — @) respectively.

Theorem 12.4. If M is transitive and @ is Ao, then @ is absolute for M.

Proof. We show that the collection of formulas absolute for M satisfies the con-
ditions defining the set Ay. Absoluteness is clear for atomic formulas. It is also clear
that if ¢ and 1 are absolute for M, then so are —¢ and ¢ A ¥. Now suppose that
@ is absolute for M; we show that dz € y¢ is absolute for M. Implicitly, ¢ can in-

volve additional parameters wi,...,w,. Assume that y,wi,...,w, € M. First sup-
pose that Jx € yo(z,y,wr,...,w,). Choose x € y so that p(x,y,ws,...,w,). Since
M is transitive, + € M. Hence by the “inductive assumption”, o™ (z,y,ws, ..., w,)

holds. This shows that (3z € yp(x,y,wi,...,w,))M. Conversely suppose that (3z €
yo(x,y,wy,...,w,))M. Thus 3z € M[z € y A pM(2,y,w1,...,w,). By the inductive
assumption, ¢(z,y,ws,...,wy,). So this shows that Iz € yp(z,y, w1, ..., wy,). The case
Vx € yp is treated similarly. ]

Ordinals and special kinds of ordinals are absolute since they could have been defined using
Ay formulas:

Theorem 12.5. The following are absolute for any transitive class:

(i) x is an ordinal (1ii) x is a successor ordinal (v) x is w

(ii) x is a limit ordinal (iv) x is a finite ordinal (vi) x isi (each i < 10)
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Proof.

x is an ordinal <>Vy € 2Vz € y[z € 2] AVy € aVz € yYw € z[w € y];
x is a limit ordinal <»3y € z[y = y] A x is an ordinal AVy € z3z € z(y € 2);
x is a successor ordinal <>z is an ordinal A x # () A z is not a limit ordinal;
x is a finite ordinal <>Vyly ¢ x] V (x is a successor ordinal
AVy € z(Vz]z ¢ y] V y is a successor ordinal));

T = w <>z is a limit ordinal A Vy € z(y is a finite ordinal);
finally, we do (vi) by induction on i. The case i = 0 is clear. Then
y=i+ledreyr=iAVzeylzcaVez=a|AVzex[z€y|Az eyl O
The following theorem, while obvious, will be very useful in what follows.

Theorem 12.6. Suppose that S is a set of sentences in our set-theoretic language, and
M and N are classes which are models of S. Suppose that

S EVry, .. zple(r, ... xn) & (a0 x,)].

Then ¢ is absolute for M, N ff ¢ is. ]

Of course we will usually apply this when S is a subset of ZFC.

We let ZF be our axioms without the axiom of choice, and ZF — Inf the axioms ZF
without the axiom of infinity. The status of the functions that we have defined requires
some explanation. Whenever we defined a function F of n arguments, we have implicitly
assumed that there is an associated formula ¢ whose free variables are among the first
n + 1 variables, so that the following is derivable from the axioms assumed at the time of
defining the function:

Yo, - .oy Up—1 v p(vo, - .., vp).

Recall that “dlv,” means “there is exactly one v,”. Now if we have a class model M in
which this sentence holds, then we can define FM by setting, for any g, ..., Zn_1 € M,

FM(zg,...,2,_1) = the unique y such that o™ (zq, ..., zn_1,7).

In case M satisfies the indicated sentence, we say that F is defined in M. Given two class
models M C N in which F is defined, we say that F is absolute for M, N provide that ¢
is. Note that for F to be absolute for M, N it must be defined in both of them.

Proposition 12.7. Suppose that M C N are models in which F is defined. Then the
following are equivalent:

(i) F is absolute for M, N.

(ii) For all xg,...,,_1 € M we have FM(zq,..., 2, 1) = FN(20,...,20_1).

Proof. Let ¢ be as above.
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Assume (i), and suppose that zg, ..., 2, 1 € M. Let y = FM(zq,...,2,_1). Theny €
M, and o™ (zq,...,2n_1,%), so by (i), oN(zg,...,2n_1,y). Hence FN(zq,..., 2, 1) = .
Assume (ii), and suppose that zq,...,x,_1,y € M. Then

oM (20, ..., Tn_1,y) iff FM(zg,... 2, 1) =y (definition of F)
iff FN(zo,...,2p_1) =y (by (i)
iff  ©N(xg,...,2n_1,9) (definition of F). O

The following theorem gives many explicit absoluteness results, and will be used frequently
along with some similar results below. Note that we do not need to be explicit about how
the relations and functions were really defined.

Theorem 12.8. The following relations and functions were defined by formulas equivalent

to Ag-formulas on the basis of ZF —Inf, and hence are absolute for all transitive class models
of ZF — Inf:

(i) z €y (vi) (z,y) (xi) © U {x}

(i) =y (vii) () (zii) x is transitive

(11i) x Cy (viii) Uy (ziii) Uz

(iv) {z,y} (ix) Ny (ziv) N (with 0 =10)
() {) () 2\y

Note here, for example, that in (iv) we really mean the 2-place function assigning to sets
x,y the unordered pair {z,y}.

Proof. (i) and (ii) are already A, formulas. (iii):
rCy+Vzex(zey).

(iv):

z={zr,ytoVweziw=zVw=y) Az €zAyE 2.
(v): Similarly. (vi):
z=(z,y) < Vw € zlw ={z,y} Vw ={z}] A Jw € z[w = {z,y}] A Jw € z[w = {z}].
(vii):
r=0<Vyeax(y#y).
(viii):
z=zUy+VweziwexVwey) ANVw € z(w € 2) ANVw € y(w € 2).

(ix):

z=zNyeVwezilwer Aw e y) AVw € z(w €y — w € 2).

(x):

z=z\y+VweziwerzAhwgy ANVwex(zdy — we 2).
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(xi):

y=xU{z} o VweylwerVw=2x)AVwe x(w € y) Az €y.

(xii):

x is transitive <> Vy € z(y C x).
(xiii):
y:UmHVwaElzex(wez)/\VwGm(wgy).

(xiv):

y:ﬂxﬁ[.f%@/\‘v’wey‘v’zex(wez)
AVw e aVt e wVz ex(t€2) =»teyViz=0Ay=10]. O

A stronger form of Theorem 12.8. For each of the indicated relations and functions,
we do not need the model to be all of ZF — Inf. In fact, we need only finitely many of the
axioms of ZF — Inf: enough to prove the uniqueness condition for any functions involved,
and enough to prove the equivalence of the formula with a Ag-formula, since A formulas
are absolute for any transitive class model. To be absolutely rigorous here, one would need
an explicit definition for each relation and function symbol involved, and then an explicit
proof of equivalence to a A formula; given these, a finite set of axioms becomes clear.
And since any of the relations and functions of Theorem 12.8 require only finitely many
basic relations and functcions, this can always be done. For Theorem 12.8 it is easy enough
to work this all out in detail. We will be interested, however, in using this fact for more
complicated absoluteness results to come.

As an illustration, however, we do some details for the function {z,y}. The definition
involved is naturally taken to be the following:

Ve, y, z[z = {z,y} « Vww ez w=xVr=yl.
The axioms involved are the pairing axiom and one instance of the comprehension axiom:

Vo, yJw[r € w Ay € wl;
Ve, y,wIzVu(u € z > u€cwA(u=xVu=y)).

{z,y} is then absolute for any transitive class model of these three sentences, by the proof
of (iv) in Theorem 12.8, for which they are sufficient.

For further absoluteness results we will not reduce to Ay formulas. We need the
following extensions of the absoluteness notion.

e Suppose that M C N are classes, and @(ws,...,w,) is a formula. Then we say
that ¢ is absolute upwards for M, N iff for all wy,...,w, € M, if eM(wy,...,w,),
then oN(w1,...,wy,). It is absolute downwards for M, N iff for all wy,...,w, € M, if
oN(wy, ..., wy), then @M (w1, ..., w,). Thus ¢ is absolute for M, N iff it it is both abso-
lute upwards for M, N and absolute downwards for M, N.
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Theorem 12.9. Suppose that p(x1,...,Tn, w1,..., Wy) is absolute for M, N. Then
(i) 3x1,... xpp(x1, .. T, W, ..., W) 18 absolute upwards for M, N.
(ii) V1, .. VTap(X1, ... Ty, W1, ..., W) @8 absolute downwards for M, N. O

Theorem 12.10. Absoluteness is preserved under composition. In detail: suppose that
M C N are classes, and the following are absolute for M, N:

o(T1, .. Xp);
F, an n-ary function ;
For each i =1,...,n, an m-ary function G;.

Then the following are absolute:
(i) p(G1(z1,. ., Tm)s- -, Gp(x1, .. Tm))-
(ii) The m-ary function assigning to x1, ..., T, the value

F(Gi(z1,.. s Zm)y- -, Gu(x1,. .., 2m)).

Proof. We use Theorem 12.9:

o(Gr(x1, -y Tm)s o, GulT1, . ooy ) <321, .. . 32, {gp(zl,...,zn)

A\ /\(Zz = GZ'(.CCl,. . .,.’Bm))};
o(G1(z1, -y Tm)y oo, Gr(T1, -y ) Hv,zl,...v,zn[/\(zi =Gi(x1,...,Tm))

=1

— cp(zl,...,zn)}

y=F(Gi(z1,....,2m),...,Gp(z1,...,2m)) <321,... 32, l(y =F(z1,...,2n))

(Zz’ = GZ'<.’B1, .. ,.’Bm))

y=F(Gi(z1,.. ., Zm), ..., Gp(T1, ..., Tm)) Hv,zl,...v,zn{
1

n

(2

%(y:F(zl,...,zn))}. O

Theorem 12.11. Suppose that M C N are classes, (Y, T1,. .., Tm, W1, ..., Wy) is abso-
lute for M,N, and F and G are n-ary functions absolute for M,N. Then the following
are also absolute for M, N:

(i) z € F(x1,...,2m).

(i) F(z1,...,2m) € 2.

(i5i) Jy € F(x1, ..., 2m) (Y, T1, -« oy Ty W1, -« o, Wh,).
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(iv) Vy € F(x1,...,2m)pY, T1, ..y Ty W1,y - ey Wyy)-
(v) F(x1,...,2m) = G(x1,...,Zm).
(vi) F(z1,...,2m) € G(1,...,Tm).

Proof.
z€F(r1,...,2m) < JwzecwAhw=F(x1,...,2m)];
o VYwlw=F(z1,...,2,) = 2z € wl;
F(z1,...,2m) €z Jw € zlw =F(x1,...,2m)];

Jy e F(z1, ..., Tm)o(Y, T1, ..y Ty Wi,y e .y, W)
 Jwdy e wiw =F(x1,...,2m) NO(Y, T1, ..oy Ty Wy« oy Wh)];
o Vwlw=F(z1,...,2n) = Fy € we(Y,T1, ..., Tym, W1, ..., Wy)];
(iv)—(vi) are proved similarly. O

We now give some more specific absoluteness results.

Theorem 12.12. The following relations and functions are absolute for all transitive class
models of ZF — Inf:

(i) x is an ordered pair (iv) dmn(R) (vii) R(x)
(ii) A x B (v) rg(R) (viii) R is a one-one function
(iii) R is a relation (vi) R is a function (ix) x is an ordinal

Note concerning (vii): This is supposed to have its natural meaning if R is a function and
x is in its domain; otherwise, R(z) = 0.

Proof.

x is an ordered pair > (Ely € Ux) (Elz € Ux) [z = (y,2)];
y=Ax B +ae A)(Vb e B)[(a,b) € y|A
(Vz € y)(Fa € A)(Fb € B)[z = (a,b)];

R is a relation <3V € R[z is an ordered pait];
z = dmn(R) & (Vy € ) (az e UUR) [(z,2) € R]A
(VyeUUR) (VZEUUR) 2 eR >y e al;
z = mg(R) <(Vy € z) (Elz el UR) [(z,2) € R]A
(W;eUUR) (WeUUR) 2)€ER— z € zl;
Ris a function <+ is a relation A (va € [ J{JR) (v e JUR)
(VzGUUR) (z,9) € RA (2,2) € R — y = z];
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y = R(z) +[R is a function A (z,y) € R]V
[R is not a function A (Vz € y)(z # 2)|V
[z ¢ dmn(R) A (V2 € y)(z £ 2)]
R is a one-one function <+ R is a functionA
Vz € dmn(R)Vy € dmn(R)[R(z) = R(y) — = = y;

x is an ordinal <>z is transitive A (Vy € x)(y is transitive). ]

I

Theorem 12.13. If M is a transitive class model of ZF, then M is closed under the
following set-theoretic operations:

(i) U (i) (a,0) — {a, b} (vit) U
(i) N (v) (a;b) = (a,b) (viii) ()
(iii) (a,b) — a\b (vi) z — z U {x}

Moreover, [M]|<“ C M.

Proof. (i)—(viii) are all very similar, so we only treat (i). Let a,b € M. Then because
M = ZF, there is a ¢ € M such that (c = a U b)™M. By absoluteness, ¢ = a U b.

Now we prove that x € M for all z € [M]|<“ by induction on |z|. If |x| = 0, then
x = 0. Now M E FoVw[w ¢ v]. So choose s € M such that M = Vw[w ¢ s]. By
transitivity, s = (. Thus ) € M. If a € M, then M | FvVw|w € v > w = a]. Choose
s € M such that M | Vw[w € s <> w = a|. By absoluteness, s = {a}. So {a} € M. So
our statement holds for all = with |z| = 1. Now suppose that x € M for all x C M such
that |x| = n. Suppose that y C M and |y| = n + 1. Take any a € y. Then |y\{a}| =n, so
y\{a} € M. Hence by (i), y = (y\{a}) U {a} € M. O

The hierarchy of sets is defined recursively as follows:

Theorem 12.14. There is a class function V : On — V satisfying the following condi-
tions:

(i) Vo = 0.

(ii) Vor1 = P(Va,).

(i1i) Vo = Up<ry Va for « limit.

Theorem 12.15. For every ordinal « the following hold:
(i) Vo, is transitive.

(11) Vg C Vo for all B < a.

Proof. We prove these statements simultaneously by induction on a.. They are clear
for « = 0. Assume that both statements hold for «; we prove them for o + 1. First we
prove

(1) Vo € Vaqs.

In fact, suppose that = € V,,. By (i) for «, the set V, is transitive. Hence z C V,, so
x € P(Vy) = Vayr1. So (1) holds.
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Now (ii) follows. For, suppose that 8 < a+ 1. Then 8 < a, so V3 C V,, by (ii) for «
(or trivially if 8 = a). Hence by (1), Vg C Vyt1.

To prove (i) for a+ 1, suppose that z € y € V1. Then y € £(V,,), so y C V,, hence
x € Vy. By (1), z € V41, as desired.

For the final inductive step, suppose that v is a limit ordinal and (i) and (ii) hold for
all @ <. To prove (i) for ~, suppose that x € y € V,,. Then by definition of V,, there is
an « < vy such that y € V,,. By (i) for a we get € V,. So x € V,, by the definition of V.
Condition (ii) for v is obvious. O
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.............. Vo ={0,{0}}

A very important fact about this hierarchy is that every set is a member of some V. To
prove this, we need the notion of transitive closure. We introduced and used this notion
in Chapter 8, but we will prove the following independent of this.

Theorem 12.16. For any set a there is a transitive set b with the following properties:
(i) a C b.

(ii) For every transitive set ¢ such that a C ¢ we have b C c.

Proof. We first make a definition by recursion. Define G : On x V — V by setting,
for an « € On and any x € V

a ifx =0,
G(o,z) = ¢ z(m)UJz(m) if x is a function with domain m + 1 with m € w, .
0 otherwise

By Theorem 9.7 let F : On — V be such that F(«a) = G(o,F | «) for any a € On.
Let d = F | w. Then dy = F(0) = G(0,F | 0) = G(0,0) = a. For any m € w we
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have dp,y1 = Fim+1) = Gim+ 1,F [ (m+ 1)) = F(m) U JF(m) = d,,, U Jd(m).
Let b = U,,cp, dm- Then a = dy € b. Suppose that » € y € b. Choose m € w such
that y € d,,. Then z € |Jd,, C dpy1 € b. Thus b is transitive. Now suppose that c is
a transitive set such that a C ¢. We show by induction that d,, C c¢ for every m € w.
First, dg = a C ¢, so this is true for m = 0. Now assume that it is true for m. Then
dm+1 = dm UJdm C cUJc = ¢, completing the inductive proof.

Hence b = |J dm Cc. O

mew

The set shown to exist in Theorem 12.16 is called the transitive closure of a, and is denoted

by trcl(a).

Theorem 12.17. Fvery set is a member of some V.

Proof. Suppose that this is not true, and let a be a set which is not a member of
any V,. Let A = {x € trcl(a U {a}) : = is not in any of the sets V,}. Then a € A, so A
is nonempty. By the foundation axiom, choose x € A such that xt N A = 0. Suppose that
y € x. Then y € trcl(a U {a}), so y is a member of some V,,. Let a, be the least such «a.
Let 8 = U,c, ay- Then by 12.1(ii),  C V. So = € V41, contradiction. O

An important technical consequence of Theorem 12.17 is the following definition, known
as Scott’s trick:

e Let R be a class equivalence relation on a class A. For each a € A, let « be the smallest
ordinal such that there is a b € V,, with (a,b) € R, and define

typegr(a) ={be V, : (a,b) € R}.

This is the “reduced” equivalence class of a. It could be that the collection of b such that
(a,b) € R is a proper class, but typep(a) is always a set.

On the basis of our hierarchy we can define the important notion of rank of sets:

e For any set z, the rank of =, denoted by rank(z), is the smallest ordinal « such that
x € Va+1.

We take o + 1 here instead of a just for technical reasons. Some of the most important
properties of ranks are given in the following theorem.

Theorem 12.18. Let x be a set and o an ordinal. Then
(i) Vo, = {y : rank(y) < a}.
(11) For all y € x we have rank(y) < rank(x).
(iii) rank(y) < rank(x) for every y C x.
(iv) rank(z) = sup, ¢, (rank(y) + 1).
(v) rank(a) = a.
(vi) Vo, N On = a.

Proof. (i): Suppose that y € V,,. Then a # 0. If « is a successor ordinal 5+ 1, then
rank(y) < 8 < a. If a is a limit ordinal, then y € Vj for some 5 < a, hence y € V341 also,
so rank(y) < 8 < «. This proves C.

160



For D, suppose that def rank(y) < a. Then y € Vgy; C V,,, as desired.

(ii): Suppose that x € y. Let rank(y) = a. Thus y € V41 = £(V,,), so y C V, and
hence x € V,,. Then by (i), rank(z) < a.

(iii): Let rank(z) = a. Then z € V441, s0 x C V,,. Let y C z. Then y C V,, and so
y € Voy1. Thus rank(y) < a.

(iv): Let a be the indicated sup. Then > holds by (ii). Now if y € x, then rank(y) <
a, and hence y € Viank(y)+1 S Vo. This shows that x C Vi, hence x € Vi1, hence
rank(x) < «, finishing the proof of (iv).

(v): We prove this by transfinite induction. Suppose that it is true for all § < a.
Then by (iv),

rank(a) = sup(rank(5) +1) = sup(8+ 1) = a.
B<a B<a

Finally, for (vi), using (i) and (v),
VanNOn={f€0n:pecV,}={f€O0n:rank(f) <a}={f€On:f<a}l=a O

Theorem 12.19. (i) n < |V,,| € w for any n € w.
(ii) For any ordinal o, |V,4a| = Ja-

Proof. (i) is clear by ordinary induction on n. We prove (ii) by the three-step
transfinite induction (where v is a limit ordinal below):

Vol = Va| =w=20 by (i);
necw
|Vw+a+1 - |=@(Vw+a>|
— 9lVutal

— 27« (inductive hypothesis)
- :a—|—1;

|Vw+7| = U Vits
B<y

< Z [Vio+5]
B<y

= Z Js  (inductive hypothesis)
By

<> 3

B<y
= |v|- :'y
:jV

To finish this last inductive step, note that for each 8 < v we have Jg = |Vyi 8] < |Vitnl,
and hence 3, < |V 4~]. O
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Many of the results and proofs below are taken from Kunen 2011, and we indicate the
exact place.

Lemma 12.20. If a > w?, then |V,| = 1,.

Proof. We have |V, | = J, for all a. If a > w?, write « = w? + 3. Then
|V04‘ = ‘Vw2—|—ﬂ‘ = |Vw—|—w2—|—5| = :w2_|_g = :a. ]

Theorem 12.21. If k is inaccessible, then (Vy, €) is a model of ZFC.
Proof. For the axioms, see pp. 5ff.
(1) Extensionality. Relativized to Vj, this is

VX, Y e ViVueViue X < ueY] - X =Y.

Since V,; is transitive. Yulu € X <» u € Y]. Hence X =Y.
(2) Pairing. We want to show that

Va,be V,Ice V,Vx € Vi[xr Ec+> x=aor x =1

Suppose that a,b € V... Choose «, 8 < k such that a € V,, and b € V3. Say o < 3. Then
{a,b} C V3,0 {a,b} € V11 C V..

(3) Separation, We want to show that
Vpo, .- P, X €VIY eV VueViueY < ue X and 0" (u,po, ..., Pn-1)].
Given pg,...,pn_1,X € Vy let
Y={uecX:¢o"(upo- . .,0n 1)}
Since Y C X € V,, it follows that Y € V..
(4) Union. We want to show that

VX eV, Y eVVueViueY <3z e Vi [z€ X and u € Z]].

Given X € V let Y = J X. Clearly Y € V,,. Now suppose that u € V.
Case 1. uw € Y. Then there is an z € X such that u € z. Clearly z € V.
Case 2. There is a z € V; such that z € X and u € z. Clearly then v € Y.

(5) Power set. We want to show that
VX eV, Y eVVueViueY < YoeViveu—ve X].
Suppose that X € V.. Let Y = Z(X). Clearly Y € V... Now take any u € V.

Case 1. w € Y. Thus u C X. Suppose that v € V, and v € u. Then v € X.
Case 2. Yv € V,[v € u = v € X], Clearly then u C X, sou €Y.
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(6) Infinity. This axiom is
AS[Fx € SVyly ¢ 2] A\Vx € STy € SVz[z €y z €2V 2z = x|
So we want to prove that

AS e Vi[3z e Vir e SAVy e Viy ¢ ] AVz € Vi[x € S —
JyeViye SAVzeVizeye zeax Ve =zl

Let S = w; clearly S € V,,. Now () € w and for all y, y ¢ ). Now suppose that x € V,, N S.
Then also z U {z} € S. So the above is clear.

(7) Replacement. An instance of this axiom is
VPV, y, 2lp(x, 4, P) A (2, 2,p) =y = 2] = VXIYVy(y € Y < Tz € Xop(z,y,D))]
Thus we want to prove that

Vp € VilVa,y,2,p € Vil (2,y,D) A 0" (x,2,P) = y = 2]
VX eV eV WyeVilyeY oz eVilz € X A" (z,4,D)]]

Thus assume that ]_9 S VK, and V%?Ja Z?]_j € Vﬂ[wvn(xayuﬁ) N Qovn(x7zaﬁ) — Y= Z] For all

x € V,, let f(z,p) be such that V= (z, f(x,D),p). Now take any X € V,.. Let Y = {f(z,p) :
x € X. Clearly Y € V is as desired.

(8) Regularity. This axiom is
Ve[dy € v — Ty € aVz € z[z € y].
So we want to show that
VeeVi[ylyeVihyeca]| > FyeVilyexAVzeViz €z — 2 ¢ y]]]

So assume that x € V,; and Jyly € Vi, Ay € x. Let y be a member of = of smallest rank.
(9) Choice. This axiom is

Vo/ [Vx € o/Fala € ] ANVx,y € H[x #y— —Jala € x Na € y]] —
JAVz € /[Jala € x Na € ANVDb ez ANbE A— a=Db]]].

Thus we want to show that

Vot € ViV € Vi[x € o — Fafa € Vi, Aa € x]]
ANV, yeVilr £y = [r,ye o - -FaeVijaexNa€cy]] —
JAeV,VeeVire o - [FacVoNacxNac ANVbe Vi bexANbe A— a=Db]].
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So, assume that o/ € V,. and

Vo € Vi[x € & — Jala € V,; Aa € x]]
ANVz,ye Vilr £y = [v,y € o — —Ja € Vila € x Na € 9.

This simplifies to

Ve[r € of — Jala € z]]
AVz,y € o [x #y — —Jala € x ANa € y].

By the axiom of choice let A have exactly one element in common with each member of

. Let A = AnJ«. So A’ is as desired. O

Theorem 12.22. [f ZFC 1is consistent, then so is ZFC+ “there do not exist uncountable
inaccessible cardinals”.

Proof. Let
M = {z : Vo[« inaccessible — x € V,|}

Thus M is a class, and M C V,, for every inaccessible « (if there are such). We claim that
M is a model of ZFC+ “there do not exist uncountable inaccessible cardinals”. To prove
this, we consider two possibilities.

Case 1. M = V. Then of course M is a model of ZFC. Suppose that « is inaccessible.
Then since M = V we have V C V,,, which is not possible, since V,, is a set. Thus M is a
model of ZFC 4 “there do not exist uncountable inaccessible cardinals”.

Case 2. M # V. Let z be a set which is not in M. Then there is an ordinal « such
that « is inaccessible and x ¢ V,,. In particular, there is an inaccessible «, and we let
be the least such.

(1) M =V,.

In fact, if x € M, then z € V,, for every inaccessible «, so in particular x € V.. On the
other hand, if z € Vi, then x € V, for every a > k, so x € V,, for every inaccessible «, and
so z € M. So (1) holds.

Now we show that V, is as desired. By Theorem 12.21, Vj is a model of ZFC.
Suppose that = € V,, and (x is an inaccessible cardinal)V*; we want to get a contradiction.
In particular, (z is an ordinal)"*, so by absoluteness,  is an ordinal. Absoluteness clearly
implies that z is infinite. We claim that = is a cardinal. For, if f : y — x is a bijection
with y < z, then clearly f € V, and hence by absoluteness (f : y — z is a bijection and
y < z), contradiction. Similarly, z is regular; otherwise there is an injection f : y — x
with rng(f) unbounded in x, so clearly f € V,;, and absolutenss again yields a contradiction.
Thus z is a regular cardinal. Hence, since k is the smallest inaccessible, there is a y € x such
that there is a one-one function g from z into &(y). Again, g € Vj;, and easy absoluteness
results contradicts (x is an inaccessible cardinal)"x. U

Theorem 12.23. Let I' be a set of sentences, ¢ a sentence, and M a class. Let TM =
(XM :x €T}. Suppose that T |= . Then

™ EM#()— oM.
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Proof. Assume the hypothesis of the theorem, let A = (A, E) be any set theory
structure, assume that A is a model of ™, and suppose that ANM # (). We want to
show that A is a model of ™. To do this, we define another structure B = (B, F') for our
language. Let B=ANM, and let ' = EN (B x B). Now we claim:

(*) For any formula x and any c € “B, A = xM|(] iff B |= x[c].

We prove (*) by induction on :

Al (v =v)M[] iff ¢ =c¢;
iff B (v =v))[c];
AE (v €evp)M[ iff ¢Fcy
itf ¢ Fej
iff F):(UZEUJ)H?
A (-0Me] i not[A = xM[e]
iff not[B = x[d]]
iff B -x[c];
AE (x — OM[ iff [AE xM[] implies that A = 0™[c]]
iff [B |= x[c] implies that B = 0][c]
(induction hypothesis)
iff B (x — 0)[c.

(induction hypothesis)

We do the quantifier step in each direction separately. First suppose that A = (Vov;x)M[c].
Thus A | [Vo;[v; € M — xM][c]. Take any b € B. Then b € M, so A = xM[ci]. By the
inductive hypothesis, B = x[ci]. This proves that B = Vv;x][c].

Conversely, suppose that B = Vv;x[c]. Suppose that a € A and A = (v; € M)[¢].
Then a € B, so B |= x[c¢!]. By the inductive hypothesis, 4 = x™[c!]. So we have shown
that A = Vo;[v; € M — xM][¢]. That is, A = (Vv x)M[d].

This finishes the proof of (*).

Now A is a model of '™, so by (*), B is a model of I'. Hence by assumption, B is a
model of p. So by (*) again, A is a model of M O

The following theorem gives the basic idea of consistency proofs in set theory; we express
this as follows. Remember by the completeness theorem that a set I' of sentences is
consistent iff it has a model.

Corollary 12.24. Suppose that I' and A are collections of sentences in our language of
set theory. Suppose that M is a class, and T = [M # () and o] for each ¢ € A. Then T
consistent implies that A is consistent.

Proof. Suppose to the contrary that A does not have a model. Then trivially
A = —(z = z). By Proposition 12.23, AM = M # () — —(z = x). Hence by hypothesis
we get ' = —(z = x), contradiction. ]
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We now want to consider to what extent sentences can reflect to proper subclasses of V;
this is a natural extension of our considerations for absoluteness.

Actually we are dealing here with a set-theoretic version of the model theoretic notion
of elementary substructure. The model theoretic notion will be important later on, so we
describe the basic definition and give an important lemma about the notion.

If A= (A,R) and B = (B, S) are set theory structures, then we say that A is an
elementary substructure of B, in symbols A < B, iff A C B, R = SN(Ax A), and for every
formula (g, ...,2,_1) and all ag, ...,a,_1 € A, A = ¢lag, ..., a,] iff B E ¢lag, ..., ay].
(See Chapter 2.)

Lemma 12.25. (Tarski) Let A = (A, R) and B = (B, S) be set theory structures, and
suppose that A C B and R = SN (A x A). Then the following conditions are equivalent:
(i) A < B.
(ii) For every formula Vxo(z
o(b,ag,...,a,_1)] then Vb € B[B
(i

Y0y -+ Yn_1) and all ag,...,a,_1 € A, if Vb € A[B |=
E p(b,ag,...,an_1)].

Proof. (i)=(ii): Assume (i), and suppose that Vzp(z,yo,...,yn—1) is a formula,
ag,...,an—1 € A, and Vb € A[B | ¢(b,ag,...,a,_1)]. Since A < B, it follows that

Vb e A[A | ¢(b,ag, ..., an_1)]. Thus A = Vzo(z,ag,...,an—1). Then again by A < B,

B EVrp(z,ag,...,a,_1). So¥b € B[B = (b, ag,...,a,_1)].
(ii)=(i): Assume (ii). We prove for ag,...,an_1 € A

A plag,...,a,] iff B = @lag,...,a]

by induction on . The atomic cases are clear, as are the induction steps involving —
and —. Now suppose that A = Vao(z, ag, ..., a,). Thus Vb € A[A | ¢(b,ag, ..., an_1)].
Hence by the inductive hypothesis, Vb € A[B = ¢(b,aq,...,a,_1)]. Hence by (ii), Vb €
B[B = (b, ag,...,an_1), i.e., B = VYzo(z,a,...,a,).

Conversely, suppose that B = Vxo(z, ag, ..., a,). Thus Vb € B[B = (b, ag, . . ., ay)].

Hence Vb € A[B = ¢(b,ao, .. .,a,)]; then Vb € A[A |= (b, ao, . ..,an)] by the inductive
hypothesis, that is, A = Vzp(x, ag, ..., an). O

Lemma 12.26. Suppose that M and N are classes with M C N. Let ¢, ..., pn be a list
of formulas such that if i <n and Y is a subformula of ;, then there is a j < n such that
wj s . Then the following conditions are equivalent:

(i) Each @; is absolute for M, N.

(11) If i < n and ¢; has the form Vzo;(x,y1,...,y:) with x,y1, ...,y evactly all the
free variables of p;, then

Yyi,...,y € M[Vz € Mcp?(x,yl,...,yt) — Vr € ng?(x,yl,...,yt)].

Proof. (i)=-(ii): Assume (i) and the hypothesis of (ii). Suppose that y1,...,y: € M
and Vr € M(p?l(m, Y1,---,Yt). Thus by absoluteness Vz € Mgo?/[(x,yl, ..., yt). Hence by
absoluteness again, Vx € Ncp?T (T, Y1y, Ut)).
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(ii)=(i): Assume (ii). We prove that ¢; is absolute for M, IN by induction on the
length of ¢;. This is clear if ¢; is atomic, and it easily follows inductively if (; has the
form —¢; or ¢; — ¢i. Now suppose that ¢; is Voy;(x,y1,...,4), and y1,...,y: € M.
then

oM(y1,...,y) <V € Mgp?/l(x, Y1,---,Y¢) (definition of relativization)
V€ Mcp;\T (z,y1,...,y) (induction hypothesis)
<V € NQO?I(.T, Yis- -+ yt) (by (H)

<Ny, ...,y) (definition of relativization) O

Theorem 12.27. Suppose that Z(«) is a set for every ordinal «, and the following
conditions hold:
(i) If o < B, then Z(«a) C Z(B).

(ii) If v is a limit ordinal, then Z(vy) =U,,.. Z ().

a7y
Let Z = con Z(c). Then for any formulas o, ..., on_1,

Va3p > alpo, ..., pn—1 are absolute for Z(f), Z].

Proof. Assume the hypothesis, and let an ordinal « be given. We are going to apply
Lemma 15.4 with N = Z, and we need to find an appropriate S > « so that we can take
M = Z(f) in 15.4.

We may assume that ¢q,...,¢,—1 is subformula-closed; i.e., if i < n, then every
subformula of ¢; is in the list. Let A be the set of all ¢ < n such that ¢; begins with a
universal quantifier. Suppose that i € A and ¢; is the formula Vzy;(z,y1,...,y:), where
Z,Y1,...,Y: are exactly all the free variables of ¢;. We now define a class function G; as
follows. For any sets yi,...,y,

Z . .
Gilyr,. .. y;) = {the least n such that 3z € Z(n)—¢f (z,y1,...,y:) if there. is such,
0 otherwise.

Then for each ordinal £ we define

Fi(&) =sup{G;(y1,---,y) Y1, -,y € Z(E) };

note that this supremum exists by the replacement axiom.
Now we define a sequence 7o,...,7p,... of ordinals by induction on n € w. Let
Yo = a + 1. Having defined -, let

Vp+1 = max(Ypr1,sup{Fi(§) 19 € A, £ <y} +1).
Finally, let 8 = sup,,¢,,7p- Clearly a <  and f is a limit ordinal.

() Ifi€ A yr,...,y: € Z(B), and Iz € Z—pZ(z,y1,--.,Y:), then there is an z € Z(B)
such that % (z,y1, ..., Y)-
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In fact, choose p such that yi,...,4: € Z(7p). Then G;(y1,...,v) < Fi(vp) < Ypt1-
Hence an x as in (1) exists, with € Z(v,41).
(1) clearly gives the desired conclusion. O

Corollary 12.28. (The reflection theorem) For any formulas ¢1, ..., ¢n,

ZF [=Ya3p > aler, . .., ¢y are absolute for Va]. O

Theorem 12.29. Suppose that Z is a class and @1, ..., @, are formulas. Then

VX CZIA[X CACZand ¢q,...,p, are absolute
for A,Z and |A| < max(w, | X])].

Proof. We may assume that ¢1, ..., ¢, is subformula closed. For each ordinal « let
Z(a) = ZNYV,. Clearly there is an ordinal « such that X C V,, and hence X C Z(«).
Now we apply Theorem 12.27 to obtain an ordinal S > « such that

(1) ©1,...,pn are absolute for Z(5), Z.

Let < be a well-order of Z(5). Let B be the set of all i < n such that ¢; begins with a
universal quantifier. Suppose that i € B and ¢; is the formula Vzy;(x,y1,...,y:), where
Z,Y1,...,Y: are exactly all the free variables of ¢;. We now define a function H; for each
i € B as follows. For any sets y1,...,y: € Z(f),

Z(B) . .
Hi(yi, ... y) = {the <-least z € Z(B) such that —p; "’ (x,y1,...,y;) if there is such,

the <-least element of Z(f3) otherwise.

Let A C Z(3) be closed under each function H;, with X C A. We claim that A is as desired.
To prove the absoluteness, it suffices to take any formula ¢; with ¢ € A, with notation
as above, assume that y1,...,y; € A and Jx € Zﬂcpjz(x,yl, ...,Yt), and find z € A such
that —mpjz(x,yl, ...,Yt). Now there is an z € Z(f) such that —ijz(x,yl, ...,Y¢). Hence

H;(y1,...,y:) is an element of A such that —ijz(Hi(yl, ce s Yt), Yty - Yt), as desired.
It remains only to check the cardinality estimate. This is elementary. L

Lemma 12.30. Suppose that F is a bijection from A onto M, and for any a,b € A we
have a € b iff F(a) € F(b). Then for any formula ¢(z1,...,2,) and any x1,...,T, € A,

cpA(xl, cey ) @M(F(xl), .o, F(xy,)).

Proof. An easy induction on ¢. U

Let A be a class and R a class relation with R € A x A. For any x € A we define

predar(z) = {y € A : (y,z) € R}. We say that R is set-like on A iff R C A x A and
predsg(z) is a set for all x € A.
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Suppose that R is well-founded and set-like on A. For each y € A we define

mosar(y) = {mosar(z): v € A and xRy}.

Lemma 12.31. If R is well-founded and set-like on A, then mosar[A] is transitive.

Proof. Assume that R is well-founded and set-like on A, and u € v € mosag[A]. Say
v =mosar(y) with y € A. Since u € v, choose x € A with xRy and u = mosar(x). Thus
u € mosap[A]. ]

A relation R is extensional on A iff Va,y € A[{z € A: zRx} ={2 € A: 2Ry} — x =y].
Lemma 12.32. (1.9.34) If A is transitive, then € is extensional on A. O

Lemma 12.33. (1.9.35) Suppose that R is well-founded and set-like on A. Then mosapr
is one-one iff R is extensional on A.

Proof. If R is not extensional on A, then there exist x,y € A such that {z € A :
zRx} ={z € A: zRy} but x # y. Hence mosar(x) = mosar(y), so mos is not one-one.

Now suppose that R is extensional on A; we show that mos4 g is one-one. Suppose that
mos4pr is not one-one. So there exist distinct a,b € A such that mosar(a) = mosagr(b).
Let X ={c€ A:3d € Alc # d and mosar(c) = mosagr(d)]}. Thus a € X, so X # (. Let
¢ be an R-minimal element of X. By definition of X, let d € A be such that ¢ # d and
mosar(c) = mosar(d). Since R is extensional on A and ¢ # d, there are two cases.

Case 1. There is a z € A such that zRc but not(zRd). Then mosar(z) € mosagr(c) =
mosar(d) = {mosagr(z) : v € A and xRd}. Say mosar(z) = mosagr(x) with xRd and
x € A. Since c¢ is an R-minimal element of X and zRc, it follows that z ¢ X. Hence
Vy € Almosar(z) = mosar(y) — 2z = y|. Since mosapr(z) = mosar(z), we thus have
z = x. But not(zRd) while xRd, contradiction.

Case 2. There is a z € A such that not(zRc) but zRd. Then mossr(z) € mosar(d) =
mosar(c) = {mosar(z) : © € A and xRc}. Say mosar(z) = mosar(z) with xRec and
x € A. Since ¢ is an R-minimal element of X and zRc, it follows that z ¢ X. Hence
Vy € Almosag(x) = mosar(y) — = = y]. Since mosar(z) = mosagr(z), we thus have
z = x. But not(zRc) while zRc¢, contradiction. O

Theorem 12.34. Suppose that Z is a transitive class and @q, ..., om—_1 are sentences.
Suppose that X is a transitive subset of Z. Then there is a transitive set M such that
X C M, |M| <max(w,|X|), and for every i < m, oM « 2.

Proof. We may assume that the extensionality axiom is one of the ¢;’s. Now we
apply Theorem 12.29 to get a set A as indicated there. By Proposition 12.31, there is a
transitive set M and a bijection mos from A onto M such that for any a,b € A, a € b
iff mosapr(a) € mosar(b). Hence all of the desired conditions are clear, except possibly
X C M. Now mosapr(z) =z for all x € X. Hence X C M. O
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Corollary 12.35. Suppose that S is a set of sentences containing ZFC. Suppose also that
©0,---yPn—1 €S5. Then

S E3IM <M is transitive, |M| = w, and /\ gp%) .

<n
Proof. Take Z =V and X = w in Theorem 12.34. [l

The following corollary can be taken as a basis for working with countable transitive models
of ZFC.

Theorem 12.36. Suppose that S is a consistent set of sentences containing ZFC. Expand
the basic set-theoretic language by adding an individual constant M. Then the following
set of sentences is consistent:

S U{M is transitive} U {|M| = w} U {p™ : p € S}.

Proof. Suppose that the indicated set is not consistent. Then there are g, ..., ©m—1
in S such that
S =M is transitive and |[M| =w — = /\ oM,
<n

it follows that

S E-IM (M is transitive, |[M| = w, and /\ 901\/1> ;

<n
contradicting Corollary 12.35 L

Theorem 12.37. Suppose that k is an uncountable reqular cardinal and (A(§) : £ < K)
satisfies the following conditions:

(1) V€ <n < k[A(E) € A(n)].
(i) ¥ limit n < & [A(n) = Ueer A(g)].
(117) V¢ < K[|A(§)] < k.
(iv) |A(K)| = k.
Then V¢ < k3An < RK[E <n and A(n) 2 A(k) and 1 is a limit ordinal].

Proof. Let A be the set of all formulas in the €-language of set theory which begin
with a universal quantifier. For each ¢ € A we define a function G, as follows. Say
@ is Vap,(x,y1,...,Yn). Then G, is a function with domain "(A(x)) such that for any
a,...,an € A(K),

Gy,(a an) = {least a < k:3x e Ala)y(x,a1,...,a,) if there is such an «a,
e 0 otherwise.

170



Then for each ordinal o < k we define

F,(a) =sup{G,(ai,...,an) 1 a1,...,a, € A(a)}.

Note that Fi,(a) < & since |A(a)| = |a| < k.
Now we define a sequence ~y; of ordinals less than x by recursion on ¢ < w. Now by
(iv) we can let g be greater than £ such that A(vy) # 0. Having defined ~;, let

Yit1 = max(y; + 1,sup{F,(n) : ¢ a formula, n <;}).
Let n = {U,c,, 7i- Note that n < k. Clearly £ <n and A(n) # 0. Now we claim
(*> If ZBS A7 say ¢ = vx¢¢(x7y17 R yn>7 then

Vai,...,a, € A(n)[Vz € A(n)w(‘;‘(””)(x, ai,...,a,) = Vo € A(/i)zpé(”)(x, ai,...,an).

In fact, suppose that ¢ € A, ¢ = Vay,(x,y1,...,Yn), a1,...,an, € A(n), and Iz €
A(m)ﬁwﬁ(ﬁ)(x,al,...,an). Say ai,...,an, € A(vi). Then G,(ai,...,an) < Fyo(vi) <
Yit1 <1, so 3x € A(n)—py(x,a1,...,a,). This proves (*).

Now we prove by induction on ¢ that for any ai,...,a, € A(n), ¢ (a1,...,an)
iff cpA(”")(al, ...,ay). This is clear for atomic formulas, and the inductive steps for —
and — are clear. Now suppose inductively that ¢ is Vai,(z,y1,...,yn). First suppose
that 4 (ay,...,a,). Thus Yz € A(n)zbﬁ“”(x, ai,...,an). Hence by the induction hy-
pothesis, Vx € A(n)wﬁ(”)(x,al,...,an), so by (*), Vo € A(k) f;‘('i)(x,al,...,an), ie.,
A (ay, ... an).

Second, suppose that o4 (ay,..., a,), ie., Vo € A(/{)lﬂﬁ(ﬁ)(x, ai,...,a,). So Vx €
A(n)wﬁ(m)(x, ai,...,ay), hence by the inductive hypothesis, Vz € A(n)zp;‘(")(x, A1y ...y ay).
This finishes the induction. ]

Proposition 12.38. If {a} € U, then [[,c; Ai/U = A,.
Proof. Let b; € A; for all i € I. For each ¢ € A, define

26— {bi if i € I'\{a},
’ ¢ ifi=a.
Then for each ¢ € A, let f(c) = [z€], the equivalence class of z¢ in []

that f is an isomorphism from A, onto [Lic: A;/U.
one-one: Suppose that ¢,d € A, and ¢ # d. Then

A;/U. We claim

el

flo) = f(d) iff [2°]=[29 iff {iel:a°0)=2a%i)}ecU
iff  2%a) =2%a) iff c=d;

hence f(c) # f(d).
onto: Suppose [y] is given. Let ¢ = y(a). Then f(c) = [z°], and

fle)=1[y] iff {iel:y@li)=2()}eU iff y(a)=2%a) iff yla)=c
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so f(¢) = [yl

fundamental operation g: Say ¢ is m-ary. Let cg,...,cpn—1 € A,. Then

F(g(co. - o)) = a7 0ot

and

9(f(co), -+, flem—1)) = g([z),.. ., [27 1)) = [g(x (@), ..., 271 (3)) 20 € T))]

Now for any ¢ € I,

[[29€oens) ()] = [(g(@*0 (i), .., a5, (5)) i € )]
i 2 OCotnt (@) = (g(@* (i), ..., 2%, _, (a))

iff  g(co, ...y Cm—1=9(co,---,Cm—1)

fundamental relation R: say R is m-ary. Suppose that cg,...,cn_1 € A,.
(f(co)s- flem—1)) € R iff  ([z®],...,[z°" ') € R

iff {iel:(z ...,z 1)eR}eU
itf (2%, a1y e R iff (co,...,emo1) €R. O

Proposition 12.39. If U is a principal ideal, then j is an isomorphism from A onto
AU,

Proof. Say {a} € U. It suffices to show that j maps onto YA/U. Let [b] € TA/U.
We claim that j(b,) = [b]. Thus we want to show that [c,] = [b]. We have ¢, (a) = bg, so
ac{iel;c,(i)=0b} € U. Hence [e,] = [b]. O

Theorem 12.40. Suppose that k is a measurable cardinal, and U is an ultrafilter. Let
(A, <*) = "(k,<)/U, and let j : K — A be the canonical embedding. (Recall that j(a) =
[ca] for all o < k.) Then:

(i) (A, <*) is a linear order.

(i) If U is o-complete, then (A,<*) is a well-ordering. Hence there is an order
isomorphism h from (A, <*) onto some ordinal X.

(1i3) If U is k-complete, then Va < k[h(j(a)) = q]

(iv) Let U be k-complete and nonprincipal. Define d(a) = « for all o < k. Then
h([d]) = &.

(v) Let U be k-complete and nonprincipal. Then U is normal iff h([d]) = k.

Proof. (i) {{ <k :& £ & =k € UsoVr e Alx £* z] by Lo§’s theorem. If
[z] <* [y] <* [#] then

{{<rize<yelN{E <k :ye <ze} C{E <K :xe < 2e}y
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and it follows that [z] <* [z]. Given distinct [z], [y] in A, we have { < k:ze <y} U{E <
Kiye<wzey=reU.so{é<k:xeg<ye} €U or{l<k:ys <wze} €U, hence [z] <* [y]
or [y] <* [z].

(ii): suppose to the contrary that --- <* [xa] <* [x1] <* [x¢]. For each n € w let
Ay, ={{ < k:xpg1(§) < xn(€)}. Thus each A, isin U. Let B=(), ., An. So Be U.
For any £ € B we have - -- < x2(§) < x1(§) < xo(§, contradiction.

(iii): By induction on o < k. h(j(0)) = h([co]) = 0. Assume it is true for 5 with 8 < k.
Now S + 1 is the successor of 3, so {{ < k : cg11(€) is the successor of cg(§)} =k € U, so
[cg+1] is the succssor of cg. Hence j(8+ 1) = B+ 1. Now suppose that § < & is limit and
the result holds for all v < . Then for all a < 8

*

necw

€ <ricall) <cplé)y=rel,

S0 [ca] < [cg], hence oo < h([cs]). Hence 5 < h([cg]). Suppose that 5 < h([cg]). Say
B = h(cs). Then 6 < B so h(cs) = 0, contradiction.

(iv): If B < &, clearly [cg] < [d] Hence k < h([d]).

(v): =: Suppose that U is normal. Suppose that a € h([d]). Say a = h([f]), Then
[f] < [d], so {a < k[f(a) < ]} € U, hence since U is normal, by Exercise 8.8 there is a
v < K such that {a < k: f(a) = v} € U, hence [f] = [¢,] and so h([f]) = v < k. Thus
h([d]) < k, and by (iv), h([d]) = .

<: Assume that h([d]) = k, and suppose that f € "k is such that {a < k : f(«a) <
a} € U. Thus [f] < [d], so h([f]) < h([d]) = k. Say h([f]) = a < k. Hence h([f]) < h([ca]),
so [f] <[ca]. Hence {8 < r: f(B) €at €U. Now {f <r: f(B) €a}=U, . {B<k:
f(B) = v} It follows that there is a v < « such that {8 < x: f(8) =~} € U. So U is

normal. [l

Proposition 12.41. If M is a transitive class, X,Y € M, and M = |X| < |Y|, then
X< |V

Proof. Assume that M is a transitive class, X,Y € M, and M = |X| < |Y|. Let
feMandin M f: X — Y with f one-one. By absoluteness, f is a one-one function
from X into Y. U

Proposition 12.42. If M is a transitive class, « € M, and « is a cardinal, then M = «
18 a cardinal.

Proof. Assume the hypotheses, but suppose that M [~ « is a cardinal. Then there
exist in M a # < « and a one-one function f mapping S onto a. By absoluteness, f is
really such a function, contradiction. ]

Proposition 12.43. If k is inaccessible, then there is an o < K such that (Vy, €) 2 (Vi, €).

Proof. Let 2 be a set of Skolem functions. Define ag = 0. If «,,, has been defined,
let ouny1 be such that V,,, ., contains V,  and h[V,, ] C V,, ... Let f = sup,,c, am.
Then Vjp is as desired. L]
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13. Constructible sets

A set X C M is definable overﬂ iff there is a formula o(z,7) and a tuple b of elements
of M, such that X = {a € M : M |= ¢(a,b)}. We define

def(M) = {X C M : X is definable over M };
Lo = 0;
Lag1 = def(Ly);
L, = U L, for v limit;
a<ly

L= U Ly,

aeON

Proposition 13.1. If F is a finite subset of M, then F is definable over M, and hence

F € def(M).
Proof. F={ae€ M:(M,€) =\ cpa=>} O

Proposition 13.2. If F is a finite subset of L, then F' € L.
Proof. Choose «a so that F' C L,. Then F' € def 4(L,,) by Proposition 1. O

Proposition 13.3. L, C V,. O

Proposition 13.4. For any ordinal «,
(i) L, is transitive.
(ii) Lg C L, for all f < a.

Proof. We prove both statements simultaneously by induction on a. Both statements
are clear for @« = 0. Now assume them for a. For (ii), suppose that § < a + 1.

Case 1. B =a. If a € Lg, then (Lg, €) = a =a, so a € def(Lg, €), and hence a € L,.

Case 9. B < a. Then Lg C L, by the inductive hypothesis, and L, C L,41 by Case
1.

Hence (ii) holds for o 4+ 1. Now suppose that X € L,11. Then X C L, C L,41 by (i). So
(i) holds for o + 1.
Clearly the induction step to a limit ordinal works. ]

Proposition 13.5. (Lemma 13.2) a = L, N ON.

Proof. We prove this by induction on «. It is obvious for & = 0, and the inductive
step when « is limit is clear. So, suppose the statement holds for f and we want to prove
it for B+ 1. If v € Lg41 N ON, then v € def(Lg), so v C Lg N ON = 3; hence v < S.
This shows that Lgy1 NON C 5+ 1.
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If v < B, then by the inductive hypothesis, v € Lg N ON C Lgy; N ON. Thus it
remains only to show that 8 € Lgy;. Now there is a natural A formula ¢(z) which
expresses that x is an ordinal:

Vy € aVz € y(z € z) ANVy € aVz € yVw € z(w € y);

this just says that x is transitive and every member of x is transitive. Now () is absolute,
SO
5:L5QON: {x ELB : (LB,E) ):(,D(.’B)} Edef(LB) :Lﬁ—i-l' ]

Proposition 13.6. o € L,4.

Proof. a ={x € L, : (Ly, €) = [« is an ordinal], using absoluteness. O
Proposition 13.7. L, € L,41.

Proof. Lo, ={x € Ly : (Lo, €) Ex =2} € def(Lq, €) = Lot1. ]

Theorem 13.8. (Theorem 13.3) L is a model of ZFC.

Proof. We take the axioms in order.

Extensionality. Vz,y[Vw|w € <> w € y] — x = y|. Assume that x,y € L and for
all w € Llw € x > w € y|. Since L is transitive, Vw[w € x <> w € y]. Hence x = y.

Comprehension. Given a formula ¢ with free variables among x, z, w1, ..., w,, an
instance of comprehension is

VaVwdyVe[r € y <> x € 2 A pl.

So, let b,c € L. Say b,c € L,. Choose 8 > « so that ¢ is absolute for Lg, L. Say
v = p(x,z,w). Let
y=A{deLg:(Lp,€) = ¢(d,b2)}.

Then y € Lg41 € L, and
vd € Lg[d € y <> ¢(d, b,0)];

hence by absoluteness,
Vd € Ld € y +» ¢(d,b,c)].

Pairing. Vz,y3z[x € z Ay € z]. Given z,y € L, choose « so that z,y € L,. Now
Lo € Los1 C L.

Union. V&Z/3AVYVz[x € Y ANY € o — x € A]. Let & € L. Say & € L. Suppose
that Y e L,xeY,andY € . Then Y € L, and x € L.

Power set. VxIyVz[Vw € z[w € x] — z € y|. Let x € L;say x € L,. Let y = Z(z)N
L. Say y C Lg. Wlog a < 5. We claim that y = {a € Lg : (Lg, €) EVw[w € a - w € z]}.
In fact, suppose that @ € y. Then a C = and a € Lg. Hence Vw € Lg[w € a — w € z].
Thus y C{a € Lg: (Lg, €) = VYw[w € a - w € z]}. Conversely, suppose that a € Lz and
(Lg,€) EVYwlw € a— wex]}. f wea, then w € Lg and hence w € x. So a C x. Hence
acy. Thusy={a€ Lg:(Lg, €) E=Vwwe a—we z|}. It follows that y € Lg41 C L.
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Now suppose that z € L and Yw € Ljw € z — w € z|. Then Vw[w € z — w € z|, i.e.,
z C z. Hence z € y.
Infinity.

Jz[Fy € 2Vw[w ¢ y] AVy € z3Vw[w € z <> w € yVw = y]].

We take z = w. () € w satisfies the first part of the formula. Now suppose that y € L and
y €w. Then y+ 1 =yU{y} € w and it is constructible by transitivity. Clearly then the
second part of the formula holds.

Replacement. Given p(x,y, A,w) with free variables among z,y, A, wy, ..., w,, the
following is an axiom.

VAVw; ... Yw, [Vz € ATyl AVY [p(z,y, A,w) — y=19'] — IYVz € ATy € Y.
Suppose that A,w € L; say A,w € L,. We assume that
Vo € Ay € Llp AVY' € Lip(z,y', A, w).

Hence for all x € A choose «,, so that there is ay € L, such that Yy’ € L{p(z,y', A, w) —
y = y']. Let B be greater than o, for each x € A. Then for all z € A there is a y € Lg
such that p(x,y, A,w), as desired.

Foundation. Vz[Jy €  — Jy € zVz € y[z ¢ z]]. Take any x € L with z # (). Choose
y € x such that x Ny = 0. Then y € L is as desired.

Choice. It suffices to define a well-order of L. In fact, we define a well-order <,€ L
of L, for each a. Using the considerations about the corner notation we can define a
sequence (y, : n € w) in L enumerating all formulas of the form ¢(z,7). Then we define
<o= 0. If <, has been defined, let (b : £ < 3) enumerate all finite sequences of members
of L, which we well-order lexicographically. This enables us to well-order the members of
def(Ly). We define <41 to be L, with all the new members of def(L,,) adjoined at the

end. For ~ limit we let <,= Ua<’y <q. Finally, <= U,con <a- 0

A set-theoretic formula ¢ is Ag-special iff (i) the only logical symbols in ¢ are =, A, 3. (In
particular, = does not occur.)

(ii) the only occurrence of € has the form v; € v; with i # j.

(iii) every occurrence of 3 has the form Jv; € v;p with 7 # j.

We assume that a Ay formula has quantifier parts of the form Jv; € v or Vv; € v with
1#£].
Lemma 13.9. Every Ag formula ¢ is equivalent in ZF to a Ag-special formula ).

Proof. We prove this by induction on ¢.
(1) ¢ is v; € v;. Let ¥ be Jvj11 € v;[vip1 = vi],
(2) ¢ is v; = v;. Let ¢ be
—Juy, € vilvg & vi] A -Fo, € vjlug € v
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where k£ = max(i,j) + 1.

(3) ¢ is v; € vj with i # j. Let ¢ be ¢.

(4) Inductively, the cases of A, =, V,—, <>, 3 are clear.

(5) ¢ is Yu; € vj¢’. Say ¢’ is equivalent to the Ag-special formula ¢’. Then 9 is
-Ju; € ?Jj—ﬂﬁ/. ]

The following are the Godel operations.

GL(X,Y) = {X,V};
Go(X,Y) =X x Y;
G3(X,Y)={(u,v):ue XANveY ANuev};
G4(X,Y) = X\Y;
Gs(X,Y)=XNY;

Ge(X) :UX’

G7(X) = dmn(X);

Gs(X) = {(u,v) : (v,u) € X};

Go(X) = {(u,v,w) : (u,w,v) € X};

Gio(X) = {(u,v,w) : (v,w,u) € X}.

Now we indicate precisely the notion of composition. For 0 < ¢ < n define P by
P Xo,...,Xn—1) = X;. If Fis m-ary and Gy, ...,G,,_1 are n-ary, then

C/'(F,Gy,...,Gp—_1) is the n-ary function H such that
H(Xo,...,Xn-1)=F(Go(Xo,.. -, Xn-1),-++,Gm-1(Xoy..., Xn-1)).

A composition of Gy, . . ., G1g is any function which is in the closure of {Gy, . . ., G1o }U{ P/ :
0 < i < n} under the composition functions C]*. Gfcn is the set of all such compositions.

Lemma 13.10. For each n > 1 define H,(Xo,...,Xn-1) = Xo X -+ X X,,—1. Then H,
1s a composition of G1,...,G1g.

Proof. We prove this by induction on n. For n = 1 we take H; = P3; for n = 2 we
take Hy = G5. Now suppose that n > 2 and H,, is a composition of G1,...,G,. Then

Hn+1(X0, .. .,Xn) = Hn(Xo, . ,Xn_l) X Xn = GQ(Hn(Xo, .. -an—l)an)
= Go(H, (P (Xo,..., Xpn), ..., PP (X0, ..., X)), PP (X0, ..., X0)).

Hence
Hy1 = C2 (G, Oy (Hy, PY, . PO, PIFY), ]

Theorem 13.11. (Theorem 13.4) If p(vo,...,vn—1) is a Ay formula with free variables
among those shown, then there is an n-ary composition G of Gédel functions such that for
all X(), NN 7Xn—1;

G(Xo,.. ., Xpn-1) = {(uo, .., un—1) 1o € Xo, ..., un—1 € Xpyo1 and p(ug, ..., Un_1)}.
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Proof. We may assume that ¢(vg, ..., v,—1) is Ag-special. We proceed by induction
on .
Case 1. ¢(vp,...,vp—1) is an atomic formula v; € v; with 4,j < n and i # j. We
treat this case by induction on n > 2.
Subcase 1a. n = 2. Then
{(Uo,ul) tug € XoAup € X1 Aug € ul} = Gg(Xo,Xl);
{('LLO,’LL1> tug € XoAup € X1 ANug € UO} =
{(uo,u1) @ (u1,u0) € G3(X2, X1)} =
{(uo,u1) : (u1,u0) € G3(PP (X1, Xa), Pj(X1, X2))} =
{(uo,ur) : (ur,u0) € (C3(G3, P{, Fy)) (X1, Xo)} =
(Gs(C3(G3, PE, Fy)))(X1, Xo)) =
<021<G87 CQQ(G?H P127 pOQ)))<X17 2)
Subcase 1b. Assume the result for n. Now we are given ¢(vo,...,v,). Let X =
(Xoy. .oy Xn).
Subsubcase 1b1. i,j5 < n — 1. By the inductive hypothesis let K be an n-ary
composition such that

K(Xo, .. -,Xn—l) = {(Uo, .. .,un_1> cug € Xgy ooy Up—1 € Xp_1,u; € Uj}.
Then
{(uo, ..., upn) :up € Xo, ..., up € Xp,u; € uj}
= {(uos - -+ un) : (U0 -y Un—1) € K(Xo,..., Xn—1),un € Xy}
:K(Xo,...,Xn_l) XXn
:GQ(K(XO7"‘7XH—1)7XH)
(€21 (G, O (B, PO, PR

n n—1

), Pr)(X).

Subsubcase 1b9. i = n or j =n, and i,j # n — 1. Then by Subcase 1b1l there
is an (n + 1)-ary composition K such that

K(Xo,...,Xpn) ={(u0,- - Un—2,Un,Upn—1) : up € Xo,...,Un € Xp,u; € u;}.
Now note that (ug, ..., Un—2,Un, Up—1) = ((wo, ..., Upn—2), Uy, Uun_1). Hence
{(uo, ..., up) tup € Xo,...,up € Xy, u; € uj} = Go(K(Xo,...,Xpn))
= (Cry1(Go, O (K, Py, PR (X).
Subsubcase 1b3. i =n —1, j =n. Let
Ko = Ch 1 (Gs, P PYHY);
= Cnit (Ho—1, Bg L PR
CELH(G Ko, K1);
+1(G1o, Ka).

178



Ko(Xo, -, Xn) = G3(Xpn—1, X0n);

Ki(Xo,...,X,) = Xo x - x Xp_0;

KZ(XO7 . 7Xn) - G3<Kn—17Kn) X (XO X X Xn—Z);
Kg(Xo,...,Xn) = {('U,(),...,'U,n) U € Xo,...,un € Xn,un_l € un}.

Subsubcase 1b4. i =n, j =n — 1. Let

n+1 +1

KO_ n+1(G3an 17Pn )
1 +1 +1y.
C’QH( n-1, Py, P,

KQ - Cn+1(G27K07K1);
K3 = C}(Gy,G1p);
Ky=C}, (K3, K2).

n

Then for any X, ..., X,, we have

Ko(Xo,. .., Xp) = G3(Xn_1, Xp);
Ki(Xo,..., X)) = Xo X -+ X X, _o;
Ko(Xo, -, Xn) = Ga(Kp_1, Kn) X Xo X -+ X Xn_o:
) ={(u,v,w) : (u,w,v) € G1o(X)} = {(u,v,w) : (w,v,u) € X}.

Hence

(ugy ...y un) € K4(Xo, ..., Xy) iff

(ug, - -, Un) € Go(G10(G3(Xn_1,Xn) X Xog X -+ x X, o)) iff

(Un, Up—1, (Ugy -+ -y Up—2)) € (G3(Xp, Xpn_1) X Xo X -+- X Xj_o) iff
ug € Xgy.ooyUpy € Xy, Uy € Up_q.

Case 9. ¢ is =1p. Choose G for . Then

{(wgy s Up—1) :ug € Xo,...,up—1 € Xp—1 and @(ug,...,Un—_1)}
=Xo XX X 1\G(Xo, -+, Xpn—1)
= H,(Xo,..., Xn-1)\G(Xo, ..., Xn_1)
= C2(Gy, Hy, G)(Xoy - ooy Xn1).

Case 3. pis ¥ A x. Let K, Ky work for v, x respectively. Then

{(wgy s Up—1) :ug € Xo,...,up—1 € X1 and @(ug, ..., Un—1)}
= Ki1(Xo,..., Xpn_1) N Ky(Xo,...,Xn_1)
= 07%(G57K17K2)(X07"'7XTL—1)-
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Case 4. ¢ is Jv; € v;9(vg, ..., vp—1). Let ¢’ be obtained from v by replacing all free
occurrences of v; by v,,. Then ¢ is logically equivalent to Jv,, € v;¢' (v, ..., v,), which we
denote by ¢'.

By one of the initial cases, there is a composition K such that

K(Xo,..., Xpn) ={(ug, ..., up) :ug € XoA...ANup € Xy Ay € 1y}
By the inductive hypothesis we get a composition L such that
L(Xo,. ., Xn) = {(uoy- - un) 1 ug € Xo Ao Aty € Xy A (g, -+, un) }-
Let G = C2, (G5, K,L). Thus

G(Xoy-- s Xn) ={(uoy- - un) :ug € Xo N ... Auy € X
A Uy GuiA¢'(u0,...,un)}.

Now we claim

(*) {(”LLO, .. -,Un—l) g € Xo Ao oA U1 € X1 A QDI(U(), .. .,un_l)}
= dmn(G(Xo, ..., Xn-1,{ J X0)).

In fact, with v # u,,

u € XoA .o o Atp_1 € X1 A’ (ugy - oy Un—1)

S ug € Xo Ao ANup_1 € X1 AT € uit) (ug, - - -, Up, v)

SugEXoN. o ANUp—1 € X1 ATV [vGui/\zbl(uo,...,un_l,v)/\vGUXZ}

ug € XogNoo oAy € Xp—1 A (ugy -y Up—1) € dmn({(ug, ..., Up—1,v) :
U € Xo Ao AUp—1 EXn_l/\vEui/\vEUXZ-/\zp'(uO,...,un_l,v)})

& (uo, .., tp—1) € dmn(G(Xo, ..., X, 1, X))
So () holds. Now let

M = CZ—’_I(Gv P(?? SR Prrzl—lv C}L(GG7 Pz'n—l));
N = C}(Gr, M).

Then
{(UO, e ,un_l) ug E XA A A U1 € Xpl1 A cp'(uo, .. .,un_l)} = N(Xo, ce 7Xn—1)-

Since ¢ and ¢’ are logically equivalent, this completes the proof. L

For the following theorem, note that (x,y) = {{z},{z,y}} and U(z,y) = {z} U {z,y} =
{z,y}. Define (z,y,2) = ((z,vy),z). Then J(z,y,2) = {(z,y),z} and JU(z,y,2) =
(z,y) Uz and JUU(z,y,2) = {z,y} U=
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We treat Ju € |Jz as an abbreviation for Ja € z3u € a, with a a new variable; and
Ju € JUz as an abbreviation for Ja € x3b € aJu € b with a and b new variables; etc.
Similarly, Ya € |Jx abbreviates Vb € aVa € b and Va € |J|Jz abbreviates Vb € zVc €
bVa € c; etc.

Proposition 13.12. Define

Moy={G;:1<i<n}U{P":i<necuw};
My = M, U{CM(G;, H) : 1 <i<10,H € My}.

Here in the definition of M,,+1, m andn are 1 or 2, depending on G;, and H is a sequence
of length 1 or 9.
Then Gfen = U, c, M.

Proof. By induction, M,, C Gfcn for all m € w, so Umew M,, C Gfen. Let N =
Umew Mm. Now let .# = {F :for all H in N, Cf(F,H) € N}. We claim that N C .Z.
Clearly My C .#. Suppose that M,, C .%, and F € M,,41. Say F' = C;(G;, L) with
L € M,,. Suppose that H € N. Then for any X,

(CF(F,H))(X) = F(Ho(X),..., Hi(X))
= CJ'(Gi, Lo(H(X)), ..., Ls(H(X)))

Now each C§(L,, H) € N since L, € M,,. So CF(F,H) € N, and hence F € Z. ]

Theorem 13.13. (Lemma 13.7) For any H € Gfen we have

(i) ue H(X,...)is Aop.

(ii) If ¢ is Ao, then so are Vu € H(X,...)p and Ju € H(X,...)p.

(i) Z = H(X,...) is Ay.

() If ¢ is Ao, then so is p(H(X,...)).

(v) H(X,...) € uis Ap.

Proof. With M, ... as in Proposition 12 we show that each M, is a subset of the
collection of H such that (i)—(iv) hold. We treat My and M,, ;1 simultaneously. Let X, Y
be arbitrary sets (in the case of My), or arbitrary members of M,, (in the case of M,,1).

First we take (iii),

(1): z={X} e Vaeczla=X]NX € z;

(17): z2={X, Y} Vaczla=XVa=Y|ANX€zNY € z;

(i) : z2=(X,)Y) < Ja€zdbezla={X}Ab={X,Y}]
AVa € zla={X}Va={X,Y}

(w): z2=XxY < Vaezdbe X3ceYa=(bc)
AVa € XVb € Y3 € z[e = (a,b)];

(v): z={(u,v):ueX,veYuecv} < Veczdue X eYuecvAz=(u,v)]
AVu € XVv € Y[u € v — e € z[c = (u,v)]];
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(vi): z=X\Y o Vuezlue X ANu¢gY]|
AVu € Xug¢Y —u € zl;

(viid) : z=XNY & Vuezlue X NueY]
AVu e XueY —u € z;

(viid) z:UXHVuezEIUGX[UEU]
AYv € XVu € v[u € z];

(ix) : zedmn(X)HEIuEXEIvEUu[u:(Z,v)];

(x) : z:dmn(X)HVuGz[uEdmn(X)]/\‘v’vGUUX[Uden(X)AUEZ];

(1) : z:{(u,v):(v,u)6X}<—>‘v’w€z§|a€X§|u,vEUa[a:(v,u)/\w:(u,v)]
AVa € XVu,v € ala = (v,u) = Jc € z[c = (u,v)]

(xid) : z:{(u,v,w):(u,w,v)GX}HVaEzEIbGXEIUEUb
EIu,wGUUUb[b:(u,w,v)/\a:(u,v,w)]/\VbeX‘v’vEUb
Vu,wEUUUb[(b:(u,w,v)%ﬂaéz[a:(u,v,w)]]

(xii7) = similarly

Now we treat (i).

D:veGX,)Y)ue{X, Y} u=XVu=Y;

(2): ueGX,)Y)+ueXxY - Ire XFyeYu=(x,y);
B): ueG(X,) YY)+ reXyeYreyAu=(x,y);

(D) veGy(X,)Y)ueXANugY;

5): ueGs(X,)Y)+ue XANuey;

(6): ue Gg(X) <+ Jx e X[u e zl;

(7): ue Gr(X): see (iii)(ix);

(8): uGGg(X)HHxGXHu,UGUm[x:(U,u)/\u:(u,v)];
9) : uEGg(X)HHwEXHvEUxEIu',wEUUUx

,w,v) Au = (u', v, w)];

[z = (u
(10): ve Gro(X) + v e XT' € U:z:EIv,w € UUU:I;

[ = (v,w,u) Au=(u,v,w)].

Next we do (iv).
(1): Let pyx,yy be obtained from ¢ by replacing
veEubyv=XVov=Y.
w € v by Jw evjw={X,Y}].
u=v by {X,Y}=w.
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Jv € uyp by ¥(X) VyY(Y).
Vv € up by (X) Ap(Y).
Then ¢¢xyy is Ag, and o({X,Y}) <+ ¢ixvy-
(2) Let ¢(x,y) be obtained from ¢ by replacing
veubyv={X,Y}vv={Y}
uw € v by Jw e vjw=(X,Y)].
u=0vby (X,Y) =w.
Jv € wp by Yix vy V vy
Vv € u by ¥ix vy A gy
Then ¢(x vy is Ao, and ¢((X,Y)) <+ ¢(x,v)-
(3) Let pxxy be obtained from ¢ by replacing
vE€wuby da€ XIbeYw=/a,b)]
uwevby JwevX xY =w).
u=vbyv=XxY.
Jv € uy by Ja € X3b € Y(x v)-
Vv € up by Va € XVb € Y(x y)
Then ¢xxy is Ag, and p(z X Y) <> pxxy.
(4) Let pgs be obtained from ¢ by replacing
veuby Jae XFbeY[acbAv = a,b)]
u€vby Jwev[X XY =wAFue XFveYuen].
u=vbyv=XxYAJue XFveY[ucu.
Jv e wp by dJa € XIbeYacbAyxy
Vv € up by Va € XVb e Ya € b — ¢(x v
Then ¢gs is Ag, and p(G3(X,Y)) < pas.
(5) Let ¢x\y be obtained from ¢ by replacing
veubyve X ANv¢Y
u € v by Ja € vja = X\Y]
u=vbyv=X\Y
Jv € up by v e X[jvgY A
Vo € wp by Vo € X[v ¢ Y — 9.
Then @x\y is Ag, and p(G4(X,Y)) < px\y.
(6) Let o xny be obtained from ¢ by replacing
veEubyve X Avey
uw€v by Ja€cvja=XNY]
u=vbyv=XNY
Jv €up by Jv € X[veY A
Yo € wyp by Yo € z[v € Y — 9.
Then ¢xny is Ao, and p(G5(X,Y)) < pxny.
(7) Let YU x be obtained from ¢ by replacing
v €wu by Jda € X[v € d]
u € v by Ja € v[ja = J X]
u=vbyv=UJX
Jv € wyp by da € XJv € arp.
Yo € uy) by Va € X[v € a — 9.
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Then YU x is Ag, and p(Gg(X)) YU
(8) Let @gmn be obtained from ¢ by replacing
v €wuby Ja € X3be€ aldd € blb = (v,d)].
u € v by Ja € vja = dmnX]|
u =v by v =dmnX
Jv € wyp by Ja € X3b € a3d € bla = (v,d) A Y].
Yo € uy) by Ya € XVb € aVd € bla = (v,d) — ).
Then @gmn is Ag, and p(G7(X)) < Camn-
(9) Let pgs be obtained from ¢ by replacing
vewuby Jda€ X3b,ceJala= (¢,b) Nv=(b,c) A.
u € v by Ja € vja = Gs(X) A .
u=1v by v=Gg(X).
Jv € uy) by Ja € X3b,c € Jala = (¢,b) ANv = (b,c) NY].
Yo € uy by VYa € XVb,c € Jala = (¢,b) Av = (b,c) — ¥].
Then ¢gs is Ag, and (Gg(X)) < vgs-
(10) Let ¢gg be obtained from ¢ by replacing
v€wuby 3d e X3 € JdIa,ce JUUd[d = (a,c,b) ANv = (a,b,c)]
u € v by Ja € vja = Go(X) A .
u=uv by v==Go(X).
Jv € wyp by 3d € X3 € Jd3a,c e JUUd[d
Yo € wyp by Vd € XVb € |JdVa,c e JUUd[d
Then pgg is Ag, and ¢(Gg(X)) < @g9.
(11) Gyp is treated similarly.

(

a,c, =
(a,c,b) Av=(a,b,c) = 1]

Next, we do (ii), by symmetry only doing V:
(1): Vu e {X,Y}p < p(X) Ap(Y).

): Yu € Go(X,Y)p <> Vo € XVy € Y((z,v))].
): Vu e Gs(X,Y)p Ve e XVy e Y[z €y — o((z,y))]
): Yu € G4(X,Y)p < Vu e X[u ¢ y— o(u)].
): Vu e Gs(X,Y)p < Vue X[ueY — o(u).
): Yu € Gg(X)p <> Yv € XVu € vp.
): Yu € G7(X)p <> Vo € XVu € Jz[u € dmn(X) — ¢].
): Yu € Gg(X)p <> Vo € XVo,w € Jz[z = (w,v) Au= (v,w) — ¢].
): Yu € Go(X)p <> Ve € XVv € JaV/',w € JUUz[x = (,w,v) ANu =
, U, W) — .

(10): Gyp is similar.

AN AN AN AN AN N N N

(

For (v), we have H(X,...) € u <+ Jv € ufu = H(X,...)].
We have now shown that each member of My and of M, satisfies (i)-(v). O

Proposition 13.14. For every formula ¢(x,%) there is a composition G of Gadel functions
such that for every transitive set M and every b € M we have

{aeM:MEg(a,b)}={acM:pMa,b}=G(M,by,... bp_1).
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Proof. By Theorem 11 there is a Gddel function G such that for all Xo, ..., X,,,
G(Xo,.... Xm) = {(ug, ..., um) :ug € Xo, ... tm € X, @™ (ug, ..., Um)}.
Hence for all b € M,

G(M,{bo},...,{bm-1})
= {(ug, ..., um) ug € M,u1 =bg, ..., Uy = bm_1, 0™ (M, ug, ..., Un_1)}

Define G'(Xo, ..., Xim) = G(Xo, G1(X1, X1), - .., G1(Xin, X)) Then G’ is a composition
of Godel functions, and for any b € M,

G'(M,bg,....,bym—1) = {(ug, ..., um) :ug € M,u1 = bg, ..., Up =bm_1,0™(ug,..., un)}.
Now let G” (X, ..., X)) = dmn(G'(Xo, ..., X,n)). Then

G"(Xo,. .., Xm) = dmn(G'(Xo, . .., X))
= {(uoy - tm—1) : Fup[(uo, .- um) € G'(Xos ..., X))}

and so

G//(M, bo, ey bm—l) = dmn(G'(M, bo, ey bm—l))

= {(Uo, ceey um—l) . Elum[uo c M, Ul = bo, 0 bm—l, QDM('LL(), Ury .., um)]}
Applying dmn m — 1 times, we get a Godel function H such that

H(M,bg,...,bm—1)
= {ug : Jug, ..., umfug € M,uy =bg, ..., um = bm_1, 0™ (ug, ..., un)]}
= {ug : ug € M, oM (ug,bo, ..., bym_1)} O

For any set X, let cl(X) be the closure of X under Gdédel functions.

Corollary 13.15. Let M be a transitive set. Then def(M) C cl(M U{M})N 2 (M).

Proof. Suppose that X € def(M). Say X = {a € M : M |= ¢(a,b)} with b € M.
By Proposition 14, let G be a composition of Godel functions such that {aeM: Mg
o(a,b)} = G(M,b). Thus X € c(MU{M})N L2 (M). ]

Lemma 13.16. If H is a composition of Gddel functions, then there is a formula v such
that if M is a transitive set, b € M, and H(M,b) C M, then H(M,b) = {a € M : M =
¥(a;b)}.

Proof. Let ¢ be a A formula such that Y € H(X) iff (Y, X). Then x € H(M,b)
iff o(z, M,b). Hence if X = H(M,b) then X = {a € M : M |= p(a, M,b)}. Then let 1 be
obtained from ¢ by replacing
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v; € M with v; = (U

M € M with _|<?J0 = Uo),
M € v; with _|<?J0 = Uo).
dv; € M with Jv;

Yv; € M with Vv;.

Then the desired conclusion follows. [l

Lemma 13.17. For any transitive set M, def(M) = {X C M : there is a b € M and a
composition H of Gédel functions such that X = H(M,b).

Proof. By Proposition 14 and Lemma 16. L

An inner model of ZF is a transitive class model of ZF which contains all ordinals.

Lemma 13.18. (Ap-comprehension) If M s a transitive class closed under the Gadel
operations, p(v,w) is a Ng-formula, and a,b € M, then

y & {c€a:p(cb)}e M.

Proof. See the proof of Proposition 14. O

Lemma 13.19. If p(u,v,wo,...,w,—_1) is a formula with free variables among those
mentioned, then

ZFC EVXVpAYVu € X[Fvp(u,v,po, - -y Pn_1) = J € Yo(u,v,p0, -+, Pn_1)]-

Proof. Let X be given. Let X' = {u € X : Jvp(u,v,po,...,pn-1)}. For each
u € X let o, be minimum such that there is a v € V,,,, such that ¢(u, v, po,...,pn—1). Let
B=Uuexs au- Set Y = V3. Take any v € X. If =3vp(u,v,po, ..., pn—1), then the desired

implication holds. If Jvp(u, v, po,...,pp—1), then u € X’ and thereisaveV,, CVz =Y
such that p(u,v,po,...,Pn-1). O

Lemma 13.20. (Comprehension) If M is a transitive class closed under the Gddel oper-
ations, p(v,w) is a formula, and a,b € M, then

y ¢ {cca:p(c,b)}ec M.

Proof. First we claim:

(1) If o(u, v, wq,...,w,—1) is a formula with free variables among those mentioned, then
VX,pe M3IY € MYu € X[(Fvp(u,v,po, ..., pn-1)) — v € Y(p(u,v,po,...,pn-1))"].
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To prove this, we apply Lemma 19 to the formula v € M A (¢(u, v, po, . .., pn_1))™. This
gives for any X and p in M a Z such that

Vu € X[Fojv € M A (o(u,v,p0, -+, Pn1))M] —

Jv € Zv € M Ap(u,v,po,...,pn-1))"]]; hence
Vu € X[Fv[v € M A (p(u,v,p0, .-y pn_1))™ —

Jv e ZNM A o(u,v,p0,- .-, 0n1))M]].

Choose Y € M such that ZN M C Y. This proves (1).
Now we want to show that if ¢ is a formula with free variables among x, z, w1, . . ., Wy,
then
(V2Vwy .. Yw, FyVe(z €y <z € 2 A )M,

Let z,wq,...,w, € M. Suppose that ¢ has k subformulas of the form Jzv or Vz, and let
(xi : % < k) list all of them, so that if x; is a subformula of x; then i < j. Let Yy,..., Y51
be new variables. We define v for a subformula of ¢ by recursion. If no ; occurs in ),
then ¢ = 1. If ¢ is x;, then

—_ [Fevy if x; =y,
Yo e Y if y; = Yo',

Further, if some y; occurs in ¢, then
%= - iy =y,
wl/\wﬂ lfwzwl/\wll

Now we claim
(2)

3Yo,..., Y 1 € MVx € 2[(p(z, 2, w1, ..., w,))M & Bz, 2, w1, ..., wn, Yo, ..., Yi_1)].

We prove (2) by induction on k. It is clear for £ = 0. Now assume it for k — 1.
Case 1. xo is Jvy. Applying (1) to xo we get

Y € MYu € z[Fv € My; <> Fv € Y]

Together with the inductive hypothesis, this gives (2).
Case 9. xo is Yvyp. Applying (1) to Jv—p,

Y € MVu € z[3v € M—p < v € Y)];

hence
Y € MVu € z[Vv € My < Vv € Y,

Together with the inductive hypothesis, this gives (2).
Now since P is Ag, choose y € M such that

Ve[r ey z €z NP(x, 2,w1,. .., Wy, Y0, ..., Y1)
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Then by (2),
Ve[r €y <z €2 A (p(x, 2, w1, ..., w,) ™. ]

Lemma 13.21. Suppose that M is a transitive class, and for every formula ¢ with free
variables among x,y, A, w1, ..., w, and for any A, w1,...,w, € M the following implica-
tion holds:

Vo € Adlyly € M A o™ (z,y, A, wy, ..., wy,)]  implies that
Y e M[{y e M : 3z € Ap™(z,y, A, wr,...,w,)} CY]].

Then the replacement axioms hold in V.

Proof. Assume the hypothesis of the theorem. We write out the relativized version
of an instance of the replacement axiom, remembering to replace the quantifier 3! by its
definition:

VA e MVw, € M...Vw, € M
Ve Mz € A — Jy € M[eM(z,y, A, wy,...,w,) AVu e M
(oM (z,u, A, wy, ... w,) =y =u]]] =
¥ eMVzeMzeA—IyeMyeY ApM(z,y, A, wy,...,wy)]]].

To prove this, assume that A, wy,...,w, € M and

Ve € Mz € A — Jy € M[pM(z,y, A, wy,...,w,) AVueM
[QOM(xayaAawla' . '7wn) — Y= U]]]

Since M is transitive, we get
Vo € A3y € M[pM(z,y, A, wi, ..., w,) AVu € M[pM(x,y, A, wi, ..., w,) =y = u],
so that
(1) Ve € Adlyly € M A o™ (z,y, A, wy, ..., wy)].
Hence by the hypothesis of the theorem we get Y € M such that
(2) {yeM: 3z e ApM(z,y, A, wy, ..., w,)} CY.

Suppose that € M and x € A. By (1) we get y € M such that o™ (z,y, A, wy, ..., wy,).
Hence by (2) we get y € Y, as desired. O

Theorem 13.22. (Theorem 13.9) A transitive class M is an inner model of ZF iff it is
closed under the Godel functions and is almost universal, i.e. for every set X C M3Y €

M[X CY].

188



Proof. =: Let M be a transitive class which is an inner model of ZF. Let H be a
Godel function. For any X € M there is a Z € M such that Z = HM(X). By Theorem
13(iii), Z = H(X). So M is closed under H. Next, if X is a set C M, choose an ordinal
a such that X C VM. Note that VM € M.

<: Assume that M is closed under the Godel functions and is almost universal. By
Theorem 20, comprehension holds in M. Next we show that every ordinal is in M, by
induction. Let a € M. Then () = G4(a,a), so B € M. Suppose that « is an ordinal
and « € M. Then {a} = Gi(o,a) € M, {a,{a}} = Gi(a,{a}) € M, and a U {a} =
Gs({a,{a}}) € M. Finally, suppose that « is limit and & C M. Choose Y € M such that
a CY. By comprehension in M, there is a z € M such that foralla € M,a € ziffacY
and a is an ordinal. Then | Jz € M. Clearly z is an ordinal and o < z, so a« € M.

Now we check the axioms except for comprehension. Extensionality and foundation
hold since M is transitive.

Pairing: Suppose that a,b € M. Then {a,b} C M, so there is a z € M such that
{a,b} C z. So a,b € 2.

Union: Suppose that &7 € M. Then | JoZ € M. If z € Y € & then z € | «.

Power set: Suppose that a € M. Then & (a) N M C M, so there is a b € M such that
Pa)NM Cbh. If z€ M and z C a, then z € Z(a) N M, so z € b.

Infinity: Since every ordinal is in M, in particular w € M. By absoluteness, the
infinity axiom holds.

Replacement: We use Lemma 21. Assume that the hypothesis of Lemma 21 holds.
By replacement in the real world, choose Z such that

(%) Va[r € A= 3z[z € Z and z € M and o™ (z, 2, A, w1, ..., wy)]]

Then let W = {y € Z : y € M and 3z € ApM(z,y, A, wi,...,w,)}. Then W C M,
so there is a Y € M such that W C Y. Now suppose that y € M, z € A, and
oM (z,y, A, 21,...,2,). Choose z € Z such that 2 € M and ¢ (z, 2, A,wy,...,w,), by
(*). By the uniqueness condition in the hypothesis of Theorem 14.6, y = z. Hence y € W,
soy € Y. It follows that {y € M : 3z € ApM(x,y, A,wy,...,w,)} C Y, as desired. O

A formula is ¥y and Il iff all its quantifiers are bounded, i.e., it is Ag. Then
@ is 2,41 iff it is equivalent under ZF to a formula Jzvy with ¢ 11,
@ is I, 41 iff it is equivalent under ZF to a formula Vai) with ¢ ¥,,.
@ is A, iff it is both X, and IT,,.

Lemma 13.23. (Lemma 13.10) Let n > 1. Let ¢ = ¢(x,y) and ¥ = (z,7).

(i) If ¢ and ¢ are ¥, then so are Iz, @ AN, pV 1, Ju € zp, and Yu € Tp.

(ii) If ¢ is Xy, then —p is I1,,.

(iii) If ¢ is I, then — is ¥,,.

(iv) If ¢ and ¢ are I1,,, then so are Vxy, ¢ AN, ¢ Vb, Ju € xp, and Yu € zp.

(v) If v is Il,, and @) is ¥y, then o — 1) is 5,,.

(vi) If ¢ is 3y, and v is 11, is I, then ¢ — 1) is I1,,.

(vii) If ¢ and ¢ are A, then so are =, p AN, oV, ¢ =, p <> P, Yu € xp, and
Ju € xp.
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Proof. We go by induction on n. First take n = 1. For (i), say

ZF Ep(z,7g) < 32¢'(2,2,9);
ZF =Y(2,9) + 329 (2, 2,7),

with ¢, 9" Ag. Then

ZF Frp(z, ) ¢ Ja3e (2 ,7);
ZF Edzp(z,y) + vw € viz € wz € wlv = (z,2) A @' (2, 2,7)].

In the inductive step we assume that ¢’ and ¢’ are II,,_1, and then by (ii) so is
Jw € vz € wIz € wlv = (x,2) A ¢'(z,2,7)].
Next,

o(z,7) AN (2, 7) < 323l (2,2,7) AV (u, 2, 7))
o(z,7) vV Y(2,7) < I23u[e' (2,2,7) VY (u, 2,7)]
Ju € zp(x,y) < IzTuu € z A ¢’ (2,u,7)]

Here the two quantifiers can be collapsed to one as above.
For Yu € x¢ we use the collection principle:

Yu € zp < Yu € 232¢' (2, 2,7)
< JwVu € 132 € wy' (2,2, 7).

The inductive step for these formulas is clear.

For (ii) and (iii) we go by induction on n. They are clear for n = 0. Now assume
them for n. Suppose that ¢(z,7) is X,,41. Say ZF |= ¢ <> 3z¢/(z,2,7) with ¢’ I1,,. Then
ZF = —p < V2=¢'(2,2,7). By the inductive hypothesis, —¢'(z, x,7) is equivalent under
ZF to a X, formula. Hence —¢ is equivalent under ZF to a II,, 1 formula. This proves (ii)
for n + 1. (iii) is proved similarly.

(iv): Suppose that ¢ and @ are II,,. Then by (iii), -¢ and —) are %,,. Hence by (1),
so are Jx—p, ~p A ), = V ), Ju € -, and Yu € z—p. Hence by (ii) the following
are IL,,: =3Iz, =(—p A =), = (- V 7)), =3u € x—p, and —Vu € z—p. Simple logical
equivalences then give (iv).

(v): ¢ — 9 is equivalent under ZF to —¢ V 9; now use (ii) and (iv).

(vi): similarly

(vii): By (i)—(vi). O

A function F' is ¥, iff the formula y = F(7) is £,,; F is II,, iff the formula y = F (%) is
IL,,.

Lemma 13.24. (i) If F is a ¥, function, then dmn(F') is 3,,.
(ii) If F is a &, function and dmn(F) is A, then F is A,,.

190



(iii) If F' and G are ¥, functions of one variable, then so is F o G.
(i) If F is a ¥, function of one variable and o(z,7) is Xy, then o(F(x),7) is X,.

Proof. (i): T € dmn(F) < Jyly = F(T)].

(ii): y = F(T) + T € dmn(F) AVz[z = F(T) — y = z]. Now by (i), T € dmn(F) is
A,. z=F()is A,,and y = zis A,,. Hence z = F(Z) — y = z is A,. Hence by Lemma
23(i),(iv), Vz[z = F(T) = y = z] is A,.

(iii) y = F(G(x)) <> Iz[z = G(z) Ny = F(z2)].

(iv): ZF | o(F(x),y) <> 3z[z = F(z) A ¢(z,7)]. O
Lemma 13.25. “6 C P x P” is Ay.

ECPxP<+Vaec ETb,ce Pla=(b,c) O
Lemma 13.26. The following formula o(E, P, X) is Ag:
(ECPXP)AN[XCPAX#0D— Jaec XVbe X[(b,a) ¢ E].
Proof. Only the last part of the formula raises a question. We have
(b,a) ¢ E <> Yc € Elc# (b,a)]. ]

Lemma 13.27. “FE is a well-founded relation on P” is I1;.

Proof. “FE is a well-founded relation on P” iff E C P x P and VX¢(FE, P, X). O

Theorem 13.28. If E C P x P, then E is well-founded iff there is an f : P — ON such
that Ya,b € PlaEb — f(a) < f(b)].
Proof. =: Define G: A xV — V as follows. For any a € A and f €V,

Gla, f) = { U{f(®)U{f(b)}:bRa} if fis a function with domain pred 4 (a),
RS ) othewise.

Applying the recursion theorem we obtain F': A — V such that for all a € A,
F(a) = G(a, F | pred 4g(a)) = | J{F(b) U{F(b)} : bRa}.

(1) Ya € P[F(a) is an ordinal.

Suppose not, and let @ be E-minimal such that F'(a) is not an ordinal. Then Vb[bRa — F(b)
is an ordinal|, and hence F'(a) = [J{F(b) U{F(b)} : bEa} is an ordinal, contradiction.
Clearly aEb implies that F'(a) € F(b).
<: Suppose that such an f exists. Let ) # X C P. Choose z € X with f(x)
minimum. Clearly there is no y such that yFEz. L

Lemma 13.29. “F is a well-founded relation on P” is 3.
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Proof. “F is a well-founded relation on P” iff E C P x P and 3f[f is a function and
dmn(f) = P and Va € P[f(a) is an ordinal] and for all a,b € P[(a,b) € E — f(a) € f(b)]].
We need to see that the formula within the outer brackets here is Ag. For “f is a function”
and “dmn(f) = P” see Lemma 19.10. For “f(a) is an ordinal”, see the proof off Lemma
19.10. “(a,b) € E” is equivalent to “Ic € E[c = (a,b)]”. Finally, “f(a) € f(b)” is
equivalent to

Ju,v € fas,t € uds’, t' € v[fu={s,t} Av={s,t'} As={a} N5 ={b}
Adpetdget't={a,pt At' = {b,q} Ap € q]]. O

Theorem 13.30. (Lemma 13.11) “E is a well-founded relation on P” is A;. O

Lemma 13.31. If G is a Ag function, then “2 € G” is a Ag formula.
Proof.

ZF =z € G+ Ju,v € z[Va,b € ula = b|A
de,d evVe evjc=aVec=0bAz=(c,d)Nd=G(c)]] ]

Theorem 13.32. (Lemma 13.12) Suppose that G : V — V is absolute for every model of
ZF. We define F' by recursion:

F(a)=G(F | «) for every ordinal .

Then F' is absolute for every model transitive M of ZF.

Proof. Within M define H(a) = G(H | «) for every ordinal a. It suffices to
prove that H = F. Suppose not, and let o be minimum such that F(«) # H(«). Then
Fla=H/|a,so F(a) = H(«a), contradiction. O

Theorem 13.33. (Lemma 13.13) For any ordinal a, “a is a cardinal” is 1.

Proof.

« is a cardinal <« Vf[f is a function A dmn(f) € o — rng(f) # a
< Vf[f is a function A Iz € ajxr = dmn(f)] — mg(f) # af. O

Lemma 13.34. “rng(f) Ca” is Ag.
Proof.

mg(f) C x <> Va € fIu,v € a[Vh,c € u[b =] A3, c € vja = (b,c) Ac € x. ]

Theorem 13.35. (Lemma 13.13) For any ordinal o, “a is a regqular cardinal” is I1;.
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Proof.

« is a regular cardinal <> « is a cardinal A 3z € afx = x|
AYf[f is a function A Iz € ajr = dmn(f)] Arng(f) C «

— 38 < afmg(f) C B]]

Theorem 13.36. (Lemma 13.13) For any ordinal o, “o is a limit cardinal” is 11;.

Proof.
a is a limit cardinal <> V3 € a3y < a[f < vy A+ is a cardinal] O
Now we define

Eo pla] iff ¢ € Fmla, ¢ is Ag, and there is an M such that (M, €) = ¢[a]
En+1 Jzplr,al iff ¢ € Fmla, ¢ is I1,,, and 3b(not |=,, —¢|b,al).

If M C N, then we define (M, €) <5, (N, €) iff for every ¥,, ¢ € Fmla and all @ € M,
Fn elal iff =Y ofal.

Lemma 13.37. “H is an s-place composition of Gédel functions” is Aq.

Proof. First, it is 3;:

H is a s-place composition of Gédel functions < 3f, f/ [ f and f’ are functions
5
Admn(f) € w Admn(f") = dmn(f) A [\/[f(()) =G; A f'(0) = 2]

=1

Y \/[f(()) =G; A f(0)=1]V3Im e wIi <m[f(0)=P" A f(0) = m]}

5 10

AVE € dmn(f) [k;é()—> \/ Gi/\f’(o):2]v\/[f(o):Gi/\f’(o):l]
i=1 i=6

V3Im € wdi <m[f(0) =P A f(0) =m]]

V 3Im,n € wdi < k[f'(i) = m A Fj[j is a function A dmn(j) =m Arng(j) C k

AVs <m[f'(j(s)) =n] A f(k) = CR*(f(0), f(Go)s s f(Gm—1)) A f'(K) = n]”
ATi € dmn(f)[H = £(5) A £/(i) = 3].
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Second, it is II;:

H is an s-place composition of Godel functions <« VY [Vm,i € w[i <m — P" € Y]A

5 10
\ Va,b € Y[Gi(a,b) € Y] A \ Va € Y[Gi(a) € Y] — H € Y| A H is s-place .
=1 1=6

Lemma 13.38. Define G : V — V as follows.

G(z) = {X Cz(B) : Im € w3b € 2(B) of length m and there is an (m + 1)-ary
composition H of Gadel functions such that X = H(x(),b)
if x 1s a function with domain an ordinal B + 1

= Ux(’y) if © is a function with domain a limit ordinal ~y

= () otherwise.

Then y = G(z) is absolute for every transitive model of ZF.
Proof. Clearly y = G(z) is X1, so it is absolute upwards. Now suppose that y = G(x),
and M is a transitive model of ZF. We claim that G™ = G. For, if € M, then

X € GM(z) +» Im € wIb € 2(B) of length m and there is an (m + 1)-ary
composition H of Godel functions such that X = H(x(f),b)

if x is a function with domain an ordinal 5 + 1
= U x(7) if z is a function with domain a limit ordinal ~

= () otherwise.

Since “(m + 1)-ary composition H of Goédel functions” is Ay, this holds in V', as desired.
O

Theorem 13.39. (Lemma 13.14) The function L is absolute for transitive models of ZF.
Proof. By Lemma 17, Theorem 32, and Lemma 38. ]

Theorem 13.40. L = (V = L).
Proof.

LE= (V=L (Vzdalz € L))" < Vo € La(x € L,) < T. O

Theorem 13.41. (Theorem 13.16, minimality) If M is an inner model of ZF, then L C M.
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Proof. In M we construct LM .
Vo € Mz € LM < Jafr € LYM] & 3afz € Ly);
so L, € M, hence L C M. OJ

Theorem 13.42. (Condensation) For every limit ordinal o, if M =< L, and N is the
transitive collapse of M, then there is a limit ordinal B < o such that N = Lg.

Proof. (Following notes of Zilber.) First we claim that M is extensional. For,
suppose that x,y € M with = # y; say \y # (0. Thus Ja € z[a ¢ y]. Since x,y € Ly,
by absoluteness L, = Ja € z[a ¢ y], so M = Ja € z[a ¢ y|. This shows that M is
extensional. Hence the Mostowski collapse function 7 : M — N is an isomorphism.

Now let 5 = N N ON. Since N is transitive, £ is an ordinal.

(1) For any ordinal ~, if I" C ~, then o.t.(I') < ~.

For, let f : § — IT" be the strictly increasing enumeration of I'; with 6 = o.t.(I"). Then for
any £ < 0 we have £ < f(£) <7, s0d < 7.

(2) <.

For, suppose that o < . Then a € N, and so 7~ !(a) € M. Now « is an ordinal, so
N | (a is an ordinal); hence M = (7~ !(«) is an ordinal), and so L, = (7 !(a) is an
ordinal), hence 771(a) is an ordinal. Now 7 | (771(a) N M) is an isomorphism onto .
It follows that o.t.(m () N M) = a. But by (1), o.t.(m " (a) N M) < 7~ !(a). Since
7 a) € M C Ly, we have 7~ 1(a) < «a, contradiction.

(3) 0 < p.

For, L, | 3xVy € z[y # y], so M |= JaVy € x|y # y], hence N |= JzVy € z[y # y]. Hence
(3) holds.

(4) B is a limit ordinal.

For, suppose that 5 =~y U {v}. Then N | Jz[z is an ordinal and Vy[y # x U {z}]. Hence
L., = Jz[x is an ordinal and Vy|y # = U {z}], contradiction.

(5) Lg C N.

For, L., = V0 € ON3y[y = L;s|. It follows that N = V§ € ONTy[y = Ls|. By absoluteness,
Vd € ON N N[Ls € NJ]. Hence (5) holds.

(6) N C Lg.

For, L, = Vz3y3z[y is an ordinal and z = L, Az € z]. Hence N = Vz3y3z[y is an ordinal
and z = L, Az € z]. Now take any a € N. Choose an ordinal v € N and z € N such that
2z = L, and = € z. (Using the absoluteness of L,.) This proves (6). O

Theorem 13.42'. For every limit ordinal o, if M =.. L., and M is transitive, then there
is a limit ordinal B < o such that N = Lg.
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Proof. First we claim that M is extensional. For,

L, EVr,yVzlz ez ze€y] — o=y, so
M EVx,yVzlz €z < 2z € y| > = =y].

So, suppose that x.y € M and Vz € M|z € z <> z € y|. Since M is transitive, Vz[z € x +>
z € y|, hence = = y.
Now let 5 = M N ON. Since M is transitive, § is an ordinal, and § C M.

(1) 0 < B.

For, L, = JaVy € z[y # y], so M | JxVy € z[y # y]. Choose x € M so that Vy €
M Nzly # y]. Thus M Nz = (. Since M is transitive, x = (). So (1) holds.

(2) B is a limit ordinal.

For,

L., EYv]y is an ordinal — 34[d is an ordinal A [y < 4]]], so
M EV~[y is an ordinal — 34[¢ is an ordinal A [y < 4]]].

Now let v < . Then v € M and by absoluteness M = [y is an ordinal], so 3§ € M[M = [6
is an ordinal] A [y < 4]]. Thus by absoluteness, § € M and v < ¢, so (2) holds
(3) Lg C N.

For, L, = V§ € ON3y[y = Ls]. Hence M = V6 € ON3y[y = Ls|. So for every § <
there is a y € M such that M = [y = Ls]. By absoluteness, y — Ls. So (3) holds.

(4) M C L.

For, L, = Vz3y3z]y is an ordinal and z = L, Az € z|. Hence M |= Va3y3z[y is an ordinal
and z = L, Az € z]. Now take any a € M. Choose an ordinal v € M and z € M such
that M = [z = L,] and = € z. By absoluteness, z = L,. ]

Lemma 13.43. L(a) =V, for all @ < w.

Proof. L, =V, for all n € w by induction, using Proposition 1. L, = V,, by taking
unions. m

Lemma 13.44. |def(A)| = |A| for all infinite A. O

Theorem 13.45. |L,| = || for all infinite .

Proof. Since o C L(«) by Proposition 5, we have |a| < |L,|. Now we prove |L,| = |a]
for all infinite a by induction on «. It is true for « = w by Lemma 43. Now assume that
|Lo| = ||. Then |Loy1| = |def(Ly)| = |La| = |af. using Lemma 44. For « limit > w,

Lol = U Le| < D 1Lsl= D ILsl= D> 18l=lal N

B<a B<a w<fB<a w<f<a
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Theorem 13.46. If V = L, then Va[2R> = R, 1].

Proof. Assume V = L. Let X C w,. We show that there is a v < wq1 such that
X € L,. Hence #(w,) C L, ,, and the theorem follows from Theorem 45.

There is a limit ordinal § > w, such that X € Ls. Let M be an elementary submodel
of Ls such that w, € M, X € M, and |M| = X,. By Theorem 42, if N is the transitive
collapse of M then there is a limit ordinal v < § such that NV = L.,. Since |[N| = |[M| =R,
we have |L,| = X,. Now w, € M and the collapsing map is the identity on w,. Hence the
collapsing map fixes X. So X € L., as desired. ]

¢ is the statement that there exists a sequence (A4, : o < wy) of sets with the following
properties:

(i) Ao C a for each a < wy.

(ii) For every subset A of wy, the set {a < wy : ANa = A,} is stationary in w;.

Such a sequence is called a {-sequence.

Theorem 13.47. V =L — .

Proof. By recursion we define ((S,,Cy) : @ < wy) such that S, C a and C|, is closed
unbounded in a. Let Sg = Cy =0 and Sy11 = Coi1 = a+ 1 for all a < wy. For a < w;q
limit define

<r —least (S,C) such that

C C « is club and

VE e OIS NE# S if there is such a (S, ¢)
(o, ) otherwise.

(SouCoz) =

We claim that (S, : @ < wy) is a {-sequence. Suppose not. Then there exist a subset A
of w; and a club C in w;y such that CN{a <w; : ANa = S,} = 0. Let (A,C) be the
<r-least such pair. Thus (A4, C) is <p-least such that

(%) Vo € C[AN a # S,

(1) ((Sas Ca) s v <wi) € Luyy -
In fact, let g = ((Sq,Cy) : @ < wq), and let X = trcl({g}). Then

X ={9}U{(a,(54,Cq)):a<wi}U{{a}:a<w}
U{{a,(50,Ca)} ra <wi}Uwi U{(5,Cq) :ax <wr}
U{{Sa}:a<wi}U{{S4,Ca}:a<wi}
U{Sa:a<wi}U{Cy:a<w}.

Thus |trcl({g}]| = N1. We apply the argument in the proof of Theorem 46 and get a v < wo
such that 7(X) € L., where 7 is the collapsing map. = fixes each S, and C,, so clearly
7(g) = g. This proves (1).

Let N be a countable elementary submodel of (L, €). Since ((Sa,Ca) @ o < wy)
and (A, C) are definable in (L,,, €), they are in N. w; N N is an initial segment of w;.
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Let 6 = w; N N. By Theorem 42, the transitive collapse of N is L, for some limit ordinal
v < wi. Let m be the transitive collapse function. Then w(w;) = §, 7(4A) = AN,
m(C)=CnN4§, and 7({((S4,Cq) : @ <w1) = ((Sa,Cy) : @ < J). Hence

(Ls,€) E(AN§,C'NJ) is the least pair (Z, D) such that
Z C0,D C4,Disclub in §, and V€ € D[Z N & # S¢]

By absoluteness this holds in V. Hence by definition, ANJ = Ss. Since C'N ¢ is club in 9,
it follows that § € C'. This contradicts the definition of C. O

Now we define

def4(M) ={X C M : X is definable over (M,e, AN M)}
LO[A] = 0;
at1[A] = def 4 (L [ D
L.[A] = U L, for ~ limit;
a<y
L[A] = LaA]
ac€ON
Proposition 13.48. L, C L,[A] CV,. O

Proposition 13.49. For any ordinal o,
(i) L [A] is transitive.
(ii) Ly[A] C Lo[A] if f < a.

Proof. See the proof of Proposition 4. L

Proposition 13.50. oo = L,[A] N ON.
Proof. See the proof of Proposition 5. L

Proposition 13.51. L,[A] € Ly1[A].
Proof. See the proof of Proposition 7. L

Theorem 13.52. L[A] is a model of ZFC.
Proof. See the proof of Theorem 8. L

Theorem 13.53. If o(vo,...,vn_1) is a Ay formula in the expanded language with free
variables among vg, ..., v,_1, let @' be obtained from ¢ by replacing

v; € P by v; € vy

Jv; € P by Ju; € vp,d)';

Yu; € Py by Yv; € v,
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Then there is an (n+1)-ary composition G of Gddel functions such that for all Xo, ..., X,,

G(Xo,. .., X,)
= {(ugy--,Un_1) 1 ug € Xo,---,Un_1 € Xp_1 and ¢’ (ug, ..., Un_1, Xn)}

Proof. By Theorem 11 there is an (n+ 1)-ary composition G of Gddel functions such
that for all Xo,..., X,

G(Xo, ..., X))
= {(ug,..-,upn) : ug € Xo,...,u, € X, and ¢’ (ug, ..., u,)}.

Then

G(Xo,...,G1(Xn, X))
= {(ug,--,un) : ug € Xo,...,up, € X, and ¢’ (ug, ..., Un_1, Xn)}

Hence

dmn(G(Xo, ..., Xn))
= {(ug,---,Un_1) :ug € Xg,.--,Up_1 € Xp_1 and ¢’ (ug, ..., Un_1, Xn)} O

Lemma 13.54. If ¢(vg,...,vn—1) is a Ag formula in the expanded language with free
variables among vy, . ..,v,_1, ¢ is defined as in Theorem 53, A is any set, M is transitive,

anda € M, then (M,e, M N A) = p(a) iff (M, €) = ¢'(a, MNA). O

Proposition 13.55. For every formula ¢(x,y) in the expanded language there is a com-
position G of Gadel functions such that for every transitive set M, every set A, and every
b e M we have

{aeM:(M,e,MnNA)E ¢(a,b)}
={aecM:o™(a,b,MNAY}=G(M,bg,...,by_1,MNA).

Proof. First note that the first equality follows from Lemma 54. Now apply Theorem 11
to ©'M; we get a composition G of Gédel functions such that

G(Xo, .. .,Xn_|_1) = {(Uo, ... ,un+1) tug € Xoyeooy Upg1 € Xnga and (,OIM(’LLO, .. .,Un_|_1>}.

Following the proof of Proposition 14 we obtain a composition G" of Gédel functions such
that for every b € M,

G/(M,bo,...,bn_l,AﬁM> = {(Uo,...,un+1) :
ug € M,up =bg, ..., Uy = bpy_1,Unp1 = ANM, oM (ug, ... uns1)}.

Then using dmn we get the desired result. U
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Lemma 13.56. If H is a composition of Gaddel functions, then there is a formula v
such that if M is a transitive set, b € M, A is any set, and H(M,b, AN M) C M, then
HM,b,AnNM)={aeM:(M,e,ANM) = ¥(a,b,ANM)}.

Proof. By Theorem 13,Y € H(Z, X, W) is equivalent to a A, formula ¢(Y, Z, X, W).
Sox € H(M,b,An M) iff M = ¢(x, M,b,ANM). Let X = H(M,b,AN M). Then
X={a€M:ME pla, M,b, AN M). Making replacements as in the proof of Lemma
16, we get a formula ¢ such that X = {a € M : M = ¢(a,b, AN M). O

Lemma 13.57. For any transitive set M, def 5(M) = {X C M : there is abe M and a
composition H of Gédel functions such that X = H(M,b, AN M).

Proof. By Propositions 55 and 56. ]

Lemma 13.58. If A is any set and M is an inner model of ZF, then Yoo € ON[LM[A N
M| = L,[ANn M]].

Proof. Induction on «. It is clear for a = 0 and for « limit. Assume it for . Then

LY [AN M) = def i (LA [AN M]) = def’y (Lo [A N M])
={X CLJANM]NM :33H[X = H(L.JANM],€, AN L,[AN M]]

=defs(Lo,[ANM]) = Loy1[ANM]. O

Theorem 13.59. If M is an inner model of ZF and A is any set, then for any =,
x € LM[AN M) iffx € L[AN M].

Proof.

re IMANM] < Jafz e IM[ANM]) « Jafz € Lo[ANM]] <z € L[ANM]. O

Theorem 13.60. Let A = AN L[A]. Then L[A] = L[A]. Moreover, if A is a set, then
A e L[A].

Proof. We prove that Lq[A] = L[A] for all a by induction on a. It is obvious for
a = 0, and the induction step with « limit is clear. Now assume that L,[A] = Ly[A]. Let
U = L[A]. Then

ANU=ANUNL[A]=ANU.
Now def 4 (U) = def anp (U), so

Lot1[A] = defo(U) = def onp (U) = def5(U) = def5(La[A] = Lat1[A].

This completes the induction, and proves that L[A] = L[A].
For the “moreover” part, there is an « such that AN L[A] = AN Ly[A], and

ANLy[Al = {z € Lo[A] : 2 € AN La[A]} € Laii[A] O

200



Theorem 13.61. L[A] =V = L[A].
Proof.

v € L[A][x € LMA[AN L[A]] & x € L[AN L[A]] (by Theorem 59)
< x € L[A] (by Theorem 60) <> T. O

Theorem 13.62. (minimality) If M is an inner model of ZF and AN M € M, then
L[A] C M.

Proof. Assume that M is an inner model of ZF and AN M € M. We prove by
induction on « that L,[A] € M. The inductive step:

Lai1[A] = def a(Lo[A]) = {X C Ly[A] : thereis a b € L,[A] and a composition
H of Godel functions such that X = H(L,[A],b, AN Ly[A]).

Now here we have H(Ly[A],b, AN Ly[A]) = H(Ly[A],b, AN M N Ly[A]) € M. O

Lemma 13.63. (condensation) For every limit ordinal o, if (M,€,Q) =< (L.[4] €
L AN Ly[A]), then M is extensional, and if N is the transitive collapse of M wunder the
isomorphism 7, then

(i) Q=ANDM.

(11) There is a limit ordinal B < o such that N = Lg[n[A N M]].

Proof. For (i), Q=M NANLLA =ANM.

For (ii), first we claim that M is extensional. For, suppose that =,y € M with x # y;
say z\y # 0. Thus Ja € z[a ¢ y]. Since z,y € L,[A], by absoluteness L,[A] | Ja €
zla ¢ y], so M |= Ja € z[a ¢ y]. This shows that M is extensional. Hence the Mostowski
collapse function 7 : M — N is an isomorphism.

Now let B = N N ON. Since N is transitive, § is an ordinal. We claim that N =
Lﬁ [71' [A N M”

(1) For any ordinal ~, if I' C ~, then o.t.(T") < .

For, let f : § — T" be the strictly increasing enumeration of I'; with 6 = o.t.(I"). Then for
any £ < 0 we have £ < f(£) <7, s0d < 7.

(2) f < a.

For, suppose that & < 8. Then a € N, and so 7~ !(a) € M. Now « is an ordinal, so
N E (a is an ordinal); hence M = (7~ !(a) is an ordinal), and so L,[A] = (77 (a) is
an ordinal), hence 7~ !(a) is an ordinal. Now 7 | (7~!(a) N M) is an isomorphism onto
a. Tt follows that o.t.(r7!(a) N M) = a. But by (1), o.t.(m () N M) < 7~ 1(a). Since
7 (a) € M C Ly[A], we have 771 (a) < «, contradiction.

(3) 0 < p.

For, L,[A] | JaVy € x|y # y|, so M | JzVy € z[y # y|, hence N = JaVy € zly # y].
Hence (3) holds.
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(4) 5 is a limit ordinal.

For, suppose that 5 =~y U {v}. Then N | Jz[z is an ordinal and Vy[y # x U {z}]. Hence
L,[A] E Jz[z is an ordinal and Vy[y # = U {x}], contradiction.

(5) If Y,b € M, then Va € Y[(Y, €, ANMNY) |= ¢(a,b) + (x[Y],e,n[AnMNY]) |=
p(m(a),mob)].

(6) For any Y C M, w[def’y,(Y)] = def s pp (7[Y]).

In fact, suppose that Y C M. Suppose also that Z € defdf (V). Say Z ={a €Y : (Y, €
JANMNY) = e(a, b)), with b C Y. Thus by (5),

Vac€Y[aeZ <+ (Y,e,ANMNY) = p(a,b)
< (n[Y], €, 7x[ANMNY]) & p(n(a), 7o b)

Thus 7[Z] C {u € 7[Y] : (x[Y],€,7[ANMNY)) = p(u,m0b)} € deffTV[AﬁM](W[Y]). The
other inclusion is symmetric.

(7) If v € M and v is an ordinal, then (7(L}'[AN M],~) = (Lfy(v)(ﬂ'(A NM),n(7y)).

We prove (7) by induction on 7. 7 = 0 and « limit are clear. The successor step:

w(LM (AN M),y + 1) = m(defi (LY [AN M], 7))
= def 4o (R[LY[A N M, 5]))
= def yoany LY [1(AN M], 7(7)
— LY, [m(AN M)], 7(y+ 1))

(8) Lg[r[AN M]] C N.

For, (Lo[A], €, AN L,[A]) E V6 € ONTy[y = Ls[A]]. Hence (M, €,Q) = Vd € ONIyly =
LM[ANM]]. Now suppose that ¥ < 8. Then M = [r~!(v) is an ordinal], so we can choose
y € M such that y = Lﬁ/l_l(,y) [AN M]. By (7), n(y) = LY [x[A N M]. This proves (8).

(9) N C Lg[r[AN M]].
In fact,

(Lo[A], €, AN Ly[A]) = Va3y3z]y is an ordinal A z = Ly[A]) Az € 2], so
(M, €,Q) | VrIy3z[y is an ordinal A z = L?]JV[[A NM]Az € z].

So, given x € M, choose y, z € M so that
(M, €,Q) E [y is an ordinal A z = Léw[AﬂM] ANz € z].

Hence by (7), (N, €, nf[ANM]) |= [[7(y) is an ordinal] A7 (z) = Lfy(y)(W[AﬂM]/\W(m) € m(2)].

So 7(y) < f and 7(x) € Lfrv(y)(w[A N M]. This proves (9). I
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Theorem 13.64. If A € L[X], then L[A] C L[X].

Proof. Assume that A € L[X]. Since L[X] is transitive, AN L[X] = A € L[X].
Hence L[A] C L[X] by Theorem 69. O

Theorem 13.65. For every set X there is a set A of ordinals such that L[X]| = L[A].

Proof. Choose a so that X € L,[X], with o limit. In L,[X] let f be a bijection from
an ordinal @ onto trcl({X}). Define aEB iff f(a) € f(B). Let I' be the natural bijection
of ON x ON onto ON. Let A =T(F). Then A € L[X], so L[A] C L[X] by Theorem 63.

Now A € Lyyp(ay+1[A4]. Hence E = I'"'[A] € L[A]. Hence (0,E) € L[A]. Let M
be the transitive collapse of (6, E) in L[A]. Then X € M and hence X € L[A]. So
L[A] = L[X]. O

Lemma 13.66. Suppose that k™ < « and X € L,[A]. Then there is an M = L, [A] such
that k C M, MNkt e ™, X € M, and |M| = k.

Proof. Let My be such that kK C My, X € My, My < L,[A4], and |My| = . If M,, has
been defined so that M,, < L,[A] and |M,,| = k, choose M,, 1 so that M, UJ(M,NkT) C
M1, Myy1 = Lo[A], and My 41| = k. Let N = {J,,c, M. Then X € N, N = L,[A],
and [N| = k. N Nkt is a collection of ordinals. If « € NN k™, say a € M,,. Then
aCUM,Nkt)C M,11 € N. So NNkt is transitive, and hence it is an ordinal. Since
|IN| =k, also [NNkT| =k, and so NNkt € k. O

Theorem 13.67. If A is a set, then there is an ag such that for all « > ag, L[A] | 2%« =
o1

Proof. By Theorem 64 we may assume that A is a set of ordinals. Choose « so that
A C L,[A]. Then A C L,[A]NON = «. Let k > a. We claim that 2% = kT in L[A].
Take any X € L[A] such that X C k. Say X € Lg,[A] with kT < Bx. By Theorem 42,
let (Mx,0,Q) = (Lgy[A],0,A) be such that X € Mx, kK C Mx, Mx Nx*T € k*, and
IMx|=#r. Thus Q = ANMy. Let 5x = MNkT. Then ANdxy = ANMxNkt = ANMx.
Let (Nx,D,7[ANdx]) be the transitive collapse of (Mx,}, AN dx) via the function 7.
Since 6x C M, w is the identity on dx. Hence n[ANdx] = ANdx and X € Nx. By
Theorem 39 there is an ordinal yx such that (Nx,0,7[ANdx]) = L, [ANJdx]. Now
vx < kT since |yx| =Ly [ANdx]| = |[N| = |M| = k. Also, 6x < r™.

Thus 2 (k) C U, ,<n+ Lu[AN V], aset of size x™. O

Theorem 13.68. Assume V = L[A] with A C wy. Then GCH holds.

Proof. First we show that 2* = w;. Take any X C w. Say X € Lg,[A] with
wi < Bx. By Lemma 66, let (Mx,0,Q) < (Lgy[A],0, A) be such that X € Mx, w C Mx,
Mx Nwy € wy, and |[Mx| = w. Thus Q@ = AN Mx. Let 0x = M Nw;y. Then ANdyxy =
ANMxNwy = ANMy. Let (Nx, D, m1[ANdx]) be the transitive collapse of (Mx, D, ANdx)
via the function 7. Since dx C M, 7 is the identity on dx. Hence r[ANdx] = ANdx
and X € Ny. By Lemma 63 there is an ordinal vx such that Nx = L, [ANdx]|. Now
vx <wi since |yx| = |Ly[ANdx]| =|N| = |M|=w. Also, dx < w;.
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Thus Z(w) €U, ,<w, LulANV], and this set has size wi. So 2¢ = wy.

Now suppose that A is uncountable. We want to show that 2* = AT in V. Let
Y C A Set T = trel({Y'}). Choose limit 6 so that T' € Lg[A]. Let (M,€,N) =< (Lg[A], €
, AN Lg[A]), with w; UT € M and |[M| = X. Applying Lemma 63 we get v < AT such that
Y € L,[r[ANM]]. Now ANM = A, son[ANM]=n[A] = A. Thus Y € L,[A] C Ly+[A].
This is true for each Y C A, so Z(A\) C Ly+[A]. Hence 2* = AT, O

Now we define, for any set A,

Lot1(A) = def(La(A));
L,(A) = U L,(A) for v limit;
a<ly
L(A) = |J La(4)
aeON
Proposition 13.69. L, C L,(A) C V,. O

Proposition 13.70. For any ordinal a,
(i) Lo(A) is transitive.
(ii) Ly(A) C Lo(A) if § < .

Proof. See the proof of Proposition 4. O
Proposition 13.71. (i) trcl({A}) N ON is an ordinal; call it B.
(ii) B+ o = L,(A) N ON.

Proof. (i) is clear The conclusion of (ii) is clear for & = 0 and inductively for « limit
Now assume that §+a = Lo(A)NON. If a+v € Loy1 NON, then a+ v € def(L,(4)),
so a+v C Lo(A)NON = f+a; hence v < a. This shows that L,1(A)NON C S+a+1.

If v < «a, then by the inductive hypothesis, 5 +~v € L, NON C L,11 N ON. Thus it
remains only to show that 5+ « € L,11. Now there is a natural Ay formula ¢(x) which
expresses that x is an ordinal:

Vy € aVz € y(z € x) ANVy € aVz € yVw € z(w € y);
this just says that z is transitive and every member of x is transitive. Now () is absolute,

" B+a=L,NON={x€ Ly:(La,€) Ep(x)} € def(La(A)) = Lat1(A4). O

Proposition 13.72. L,(A) € Lo11(A).
Proof. See the proof of Proposition 7. L
Theorem 13.73. L(A) is an inner model of ZF.
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Proof. See the proof of Theorem 8. O

Theorem 13.74. (minimality) If M is an inner model of ZF and A € M, then L(A) C M.

Proof. We prove L,(A) € M by induction on «a. It is clear for a = 0 and inductively
for  limit. Now suppose that L, (A) € M. Then

Loi1(A) =def(Ly(A)) = {x C Lo(A) : 3b € Ly(A)
JH[H is a composition of Godel function and z = H (L, (A),b)]}.

This is in M because H is Ay. ]

Now we define

oD = ] d({Vs:B<a}).

aeON

Theorem 13.75. There is a definable well-order of OD and associated with it a definable
bijection F' of ON onto OD.

Proof. We define by recursion a well-order <, of cl({Vs : f < a}), Let <o= 0. If <,
has been defined and it is a well-order of cl({V3 : § < a}), first define

Y =cd{Vs: B <a}l)U{Va}s
Yo, =Yyu{Gi(X,2): X,ZeY> 1<i<10}.
Note that cl({V3 : B < a+1}) = U,c, Y- Now we define <7, ;, a well-order of Y} as

ncw - n

follows. For z,y € Y we define z <0, iff

z,yecd{Vp: B <a})and z <, y or
zecd{Vs:p<a})and y="V,,

Now suppose that <{;,,, a well-order of Y;;* has been defined. Suppose that z,y € Y}, ;.
Then x <ij y iff

z,y €Y, and x <, | y or
reY>andy ¢ Y, or
r,y € Y2INY? and v #y and x = G;(X, Z) and y = Gj(X', Z') with X, Z, X', Z' € Y,?
and either i < j or (X, Z) < (X', Z’) lexicographically.

Then we define <qo11= U,,c., <oi1-

For v limit let <,={J,.., <a-

Let <op= U,con <a- Clearly this is a well-order of OD, and the bijection F is the
natural mapping. ]

Theorem 13.76. If X €OD, then there is a formula o(y,x1,...,x,) such that for some
ordinal numbers ay,...,cn, X ={u:p(u,aq,...,an)}.

Proof. Let ¢(y, x) be the formula y € F(x), where F' is given by Theorem 75. Choose
a so that F(a) =X. Then X ={u:ue€ F(a)} = {u: p(u,a)}. O
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Theorem 13.77. If p(y,x1,...,2y) is a formula and oy, . . ., ay, are ordinal numbers such
that X ={u: p(u,as,...,a,)}, then X €OD.

Proof. By the reflection theorem, let 8 be such that
X,aq,...,a, € Vg and ¢ is absolute for V3, V.

Then X = {u € Vs : ¢"#(u,a1,...,a,)}. By Theorem 11 there is a composition G of
Godel functions such that for all X, ..., X,,

G(Xoy. s Xn) ={(ugy---sun) :ug € Xoy .oy Un € Xo, p(ug, ... up)}

Hence X = G(Vg,{a1},...,{an}). Now each «; is definable in V,,, by a; = {u € V,, 1 u
is an ordinal}. Hence by Proposition 14 there is a composition H; of Godel functions such
that a; = H;(V,,). It follows that X €OD. O
Theorem 13.78. ON COD.

Proof. If « is an ordinal, then a = {u : v € a}; use Theorem 77. O
Now we define

HOD = {xz : trcl({z}) C OD}.

Theorem 13.79. HOD 1is an inner model of ZFC.

Proof. By Theorem 78, every ordinal is in HOD.
Next we show that HOD is closed under the Godel functions. Clearly OD is closed
under the Godel functions. Assume that X,Y €HOD. Then

trel({ X }), trel({Y'}) C OD.

In particular X, Y €0D, so G;(X,Y) €OD.
(1) G1(X,Y) ={X,Y}. trel({{X,Y}}) = {X, Y} Utrcl({X}) Utrcl({Y}) COD.
(2) Go(X,Y) = X x Y.

trel({ X x Y} ={X xY}U{(z,y):ze X,yeY}U{{z,y} 2 € X,y e Y}
u | tre({a})u | tra({y}).

zeX yey

Now if x € X and y € Y, then x,y €0D, and so {z,y} €0D. Also (x,y) €OD. So
trel({X x Y}) COD.

(3) G3(X,Y) ={(u,v) :u € X,v €Y,u € v}. Similar to (2).
(4) G4(X,Y) = X\Y.

trel({X\Y}) = {X\Y}U (] trcl({z}) COD.
zeX\Y
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(5) Gs5(X,Y) = X NY. trel({X NY}) = {X N Y} UU,cxny trel({z}) COD.
(6) Ge(X)=UX. trel{UX} ={UX} U UmeUX trel({z}) COD.
(7) G7(X) = dmn(X).
trel({dmn(X)}) = {dmn(X)}u | ]  trel({z}) C OD.
z€dmn(X)
Here note that if z € dmn(X) then x € trcl(X).
(8) Gs(X) = {(u,v) : (v,u) € X}.
trel({{(u,v) : (v,u) € X}}) = {{(u,v) : (v,u) € X}} U U trel({(u,v)}) C OD.

(v,u)eX
(9) Go(X) = {(u,v,w) : (u,w,v) € X}.

trel({{(u, v,w) : (u,w,v) € X}})
= {(w,0,w): (ww,w) e XU tred({(u,v,w)}) COD.

(u,w,w)eX

(10) Gyp is similar.

So HOD is closed under Godel functions.

Now we verify the condition of Theorem 29. If X is a set C HOD, then there is an «
such that X C V,,. So X C V,NHOD. Hence it suffices to show that V,NHODcHOD. We
claim

(11) Vo "N HOD = {u €V, : Vz € trcl({u})38[z € cl({V; : v < 5})]}.

In fact, if uw € V,NHOD, then by definition trcl({u}) COD, and so C in (11) holds.
Conversely, if u € V,, and Vz € trel({u})38[z € cl({V4 : v < B})]}, then trcl({u}) COD,
and hence v €HOD. So (11) holds.

By (11) and Theorem 77, V,,NHOD€OD.

Thus by Theorem 22, HOD is an inner model of ZF.

For the axiom of choice, it suffices to find for each o a ¢ €OD which is a one-one
mapping of V,NHOD into ON. By Theorem 75, let F' be a definable bijection of ON onto
OD. Then F~1 | (V,NHOD) is as desired. ]

We define
ODI[A] =cl({Vy : « € ON} U {A}).
Proposition 13.80. ODCOD[A]. O

Theorem 13.81. There is a definable well-order of OD[A] and associated with it a defin-
able bijection F' of ON onto OD[A].
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Proof. We define by recursion a well-order <, of cI({Vs : 8 < a} U {A}). Define

Yy = {{A}};
YO, =Y U{Gi(X,2): X,Z €Y., 1<i<10}.

Define <9= . Suppose that <B has been defined and it is a well-order of Y,0. For
z,y €Y, | define x <jt' y iff

z,y € V) and z < y.

reY?andy¢ YD

r,y ¢ Y and x # y and x = G4(X,Z), y = G;(X’,Z') and either i < j or i = j and
(X,Z) < (X', Z') lexicographically.

Now the rest of the construction and proof goes like in the proof of Theorem 75. L
Theorem 13.82. If X € OD[A], then there is a formula ¢ such that
X ={u:p(u,ay,...,a,, A)}.
Proof. See the proof of Theorem 76. O

Theorem 13.83. If X = {u: p(u,a1,...,an, A)}, then X € OD[A].

Proof. See the proof of Theorem 77. L
We define

HODI[A] = {z : trcl({z}) C OD[A]}.

Theorem 13.84. HODI[A] is a model of ZFC.

Proof. See the proof of Theorem 79. L
Now we define

ODA)={X: X ecl{Vh:a e ON}U{A}UA)}.

Theorem 13.85. If X € OD(A), then there is a finite subset E of A such that X €
cl{Vy:a € ON}U{A}UE).
~ Proof. Say X = H(Va,, -+, Va,.» A,b) with H a composition of Godel functions and
b€ A. Then we can let E = rng(b). O

Theorem 13.86. X € OD(A) iff there exist a formula ¢, xq,...,Tm—-1 € A, and ordinals
Qai,...,0Qy, such that

X =A{u:po(u,ar,...,0n,To,...,Tm-1)}

Proof. We modify the proof of Theorem 81 by starting with Y{* = {V,,, A}. Then we
get a bijection F' from ON onto OD(A)\ A, and this gives the desired formula. The other
direction is proved like for Theorem 77. ]
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Theorem 13.87. (L, (A) : a« € ON) is absolute for transitive models of ZF.
Proof. See the proof of Theorem 39. L

Theorem 13.88. If M is an inner model of ZF and A € M, then L(A) C M.
Proof. See the proof of Theorem 41. O

Define
HOD(A) ={z: trcl({z}) C OD}.

Then as for HOD itself we have
Theorem 13.89. HOD(A) is an inner model of ZF. ]

Theorem 13.90. If M is a transitive set, then cl(M) is transitive.

Proof. Let M be a transitive set, and let N = cl(M). Let P = {y : trcl({y}) C N}.
It suffices to show that M C P and P is closed under the Godel operations. Note that
P C N and P is transitive. If y € M, then trcl({y}) C M C N;soy € P.

(1) X,Y € P> {X,Y} € P.
For, X, Y € N, so {X,Y} € N. Moreover

trel({X,Y}) = {{X,V}} Utrel({X ) U trel({Y'}) C NV.

It follows that
(2) X, YeP—(X,Y)eP.
3)X,)YeP—-XxYeP.
For, suppose that X, Y € P. Then X xY € N. Moreover,
trel({X xY}) ={{X xY}}U U trel({(a,b)}) € N.

a€EX,
bey

(4) XY e P—e(X,Y)eP.
For, suppose that X,Y € P. Then ¢(X,Y) € N. Moreover,

tre({e(X,V)}) = {{e(x,V)}}u |  wel({(a,b)}) C N.

(a,b)€e(X,Y)

(5) X,Y € P - X\Y € P.
For, suppose that X,Y € P. Then X\Y € N, and

trel({X\Y}) = {X\Y}uU [J trcl({a}) CN.

aeX\Y
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6) X,Y eP—>XNY € P.

Treated as in (5).

() XeP—-JX eP.

For, suppose that X € P. Then |JX € N, and

trel ({UX}) - {U X} U yg(trd(y) C N.

(8) X € P — dmn(X) € P.
For, suppose that X € P. Then X € N, so dmn(X) € N. Now if (a,b) € X then
a € {a} € (a,b) € X € P,so a € P. Hence

trel({dmn(X)}) = {dmn(X)} U U trcl({a}) € N.
(a,b)eX
(9) X € P— Gg(X) € P.

For, suppose that X € P. Then X € N, so Gg(X) € N. Now as in (8), if (a,b) € X then
a,b € P, and so by (2), (b,a) € P. Hence

trel({Gs(X)}) = {Gs(X)}u | J trel({(b,a)}) € N.

(a,b)eX

(10) X € P - Gy(X) € P.

For, suppose that X € P. Then X € N, so Gg(X) € N. Now if (u,w,v) € X then as in
(8), u,w,v € P, and so by (2), (u,v,w) € P. Hence

trel(Go(X)) = {Go(X)}U | J  trdd({u,v,w)}).

(u,w,w)eX

(11) Gyp is like Gy.
(12) If Xo,...,X,,—1 € P, then P*(Xo,...,X,—1) € P.
This is obvious. [
Theorem 13.91. If M is closed under Gddel functions and is extensional and if X € M
is finite, then X C M.
Proof.
(1) {z} e M — x € M.
For, | J{z} = =.
(2) {z,y} e M — z,y € M.
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In fact, suppose not. By (1), x # y. If v € M, then {x} € M, hence {y} = {z,y}\{z} € M,
hence by (1), y € M, contradiction. So x ¢ M. Similarly, y ¢ M. Now {z,y} x {z,y} =
{(z,2), (z,9), (v, 2), (y,9)} € M. If {(z,2),(z,y), (y,2), (y,y)} N M = 0, then {z,y} N

M =0 =A{(z,2), (z,9), (y,2), (y,9)} " M, so {z,y} = {(x, ), (z,9), (y,2), (y,y)}. But
{z,y} has exactly two elements, and {(z, z), (x,y), (v, ), (y,y)} has exactly four elements,

contradiction. Hence {(z,x), (z,y), (y, ), (y,y)} N M # (.
Case 1. (x,z) € M. Now (x,z) = {{z}}, so by (1) twice, x € M, contradiction.
Case 9. (y,y) € M. Similar to Case 1.
Case 3. (z,y) € M. Now (z,y) = {{z},{z,y}} and {{z,y}} € M. Hence {z} =
(x,y)\{{z,y}} € M, so x € M by (1), contradiction.
Case 4. (y,x) € M. Similar to Case 3.

This proves (2).

Now suppose inductively that F' € M, F finite, |F| > 2, and F € M. If x € FN M,
then {z} € M, and F\{x} € M, so by the inductive hypothesis F C {z} C M, so FF C M,
contradiction. Thus F'N M = (). Now we claim
(%) (F x F)NM # 0.

For, suppose that (F' x F)NM ={. Then FF = F x F. But |F| < |F x F|, contradiction.
Thus (*) holds. Say x,y € F and (z,y) € M. Then {z} € M by (2), so x € M by
(1), contradiction. O

Theorem 13.92. If M is closed under the Gadel functions and is extensional, and 7 is
the transitive collapse of M, then w(G;(X,Y)) = Gi(7(X),n(Y)) fori=1,...,10.
Proof. Recall that
m(y) = {n(2) : z € y}
for all y € M.
(1) Gi: 7(G1(X,Y)) = {n(X),7(Y)} = G1(7(X), =(Y)).

(2) 7((X,Y)) = n({{X}, {X,Y}}) = {=({X}),7({X,Y}) = {n(X)}, {m(X),7(Y)}} =
(r(X), w(Y)).

(3) Go: m(X xY) ={n((z,y)):z € X,y e Y} ={(n(x),n(y)) :x € X,y e Y} = {n(x):
re X}t x{n(y):yeY}=n(X)xn(Y).

(4) Gs: 7(G3(X,Y)) ={n(z,y):x € X,y Y,z €y} ={(r(z),n(y)):z € X,y Y,x €
y}={(u,v):uen(X),venY),uecv}=Gs(n(X),n(Y)).

(5) Ga: 1(Go(X,Y))=m(X\Y) ={r(z):zce X\Y} ={n(z): e e X}\{r(y) :y €Y} =
G4(m(X),7(Y)). Here we used the fact that 7 is one-one.

(6) Gs: m(G5(X,Y))=7a(XNY)=A{r(z):ze XNY}={n(x):x e X}N{n(y):y €
Y} = Gs(m(X),n(Y)).

(7) Gg: 7(Ge(X)) = 71(UX) = {m(x) : . € UX} = {n(z) : Jy € X[z € y|} =
Uyex{m(@) : z € y} = Um(X). To see the last equality, first suppose that y € X and
x € y. Then 7(z) € n(y) € 7(X), so w(z) € Jm(X). Second, suppose that u € |Jw(X).
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Say u € v € w(X). So there is a y € X such that v = w(y). Since u € v, there is an x € y
with u = m(z), as desired.
(8) Gr: m(G1(X)) = n(dmn(X)) = {n(z) : & € dmn(X)} = {n(x) : Fpl(w,y) € X]} =

Uyemgx) {m(2) = (2,9) € X} Now {n(z) : (2,y) € X} = {n(z) : n(z,y) € n(X)}
{m(x): (7(x),m(y)) € m(X) and so, continuing the above,

m(G7(X)) = U 5@ (x(@),7(y) € m(X)} = Gr(x(X)).

m(y)€rng(m (X))
(9) Gs — —G1p: similar to the above. ]

Theorem 13.93. For every transitive class M and every ordinal o € M, VM =V, N M.

Proof. Assume that M # (). Then () € M. In fact, choose a € M, and let b € trcl({a})
have smallest rank. Then clearly b = (). Now V.M is defined as follows, for each o € M:

0 if a = 0;
vM_{d{aeM:VbeapeV}]} ifa=p+1¢eM;
Useca V3" if o is a limit ordinal € M.

Now VM =V, N M for all « € M, by induction.

Theorem 13.94. “x is finite” is Aq.

Proof. “x is a finite ordinal” is Ag. Now z is finite iff there is a finite ordinal m and
a bijection from m onto x. This shows that “x” is finite is ¥¢. It is Iy, since

z is finite iff VY [x € Y AVb € YVy € bb\{y} € Y] = D € Y. O

Theorem 13.95. a+ (3 is A;.
Proof. a+ [ is ¥q:

a+p =~ iff 3Jf[fisa function,dmn(f)=p0+1, f(0) = ¢,
Vo < BLF(0=1) = f(6) +1], f(B) =1l

Oé—i—ﬁiSHlZ

a+ B =~ iff Vf[fisa function,dmn(f) =p+1, f(0) = «,
Vo < BIf(0=1) = f() +1] = f(B) =1l O

Theorem 13.96. The canonical well-ordering of ON x ON is Ay.
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Proof.

(o, B) < (v,0) iff (max{e, S} <max{vy,d})V (max{a, f} = max{v,0} Ao <)V
(max{q, f} = max{vy,0} Aa=~vA B <)

iff (a<PBAY<IANB<SHV(a<PBAI<HYANLB <)V
B<any<doAha<d)V(BE<aNd<yAha<y)V
(a<YAB=9NI<Y)V(a<yAB=NAy <)V
( ).

a=YANB<OINI <7y

Theorem 13.97. The function I' which assigns to each pair («, ) of ordinals its order
type under the canonical ordering, is Aq.

Proof.

I(a, B) = iff  3f[f is a function A f(0,0) = OA
V(e,0) < (o, B)[V(7,0) < (¢,0)[(,0) € dmn(f) —
(57 0) € dmn(f) A f(g, 9) = Sup{f(”)/, 5) : (77 6)7 (57 9)}

A fle, B) = o]
Also,
I, B) = iff  Vf[fis a function A f(0,0) = OA
(e, 0) < (a, B)[V(7,0) < (¢,0)[(7,9) € dmn(f) —
(57 0) € dmn(f) A f(g, 9) = Sup{f(”)/, 5) : (77 6)7 (57 9)}
= fle, B) = o]
So I' is Al. [l

Theorem 13.98. The function assigning to each x its transitive closure is A.

Proof.
Y =trcl(X) iff Y is transitive AX CY AVZ[Z transitive N X CZ —-Y C Z.
Thus Y = trcl(X) is I1;.

Y =trd(X) iff 3Z[dmn(Z) =wA Zo =X AVn € w[Zpr = Za] A | Zn =Y.

necw
So Y = trcl(X) is X. O
Theorem 13.99. rank is Aq.
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Proof. y = rank(x) iff 3f[f is a function and y is an ordinal and dmn(f) = y+2 and
f(0)=0and Vz < y+1[f(z+1) = Z(f(2)] and for all limit z < y+2, f(2) = U, -, f(w)
and x € f(y+1) and = ¢ f(y).

And also y = rank(z) iff Vf|[f is a function and y is an ordinal and dmn(f) = y+2 and
f(0)=0and Vz < y+1[f(z+1) = Z(f(2)] and for all limit z < y+2, f(2) = U, -, f(w)
and x € f(y+ 1) implies that ¢ f(y). ]

Let M be a transitive class model of ZF containing all ordinals, and let x be a subset of M.
We define M [x] and give its basic properties. A set X is definable over (A, (M U{x})NA)
iff there is a formula ¢(z,7) and a b € A with length that of 7, such that X = {a € A :
(A, (M U{z})N A) = ¢(a,b)}. Now we define

defn(A) = {X X is definable over (A, (M U {z}) N A);
Lo(M,z) =
a+1<M 7) = defn( (M, 2)) U (MU {z}) N V)
M,z) = U Lo(M,z) for v limit;
Mlzl= |J La(M, ).
a€ON

Proposition 13.100. For any ordinal a,
(i) Lo(M,x) is transitive.
(1i) Lg(M,x) C Lo(M,z) if B < a.

Proof. See the proof of Proposition 4. O

Proposition 13.101. L,(M,z) € Loy (M, x).
Proof. See the proof of Proposition 7. L

Proposition 13.102. o = L, (M, z) N ON.

Proof. The proof of Proposition 5 has to be slightly modified:

We prove this by induction on a. It is obvious for a = 0, and the inductive step
when « is limit is clear. So, suppose the statement holds for S and we want to prove
it for §+ 1. If v € Lgy1(M,x) N ON, then v € defn(Lg) U ((Lg(M,z) U {z}) N V3, so
v C Lg(M,z)NON U (V3N ON) = 3; hence v < . This shows that Lg;1 NON C 5+ 1.

If v < B, then by the inductive hypothesis, v € Lg N ON C Lgy; N ON. Thus it
remains only to show that 8 € Lgy;. Now there is a natural Ay formula ¢(z) which
expresses that x is an ordinal:

Yy € aVz € y(z € ) ANVy € aVz € yVw € z(w € y);

this just says that x is transitive and every member of x is transitive. Now () is absolute,

SO
5:L5QON: {x ELB : (LB,E) ):(,D(.’B)} Edef(LB) :Lﬁ—i-l' ]
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Theorem 13.103. L(M,x) is a model of ZF.
Proof. See the proof of Theorem 8. O

Theorem 13.104. If M = AC, then L(M,z) = AC
Proof. See the proof of Theorem 8. L

Lemma 13.105. M U{z} C L(M,z). O
We abbreviate countable transitive model of ZFC by c.t.m.

Lemma 13.106. If M is a c.t.m., x € M, N is a c.t.m., M C N, and x € N, then
M[x] C N. O

Lemma 13.107. For every infinite cardinal k, L, C H,.

Proof. Clearly L, = H,. Now suppose that k > w and x € L,,. Choose a < k such
that © € L,. Then trcl(z) C Ly, so |trcl(z)| < |Lo| = |of < k. ]

ZF — P is the set of axioms of ZFC minus the axiom of choice and the power set axiom.

Lemma 13.108. If M is a transitive set and M = ZF —P, then M =V = L iff M = L.,
where ~y is the least ordinal such that v £ M.

Proof. Clearly ~ is a limit ordinal. By absoluteness, Ls € M for all § < ~. It follows
that L, = Js, Ls € M. Now

MEV =L iff VYoeeM3§erlzelLs iff MCL, iff M=L,. O

Lemma 13.109. Let k be an uncountable regular cardinal. Let (A¢ : £ < k) be a system
of sets such that

(1) £ <n— A¢ C A,.

(it) Ay = Ue<, Ae for n limit < k.

(111) V€ < K[| A¢| < K.

(i) |Ax| = k.

Then V¢ < k3n € (&, k)[A, DN A, < A, An is a limit ordinal |.

Proof. Let (p; : i < w) list all formulas not using V. For each ¢;(Z) which is of the
form Jye;(Z,y), say with T of length r, define F; : "A,; as follows. If A, |= ¢;(@, then Fj(a)
is the least ¢ <  such that 3b € A¢[A, = ¢;(@,b). If A, = —¢;(@, then F;(a) = 0. Define
Gi:k — Kk by Gi(§) =sup{F;(@) : a € A¢} if p; is existential, with G;(§) = 0 otherwise.
Then G;(§) < k since k is regular. Let K () be the larger of £ + 1 and sup{G;(& : i,w}.

Now take any ¢ < k. Let (o be the least ordinal greater than ¢ such that A., # 0.
Let (n41 = K(¢pn). Then sup,,c,, ¢ is as desired in the lemma. O

Lemma 13.110. If s is an uncountable regular cardinal, then L, = (ZF — P)+V = L.
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Proof. Extensionality and foundation hold since L, is transitive. Pairing and union
and infinity clearly hold. For comprehension, suppose that ¢ is a formula with free variables
among x, z, Wi, . . . , Wn; we want to show that

L, EV2Ywy .. Yw,FyVe(z €y <>z € 2N ).

So suppose that z,w1,...,w, € L. Let y = {z € 2 : '~ (x,z,w)}. Say z,w € L¢ with
¢ < k. By Lemma 13.109 let € (&, «) be such that L, < L,. Then y = {z € z :
ot (x,z,w)} € Lyy1 C Ly, which proves comprehension.

For replacement, assume that A,w € L, and Vo € L[z € A — 3y € L.l (x,y,W).
Say A,w € L, with o € k. Note that |A| < |Ly| < k. Let dmn(f) = A with f(x) = the

y € L, such that L, | pl=(x,y,w). Then Vo € A[p(f(x)) < K, so o sup{p(f(x))+1:
x € A} < k. Then Lg € L,,. This proves replacement.
Now L, =V = L by Lemma 13.108. L

Lemma 13.111. V = L implies that for every infinite cardinal k, L, = Hy.

Proof. First suppose that x = A". By Lemma 13.107 it suffices to prove that
Hy+ C Ly+. Suppose that b € Hy+, and let T' = trcl(b). Then b € T and |T| < \. Let 0
be a regular uncountable cardinal such that p(7) < 6. Then T' C Lg. By Lemma 13.110,
Ly = (ZF — P+ V = L. By the Lowenheim-Skolem theorem let A be such that A < Hy,
T C A ,and |A| < A Thenalso A = (ZF—P+V = L. Let A = B with B transitive under
the collapsing function m. Then 7(x) = z for all z € T, in particular 7(b) = b. By Lemma
13.108, B = Lg, where 3 is the first ordinal not in B. Now |3| = |Lg| = |B| = |[A] < A, so
B < AT, and hence b € Lg C Ly+.

Now if k is a limit ordinal, then

Ly=|J Ly = | Hx+ = Hs O
A<k A<k
Theorem 13.112. If k is reqular limit, then L, = ZFC +V = L.

Proof. Clearly (k is regular limit)Y. Now we work in L. By Lemma 13.110, L, =
(ZF — P)+V = L. By Lemma 13.111, L, = H,. To check the power set axiom in H,,
suppose that X € H,. Then also & (k) € Hy. ]
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14. Forcing
Forcing orders and complete BAs

A forcing order is a triple P = (P, <,1) such that < is a reflexive and transitive relation
on the nonempty set P, and Vp € P(p < 1). Note that we do not assume that < is
antisymmetric. Partial orders are special cases of forcing orders in which this is assumed
(but we do not assume the existence of 1 in partial orders). Note that we assume that
every forcing order has a largest element. Many set-theorists use “partial order” instead
of “forcing order”.

Frequently we use just P for a forcing order; < and 1 are assumed.

We say that elements p,q € P are compatible iff there is an r < p,q. We write p L q
to indicate that p and g are incompatible. A set A of elements of P is an antichain iff any
two distinct members of A are incompatible. WARNING: sometimes “antichain” is used
to mean pairwise incomparable, or in the case of Boolean algebras, pairwise disjoint. A
subset ) of P is dense iff for every p € P there is a ¢ € () such that ¢ < p.

Now we are going to describe how to embed a forcing order into a complete BA.
We take the regular open algebra of a certain topological space. We assume a very little
bit of topology. To avoid assuming any knowledge of topology we now give a minimalist
introduction to topology.

A topology on a set X is a collection & of subsets of X satisfying the following condi-
tions:

(1) X,0e 0.
(2) O is closed under arbitrary unions.
(3) O is closed under finite intersections.

The members of & are said to be open. The interior of a subset Y C X is the union of all
open sets contained in Y; we denote it by int(Y).

Proposition 14.1. (i) int(0) = (.

(7) int(X) = X.

(iii) int (Y) C Y.

(iv) int(Y N Z) =int(Y) Nint(Z2).

(v) int(int(Y)) = int(Y).

(vi)int(Y) ={x € X :2 €U CY for some open set U}.

Proof. (i)-(iii), (v), and (vi) are obvious. For (iv), if U is an open set contained in
Y N Z, then it is contained in Y; so int(Y N Z) C int(Y"). Similarly for Z, so C holds. For

D, note that the right side is an open set contained in Y N Z. (v) holds since int(Y") is
open. ]

A subset C of X is closed iff X\C' is open.

Proposition 14.2. (i) 0 and X are closed.
(i) The collection of all closed sets is closed under finite unions and intersections of
any nonempty subcollection. L

217



For any Y C X, the closure of Y, denoted by cl(Y), is the intersection of all closed sets
containing Y.

Proposition 14.3. (i) cl(Y) = X \int(X\Y).

(77) int (V) = X\cl(X\Y).

(iii) cl(0) = 0.

(iv) cl(X) =X.

(v) Y Ccl(Y).

(vi) (Y UZ)=cl(Y)Ucl(Z).

(vii) cl(cl(Y)) = cl(Y).

(viii) cl(Y') = {x € X :for every open set U, if x € U then UNY # (}.

Proof. (i): int(X\Y) is an open set contained in X\Y, so Y is a subset of the closed
set X\int(X\Y). Hence cl(Y) C X\int(X\Y). Also. cl(Y) is a closed set containing
Y, so X\cl(Y) is an open set contained in X\Y. Hence X\cl(Y) C int(X\Y). Hence
X\int(X\Y C cl(Y). This proves (i).

(ii): Using (i),

X\cl(X\Y) = X\ (X \int(X\(X\Y))) = int(V).

(iii)—(v): clear.

(vi):
c(YUZ)=X\int(X\(YUZ)) by (i)
= X\int((X\Y) N (X\2))
= X\ (int(X\Y) Nint(X\2))
= [X\int(X\Y)] U [X\int(X\Z)]
=cl(Y)ucl(2).
(vii):

cl(cl(Y)) = cl(X\int(X\Y))
= X\int(X\(X\int(X\Y)))
= X\int(int(X\Y))
= X\int(X\Y)
= cl(Y).

(vii): First suppose that x € cl(Y), and € U, U open. By (i) and Proposition
27.15(vi) we have U € X\Y, i.e., UNY # (), as desired. Second, suppose that z ¢ cl(Y).
Then by (i) and 27.15(vi) there is an open U such that x € U C X\Y;s0 UNY = 0, as
desired. OJ

Now we go beyond this minimum amount of topology and work with the notion of a regular
open set, which is not a standard part of topology courses.
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We say that Y is regular open iff Y = int(cl(Y)).

Proposition 14.4. (i) If Y is open, then Y C int(cl(Y)).

(i) If U and V' are regular open, then so is UNV.

(iii) int(cl(Y")) is regular open.

(iv) If U is open, then int(cl(U)) is the smallest reqular open set containing U .

(v) If U is open then U Ncl(Y) Cc(UNY).

(vi) If U is open, then U Nint(cl(Y)) C int(cl(U NY)).

(vii) If U and V' are open and U NV =, then int(cl(U)) NV = 0.

(viii) If U and V are open and U NV = (), then int(cl(U)) Nint(cl(V)) = 0.

(ix) For any set M of regular open sets, int(cl(|JM) is the least reqular open set
containing each member of M.

Proof. (i): Y Ccl(Y), and hence Y = int(Y) C int(cl(Y)).

(ii): UNV is open, and so UNV Cint(cl(UNV)). For the other inclusion, int(cl(U N
V) Cint(cl(U)) = U, and similarly for V', so the other inclusion holds.

(iii): int(cl(X)) C cl(X), so cl(int(cl(X))) C cl(cl(X)) = cl(X); hence

int(cl(int(cl(X)))) C int(cl(X));

the other inclusion is clear.

(iv): By (iii), int(cl(U)) is a regular open set containing U. If V' is any regular open
set containing U, then int(cl(U)) C int(cl(V)) = V.

(v):

UNn(X\(UNY)) CX\Y, hence
UNnint(X\(UNY)) =int(U) Nint(X\(UNY))
=int(U N (X\(UNY)))
Cint(X\Y), hence
X\int(X\Y) € X\ (U Nint(X\(UNY)))
= (X\U)U (X\int(X\(UNY))), hence
U N ((X\int(X\Y)) C (X\int(X\(UNY))),

and (v) follows.
(vi):

U Nint(cl(Y)) = int(U) Nint(cl(Y))
=int(U Ncl(Y))
Cint(cl(UNY)) by (v).
(vii): U € X\V, hence cl(U) C cl(X\V) = X\V, hence c(U) NV = 0, and the
conclusion of (vii) follows.

(viii): Apply (vii) twice.

219



(ix): f U € M, then U C UM C int(cl(|JM). Suppose that V is regular open and
UCViforallUe M. Then UM C V, and so int(cl(|JM)) C int(cl(V) = V. O

We let RO(X) be the collection of all regular open sets in X. We define operations on
RO(X) which will make it a Boolean algebra. For any Y, Z € RO(X), let

Y+ 7 =int(cl(YUZ));
Y. - Z=YNZ
Y =int(X\Y).

Theorem 14.5. The structure
<RO(X)7 +7 Ty T ®7 X>

is a complete BA. Moreover, the ordering < coincides with C.

Proof. RO(X) is closed under +, and is closed under -. Clearly it is closed under
—, and 0, X € RO(X). Now we check the axioms. The following are completely obvious:
(A"), (C"), (C). Now let unexplained variables range over RO(X). For (A), note that
UCU+V C (U+V)+W; and similarly V. C (U+V)4+W and W C U +V C
U+V)+W. fUV,W C Z, then U+ V C Z and hence (U + V) + W C Z. Thus
(U + V) + W is the least upper bound in RO(X) of U, V, W. This is true for all U, V, W.
SoU+ (V+W)=(V+W)+U is also the least upper bound of them; so (A) holds. For

(L):
U+U-V =int(cl(Uu(UNV))) =int(cl(U)) =U.

(L") clearly holds. For (D), first note that
Y - (Z4+ W)=Y nint(cl(ZUW))
Cint(c(Y N (ZUW)))
=int(cl((Y NZ)u (Y NnW)))
=Y -Z+Y -W.

On the other hand, (Y NZ)U (Y NW)=Y N(ZUW) CY,ZUW, and hence easily

(cl(
Cint(cl(Y) =Y and
Y- Z+Y -W=int(cl((YNZ)U (Y NW)))
Cint(c(ZUW)=Z+W,;

so the other inclusion follows, and (D) holds.
(K): For any regular open Y we have =Y = int(X\Y) = X \cl(X\(X\Y)) = X\cl(Y).
Hence

X = cl(Y) U (X\cl(Y)) C el(Y) Uel((X\cl(Y)) = cl(Y U (X\cl(Y))),
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and hence X =Y + —Y.

(K'): Clearly ) =Y Nint(X\Y) =Y - -Y.

Thus we have now proved that (RO(X),+,-, —, 0, X) is a BA. Since - is the same as
N, < is the same as C. Hence (RO(X),+,-, —, 0, X) is a complete BA. O

Now we return to our task of embedding a forcing order into a complete Boolean algebra.
Let P be a given forcing order. For each p € P let P | p={q: q < p}. Now we define

Op={X CP:(Plp) CX forevery pe X}.

We check that this gives a topology on P. Clearly P,() € €. To show that & is closed
under arbitrary unions, suppose that 2" C ¢. Take any p € |JZ . Choose X € 2
such that p € X. Then (P | p) C X C |JZ, as desired. If X,Y € Op, suppose that
peXNY. Then p e X, so (Pl p) € X. Similarly (P{p) CY,s0(Plp) CXNY.
Thus X NY € Op, finishing the proof that Op is a topology on P.

We denote the complete BA of regular open sets in this topology by RO(P).

Now for any p € P we define

e(p) = int(cl(P | p)).

Thus e maps P into RO(P).
This is our desired embedding. Actually it is not really an embedding in general, but
it has several useful properties, and for many forcing orders it really is an embedding.
The useful properties mentioned are as follows. We say that a subset X of P is dense
below p iff for every r < p there is a ¢ < r such that ¢ € X.

Theorem 14.6. Let P be a forcing order. Suppose that p,q € P, F is a finite subset of
P, a,b € RO(P), and N is a subset of RO(P)
(i) e[P] is dense in RO(P), i.e., for any nonzero Y € RO(P) there is a p € P such
that e(p) C Y.
(it) If p < q then e(p) C e(q).
(iti) p L q iff e(p) Ne(q) = 0.
(iv) If e(p) < e(q), then p and q are compatible.
(v) The following conditions are equivalent:
(a) e(p) < e(q)-
(b) {r:r <p,q} is dense below p.
(vi) The following conditions are equivalent, for F' nonempty:
(a) e(p) < [ er ela).
(b) {r:r < q forall g € F} is dense below p.
(vii) The following conditions are equivalent:
(@) e(p) < ([T,ep e(a) - S N.
(b) {r:r <gq forallq€ F and e(r) < s for some s € N} is dense below p.
(viii) e(p) < —a iff there is no ¢ < p such that e(q) < a.
(iz) e(p) < —a+ b iff for all g < p, if e(q) < a then e(q) < b.
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Proof. (i): Assume the hypothesis. By the definition of the topology and since Y is
nonempty and open, there is a p € P such that P | p CY. Hence e(p) = int(cl(P | p)) C
int(cl(Y)) =Y.

(ii): If p < g, then P { p C P | q, and so e(p) = int(cl(P | p)) C int(cl(P | q) = e(q)).

(iii): Assume that p L ¢. Then (P | p)N (P | q) =0, and hence e(p) Ne(q) = 0.

Conversely, suppose that e(p) Ne(q) = 0. Then (P | p)N (P {q) Ce(p)Nelq) =0,
and so p L q.

(iv): If e(p) < e(q), then e(p) - e(q) = e(p) # 0, so p and ¢ are compatible by (iii).

(v): For (a)=-(b), suppose that e(p) < e(q) and s < p. Then e(s) < e(p) < e(q), so s
and g are compatible by (iv); say r < s,q. Then r < s < p, hence r < p, q, as desired.

For (b)=-(a), suppose that e(p) £ e(q). Thus e(p) - —e(q) # 0. Hence there is an s
such that e(s) C e(p) - —e(q). Hence e(s)-e(q) =0, so s L ¢ by (iii). Now e(s) C e(p), so s
and p are compatible by (iv); say t < s, p. For any r < t we have r < s, and hence r L q.
So (b) fails.

(vi): We proceed by induction on |F'|. The case |F| =1 is given by (v). Now assume
the result for F, and suppose that ¢t € P\F. First suppose that e(p) < [[,cpe(q) - e(?).
Suppose that s < p. Now e(p) < quF e(q), so by the inductive hypothesis there is a
u < s such that u < g for all ¢ € F. Thus e(u) < e(s) < e(p) < e(t), so by (iv), u and ¢
are compatible. Take any v < u,t. then v < g for any ¢ € F U {t}, as desired.

Second, suppose that (b) holds for F'U {t}. In particular, {r : r < ¢ for all ¢ € F'}
is dense below p, and so e(p) < [ cpe(q) by the inductive hypothesis. But also clearly
{r :r <t} is dense below p, so e(p) < e(t) too, as desired.

(vii): First assume that e(p) < (I],cre(q)) - >° IV, and suppose that u < p. By (vi),
there is a v < u such that v < ¢ for each ¢ € F. Now e(v) < e(u) < e(p) < > N, so
0#e(v) =e(v)X N=> n(e(v)e(s)). Hence thereis an s € N such that e(v)-e(s) # 0.
Hence by (iii), v and s are compatible; say r < v, s. Clearly r is in the set described in (b).

Second, suppose that (b) holds. Clearly then {r : r < g for all ¢ € F'} is dense below p,
and so e(p) <[], cre(q) by (vi). Now suppose that e(p) £ > N. Then e(p) - —>_ N # 0,
so there is a ¢ such that e(q) < e(p)-—>_ N. By (iv), ¢ and p are compatible; say s < p, q.
Then by (b) choose < s and t € N such that e(r) < t. Thus e(r) <e(s) -t <e(p) -t <
(=> N)->_ N =0, contradiction.

(viii)=: Assume that e(p) < —a. Suppose that ¢ < p and e(q) < a. Then e(q) <
—a - a = 0, contradiction.

(vili)<=: Assume that e(p) £ —a. Then e(p) - a # 0, so there is a ¢ such that
e(q) <e(p) - a. By (vii) there is an r < p, ¢ with e(r) < a, as desired.

(ix)=: Assume that e(p) < —a+b, ¢ < p, and e(q) < a. Then e(q) < a-(—a+b) < b,
as desired.

(ix)<: Assume the indicated condition, but suppose that e(p) € —a + b. Then
e(p) - a-—b # 0, so there is a ¢ such that e(q) < e(p) - a - —b. By (vii) with F' = {p} and
N ={a-—b} we get ¢ such that ¢ < p and e(q) < a-—b. So ¢ < p and e(q) < a, so by our
condition, e(q) < b. But also e(q) < —b, contradiction. O

We now expand on the remarks above concerning when e really is an embedding. Note
that if P is a simple ordering, then the closure of P | p is P itself, and hence P has only
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two regular open subsets, namely the empty set and P itself. If the ordering on P is trivial,
meaning that no two elements are comparable, then every subset of P is regular open.

An important condition satisfied by many forcing orders is defined as follows. We say
that P is separative iff it is a partial order (thus is an antisymmetric forcing order), and
for any p,q € P, if p £ q then there is an r < p such that r L q.

Proposition 14.7. Let P be a forcing order.
(i) (P | p) = {q: p and q are compatible}.
(ii) e(p) = {q : for all v < q, r and p are compatible}.
(iii) The following conditions are equivalent:
(a) P is separative.
(b) e is one-one, and for all p,q € P, p < q iff e(p) < e(q).

Proof. (i) and (ii) are clear. For (iii), (a)=(b), assume that P is separative. Take
any p,q € P. If p < g, then e(p) < e(q). Suppose that p £ q. Choose r < p such that
r L q. Then r € e(p), while r ¢ e(q) by (ii). Thus e(p) £ e(q).

Now suppose that e(p) = e(q). Then p < g < p by what was just shown, so p = ¢
since P is a partial order.

For (iii), (b)=(a), suppose that p < ¢ < p. Then e(p) C e(q) C e(p), so e(p) = e(q),
and hence p = ¢. So P is a partial order. Suppose that p € q. Then e(p) € e(q). Choose
s € e(p)\e(q). Since s ¢ e(q), by (ii) we can choose t < s such that ¢t L ¢. Since s € e(p),
it follows that ¢t and p are compatible; choose r < ¢, p. Clearly r L q. L

Now we prove a theorem which says that the regular open algebra of a forcing order is
unique up to isomorphism.

Theorem 14.8. Let P be a forcing order, A a complete BA, and j a function mapping P
into A\{0} with the following properties:

(i) j[P] is dense in A, i.e., for any nonzero a € A there is ap € P such that j(p) C a.

(ii) For all p,q € P, if p < q then j(p) < j(q

(iii) For any p,q € P, p L q iff j(p) - j(q) =
Then there is a unique isomorphism f from RO(P) onto A such that foe = j. That is, f
is a bijection from RO(P) onto A, and for any z,y € RO(P), = Cy iff f(x) < f(y); and
foe=j.

)-
0.

Note that since the Boolean operations are easily expressible in terms of < (as least upper
bounds, etc.), the condition here implies that f preserves all of the Boolean operations
too; this includes the infinite sums and products.

Proof. Before beginning the proof, we introduce some notation in order to make the
situation more symmetric. Let By = RO(P), By = A, ko = e, and k1 = j. Then for each
m < 2 the following conditions hold:

(1) k[ P] is dense in By,.
(2) For all p,q € P, if p < q then k,,(p) <

kim (q)-
(3) For all p,q € P, p L qiff kp,(p) - km(q) = 0.
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(4) For all p,q € P, if k., (p) < kn(q), then p and ¢ are compatible.

In fact, (1)—(3) follow from the assumptions of the theorem. Condition (4) for m = 0, so
that k,, = e, is clear. For m = 1, so that k,, = j, it follows easily from (iii).
Now we begin the proof. For each m < 2 we define, for any = € B,,,

g (@) =Y {k1-m(p) :p € P, km(p) <}

The proof of the theorem now consists in checking the following, for each m € 2:
(5) If z,y € B, and x < y, then g, (z) < gm(y)-

(6) g1—m © gm is the identity on B,,.

(7) go o ko = k.

In fact, suppose that (5)—(7) have been proved. If z,y € RO(P), then

x <y implies that go(x) < go(y) by (5);
go(r) < go(y) implies that = g1(go()) < g1(g0(y)) = y by (5) and (6).

Also, (6) holding for both m = 0 and m = 1 implies that go is a bijection from RO(P)
onto A. Moreover, by (7), gooe = goo ko = k1 = j. So go is the desired function f of the
theorem.

Now (5) is obvious from the definition. To prove (6), assume that m € 2. We first
prove

(8) For any p € P and any b € B, kn(p) < b iff k1_(p) < gm (D).

To prove (8), first suppose that k,,(p) < b. Then obviously ki_.,(p) < gm(b). Second,
suppose that k1_,,(p) < gm(b) but k., (p) £ b. Thus k,,(p) - —b # 0, so by the denseness
of kn[P] in By, choose q € P such that k,,,(q) < k,(p) - —b. Then p and ¢ are compatible
by (4), so let r € P be such that r < p,q. Hence

kl—m(r) S kl—m(])) S gm<b) = Z{kl—m<5) HERS P7 km<5) S b}
Hence k1—m (1) = D> {k1—m(8) - k1—m(r) : s € P, kp,(s) < b}, so there is an s € P such that
km(s) < band ki_pn(s) - ki—m(r) # 0. Hence s and r are compatible; say t < s,r. Hence

km (t) < km(r) < km(q) < —b, but also k,(t) < k,(s) < b, contradiction. This proves (8).
Now take any b € B,,. Then

G1-m(gm (1)) =Y {km(0) : p € P, ki-m(p) < gm(b)}
= {km(p) : p € P, km(p) < b}
=b

Thus (6) holds.
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For (7), clearly k1(p) < go(ko(p)). Now suppose that kq(q) < ko(p) but k1(q) £ k1(p).
Then k1(q) - —k1(p) # 0, so there is an r such that ki (r) < k1(q) - —k1(p). Hence ¢ and
r are compatible, but r L p. Say s < g,r. Then ko(s) < ko(q) < ko(p), so s and p are
compatible. Say t < s,p. Then t < r,p, contradiction. This proves (7).

This proves the existence of f. Now suppose that ¢ is also an isomorphism from
RO(P) onto A such that g o e = j, but suppose that f # g. Then there is an X € RO(P)
such that f(X) # g(X). By symmetry, say that f(X) - —g(X) # 0. By (ii), choose p € P
such that j(p) < f(X)- - —g(X). So f(e(p)) = j(p) < f(X), so e(p) < X, and hence
Jj(p) = g(e(p)) < g(X). This contradicts j(p) < —g(X). O

From now on we assume that a dense subset of a BA does not contain 0.

Proposition 14.9. If D is a dense subset of a BA A, then (D, <) is separative.

Proof. Clearly (D, <) is a partial order. Now suppose that p,q € D and p € q. Then
p-—q # 0, so there is an r € D such that r < p-—q. Thenr <p. If s€ D and s < r,q
then s < —q also, so s = 0, contradiction. Hence r L gq. ]

Lemma 14.10. If (P,<,1) is a forcing poset, then there is a separative forcing poset
(Q,<,1) and a mapping h of P onto Q such that:

(i) x <y implies h(x) < h(y).

(ii) x and y are compatible in P iff h(x) and h(y) are compatible in Q.

Proof. We define z ~ y iff z,y € P and
Vz € P[z is compatible with x <> z is compatible with y].
Clearly ~ is an equivalence relation on P. Let Q = P/ ~. Now we define

G =qo iff  q1,q2 € Q and there exist p; € ¢; and ps € ¢o such that
Vs < p1[s and ps are compatible].

(1) [p1] =X [p2] iff ¥r < pi[r and py are compatible].

In fact, < is clear. Now suppose that [p;] < [p2]. Choose p}] and p) so that p; ~ pi,
p2 ~ ph, and Vr < p[r and p,, are compatible]. Suppose that r» < p;. In particular r and
p1 are compatible, so by p; ~ p}, r and p)| are compatible; say s < r,p}. Then s and p),
are compatible. So r and p, are compatible, and hence r and py are compatible, as desired
in (1).

We define ¢; < ¢o iff g1 < g2 and ¢1 # g2. To show that < is transitive, suppose that
[p1] < [p2] < [p3]. Take any r < p;. Then r and py are compatible by (1); say s < 7, ps.
Then s and p3 are compatible, so also r and ps are compatible. Thus [p1] < [ps]. Suppose
that [p1] = [ps]. Suppose that r and p; are compatible; say s < r,p;. Then s and p, are
compatible, so r and p, are compatible. Conversely, suppose that r» and p, are compatible.
Say s < r,ps. Then s and p3 are compatible, so by [p1] = [ps], s and p; are compatible.
So r and p; are compatible. We have shown that Vr(r and p; are compatible iff r and p
are compatible). So [p1] = [p2], contradiction. So < is transitive.
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Let h(p) = [p] for any p € P. Clearly p < ¢ implies that h(p) < h(q), using (1). Now
suppose that p; and ps are compatible. Say r < p1,pa. Then [r] < [p1], [p2]. Conversely,
suppose that [p1] and [p2] are compatible. Say [r] < [p1], [p2]. Then by (1), Vs < r(s and
p1 are compatible), and Vs < r(s and py are compatible). Choose s < r,p;; then choose
t < s,p2. Then t < p1,ps, so p1 and py are compatible.

Finally, we show that @ is separative. Suppose that [p1] € [p2]. Then by (1) there
is an r < p; such that r and py are incompatible. So [r] < [pi] and [r] and [ps] are
incompatible, as desired. 0

Lemma 14.11. Let P be a forcing order, and let () and h be given by Lemma 14.10. Then
RO(P) = RO(Q). In fact, there is an isomorphism f from RO(P) onto RO(Q) such that

f(er(p)) = eq(h(p)) for allp € P.

Proof. It suffices to show that (rng(ep), <) is isomorphic to (rng(eq), <), by page 57
of the Handbook of Boolean algebras.

(1) If ep(p) = ep(p’), then eq(h(p)) = eq(h(p')).

In fact, assume that ep(p) = ep(p’). Then by Theorem 14.6(v), {r : r < p,p’} is dense
below both p and p’. Now suppose that h(q) < h(p). Then h(q) and h(p) are compatible,
so ¢ and p are compatible. Say r < p,q. Choose s < r such that s < p,p’. Then
h(s) < h(p),h(p’). Since h(s) < h(q), this shows that {t : ¢t < h(p),h(p’)} is dense below
h(p). Similarly, it is dense below h(p’). Hence by Theorem 14.6(v), eq(h(p)) = eq(h(p")),
So (1) holds.

For each p € P define f(ep(p)) = eq(h(p)). Then f is well-defined by (1). To show
that f is one-one, suppose that eg(h(p)) = eq(h(p)). Then {r : r < h(p), h(p')} is dense
below both h(p) and h(p’)). Now suppose that ¢ < p. Then h(q) < h(p). Then choose
r with h(r) < h(q),h(p’). Then there is an s < r,q. h(s) < h(p'), so there is a t < s,p’.
Thus t < q,p,p’. This shows that {r : » < p,p’} is dense below p. Similarly it is dense
below p’, so ep(p) = ep(p’).

Clearly f maps onto rng(eq).

We have ep(p) C ep(p’) iff eq(h(p)) C eq(h(p’)) by the above argument. O

Boolean-valued models

Now let B be a complete BA. A Boolean-valued model is a triple (A, E, F') with A a class
and F and F' 2-place functions on A satisfying the following conditions, where E(a,b) is
abbreviated by [a = b] and F'(a,b) by [a € b]:

(a) [a=d] =

(b) [a =] = [b=d].

(c) [a=0b]-[b=¢c] <[a=C]

() [a€d]-[e=a]-[d=0] <[ce d].
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Then we define by recursion, where a1, ...,a, € A,

[-¢(a, ... an)]
[(¢v¢>(a17"'7an>ﬂ [[
[(¢A¢>(a17 .- '7an>]] = [[So(ab .- '7an)]] ' [[77/)(&1, .- '7an>]];
)]

[Bxe(z,aq,...,a,
Vzo(x,a,...,a,)] = H [e(b, a1, ... an)].

In any BA we define a = b= —a +b.

Now we go into the connection of Boolean-valued models with provability. For the
logic notions, we follow my notes on set theory. The following are logical azioms in the set
theoretic language. ¢, 1, x are arbitrary formulas.

(A1) o = (v = @)
) o= (@ = x)] = [(¢ = ¥) = (¢ = X)].

) (7 = ) = (¥ —= ).

) Yoi(p = ) = (Vuip — Vuix).

) © = Y if v; does not occur in .

) Elvz(vZ = v]) for i # 7.

) — (v; = v = v; = vy) for 4, j.k distinct.
) v = vj (v = vy = v, = vj) for 4, j.k distinct.
) — (v; € v, = v € vy) for 4, j.k distinct.

O) v; =v; = (v € v; = v € v;) for 4, j.k distinct.

Lemma 14.12. If ¢ is a logical aziom and b € A, then [p(b)] = 1.
Proof.
(A1):

[ = (¥ — )] = ([¢] = ([¥] = [¢]))

= —[o] + —[¥] + [¢]
— 1.

(A2):

[le—= @ —=x)] =g —=9) = (=] =
— [=lel + =[L[+Dx] + = (=[] + [¥]) + —l¢] + [x]

= [l - [¥[ = Ix] + [¢] - =[] + —[¢] + [X]

=[] - [¥[ = [xX] + [l - [0 D] + [] - =[] + =[] + [X]
[l - [¥[+1e] - =[] + —[¢] + [X]

-1
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(A3):

[(mp = =) = (¥ = o)l = =(= = [e] + =[¥]) + =[¥] + [#]
= —[ol - [¥] + =[] + [l

= —le] - [+ l¢] - [¥]+ -] + [¢]
= 1.

(A4):

[[Te(@) = v(@)]- [[le(@)] = [T (~le@] + @D - [] L]

acA acA acA acA

< [T (@]

acA

Now (A4) follows.
(A5): For v; not occurring in ¢:

[p(a) = Yoip(v)] = [p(@)] = [] [p(a)]

a€EA
= [¢(a)] = [¢(a)] = 1.
(A6): For i # j;
[Foi(vi =a)] =) [b=a]] =1.

beA

(AT7): for i, j.k distinct, using (b) and (c),
[a=b]-la=c]=[b=a]-la=c] <[b=]

(A7) follows.
(A8): for i, j.k distinct, using (c),

(A9): using (d):

[a=0]-Jaec] <[be]
(A10):

[a=0] [cea] <[ceb]

O

Now a logical proof is a finite sequence (o, . . ., ©m—1) of formulas such that for each i < m

one of the following conditions holds:

(I1) p; is a logical axiom
(I2) There are j, k < i such that ¢; is the formula ¢, — ¢;.
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(I3) (generalization) There exist j < ¢ and k € w such that ¢; is the formula Vo, ;.

We write - ¢ if there is a logical proof with last entry .

Theorem 14.13. If - ¢ then for any b € A, [¢(b)] = 1.

Proof. Let (o, ..., pm_1) be alogical proof. We prove by induction that [¢;(b)] = 1
for all b € A and all i < m. Suppose it is true for all j < 1.

Case 1. @; is a logical axiom. Then [p;] = 1 by Theorem 14.12.

Case 9. There are j, k < i such that ¢; is ¢ — ¢;. Then

[eil = lex] - (=[xl + [9:]) = 1.

Case 3. There exist j < i and k € w such that ¢; is Vorp;(vg,b). Then

[ei] = ] l)(ba,b)] =1 0
acA
Corollary 14.14. [z = y] - [¢(z)] < [¢(y)]- O

A Boolean valued model (A, E, F) is full iff for any formula ¢(z,7y) we have
Vb € A3a € Al[¢(a,b)] =]Fze(z,b)]].

If A = (A, E*, F*) is a Boolean valued model over a complete BA B and F' is an ultrafilter
on B we define

=%={(a,b):a,b€ Aand [a =1] € F}.

Lemma 14.15. E% is an equivalence relation on A.

Proof. Clearly =% is symmetric and reflexive on A. Now suppose that z =% y =% 2.
Thus [x =y],J[y=z2] € F,so[x=y] - [y =2] € F. Since [z =y] - [y = 2] < [xr = 2], it
follows that z =% 2. L

Now we define, for a,b € A/ =%, aE'b iff 3z € a3y € b[[z € y] € F).

Lemma 14.16. Vz,y € A[[z]E'[y] iff [x € y] € F].

Proof. <« is clear. Now suppose that [2]E’[y]. Choose 2/ =% z amd 3y’ =% y such

that [’ € y'] € F'. Then
[z =2"],[2" €y].ly=y]€F

so their product is in F', and this product is < [z € y], so [z € y] € F. ]
We define 21/ =% = (A4/ =%, F').
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Lemma 14.17. Let A be full. For any formula ¢(T) and any a € A,

A/ =2= o([ag], . - ., [am—1]) iff  [e(ag,...,am—1)] € F.

Proof. Induction on ¢.
Case 1. ¢ is v; = vj. Then

A/ =2k [ai] = [a;] iff  [a; = a;] € F.
Case 9. ¢ is v; € vj. Then
A/ =nk= [ai]E'laj] iff [a; € a;] € F.
Case 3. ¢ is ~). Then
A/ =FF ~¢ iff  not(A/ =Ff=¢)
iff  not([y] € F)

iff —[y]erF
iff  [-w] € F.

Case 4. ¢ is ¢ V x. Then

A/ =2 (pVy) (A =D ) or (A =2k X)
iff  ([¢] € F) or (] € F)
it [0l + (] € F
iff [ vx]€F

Case 5. (%) is Jy(y, 7). First suppose that A/ =%f= Iy (y, [ao), - - -, [am—1]). Say
2/ =2 (0], [ao), - - -, [am—1]). By the inductive hypothesis, [#(b, ag,...,am_1)] € F.

Since [¢ (b, ag, ..., am-1)] < [Ty (y,ao, ..., am—1)], it follows that

H3y¢(y, ag, - - -, am—l)]] e F.

Second, suppose that [Jy¢(y,ag,...,am-1)] € F. Since 2 is full, choose b € A such
that [y (y,ag,...,am—-1)] = [¥(b,a0,...,am—1)]. So [¥(b,ag,...,am—1)] € F. By the

inductive hypothesis, 2/ =% = ¥([b], [ao], - - -, [am—1]). Hence

A/ =5 oy [aol, -, [am-1]).
Let B be a complete BA. We define
VP = 0;
VB ={z:xisa function Admn(z)C V,” Amg(x) C B};
VWB = U V.E  for v limit;

a<ly
B _ B
VE = U VB,
ac€ON
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For z € VB we define p(z) = least afz € VP ].
Now we define by recursion on (p(z), p(y)) under the canonical order:

[ceyl= Y (=1 y®));

tedmn(y)

[sCyl= ][] (&) =Tteul;

tedmn(z)
[z=y] =[xz Cy] [y Cz],

Lemma 14.18. Vz € VB([[z = z] = 1].
Proof. It suffices to show that ||« C z|| = 1, which we do by induction:

lecall= J] k@=ltecadl= ]I |=0= > llt=sll (s)

tedmn(z) tedmn(z) s€dmn(z)
> [ oO=Ut=t-2@®)]= [ [&®)=z0]=1 0
tedmn(x) tedmn(x)

Lemma 14.19. Define aRj iff o, B € 3ON and one of the following holds:
(i) max o < max 3.
(i) max o = max 8 and ag < fp.
(i4i) max o = max 8 and ag = By and a1 < fi.
(iv) maxa = max f and ag = By and oy = B1 and as < Bs.

Then R is a well order of SON. [l

Lemma 14.20. Let R be as in Lemma A. If o, B € 3ON, o is a permutation of 3, i < 3,
a; < Bo(iy, a5 = Bg(jy for j # i, then aRp.

Proof. If maxf8 = B, > By for j # i, then maxa < maxf, so aRf. If
max 3 = f3,(;) for some j # i, then max a = max 8 and aRRf3. O

Lemma 14.21. For all z,y,z € VB,
(1) [r=y] - [y=2] <[v=2]
(i) [z € y] - [x = 2] < [z €yl
(i) [y € ] - [z = 2] < [y € 2].

Proof. It suffices to prove the following:

(i) [Jwo = wi|| = [fwr = woll,

(ii) ||we(0) = wo)l] - [|we1) = wWe@) || < [|we0) = We(2)|| for any permutation o of 3.
(iii) [|we(0) € Won)|] - [ We(0) = Wo(2)|| < ||Wo(2) € W1yl for any permutation o of 3.
(iv) [lwe(0y € wel| - [|we) = We2)|] < [|we(0) € We(2)|| for any permutation o of 3.

(i) is clear. Now we prove (ii)—(iv) by induction on the triples (p(wp), p(w1), p(ws)).
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To prove (ii), let o be any permutation of 3 and let x = wq(0), ¥ = Wo(1), 2 = We(2)-
We first show that if t € dmn(y) then

(1) (@(t) = [t € yl]) - [ly = 2| < (2(t) = ||t € =]])

In fact,
(x(t):>||t€y||)'||y=Z||=(—x(t)+llt€y||)'||y=2||
—x(t) - lly = 2l + [t € yl[ - |ly = 2]
< —z(t) + [t €zl by (iv)
=z(t) = ||t € 2||.

This proves (1). Hence

leCyll-lly==1= [ (@®=lteyl)-ly==
tedmn(y)
< I @& =litez)=lczl
tedmn(y)

Next, if t € dmn(z), then

(2) (z(t) = [t €yl - [lz =yl < (2(t) = [|t € ]|
In fact,
(z(t) = [t €yl - llz =yll = (=2@) + |t € yl[) - [z = y]]

—2(t) - [lz =yl + [t €yl - [lz = y]|
@) - llz =yl + It € yll - lly = |
(t)

) =

—Z

| /\

t)+ ||t € z|| by (iv)
|t € x|

—Z

= z(t
Here we appied (iv) to (z,y, ), thus to wo o o (0,2). So (2) holds. It follows that

lzCyll-lle=yll= ] GO=Iltecyl llz=yl
tedmn(z)

< II lteal=l=cal.

tedmn(z)

Hence
le =yl lly =2l < llz C ol - Ily = 2I| < lla C =]

and
e =yll-lly = 2Il <12 S yll - llx = yl| <[] S al .
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Hence ||z = y||- ||y = z|| < ||z = z||. Thus (ii) holds.
For (iii), again let o be any permutation of 3 and let x = wq (o), ¥ = We(1), 2 = We(2)-
Then

leeyll-lle==2= Y llz=¢t|lz==|

tedmn(y)

= > llz=all-lle=t

tedmn(y)

< > ==t by (i)
tedmn(y)

= [lz e yll.

For (iv), again let o be any permutation of 3 and let = wq (o), ¥ = Wo(1), 2 = Wo(2). If
t € dmn(y), then

B) Mz =¢t-y(@) (=y@) + ||t € 2|) < |lx =t - [|t € 2| = ||t € 2| - ||t = z[| <[]z € z]]
by (iii) applied to (y, z, x), thus to w oo o (0, 1,2). Hence

|z e yll-lly =2l < llz € yll-ly € =]

= > Uz=tl-y@®) ] I @t =ltez=l

tedmn(y) tedmn(y)

= > |llz=dl-y@)- ] (—y@) +Iltezl)

tedmn(y) tedmn(y)
< ||z € 2| [

Corollary 14.22. V? is a Boolean-valued model.

Proof. In the definition, (c) is given by Lemma 21(i). For (d),

|z e yll-[lo= 2zl [lw =yl = [z € y[| - lly = wl] - [Jv = =]|
<||lx € w||-||[v==x|| by Lemma 21(iii)
= ||z € wl[ - [[z = v]]
<||lv € w|| by Lemma 21(ii) O

Lemma 14.23. VB is extensional, in the sense that
VX, Y[Vulue X <ueY]|—-X=Y]]=1
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We have

VX, YNVulue X < ueY] > X=Y]]=
[[ Muue X o uey]—X=Y].
X,YevB
Hence it suffices to take any X,Y € V¥ and show that
Vulue X < uecY]] <[X =Y].

Here the following argument suffices:

Vulue X sueY]|= [] [FacXVacY|
acVB

= [ (~lle e X||+llacY])
acVB

=TI |- X Ula=cl X(©)+llaeY]

acVB cedmn(X)

=1 II Clla=dl+-X()+llacY])

a€V B cedmn(X)

= II II Clla=cl+-X(e)+lacYl)

cédmn(X) aeVE

< JI Hlle=ell+-X(e) +lce Yl

cedmn(X)

= I &@=leceyl)

cedmn(X)
— X cvll a

Lemma 14.24. If B is a complete BA, W is a set of pairwise disjoint elements of B,
and {a, : w € W) is a system of elements of VB, then there is a b € VP such that
Vw € Ww < [b = ay]].

Proof. Let D = |J,,cy dmn(ay), and for each ¢t € D let b(t) = > {w - a,(t) : w €
Wt € dmn(ay)}.

(1) Vw € WVt € dmn(ay,)[w - b(t) = w - aq,(t)].
In fact, if w € W and t € dmn(a,,), then
w-b(t) =w- Z{v cay(t) :v e Wt €dmn(ay)} = w - ay(t)
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by the disjointness of W.
By (1), Vw € WVt € dmn(ay,)[w < (b(t) < aw(t))]. Hence for any w € W,

[bCau]= ][00 =Tt €aul)

teD

=TI (0= 3 (=1 aus)

teD sedmn(aq)

Now if ¢t € D, then w-b(t) = w - > {v-a,(t) : v € W,t € dmn(a,), and this is 0 unless
t € dmn(a,), in which case it is w - a,,(t); and then w - a,(t) < [t = t] - aw(t). So
w-b(t) < 3 camn(ay) ([t = 8] - aw(s)). This gives w < [b C ay].

Also, for any w € W,

[aw SOl =] (aw(t) =) ([t=+] ~b(s)> :

tedmn(a,) s€D

For any ¢ € dmn(a,,) we have w-a,,(t) = w-b(t) < [t = t]-b(t), and this gives w < [a,, C b].
L
Lemma 14.25. VB s full.
Proof. Let ¢(z,w) and b € VZ be given. Clearly for any a € V7, [¢(a,b)] <
[Fxp(z,b)]. Let ¢ = [Bzep(z,b)]. Define
D={u€B:3acVPu<[pab)]}

Then D is dense below c¢. In fact, ¢ = >,y 5[¢(d,b)], so this is clear. Let W be a
maximal disjoint subset of D. Then ¢ < > W. In fact, if ¢- — > W # 0, choose d € D
withd < c¢-—> W # 0; then d ¢ W and W U{d} is disjoint, contradicting the maximality
of W. For each w € W let a,, € VB be such that w <]¢(ay,b)]. By Lemma 14.24 let
d € VP be such that Yw € W[w < [d = a,]]. Then

Yw € Wlw < [d = aw] Je(aw, b)] <Je(d, b)]].
Hence ¢ < S°W <]Jp(d,b)]. O

Lemma 14.26. [Jy € z¢(y)] = Zyedmn(x)(w(y) Je(y)])-
Proof.

[By € zo(y)] = [Byly € = A p(y)]]
= > lacznrp(a)]

acVB
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= (( 3 ([[at]]-x(t))) -[[so(a)]])
acVB tedmn(x)
=Y > (la=1 =) [¢)])

a€V B tedmn(x)

Y. > ([a=t-xt) [pa)])

tedmn(z) acVE

> Y ([r=1-2(0) - [e0)])

tedmn(x)

= Y (@®)-e®]

tedmn(x)

Now by Lemma 14.25 choose a € V& such that [Jyly € 2 A p(y)]] = [a € © A p(a)]. Then

[Fyly € z A p)]] = [a € 2 Ap(a)]
= [a € 2] - [p(a)]

( 3 ([[at]]-x(t») e(a)]

tedmn(z)
= Y (la=1-z()-[p)])
tedmn(x)
= Z ([a=1t] - x(t) - [(t)]) by Theorem 14.14
tedmn(x)
< Y @0)-le®]D)
tedmn(zx)
Together with the above that gives the desired result. L

Lemma 14.27. [Vy € z0(y)] = [, cdmn() (@) = [e»)])-
Proof.

[Vy € zo(y)] = [Vyly € = = ¢(y)]]
=[] (v € 2l = [e@))

= —[3y € 2-p(y)]
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== Y (@) —lew])

yEdmn(z)

= [I @ =lew.

yEdmn(z)
Now we define @ for any set a: dmn(a) = {y: y € a}, and for any y € a, a(y) = 1.

Lemma 14.28.
(i) [ Cgl=1or [z C gl =0;
(it) [ C gl =1 iffx Cy.
(i) [t € g] =1 or [E € g] =0;
(w) [ €y =11iffrey.

Proof. We prove these statements by simultaneous induction.

[tcyl=1 iff JJ@@=I[ecg)=1

tex
iff vVt e z[[t € y[=1]
iff vVt e z[t € y]

iff  x Cuy;

In the first equation, by the inductive hypothesis, [f € ¢] is either 0 or 1; so [# C ¢[=1 or

[# C g] = 0. Next,

(i) =1

¢
=

[tegl=1 iff > ([i=

tey
iff Jtey[[t=1{=1andtecy
iff Jteylx=tandt ey
iff zey.

As above, [Z € §] =1 or [ € y[= 0.

Lemma 14.29. For any Ag formula ¢,
(i) [e(z,...)] =0 or [p(z,...)] =1;
(ii) o(z,...) iff Je(z,...)] = 1.

Proof. Induction on ¢.

Case 1. ¢ is & = gy. See Lemma 14.28.

Case 2. ¢ is € . See Lemma 14.28.

Case 3. ¢ is ). Clearly then [p(Z,...)] =0 or [¢(Z,...)] = 1. Further,

o(x,...) iff not ¥(z,...) iff not([¢(z,...)] = 1) iff [¢(&,...)] = 0 iff Je(Z,...)] = 1.
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Case 4. ¢ is 1 A x. Clearly then [p(Z,...)] =0 or [¢(Z,...)] = 1. Further,

o(z,...) iff Y(x,...)and x(z,...)
iff  [o(z,...)]=1and [x(&,..)] =1
iff  [o(z,...)] =

Case 5. ¢ is ¥ V x. Similar to Case 4.
Case 6. ¢ is Jy € z(z,y,...). Then

By € #p(,y,.. )] =1 iff > (@@ &g )] =1

yEdmn(z)

iff  not > @®) - W@, g,..)] =0

yedmn(z)

iff  not ([Fy € zv(Z,y,...)] =0).

Moreover,
Jy € xp(x,y,...) it Jyex(vz,y,..)]=1)
ittt > @@ g, ) =1
yedmn(z)
iff  [3y € a(z,y,.. )] =1
Other cases can be derived from the above. OJ

Corollary 14.30. If ¢ is X1 and ¢ holds, then [¢] = 1.

Proof. Say ¢ < Jxep(z,b) with ¢ Ag. Choose a so that 1)(a,b). Then by Lemma
14.29, [¥(a, bo, . .-, bm—1)] = 1. so [¢] = 1. O

Lemma 14.31. Replacement is equivalent on the basis of the other axioms to the following
statement:

YVwy, ..., w,[VXIYVu € X [Fvp(u, v, wy,...,w,) = Jv € Yo(u,v,ws,...,w,)l,

where ¢ is a formula with free variables among w,v, w1, ..., Ws,.

Proof. First assume replacement. Let wq,...,w,, X be given. Define

Y ={v:3Jue X[p(u,v,wr,...,w,) and
Vz[e(u, z,wq, ..., w,) — rank(v) < rank(z)]]}.

By the replacement axiom, Y is a set. Suppose that v € X and Jvp(u,v,ws,...,wy,).
Taking such a v of smallest rank, we get v € Y, as desired.
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Now assume the given statement, and suppose that A, wq, ..., w, are given, and Vz €
Adlyp(x,y, A,wy, ..., wy,). By the statement, choose Y so that

Ve € A[Fyp(x,y, A,w, ..., w,) — Jy € Yo(z,y, A, wy, ..., wy).
Clearly Y is as desired. O

Theorem 14.32. If ¢ is an aziom of ZFC, then [¢] = 1.

Proof.
Case 1. Extensionality. See Lemma 14.23
Case 9. Comprehension. Let ¢ be a formula with free variables among x, z, wy, . . ., wy,.

We want to show that

V2, wi,...,w,FyVa[z € y <> x € 2 A p]|| = 1.

We have

V2, wy,...,w,FyVe[z € y <> x € 2z A p]||

= H{||E|ny[x cycxczAl|:zw,. .., w, € VP}
So, let z,w1,...,w, € VB. we want to show that

[|FyVe[zr ey <z € 2N ¢]|| = 1.

Let dmn(y) = dmn(z) and for all t € dmn(z) let y(t) = 2(¢) - ||¢||. Then

IVzlz ey zeznglll= ] (lzeyll < llee el
zeVE

So it suffices to show that for any z € V5,

|z e yll = [l € 2] - [lol] = 1.

We have
lzeyll= > @@ -lla=th)= D (@)l [lz=t])
tedmn(y) tedmn(y)
= > ) -lell-llz=tl]) =]l € 2l - [|ll,
tedmn(z)
as desired.

Case 3. Pairing. We want to prove
||Vx,y3z[z € z ANy € 2]|| = 1;
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so, given x,y € VB, we want to prove that ||3z[zr € z Ay € 2]|| = 1. Let dmn(z) = {z,y}
with z(z) = 2(y) = 1. Then

leezll-llyezll= DY G@&-llz=t)]- > =) lly=tl)
tedmn(z) tedmn(z)
((z(2) - ||z = z[]) + (2(y) - [[= = y[]))
(@) - [ly = 2l]) + (2(y) - [ly = yl])
1.

Case 4. Union. We want to prove
||Ve/3AVY € o/Vx e Y(z € A)|| = 1.

Given o € VP, let dmn(A) = Uwedmn(er) dmn(u), and for each u € dmne and v €
dmn(u) let A(v) = 1. Then

VY € @/Vz € Y(z € A

- I (o= I w@=leean

Y edmn () zedmn(Y)
= ]I |#M= ] C@= ) (AW-lz=ul))
Y edmn (&) z€dmn(Y) uedmn(A)

Now if Y € dmn(«/ and z € dmn(Y’), then € dmn(A) and A(z) = 1. It follows that the
big product here is equal to 1.
Case 5. Power set. We want to prove

||Ve3yVz[z C oz — 2z € y]|| = 1.
So, let z € VB, Let

dmn(y) = {u € VP : dmn(u)

= dmn(z) and V¢ € dmn(x)[u(t) < x(t)]};
Vu € dmn(y)[y(u) = 1].

Now suppose that z € VB. Define dmn(z’) = dmn(z) and for any ¢ € dmn(z), 2/(t) =
x(t) - ||t € z||. Then

(1) [l < 2l = 1.
In fact,
I Cell= J[ @ =lte=l)
tedmn(z’)
= I G@O-ltezll=te=)=1

tedmn(zx)
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So (1) holds. Note that 2’ € dmn(y)
(2) If t € dmn(z), then 2(t) = ||t € z|| = 1.
In fact, if ¢ € dmn(z), then

Aty = lteall=20)= Y, (as)-Ilt=sl)>2(t) = (=(t) - [[t =t]]) = 1.
sedmn(z)

(3) llz C aff = [|z € '|l.

In fact,

lzcall= JI GO=ltezl)

tedmn(z)

= JI GO=ltea)- =)= lIte =)
tedmn(z)

= [I GO=drte]-te:=l)
tedmn(z)

= I 0= > (@) lt=sl-lte-
tedmn(z) s€dmn(z’)

= II (== > (@) -llt=sl-llse-=
tedmn(z) s€dmn(z’)

= II (== > - lt=s
tedmn(z) s€dmn(z’)

= Il GoO=1lte)
tedmn(z)

=[]z € #|l.

Now [|2 € yll = > camn(y) Y(w) - |2 = ull = ||z = 2| = [[2 C 2||, as desired.

Case 6. Infinity. @ works here.
Case 7. Replacement.

Now given X, wy,...,w, € VB, for each u € dmn(X) let S, be a set such that

e, v,wr, . wa)l =Y lp(u,v,w, . w)]l.

vES, veVE

Let dmn(Y) = U, camn(x) Su and let Y (v) =1 for each v € dmn(Y’). Then
[|Vu € X [Fvp(u,v,wr,...,w,) = Jv € Yo(u,v,wr,...,wy)ll

241



- (x<u>:»(2||so<u,v,w1,...,wn>||:»

uedmn(X) veVE
Z (Y(U)'||90(U’7U7w17"'7wn)H)

vedmn(Y)

- T (%= (X letwewn.wil=
uwedmn(X) veV?d

5 llptuwecwnl)) )

veEVB

—1.

Case 8. Foundation. Suppose that
|Vzz #0 — Jy € [z Ny = 0]]|| # 1.
Then

0# —||Ve[z # 0 — Iy € zlz Ny = 0]]||
= —|[Vz[3yly € 2] = Fyly € x AVz € y[z ¢ a]]]||

— I (( X weal)=

it \\, 5
Py} (e sl I wer=-lee o))
CE (5w

1 = 2wl o))

Choose x € VB so that

(X ealt): IT (weali= X we)-lcal)) #o

yeVvEB yeVvEB z€dmn(y)
Let y € VB have smallest rank such that
ly €|l T] (IIyEtz‘ > (y(Z)-Hzeﬂfll)>#0
ycVvB z€dmn(y)

Then

0 Alweal ] <||y'ex||:» 3 <y'<z>-||zea:||>)

y' evB ze€dmn(y’)
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(Iveall= ¥ e ll:cal)

zedmn(y)

e IT (uy’exu:» 3 <y'<z>-uzex||>)

y'eve zedmn(y")

Y. W) -llzeal)

zedmn(y)

Hence there is a z € dmn(y) such that

0#ly el J] (Hy’ew\\;‘ > (y’(Z)-HzexH))-y(2)~||26x||)

y'eve zedmn(y’)

So

lzea T (||yex||:» 3 <y<z>-||zex||>)7éo

yeVvB z€dmn(y)
contradicting the minimality of the rank of y.

Case 9. Choice. Let ¢(a, g, S) say that « is an ordinal, and ¢ is a function mapping «
onto S. Thus S is well-ordered by xRy iff z,y € S and min{¢ < o : g(§) = z} < min{{ <
o g(€) = yb.

Given X € VP let S = dmn(X) and choose «, g so that p(a, g,S). Then by Lemma
14.30, ||¢(c, g, S)|| = 1. Define f € VE by

dmn(f) = {(&,2)" : 2 € S}; Vt € dmn(f)[f(t) = 1].
Then
||f is a function A S C dmn(f) A X C rng(f) Ae(a,g,9)| = 1.
Some details on this:

(1) For any x € VP, {x}B is the function with domain {z} and value 1.

(2) For any z € VE, |[{z}B = {z}|| = 1. In fact,

{a}? = {2}l = vy € {a}°ly = a] A w € {a}7]| = [IVy € {2} [y = a]|| - ||z € {2} "]

= I ==l > llz=yll=llz=2|l|lz=z||=1.

ye{z} ye{z}

(3) For any x,y € VB, {x,y}? is the function with domain {z,y} and value 1 for each
argument.
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(4) For any =,y € VB, |{z,y}? = {z,y}|| = 1. In fact,

{z,y}" = {z, g}l = |IVz € {w,y}P(z =z Vz = y) Aw € {x, 9} Ay € {z,9}7||
=|Vze{a}Plz=aVz=y]|| ||z € {z,y}"|| - lly € {z,y}"]]
=[] Ue=all+llz=ul)- D> le==zl- > lz=yl

sefay} 2E{oy) E{ny}
= ([lz ==|[ + |z =yl]) - (ly = z[| + [ly = yl])
|z =zl + [lz = yl]) - ([lz =yl + [ly =yl

= 1.
(5) ||f is a relation|| = 1.
In fact,
|| f is a relation || = ||Vw € f3u,v[w = (u,v)]||
= I U= > lw=@v)]l
wedmn(f) u,veV B
(6)
15 € dmn(f)]| = |IVa € 53b[(a,b) € ]H
Y Y 00 It -
a€S pbeV B tedmn(f)
Now, given a € S let b = a@. Then (b,a)® € dmn(f) and ||(b,a) = (b,a)?|| = |/(a,a)

(a,a)"|] =1 by (4).
(7)

1X S g ()| = [V € X3a[(a,z) € f]||

= II > > llayerl

ze€dmn(X) aeVE yeVEB

=112 > > ley=1

€S acVB yeV B tedmn(f)

Now let # € S. Let a = %, y = z, and t = (&, 2)P. Then ||(a,y) = t|| = ||(&, )
(@, )%l = 1 by (4).

This completes the proof of Theorem 36.

Corollary 14.33. If ZFC | ¢, then [¢] = 1.
Proof. See the proofs of Theorems 14.13 and 14.32.
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Lemma 14.34. For every x € VB,

[z is an ordinal] = Z [ = a].
acON

Proof. If a is an ordinal, then by Lemma 14.30, [¢ is an ordinal] = 1. Hence by Theorem
14.14, for any x € VB,

[x =¢a] <[z =a]-[¢&is an ordinal] = [z = &] - [z is an ordinal] < [z is an ordinal].

Hence ) .on[z = @] < [z is an ordinal].
(1) {a: [a@ € ] # 0} is a set.

For, let A be this class. For each a € A we have 0 # Ztedmn(x)([[d =t] - x(t)), so there is
a t, € dmn(z) such that [& = ¢,] # 0. Define o = j iff t, = t3. Then there are at most

|dmn(z)| equivalence classes. If & = § and a # G, then [&@ =t,] - [ =ta] < [a=p] = 0.
Thus each equivalence class has size at most the supremum of the cardinalities of disjoint
subsets of B. This proves (1).

By (1), let v be such that Yo > v[[& € =] = 0]. In particular, [y € ] = 0. Now by
Corollary 35, [Vu, v[u,v ordinals — (u € vVu=vVveu)]=1. So

H [[w is an ordinal] - [v is an ordinal] = (Ju € v] + [u = v] + [v € u])] = 1.
u,veVE

Now [¥ is an ordinal] = 1. So

1 = [z is an ordinal] = ([z € 4] + [z = ] + [y € z])
= [« is an ordinal] = (Z[[x =a] + [z =7];

hence [z is an ordinal] < 3" _ [z =d] <3 conlz = d]. O

Lemma 14.35. [Jz[z is an ordinal and o(z)]] = > conle(@)].
Proof.
[3z[z is an ordinal and ¢(x)] = Z ([x is an ordinal] - [ (x)])

rxeEMP

s (( 3 [[xzd]]>'[[<ﬁ(@]]>

rzeMFP acON

=Y Y (z=dal [e)])

rzeMP acON

= > > (le=dal [p@])

rzeMP acON
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—~

S ((z uxzau)-wu)
= Z [(a)]. O

aeON

Generic sets and forcing

Generic sets and forcing can be defined for forcing orders or complete Boolean algebras. We
give both versions, and conections between them. Both versions are considered together
with a countable transitive model of ZFC,

If P is a forcing poset, a subset G of P is a filter iff 1 € G, Vp,q € Plp € G and p < ¢
imply that ¢ € G], and Vp,q € G3r € G[r < p,q].

Let M be a c.t.m. oft ZFC and let P € M be a forcing poset. We say that G is a P-generic
filter over M provided that the following conditions hold:

(1) G is a filter on P.
(2) For every dense D C P such that D € M we have G N D # 0.
Theorem 14.36. Let M be a c.t.m. of ZFC, P € M a forcing order, and p € P. Then
there is a P-generic filter over M such that p € P.
Proof. Let (D,, : m € w) enumerate all the dense subsets of P which are in M. Let
po = p. If p,, has been defined, let p,,11 < p,, be in D,,,. Then let
G={qeP:3Imewp,<dq}

Clearly G is as desired. ]
Given a c.t.m. M of ZFC, a Boolean algebra A € M, and an ultrafilter U on A (U not
necessarily in M), we say that U is M-genericiff VX € M[X CU = [[ X € U].
Proposition 14.37. U is M-generic iff VX € M[>. X e U= Jz € X NU].

Proof. =: Assume that U is M-generic, X € M, > X € U, but Vx € X[x ¢ U]. Let
Y={-2:2€X}. ThenY e MNU,so[[Y €U. But [[Y =—>_ X, contradiction.

<: Assume the indicated condition, X € M, X C U, but [[X ¢ U. So with
Y ={-2z:2 € X} we have )Y € U. Choose x € YNU. But —z € X C U,
contradiction. 0

Proposition 14.38. U is a generic ultrafilter on A iff U is a generic filter in A™.

Proof. =-: Assume that U is a generic ultrafilter on A. Clearly U is a filter on
AT, Now suppose that D C A% is dense in AT, D € M, but Vo € D[z ¢ U]. Then
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{z : —x € D} is a subset of U, so a e [[_.cp® € D. Hence a # 0. Choose x € D with

x < a. Then x < —z, contradiction.

<: Suppose that U is a generic filter in AT. Thus U is a filter on A. Suppose
that @ # 0,1. Now {z : x < a or x < —a} is dense, and it follows that a € U or
—a € U. Thus U is an ultrafilter on A. Now suppose that X € M and X C U. Let
D={ae At : 3z € X[a-2 =0or Vr € X[a < z]]}. Then D is dense in A", since if
a € AT and —Vx € X[a < 7], then there is an € X such that @ £ z and so a- —z # 0 and
a-—x < awith a-—z € D. It follows that there is an a € U such that 3z € X[a -z = 0]
orVz € X[a<z]. Ifxr € X and a-x = 0. Since X C U and a € U, this is a contradiction.
Hence Vz € X[a < z],soa <[[X and so [[ X € U. ]

Corollary 14.39. Let A € M be a complete BA in the sense of M, and a € AT. Then
there is a generic ultrafilter U on A such that a € U. O

Proposition 14.40. If G is P-generic over M, let G’ = {a € RO(P) : 3p € Gle(p) < al}.
Then G’ is a generic ultrafilter on RO(P).

Proof. We apply Proposition 14.38. Thus we want to show that G’ is a generic filter
on RO(P)*. Clearly G’ is closed upwards. Suppose that a,b € G’. Say p,q € G with
e(p) < a and e(q) < b. Choose r € G with r < p,q. Then e(r) < a-b,soa-be G'. So
G’ is a filter on RO(P)". Now suppose that D is dense in RO(P)", with D € M. Let
D' ={pe P:3z € Dle(p) < z]}. Then D’ is dense in P. For, let ¢ € P. Choose a € D
such that a < e(q). Then choose r € P such that e(r) < a. Let p be such that p < r,q.
Then e(p) < e(r) < a, sop € D'. Also, p < q. So D’ is dense in P. Choose p € D' NG.
Choose = € D such that e(p) < z. Then z € G’ N D, as desired. O

For M a c.t.m. we consider MRO(P) the interpretation of VRO() in M. For p € P and
ag, ... m_1 € MEOP®) we define

plk(ag,....am—1) iff e(p) <[elao,....am-1)].

Lemma 14.41. Let P be a forcing poset, and let QQ,h be as in Lemma 14.10.

(i) If G is P-generic over M, let G' be the filter on Q generated by h(G). Then G’ is
Q-generic over M.

(ii) If G is Q-generic over M and G’ is the filter on P generated by h=[G], then G’
1s P-generic over M.

Proof. For (i), suppose that D € M is dense in Q. Let D' = {p € P : Jq €
DIlh(p) < ¢]}. Then D’ is dense in P. For, suppose that p € P. Choose ¢ € D such that
q < h(p). Say ¢ = h(r). Then h(r) < h(p), so r and p are compatible. Say s < r,p. Then
h(s) < h(r) = q,so s € D’. So D' is dense in P. Choose p € D'NG. Say q € D and
h(p) < q. Then g € DN G’, as desired.

For (ii), suppose that D is dense in P. Let D' = {q € Q : 3p € D[q < h(p)]}. Then
D’ is dense in Q. For, let » € Q. Say r = h(p). Choose s € D such that s < p. Then
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h(s) < h(p) = r and h(s) € D', as desired. Now take ¢ € D'NG. Say p € D and q < h(p).
Then h(p) € G, so p € G’, as desired. O

It is important to realize that usually generic filters are not in the ground model M this
is expressed in the following lemma.

Lemma 14.42. Suppose that M is a c.t.m. of ZFC and P = (P,<,1) € M is a forcing
order. Assume the following:

or every p € ere are q,r € P suc atq<p,r<p,andq L r.
1) F P th P h that ¢ < < dq L

Also suppose that G is P-generic over M.
Then G ¢ M.

Proof. Suppose to the contrary that G € M. Then also P\G € M, since M is a
model of ZFC and by absoluteness. We claim that P\G is dense. In fact, given p € P,
choose ¢,r as in (1). Then ¢,r cannot both be in G, by the definition of filter. So one
at least is in P\G, as desired. Since P\G is dense and in M, we contradict G being
generic. ]

We now give several equivalent definitions of generic.
A subset E if P is open dense iff it is dense, and Vp € EVq < p[q € E]|.
E is predense in P iff Vp € P3q € E[p and ¢ are compatible].

Lemma 14.43. Suppose that M is a c.t.m. of ZFC and P is a forcing order in M.
Suppose that G C P satisfies the following condition:

(i) Vp € G¥q > plq € G].

Then the following conditions are equivalent:
(ii)) G N D # O whenever D € M and D is dense in P.
(1) G N A # O whenever A € M and A is a mazimal antichain of P.
(iv) GNE # 0 whenever E € M and E is predense in P.
(v) GN D # () whenever D € M and D is open dense in P.

Moreover, suppose that G satisfies (i) and one, hence all, of the conditions (ii)-(v). Then
G is P-generic over M iff the following condition holds:
(vi) For all p,q € G, p and q are compatible.

Proof. (ii)=-(iii): Assume (ii), and suppose that A € M is a maximal antichain of
P. Let D ={p € P :p < q for some g € A}. We claim that D is dense. Suppose that r
is arbitrary. Choose ¢ € A such that r» and ¢ are compatible. Say p < r,q. Thus p € D.
So, indeed, D is dense. Clearly D € M, since A € M. By (ii), choose p € D N G. Say
p<qé€ A Then g€ GN A, as desired.

(iii)=(iv): Assume (iii), and suppose that E € M is predense in P. By Zorn’s lemma,
let A be a maximal member of

(1) {B C P: B is an antichain, and for every p € B there is a ¢ € F such that p < ¢}.
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We claim that A is a maximal antichain. For, suppose that p L ¢ for all ¢ € A. Choose
s € F such that p and s are compatible. Say r < p,s. Hence r 1 g for all g € A, so r ¢ A.
Thus AU {r} is a member of (1), contradiction.

Clearly A € M, since E € M. So, since A is a maximal antichain, choose p € AN G.
Then choose g € E such that p < q. So ¢ € EN G, as desired.

(iv)=(v): Clearly open dense — predense. So this implication is clear.

(v)=(ii): Assume (v), and suppose that D is dense in P. Let E = {p: 3q € D[p < q|.
Clearly F is open dense, so thereisap e GNE. Say q € D with p <gq. Then g € GN D,
as desired.

Now we assume (i)—(v).

If G is P-generic over M, clearly (vi) holds.

Now asume that (i)—(vi) hold, and suppose that p,q € G; we want to find r € G such
that » < p,q. Let

D={r:rLporr Lqgorr<p,q}.

We claim that D is dense in P. For, let s € P be arbitrary. If s | p, then s < sand s € D,
as desired. So suppose that s and p are compatible; say t < s,p. If t L ¢, then ¢t < s and
t € D, as desired. So suppose that t and ¢ are compatible. Say » < ¢,q. Then r <t < p
and r <t <s,sor <sandr <p,q, hence r € D, as desired. This proves that D is dense.

Now by (ii) choose r € D N G. By (vi), r is compatible with p and r is compatible
with ¢. So r < p, q, as desired. O

Proposition 14.44. Let P be a forcing poset in M, and suppose that G is a generic
ultrafilter on RO(P). Let G' = {p € P : e(p) € G}. Then G’ is a P-generic filter over M.

Proof. Suppose that p € G’ and p < ¢. Then e(p) € G and e(p) < e(q), so e(q) € G
and hence ¢ € G'.
Suppose that D is dense in P. Then {e(p) : p € D} is dense in RO(P). Then
> pep €(p) =1 € G, so there is a p € D such that e(p) € G. Thus p € G'N D.
Hence by Lemma 14.43 it suffices to show that any elements p, ¢ € G’ are compatible.
Thus e(p), e(q) € G, so they are compatible. By Theorem 14.6(iii), p and ¢ are compatible.
]

Theorem 14.45. Let P be a forcing poset.
(i) If p Ik ¢ and q < p, then qIF .
(ii) There is no p such that p - ¢ and p IF —p.
(i1i) Yo¥pIq < plg Ik ¢ or q IF —¢].
(iv) p I- = iff there is no q < p such that q IF .
(v) plk o A iff plk @ and p - ).
(vi) p - Yap(x) iff for all & € MROP)p - o(a)].
(vii) p Ik oV iff Vg < pAr < gq[r Ik ¢ orrl- ).
(viii) p IF Jxp(x) iff Vg < pIr < qFa € MROP)[r |- p(a)).
(iz) If p Ik 3z then there is an a € MROWP) such that p IF ().

Proof. (i), (ii), (v), and (vi) are clear.
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¢], so e(p) - [¢] # 0

(iii): Suppose that ¢ and p are given. Now e(p) < 1 = [¢] + [~
) - [#] # 0. Then p and ¢

or e(p) - [¢] # 0. Wlog e(p) - [¢] # 0. Choose ¢ with e(q) < e(p
are compatible; say r < p,q. Then e(r) < [¢]. so r I [¢].

(iv): =: assume that p IF =, ¢ < p, and ¢ IF ¢. By (i), q IF =, contradiction.

<: Assume that there is no ¢ < p such that ¢ I- ¢, while p If =¢. Thus e(p) £ [¢],
so e(p) - [-¢] # 0. Then there is a ¢ < p such that e(q) < [¢], contradiction.

(vii): = Assume that p IF ¢ V ¢. Then e(p) < [¢] + [¢], so e(p) - [¢] # 0 or
e(p) - [v] # 0. Hence clearly Vg < p3r < g[r I ¢ or r |- ¢].

<: Assume that Vg < p3r < q[r IF ¢ or r I 9], but p I V1. Then e(p)-[-¢]-]-¢] #
0. Take ¢’ with e(q") < e(p) - [-¢]-]-¢] # 0, and then take ¢ < p,q’. Choose r < ¢ such
that I ¢ or r |- 9. But clearly 7 IF = and r IF =), so this contradicts (ii).

(viii): =: Assume that p Ik Jzp(x). Thus for any ¢ < p, e(q) < [Bxp(z)] =
> acamocm [p(@)]. Hence there is an @ € MROW) such that e(q) - [¢(a)] # 0, and this
easily gives the right side of the equivalence.

<: Suppose that p ¥ Jzp(x). Then e(p) - —[Fzp(x)] # 0. So we easily get ¢ < p
such that e(q) < —[Jze(x)]. For any r < g we also have e(r) < —[Jzp(z)]. Hence
e(r) - Y senmo [¢(a) 1= 0. So easily there is no @ € MROWF) such that r IF (a).

(ix): Assume that p IF Jzp(z). So e(p) < [Frp(z)]. By Lemma 27 there is a
a € MROW) such that [Fzp(z)] = [¢(a)], as desired. O

Now if B is a complete BA in M and G is a generic ultrafilter on B, for each € M B we
define ¢ by recursion:x®

2 = {y¢ .y € dmn(z) A z(y) € G}.

If P is a forcing poset in M and G is a P-generic filter over M, for each x € MROP) we
define x by recursion:

z¢ = {yc : y € dmn(z) A Jp € Gle(p) < z(y)]}-
If B is a complete BA, then the I' is the Boolean valued function defined by
dmn(I") ={ad:uw € B}; VYu e B[I'(a) = ul.
For any forcing poset P, let B = RO(P). Then the T” is the B-valued function defined by
dmn(T") = {p:p € P}; Vpe P[l'(p) = e(p)].

Now we define dmn(M) = {a:a € M}, and for any a € M, M(a) = 1. Then

Lemma 14.46. pl-a e M iff Vg < p3b e M3r < ¢[r IF a = b].
Proof.
plkae M iff e(p) <|lac M|
iff e(p) < ) lla= 0|

beM
iff Vg <p3be Mle(q) - |la=b|| # 0]
iff Vg <pabe M3Ir<qle(r) <|la=Db
iff Vg <p3be MIr<qrla=0 O
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Lemma 14.47. If G is a generic ultrafilter on B, then T'¢ = G.
Proof. T ={a%:ac G} ={a:ac G} =G. O

Lemma 14.48. If G is P-generic over M, then T, = G.
Proof. I'; = {(pc : 3¢ € Gle(q) < e(p)]} = {p: Fq € Gle(q) < e(p)]} =G.

Lemma 14.49. If G is a generic ultrafilter on B in M, then M = M.
Proof. ME ={a®:aec M} = M. O

Lemma 14.50. If G is a P-generic filter over M, then Mg = M.
Proof. Mg = {ag:a€ M} =M. O

Lemma 14.51. plke(q)” € I iff e(p) < e(q) iff Vr < p3s <r[s < q].
Proof. Note that

[e(a) € '] =) (le(a)” = e(s) T - e(s) = ela).

seP

Hence p Ik e(q)” € IV iff e(p) < e(q).
If e(p) < e(q) and r < p, then e(r) < e(q) and so there is an s < r such that s < g.
If e(p) £ e(q), then there is a t such that e(t) < e(p)-—e(q). Then there is an r < t, p,
and e(r) - e(q) = 0, hence there is no s < r such that s < q. O

Lemma 14.52. Let P be a forcing poset over M, and G P-generic over M. Let G’ be
the generic ultrafilter on RO(P) given by Proposition 14.40: G' = {a € RO(P) : dp €
Gle(p) < a}. Then for any a € MROP) qq = aC’.

Proof. Induction:
ag = {be : b € dmn(a) A3p € Gle(p) < a(®)]} = {b¢ : b € dmn(a) Aa(b) € G’} =a% . O
Lemma 14.53. If G is a generic ultrafilter on B, then Va[iC = x].

Proof. i = {3 :ycaz}={y:y €z} =u. O

Lemma 14.54. If G is a P-generic filter over M, then Vx[ig = z|.
Proof. i¢ ={jg:y€xand Ip € Gle(p) < 1]} ={y:y € z} = z. ]

For G a generic ultrafilter on B we define
MI[G) = {z% :x € MP}.
Also for G a generic filter over P we define
M[G] = {zg : x € MROPNY
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Lemma 14.55. If G is P-generic over M and G’ is the generic ultrafilter on RO(P) given
by Lemma 14.40. then M|G] = M|[G'].

Proof. M[G] = {z¢g : x € MROP)} = {2G" . g € MROP)} = M[G). O

Lemma 14.56. Let M be a c.t.m., let B € M be a complete BA in the sense of M, and
let G be a generic ultrafilter on B. Recall from Proposition 14.38 that G is a BT -generic
filter over M. Let e be the embedding of B* into RO(B™).

(1) Vb € Bt[e(b) = BT | b).

(i1) For any b € Bt let f(BT | b) =0b. Then f is an isomorphism of RO(B™) onto
B such that f o e is the identity on B™T.

(iii) Let G' = f~YG]. Then G' is a generic ultrafilter on RO(BT).

(iv) For any x € VROBY) let o/ € VB be defined by:

dmn(e’) = {y' : y € dmn(2)} and 2'(y) = f(2(y)).

Then for any x € VRO(BY) we have 26" = 2.

Proof. For (i), take any b € B*. By Proposition 14.7(i), cI(B*T | b) = {c € B" :
b-c# 0}. Hence

e(b) = int(cl(BY [ b)) =int({c € BT :b-c #0})
={deBt:B"|dC{ceB":b-c#£0}}=B"]b

For (ii), see the proof of Theorem 14.8.
(iii) is immediate from (ii).
For (iv), we have

26 = {yG/ cy € dmn(z) Ax(y) € G} = {y'¢ .y € dmn(z") A2/ (y) € (G}
={y“ ¢ e dmn(z’) A2/ (') € G} = 2'C. ]

Lemma 14.57. If G is a generic ultrafilter on B and x,y € M, then:
(i) 2% € y© iff [x € y] € G;
(i) 2% = y& iff [t =y] € G.

Proof. By simultaneous induction:

[r€y] € G iff Y (z=t]-yt) G

tedmn(y)
iff 3t € dmn(y)[([x =] - y(t)) € G]

iff 3t e dmn(y)[[zr =t] € G and y(t)) € G]
iff 3t € dmn(y)[z® =t and y(t) € G|

iff 2% e {t°:tedmn(y) and y(t) € G}
iff 2% e yY;
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[xtCy]leG iff [l coy=Teyhec

tedmn(zx)

iff Vvt e dmn(x)[z(t) e G — [t €y]) € G

iff  Vt € dmn(z)z(t) € G — t9 € y©]

iff  {t9:tcdmn(z),z(t) € G} C y¢

iff 2% CyC. ]

Theorem 14.58. If G is a generic ultrafilter on B in M, if o(zq, ..., Tm—1) is a formula,
and ag, ..., am_1 € VB, then

MG E ¢(aS,...,aS ) iff [e(ao,...,am-1)] € G.

Proof. Induction on ¢. ¢ atomic is given by Lemma 14.57.

@ is .
[-v] e G iff [¢Y]¢ G iff not(M[G] Ev) iff M[G]|E .
pisyvVx:

[wvxleG iff [Y]+[x]eG iff [¥]eGor[x]eqCG
iff M[G]Evor M|G] Ex iff M[G]EvyVx.
@ is Jxp(x):
Pry(@)] € G itf ) [d@)]ed
iff 3z e MP[[y(z)] €
iff 3z e MB[M[G] k= (x%)]
iff  M[G] & Tz (z). O

Theorem 14.59. If G is a generic filter on M, ¢(zg,...,Tm—1) s a formula, and
ao, ..., am_1 € VROWP) then

MI[G] E p(ag,--.yam—1) iff TpeGplkplag,...,am—1).

Proof.

MIG] = plao, .., am—1) iff  [p(ao,...,am-1)[€ RO(P)
iff IpeGplkplag, ..., am-1)-

Here we use Theorem 14.58 and the fact that [p(ag,. .., am—1) is the sum of all e(p) below
it. L
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Theorem 14.60. For G a generic ultrafilter on B € M, M|G] is a model of ZFC.

Proof. If ¢ is an axiom of ZFC, then by Theorem 14.32; [¢] = 1 € G. By Theorem
14.59, M[G] k= . O

Theorem 14.61. For G a generic ultrafilter on B € M, M[G] is transitive, M C M|[G],
and G € M|G].

Proof. If z € y € M[G], say y = a®. Now a% = {b% : b € dmn(a) and a(b) € G}, so
r = b% € M[G] for some b. So M|G] is transitive. Now by Lemma 14.53, for any a € M
we have a% = a; so M C M[G]. By Lemma 14.47, G € M|[G]. ]

Theorem 14.62. M and M[G| have the same ordinals.

Proof. By absoluteness, ordinals in the sense of M or in the sense of M|[G] are
really ordinals. Since M C M[G] by Theorem 14.54, every ordinal in M is in M[G]. Now
suppose that x is an ordinal in M[G]. Say z = a®. Thus M[G] | “a® is an ordinal”, so by
Theorem 14.58, [a is an ordinal] € G. By Lemma 14.34, > .onJe = &] € G; the sum is
taken in M, so the a’s are in M. Hence there is an ordinal o € M such that Ja = ] € G.
Then by Theorem 14.58, a® = . O

Theorem 14.63. () If N is a transitive model of ZFC and MU{G} C N, then M[G] C N.

Proof. The mapping a — a% is absolute. L

Lemma 14.64. Let G be P-generic over M. Let p(w) be a formula, and ag,...,Qm—1 €
MROP)  Then p - @(ag, ..., am—1) iff for every G which is P-generic over M, if p € G
then M[G] = p(aoa, - - - m-1)c)-

Proof. =-: Assume that p IF ¢(ag,...,am—1), and suppose that p € G. Then by

Theorem 14.59, M[G] = p(aog, - - -, G(m-1)c)-
<«: assume the indicated condition, but p Iff ¢(ag,...,am—1). Thus

e(p) ’ _[[Qp(a()v R am—l)]] 7£ 0,

so we easily get ¢ < p such that ¢ IF =p(ag, ..., am—1). Let G be generic with ¢ € G. Then
by the = already proved, M[G] = ~¢(aog; - - -, a(m-1)c). But p € G, so this contradicts
our condition. ]

Lemma 14.65. Suppose that « is a limit ordinal, k and \ are reqular cardinals, f : k — «
is strictly increasing with rg(f) cofinal in o, and g : A — « 1is strictly increasing with
rng(g) cofinal in o. Then k = .

Proof. Suppose not; say by symmetry x < A. For each { < x choose ne < A such
that f(§) < g(ne). Let p = supge,,me. Thus p < A by the regularity of \. But then
f(&) < g(p) < a for all £ < k, contradiction. O

Lemma 14.66. Let M be a c.t.m. of ZFC, P € M be a forcing order, and k be a cardinal
of M.
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(i) If P preserves regular cardinals > k, then it preserves cofinalities > k.
(ii) If P preserves cofinalities > K and k is regular, then P preserves cardinals > k.
(iii) If P preserves cofinalities, then P preserves cardinals.

Proof. (i): Let a be a limit ordinal of M with (cf(a))™ > k. Then (cf(a))M is a
regular cardinal of M which is > x and hence is also a regular cardinal of M[G]. Now we
can apply Lemma 14.65 within M[G] to k = (cf(a))™ and X = (cf(a))MIC] to infer that
(cf(a))™ = (cf ()M,

(ii): Suppose that cardinals > k are not preserved, and let A be the least cardinal of
M which is > k but which is not a cardinal of M[G]. If X is regular in M, then

A= (cE ()M = (V)M

and so A is a regular cardinal in M[G], contradiction. If X is singular in M, then A > &
since k is regular and A > k. So A is the supremum of a set S of cardinals of M which are
regular and > k, so each member of S is a cardinal of M[G] by the minimality of A, so A
is a cardinal of M[G].

(iii): follows from (ii), with kK = w. O

Now if 0,7 € M we define

dmn(up(o, 7)) = {o,7};  (up(o,7))(0) = (up(o, 7))(7) = 1;
op(a,7) = up(up(o, o), up(s, 7)),

Lemma 14.67. (i) (up(o,7))c = {oc, 7¢}-
(ii) (op(o,7))a = (0@, 7a)- O
A forcing order P satisfies the k-chain condition, abbreviated k-c.c., iff every antichain in

P has size less than k.
The following theorem is very useful in forcing arguments.

Theorem 14.68. Let M be a c.t.m. of ZFC, P € M be a forcing order, k be a cardinal of
M, G be P-generic over M, and suppose that P satisfies the k-c.c. Suppose that f € M|G],
A,Be M, and f: A— B. Then there is an F: A — P (B) with F' € M such that:

(i) f(a) € F(a) for alla € A.

(ii) (|F(a)| < k)M for alla € A.

Proof. Let 7 € M be such that 7¢ = f. Thus the statement “rg : A — B” holds
in M[G]. Hence by Theorem 14.64 there is a p € G such that

pl-7:A— B.
Now for each a € A let
F(a) = {b € B : there is a ¢ < p such that ¢ I op(a,b) € 7}.
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To prove (i), suppose that a € A. Let b= f(a). Thus (a,b) € f, i.e. op(é,b)g € 7, so by
Theorem 53 there is an 7 € G such that r I op(a, b) € 7. Let ¢ € G with ¢ < p,r. Then g
shows that b € F(a).

To prove (ii), again suppose that a € A. By the axiom of choice in M, there is a
function @Q : F(a) — P such that for any b € F(a), Q(b) < p and Q(b) I op(a,b) € 7.

(1) If b, € F(a) and b # b, then Q(b) L Q(V').
In fact, suppose that r» < Q(b), Q(b'). Then

(2) r - op(a,b) € T Aop(a, V) € T;
but also r < Q(b) < p, so r I 7: A — B, hence
r -V, y, zlop(x,y) Aop(z, z) — y = 2]
and hence
(3) rI-op(a,b) € T Aop(a, V) €T —b=1V.

Now let H be P-generic over M with » € H. By Lemma 14.67 we have (a, b) = (op(a, b))q €
7¢ and (a,b’) = (op(a,¥’) € 7¢. By (3) and Lemma 14.67 it follows that b = b’. Thus (1)
holds.

By (1), (Q(b) : b € F(a)) is a one-one function onto an antichain of P. Hence
(|F(a)] < k)™ by the k-cc. O]

Proposition 14.69. If M is a c.t.m. of ZFC, k is a cardinal of M, and P € M satisfies
k-cc in M, then P preserves reqular cardinals > k, and also preserves cofinalities > k. If
also K s reqular in M, then PP preserves cardinals > k.

Proof. First we want to show that if A > k is regular in M then also A is regular
in M[G] (and hence is a cardinal of M[G]). Suppose that this is not the case. Hence in
M|[G] there is an « < A and a function f : @ — X such that the range of f is cofinal in
A. Now a € M. By Theorem 14.68, let F' : a — Z(\) be such that f(¢§) € F(£) and
(|F(&)] < )M for all £ < a. Let S = Ug<o F'(§). Then S is a subset of A which is cofinal
in A and has size less than A, contradiction.

The rest of the proposition follows from Lemma 14.66. L

Theorem 14.70. There is a forcing poset and a G which is P-generic over M such that
M[G] |= 2% > X and M and M[G] have the same cardinals.

Proof. Let P consist of all functions p such that dmn(p) is a finite subset of wy X w
and rng(p) C {0,1}. We order P by DO. Let G be any P-generic filter over M. Any two

members of G are compatible, so f et JG is a function.

(1) dmn(f) = wa X w.

In fact, for (o,n) € wa X w let Doy, = {p € P : (a,n) € dmn(p)}. Clearly D,,, is dense.
Hence (1) follows.
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Now for each o < wy let g, € “2 be defined by g (n) = f(a,n).

(2) If a, B € we and « # B, then g, # gs.

In fact, let o, € we with a # 5. Let E = {p € P : In[(a,n), (S,n) € dmn(p) and
p(a,n) # p(B,n)]}. Clearly E is dense. Hence (2) follows.

(3) P satisfies the wi-chain condition in M.

In fact, suppose that X € [P]“! is an antichain. Define p = ¢ iff f,g € X and dmn(f) =
dmn(g). This is an equivalence relation, and each equvalence class is finite. Let Y consist
of one element from each equivalence class. So |Y| =w;. Let Z = {dmn(p) : p€ Y}. So Z
is a collection of finite sets, and |Z| = w;. By Theorem 9.20 let W € [Z]“* be a A-system.
Say x Ny = z for distinct z,y € W. Now take two distinct members dmn(p), dmn(q) of
W. We define

_ _ [ pla,n) if a,n) € dmn(p),
dmn(r) = dmn(p) Udmn(q) and r(a,n)= {q(a,n) otherwise.

Then p,q C r, so p and ¢ are compatible, contradiction. So (3) holds.
Now by (3) and Proposition 14.69, every cardinal of M is a cardinal of M[G]. U

Proposition 14.71. If {q: q IF ¢} is dense below p, then p IF .

Proof. Suppose that {q : g IF ¢} is dense below p but p I ¢. Then e(p) - —[¢] # 0.
Choose s with e(s) < e(p) - —[¢]. Say t < s,p. Choose r < t with r |- ¢. Then
e(r) <e(t) <e(s) < —[¢], contradiction.

Proposition 14.72. Suppose that G is an ultrafilter on B € M. Then G is a generic
ultrafilter on B iff for every partition W of B with W € M there is a unique a € GNW.

Proof. =: Suppose that G is a generic ultrafilter on B and W is a partition of B
with W € M. Then there is a w € GNW. Clearly w is unique.

<: Suppose that for every partition W of B with W € M there is a unique a € GNW.
Suppose that 5 X € G. Write X = {z, : a < k}. Define yo = z4 - [[5., —7p for each
a < k, and let y, = —> X. Then {y, : o < K} is a partition with > ., va =1 € G.
Choose a < k such that y, € G. Since > X € G, we have a < k. Hence z,, € G. O

Proposition 14.73. Let G be a generic ultrafilter on B over M, and A = (M5, E*, F*),
where E*(a,b) = [a = b] and F*(a,b) = [a € b], for a,b € MB. Let A/ =2 be defined as
before Lemma 14.24. Then ) =52 MIG].

Proof.
(1) If a,b € MP and a =2, then a® = b°.

In fact, assume that a,b € MP and a =}. Then [a = b] € G. By Lemma 52, a® = b°.
We define f([a]) = a®. By Lemma 52, f is one-one. It is clearly onto. [a] € [b] iff
[a € b] € G iff ag € bg, by Lemma 14.59. O
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We now give a generalization of the .

Theorem 14.74. Suppose that k and A\ are cardinals, w < kK < A, X is reqular, and for all
a < A, |[a]<F] < A. Suppose that < is a collection of sets, with each A € o of size less
than k, and with |</| > X. Then there is a % € [/ which is a A-system.

Proof.
(1) There is a regular cardinal p such that k£ < p < A.

In fact, if & is regular, we may take p = k. If £ is singular, then kKt < |[k]<"| < X, so we
may take u = KkT.

We take p as in (1). Let S = {a < A : a is a limit ordinal and cf(a) = p}. Then S is
a stationary subset of .

Let <7, be a subset of & of size \. Now ‘UAG%A‘ < A since kK < A. Let a be an
injection of (J, ¢, A into A, and let A be a bijection of A onto <. Set b, = a[A,] for
each o < A. Now if a € S, then |by, N | < |by| = |An] < k < p = cf(a), so there is an
ordinal g(«) such that sup(b, N ) < g(a) < a. Thus g is a regressive function on S. By
Fodor’s theorem, there exist a stationary S’ C S and a 8 < A such that g[S'] = {5}. For
each a € 8" let F(a) = by, Na. Thus F(a) € [B]<", and |[5]<"| < A, so there exist an
S" € [S"1* and a B € [3]<" such that b, N = B for all a € S".

Now we define (¢ : & < ) by recursion. For any { < A, ¢ is a member of S such
that

(2) oy < ag for all np < &, and
(3) 0 < ag forall 6 € U, ¢ ba,-

Since

U77<£ ban’ < A, this is possible by the regularity of .

Now let @ = A[{ag : £ < A}] and r = a™![B]. We claim that C' N D = r for distinct
C,D € &. For, write C = A,, and D = A,, . Without loss of generality, n < §. Suppose
that 2 € r. Thus a(x) € B C by, so by the definition of b, we have z € A,, = C.
Similarly x € D. Conversely, suppose that x € C' N D. Thus z € A,, N A,,, and hence
a(z) € bag N ba,. By the definition of ag, since a(r) € by, we have a(x) < ag¢. So
a(z) € ba, Nag = B, and hence = € r.

Clearly |21 | = A. O

Another form of this theorem is as follows. An indered A-system is a system (A; : ¢ € I)
of sets such that there is a set r (the root) such that A; N A; = r for all distinct 4, j € I.
Some, or even all, the A;’s can be equal.

Theorem 14.75. Suppose that k and \ are cardinals, w < kK < X, X 1s regular, and for
all « < A, |[a]<"| < . Suppose that (A; 1 i € I) is a system of sets, with each A; of size
less than k, and with |I| > X\. Then there is a J € [I]* such that (A; : i € J) is an indexved
A-system.

Proof. Define i = j iff i,j € I and A; = A;. If some equivalence class has A or more
elements, a subset J of that class of size A is as desired. If every equivalence class has fewer
than A elements, then there are at least A equivalence classes. Let &/ have exactly one
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element in common with A equivalence classes. We apply Theorem 9.20 to get a subset %
of & of size \ which is a A-system, say with kernel r. Say % = {A; :i € J} with J € [I]*
and A; # A; for i # j. Then (A; : i € J) is an indexed A-system with root . O
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15. Applications of forcing

Theorem 15.1. Let M be a c.t.m. In M let k be an infinite cardinal, and let P consist
of all finite functions p with dmn(p) C k X w and rng(p) C {0.1}, with ordering O. Let
G be P-generic over M. Let f = |JG. Then f : k X w — 2. For each a < k define
ga(n) = fla,mn). Then go # g for a # B. M and M[G] have the same cardinals. For
each a < Kk let aq = {n € w: go(n) =1}. Then aq # ag for a # 5.

(i) Va < klag ¢ M].

(i1) (220)MIC] > (iho)M.

Proof. Suppose that «, 8 < k and « # 5. Let

E={peP:3ewl(a,n),(8.n) € dmn(p)[p(a,n) # p(B,n)]

Clearly E is dense in P. Hence g, # gg and a, # ag for o # 8. By Proposition 14.69,
M and M|G] have the same cardinals. For (i), suppose that o < k and g, € M. Let
D={pe P:3ncw(a,n) € dmn(p) Ap(a,n) # go(n)]}. Then D is dense in P, and it
follows that f(«,n) # ga(n), contradiction.
For (ii),
(2NQ>M[G] _ ((2N0>NQ>M[G] > (/{N())M[G] > (/{NO)M n

Lemma 15.2. If A is a cardinal in M and G is a generic ultrafilter on B, then
@HME < (1BIM)M.

Proof. In M, let X be the set of all functions f : A — B such that for some A € M5,
Va < \[f(a) = [& € A]]. In M[G], for each f € X choose such a A, and let g(f) = Ag.
This definition does not depend on the A chosen. In fact, if A and C both satisfy the
definition, then

Va € N[a € A] = f(a) = [a € O],

and hence
Va € Na € Ag iff [ac Ale G iff [aecCle G iff acCql

SO AG = Og.

Now in M[G], Z()\) C mg(g). In fact, if A C X, choose A so that Ag = A. Define
f(a) = [a € A] for all & < X. Then g(f) = A.

Hence (2M)MIG < |X|M < (|BMM. O

Theorem 15.3. Let k be an infinite cardinal, and let P consist of all finite functions with

domain contained in k X w and range contained in {0,1}, ordered by O. Let G be P-generic
over M. Then (280)MIG] = (kxRo)M,

Proof. Let B = RO(P). Since P has ccc, we have |B| = k%°. By Theorem 15.1,
(2R0)MIG] > (xRo)M | The other inequality follows from Lemma 15.2. O
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Lemma 15.4. If I, J are sets and X is an infinite cardinal, let P be the set of all p such
that p is a function with domain a subset of I of size < X\, and range contained in J,
ordered by O. Then P has the (|J|<*)*-cc.

Proof. Let § = (|J]|<*)*, and suppose that {pe : £ < 6} is a collection of elements of
P; we want to show that there are distinct §,n < 6 such that p¢ and p, are compatible.
We want to apply Theorem 14.75 with x, A, (4; : ¢ € I) replaced by A, 6, (dmn(p¢) : £ < 0)
respectively. Obviously 6 is regular. If o < 6, then |[a]<*| < |a|<* < (|J|<N) <A = |J]<* <
0. Thus we can apply Theorem 14.75, and we get J € [0]Y such that (dmn(pg) : € € J) is
an indexed A-system, say with root r. Now |"J| < |J|<* < 0, so there exist a K € [J]?
and an f € "J such that p¢ [ r = f for all { € K. Clearly pe and p, are compatible for
any two £,n € K. ]

P is k-distributive iff the intersection of k open dense sets is open dense. Recall that open
means closed downwards.

Lemma 15.5. For P separative, P is k-distributive iff RO(P) is k-distributive.

Proof. We will apply 14.9(c), page 217, of the Handbook of Boolean Algebras.

First suppose that P is s-distributive; this direction does not need P separative.
Suppose that 2 is a collection of < k partitions of B. For each Q € 2, let Xo ={pe P:
e(p) < aforsomea € Q}. Clearly X is open. To show that it is dense, suppose that ¢ € P.
Choose u € @ such that e(q) Nu # ), and then choose r € P with e(r) < e(q) Nu. Clearly

e(r) and e(q) are compatible, so by Theorem 14.6(iii) also  and ¢ are compatible. Choose

p < 7,q. Then e(p) < e(r) <u, sope Xg. So Xg is dense open. So Y def nQeQ Xq

is also open dense. Let Z C Y be maximal pairwise disjoint. By denseness of Y, Z is a
partition of B. Clearly Z refines each Q) € 2.

Second suppose that RO(P) is k-distributive. Suppose that 2 is a collection of <
x open dense subsets of P. For each Q € 2 let Sg = {e(p) : p € Q} and let Ry be
a maximal disjoint subset of Sg. Then R is a partition of RO(P). For, suppose that
0 # u € RO(P). Choose ¢ € P so that e(q) < u. Since @ is dense, choose p € @ with
p < gq. Then e(p) € Sg, so there is a v € Rg such that e(p)-v # 0. Say v = e(r) with r € Q.
Then e(p) - e(r) # 0, so p and r are compatible. Say s < p,r. Then e(s) < e(p) <e(q) <u
and e(s) < e(r) =v. Sou-v # 0. This verifies that Rq is a partition of RO(P). If follows
that there is some partition Y which refines all Rg for Q € 2.

Now clearly (<2 is open. To show that it is dense, take any p € P. Choose u € Y
such that e(p) Nu # 0. Then choose ¢ € P such that e(q) < e(p) Nu. By Proposition
14.7(iii) (b) we have ¢ < p. We claim that ¢ € (2. For, suppose that @ € 2. Then there
is a v € Rg such that u < v. Say v = e(s) with s € Q. Then e(q) < u < v = e(r), so by
Proposition 14.7(iii)(b) ¢ < r. Hence ¢ € @, as desired. O

Lemma 15.6. Suppose that f : A — M with f € M[G]. Then there is a B € M such that
f:A— B.

Proof. Let f = 7¢ and define B = {b: 3p € Plp I [b € rng(7)]]}. The definition of B
takes place in M; so B € M. Suppose that b is in the range of f. Thus bg = b € rng(7¢),
so we can choose p € B such that p - b € rng(7). So b € B, as desired. O
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Theorem 15.7. Let k be an infinite cardinal, assume that P is k-distributive, G is P-
generic over M, and [ : k — M with f € M[G]. Then f € M.

Proof. Note the following:

(1) If A€ M[G] and A C M, then A C B for some B € M.
This is obtained from Lemma 15.6 by taking f to be the identity on A.

(2) We say that D C P is dense open below p € P iff it is open and Vg < p3r € D[r < q|.
If P is k-distributive, then for each p € P, the intersection of k sets which are dense open
below p is also dense open below p.

In fact, let Z be a collection of k sets which are dense open below p. For each D € ¥ let
D'=DU{q:p L q}. Then D’ is dense open. In fact, it is clearly open. Given r € P,

if » L pthen r € D'. If » and p are compatible, say s < r,p. Then choose t € D such

that ¢ < s. Then t € D’ and t < r. So D’ is dense open. It follows that E %' Npegy D

is dense open. We claim that (12 = EN{q: ¢ < p}. For, suppose that ¢ € (| Z. Then
VD € 9[q € D], so q € E; and clearly ¢ < p. Conversely, suppose that ¢ € F and ¢ < p.
Then for each D € 2 we have ¢ € D' and ¢ < p, so ¢ € D. Thus q € () Z.

(3) A general fact: If r I 3b € Bp(b), then there exist a ¢ < r and a b € B such that

q Ik @(b).

In fact, e(r) < [|3b € By(b )|I, so if e(r) € H with H generic over RO(P), then [[3b €
Bp(b )H € H; thus EbeB lp(b)|| € H. So there is a b € B such that ||p(b|| € H. Choose q

with e(q) < e(r),||p(b)|| € H. Say s < ¢,7. Then s < r and s I- ¢(b).

Now we turn to the actual proof. Assume that x is an infinite cardinal, P is k-distributive,

G is P-generic over M, and f : k — M with f € M[G]. By Lemma 15.6 there is a B € M
such that f: k — B. Then there exist a f € MROW) and a p € G such that fe = f and

p - f is a function mapping & into B.

For each a < & let _ 5
={¢<p:3be Blglk f(a)="b]}.

We claim that D, is open dense below p. Clearly it is open. Now suppose that » < p. Then
r Ik 3z € B[f(&) = &]. So by (3), there exist 2 € B and ¢ < r such that ¢ I+ f(&) = Z.
Thus ¢ € D,. So D, is open dense below p.

By (2), Naex Pa is open dense below p. Choose ¢ € G N(),¢,, Do Then for each

o < k there is a b, € B such that ¢ IF f(&) = by. Let g(a) = by for all & < k. But clearly
fla) =b, forall a < k,s0 f =g € M. O

P is k-closed iff every decreasing sequence py > p1 > -+ > po > -+ - with a < XA < k, has
a lower bound.

Lemma 15.8. If P is k-closed, then it is k-distributive.

Proof. Assume that P is k-closed. Let (D, : a < k) be a system of dense open
subsets of P. We claim that (1, _, D, is dense open. It is clearly open. To show that it
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is closed, suppose that p € P. We construct ¢, for o < k by induction. Let ¢y = p. If
q¢ has been constructed for all § < a with ¢¢ € D, and ¢¢ < ¢, if n < § < o, let r be a
lower bound for all g¢, and choose g, € D, with g, < r. Finally, let s < ¢, for all o < k.
Clearly s € (<, Da- O]

Lemma 15.9. In M, let k be a reqular cardinal such that 2<% = k. Let \ be a cardinal
greater than k such that \* = X\. Let P be the set of all functions p such that dmn(p) C
A X K, |[dmn(p)| < k, and rng(p) C {0,1}. The order on P is D. Let G be P-generic over

M. Define f =|\JG. Then
(i) f is a function mapping \ X k into {0,1}.

For each oo < A let
ao ={§{ <k fle,§) =1}

(ii) Yo < Nao ¢ M].

(111) If o < B < A then aq # ag.

(iv) All cardinals are preserved in M|G].
(v) In M[G], 2" = \.

Proof. (i) is clear. For (ii), suppose that &« < A and a, € M. Let D ={pe P: 3 <
K:& € aq, (a,&) € dmn(p), and p(a,x) = 0}. Clearly D is dense in P. Hence there is a
¢ < k such that £ € a, and f(a, &) = 0, contradiction.

(iii) is clear.

Now by Lemma 15.4, P has the (2<%)%-cc, i.e. by an assumption of the Lemma, the
kT-cc. Hence by Theorem 14.64, P preserves cardinals > x7. Now if A < x and ) is a
cardinal in M but not in M [G], then there exist a 4 < A and a function f € M[G] mapping
wonto A\. By Theorem 15.7, f € M, contradiction. So (iv) holds.

By (i) and (iii), A < (25)MIG], Now P = [J{¥2 : X € [\]<*} and for each such
X, |*2| < k. Moreover, |\]<®| = X\. So |P| = A. By Corollary 10.5 of the Handbook
of Boolean Algebras, |[RO(P)| = A. Hence by Lemma 15.2, (25)M[G] < X Thus (v)
holds. U

If P and @ are forcing posets we define

(p1,q1) < (p2,q2) iff  p1 < pp and ¢ < go.

Lemma 15.10. Let P and Q be forcing posets in M, and suppose that G C P x ). Then
G is (P x Q)-generic over M iff there exist G1 C P and G2 C Q such that

(Z) G = G1 X GQ.

(i) Gy is P-generic over M.

(iii) Ga is Q-generic over M|G1].

Proof. =: Suppose that G is (P x Q)-generic over M. Define

Gi1={p:lp,q) €G]} and G ={q:Il(p,q) € G}

G is closed upwards: Suppose that p € G; and p < p’. Say (p,q) € G. Then (p,q) <
(',q), so (p',q) € G and hence p’ € G;. Similarly G5 is closed upwards.
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Suppose that p1, ps € G1. Say (p1,q1) € G and (p2, ¢2) € G. Choose (ps, q3) € G such
that (ps, q3) < (p1,41), (P2, q2). Then ps € G1 and p3 < p1,p2. So Gy is a filter. Similarly
for Gs.

Clearly G - G1 X GQ.

Now suppose that (p1,p2) € G1 X Go. Since p; € Gy, choose p), such that (p1,ph) € G.
Similarly we get p} such that (pj,p2) € G. Choose (¢q1,q2) € G such that (¢q1.q2) <
(p1,p3), (p1,p2). Then (g1, q2) < (p1,p2), s0 (p1,p2) € G. Thus G = G1 x Ga.

Next, GG is P-generic over M. For, let D € M be dense in P. Then D x @) is dense
in P x @, so we can choose (p,q) € GN (D x Q). Then p € DN Gy, as desired.

Next, G is Q-generic over M[G]. For, let Dy € M[G1] be dense in Q. Say Dy €
MROWP) and Dggl = Dy. Say p1 € G1 and py I D, is dense in Q. Take any po € G5 and
let

D ={(r1,r3):r1 <pjyand r Ik 7y € DQ}.

Then D is dense below (p1,p2). For, suppose that (s,t) < (p1,p2). Thus s I- D, is dense
in Q. So sIFVt € Q3u € Dyfu < t]. In particular, s I+ Ju € Dy[u < py]. Thus by Lemma
14.26,

e(s) < > (DaAy)- [y <))

yedmn(Dy)

Hence we easily get s’ < s and y € dmn(Dy) such that e(s’) < Da(y) - [y < p2]. Now
pilF Dy CQ,and s <5< p,soe(s) < (Day) = [y € Q; hence e(s') < (Da(y) =
> ucoly = u]. So e(s’) < Dy (y) - Yucoly=1] -y < ]32]]. Hence there exist a s” < s
and a u € @ such that e(s”) < Dg(y) Ny I o] < Dg(y) [t < po]. Hence by an
earlier lemma, u < py. Also, e(s”) < [y = < [@ € Ds]. Now (s”,u) < (p1, p2)
and (s”,u) € D. So D is dense below (p1, p2).

Now (p1,p2) € G1 X G = G, so there is a (r1,r3) € GND. Now r; € G; and
r Ik 7y € Do, 80 79 € Dy N Gs. So Gy is Q-generic over M[G1].

Conversely, suppose that G; C P, Gy C Q, G = G1 x G5, G is P-generic over M,
and G is Q-generic over M[G1].

G is closed upwards: suppose that (p,q) € G and (p,q) < (p,¢’). Then p < p’ and
qg<¢,s0p € Gy and ¢ € Ga, hence (p',q') € G.

Suppose that (p,q), (p',q") € G. Choose p” € G with p” < p,p" and choose ¢’ € G4
such that ¢ < ¢q,q’. Then (p”,q") € G and (p”,q¢") < (p,q), V', ).

Now suppose that D € M is dense in P x (). Let

Dy = {ps : Ip1 € G1[(p1,p2) € D}.

= I
=
_—
< .
M
-
N

Thus Dy € M[G4].

(1) Do is dense in @

In fact, let g2 € Q. Then

(2) Dy Lot {p1 : Ip2 < @2[(p1,p2) € D} is dense in P.

In fact, suppose that p € P. Choose (s,t) € D such that (s,t) < (p,g2). Then s € D;. So
(2) holds.
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Choose p1 € G1 N Dy. Then there is a p; < g9 such that (p1,p2) € D. This proves

(1).
Choose ps € Gy N Ds. and choose p; € Gy such that (p1,p2) € D. Thus (p1,p2) € G,
and so G is (P x Q)-generic over M. O

Lemma 15.11. Let P and Q be forcing posets in M, and suppose that G C P x Q). Suppose
that G is (P x Q)-generic over M, and define G1 and G5 as in the proof of Lemma 15.10.
Then M[G] = M[Gl][GQ] = M[GQHGl]

Proof. Since G € M[G1][G2], by an earlier theorem we have M[G] C M|[G1][G3].
Also, G; € MIG], so M[G1] € MI|G]. And Gy, € MI[G], so M[G:][G2] C M[G]. So
M[G] = M[G1][Gy)]. Similarly, M[G] = M[G5][G1]. O

If (P;:i € 1) is a system of forcing posets and k is any cardinal, then we define

HPi:{PEHPi:|{i€[:pi;£1}|<w};

el i€l

<k
[[P=e]][P:Hicl:p#1}<x}
el el

For any p € [[,c; Pi let supp(p) = {i € I : p(i) # 1}.
Lemma 15.12. If P and Q are A-closed, then so is P x Q. 0

Lemma 15.13. If (P; : i € I) is a system of forcing posets, A < cf(k), and each P; is
A-closed, then H’L<€HI P; is A-closed.

Proof. Suppose that (p, : @ < A) is a descending sequence in Hf;[ P;. For each
a<Alet Mo ={i€1:py(i) # 1}, and let N =J,., My. Then |[N| < k. For each i € I
let ¢; € P; be such that Vo < A[g; < pa(i)]. We may assume that ¢; = 1 for all i € I\ N.

Hence |{i € I : q; # 1}| < k. Then Va < A\[q < pa], and q € Hf;[ P;. O

A forcing poset P has property (K) iff every uncountable subset of P has an uncountable
subset consisting of pairwise compatible elements.

Lemma 15.14. If P and Q both have property (K), then so does P x Q.

Proof. Let X C P x ) be uncountable.

Case 1. 3p € P[{q € Q : (p,q) € X} is uncountable]. Then the desired conclusion is
clear.

Case 9. 3g € Q[{p € P : (p,q) € X} is uncountable]. This is symmetric to Case 1.

Case 3. (a) Vp € P[{q € Q : (p,q) € X} is countable] and (b) Vg € Q[{p € P: (p,q) €
X} is countable]. Let Y = {p € P : Jq[(p,q) € X]}. By (a), Y is uncountable. We now
define (pa, qa) € X for a < wy, with p, € Y, by recursion. Suppose defined for all 5 < a.

Now {p € Y : 35 < a[(p,qs) € X]} is countable by (b). Hence Z def {peY V8 <
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a[(p, gs) ¢ X|} is uncountable. Take p, € Z\{ps < f < a}. Since p, € Y, choose g, such
that (pa,¢a) € X.

Then {(pa,@a) : @ < wi} is a one-one function f. Let U C dmn(f) be uncountable
and pairwise compatible. Let V' C f[U] be uncountable and pairwise compatible. Then
{(Pas o) : qo € V'} is a pairwise compatible subset of X. O

Lemma 15.15. If Vi € I[P; has property (K)], then [[;z; Pi has property (K).

Proof. Suppose that Vi € I[P; has property (K)], and suppose that X C [[;z; P; is
uncountable. Let W = {supp(p) : p € X }.

Case 1. W is countable. Then exist is a finite J C I and an uncountable W/ C W
such that supp(p) = J for all p € W’. By Lemma 15.14, [],. ; P; has property (K). Let
W" ={p | J:pe€ W} Then |W" = |[W], solet W be an uncountable pairwise
uncountable subset of W”. Now there is a subset W of W’ such that W' ={p | J:p €
W}, Clearly W™ is an uncountable pairwise compatible subset of W.

Case 2. W is uncountable. By the A-system lemma, there exist an uncountable W’ C
W and a set J such that ZNY = J for all distinct Z,Y € W’. Wlog Z # J for all X € W'.
For each Z € W' let pz € X be such that supp(pz) = Z. Let W' ={pz | J: Z € W'}.

Subcase 2.1. W' is countable. Then there exist a ¢ € [];.; P; and an uncountable
W' C W" such that pz | J =q for all Z € W', Then {pz : Z € W} is an uncountable
pairwise compatible subset of W.

Subcase 2.2. W' is uncountable. By Lemma 15.14, there is an uncountable W' C
W' such that W' consists of pairwise compatible elements. Say W' = {pz | J : Z €
W}, Then W™ is an uncountable pairwise compatible subset of W.

Corollary 15.16. If each P; is countable, then [[;.,; P; has property (K). O

Theorem 15.17. If k is reqular, A > Kk, A<" = X\, and Vi € I[|P;| < )], then erﬁj P; has
the At chain condition.

Proof. Let Q = erﬁj P; and let W be an antichain in (). For each p € W let
P’ = p | supp(p). Then for distinct p,q € W there is an i € supp(p) N supp(q) such that
p; and ¢; are incompatible. Let W’ = {p’ : p € W}. Then W' is a set of functions such
that if p,q € W are distinct, then there is an i € dmn(p’) N dmn(q’) such that p; and ¢;
are incompatible.

We assume that [W| = AT. Note that |W’'| = [W|. Let & = {supp(p) : p € W}.

Case 1. || > AT. In Theorem 14.69, replace A by AT. Va < AT[la|<F < A<F =)\ <
AT. Each member of &/ has size less than k. By Theorem 14.69 there is a Z € [/}
which is a A-system. Say J N K = L for all distinct J, K € %. Then [],., P; has size at
most A<* = X but for distinct p,q € W with supp(p), supp(q) € Z we have p [l #q | L,
contradiction.

Case 9. |o/| < A. Then there exist an L € [I|<" and a W C W' such that dmn(p) = L
for all p € W” and [W"| = A*. But then W” C [],., P; and |[],., P;| < A, contradiction.

]
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Corollary 15.18. If each P; has size at most \, with A infinite, then HZUGI Pr has the AT
chain condition.

Proof. Apply Theorem 15.17 with k = w. 0

Theorem 15.19. If X is inaccessible, k < X is regular, and Vi € I[|P;| < A], then H7,<€KI P;
has the A chain condition.

Proof. Let Q = Hf;[ P; and let W be an antichain in ). For each p € W let
p’ = p | supp(p). Then for distinct p,q € W there is an i € supp(p) N supp(q) such that
p; and ¢; are incompatible. Let W/ = {p’ : p € W}. Then W' is a set of functions such
that if p,q € W are distinct, then there is an i € dmn(p’) N dmn(q’) such that p; and ¢;
are incompatible.

We assume that |[W| = X. Note that |W'| = |W|. Let &/ = {supp(p) : p € W}.

Case 1. |«/| = A\. By Theorem 14.69 there is a # € [</]* which is a A-system. Say
JN K = L for all distinct J, K € 4. Then HieL P; has size less than A, but for distinct
p,q € W with supp(p), supp(q) € % we have p | | # q | L, contradiction.

Case 9. || < A. Then there exist an L € [I|<% and a W' C W’ such that dmn(p) = L
for all p € W” and [W"| = X. But then W"” C [[,., P; and |[],., P;| < A, contradiction.

]

Lemma 15.20. For any cardinals k, \, |[5]<*| < k<.

Proof. For each cardinal p < A define f : #x — [k]S#\{0} by setting f(z) = rng(x)
for any x € #k. Clearly f is an onto map. It follows that |[x]<#| < |#k| < k<*. Hence

W= U W=

p<X,
1 a cardinal

> K=

n<AX,
n a cardinal

< Z /i<>\

<A,
r a cardinal

S)\'/ﬁ?<>\

= r<N, O

IA

Lemma 15.21. If X is reqular, then A< = 2<*,
Proof. Note that if a < A, then by the regularity of A,

A= @Bl < D180 < > [max(a, g mex(@fl < Y " glmax(@ Al < g<h < <X

B<A B<A B<A B<A

hence the lemma follows. [l
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An index function is a function E such that dmn(FE) is a set of regular cardinals. An
Easton index function is an index function E such that:

(1) V& € dmn(E)[E(k) is an infinite cardinal such that cf(F(k)) > k.
(2) Vk, A € dmn(E)[k < A = E(k) < E(\)].

If I and J are sets and & is a cardinal, then Fn(I, J, k) = {f € [I x J]<" : f is a function}.
If E is an Easton index function with domain I and E = [], ., Fn(E(k),2, k), then the
Easton poset P(F) is defined by

peP(E) iff pelE and VA[Aregular — [{k € ANT:p(k) # L} < A
Note that 1 = 0.

Proposition 15.22. Let E be an Easton index function such that there is no regular limit
cardinal X such that there is a p € R such that |[{x € ANdmn(E) : p(k) # 1}| = A. Then
P(E) =E, with E as above.

Proof. Assume the hypothesis, but suppose that X is regular and there is a p € R
such that [{x € ANdmn(F) : p(k) # 1} = A\. Then A is a successor cardinal X, ;1. But
then [{x € ANdmn(E) : p(k) # 1}| < max(w, |a]) < A, contradiction. ]

Lemma 15.23. (Suppose that E is an Faston index function such that dmn(E) C A7,
where \ is a reqular cardinal such that 2<* = X\. Then P(E) has the AT -cc.

Proof. Say dmn(F) = 1. Let W = {p, : « < AT} C P(F); we want to show that W
is not an antichain. Thus each p,, is a function with domain I, with p, (k) € Fn(E(k), 2, k)
for each k € I. For each a < A" let D, = {(k,z) : K € I,z € dmn(ps(r))}

(1) |Da| < A for each o < AT,
In fact, let X ={r € AN :py(k) # 1}. Then | X| < A If A ¢ I, then

[Do| =) [dmn(pa (k)] = > [dmn(pa (k)] < A,
rkel rREX

since each |dmn(p,(k))| < kK < A. If A € I, then

Dol = 3 dmn(pa (r))] = 3 [dmn(pa ()] + [dmn(pa (V)] < A.

kel reX

Note by Lemmas 20 and 21 that for a < AT we have |[a]<* < A<* = 2<* = \. Hence we

can apply Theorem 14.69 with , A\ replaced by A, A™ to obtain B € [)\+]>‘+ and R such
that D, N Dg = R for all distinct o, 8 € B. Now 2|R‘ < 2<* = )\ and

B = |J{aeB:V(x,s) € Rl(pa(r))(s) = h(r, 5)]},

he@Q
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where Q = %2, so there exist distinct a,3 € B such that V(k,s) € R[(pa(r))(s) =
(pg(k))(s)]. Thus p, and ps are compatible. O

If E is an Easton index function and A is an ordinal, then EY = E | {x : K > A} and
EL =E{r:r <A}

Lemma 15.24. P(E) 2 P(E}) x P(E)).

Proof. Clearly E; and E) are Easton index functions. For any z € P(E) let
f@)=(z{r:k<A}ha|{x:k>A}). Clearly f(z) € P(Ey)xP(E)), and f is one-one
and onto. Clearly also f preserves <. 0

Lemma 15.25. Assuming GCH, if E is any Faston index function, then P(E) preserves
cofinalities and cardinals.

Proof. By Lemma 14.61 it suffices to show that every uncountable regular cardinal
in M remains regular in M[K] whenever K is P(E)-generic over M. Suppose not; say 6

is uncountable and regular in M while A o (cf(0))MIE] < 9. Thus A is regular in M[K].
Let f € M[K], f: A — 6 with sup(rng(f)) = 6.

By earlier lemmas we can write M[K| = M[H|[G] with H (P(E;"))™-generic over M
and G (P(Ey))M-generic over M[H].

Now (P(E,))M is A-closed in M. For, if a < X and (p¢ : £ < @) is decreasing in
(P(EY)M, recall that (P(E,))M C [l.craer Fn(E(K), 2, k); hence we can define (k) =
Ugca Pe(r) for all k € I with k > A and we get an extension of (p¢ : £ < ). It follows
earlier results that (P(E)))M does not add A-sequences. Hence 2<* = X in M[H] and
(P(EY)MIHE] = (P(E}))™. Now by an earlier lemma (P(Ey))M is A*-cc in M[H]. Now
by an earlier theorem there is an F' : A\ — Z2(0) such that V& < A[f(§) € F(&) and
(JF(&)] < )M Now again (P(EY))™ is A-closed in M, so by earlier theorems we get
F e M and V¢ < M(|F(€)] < M)M]. Now in M, Ug<n F'(§) is of size < A and is cofinal in
0, contradiction. O

Proposition 15.26. Assume GCH, and let E be an Faston index function with domain
I. For any infinite cardinal 0, |P(Ey )| < l.cr <o E(K)-

Proof. In fact, P(E; ) C [[.cs .o Fn(E(K),2,£). Now if k € I and £ < 6, then
[[E(k)]<"| = E(k) by (1). Hence

IFn(E(k),2,k)| = |{f : f is a function, dmn(f) € [E(x)] <", mg(f) C 2}
= [{f:3X € [B(r)]~"[f € *2]}|

- U X9

Xe[B(r)]<~

< Z 9lX|

Xe[B(r)]<*
< |B(x)].
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It follows that |P(E, )| < [l.cs <o E(5)- O

Theorem 15.27. Let M = GCH. In M let E be an Easton index function and let
P =P(E). Let K be P-generic over M. Then P preserves cofinalities and cardinals, and
M[K] = Vk € dmn(E)[2" = E(k)].

Proof. Preservation of cofinalities and cardinals is given by Lemma 15.25.

Now let k € dmn(FE). We define F; : E(k) — 2 by saying for § < E(k) that F,, () =1
iff there is a p € K such that § € dmn(p(x)) and (p(k))(d) = i. Then we define for
a < E(k) hy € "2 by defining h,(§) = Fu(k - a+ &). Clearly for any § < k the set

def {p€P:6§ecdmn(p(k))} is dense, so F,(9) is defined. If a, f € k and « # 3, then
the set

def

Nog = {p € P: 3¢ < k[w-a+¢, w-f+§ € dmn(p(r)) and (p(k))(k-a+E) # (p(k))(k-B+E)]}

is dense. It follows that h, # hg for a # 3. Hence E(x) < (2F)MIK],
(1) [P(ES)| < E(k).

In fact, by Proposition 15.26, [P(E.)| < [],c; <. [E(1)| < (E(k))~" = E(k). Now by
Lemma 15.23, P(E_ ) has the xT-cc. It follows that [RO(P(E )| < E(x). Hence by Lemma
15.2, (2°)MIK] < B(k). O

Example 15.28. In a c.t.m. M let A be an uncountable cardinal, and let P be the set
of all finite sequences of members of X\, ordered by O. Let G be P-generic over M. Then
AMIGT = (.

Proof. Assume the hypotheses, and let f = |JG. For m € w let D,,, = {p € P :
m < dmn(p)}. Clearly D is dense, so f is a function with domain w. For each o < A let
={p€ P:aecrng(p)}. Clearly E is dense, so f maps onto \. O

Lemma 15.29. Let M be a c.t.m., and in M let k < X\ be cardinals, with k reqular. Then
there is a forcing poset P such that if G is P-generic over M then:

(i) In M[G], |\| = k.

(ii) For every cardinal p < k in M, u is a cardinal in M[G].

(7i3) If X< = X in M, then every cardinal p > X in M is a cardinal in M[G].

Proof. Let P be the set of all functions p such that dmn(p) € [k]<" and rng(p) C A.
The order on P is D. Let G be P-generic over M, and let f = |JG. Clearly f maps s
onto A, so (i) holds.

P is (< k)-closed, and so by Theorem 15.7 and Lemma 14.17, (ii) holds.

If A<* = X in M, then |P| = X\. Hence P has the A*-cc, and so (iii) holds by
Proposition 14.64. ]

Theorem 15.30. Let M be a c.t.m., and in M let kK < X\ be reqular cardinals, with A
inaccessible. Then there is a forcing poset P such that if G is P-generic over M then:

(i) If k < a < A, then |o|MIE) = k.
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(i) Every cardinal < k in M remains a cardinal in M[G].
(1ii) Every cardinal > X in M remains a cardinal in M[G].
(w) M[G] E kT = \.

Proof. Let P consist of all functions with dmn(p) C A x x such that |dmn(p)| < &
and V(a, &) € dmn(p)[p(a, &) < «, with order D. Let G be P-generic over M. For each
a < Alet P, = {¢ € kxa:qis a function and |dmn(q)| < s}, with order D. For
p € G and a < A, let p'* be the function with domain {{ < k : (a,§) € dmn(p)}, with

p'(&) = p(e, §). Let Go = {p"* : p € G}.
(1) Va < A[G,, is a P,-generic filter over M].
For, first suppose that ¢ € G, and ¢ <r € P,. Say ¢ = p'* with p € G. Define s € P by

dmn(s) = {(a, &) : £ € dmn(r)} U{(B,§) € dmn(p) : B # o} and
s(a, &) =r(§) for & € dmn(r);
s(8,§) =p(8,§) for B # o and (3,€) € dmn(p).

Then p C s since if (a,§) € dmn(p) then § € dmn(p'®), and p(e, &) = p'*(§) = ¢q(§) =
r(&) = s(a,§), while if (8,£) € dmn(p) with 8 # « then p(f, 5) = s(5,¢). It follows
that s € G. Now §'* = r, for dmn(s'*) = {£ < £ : (o,€) € dmn(s)} = dmn(r), and
§*(&) = s(a, &) =r(§). Thus r € G,. So G, is closed upwards.

Now suppose that D C P, is dense. Let D' = {p € P: p'® € D}. Then D’ is dense in
P. For, suppose that ¢ € P. Choose p € D such that p < ¢’*. Clearly p € D’ and ¢ C p.
So, choose p € D' G. Then p'* € DN G,.

Next, suppose that p,q € G,. Say p = r'* with r € G and ¢ = s'* with s € G. Choose
t € G such that ¢t <r,s. Then t'* € G, and t'* < p, q.

Thus G, is P,-generic over M; (1) holds.

Let fo = |JGq. Clearly f, is a mapping of x onto .. Hence
that (i) holds.

(2) P is (< k)-closed.

|| MG MGl = £ 50

In fact, suppose that (p, : «, p) with p < & is decreasing. Clearly Ua<upa is below each
Po- Hence all cardinals p < k are preserved, by Theorem 15.7 and Lemma 15.8. So (ii)
holds.

( ) P = Ha<)\

In fact, for each p € P define h(p) setting ((h(p))(@))(§) = p(a, &) for all @« < A and € < K
such that (o, &) € dmn(p). Clearly h(p) € [], .y Pa- For any a < A

{E < w: (M) (@) (€) # 1} = [{(e,§) € A x K pla, §) # 1} <k

Thus h(p) € Ha<>\ P,. Clearly h is one-one, onto, and preseves <. Clearly Va < A[|P,| <
A]. Hence by Theorem 15.18, P has the A chain condition. Hence by Proposition 14.64,
(iii) holds.

(iv) follows from (i) and (iii). O
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A special normal tree is a set T such that for some a < w; the following conditions hold:

(i) Each t € T is is a function ¢ : § — w for some § < «a.

(ii) Vt € TVsls is an initial segment of t — s € T7.

i) VB<aft: B —swandteT and B+ 1< a— Vn e w[t™(n) € T||.

(iv) VB < aVy e [B,a)Vt[t: f wwand t €T —3Is€T[s: v — w and t C s]].
(v) V8 < al{T N Pw}| < No).

The ordinal « is the height of T. A special normal tree T} extends a special normal tree
Ts iff o < height(T))[To = {t | a: t € T} }]; we denote this by T} < Tb.

A normal Suslin tree is a Suslin tree T satisfying the following conditions:

(i) T has a unique root.
(ii) If 2 is not maximal in 7', then there are infinitely many elements at the next level.
(iii) For each x € T there is a y > x at every level above that of x.
(iv) If @ < wy is a limit ordinal, z,y € T are at level o, and {z: z <z} = {2 : 2 < y},

then z = y.

Lemma 15.31. If A is a mazximal antichain in a special normal tree T, and there is an
a < height(T) such that every member of A has domain less than «, then A is maximal
in every extension of T.

Proof. Assume the hypotheses. Let 77 be an extension of 7. Take any ¢ € T'\T.
Then t | « € T, and so there is an s € A such that s Ct [ a C ¢. ]

Lemma 15.32. Suppose that o is a countable limit ordinal, T is a special normal tree of
height o, and A is a maximal antichain in T. Then there is an extension T' of T of height
a+ 1 such that A is a maximal antichain in T'.

Proof.

(1) For each t € T there exist an a € A and a maximal chain b; of length a such that
CL,t S bt.

In fact, let t € T. Then there is an a € A such that a C ¢t or ¢ C a. Hence there is an
initial chain ¢ in T" with a,t € ¢. Now by (iv) we can construct the desired maximal chain

b extending ¢, by taking a sequence (3, : n € w) with supremum « and Sy the height of c.
Now we let 7" =T U{Jb, : t € T}. ]

Lemma 15.33. If T is a special normal tree of height wy and T has no uncountable
antichain, then T is a Suslin tree.

Proof. Suppose to the contrary that C' is a chain of length w;. We may assume that
C' is maximal, so that it has elements of each level less than w;. For each t € T choose
f(t) € T such that t < f(t) ¢ C; this is possible by (iii). Now we define (s, : @ < wy) by
recursion, choosing

54 € {t € C:supht(f(sp),T) < ht(t,T)}.
B<a
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Now (f(Sa) : @ < wq) is an antichain. In fact, if # < a and f(sg) and f(s,) are comparable,
then by construction ht(f(sg),T") < ht(sa,T’) < ht(f(sq),T), and so f(sg) < f(sa). But
then the tree property yields that f(sg) < s, and so f(sg) € C, contradiction.

Thus we have an antichain of size wy, contradiction. ]

Lemma 15.34. Suppose that G is a generic ultrafilter on B over M and 7 € MP. Let
dmn(|J' 7) = Uyedmn(r) dmn(y), and for any z € dmn(|J' 7) let (' 7)(z) = S{y(z)-7(y) :
y € dmn(7) Az € dmn(y)}. Then (U 7)¢ = 7.

Proof. Suppose that u € (|J'7)€. Then there is an 2 € dmn(|J' 7) such that u = ¢
and (J'7)(z) € G. Thus Y {y(z) - 7(y) : y € dmn(7) Az € dmn(y)} € G, so there is a
y € dmn(7) with € dmn(y) such that y(z) - 7(y) € G, hence 7(y) € G and y(z) € G. It
follows that ¢ € 7¢ and 2% € y%, so u = 2% € |J7¢.

Conversely, suppose that u = & € | J7¢. Then there is a v € 7¢ such that u € v.
Say v = y¢ with y € dmn(7) and 7(y) € G. Also z € dmn(y) and y(z) € G. So
7(y) - y(x) € G. Hence S {y(x) - 7(y) : y € dmn(7) Az € dmn(y)} = (U 7)(z) € G and so
u=2x%¢c (U 7)°. O

Lemma 15.35. Suppose that G is P-generic over M and 7 € MROWP) . Then (|J 7)¢
U7a-
Proof. Let G’ = {a € RO(P) : 3p € Gle(p) < a]}. Then (U 7)¢ = (U 1)

Ur¢ =Ure. O
Lemma 15.36. Suppose that G is a generic ultrafilter on B over M. Then ((J' T)¢ = JG.
Proof. I'® = G by Proposition 14.46, so (|J'T)¢ = JG by Lemma 1. O
Lemma 15.37. Suppose that G is P-generic over M. Then (J'T")g = JG.
Proof. I, = G by Lemma 14.47. so (J' T')g = UG by Lemma 9. O

Theorem 15.38. In M let P be the set of all special normal trees, with the indicated
order. Let G be P-generic over M. Then M|G| =G is a normal Suslin tree.

Proof.
(1) If T, T> € P, then either one is an extension of the other, or they are incompatible.

In fact, suppose that they are compatible. Say T3 < Tj,T5. Choose o and 8 so that
a, B < height(T3), Ty = {t [ a : t € T3} with o minimum, and T = {¢t [ §: t € T3} with
f minimum. By (iv), 77 has members with domain any ordinal less than «. Similarly for
T5 and B. Say a < 3. We claim that

(2)T1:{t[oz:tET2}.

(Hence Ty < T3.) For, let s € T1. Choose t € T3 such that s =¢ [ a. Then t [ § € Ty, and
(t]B)a=t]a=s. SoC holdsin (2). Conversely, suppose that t € T. Say t = s |
with s € T3. Thent [a = (s [ f) | « = s [ @ € Ty. This proves 2 in (2).
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Thus (1) holds.
Now

(3) If Ty,41 < T, for all n € w, then | T,, is a special normal tree.

ncw

This is clear. So P is Ny-closed. Hence by Theorem 15.7 and Lemma 15.8, P preserves Nj.
(4) UG is a special normal tree of height w;.

In fact, by (1) [JG is a special normal tree. By (iii) and (3), it has height w;.

Now by Lemma 15.33 it remains only to show that | J G has no uncountable antichain.
Suppose A is one; wlog it is maximal. Then there exist a name A and a T € G such that
T IF A is a maximal antichain in P. Let

D ={T' <T: there is a bounded maximal antichain A’ in 7" such that 7" |- A" C A}

We claim that D is dense below T'. For, let Ty < T'. Now
(5) T IF [A is a maximal antichain in P and |J'T” < Tp).

In fact, let Ty € H generic. Then Ty C |JH = (U'T") g by Lemma 37; so (5) holds.
Now Ty I Vs € Ty3t € Aft and s are comparable], and also Ty IF V¢ € Aft € |J'TV]. So
for each s € Tp,

e(Ty) < Z (A(y) - [5 and y are comparable) and
yedmn(A)

o)< I Ay =eJTN

tedmn(A)

hence
e(Tp) < Z (A(y) - [5 and y are comparable) - ([A(y) = [y € UT']]]
yedmn(A)

= Z (A(y) - [5 and y are comparable) - [y € U'F']]]).
yedmn(A)

Hence there is a T} < T and a y € dmn(A) such that
e(Té) < (A(y) - [$ and y are comparable) - [y € U’F'”])

So
Ty -y e AA (5 and y are comparable) Ay € UT'.

Let T} € H generic. Then yy € A, yg and s are comparable, and yy € UH. Say
T) € H and yg € T{. Let t = yy. Then T < T} and t € T}. Moreover, T}/ I+ € A.
Thus
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(6) Vs € To3T} < Ty3t € T)[s and t are comparable and T} IF i € AJ.
Repeating the argument for (6) we get for each n € w,
(7) Vs € T, 3T, 11 < T,3ts € Tyi1[s and t, are comparable and T, 41 IF £, € A]

Let Too = Upew Tn and A" = {ts : s € T} A’ is a maximal antichain in To,. Then
T I+ A’ C A. By Lemma 15,32 there is an extension T” of T, such that A’ is a bounded
maximal antichain in 7" Clearly 7" I+ A’ C A. So T’ € D. This shows that D is dense.
Choose T € DN G. Let A’ be a bounded maximal chain in 77 such that A’ C A.
Now [JG is an extension of 77. By Lemma 15.31, A = A’. Thus A is countable. O

Lemma 15.39. Suppose that k is an uncountable reqular cardinal, X € [k]<", and F is
a collection of finitary partial operations on k, with |.#| < k. Then {a < k: X C «a and «
is closed under each f € F} is club in k.

Proof. Denote the indicated set by C. To show that it is closed, suppose that « is a
limit ordinal less than «, and C'N« is unbounded in . To show that « is closed under any
partial operation f € .#, suppose that dmn(f) C ™k and a € (™a) Ndmn(f). For each

i < m choose 3; < a such that a; € ;. Since « is a limit ordinal, the ordinal ~ def UKm Bi
is still less than a.. Since C'Na is unbounded in «, choose § € C'Na such that v < §. Then
a € ™4 so, since § € C, we have f(a) € § C a. Thus « is closed under f. Hence a € C so
C is closed in k.

To show that C' is unbounded in k, take any @ < k. We now define a sequence
(Bn : m € w) by recursion. Let By = a. Having defined 3; < k, consider the set

{f(a): f € #,a € dmn(f), and each q; is in §;}.

This set clearly has fewer than x members. Hence we can take ;11 to be some ordinal
less than « and greater than each member of this set. This finishes the construction.

Let v = ;e Bi- We claim that v € C, as desired. For, suppose that f € .7, f
has domain C "k, and a € (") Ndmn(f). Then for each i < n choose m; € w such
that a; € B,,,. Let p be the maximum of all the 5;’s. Then a € ("3,) N dmn(f), so by
construction f(a) € Bp+1 C 7. ]

An wy-tree is a tree of height w; with every level countable. A tree is eventually branching
iff Vt[{s : t < s} is not a chain].

Lemma 15.40. Suppose that T = (w1, <) is an wi-tree and A is a mazximal antichain in
T. Then
{a<wy: Ty =a and AN« is a mazimal antichain in Ty}

s club in wy.

Proof. Let C' be the indicated set. Suppose that A C w; is a maximal antichain in
T. To see that C is closed in wy, let @ < wy be a limit ordinal, and suppose that C' N « is
unbounded in «. If § € Ty, then there is a v < a such that 8 € T,. Choose § € (CNa)
such that v < 4. Then g € Ts = ¢, so also f € a. This shows that T,, C a. Conversely,
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suppose that 5 € a. Choose v € C N a such that 8 < «. Then g € v =T, CT,. Thus
T, = .

To show that A N « is a maximal antichain in T,, note first that at least it is an
antichain. Now take any (8 € T,; we show that [ is comparable under < to some member
of AN a, which will show that A N « is a maximal antichain in T,. Choose v < « such
that § € T, and then choose § € (C' N «) such that v < 6. Thus g € T5. Now ANéis a
maximal antichain in T since § € C, so [ is comparable with some ¢ € (ANJ) C (ANa),
as desired.

To show that C is unbounded in x we will apply Lemma 15.39 to the following three
functions f,g,h: k — k:

f(B) = ht(B,T);
9(B) = sup(Levg(T));
h(B) = some member of A comparable with § under < .

By Lemma 15.39, the set D of all &« < k which are closed under each of f, g, h is club in k.
We now show that D C ', which will prove that C' is unbounded in k. So, suppose that
aeD. If peT,,let v =ht(5,T). Then v < o and 5 € Lev,(T"), and so 8 < g(v) < a.
Thus T, C «a. Conversely, suppose that § < «. Then f(8) < a, ie., ht(58,7T) < a,
so 8 € T,. Therefore T, = a. Now suppose that g € T,; we want to show that (3
is comparable with some member of A N «, as this will prove that A N a is a maximal
antichain in T,. Since 5 € a by what has already been shown, we have h(5) < a, and so
the element h(f) is as desired. O

Lemma 15.41. Let T = (w1, <) be an eventually branching wy-tree and let (Ay : o < wy)
be a {-sequence. Assume that for every limit o < wq, if T, = a and A, is a maximal
antichain in Ty, then for every x € Lev,(T) there is a y € A, such that y < x.

Then T is a Suslin tree.

Proof. By Lemma 15.33 it suffices to show that every maximal antichain A of T is
countable. By Lemma 15.40, the set

def . . C .
Cc= {a <w;i: T, =aand AN« is a maximal antichain in T, }

is club in w;. Now by the definition of the {>-sequence, the set {a < wy : AN = A,} is
stationary, so we can choose « € C such that ANa = A,. Now if 8 € T and ht(5,7T) > a,
then there is a v € Lev(a, T') such that v < 3, and the hypothesis of the lemma further
yields a 0 € A, such that § < 7. Since § < 3, it follows that § ¢ A. So we have shown that
for all 8 € T, if ht(8,T) > « then 8 ¢ A. Hence for any 5 € T, if § € A then 5 €T, = a.
So A C « and hence A = A,, so that A is countable. ]

Theorem 15.42. > implies that there is a Suslin tree.

Proof. Assume ¢, and let (A, : & < wy) be a {-sequence. We are going to construct
a Suslin tree of the form (wj, <) in which for each a < w; the a-th level is the set
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{w-a+m:m € w}. We will do the construction by completely defining the tree up to
heights a < wy by recursion. Thus we define by recursion trees (w - «, <), so that really
we are just defining the partial orders <, by recursion.

We let <g==<1= (). Now suppose that 8 > 1 and <, has been defined for all a < 3
so that the following conditions hold whenever 0 < o < f3:

1) (w-a,<q) is a tree, denoted by T, for brevity.
2) If y <aand &,neT,, then £ <, niff £ <, 7.
)
)

(

(

(3) For each v < o, Lev,y(T,) = {w-v+m:m € w}.

(4) If y < § < « and m € w, then there is an n € w such that w-vy+m <, w -6+ n.
(

5) If § < «, § is a limit ordinal, w - § = 0, and As is a maximal antichain in Ty, then for
every x € Levs(T,) there is a y € As such that y <, =.

Note that conditions (1)—(3) just say that the trees constructed have the special form
indicated at the beginning, and are an increasing chain of trees. Condition (4) is to assure
that the final tree is well-pruned. Conditions (1)—(5) imply that if = € T, then it has the
form w - f + m for some § < «a, and then z € Levg(T,) and for each v < (3 there is a
unique element w - v 4+ n in T, such that w-~v+n <, =.

If 8 is a limit ordinal, let <= {J,.5 <a. Conditions (1)-(5) are then clear for any
a < g.

Next suppose that g = v + 2 for some ordinal 7. Then we define

=== U{(Gw- (v + 1) +2m) 1 £ 2wy +m, m e wh
U{w-(v+1)+2m+1): {241 w-v+m, mew}.

Clearly (1)—(5) hold for all a < S.

The most important case is § = v+ 1 for some limit ordinal . To treat this case, we
first associate with each x € T, a chain B(z) in T, and to do this we define by recursion
a sequence (yy : n € w) of elements of 7. To define y§ we consider two cases.

Case 1. w-7 =~ and A, is a maximal antichain in 7. Then x is comparable with
some member z of A, and we let yg be some element of T, such that =,z <, yg.

Case 9. Otherwise, we just let y§ = x.

Now let (&, : m € w) be a strictly increasing sequence of ordinals less than 7 such that
& = ht(y§,T,) and sup,,c,, &m = 7. Now if y7 has been defined of height &;, by (4) let
yi,1 be an element of height §; 11 such that y <, y¥, ;. Then we define

B(z) ={z € w-v:2 <y yf for some i € w}.
Finally, let (z(n) : n € w) be a one-one enumeration of w - ~y, and set
<pg==y U{(z,w-v+n):new, z€ B(x,)}.

Clearly (1)—(3) hold with « in place of a. For (4), suppose that 6 < v and m € w. Let
z=w-0+m. Thus z € w -+, and hence there is an n € w such that z = x(n). Hence
z € B(xz(n)) and z <g w -y + n, as desired.
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For (5), suppose that w -y = v, and A, is a maximal antichain in T’,. Suppose that
z(n)

w € Lev,(Tp). Choose n so that w = w-y+n. Then there is an s € A, such that s < y,
So s € B(z(n)) and s <g w -y +n = w, as desired.

Thus the construction is finished. Now we let <= J,.,,, <a. Clearly T o (w1, =) is
an wi-tree. It is eventually branching by (4) and the 8 = v + 2 step in the construction.
The hypothesis of Lemma 15.41 holds by the step § = v + 1, «v limit, in the construction.
Therefore T is a Suslin tree by Lemma 15.41. O

Proposition 15.43. If (T,<) is a Suslin tree, let P = (T,>). Then elements are com-
patible in P iff they are comparable in T'. Hence P satisfies ccc. L

Lemma 15.44. If (T, <) is a normal Suslin tree, then P = (T, >) is Xq-distributive.
Proof. First note:

(1) D C T is open in P iff it is closed upwards in the sense of T'.

(2) D C T is dense in P iff YVt € T3s € D[t < s].

(3) If D C T is dense open, then Jo < w1Vt € T'[height(t) > o — t € D|.

In fact, let A be a maximal antichain in D. So A is countable. Choose o < wy so that
each member of A has height less than «. If t € D and height(t) > «, then there is an
s € D such that s < ¢, and hence t € D. So (3) holds.

Now let D,, be dense open for all n € w. Clearly (1, ., Dy is open. To show that it is
dense, take any s € T. By (3), for each n choose a,, < wy such that {t € T : height(t) >
an — t € Dy}, Let 8 = sup, ¢, @n. Then {t € T : height(t) > B} C (), c,, Dn. Since
T is normal, choose t > s with height(t) > 8. So t € [, ., Dn, proving that (", ., Dn is
dense. OJ

necw

Lemma 15.45. If (T,<) is a normal Suslin tree, then RO(P, <) is an Ng-distributive,
atomless, ccc, complete BA.

Proof. Let B = RO(P,<). By Lemma 15.44 B is Ny-distributive. To see that it is
atomless, let 0 # b € B. Choose t € T such that e(t) < b. Choose s,u distinct at the
next level above t. Then e(s),e(u) < e(t) < b and e(s) Ne(u) = 0. So B is atomless. Now
suppose that X C B is pairwise disjoint. For each b € X choose t; such that e(ty) < b.
Then t; and t. are incomparable for b # ¢. So X is countable. Clearly B is complete. 0

Let P,anq be the set of all Borel sets of reals with positive Lebesgue measure, ordered by
C.

Lemma 15.46. If A is a o-complete BA, I is a o-complete ideal in A, and A/I has ccc,
then A/I is complete.

Proof. Let B = A/I. First note that B is o-complete. For, let {[z] : € X'} be given,
with X countable. We claim that ) [z] = [>° X]. In fact, clearly [} X] is an upper
bound for {[z] : z € X'}. Suppose that [y] is any upper bound. Then Vz € X[z - —y € ],
so (D.X)-—y el Hence > X] <[yl
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Now suppose that X C B. Let X' ={a € B:a < x for some 2z € X}. Let Y C X’ be
maximal pairwise disjoint. Then > Y exists. If z € X and 2 € > Y, then - —> Y #0
and z-—> Y € X', soYU{x-—> Y} C X' is pairwise disjoint, contradicting the
maximality of Y. Hence > Y is an upper bound for X. Clearly > Y < z for any upper
bound z for X, s0 > Y =5 X. O

Lemma 15.47. Let B be the o-algebra of Borel sets of reals, and let I, be the o-ideal of
B of Lebesgue measure 0 sets. Then B/I, has ccc, and so B/I, is complete.

Proof. Suppose that ([a,] : @ < wy) is a pairwise disjoint system of nonzero elements
of B/I,. Define by = an\Ug., ap- Then

tlaa) = p(ba) + plaa N U aa) = pi(ba).

B<a

Choose a positive integer m and an uncountable subset M of wy such that p(by) > = for
all @ € M. Then pu(lJ,cps ba) = o0, contradiction. O

Lemma 15.48. RO(Pana) = B/I,, where B is the BA of Borel sets of reals and I, is
the set of b € B of Lebesque measure 0.

Proof.
(1) e(p) = {s: s\p has measure 0}.

In fact,

e(p) = int(cl(P | p))
=int({g: (P | q)N(PLp)#0})
= int({q : p and ¢ are compatible})
= {r:Vq < r[p and q are compatible})

Now to prove (1), first suppose that r € e(p), but suppose that r\p has positive measure.
Then r\p < r but p and r\p are not compatible, contradiction. Second, suppose that s\p
has measure 0. Hence for all ¢ < s, u(q¢\p) =0 and so u(gNp) >0, and so ¢gNp < p,q, as
desired.

(2) —e(p) = {r: p(rnp) = 0}.
In fact, —e(p) = int(P\e(p)) = {r: Vs < r[u(s\p) > 0} = {r: u(r np) = 0}.

Now we turn to the proof of the Lemma. For each p € P define f(e(p)) = [p]. First we use
Sikorski’s extension criterion to show that f is well-defined and extends to an isomorphism
of ({e(p) : p € P})ROWP) into B/I,. So, we want to show that

(4) e(po) N...Ne(Pm—1)N—e(qo)N...N—e(gn_1) =0
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is equivalent to
(5) PoN ... NPm_1N—qgoN...N —qpn_1 € 1.
Taking any r, we have

ree(po)N...N0e(pm_1)N—e(g)N...N —e(gn-1)
iff Vi <mfu(r\p;) = 0] and Vi < n[u(rNg;) = 0]

iff  p <U (r\pi) U U(Tm%’)> =0

<m <n

o ofo((ns)o)

iff  u(r)=p <7“ N ﬂ pi N ﬂ(P\qQ)

<m <n

Now the equivalence of (4) and (5) follows.

So f is well-defined and is an isomorphism of ({e(p) : p € P}EO®) into B/I,.
Restricted to {e(p) : p € P} onto B/I,. Since {e(p) : p € P} is dense in RO(P), the
Lemma follows. U

Lemma 15.49. For G generic over Piang, there is a unique a € R in M|G] such that
a € [r,s]™M for all rationals r < s such that [r,s]M € G.

Proof. Note that R = J{[r,s]™ : r,s € Q,r < s} € G, so there are rationals
r < s such that [r,s]™ € G. We define ([r;,s;]™ : i € w) by recursion. Let [rq,so]M =
[m, m+1]M such that m € Z and [m,m+1]™ € G. If [r;, s;]™ € G has been defined, then

M M
[, 5] M = [Ti, 7“7;‘;87;] U [Ti;Si’Si:| 7

and

M M
D% {p:pg [n%} or p C |:r2_£82731} }

is dense, so we can define

e 255" it i, 5420 < 6,

[7“7;+1,81+1]M = g M . g M

2 s R
Note that each r;,s; € M, but the sequence (r; : i € w) is not. Now (r; : i € w) is
Cauchy, so it has a limit a. Suppose that u < v are rationals with [u,v] € G and
a ¢ [u,v]M. Say a < u. Then there is an i such that s; < u, so 0 = [r;, s;]™ N [u,v]™ € G,
contradiction. O
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Lemma 15.50. For G generic over Prang, if f € “w in M[G] then there is a g € “w in
M such that Vn € w[f(n) < g(n)].

Proof. Let f € MRBOI(Prand) and p € Poana be such that fG = fand p - f W w.
Let

D =1{q€ Pana:3h:w— wlgl-V¥n € wlf(n) < hn)]]}

We claim that D is dense below p; clearly this will prove the Lemma.
So suppose that p’ < p. We have e(p’) <> . [|f(n) =m||,s0e(®) =, c.(e(@)-
|1f (1) = ml|. Hence p(e(p')) = 32, c., #le(p’) - [If(72) = mm]). Choose k so that

ple) = 3 wel@) - 1) = mll) < 5 - 1 - ulelp).

m<k

Let g(n) = k+ 1. Then

Zu(e(p’)-f(ﬁ)m)u(Z(e(p')~f(ﬁ)m)> = p(e(®) - || () < g(n)7)).

m<k m<k
Hence ju(e(p')) — u(e(®') - Lf() < g(n)Il) < 2 - & - ule(@)). Now
ule(p')) = ple@') - 11£ () < g)I)) + ule(@') - =11 £() < g(n))),
so u(e(p') - —|If (7)) < g(n)l) < g - § - ple(p)). Thus

u( )N =) If(7) < g(n (U n—If(7) < g(n )
< ule@) n—=|lf(n) < g(n))) <

new

~
| |

1
Su((p))

It follows that u (e(p’) NMNyew 1 (7) < g(n)7||) > Le(p) > 0. Clearly e(P)NNhew |f(n) <
g(n)7| I Vn[f(7) < g(n)]. 0

N—

Lemma 15.51. Suppose that M is a c.t.m. of ZFC, P = {p C w X 2 : p is a finite
function} and G is P-generic over M. Let g =|JG (so that g is a Cohen real). Then for
any f € “2 which is in M, the set {m € w: f(m) < g(m)} is infinite.

Proof. For each n € w let in M
D,, = {h € P : there is an m > n such that m € dmn(h) and f(m) < h(m)}.
Clearly D, is dense. Hence the desired result follows. 0
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For the next results we need to develop more measure theory. Let x be an infinite cardinal,
and P = {f C Kk x2: f a finite function}. For f € Plet Ur = {g € "2 : f C g}.
Hence Up = "2. Note that the function taking f to Uy is one-one. For each f € P let
00(Uy) = 1/214mnHDI Thus 0y (Uy) = 1. Let C = {U; : f € P}. Note that "2 € C. For any

A C*2 let
:inf{Z@o(Cn):Ce”C and A C | Cn}.

new ncw

Proposition 15.52. 0 is an outer measure on 2.

Proof. For the definition of outer measure see page 88. For (1), for any m € w let
f € P have domain of size m. Then § C Uy and 6y(Us) = 5. Hence 6(0)) = 0.
For (2),if A C B C "2, then

{Ce“’C:Bg Ucn}g{Cewc:Ag Ucn},
ncw necw
and hence p(A) < u(B).
For (3), assume that A € “22("2). We may assume that ) _ 0(A,) < oo. Let
e > 0; we show that 0(U,c,, An) < D hco 0(An) + €, and the arbitrariness of 5 then
gives the desired result. For each n € w choose C™ € “C such that A, C |J m and

me
Y mew 00(CF) < 0(An) + 5. Then U, e, An € Upew Unmew G and
0 (U An> <N 0o(CR) <D 0(A) + €
new new new new
as desired. O

Let ¥ be the set of all 8-measurable subsets of “2.

Proposition 15.53. Ifc € 2 and a < kK, then {f € "2 : f(a) =€} € 3.

Proof. Let E = {f € "2 : f(a) = ¢}, and let X C *2; we want to show that
0(X) =0(XNE)+6(X\E). < holds by the definition of outer measure. Now suppose
that 6 > 0. Choose C' € “C such that X C |J,,c, Cn and > 00(Cp) < 0(X) + 6. For
each n € w let C,, = Uy, with f,, € P. For each n € w, if & ¢ dmn(f,), replace C,, by U,
and Uy, where g = f, U{(a,0)} and h = f, U{(a, 1)}; let the new sequence be C’" € “C.

Note that 1

gamm(ry) = 00(Ug) + 0o(Un).

Then ), . 0(Cn) =", 0(C) and X € U, Cr- Say C), = U, for each n € w. Note
that o € dmn(g,,) foreachn € w. Let M ={n € w: gn( )= 6} and N ={n €w: gn(a ) =
1 —¢}. Then M, N is a partition of w such that X NE C J,,c,, C;, and X\E C |J
Hence

QO(Cn) = 90<Ufn) =

nGN

O(XNE)+0(X\E)< Y 0(C,)+ > 0(Cr)=> 0(Cp) < 0(X)+3.

neM neN new
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Since 0 is arbitrary, it follows that (X) =6(X N E) 4+ (X \E). O
For f:2 — R we define [ f=1/(0)+ 3/(1).

Proposition 15.54. If f, : 2 — [0,00) for eachn € w and Vt < 2[}_ . fu(t) < 00], then

ZTLGLUffn < 00, and Znewffn :fznewfn'

Proof.
/%fn = %nezwfn(o) + %T;fnu) = nezw (%fn(()) + %fn(l)) = %/fn.

Proposition 15.55. 6(“2) = 1.

Proof. It is obvious that *2 € ¥, and that 6("2) < 69("2) = 1. Suppose that
0("2) < 1. Choose C' € “C such that 2% = |J,.,Cn and > . 00(Cn) < 1, with C
one-one. For each n € w let C,, = Uy, , where f,, € P.

(1) Vg € Fn(k,2,w)3In € w[f, CgorgC ful.

In fact, let ¢ € Fn(k,2,w). Let h € "2 with ¢ C h. Choose n such that h € C,. Then
fn S h.So fnCgorgC f

(2) Let M ={n € w:Ym #n[fm € fu]}. Then "2 C U, cp Ut

For, given g € "2 choose m € w such that g € C},. Thus f,, C g. Let n € w with f, C f,,
and |dmn(f,)| minimum. Then f,, C g and n € M, as desired.

(3) |M]| > 2.

In fact, obviously M # (. Suppose that M = {n}. Since > ., 600(Cyn) < 1, we have
fn # 0. Then "2 C Uy, , contradiction.

(4) M is infinite.

In fact, suppose that M is finite, and let m = sup{|dmn(f,)| : n» € M }. Let g € Fn(k,2,w)
be such that |[dmn(g)| = m+1. Then by (1), f,, C g for all n € M. By (3), this contradicts
the definition of M.

Let J =, cps dmn(fy).
(5) J is infinite.

For, suppose that J is finite. Now M = Joc ;{n € M : dmn(f,) = G}, so thereisa G C J

such that {n € M : dmn(f,) = G} is infinite. But clearly |{n € M : dmn(f,) = G}| < 2/¢1,
contradiction.

Let i : w — J be a bijection. For n,k € w let f/, be the restriction of f, to the
domain {o € dmn(f,) : Vj < klo # 5]}, and let

1
Yk = Sldmn(f],)1
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Now for n,k € w and ¢t < 2 we define

ap k1 if i & dmn(f,),
Enk (1) an p+1  if iy € dmn(f,) and f,,(ix) = ¢,
0 otherwise.

6) [enk = ani for all n, k € w.

In fact,

1 1
/5nk = §€nk(0) + §5nk(1)

| gt if i, ¢ dmn(f,),
B %amk“ if i, € dmn(f,)

= Onpk-

Now we define by induction elements ¢; € 2 and subsets M} of M. Let My = M. Note

that .
“n0 = Sldmn(f,)]’ D 0= ) 2|dmn<fn>| =2 t(C

neM neM neM

Now suppose that M; and t; have been defined for all ¢ < k, so that ZnEMk anr < 1.
Note that this holds for £ = 0. Now

1> 3 am= 3 [em by
ne My ne My
= Z enk by Proposition 54.
nGMk
It follows that there is a t;, < 2 such that (ZnEMk €nk) (tx) < 1. Let

Miy1={ne M :Vj <k+1[i; ¢ dmn(f,), or i; € dmn(f,) and f,(i;) = t;]}.

If n € My41, then €,5(tr) = @y k41. Hence

Z O fog1 = Z Enk (tk) (Z €nk> < 1.

nGMk+1 neMIc+1 ’I’LGMk

Also, My11 # 0. For, let g € ®2 such that g(i;) = t; for all j < k. Say g € C,, withn € M.
Then f,, C g. Hence i; ¢ dmn(f,), or i; € dmn(f,,) and f,(i;) =¢;. Thus n € Mj41.
This finishes the construction. Now let g € 2 be such that g(i;) = t; for all j € w.
Say g € C,, with n € M. Then f,, C g. The domain of f, is a finite subset of J. Choose
k € w so that dmn(f,,) C {i; : j < k}. Then n € My. Hence f/, = 0 and so v, = 1. This
contradicts EmGMk amr < 1. O
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Let v be the tiny function with domain 2 which interchanges 0 and 1. For any f € "2 let
F(f)=vof.

Proposition 15.56.
(i) F is a permutation of "2.
(1i) For any f € Fun(k,2,w) we have F{U¢| = Uyos.
(iii) For any X C "2 we have 0(X) = §(F[X]).
(Z'U) VE € Eo[F[E] S 20]
Proof. (i): Clearly F' is one-one, and F(F(f)) = f for any f € 2. So (i) holds.
(ii): For any g € "2,

g € FlUy] iff 3h e Uylg= F(h)]
iff Jhe”2[f Chand g=voh]
iff Jhe2vofCrohand g=wvoh]
iff vofCyg
itt g€ Uy
(iii): Clearly 0o(Uys) = 0o(F'[Uy]) for any f € Fn(k,2,w). Also, A C |

Uneo, FICn). So (iii) holds.
(iv): Suppose that E € ¥j. Let X C #2. Then

C,, iff F[A] C

necw

0(X N FE]) + 0(X\F[E]) = [E]) + 0(F[FIX]\F[E])

F
E]) + 6(FIFIX]\E])

Proposition 15.57. If a <k and € < 2, then 0(Ui(a,e)}) = %

Proof. By Proposition 15.55 we have 6(Uy(q,¢)}) = 0(U{(a,1—-¢)}), S0 the result follows
from Proposition 15.54. L

Proposition 15.58. For cach f € P we have Uy € $o and 0(Us) = gramsryr-

Proof. We have Ur = (\,camn(s) Uf(a.f(a))}- Note that if a € dmn(f), then
Uf(a,f(a)y =19 € "2 : g(a) = f(a)}; hence Uy(q, f(a))y € Yo by Proposition 15.52, and so
Uy € $o. We prove that 0(Uy) = gmmarr by induction on |[dmn(f)]. For |dmn(f)] = 1,
this holds by Proposition 15.57. Now assume that it holds for |dmn(f)| = m. For any
f with [dmn(f)| = m and « ¢ dmn(f) we have 2719l = 9(Uy) = 0(Usiq(a0)y) +
Q(Ufu{(a,l)}>- Since Q(Ufu{(a,e)}> < eo(Ufu{(a’g)Q = 27 ldmn(H)=1 for each e € 2, it follows
that Q(Ufu{(a,e)}) = 2~ [dmn(HI=1 for cach e € 2. ]

Proposition 15.59. If F' is a finite subset of "2, then F' € ¥ and O(F) = 0.
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Proof. This is obvious if F' = (). For F' = {f} we have F' C Uy, for each n € w, and
so 0(F) = 0. Then it is clear that F' € ¥3. Now the general case follows easily. U

Proposition 15.60. If X C *2 is measurable, then 0(X) = inf{p(U) : X C U and U is
open}.

Proof. By Proposition 15.58, 8(Uy) = 6y(Uy) for each f € Fn(k,2,w). Hence by the
definition preceding Proposition 15.52,

6(X <1nf{ <U Ufn>:f€an(m,2,w),X§ UUf'n}

new new

< inf{Z{@(Ufn) : fe€“Fn(k,2,w), X C U Ufn}

necw

= inf{Z{Qo(Ufn) . f €“Fn(k,2,w), X C U Ufn}

ncw

—0(X). O

Proposition 15.61. If X C “2 is measurable, then there is a system (f} : n,m € w) with
each f} € P such that X C (), co, Upew Urn and 0((M,,cw Umew Usn )\X) = 0.

Proof. By the proof of Proposition 15.60, for each n € w let (f) : m w) be such

that each f! € Fn(k,2,w), X € U, e, Usn, and 0(,,c., Usn ) — 0(X) < . Then
\V/’I’LGL{)[XQH UUf%QUUf%
PEW MEW mew

Y

Vnew[ <m UUfn>—e <UUf> X)$—

new mew mew

e(ﬂ U Um> —0(X) = 0;

new mew

0 (ﬂ U Um) =0 <(ﬂ V) Uf;;) \X) +0(X);
Qo))

By Proposition 15.58, each set Uy for f € P is measurable. Let . be the o-algebra of
subsets of *2 generated by {U; : f € P}, and let Iy be the ideal of elements of . of
measure 0.

Lemma 15.62. . /Iy has ccc.
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Proof. See the proof of Lemma 15.46. O

Theorem 15.63. Suppose that M is a ctm for ZFC, k is an infinite cardinal in M. Let
G be a (. /1g)-generic ultrafilter over M.
Then M and M[G) have the same cardinals and cofinalities,and (2% )M[Cl > .

Proof. M and M[G] have the same cardinals and cofinalities by Lemma 15.69. Let
k: kxw — K be a bijection (in M). Now for o < s, n € wand i € 2 let pi" = Uy(k(a,n),i)}-
Then p¢™ is measurable and p(pf™) = 1, by Proposition 15.57 {p§™,p$"} is a maximal
antichain, so exactly one of them is in G. Deﬁne F(a,n) to be the i € 2 such that p” € G.
Let ho(n) = F(a,n) for all @« < k and n € w. Now suppose that a, 8 € k, a # (5, and
f € ™2. Define

dmn(gagr) = {k(a,n) :n <m}U{k(B,n) :n <m} and
vn < mlgapys(k(ca,n)) = gapr(k(B,n)) = f(n)].

Then |[dmn(gagys)| = 2m and so Uy, | = 52w If f,f' € ™2 and f # f' then Uspy N
Uapp = 0. Hence

9 U Ugaﬂf :2m22—m:2—m
fem2
Now
U Ugos, = {s € "2:Vn < ms(k(a,n)) = s(k(8,n))]}.
fem2
Hence
N U Vs
mew fem2
has measure 0, and hence
U N ~Ysuss
mew fem2
so we can choose m € w such that (V;cmy —Uy,,, € G. Now

() —Ugop, = {5 €72 3n <ms(k(er,n)) # s(k(8,n))]}

fem2

= UHs €2 slklain) # s(k(B.m)}

n<m

so we can choose n < m so that {s € "2 : s(k(a,n)) # s(k(8,n))} € G. Now

{s € "2 :s(k(a,n)) # s(k(B,n))} = {s € "2 :s(k(a,n)) =0 and s(k(8,n)) =1}
U{s € "2:s(k(a,n)) =1and s(k(S,n)) =0}

By symmetry say {s € "2 : s(k(a,n)) = 0 and s(k(5,n)) = 1} € G. Hence {s € "2 :
s(k(a,n)) = 0} € G. Now hy(n) = F(a,n) is the unique ¢ such that p¢™ € G, and
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P = Uf(k(a,n),iy = 15 € "2 s(k(a,n)) = i}. Hence hq(n) = 0. Similarly, hg(n) = 1. So
ha # hg.
It follows that (2+)MIG] > g, O

A special tree is a subset T' of <“2 such that if ¢t € T and m € dmn(t) then t | m € T.
A nonempty special tree T is perfect iff Vi € T3s D t[s™(0),s (1) € T|. A pathin T is a
sequence a € “2 such that Vm € wla [ m € T.

Lemma 15.64. The collection of paths in a perfect tree T is a perfect subset of “2.

Proof. Let P be the collection of paths in the perfect tree T'. P is closed: suppose
that a € “2\P. Then there is an m € w such that a [ m ¢ T. Then a € Uy}, € “2\P.

It is dense in itself: suppose that p € P and p € Up. Now p | m € T. Choose
s €T withp | m C s and s0,s1 € T. Say se¢ € p. Extend s¢ to a path q. Then

qc Upfm\{p}- ]

Py is the set of all perfect trees with the order C.
Note that an intersection of perfect trees does not have to be perfect. For example
(with €1, 9, ... any members of 2):

p=10,(0),(0e1), (0c1e2), .. .};
q = {(Z), <1>, <1€1>, <1€1€2>, .. }

Also, one can have p, g perfect, p N ¢ not perfect, but r C p N ¢ for some perfect r:

P = {@, <1>, <1€1>, <1€182>, e

(0), (01), (0leg), (Oleges) . . .};
q = {@, <1>, <1€1>, <1, €1€2>, c.

<0>, <00>, <00€2>, <00€2€3> .. .};
T = {@, <1>, <1€1>, <1, €1€2>, . }

Theorem 15.65. Suppose that M is a c.t.m. of ZFC. Consider Pye,¢ within M, and let
G be Pyerp-generic over M. Then the set

{se€<¥2:s5€p foralpeG}

s a function from w into 9.

Proof. For each n € w let

D,, = {p € Ppery : there is an s € <“2 such that dmn(s) =n
and s CtortCsforalltep}.

Then D,, is dense: if ¢ € Pperf, choose any s € ¢ such that dmn(s) =n, and let p = {t €

qg:sCtortCs}. Clearly p € D, and p C q.
Now for each n € w let p(™ be a member of G N D,,, and choose 5™ accordingly.
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(1) If m < n, then s(™ C (™),

In fact, choose r € GG such that r C p(m) N p(”). Then s(™ C ¢ and s(™ C ¢t for allt € r
with dmn(t) > n, so s(™) C 5",

(2) s(™ € g forallqeG.

In fact, let ¢ € G, and choose r € G such that » C ¢ and r C p(™). Take ¢ € r with
dmn(t) = m. then t = s(m) gince r C p(™). Thus s("™) € ¢ since r C q.

(3) If t € ¢ for all g € G, then t = 5™ for some m.

For, let dmn(t) = m. Since t € p{™), we have t = s(™).
From (1)—(3) the conclusion of the theorem follows. O

The function described in Theorem 15.65 is called a Sacks real.
If p € Pyery, amember f of pis a branching point iff f—(0), f~(1) € p. Sacks forcing
does not satisfy ccc:

Proposition 15.66. There is a family of 2 pairwise incompatible members of Pper .

Proof. Let o be a family of 2¢ infinite pairwise almost disjoint subsets of w. With
each A € &/ we define a sequence (Py4 ,, : n € w) of subsets of <“2, by recursion:

Pyo={0};

p _JAf 0y f € Pan} ifnéA,
AL T V{f(0) s f € Pant U{f (1) f € Py} ifneA

Note that all members of Py4 , have domain n. We set py = UnEw Py . We claim that
pa is a perfect tree. The first condition is clear. For the second condition, suppose that
f €pa;say f € Py, Let m be the least member of A greater than n. If g extends f by
adjoining 0’s from n to m — 1, then ¢ (0), g7 (1) € pa, as desired in the second condition.

We claim that if A, B € &/ and A # B, then p4 and pp are incompatible. For, suppose
that q is a perfect tree and ¢ C pa, pp. Now ANB is finite. Let m be an integer greater than
each member of AN B. Let f be a branching point of ¢ with dmn(f) > m; it exists by the
definition of perfect tree. Let dmn(f) = n. Then f € P4, and f7(0), f (1) € Pa nt1,
so n € A by construction. Similarly, n € B, contradiction. ]

Proposition 15.67. P, is not w-closed.

Proof. For each n € w let
pn={f € <¥2: f(i) =0 for all i < n}.

Clearly p, is perfect, p, C pp, if n > m, and (,,c,, P is {f} with f(7) = 0 for all 4, so that
the descending sequence (p,, : n € w) does not have any member of P,.,; below it. L
By Propositions 15.66 and 15.67, the previous methods cannot be used to show that forcing
with P, preserves cardinals, even if we assume CH in the ground model. Nevertheless,
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we will show that it does preserve cardinals. To do this we will prove a modified version
of wi-closure.

If p is a perfect tree, an n-th branching point of p is a branching point f of p such that
there are exactly n branching points g such that g C f. Thus n > 0. For perfect trees p, ¢q
and n a positive integer, we write p <,, q iff p C ¢ and every n-th branching point of ¢ is
a branching point of p. Also we write p < ¢ iff p C q.

Lemma 15.68. Suppose that p C q are perfect trees, and n € w. Then:
(i) If p <, q, then p <; q for every i < n.
(ii) If p <,, q and f is an n-th branching point of q, then f is an n-th branching point
of p.
(iii) For each positive integer n there is an f € p such that f is an n-th branching
point of q.
(iv) The following conditions are equivalent:
(a) p <u q.
(b) For every f € <2, if f is an n-th branching point of q, then f—(0), f (1) € p.
(v) For each positive integer n there are exvactly 2"~' n-th branching points of a perfect
tree p.
(vi) If p and q are perfect trees, then so is pUq.
(vii) If p and q are perfect trees, then {r : r is a perfect tree and r C p or r C q} is
dense below p U q.

Proof. (i): Assume that p <,, ¢, i < n, and f is an i-th branching point of q.
Then since ¢ is perfect there are n-th branching points g, h of ¢ such that f~(0) C g and
f~(1) Ch. So g,h € p, hence f € p. This shows that p <; q.

(ii): Suppose that p <,, ¢ and f is an n-th branching point of ¢q. Let rg,...,r,_1 be all
of the branching points g of ¢ such that ¢ C f. Then by (i), ro,...,r,—1 are all branching
points of p. Hence f is an n-th branching point of p.

(iii): Let f be an n-th branching point of p. Then it is an m-th branching point of ¢
for some m > n. Let r be an n-th branching point of ¢ below f. Then r € p, as desired.
[But r might not be a branching point of p.]

(iv), (v), (vi): Immediate from the definitions.

(vii): Suppose that p,q,t are perfect trees and ¢t C p U g; we want to find a perfect
tree r C t such that r Cporr C q. If t C pNgq, then r = t works. Otherwise, there is

some member f of ¢ which is not in both p and ¢; say f € p\q. Then r o {get:gCf
or f C g} is a perfect tree with » C ¢t and r C p. OJ

Lemma 15.69. (Fusion lemma) If (p, : n € w) is a sequence of perfect trees and - -- <,

Dn <p-1 - <2 p2 <1 p1 <o po, then q d:ef ﬂnew Dn 1S @ perfect tree, and q <,, pn f07’ all
necw.

Proof. Let n be a positive integer, and let s be an n-th branching point of p,. If
n < m, then p,, <, pn, so s is an n-th branching point of p,,; hence s,s7(0), s (1) € py,.
It follows that s,s7(0), s (1) € q, and s is a branching point of g. Thus we just need to
show that ¢ is a perfect tree.
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Clearly if t € ¢ and n < dmn(t), then ¢ [ n € q. Now suppose that s € ¢; we want to
find a t € ¢ with s <t and t is a branching point of q. Let n = dmn(s). Now s € p,,, and
pr, has fewer than n elements less than s, so p,, has an n-th branching point ¢t > s. By the
first paragraph, t € q. O

Let p be a perfect tree and s € p. We define
pls={tep:tCsorsCt}.

Clearly p | s is still a perfect tree. Now for any positive integer n, let g, ..., tan_1 be the
collection of all immediate successors of n-th branching points of p. Suppose that for each
i < 2™ we have a perfect tree ¢; < p [ t;. Then we define the amalgamation of {q; : i < 2"}
into p to be the set |J, on ¢;-

Lemma 15.70. Under the above assumptions, the amalgamation r of {q; : i < 2™} into p
has the following properties:

(i) v is a perfect tree.

(ii) r <, p.

Proof. (i): Suppose that f € r, g € <“2, and g C f. Say f € ¢; with i < 2. Then
g € q;, so g € r. Now suppose that f € r; we want to find a branching point of r above f.
Say f € g;. Let g be a branching point of ¢; with f C g. Clearly g is a branching point of
r.

(ii): Suppose that f is an n-th branching point of p. Then there exist i, j < 2" such
that f7(0) =t¢; and f(1) =t;. So f(0) € ¢; Crand f(1) =t; € ¢; Cr, and so f is
a branching point of r. ]

Lemma 15.71. Suppose that M is a c.t.m. of ZFC and we consider the Sacks partial
order Ppery within M. Suppose that B € M, T € MPrers p e Pyery, and pl- 710 — B.
Then there is a ¢ < p and a function F : w — [B]<¥ in M such that q IF 7(7) € F, for
every n € w.

Proof. We work entirely within M, except as indicated. We construct two sequences
(gn : n € w) and (F,, : n € w) by recursion. Let gy = p. Suppose that ¢, has been
defined; we define F,, and ¢,4,. Assume that ¢, < p. Then ¢, F 7 : & — B, so
¢n I+ 3z € Br(n) = z). Let to,...,ton_1 list all of the functions f~(0) and f~(1) such
that f is an n-th branching point of ¢,. Then for each ¢ < 2" we have ¢, [ t; C ¢, and
so qn | t; IF Jz € BT(h) = z). Hence there exist an r; C ¢, [ t; and a b; € B such
that r; IF 7(n) = b;. Let gn.1 be the amalgamation of {r; : i < 2"} into ¢,, and let
F, ={b; : i <2™}. Thus ¢n+1 <, ¢ by Lemma 15.70. Moreover:

(1) Gni1 IF 7(R) € F,.
In fact, let G be PB” ¢-generic over M with ¢,41 € G. Then there is an i such that r; € G.
Since r; IF 7(7) = b;, it follows that 7¢(n) € F,, as desired in (1).

Now with (1) the construction is complete.
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By the fusion Lemma 15.69 we get s <,, ¢, for each n. Hence the conclusion of the
lemma follows. ]

Theorem 15.72. If M is a c.t.m. of ZFC + CH and Pyery € M is the Sacks forcing
partial order, and if G is Pye, p-generic over M, then cofinalities and cardinals are preserved

in M[G].

Proof. Since |Ppe,f| < 2 = wy by CH, the poset Py, s satisfies the wy-chain condi-
tion, and so preserves cofinalities and cardinals > ws. Hence it suffices to show that wi”’
remains regular in M[G]. Suppose not: then there is a function f : w — w}M in M[G] such
that rng(f) is cofinal in w}!. Hence there is a name 7 such that f = 7, and hence there
is a p € G such that p I 7 : w—>w1 By Lemma 15.71 chooseq<pandF w — [w]<w
in M such that g I+ 7(2) € F), for every n € w. Take 8 < wM such that Unew Fn < B.
Now ¢ IF In € w(B < 7(1), so there exist an r < ¢ and an n € w such that 7 IF § < 7(7).
So we have:

(2) r Ik 7(R) € Fy;

(3) Unew Fn < 5;

(4) 7IF B < 7(R).

These three conditions give the contradiction r IF 7(n) < 7(n). ]

Suppose that G is generic over M. We say that G is minimal over M iff for every inner
model N of ZFC such that M C N C M[G], either M = N or N = M[G].

Theorem 15.73. If G is Ppe,s-generic over M, then G is minimal over M.

Proof. The conclusion is equivalent to saying that if X € M[G]\M and X € N with
N an inner model with M C N C M|[G], then G € N, and hence N = M|[G].

We may assume that X is a set of ordinals, by AC in N.

So, suppose that X is a set of ordinals in M[G] and X ¢ M and X € N, an inner
model of ZFC; we want to show that G € N. Let X be a name such that X¢ = X. Now
1IF-[X € M] By Lemma 14.40(iv) this means that for all s s If X € M. Hence by
Lemma 14.42,

Vs—Vq < s3be MIr < qrl- X =10,

S0
Vsdg < s¥b € MVYr < q[rlf X =1].

If sis anode in a tree p € P, we definep [ s={t€p:t <sors <t}
Now we define (p, : n € w) by recursion. Let py = p. Suppose that n > 0 and p,_1
has been defined. Let S, be the set of all n-th spliting nodes of p,,_1.

(1) For each s € S, there is an ordinal 5 such that p,—1 [ s [/ ¥s € X and pp_q | s |2
s ¢ X.
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In fact, suppose not. Say s € S, and for every ordinal 7, p,—1 [ s -7 € X orp_1 | sk
Yy ¢ X. Let ¢ ={v:pp_1 | slF5 € X}. We claim that p,_1 [ sIF X = &, contradiction.
For,

1X = 2| = [|X <z - |z < X]].

Now

1z < X|| =] Il € X1,

yET

and for each v € z, e(pp_1 | s) < ||5 € X||. Hence e(p,_1 | s) < || C X||.
A general fact about complete BAs:

2) (Cier i) = y) = [Lics (@i = y)-

In fact,

<<sz> = y) = <H —$i> ty= H(_«Tz +y) = H(xl = 7).
Next we claim
(3) e(p) < Hyedmn(X) (X(y) =3 con |y = d||>.

In fact, p IF Vy € X [y is an ordinal], so

ew) < [ (v € XI = lly is an ordinall])

yeVEB

=11 S X@ === Y lly=all
yevh z€dmn(X) a€ON

=11 II (X@-ly=== > ||y=dH>
yEVE zedmn(X) acON

= I II (X®-lly==l= ) (HyZZH-HyIdII)>
z€dmn(X) yEVE a€ON

= I II (X@-ly==2ll= > (||y=Z||-||Z=@||)>
zedmn(X)yeVE a€ON

< T (x0 X e-al).
zden(X) acON

Thus (3) holds.
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Now

e 15)< [[ —I17 € X|

~v€ON
V¢

=1 - > &w-lly=vl)

Afng yedmn(X)

=1 I Xw+-lr=yvl

A’EQON yedmn(X)

= [T IIXw+-15=yl)

yedmn(X) WEON
Hence by (3),

epnats)< I JI X +-115=ul)

yedmn(X) WEON

11 (X(y):s > ||y=dH>

yedmn(X) acON
= ]I ( T X + =115 =yl
yEdmn(X) \ 70N

: (X(y) = QGZONHy = dH) )

Now if y € dmn(X), then

(H( X(y)+ - 7y> ( a;):Nlly—aH)

Y¢x
- ( 11 (—X(y>+—ﬁy)> - (—X<y>+ 2 ||y=@||>
A N
=11 << X(y)+ 5=yl ( + > ||y—a||>>
oA PeoN
= 1] (—X(y)Jr—\W:yll- > ||y=dH>
T aeoN
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- X+ [] (—\Wzyl|- >, ||y=dH>

'Y€§EON a€eON
Y& x

=X +- > lly=adll

aceON
acx

Thus

e ls)< I (X + Y lly=all =X <z

yEdmn(X) acON

acx

It follows that p,_; | s |- X = &, contradiction. Hence (1) holds.

Next we claim

(4) Jgs—0) <p T (57(0N)]gs~0y IF 75 € X] and g1y < p [ (s7(1))[gs~ 1y I+ 95 ¢ X]

or

(5) 3gs~0y <P T (s7(0)]gs~0y IF 75 ¢ X] and 3gs— 1y < p [ (s7(1))[gs—~ 1y I+ 45 € X].

For, by (1) we have

e(pls)-119s € PI[#0#ep | s)-—[15s € P|l.

Hence there are ¢,r < p | s such that e(q) < ||5s € P|| and e(r) < —||7s € P||.
Case 1. s7(0),s (1) e gNr. Let ¢ =¢q | (s7(0)) and " = r [ (s~ (1)). Then (4)
holds.
Case 9. s7(0) € ¢\r. Then s™(1) € r. Let ¢ = ¢ | (s7(0)). Then ¢ and r satisfy
(4)-
Case 3. s—(0) € r\q. Then s (1) € q. Let ' =r [ s(0). Then r’ and ¢ satisfy (5).
This proves our claim.

Now we let p, be the amalgamation of (gs~ () : s € A) into p,_1:
{te P:3se€ S,Fee2te qs/\<5>]}.

(6) py is a perfect tree.

In fact, suppose that ¢t € p,, g € Seq, and g C t. Say f € qy—~() with ¢ < 2. Then
9 € qs—(c), SO g € pn. Now suppose that f € p,; we want to find a branching point of r
above f. Say f € qs~(). Let g be a branching point of gy~ () with f C g. Clearly g is a
branching point of p,,.

(7> Pn Sn Pn—1

In fact, this is clear.
Now let ¢ = (,,c,, Pn- By Theorem 15.70, ¢ is a perfect tree and ¢ <,, p,, for alln € w.
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Now suppose that g € G.
(8) If s is a Oth splitting node of ¢, then s C f.

For, suppose not. Then there is a ¢t < s such that (17(0) € gand t—(1) C f) or (t(1) € ¢
and t(0) C f); say t—(0) € ¢ and t—(1) C f. Say dmn(t) = n. Choose u € G with
t~(1) C u such that u does not split through domain n + 1. Let v € G with v < ¢, u.
Then v(n) should be 0 since v < ¢, while it should be 1 since v < u, contradiction. Thus
(8) holds.

Now let s be an mth splitting node of ¢. Say dmn(s) = n. Say f(n) = ¢ with ¢ € {0,1}.
Case 1. vs € X. Choose u € G such that u IF ys € X and u does not split through
domain n + 1. Choose v € G such that v < u,q. Then v(n) = u(n) = e.

(9) g s (e) IFAs € X.

For, suppose that ¢ | s~ (e) IF 55 ¢ X. Since v(n) = € and v < ¢ and v does not split
through domain n + 1, we have v < ¢ | s~ (e), so v IF ¥, ¢ X, contradicting v < u.

Case 9. v, ¢ X. Choose u € G such that u IF %, ¢ X and u does not split through
domain n + 1. Choose v € G such that v < u,q. Then v(n) = u(n) = e.

(10) ¢ I 5~(e) IF 5 ¢ X.
In fact, if ¢ | s7(e) -5, € X, then v < ¢ | s7(¢), so v |- 4, € X, contradicting v < w.

It follows now that f(n) = ¢ iff v, € X and q | s7(¢) I 7, € X, or 75 ¢ X and
qls(e)IF3s & X.

(11) If w is an mth splitting node and v () C f and v~ (¢) C s with s an (m + 1)th
splitting node, then s C f.

For, suppose not. Then there is a t < s with u < ¢ such that (t(0) € g and t (1) C f) or
(t™(1) e gand t—(0) C f); say t—(0) € g and t—(1) C f. Say dmn(t) = n. Choose u € G
with ¢ (1) C u such that u does not split through domain n+ 1. Let v € G with v < g, u.
Then v(n) should be 0 since v < ¢, while it should be 1 since v < u, contradiction. Thus
(11) holds.

We have shown that f can be defined from ¢ € M and X. Now back to the beginning of
this proof, we assume that p € G. The above construction can be applied to any r < p,
producing ¢, from which, using also X, f can be defined. Now {g, : r < p} is dense below
p, so there is an r < p with ¢, € G. It follows that f € N, and hence G € N, completing
the proof. ]

Theorem 15.74. B is (k, A)-distributive iff for every generic ultrafilter on B over M, if
f:Kk—= Xin M[G] then f € M.

Proof. =: Assume that B is (k, A)-distributive, G is B-generic over M, and f € M[Q]
with f : Kk — A. Let 7 be a name such that 7¢ = f. Choose p € G such that plF7: 5 — A.
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Then

ep) < 1] D _lr(a) = 41

a<k B<A

= > [[I@) =g

g:r— A a<lk

it follows that {q :there is a g : Kk — A such that ¢ IF Va < k(7(a) = g(a)} is dense below
p, and hence we can choose g : Kk — A and ¢ < p such that ¢ € G and ¢ IF Va < k(7(a) =
g(a)}. Hence f(a) =g(a) foralla < k. So f=g€ M.

<: We use 14.9(a) of the BA handbook. Thus suppose that (a.s: @ < k,8 < A) is
a system of elements of B such that (asg : f < A) is a partition of unity for each a < &.
Note that the right side of the equation (1) of 14.9(a) is obviously < the left side. Suppose
that p <1[-—r, where [ and r are the left and right sides respectively. Let G be a B-generic
filter over M with p € G. For each a < k choose f(a) < A such that aq) € G. Then
f € M by assumption. Now clearly the set

c «f {r € B:Va <k(r < aaf(a)) or 3o < K(r - aapa) =0)}

is dense below p. So we can choose r € G N C. Hence clearly [, ., @af) € G, contradic-
tion, since p < — [, <, @af(a)- O
A complete BA B is weakly (k, A)-distributive iff

1> was= > II > vas

a<k B< g:k— A a<k B<g(a)

Lemma 15.75. B is weakly (k, \)-distributive iff every f : k — X\ in M|[G] is dominated
by some g : k — X\ which is in M.

Proof. =: Assume that B is weakly (k, \)-distributive, G is B-generic over M, and
f € M|G] with f: k — A. Let 7 be a name such that 7¢ = f. Choose p € G such that
pl-7:%& — A. Then

ep) < 1] D lr(a) = 41

a<k <A

= > 11 X In@ =4l

g:k—= A a<k B<g(a)

= > T[Ir@ <g@)T;

g:r—=Aa<lkK

it follows that {q :there is a g : K — A such that ¢ IF Va < k(7() < g(a)} is dense below
p, and hence we can choose g : kK — A and ¢ < p such that ¢ € G and ¢ IF Vo < k(7(a) <
g(a)}. Hence f(a) < g(«) for all a < &, as desired.
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<«: Assume the indicated condition, and suppose that e(p) < [ - —r, where [ and r
are the left and right sides of the weak distributivity equation. (Clearly r <1.) Let G be

generic with p € G. Then
e(p) < [ D ttasp-

a<k <A

Hence for all & < & there is an f(a) < A and a ¢, € G such that e(q,) < uqafa). SO
f:Kx— Aand f € M[G]. By our assumed condition, let g : K — A be a member of M
such that f(a) < g(«) for all a < k. Since e(p) < —r, we have

e <Y I —uas

<k B<g(a)

Hence there is an r < p with r € G such that e(r) < H5<g(a) —uqg. But ¢4 € G,
e(qa) < Uaf(a), and f(a) < g(a), contradiction. O

Lemma 15.76. Let X be a subset of a complete BA B in M which completely generates
B, and let G be a generic ultrafilter on B. Then M|[G] is the smallest model N of ZFC
such that M C N and X NG € N.

Proof. Assume that X be a subset of the complete BA B in M which completely
generates B, let G be a generic ultrafilter on B, and let N be a model of ZFC such that
M C N and X NG € N. We want to show that M[G] C N. By the minimality of M[G],
it suffices to show that G € N. Define in M

YO :X;
Y2a+1 = YQQ U {.T L —x € Yga};
Yoat2 = Yoqi1 U {ZZ 1 Z C Y2a—|—1} ;

Y, = U Y, for A limit.
a<A

Then there is a § < |B|" such that B = Yp. Now in N define
HO =XnN G;
H2a+1 = {.T =X € YQQ\HQQ};
Hyaiz = {7 2 C Yaas1 AZ 0 Haasr # 0}

H, = U H, for X limit.

a<<A

Now we claim that Va|Y, NG = H,|. (Hence G = BNG =YyNG = Hy € N, as desired.)
We prove this by induction on a. It is clear for a = 0, and the limit step is clear.

Y2a+1mG:(YQQQG)U{.TZ.TEG/\—LEEYQQ}
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= Hyy U{z:2 € GA—x €Y, \G}
=HooU{z:2 €GN -2 €Y, \(GNYay)}

- H2a+1§
= Hga U {.’13 =X & YQQ\HQQ}

Y2a+2ﬁG: (Y2a+1 ﬂG)U {ZZZZ € G, Z C Y2a+1}
= Hyq41 U {ZZ : ZN(GNYoaq1) #0, Z C Y2a+1}

= Hyq41 U {ZZ : ZNHypqy1 #0, Z C Y2a+1}
= Hoqy2. U

Corollary 15.77. If B is completely generated by a set X of size < k, then M[G] = M[A]
for some A C k.

Proof. In M let A C k with f a bijection from A onto X. By Lemma 76 we have
M[G] = M[X NG]. Hence M[G] = M[f~ X NnG]]. O

Lemma 15.78. Let k be a cardinal in M, B a complete BA in M, G B-generic over M,
and A € M|G] a subset of k. Then there is a k-generated complete subalgebra D of B such
that M[D NG| = M[A].

Proof. Let 7 be a name such that 7¢ = A. Define u, = [&@ € 7], and X = {u, :
a < k}. If @ € A, then thereisap € G such that pl- & € 7. So u, = [@ € 7] € G.
So A C {a: u, € X NG}. Now suppose that u, € G. Then a € 7¢ = A. Hence
A={a:u, € XNG}.

Hence if u, € G, then a € A. So X NG C {u, : a € A}. Conversely, if o € A, then
Uy € X NG.

Lemma 15.79. Suppose that M is a c.t.m. of ZFC, B is a complete BA in M, G 1is
B-generic over M, N is a c.t.m. of ZFC, and M C N C M|G]. Then there is a complete
subalgebra D of B such that N = M[D N G].

Proof. First we prove the following independently interesting fact:

Fact. Suppose that M is a c.t.m. of ZFC, B is a complete BA in M, and G is a generic
ultrafilter over M. Then for every X € M|[G| there exist an ordinal o, a subset A of «,
and a complete subalgebra D of B, such that M[X]| = M[A] = M[D N G].

Proof. In MJ[G], let f be a bijection from a cardinal « onto trcl({X}). Define
E={(B8,7) e axa: f(B) € f(yv}. Let I be the standard bijection from On x On onto
On, and let A = T'[E]. Then by Lemma 15.78 we get a complete subalgebra D of B such
that M[A] = M[D N G]. Clearly A € M[X], so M[A] C M[X]. So it suffices to show
that X € M[A]. Note that F is well-founded on «, and E € M[A]. In M[A], let G be
the Mostowski collapse function for «, E. Thus for any 8 € a, G(8) = {G(v) : YES}. We
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claim that Gla] = trcl({X}), as desired. In fact, we claim that G = f. Suppose that § € «
and G(v) = f(y) for all vE5. Then

G(B) ={G(v) : vEB}

={f(v): f(v) € F(B)}

= f(6).
Now we turn to the proof of the Lemma. We apply the fact to Z(B) NN = 2V (B) €
N C MIG]; so we obtain A, D such that M[Z(B) N N| = M[A] = M[D N G]. We claim
that this is equal to N. Clearly it is a subset of N. Now suppose that X € N. Then by the
fact again we get C, E such that M[X] = M[C] = M[ENG]. Now ENG € M[X] C N,
so ENG € Z(B)NN. Hence M[X] = M[ENG|] C M[Z(B) N N], and hence X €
M[Z(B) N NJ, as desired. ]

Proposition 15.80. If B is a complete subalgebra of C, then MPB C M.
Proof. MZ C M¢ by induction. It is clear for o = 0 and the case of limit « is clear.
Now suppose that M2 C M. Then
MPZ, | = {x: 2 is a function Admn(z) C MZF}
C {z: x is a function A dmn(z) C M}
= MS—I—I [

Proposition 15.81. If By is a complete subalgebra of By and G is a generic ultrafilter
over By and M, then G N By is a generic ultrafilter over By and M.

Proof. Clearly G N By is an ultrafilter on B;. Now suppose that X € M and
X CGNBy. Then [[* X € G, so [[7(X) =[["*(X) e GN By. O
Proposition 15.82. If By is a complete subalgebra of By and G is a generic ultrafilter
over By and M, then Vo € MP1[zG"Br = 6],

Proof. By induction: if z € MPBt then 2681 = {y¢"Br . ¢ ¢ dmn(x),z(y) €
GNB}={y%:yecdmn(z),z(y) € G} = 2©. ]
Proposition 15.83. If B is a complete subalgebra of C' and G is generic over C and M,
and if {a € C: Bl a=C |a} is dense in C, then M[G N B] = M[G].

Proof. With each x € M® we associate ' € M?P by induction. Suppose that
z € MS . Let dmn(2’) = {y' : y € dmn(z)}, and for each y € dmn(z), if z(y) € G
choose ayy, € G such that B [ agy = C | azy and let X,y ={b€ B:b-ay, € G}, and let
() =117 Xzy. Note that [[ Xzy-agy € G, and so [[ Xy € G. If 2(y) ¢ G let X, = B
and z'(y’) = 0. Then by induction, for all z € M, & = z/(GNB).

¢ = {y% .y € dmn(z) A z(y) € G}
= {y/(©B) . o/ € dmn(z’) A HXxy € GNB) =GB, B
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We write M C" M iff for every generic filter G on Q over M there is a generic filter H
on P over M such that H € M[G].

Lemma 15.84. Leti: P — @ be such that
(i) ¥p1,p2 € Plp1 < p2 — i(p1) < i(p2)]-
(ii) ¥p1,p2 € Plp1 and pa are incompatible — i(p1) and i(p2) are incompatible].
(i1i) Yq € Q3p € PYp' < pli(p’) is compatible with q|.

Then MY C' M9.

Proof. Suppose that G is a generic filter on ) over M.

i~1[G] is closed upwards: suppose that p € i~ ![G] and p < ¢. Then i(p) € G and
i(p) < i(q), so i(g) € G and hence ¢ € i~[G]. Suppose that pi,p2 € i~ }[G]. Then
i(p1),i(p2) € G, so i(p1),i(p2) are compatible. Hence pq, ps are compatible. Now suppose
that D is dense in P. Then we claim that i[D] is predense in Q). For, suppose that
q € Q; we want to find p € D such that ¢ and i(p) are compatible. Choose p € P so
that Vp' < pli(p’), ¢ are compatible.]. Choose p’ € D so that p’ < p. then ¢ and i(p) are
compatible. Now choose ¢ € i[D] N G. Say ¢ = i(p) with p € D. Then p € i~ '[G] N D.
Thus i~'[G] is generic on P. So VP C' V9. O

Lemma 15.85. Let h: (Q — P be such that

(i) Yq1,q2 € Qg1 < q2 — h(q1) < h(g2)]-

(i) Vg € Q¥p < h(q)3q" € Qlq and ¢’ are compatible and h(q") < p).
Then MY C' M<.

Proof.
(1) If D C P is open dense, then h™![D] is predense in Q.

In fact, suppose that D C P is open dense, and suppose that ¢ € Q; we want to find
¢ € @ such that ¢,q" are compatible and h(q’) € D. Choose p € D such that p < h(q).
Then choose ¢’ compatible with ¢ such that h(q’) < p. Say r < ¢q,q’. Then h(r) < h(¢'),
so h(r) € D, as desired. So (1) holds.

Now suppose that G is generic on Q. Let H = {p € P : 3¢ € G[h(q) < p|}. Clearly H
is closed upwards. Suppose that p;,ps € H. Choose ¢1,q2 € G such that h(q;) < p; and
h(g2) < p2. Choose g3 € G such that g3 < g1,¢2. Then h(q3) € H and h(gs) < h(q1) < p1
and similarly h(gs) < p2. So H is a filter. Now suppose that D is open dense in P. Then by
(1), h=1[D] is predense in Q. Choose ¢ € G N h~![D]. Then h(q) € D and also h(q) € H,
as desired. ]

Lemma 15.86. If P satisfies the k-chain condition, then |RO(P)| < |P|<".
Proof.
(1) For every z € RO(P) there is an antichain C'in P such that z =} - e(p).
In fact, let C' C P be maximal pairwise incompatible such that Vp € Cle(p) < z]. Clearly
T = Zpec e(p).
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Now |P|<" is the number of antichains in P. Hence by (1), |RO(P)| < |P|<". O

Lemma 15.87. Let P consist of all functions p such that dmn(p) € [k]<" and rng(p) C 2,
and let QQ = {p € P : dmn(p) is an initial segment of k. Then

(i) Q is dense in P.

(1i) There is an isomorphism f of RO(Q) onto RO(P) such that f(eq(q)) = ep(q) for
all g € Q.

Proof. Clearly @ is dense in P. Next we show that the mapping ¢ — ep(q) extends
to a homomorphism of RO(Q) to RO(P). To apply Sikorski’s criterion, suppose that

(1) [T ee@- I —cala) #0.

qeEF qeqG

with F' and G disjoint finite subsets of (). Choose r € () such that

cq(r) < [] ea(@ - [] —ee(@)-

qeF q€G

Then

eQ(r)- | D —eql@) + ) eqla) | =0.

qeF qeCG
Hence Vg € FVs € Gleg(r) - (—eq(q) + eq(s)) = 0. Suppose that ¢ € F. By Theorem

14.6(v), {t € Q : t <r,q} is dense below r, in the sense of @), and hence in the sense of P.
So ep(r) - —ep(q) = 0.

Suppose that s € GG. Then r and s are incompatible in ), hence also in P. So
ep(r)-ep(s) =0.

It follows that

er(r) < [[er(@)- ] —er(@.

qeF q€G

Hence

(2) H ep(q) - H —ep(q) # 0.

qEF qeqG

So (1) implies (2). Similarly, (2) implies (1). It follows that there is an isomorphism from
({eg(q) : ¢ € Q}) onto ({ep(q) : ¢ € Q}). Now the desired conclusion follows by the
remark at the bottom of page 57 of the Handbook. O

Lemma 15.88. Let k be a singular cardinal and let P consist of all functions p such that
dmn(p) € [k]<" and rg(p) C 2, with the order 2. With G P-generic over M, in M|G]
there is a one-one function from k into cf(k).

Proof. Let (\¢ : & < cf(k)) be strictly increasing and continuous with supremum x.

Let G be M-generic over P. Any two members of G are compatible, so g et UG is a
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function. For any a < k the set D, e {p € P: a € dmn(p)} is clearly dense. Hence

g € 2. Let A= g L[{1}].
For any p € P and £ < cf(k) let

Q(p, &) ={B € dmn(p) : p(B) = 1} N (Aeg1\Ae).

For each oo < k let B, = {p € P : 3 < cf(K)[(Aex1\A¢) € dmn(p) and ot(Q(p,§)) =
Ae +al}.

(1) Ya < K[E, is dense in P].
In fact, let a < k and let ¢ € P be given.

(2) 3¢ < cf(K)[0t(Q(q,€)) < Ae + af.

For, otherwise we have V¢ < cf(x)[|dmn(q) N (Aeq1\Ae)| > A¢], and hence |[dmn(q)| = &,
contradiction.

(1) follows from (2).

For each a < k there is a p € G such that p € E,. Hence we can define h(a) =
min{{ < cf(k) : ot(A N (Aer1\A¢)) = A¢ + a}. Then h is one-one and maps x onto
cf (k). O]

Lemma 15.89. Assume that for every generic G and every function f € M[G] with
domain k and range contained in M, f € M. Then B is k-distributive.

Proof. Assume the hypotheses, and suppose that (W, : a < k) is a system of
partitions of B. Note that if f,g € [[,., Wa and f # g then [],_, f(a) -], 9(c) = 0.
Moreover, if f € ], ., Wa then V3 < k3w € Wg[[], ., f(a) € w]. Hence it suffices to
show that > {[],.. f(a): f €[l,c. Wa} = 1; and for this it suffices to take any a # 0
and find f € [], . Wq such that a-[],.,. f(a) # 0. Let G be a generic ultrafilter such
that a € G. For each o < k let W/, = {—a} U ({a-u:u € W,}\{0}). W/ is a partition,
so we can choose w, € W/ N G. Clearly there is a u, € W, such that w, = a - u,.
For each o < & let f(a) = uq. By hypothesis, f € M. Then a - [], ., ua € G, and so

a-[lo<,. fla) #0. O

Lemma 15.90. If RO(P;) = RO(P) and RO(Q1) = RO(Q2) then RO(P, x Q1) =
RO(PQ X QQ)

Proof. Let f : RO(P;) — RO(P2) be an isomorphism, and let g : RO(Q1) — RO(Q2)
be an isomorphism. It suffices to show that the following two conditions are equivalent:

(1) e(po,qo) -+ €(Pm—1,qm—1) " —€(Pm;qm) * - - -+ —€(Pn, qn) = 0;

(2) e(f(po)9(a0))-- - e(f(Pm—-1); 9(gm-1)) - —e(f(Pm); 9(am)) - .- —e(f (Pn), 9(qn)) = 0;

In fact, by symmetry it suffices to show that (2) implies (1). So assume that

e(p07 qO) Teee” e<pm—17 qm—l) : _e(pm7 Qm) Tee” _e<pn7 Qn) 7é 0.
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Choose (r, s) with

e(r,s) <e(po,qo) - ePm-1,9m-1) —€Pm,qm) - - —€(Dn,qn)-

Then

6(T7 3) ' (_8(p07 QO) + e+ _6(pm—17 Qm—l) + 6(pma Qm) + 4+ 6(pna Qn)> = 0.

Take any ¢ < m. Then e(r, s) < e(p;,¢;). We claim:

(3) {(a,b) : (a,0) < (f(r), 9(s)), (f(ps), 9(¢:))} is dense below (f(r), f(s))-
For, suppose that (¢,d) < (f(r), f(s)). Say (¢,d) = (f(u),g(v)). Then (u,v) < (r,s). By
Theorem 14.6(v), there is a (z,y) < (u,v) with (z,y) < (ps,q;). Hence (f(z),9(y)) <

(f(r),9(s)), (f(pe), 9(a:)), as desired in (3).

By (3) and Theorem 14.6(v), e(f(r),9(s)) < e(f(pi); 9(a))-
Now take ¢ with m < i,n. Then e(r,s) - e(pi,q;) = 0, so (r,s) and (p;,q;) are

incompatible. Hence (f(r),g(s)) and (f(pi),g(q:)) are incompatible. So e(f(r),g(s)) -
e(f(pi),9(a:)) = 0.

We have now shown that (2) fails, completing the proof. O

Lemma 15.91. RO(P x Q) 2 RO(P) & RO(Q).

Proof. We want to show that there is an isomorphism from RO(P) @ RO(Q) onto a
dense subalgebra of RO(P x )). We claim that the following two conditions are equivalent:

(ep(po) - €q(q0)) - -- - (ep(Pm-1) - €Q(qm—-1)-

(—ep(pm) + —€q(gm)) - - - (—ep(pn-1) + —€q(qn-1)) =0
erxQ(Po,qo) - - - - €PxQ(Pm—1,qm—1)"

—epxQ(Pm am) - - —epx@Pn—1,qn-1) = 0.

First suppose that (1) is nonzero. Take r € P and s € @ so that

ep(r)-eq(s) <(ep(po) - €q(q)) - - - (eP(Pm—-1) - €Q(gm—1)
(—ep(pm) + —eq(gm)) - - - (—ep(Pn-1) + —eq(qn-1))

Hence

Vi <mlep(r) - eq(s) < ep(pi) - eq(q:)] and
Vi € [m,n)lep(r) - eq(s) - ep(pi) - e(ai)] = 0.

Take any ¢ < m. Then ep(r) < ep(p;) and eg(s) < eg(q;). Hence by Theorem 14.6(v),
{t:t <r,p;} is dense below r, and {t: t < s,¢;} is dense below s. Hence {(t,u) : (t,u) <
(r,s), (pi,qi)} is dense below (7, s). It follows that epxq(r,s) < epxq (i, ¢i),

Take any ¢ € [m,n). Then r and p; are incompatible, or s and ¢; are incompatible.
Hence (r,s) and (p;, ¢;) are incompatible. Hence epxq(r,s) - epxq(pi,¢:) = 0.
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It follows that e(r, s) is leq (2). Thus (2) implies (1).

The above arguments reverse to show that (1) implies (2).

Now the Lemma follows by the remark at the bottom of page 57 of the Handbook.
U

Lemma 15.92. If RO(P;) = RO(Q;) for all i € I, then RO([[o2; i) = RO(TTi2, Qi)

Proof. Let f; : RO(P;) - RO(Q;) be an isomorphism, for each i € I. For z € Hﬁn P,

ier 17
and i € I, let M(x,i) = f(x;), and let N(z) = (M(x,i) : i € I). We claim that the
. o . n— fin .
following two conditions are equivalent, for 2%,..., 2" ! € [Lic: Pi:
(1) e(z%) - .e(™ ) —e(@™) ... —e(2™ ) = 0;
(2) e(N(a")) e(N(@™™1)) - —e(N(z™)) —e(N(z"1)) = 0;

Suppose that (1) is false; choose y € Hflg ; P such that
e(y) <e(x®)-...-e(z™ 1) —e(z™) ... - —e(z"1).

Thus _
Vi <mle(y) <e(z')] and Vi€ [m,n)le(y)-e(x;)=0].

Take any i < m. Then by Theorem 14.6(v), {z : 2 <y, 2"} is dense below y. Hence for all
jelI, {z:2z<uyjal} is dense below y;. so for all j € I, {z: z < f(y;), f(z}} is dense
below f(y;). Hence e(N(y)) < e(N(x?)).

Next, take any i € [m,n). Then y and x° are incompatible. So there is a j € I such
that y; and ’ are incompatible. So f;(y;) and f;(z}) are incompatible; hence N(y) and
N(z') are incompatible.

So we have shown that (2) fails.

Similarly, (2) fails implies that (1) fails. So (1) and (2) are equivalent. Hence there

is an isomorphism of ({e(x) : x € Hf& P;) onto ({e(x) : x € H?& Q;). By Sikorkski’s

extension theorem this extends to an isomorphism f of RO(HZﬁé1 ; Pi) into (Hflél 1 Q).
Now the Lemma follows by the remark at the bottom of page 57 of the Handbook.

O

Lemma 15.93. Let P be the set |J, o, "2 with order O. Let P’ be the set of all finite
functions C w x 2, with order 2. Then P is dense in P’, and so RO(P) = RO(P’); see
the proof of Lemma 15.88.

Let QQ be the set of all functions p whose domain is a finite subset of kK X w and range
a subset of 2; with order D. Then Q = ™" (P").

a<k
Proof. Suppose that ¢ € Q and o < k. Let p* have domain {m € w : (a,m) €
dmn(q)}, with p®(m) = g(a,m). Then we set f(q) = p. Clearly f is a bijection from @
onto [[™ (P’). Also it is clear that ¢o < q1 iff f(qo) < f(q1)- O

a<k
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Lemma 15.94. If P satisfies ccc and Q has property (K), then P x Q satisfies ccc.

Proof. Let X C P x Q be uncountable and pairwise incompatible.

Case 1. 3Jq € Q[Y, e {p € P: (p,q) € X} is uncountable}. For such a ¢ we

have (p1,q) L (p2,q) for all distinct pi,p2 € Yy, so p1 L po for all distinct p1,pe € Y,
contradicting P being ccc.
Case 9. ¥q € Q[Y, def {p € P:(p,q) € X}] is countable.

(1) Z e {q € Q : Y, # (0} is uncountable.
In fact, otherwise X = {(p, q) : p € Y5} is countable, contradiction.

Let W be an uncountable pairwise compatible subset of Z. For each ¢ € W choose
pg € P such that (pg,q) € X. For distinct ¢,¢" € W we have (pg,q) L (py,q'), hence
Dq L pgr, contradicting ccc of P. L

Lemma 15.95. Let P be the set of all functions p with dmn(p) € [w1]<“* and range C
N,. Then in M[G] there is a one-one function g : RY0 — Ny,

Proof. By usual arguments, if g = |JG then g is a function from w; onto X,. Now
note that every countable subset of R, in M[G] is a member of M. For each countable
subset X of N, let

Dx ={pe P:3Ja<w[(a+w)\aCdnn(p) Ap[(a+w)\a] = X]}

We claim that Dy is dense. For, suppose that p € P. Take any a € w;\dmn(p), and let ¢
extend p in such a way that ¢[(a + w)\a] = X. So ¢ € D, as desired.

Now for each countable subset X of R, let f(X) be the least a such that g[(a+w)\a] =
X. So f is a one-one function from [X,]¥ into wy. ]

Lemma 15.96. Let P consist of all functions p such that dmn(p) € [N,]<® and rng(p) C
A. Then in M[G] there is a one-one function from X\ into w.

Proof. g = |JG is a function mapping X, onto A. For any a < A let

Do ={p€ P:3In3B € [wn,wn1)VY € [Wn,wni1)[B <y — v € dmn(p) Ap(y) = a]]

Then D,, is dense. For, suppose that p € P. Then there is an n € w such that |[dmn(p) N
[wWn, wna1)| < wna1. Extend p to ¢ in which n exhibits that ¢ € D,,.

It follows that for every o < A there exist n € w and 8 € [wy,,wpny1) such that
Vv € [B,wn+1)[g() = a]. This induces the desired one-one function from A into w.

Lemma 15.97. Let P consist of all p such that dmn(p) € [w1]<“* and range C 2. Let Q
consist of all p such that dmn(p) € [w1]<“* and range C “2. Then RO(P) = RO(Q).

Proof. Let Q' = {p € Q : dmn(p) is an initial segment of w;}. Clearly @’ is dense
in Q. Also, let P = {p € P:3Ja < wi[dmn(p) = w- a]}. Clearly P’ is dense in P. Take

any p € P’; we define ¢ def f(p) € Q. Say dmn(p) = w - a with a < wy. Let dmn(q) = a,
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and for any £ < o and n € w let (¢(§))(n) = p(w - & + n). f is one-one: suppose that
p1,p2 € P' and p; # po. Say p; has domain w - a; and ps has domain w - ag. If ay # ao,
then f(p1) # f(p2). Suppose that a; = ag. Suppose that p; # ps. Say £ < a, n € w, and
p1(w-&+n) # pa(w- &+ n). Then clearly f(p1) # f(p2). f is onto: leq ¢ € Q' be given.
Say dmn(q) = a < wy. Let p have domain w - a, with p(w-&+n) = (¢(§))(n) for all { < «
and n € w. Clearly f(p) = q.

Now suppose that p;1 DO ps. Let f(p1) = ¢1 and f(p2) = ¢q2. Say p; has domain
w - a1 and po has domain w - as. Then as < a;. Take any £ < ag and any n € w. Then

(2(£))(n) =p2(w-&+n)=p1(w-&+n) =(g1(§))(n). Thus ¢; 2 g2. The other direction
is similar. ]

Lemma 15.98. Let T be a special normal a-tree, with o < wy, and suppose that w is a
non-trivial automorphism of T. Then T has an extension T’ of height o + 1 such that 7
cannot be extended to an automorphism of T’

Proof. Let tyg € T with n(tg) # to. Fix a branch b;, through to. Let 7" extend T
by adding a vertex above each branch of T except 7[by,]. If T’ is normal it is clearly as
desired. For normality, only (v) is questionable. Given t € T, if t # 7(to) then obviously
there is a node at level « above t. For t = 7w (#(), choose an immediate successor s of 7(t)
with s ¢ m[bs,]. Then there is a node of level o above s, hence above 7(t). O

Lemma 15.99. Let P be the set of all special normal trees with the order defined before
Lemma 15.81. Let G be P-generic over M. Then |JG is rigid.

Proof. Let . = [JG. Recall from Theorem 15.38 that .7 is a normal Suslin tree.
Suppose that 7 (in M[G]) is a nontrivial automorphism of .7; say m(tg) # to.

Now by Lemma 15.37 we have ((J'T")g = |JG = 7. Then the following statement
holds in M[G]:

g is a bijection from (' T")g to (' T")g and to € (J'T)aA
th,tg € (U /F/)G[tl S tg < 7Tg<t1) S 7Tg<t2)] A\ ﬁg(to) 7& to.

Hence there is a T € G such that

T IF [# is a bijection from (|J'IV) to (J'T") and Afy € (|J'T”) and
th,tg € (U/ F/)[tl S tg < 7T(t1) S W(tg)]] AN [W(Eo) 7& E()”

Now tg € F = |JG, so there is a T" € G such that tg € T'. Choose T” € G such that
T" <T,T’, Now let

D={T"eP:T" <T'A I63T™, TV [T" <T" < T AT" IF & is an automorphism

of T% which cannot be extended to an automorphism of TV A & C 7]}

We claim that D is dense below T”. For, suppose that 7" < T". Let T™ extend T"" so
that 7% is an a-tree with o limit. Let TV extend T% by adding nodes above all branches
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except one, call it b, above ty3. Let K be generic such that TV € K. Let ¢ be a name such
that ¢ = #% | T, Then

&% is an automorphism of 7% which cannot be extended

to an automorphism of 7%, and 6% C 7.
Hence there is a T € K such that

TV I ¢ is an automorphism of 7% which cannot be extended

to an automorphism of 7%, and ¢ C .
Let TV € K be such that TV <T%,T%. Then T"" < T < T% <T", and

TV |- & is an automorphism of 7% which cannot be extended

to an automorphism of 7%, and ¢ C 7.

Then 7Y% < TV < T% < T" and TV"% € D. This shows that D is dense.
Choose T"" € DN G. Then choose &, T™, T so that 7" < T? < T™ and

T" I ¢ is an automorphism of T

which cannot be extended to an automorphism of T% A ¢ C 7]}

It follows that &g is an automorphism of 7 which cannot be extended to an automorphism
of T, and 6 C 7, contradiction. ]

Lemma 15.100. Let P consist of finite trees (T, <r) such that T C w; and Yo, <
wiloe <p B — a < bl. We define (Th,<7,) < (Ts,<m,) iff Ty 2 Ty and <p,=<np
ﬂ(TQ X TQ) Then

(i) If G is P-generic over M, then |JG is a tree of height w .

(ii) If G is P-generic over M, then for every o € | JG there are B, with « <Ye B,
and B and ~y are incomparable.

(iii) If G is P-generic over M, then | JG has no uncountable antichain.
() If G is P-generic over M, then |JG is a Suslin tree.

Proof. (i): Clearly | JG is a tree. Now suppose that « < wy. Let D ={T € P: 35 >
a[B € T|}. Clearly D is dense, and it follows that | J G has height w;.

(ii): Suppose that o € |JG. Say a € T € G. Let D = {T" € P : T' < T and
A6,y € T'[a < T'B, f and 3 and ~ are incomparable in T"]}. Clearly D is dense below T,
and (iii) follows.

(iii): Suppose that (a¢ : £ < wi) is an uncountable antichain. For each § < w; let
T¢ € G be such that ae € Te. Let Aand W € [wq]“" be such that A is finite and T NT,, = A
for all distinct £, € W. For each £ € W let C¢ = {p € T¢ : p <1, a¢}. Now

W= |J{gew:TrnA=C}.
CCA
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So there is a W’ € [W]“t and a C' C A such that V¢ € W/[T N A = C]. Define £ = ¢
iff £,m € W and Ce N A = C, N A. This is an equivalence relation with finitely many
classes. Hence there is a W' e [WW']“* such that V¢, n € W' [Ce N A = C,, N A]. Now for
each 7 < max(A) there is at most one £ € W” such that min(7¢\A) = n; this is because
TeNT, = Afor £ # p. Let W =W"\{& € W":min(T¢\A) < max(A)}. So |[W"| =w.

Now fix £ € W’. By the argument producing W', there is an n € W' such that
min(7,\A) > max(7T¢). Now let 7" = T¢ U T,, with the ordering

VSTgﬁ lfﬁ/,ﬁETg,
v <p B iff v <, B it v, 8 €Ty,
v <1, ag and B € T,\A ify€T; and B €T,.

Then T" < T¢, T, and a¢ <7/ o). Now T¢ UT, I a, and «, are incomparable, so this is a
&4n 13 n 13 n n
contradiction.
(iv): This follows from (ii) and (iii) by the argument in the proof of Lemma 15.35.
O

Lemma 15.101. Let Q consist of all countable sequences (S¢ : & < a) with a < wy and
VE < a[Se C&]. The order is O. Suppose that G is Q-generic over M. Then M|G] = $.

Proof. Let g = |JG. Say g = (S¢ : £ < wy). We claim that g is a {-sequence in
MI[G]. Let A C wy in M[G], and let C be club in M[G]. Say A = A% and C = C©.
Choose p € G so that plF A C @y and C' is club in @;. Define

D={¢<p:Fa<wocdmn(q)AqlFac CAAN&=H,]}.

We claim that D is dense below p. For, suppose that » < p. Take s < r so that for some
a € C,dmn(s) = a+ 1 and s, = AN a. Suppose that s € K generic. Then a € C and
Sy = A Na. Let t < ssothat tIF & € C and Aﬂd:Ha. Then t € D; so D is dense
below p.

Choose g € G with ¢ € D. Choose o < wy so that « € dmn(q) and ¢ I & € CANANG =
H,. Thena e Cand ANa = Jo, as desired. ]

Lemma 15.102. Assume <. Then there exist sets A, C a X « such that for every
A Cwy Xwy the set {a <wi: AN(ax a)=A,} is stationary.

Proof. Let f : w; — wi X wy be a bijection. Let C = {a < w; : fla] = (a x a)}.
Then C is club in w;y: to prove closure, suppose that v < w; is a limit ordinal and
C N~ is unbounded in . Take any g < «. Choose a € C with § < a < 7. Then
f(B) € fla] = (o x @) € (v x 7). This shows that f[y] C (v x 7). Now take any
(€,0) € (7 x 7). Choose a € C so that €, < a <. Then fla] = (a X a), so there is a
1 < a such that f(v) = (e,d). This shows that (y x ) C f[v]. So C is closed.

To prove that C' is unbounded, take any o < w;. Define By = a. Choose (2,11 S0
that Ban, < Bant1 and f[B2n] C (Bant+1 X Bant1). Then choose fapia > Pant1 so that
(Ban+1 X Bant1) € flBant2]- Let v =U, e, Bn- Then a < v € C.
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Let (Ay : a < wi) be a $-sequence. For each a < wy let AL, = f[A.] N (a x ). Take
any A C wy X wy. To show that D o {a <w;: An(axa)= AL} is stationary it suffices
to show that D N C is stationary. Let A’ = f~1[A]. Then F o {a<w: A Na=A4,}is
stationary So also C'N E is stationary. Now note that if o € C, then

Ana=A, iff AN fHax o] = fHAL] N f e x a
it AN (o x )] = £ [f[Aa] N (0 X @)
iff ANn(axa)=f[A]N(axa)
iff ANn(axa)=A.,.

Hence
acCNE iff aceCand A Na=A,
iff a€Cand AN(axa)=A,
iff aeCandaeD
iff aeCnND.
So C'N D is stationary. O

Lemma 15.103. Let )’ be the statement that there is a sequence (hy : o < w1) of functions
with Yo < wy|hg : a0 — wy] such that for every f:wy — wy the set {a <w;y : f [ a=ha}
18 stationary.

Then <> is equivalent to {’.

that for every A C w; X w;y the set {a < w1 : AN (a X a) = A,} is stationary. If
Ao : a — «a let g, = Ag; otherwise let g, = (). Suppose that g : w; — w;. Let
C={a<w :g9gla=gn(axa)}. Weclaim that C is club. Closed: suppose that -y
is a limit ordinal and C' N+ is unbounded in ~. If 8 <, choose a € C' with 8 < a < 7.
Then g [ B Cgla=gN(axa)CgnN(yxy). This shows that g [ v C gN (v x 7).
Now suppose that (a,5) € g N (v x 7). Choose § € C so that o, < § < «. Then
(a, ) €gnN(dxd)=g[dCg]~. Thisshows that gN(y xvy) Cg[~. So C is closed.

Unbounded: Let a@ < wy. Define By = a. Let B2,41 > B2, be such that g [ B2, C
(Bant1 X Pany1). Let Banyo > Bang1 be such that g N (Boni1 X Bont1) € g | Panyo. Let
Y =Unew Bn- Then a <y e C.

Proof. =. Assume <. By Lemma 15.102 choose A, C a X « for a < w; so

Now D & {a <w;:gN(axa)=A,} is stationary. Hence so is D N C. For any
aeDNC wehave g | a=gN(axa)=A, = ga, as desired.
<. Assume ¢’. For each a < wy let A, = {8 < a : ha(8) = 1}. Suppose that

A C wq. Define
(1 ifaeA,
fla) = {O otherwise.
Then we claim that {a < w; : f [a=ho} C{a<w; : ANa = A,}. (As desired) For,
suppose that f [ @ = h,. Then for all § < a,

BEAn iff ha(B)=1 iff f(B)=1 iff e A. 0
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Lemma 15.104. If (T, <) is a normal Suslin tree, then (T, >) x (T,>) is not ccc.

Proof. Assume that (7, <) is a normal Suslin tree. For each x € T let p, and ¢, be
two distinct immediate successors of z. We claim that {(py, ¢,) : * € T'} is an antichain in
(T',>) x (T,>). For, suppose that (u,v) > (pz,qz), (Dy,qy) With x # y; say x < y. Then
T<pr U x< g <0,y <p, <wu andy < q, <v. So x,pg,Y,py are comparable.
Hence p, <y. Also, z,q,,y, g, are comparable. So ¢, <y, contradiction. ]

Lemma 15.105. Let G be Ppe,¢-generic over M, and f : w — w in M[G]. Then there is
an h:w — w in M such that VYn € w[f(n) < h(n)].

Proof. Say f¢ = f. Let p € G be such that pIF f : & — @.

(1) For all 7 < p there is a ¢ < 7 and a g : w — w in M such that for all n € w,
q I f(n) < g(n).
In fact, let F € M be such that F : w — [w]<¥ with ¢ < r such that for all n € w,
q IF f(R) € F(n). Define h(n) = max(F(n)) + 1 for all n € w. (h(n) = 1 if F(n) = 0).
Then ¢ I+ f(72) < h(n) for all n € w. So (1) holds.

In particular,

{¢g:3g:w—wlge MAVn €wlql- f(ﬁ) < g(n)]}

is dense below p. Hence we can choose ¢ € G and g € M such that for all n € w,
qlF f(n) < g(n). Hence for all n € w, f(n) < g(n). O

Lemma 15.106. A complete BA is (k, 2)-distributive iff it is (k,2")-distributive.
Proof. See Handbook Theorem 14.10. U

Lemma 15.107. If  is singular and B is a complete BA which is (< k)-distributive, then
B is k-distributive.

Proof. . We will apply Theorem 15.75 Suppose that f € M[G]| with dmn(f) = k.
Let (o @ a < cf(k)) be strictly increasing with supremum x. By Theorem 15.75, f | g is
in M for all a < cf(k), so f € M. Thus B is k-distributive by Theorem 15.75. O

Lemma 15.108. Let P consist of finite functions contained in w x 2. Then RO(P) is not
weakly (w,w)-distributive. O

Lemma 15.109. Let B be a complete BA and G B-generic over M. Then B is weakly
(w.wq)-distributive iff wy is a cardinal in M|G].

Proof. By Lemma 15.75, B is weakly (w,w)-distributive iff every f € M[G] with
f :w — w;p is dominated by some g € M with g : w — wy.

First suppose that w} is a cardinal in M[G]. Given f : w — w; in M[G], let o < wy
be such that f:w — «. Define g(n) = «a for all n € w.

Second suppose that w is not a cardinal in M[G]. Let f : w — w}M be a bijection in
M|G]. Clearly f is not dominated by a function in M. O
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Lemma 15.110. Suppose that B is a complete BA which is completely k-generated and
A-saturated. Then |B| < k<.

Proof. Let = sat(B). So u < A and p is regular. Say X generates B, with | X| < k.
Define for a < i

X if a =0,
Y, =L {D.Z2:ZCYs,|Z|<ptU{-Z:ZecYs} ifa=p+1,
U,<s Yy if v is limit.
By induction. |Y,| < x=# for all a. Clearly B =J,_, Yo and |B| < x=*. O

Lemma 15.111. If B is an infinite complete BA which is ccc and countably completely
generated, then |B| = 2%o.

Proof. By Lemma 15.110, |B| < 2%, Obviously 2% < |B]. O
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16. Iterated forcing and Martin’s axiom

Let P be a forcing poset, and let Q € MEO() be such that IFp Q is a forcing order. We
define

PxQ={(p,¢):pePandpl g€ Q};
(p1,q1) < (p2,42) iff  p1 <pyand pi Ik ¢ < go.

Theorem 16.1. Let P be a forcing poset, and let Qe MRO(P)_be such that IFp Q is a
forcing order. Suppose that G is P-generic over M. Let Q = Q¢, and let H be H|G]-
generic over M. Then

G*Hdﬁf{(p,Q)eP*Q:peGcmquEH}

is (P % Q)-generic over M, and M|G % H] = M[G][H].

Proof. G * H is upwards closed: Suppose that (p,q) € G « H and (p,q) < (p/,q’).
Thus p<p' and plk ¢ < ¢'. Also, p € G and g € H. So p’ € G. Since p - ¢ < ¢, we
have ¢ < ¢r;. Hence ¢, € H.

Next, suppose that (p1,¢1), (p2,d2) € G * H. Thus p1,ps € G and ¢1¢, ¢oc € H. So
there exist p3 € G with p3 < p1,p2 and ¢3¢ € H with ¢3¢ < ¢1g, G2 Now there is an
r € G such that r IF g3 < ¢1, and there is an s € G such that s IF ¢3 < ¢». Choose py € G
so that py < p3,r,s. Then (p4,q3) € G * H and (p4,q¢3) < (p1,41), (p2,¢2). Thus G x H is
a filter.

Now suppose that D is a dense subset of Px(Q); we want to find a member of DN(G*H).
Let

Ey ={4c : 3p € G(p, 4) € D}.
(1) Eq is dense in Q.
To prove (1), we first show that

(2) Vs e PYiolslFdoe@Q—{peP:3@lplFd <doA(p 1) € D]} is dense below s.]

To prove this, suppose s € P, sl ¢y € Q, and r < s. Then r I o € Q, so (r,qo) € P * Q.
Choose (t,¢1) € D such that (¢t,41) < (r,¢o). Thus ¢t <r and tIF ¢; < go. This proves (2).

Now to prove (1), let oo € Q = Q¢ be given. Then there is a p € G such that
plF Go € Q. By (2), choose < p with r € G so that for some ¢; we have 7 I- §; < gy and
(r,¢1) € D. Then ¢1¢ < dog and ¢1¢ € E1, proving (1).

By (1), choose g € E1 N H. So there is a p € G such that (p,¢) € D. Hence
(p,4) € DN (G * H). This proves that G x H is a generic filter on P * Q.

Clearly G « H € M[G][H], so by the minimality of M |G x H| we have M[G x H| C
MIG][H]. Since M[G] C M[G« H] and H € M|G x H|, we have M [G][H] C M|G = H] by
the minimality of M|[G|[H]. ]

Lemma 16.2. If A is a B-name and z € dmn(A), then A(z) < ||z € AJ|.
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Proof. We have [|r € All = ¥, cqmna) (AW 2 = yll = A(@)-[|z = o]l = Aw). O

Lemma 16.3. Ifr IF Jz € Ap(z), then there exist ¢ < r and x € dmn(A) such that
qglFx e ANp(x).

Proof. By Lemma 14.31 we have e(r) = > cqyun(4) (e(7) - A(x)-||¢(x)||. Hence there

exist p and x € dmn(A) such that e(p) < e(r) - A(z) - ||¢(x)||. Take ¢ < p,7. Then by
Lemma 16.2, e(q) < A(z) - ||e(2)]|| < ||z € Al] - ||¢(x)]|, and the lemma follows. O

Theorem 16.4. Let P be a forcing poset, and let Q € MROWP) pe such that IFp Q is a
forcing order. Suppose that K is (P * Q))-generic over M. Let

G=A{peP:34[(p,¢) € K]} and H ={fc:Ipl(p,q) € K]}.

Then G is P-generic over M, H is Qg-generic over M[G], and K = G+ H.

Proof. First we show that G is a filter. Upwards closed: suppose that p € G and
p < p'. Choose ¢ so that (p,q) € K. Then (p,q) < (', ), so (p’,¢) € K and hence p’ € G.
Next, suppose that pi,ps € G. Choose §1,¢2 so that (p1,41), (p2,d2) € K. Then choose
(p3,d3) € K so that (p3,q43) < (p1,41), (p2,G2). Then p3 € G and p3 < p1,p2. So G is a
filter.

Next, suppose that D is dense in P. Let D1 = {(p,q) : plF ¢ € Qandpe D}.

(1) Dy is dense in P * Q.

In fact, let (p,§) € P * Q. Choose ¢ € D with ¢ < p. Then (¢,q4) € Dy and (q,¢) < (p,q).
So (1) holds.

Now choose (p,¢) € D1 N K. Then p € DNG. So G is generic over P.

Next we show that H is a filter. Upwards closed: suppose that g € H and ¢g < ¢'C.
Choose p so that (p,¢) € K. Choose p’ € G so that p' IF ¢ < ¢'. Say (p/,¢”) € K. Choose
(p”,q") € K so that (p”,¢") < (p,q), (p',4"). Then p” IF ¢ < q. Also, p” < p/, so
p" - ¢ <¢. Hence p” IF¢" < ¢. Hence (p”,¢") < (p,d'), so (p,d’) € K and so ¢'“ € H.

Next, suppose that ¢1¢,d2c € H. Say (p1,4¢1), (p2,¢2) € K. Choose (ps,q3) € K
with (p3,43) < (p1,41), (P2, d2). Then g3g € H. Also, p1,p2,p3 € G and p3 I g3 < ¢1, s0
3¢ < q1g- Similarly ¢zg < ¢ag. . . _

Now let D € M[G] be dense in Q. Let D be a name and py € G such that pgy IF D
is dense in Q. Say (po,q) € K. Let E = {(p1,d') : p1 <po and py IF ¢ € DA § € Q}.

(2) E is dense below (po, §).

In fact, suppose that (p1,q') < (po,q). Then p; I- D is dense in Q, sopy Ik Jv € D[z e
Q Nz < {']. Hence by Lemma 16.3 there exist po < p; and ¢” € dmn(D) such that

plEd" e DANG" <{ NG €Q.

Hence (pZ,QH) € E and <p27q//) < (phq/)'
So (2) holds and hence we can choose (p1,¢’) € EN K. Hence ¢ € DN H.
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Now if (p,q) € K, then clearly p € G and ¢ € H, so (p,q) € G x H. Now suppose
that (p,¢) € G+ H. Sop € G and g € H. Say (p,7) € K. Say (p/,$) € K, with
ic = 5a. Choose p” € G such that p” IF ¢ = 5. Say (p”,t) € K. Choose (p"',4) € K
such that (p”',u) < (p,7), (v, §), (p”,t). Then p” IF 4 < §A ¢ =4, s0 p” IF 4 < ¢. Hence
(p", ) < (p, ¢) and so (p,q) € K. O

Now suppose that B is a complete BA, [[C’ is a complete BA]p = 1, and there are
operations +, -, —,0,1 on A def {é¢:[¢ € C]p =1} such that for all ¢, ¢, ¢ € A,
[éo+ (1 + é2) = (éo + ¢1) + é2]B =1,
and similarly for the other axioms for BAs.
Define Co = ¢ iff Cp,C1 € A and [[CO = él]]B = 1.
(1) = is an equivalence relation on A o {¢:[¢eC]p=1}.

For, if ¢ € A, then [¢ = ¢]p = 1. Clearly = is symmetric and transitive.
Let D be the set {[¢] : ¢ € A}.

(2) [é1 =é2]B < [és+ ¢é1 = é3+ é2] B
In fact, suppose that [¢1 = é2]p £ [¢3 + ¢1 = ¢34 ¢é2] B, and let G be a generic ultrafilter
such that [¢; = ¢o]p - —[é3 + ¢1 = é3 + é2] B € G. Then ¢F = ¢§, so

(es+¢1) =+ = +¢5 = (cs+@)°

Hence there is a p € G such that p < [¢3+¢1 = é3+ 2] . Since —[és+¢1 = é3+é]p € G,
this is a contradiction. So (2) holds.
Similarly,

(3) [é1 = ¢éa]B < [é3-é1 = ¢é3- 2] .

(4) [é1 = é2]B < [—¢1 = —é2]B.

For ¢y, ¢, € A we define
[co] +[c1] =[co+els [éo] - [e1] = [Co-éa]s —[éo] = [—Col;
OD:[O]; 1D:[1]-

(5) These operations on D are well-defined.

For example, suppose that [¢o] = [¢)] and [¢1] = [¢)]. Thus [¢o = ¢]s = 1 and [¢; =
¢l = 1. Hence by (2), [é¢o+¢é1 = ¢+ éalp =1 = [¢y+¢é = ¢y + ¢ ]s. Thus
[éo + ¢1 = ¢ + €] B = 1. This proves that + is well-defined.

(6) (D,+,-,—,0,1) is a BA.
It is routine to check this. For example, the associative law for + is checked like this:
[e1] + ([¢2] + [e3]) = [e1 + (é2 + ¢3)] = [(¢é1 + ¢2) + és] = ([éa] + [¢2]) + [¢s].
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(7) D is complete.

For, suppose that X C D. Say X = {[¢] : ¢ € X'}. Let X’ be a name such that
=1 for all ¢ € X'. Now

dmn(X’) = X’ and X’(¢)
VXX CC—IyelCNeeX[z<ylAVzeCVze X[z <2z]—y<:]]z=1
Hence
[X'CC—-3yeclCNeeX'[z<ylAVzeCONzeX'[z<z]—y<2]s=1.
Now [X’ C O] = [eey/[¢ € C]p = 1. Hence
[ByeCVzeX'[z<ylAVzeCNzeX'[z<z—y<2]]s=1
By Lemma 14.30 there is a name d such that
[de CAVz e X'z <dAVzeCNz e X'z < 2] —-d< 2]z =1

Thus [d € C]p = 1,s0d € A and [d] € D. Now [Vo € X'[z < d]]p = 1, so for all
z € X'[[x < d]p = 1]. Hence Vz € X[z < [d]]. Now suppose that Yz € X[z < [€]].
Thus Vr € X'[[x < é]p = 1]. Hence [d < ¢]p = 1, so [d] < [¢]. All of this verifies that
[d] = > X, proving (7).

(8) Vb € B3¢[[[¢ = 1]p = b and [¢ = 0]p = —b] and Vd[[d = 1]p = b and [d = 0] =

In fact, by Lemma 14.29 choose ¢ such that b < [¢ = 1]p and —b < [¢ = 0]p. Now
[¢ =1]p-[¢ = 0] = 0,50 [¢ = 1]p = b and [¢ = 0]p = —b]. Suppose that also
[d=1]p =b and [d = 0] = —b]. Hence

l=b+—b=[é=1]p-[d=1]p+[¢=0]s-[d=0]s < [¢ = d]s,

proving (8).
Now for any b € B, let w(b) = [¢] with ¢ as in (8); this is justified by (8).

(9) 7 preserves +.

For, suppose that by,b; € B. Say m(b;) = [¢;] for i < 2. Then
1:[[00:1]]3[[ClzlﬂBS[[Co-i-Cl:l]]B and
1= [[éo :OHB . [[él :OHB < [[éo-l—él = 0]]3.

Hence m(by + b1) = m(bo) + m(b1), and (9) holds.
(10) 7 preserves —.

In fact, suppose that b € B. Say 7(b) = [¢]. Then
[-¢=1]p=[¢c=0]lp=-b and [-¢=0]p=[c=1]p =1
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Hence (10) holds.

(11) 7 is one-one.

For, suppose that by, b1 € B and mw(bg) = w(b1). Say 7(b;) = [¢;] for i < 2. Thus [¢g] = [¢1],
so [¢o = ¢é1]B = 1. Hence

by =[é1 =1]B - [éo =é1]r < [éo = 1] B = bo,

and similarly by < b;. So (11) holds.
(12) 7 is a complete embedding.

For, suppose that X C B and b= )_ X. Say 7(b) = [¢] and Vx € X[r(z) = [d,]], with

[[ézl]]B:b and [[éZO]]B:—b;
[de =1]p =2 and [d, =0]p = —=.
Since 7 is an isomorphic embedding, 7(b) is an upper bound of 7[X]. Now suppose that

[¢] is another upper bound; we want to show that 7(b) < [¢], i.e., ¢ < é. Now if z € X,
then z = [dy -é =dy]p - [de = 1] < [é = 1] 5. Hence [¢ =1]p =b < [é = 1] 5. Hence

Soc¢<eé. .
The algebra D constructed here is denoted by B * C.
Lemma 16.5. P x Q = P x ().

Proof. Define f(p,q) = (p,§). ThenpIF G € Q, so (p,§) € PxQ. Given (p,§) € PxQ,
we have f(p,q) = (p, ). Finally,

(p1,q1) < (p2,q2) itf  p1 <pgand ¢1 < ¢

iff  p; <poand p; Ik g1 < go
iff  (p1,d1) < (p2, G2)- -

Theorem 16.6. Let k be regular and uncountable. Assume that 1p I+ Q has the k-cc.

Then P x Q has the k-cc.

Proof. Suppose that ((pa,da) : @ < k) is a system of pairwise incompatible elements
of Px Q. Define dmn(Z) = {& : a < s} and for each a < x, Z(&) = e(pn). Then for G
generic over P, Zg ={a < k: Ir € Gle(r) < e(pn)}. Hence for any a < k&,

laee Zll=) (2(8)-lla=p5)=Z(a) = e(pa).

B<K
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(1) Vo, B < kla # B = [pa L pg or Vr < pa, pplr IF 4o L ¢5]]]-

In fact, suppose that o, 5 < k, a # 3, po and pg are compatible, r < p,,pg, and r I ¢, L
gg- Thus

r Ve € Qr £ o or x £ qg).

Hence

e(r) £ ||Vz € Q[z £ o or x £ gg]l],

so we can choose s so that

e(s) Ce(r) - ||V € Ql £ do or z £ gs]]],

and then choose t < s, 7; then

e(t) < —|IVz € Qlr £ dao or x £ gg]|
= ||3x € Q[x < o and = < ¢g;

sot -3z € Qz < o and z < gg]. It follows by Lemma 14.30 that there exist ¢’ € dmn(Q)
and u < t such that

ulFd € QNG < daNd < dp.
Hence (u,{") < (Pa,qa), (P8, §s), contradiction. So (1) holds.
(2) If G is generic and «a, § € Zg, with a # 3, then ¢, L qg-

In fact, choose r,s € G such that e(r) < e(p,) and e(s) < e(pg). Then p, and pg are
compatible, so if r < p,,pg, then ¢o L ¢z by (1).
From (2) it follows that |Z€| < x for any generic G, since @ has the s-cc. Thus

(3) 1IF 3y < k[Z C ).
(4) Vp3g < pIy < wlg - Z CA).

To see this, use (3) and Lemma 14.30.
Now let W C P be maximal such that its elements are pairwise incompatible, and
for each p € W there is a 7, < & such that p IF Z C v,. |W| < k by the k-cc for P, so

5 Sup,ew Vp < K. Now
(5) 1 IFZ Cé.

For, let G be generic. Since W is a maximal antichain, let p € GNW. Then Z¢ C vp € 0.
So (5) holds. But ps IF 6 € Z, so ps IF 6 < §, contradiction. O

A function f: P — @ is a complete embedding iff the following conditions hold:
(i) Vp1,p2 € Plp1 < p2 — f(p1) < f(p2)]-

(ii) Vp1,p2 € Plp1 L pa < f(p1) L f(p2)]-
(iii) Vg € Q3p € PYp' € P[p' < p — f(p') and ¢ are compatible].
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Lemma 16.7. Let M be a transitive model of ZFC, with forcing posets P,Q € M, and
suppose that i : P — Q) is a complete embedding, with ¢ € M. Let G be Q-generic over M.
Then i~ Y[G] is P-generic over M.

Proof. First i~![G] is upwards closed. For, suppose that p € i7![G] and p < q. Then
i(p) € G and i(p) < i(q) by (ii) in the definition of complete embedding, so i(¢q) € G and
hence ¢ € i71[G].

Now suppose that D is dense in P. We claim that ¢[D] is predense in Q). For, suppose
that ¢ € Q. Choose p € P so that Vp' < pli(p’) and ¢ are compatible. Choose p’ € D with
p’ < p. Then i(p') € i[D] and i(p’) and ¢ are compatible. Since i[D] is predense, choose
p € D so that i(p) € G. Then p € DNi~[G].

Finally, any two elements of i ~![G] are compatible. For, suppose that p,q € i~1[G].
Thus i(p),i(q) € G, so they are compatible. By (ii) in the definition of complete embedding,
also p and ¢ are compatible. L

Theorem 16.8. If f : P — Q is a complete embedding, then there is a complete embedding
g : RO(P) = RO(Q) such that Vp € Plg(e(p)) = e(f(p))].

Proof. For all p € P let g(e(p)) = e(f(p)). First we show that g is a well-defined
isomorphism of e[P] onto e[f[P]]. By Sikorski’s criterion, it suffices to show that the
following two conditions are equivalent:

(1) e(po) N...Ne(Pm-1) N —e(Pm)N...N—e(p,) = 0;

(2) (£ (o)) N+ el (1)) N —e(F (D)) 1. . 1 = () = 0.
First suppose that e(pg) N...Ne(Pm—1) N —€(Pm) N ...N —e(py) # 0; say

e(r) <e(po)N...Ne(Pm_1)N—€Pm)N...N —e(pn);

thus
e(r) N (—e(po) + -+ —e(pm—1) + e(pm) + -+ e(pn)) = 0.

Suppose that i < m. Then e(r) < e(p;), so by Theorem 14.6(v), {s : s < r,p;} is dense
below r. We claim that {q : ¢ < f(r), f(p:)} is dense below f(r). For, suppose that
g < f(r). By (iii) choose s € P such that Vs’ € P[s’ < s — f(s’) and ¢ are compatible].
Then Vs’ < s3u < f(s'), f(r), so Vs’ < s[s’ and r are compatible|, hence Vs’ < s3u < §',r,
hence Jv < u, p;. So there is a v < s, p;. Hence f(v) and g are compatible, so f(p;) and ¢
are compatible. This proves the claim. By Lemma 14.6(v), e(f(r)) < e(f(pi)).

Suppose that m < i <n. Then e(r) Ne(p;) =0, so r L p;, hence f(r) L f(p;), hence

e(f(r)) ne(f(pi)) =0.

We have shown that

(%) e(f(po)) ... e(f(pm—1)) N =e(f(pm)) ... N —e(f(pn)) # 0

Conversely, suppose that (x) holds, and let

e(r) <e(f(po)) N .- Ne(f(pm—1)) N —e(f(pm)) N ... O —e(f (Pn));
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Hence

e(r) N (—e(f(po)) + -+ + —e(f(pm-1)) + e(f(pm)) + -+ e(f(pn))) = 0.

Suppose that i < m. Then e(r) < e(f(p;)), so by Theorem 14.6(v), {s : s < r, f(p;)} is
dense below r. Choose s € P so that Vs’ < s[f(s’) and r are compatible]. We claim that
{t : t < s,p;} is dense below s. For, let ' < s. Then f(s’) and r are compatible; say
u < f(s'),r. Then there is a v < w such that v < f(p;). So v < f(s'), f(pi), so s’ and p;)
are compatible. This proves the claim. It follows from Theorem 14.6(v) that e(s) < e(p;).

Suppose that m < ¢ < n. Then e(r) Ne(f(pi)) = 0, sor L f(p;). If s and p;
are compatible, choose s’ < s,p;. Then f(s’) and r are compatible, so f(p;)) and r are
compatible, contradiction. Hence s L p;, and so e(s) Ne(p;) = 0.

We have shown that e(po) N...Ne(pm—1) N —e(Pm)N...N —e(pn) # 0. Thus (1) and
(2) are equivalent. Now the Theorem follows from the remark at the bottom of page 57 of
the Handbook. O

Lemma 16.9. Let f be a complete embedding of A into B. We define f* : VA — VB,
defining f* | v and proving it is one-one by recursion. The case o = 0 is trivial. The
induction step for o limit is clear. Now suppose that x € VA \V2. So x is a function
with dmn(z) C V.2 and range C A. Let dmn(f*(z)) = {z : Jy € dmn(w)[z = f*(y)]}
and set (f*(x))(z) = f(x(y)) with z = f*(y). Suppose that x,z' € V2, f*(z) = f*(2),
and x # x'. Sayy € x\x'. Then f*(y) € f*(z) = f*(a'), so there is a v € &’ such that
f*(y) = f*(v). Nowy,v € VA, so it follows that y = v € 2', contradiction.

Then

(i) For any po, . ..pm—1 € VA and any formula o(vy, . .., vm_1) we have
f(lepo, - - pm-1)1a = (e(f*(Po), - - -, [ (Pm—-1))] -

(i) (@) =

(iii) If p: a —> A, then f*(p) = fop.

Proof. First we show:

Claim. Ifz,y € VA, then
(i) f([z =yla) =[f"(=) = f*(y)]5-
(it) f([x € y]a) = [/ (x) € F*(¥)]5.
(iti) f([z S yla) =[f*(2) € f*(W)]5-

Proof. Induction:

A
flecyly=r( I @@ =1Tteyla)
tedmn(x)
A A
il I (0= > e 1=
tedmn(x) sedmn(y)
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B B

= [I [ree)= > (u6) I =11l

tedmn(z) s€dmn(y)

= ]I (S @)= Y. ()W) [v="1ulp)
vedmn(f*(x)) uedmn(f*(y))]

= [f"(2) € F W]

The other parts of the claim are proved similarly, and the first part of Lemma itself follows
by an easy induction on formulas.

For (ii), we have dmn(f*(a)) = {z:3b € az = f*(b)]} = {z Jb € alz = 0]} = a.

For (iii), we have dmn(f*(p)) = {{z: 3b € dmn( )z = f*0)]} = {3 € a[z = b]} =
a. For any b € a, (f*(p))(b) = f(p(b)). 0

S«

Lemma 16.10. For any p € P let f(p) = (p,1). Then f is a complete embedding of P
mto P x Q.

Proof. Obviously p1 < ps — (p1,1) < (p2,1). Next,

P1 7[ P2 iff E|p3 S P1-p2
iff  I(ps,q) < (p1,1), (p2,1)
iff  (p1,1) L (p2,1).

Now, given (p,q) € P * @, suppose that p’ < p. Then (p/,1) and (p,q) are compatible,
since (p',4) < (p',1), (p, ). O

Corollary 16.11. RO(P) can be completely embedded in RO(P * Q). O

Lemma 16.12. If P % Q satisfies the k-cc, then P satisfies the k-cc.

Proof. Assume that P  Q satisfies the k-cc. By Lemma 16.10, the function f given
by f(p) = (p,1) is a complete embedding if P into P * Q. It (p, : a < k) is a system of
pairwise incompatible elements, then by (ii) in the definition, ((pa, 1) : @@ < w1) is a system
of pairwise incompatible elements, contradiction. L
Lemma 16.13. If P x Q satisfies the k-cc, then 1 IF Q satisfies the k-cc.

Proof. It suffices to prove the following claim:

Claim Suppose that W is a name and p € P is such that p I~ W C Q and \W| = K.
Then there is a ¢ < p such that ¢ IF W is not an antichain.

Assuming the claim holds, suppose that 1 Iff C has the k-cc. Thus
[VW C Q[|W| = & — W is not an antichain] # 1],

321



so there is a p such that
plF3IW C Q[[W| =& AW is an antichain]

Now by Lemma 14.30 there is a name U such that p IF U C QA|U|| = kAU is an antichain.
This contradicts the claim.

Proof of claim. Assume that W is a name and p € P is such that p I+ W C Q and
|W| — k. Let f be a name such that p I f is a one-one function mapping % onto W. For
every a < K, p I- 3x € W[f(&) = z]. By Lemma 14.30 there is a ¢, € MRO(P*Q) gych
that p I ¢q € W and f(@) = éq. Then plF ¢q € Q, s0 (p, ¢a) € P+ Q. Now Va, 8 < kla #
B — plk éq # ¢gl. Take any o, f < k with o # 5. If (p, éq) = (p, ég), then p I ¢ = ¢,
contradiction. So (p,¢q) # (p,¢ég). Since P x Q satisfies the k-cc, choose a, 8 < k with
a # 3 such that (p,cq) and (p,¢ég) are compatlble Say (p/,d) < (p,¢a), (p,és). Then
plFd<éq,andp IFd< ¢g. Hence p’ < pand p' IF W is not an antichain. L

Corollary 16.14. If P and Q satisfy the k-cc, then P x Q satisfies the k-cc iff 1 IF Q
satisfies the k-cc.

Proof. Assume that P and @ satisfy the k-cc.

Suppose that P x Q satisfies the k-cc. By Lemmas 16.5 and 16.12, 1 I+ Q satisfies the
K~CC.

Suppose that 1 IF Q satisfies the k-cc. By Theorem 16.6 and Lemma 16.5, P x Q
satisfies the k-cc. 0

Lemma 16.15. If P is k-closed and 1 I+ Q is k-closed, then P x Q is k-closed.

Proof. Suppose that A < k and ((pa, o) : @ < A) is a decreasing sequence. Then
Po>p1 > > Po > ... for a < A, so choose p’ < p, for all @ < A. Then p’ IF ¢, < ¢3
for 8 < A, so p' IF Fr[i € Q and Va < A[ < o]]. By Lemma 14.30 there is a § such that
pIF$eQ and Va < Al$ < ¢u]]- Hence (p/, $) < (pa,da) for all a < A. O

For each o > 1 a finite support iteration of length « is a pair ((P: : £ < a), (Q¢ : € < )
with the following properties:

(i) Each P is a forcing poset.

(ii) Each Q¢ is a Pe-name, and 1 p, IF Q¢ is a forcing poset.

(iii) Each p € P is a sequence of length & such that Vn < &[p, € dmn(Q,,)]

(iv) Ifn<§andp€P§, thenp I'ne P,

(v) If n < & p € Py, and p’ is the function with domain & such that p’ [ n = p and
Y e n,ﬁ)[pu =1], then p € Pe.

(vi) e = (1 7 < €.

(vii) pr p' € P, then p <¢ p' iff Vu <&[p [ plrp, pp < ppl-

(viii) If § +1 < «, then Pgyq = {p™(q) : p € Pr and q € dmn(Q¢) and pl-p, q € Q.

(ix) V€ < a[¢ limit — Pe = {p € [[, . Py : {n <& :py # 1} is finite}].
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Note that Py = {0} with the natural order. Then () |= {0} and &p, = {0, {0}}. This is a
topology on {(}. We have cl(() |) = {0} and int(cl(§ ])) = {0}. Thus RO(Py) = {0,{0}}.
Let B = RO(R).
Vi = 0;
7= {0};
Vs = {0, {{(0.0)}}}

VP has 9 elements: (), four functions with one element, and four with two elements.
Altogether there is a proper class of Py-names.

Given an iteration as above, with p € P¢ let supp(p) = {n <& : p, # 1}.

Lemma 16.16. supp(p) is finite for all £ < o and all p € Pr.

Proof. An easy induction on &. U
Lemma 16.17. P, = {(}. ]

Lemma 16.18. P: 1 = Pr* Q.

Proof. For any p € Peyq let f(p) = (p | &, pe). By Definition (iv), p [ £ € Pe.
By Definition (iii), pe € dmn(Qg¢). By Definition (viii), (p | €) IF [pe € Q¢]. Hence
f(p) € P¢ # Q. Clearly f is a bijection. Suppose that p*, p? € P¢yq. Then

pl <p? iff Vu<<&plpl [pla < pi]] by Definition (vii)
iff  [p' 1€ <p® & 