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LOGIC

1. Sentential logic

We go into the mathematical theory of the simplest logical notions: the meaning of “and”,
“or”, “implies”, “if and only if” and related notions. The basic idea here is to describe a
formal language for these notions, and say precisely what it means for statements in this
language to be true. The first step is to describe the language, without saying anything
mathematical about meanings. We need very little background to carry out this develop-
ment. ω is the set of all natural numbers 0, 1, 2, . . .. Let ω+ be the set of all positive
integers. For each positive integer m let m′ = {0, . . . , m − 1}. A finite sequence is a
function whose domain is m′ for some positive integer m; the values of the function can
be arbitary.

To keep the treatment strictly mathematical, we will define the basic “symbols” of
the language to just be certain positive integers, as follows:

Negation symbol: the integer 1.
Implication symbol: the integer 2.
Sentential variables: all integers ≥ 3.

Let Expr be the collection of all finite sequences of positive integers; we think of these
sequences as expressions. Thus an expression is a function mapping m′ into ω+, for some
positive integer m. Such sequences are frequently indicated by 〈ϕ0, . . . , ϕm−1〉. The case
m = 1 is important; here the notation is 〈ϕ〉.

The one-place function ¬ mapping Expr into Expr is defined by ¬ϕ = 〈1〉⌢ϕ for any
expression ϕ. Here in general ϕ⌢ψ is the sequence ϕ followed by the sequence ψ.

The two-place function→mapping Expr×Expr into Expr is defined by ϕ→ ψ = 〈2〉⌢ϕ⌢ψ
for any expressions ϕ, ψ. (For any sets A,B, A × B is the set of all ordered pairs (a, b)
with a ∈ A and b ∈ B. So Expr × Expr is the set of all ordered pairs (ϕ, ψ) with ϕ, ψ
expressions.)

For any natural number n, let Sn = 〈n+ 3〉.
Now we define the notion of a sentential formula—an expression which, suitably inter-

preted, makes sense. We do this definition by defining a sentential formula construction,
which by definition is a sequence 〈ϕ0, . . . , ϕm−1〉 with the following property: for each
i < m, one of the following holds:

ϕi = Sj for some natural number j.

There is a k < i such that ϕi = ¬ϕk.

There exist k, l < i such that ϕi = (ϕk → ϕl).

Then a sentential formula is an expression which appears in some sentential formula con-
struction.

The following proposition formulates the principle of induction on sentential formulas.
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Proposition 1.1. Suppose that M is a collection of sentential formulas, satisfying the
following conditions.

(i) Si is in M , for every natural number i.
(ii) If ϕ is in M , then so is ¬ϕ.
(iii) If ϕ and ψ are in M , then so is ϕ→ ψ.

Then M consists of all sentential formulas.

Proof. Suppose that θ is a sentential formula; we want to show that θ ∈ M . Let
〈τ0, . . . , τm〉 be a sentential formula construction with τt = θ, where 0 ≤ t ≤ m. We prove
by complete induction on i that for every i ≤ m, τi ∈M . Hence by applying this to i = t
we get θ ∈M .

So assume that for every j < i, the sentential formula τj is in M .
Case 1. τi is Ss for some s. By (i), τi ∈M .

Case 2. τi is ¬τj for some j < i. By the inductive hypothesis, τj ∈ M , so τi ∈M by
(ii).

Case 3. τi is τj → τk for some j, k < i. By the inductive hypothesis, τj ∈ M and
τk ∈M , so τi ∈M by (iii).

Proposition 1.2. (i) Any sentential formula is a nonempty sequence.
(ii) For any sentential formula ϕ, exactly one of the following conditions holds:

(a) ϕ is Si for some i ∈ ω.

(b) ϕ begins with 1, and there is a sentential formula ψ such that ϕ = ¬ψ.
(c) ϕ begins with 2, and there are sentential formulas ψ, χ such that ϕ = ψ → χ.

(iii) No proper initial segment of a sentential formula is a sentential formula.

(iv) If ϕ and ψ are sentential formulas and ¬ϕ = ¬ψ, then ϕ = ψ.
(v) If ϕ, ψ, ϕ′, ψ′ are sentential formulas and ϕ → ψ = ϕ′ → ψ′, then ϕ = ϕ′ and

ψ = ψ′.

Proof. (i): Clearly every entry in a sentential formula construction is nonempty, so
(i) holds.

(ii): First we prove by induction that one of (a)–(c) holds. This is true of sentential
variables—in this case, (a) holds. If it is true of a sentential formula ϕ, it is obviously true
of ¬ϕ; so (b) holds. Similarly for →, where (c) holds.

Second, the first entry of a formula differs in cases (a),(b),(c), so exactly one of them
holds.

(iii): We prove this by complete induction on the length of the formula. So, suppose
that ϕ is a sentential formula and we know for any formula ψ shorter than ϕ that no proper
initial segment of ψ is a formula. We consider cases according to (ii).

Case 1. ϕ is Si for some i. Only the empty sequence is a proper initial segment of ϕ
in this case, and the empty sequence is not a sentential formula, by (i).

Case 2. ϕ is ¬ψ for some formula ψ. If χ is a proper initial segment of ϕ and it is a
formula, then χ begins with 1 and so by (ii), χ has the form ¬θ for some formula θ. But
then θ is a proper initial segment of ψ and ψ is shorter than ϕ, so the inductive hypothesis
is contradicted.
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Case 3. ϕ is ψ → χ for some formulas ψ and χ. That is, ϕ is 〈2〉⌢ψ⌢χ. If θ is a proper
initial segment of ϕ which is a formula, then by (ii), θ has the form 〈2〉⌢ξ⌢η for some
formulas ξ, η. Now ψ⌢χ = ξ⌢η, so ψ is an initial segment of ξ or ξ is an initial segment
of ψ. Since ψ and ξ are both shorter than ϕ, it follows from the inductive hypothesis that
ψ = ξ. Hence χ = η, and ϕ = θ, contradiction.

(iv) is rather obvious; if ¬ϕ = ¬ψ, then ϕ and ψ are both the sequence obtained by
deleting the first entry.

(v): Assume the hypothesis. Then ϕ→ ψ is the sequence 〈2〉⌢ϕ⌢ψ, and ϕ′ → ψ′ is
the sequence 〈2〉⌢ϕ

′⌢ψ′. Since these are equal, ϕ and ϕ′ start at the same place in the
sequence. By (iii) it follows that ϕ = ϕ′. Deleting the initial segment 〈2〉⌢ϕ from the
sequence, we then get ψ = ψ′.

Parts (iv) and (v) of this proposition enable us to define values of sentential formulas,
which supplies a mathematical meaning for the truth of formulas. A sentential assignment
is a function mapping the set {0, 1, . . .} of natural numbers into the set {0, 1}. Intuitively
we think of 0 as “false” and 1 as “true”. The definition of values of sentential formulas is
a special case of definition by recursion:

Proposition 1.3. For any sentential assignment f there is a function F mapping the set
of sentential formulas into {0, 1} such that the following conditions hold:

(i) F (Sn) = f(n) for every natural number n.
(ii) F (¬ϕ) = 1− F (ϕ) for any sentential formula ϕ.
(iii) F (ϕ→ ψ) = 0 iff F (ϕ) = 1 and F (ψ) = 0.

Proof. An f -sequence is a finite sequence 〈(ϕ0, ε0), . . . , (ϕm−1, εm−1)〉 such that each
εi is 0 or 1, and such that for each i < m one of the following holds:

(1) ϕi is Sn for some n ∈ ω, and εi = f(n).

(2) There is a k < i such that ϕi = ¬ϕk and εi = 1− εk.

(3) There are k, l < i such that ϕi = ϕk → ϕl, and εi = 0 iff εk = 1 and εl = 0.

Now we claim:

(4) For any sentential formula ψ and any f -sequences 〈(ϕ0.ε0), . . . , (ϕm−1, εm−1)〉 and
〈(ϕ′

0.ε
′
0), . . . , (ϕ′

n−1, ε
′
n−1)〉 such that ϕm−1 = ϕ′

n−1 = ψ we have εm−1 = ε′n−1.

We prove (4) by induction on ψ, thus using Proposition 1.1. If ψ = Sn, then εm−1 = f(n) =
ε′n−1. Assume that the condition holds for ψ, and consider ¬ψ. There is a k < m − 1
such that ¬ψ = ϕm−1 = ¬ϕk. By Proposition 1.2(iv) we have ϕk = ψ. Similarly, there
is an l < n − 1 such that ¬ψ = ϕ′

n−1 = ¬ϕ′
l and so ϕ′

l = ψ. Applying the inductive
hypothesis to ψ and the sequences 〈ϕ0, . . . , ϕk〉 and 〈ϕ′

0, . . . , ϕ
′
l〉 we get εk = ε′l. Hence

εm−1 = 1− εk = 1− ε′l = ε′n−1.
Now suppose that the condition holds for ψ and χ, and consider ψ → χ. There are

k, l < m − 1 such that (ψ → χ) = (ϕk → ϕl). By Proposition 1.2(v) we have ϕk = ψ
and ϕl = χ. Similarly there are s, t < n − 1 such that (ψ → χ) = (ϕ′

s → ϕ′
t). By

Proposition 1.2(v) we have ϕ′
s = ψ and ϕ′

t = χ. Applying the inductive hypotheis to ψ
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and the sequences 〈ϕ0, . . . , ϕk〉 and 〈ϕ′
0, . . . , ϕ

′
s〉 we get εk = ε′s. Similarly, we get εl = ε′t.

Hence

εm−1 = 0 iff εk = 1 and εl = 0

iff ε′s = 1 and ε′t = 0

iff ε′n−1 = 0.

This finishes the proof of (4).

(5) If 〈ϕ0, . . . , ϕm−1〉 is a sentential formula construction, then there is an f -sequence of
the form (ϕ0, ε0), . . . , (ϕm−1, εm−1)〉.

We prove this by induction on m. First suppose that m = 1. Then ϕ0 must equal Sn for
some n, and 〈(ϕ0, f(n))〉 is as desired. Now suppose that m > 1 and the statement is true

for m− 1. So let θ
def
= 〈(ϕ0, ε0), . . . .(ϕm−2, εm−2)〉 be an f -sequence.

Case 1. ϕm−1 = Sp. Then θ⌢〈(ϕm−1, f(p))〉 is as desired.
Case 2. There is a k < m such that ϕm−1 = ¬ϕk. Then θ⌢〈(ϕm−1, 1 − εk)〉 is as

desired.
Case 3. There are k, l < m such that ϕm−1 = ϕk → ϕl. Then θ⌢〈(ϕm−1, δ)〉 is as

desired, where δ = 0 iff εk = 1 and εl = 0.

Thus (5) holds. Now we can define the function F required in the Proposition. Let ψ
be any sentential formula. Let 〈ϕ0, . . . , ϕm−1〉 be a sentential formula construction such
that ϕm−1 = ψ. By (5), let 〈(ϕ0, ε0), . . . , (ϕm−1, εm−1)〉 be an f -sequence. We define
F (ψ) = εm−1. This is unambiguous by (4).

Case 1. ψ = Sn for some n. Then by the definition of f -sequence we have F (ψ) =
f(n).

Case 2. There is a k < m such that ψ = ϕm−1 = ¬ϕk. Then 〈(ϕ0, ε0), . . . , (ϕk, εk)〉
is an f -sequence, so F (ϕk) = εk. So

F (ψ) = F (ϕm−1) = εm−1 = 1− εk = 1− F (ϕk).

Case 3. There are k, l < m such that ψ = ϕm−1 = ϕk → ϕl. Then 〈(ϕ0, ε0), . . . ,
(ϕk, εk)〉 is an f -sequence, so F (ϕk) = εk; and 〈(ϕ0, ε0), . . . , (ϕl, εk)〉 is an f -sequence, so
F (ϕl) = εl. So

F (ψ) = 0 iff F (ϕm−1) = 0 iff em−1 = 0 iff

εk = 1 and εl = 0 iff F (ϕk) = 1 and F (ϕl) = 0.

With f a sentential assignment, and with F as in this proposition, for any sentential
formula ϕ we let ϕ[f ] = F (ϕ). Thus:

Si[f ] = f(i);

(¬ϕ)[f ] = 1− ϕ[f ];

(ϕ→ ψ)[f ] =

{
0 if ϕ[f ] = 1 and ψ[f ] = 0,

1 otherwise.
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The definition can be recalled by using truth tables:

ϕ ¬ϕ

1 0

0 1

ϕ ψ ϕ→ ψ

1 1 1

1 0 0

0 1 1

0 0 1

Other logical notions can be defined in terms of ¬ and →. We define

ϕ ∧ ψ = ¬(ϕ→ ¬ψ).
ϕ ∨ ψ = ¬ϕ→ ψ.
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ).

Working out the truth tables for these new notions shows that they mean approximately
what you would expect:

ϕ ψ ¬ψ ϕ→ ¬ψ ϕ ∧ ψ ¬ϕ ϕ ∨ ψ ϕ→ ψ ψ → ϕ ϕ↔ ψ

1 1 0 0 1 0 1 1 1 1

1 0 1 1 0 0 1 0 1 0

0 1 0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1 1 1

(Note that ∨ corresponds to non-exclusive or: ϕ or ψ, or both.)

The following simple proposition is frequently useful.

Proposition 1.4. If f and g map {0, 1, . . .} into {0, 1} and f(m) = g(m) for every m
such that Sm occurs in ϕ, then ϕ[f ] = ϕ[g].

Proof. Induction on ϕ. If ϕ is Si for some i, then the hypothesis says that f(i) = g(i);
hence Si[f ] = f(i) = g(i) = Si[g]. Assume that it is true for ϕ. Now Sm occurs in
ϕ iff it occurs in ¬ϕ. Hence if we assume that f(m) = g(m) for every m such that
Sm occurs in ¬ϕ, then also f(m) = g(m) for every m such that Sm occurs in ϕ, so
(¬ϕ)[f ] = 1 − ϕ[f ] = 1 − ϕ[g] = (¬ϕ)[g]. Assume that it is true for both ϕ and ψ, and
f(m) = g(m) for every m such that Sm occurs in ϕ→ ψ. Now if Sm occurs in ϕ, then it
also occurs in ϕ→ ψ, and hence f(m) = g(m). Similarly for ψ. It follows that

(ϕ→ ψ)[f ] = 0 iff (ϕ[f ] = 1 and ψ[f ] = 0) iff (ϕ[g] = 1 and ψ[g] = 0) iff (ϕ→ ψ)[g] = 0.

This proposition justifies writing ϕ[f ] for a finite sequence f , provided that f is long enough
so that m is in its domain for every m for which Sm occurs in ϕ.
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A sentential formula ϕ is a tautology iff it is true under every assignment, i.e., ϕ[f ] = 1
for every assignment f .

Here is a list of common tautologies:

(T1) ϕ→ ϕ.
(T2) ϕ↔ ¬¬ϕ.
(T3) (ϕ→ ¬ϕ)→ ¬ϕ.
(T4) (ϕ→ ¬ψ)→ (ψ → ¬ϕ).
(T5) ϕ→ (¬ϕ→ ψ).
(T6) (ϕ→ ψ)→ [(ψ → χ)→ (ϕ→ χ)].
(T7) [ϕ→ (ψ → χ)]→ [(ϕ→ ψ)→ (ϕ→ χ)].
(T8) (ϕ ∧ ψ)→ (ψ ∧ ϕ).
(T9) (ϕ ∧ ψ)→ ϕ.
(T10) (ϕ ∧ ψ)→ ψ.
(T11) ϕ→ [ψ → (ϕ ∧ ψ)].
(T12) ϕ→ (ϕ ∨ ψ).
(T13) ψ → (ϕ ∨ ψ).
(T14) (ϕ→ χ)→ [(ψ → χ)→ ((ϕ ∨ ψ)→ χ)].
(T15) ¬(ϕ ∧ ψ)↔ (¬ϕ ∨ ¬ψ).
(T16) ¬(ϕ ∨ ψ)↔ (¬ϕ ∧ ¬ψ).
(T17) [ϕ ∨ (ψ ∨ χ)]↔ [(ϕ ∨ ψ) ∨ χ].
(T18) [ϕ ∧ (ψ ∧ χ)]↔ [(ϕ ∧ ψ) ∧ χ].
(T19) [ϕ ∧ (ψ ∨ χ)]↔ [(ϕ ∧ ψ) ∨ (ϕ ∧ χ)].
(T20) [ϕ ∨ (ψ ∧ χ)]↔ [(ϕ ∨ ψ) ∧ (ϕ ∨ χ)].
(T21) (ϕ→ ψ)↔ (¬ϕ ∨ ψ).
(T22) ϕ ∧ ψ ↔ ¬(¬ϕ ∨ ¬ψ).
(T23) ϕ ∨ ψ ↔ ¬(¬ϕ ∧ ¬ψ).

Now we describe a proof system for sentential logic. Formulas of the following form are
sentential axioms; ϕ, ψ, χ are arbitrary sentential formulas.

(1) ϕ→ (ψ → ϕ).

(2) [ϕ→ (ψ → χ)]→ [(ϕ→ ψ)→ (ϕ→ χ)].

(3) (¬ϕ→ ¬ψ)→ (ψ → ϕ).

Proposition 1.5. Every sentential axiom is a tautology.

Proof. For (1):

ϕ ψ ψ → ϕ ϕ→ (ψ → ϕ)

1 1 1 1

1 0 1 1

0 1 0 1

0 0 1 1
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For (2): Let ρ denote this formula:

ϕ ψ χ ψ → χ ϕ→ (ψ → χ) ϕ→ ψ ϕ→ χ (ϕ→ ψ)→ (ϕ→ χ) ρ

1 1 1 1 1 1 1 1 1

1 1 0 0 0 1 0 0 1

1 0 1 1 1 0 1 1 1

1 0 0 1 1 0 0 1 1

0 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

For (3):

ϕ ψ ¬ϕ ¬ψ ¬ϕ→ ¬ψ ψ → ϕ (3)

1 1 0 0 1 1 1

1 0 0 1 1 1 1

0 1 1 0 0 0 1

0 0 1 1 1 1 1

If Γ is a collection of sentential formulas, then a Γ-proof is a finite sequence 〈ψ0, . . . , ψm〉
such that for each i ≤ m one of the following conditions holds:

(a) ψi is a sentential axiom.

(b) ψi ∈ Γ.

(c) There exist j, k < i such that ψk is ψj → ψi. (Rule of modus ponens, abbreviated MP).

We write Γ ⊢ ϕ if there is a Γ-proof with last entry ϕ. We also write ⊢ ϕ in place of ∅ ⊢ ϕ.

Proposition 1.6. (i) If Γ ⊢ ϕ, f is a sentential assignment, and ψ[f ] = 1 for all ψ ∈ Γ,
then ϕ[f ] = 1.

(ii) If ⊢ ϕ, then ϕ is a tautology.

Proof. For (i), let 〈ψ0, . . . , ψm〉 be a Γ-proof. Suppose that f is a sentential assign-
ment and χ[f ] = 1 for all χ ∈ Γ. We show by complete induction that ψi[f ] = 1 for all
i ≤ m. Suppose that this is true for all j < i.
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Case 1. ψi is a sentential axiom. Then ψi[f ] = 1 by Proposition 1.5.
Case 2. ψi ∈ Γ. Then ψi[f ] = 1 by assumption.
Case 3. There exist j, k < i such that ψk is ψj → ψi. By the inductive assumption,

ψk[f ] = ψj[f ] = 1. Hence ψi[f ] = 1.
(ii) clearly follows from (i),

Now we are going to show that, conversely, if ϕ is a tautology then ⊢ ϕ. This is a kind
of completeness theorem, and the proof is a highly simplified version of the proof of the
completeness theorem for first-order logic which will be given later.

Lemma 1.7. ⊢ ϕ→ ϕ.

Proof.
(a) [ϕ→ [(ϕ→ ϕ)→ ϕ]]→ [[ϕ→ (ϕ→ ϕ)]→ (ϕ→ ϕ)] (2)
(b) ϕ→ [(ϕ→ ϕ)→ ϕ] (1)
(c) [ϕ→ (ϕ→ ϕ)]→ (ϕ→ ϕ) (a), (b), MP
(d) ϕ→ (ϕ→ ϕ) (1)
(e) ϕ→ ϕ (c), (d), MP

Theorem 1.8. (The deduction theorem) If Γ ∪ {ϕ} ⊢ ψ, then Γ ⊢ ϕ→ ψ.

Proof. Let 〈χ0, . . . , χm〉 be a (Γ ∪ {ϕ})-proof with last entry ψ. We replace each χi
by several formulas so that the result is a Γ-proof with last entry ϕ→ ψ.

If χi is a logical axiom or a member of Γ, we replace it by the two formulas χi →
(ϕ→ χi), ϕ→ χi.

If χi is ϕ, we replace it by the five formulas in the proof of Lemma 1.7; the last entry
is ϕ→ ϕ.

If χi is obtained from χj and χk by modus ponens, so that χk is χj → χi, we replace
χi by the formulas

[ϕ→ (χj → χi)]→ [(ϕ→ χj)→ (ϕ→ χi)]

(ϕ→ χj)→ (ϕ→ χi)

ϕ→ χi

Clearly this is as desired.

Lemma 1.9. ⊢ ψ → (¬ψ → ϕ).

Proof. By axiom (1) we have {ψ,¬ψ} ⊢ ¬ϕ→ ¬ψ. Hence axiom (3) gives {ψ,¬ψ} ⊢
ψ → ϕ, and hence {ψ,¬ψ} ⊢ ϕ. Now two applications of Theorem 1.8 give the desired
result.

Lemma 1.10. ⊢ (ϕ→ ψ)→ [(ψ → χ)→ (ϕ→ χ)].

Proof. Clearly {ϕ→ ψ, ψ → χ, ϕ} ⊢ χ, so three applications of Theorem 1.8 give the
desired result.
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Lemma 1.11. ⊢ (¬ϕ→ ϕ)→ ϕ.

Proof. Clearly {¬ϕ → ϕ,¬ϕ} ⊢ ϕ and also {¬ϕ → ϕ,¬ϕ} ⊢ ¬ϕ, so by Lemma 1.9,
{(¬ϕ→ ϕ,¬ϕ} ⊢ ¬(ϕ→ ϕ). Then Theorem 1.8 gives {¬ϕ→ ϕ} ⊢ ¬ϕ→ ¬(ϕ→ ϕ), and
so using axiom (3), {¬ϕ→ ϕ} ⊢ (ϕ→ ϕ)→ ϕ. Hence by Lemma 1.7, {¬ϕ→ ϕ} ⊢ ϕ, and
so Theorem 1.8 gives the desired result.

Lemma 1.12. ⊢ (ϕ→ ψ)→ [(¬ϕ→ ψ)→ ψ].

Proof.

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ¬ϕ→ ¬ψ using axiom (1)

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ψ → ϕ using axiom (3)

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ¬ϕ→ ϕ using Lemma 1.10

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ϕ by Lemma 1.11

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ψ

{ϕ→ ψ,¬ϕ→ ψ} ⊢ ¬ψ → ψ by Theorem 1.8

{ϕ→ ψ,¬ϕ→ ψ} ⊢ ψ by Lemma 1.11

Now two applications of Theorem 1.8 give the desired result.

Theorem 1.13. There is a sequence 〈ϕ0, ϕ1, . . .〉 containing all sentential formulas.

Proof. One can obtain such a sequence by the following procedure.

(1) Start with S0.

(2) List all sentential formulas of length at most two which involve only S0 or S1; they are
S0, S1, ¬S0, and ¬S1.

(3) List all sentential formulas of length at most three which involve only S0, S1, or S2;
they are S0, S1, S2, ¬S0, ¬S1, ¬S2, ¬¬S0, ¬¬S1, ¬¬S2, S0 → S0, S0 → S1, S0 → S2,
S1 → S0, S1 → S1, S1 → S2, S2 → S0, S2 → S1, S2 → S2.

(4) Etc.

Theorem 1.14. If not(Γ ⊢ ϕ), then there is a sentential assignment f such that ψ[f ] = 1
for all ψ ∈ Γ, while ϕ[f ] = 0.

Proof. Let 〈χ0, χ1, . . .〉 list all the sentential formulas. We now define ∆0,∆1, . . . by
recursion. Let ∆0 = Γ. Suppose that ∆i has been defined. If not(∆i ∪ {χi} ⊢ ϕ) then we
set ∆i+1 = ∆i ∪ {χi}. Otherwise we set ∆i+1 = ∆i.

Here is a detailed proof that ∆ exists. Let M = {Ω : Ω is a function with domain m′

for some positive integer m, Ω1 = Γ, and for every positive integer i with i + 1 ≤ m we
have

Ωi+1 =

{
Ωi ∪ {χi} if not(Ωi ∪ {χi} ⊢ ϕ),
Ωi otherwise.}
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(1) If Ω,Ω′ ∈M with domains m′, n′ respectively, with m ≤ n, then ∀i ≤ m[Ωi = Ω′
i].

This is easily proved by induction on i.

(2) For every positive integer m there is a Ω ∈M with domain m′.

Again this is easily proved by induction on m.
Now we define ∆i = Ωi, where Ω ∈ M and i < dmn(Ω). This is justified by (1) and

(2).
Now it is easily verified that the defining conditions for ∆ hold.
Let Θ =

⋃

i∈ω ∆i. By induction we have not(∆i ⊢ ϕ) for each i ∈ ω. In fact, we
have ∆0 = Γ, so not(∆0 ⊢ ϕ) by assumption. If not(∆i ⊢ ϕ), then not(∆i+1 ⊢ ϕ) by
construction.

Hence also not(Θ ⊢ ϕ), since Θ ⊢ ϕ means that there is a Θ-proof with last entry ϕ,
and any Θ-proof involves only finitely many formulas χi, and they all appear in some ∆j ,
giving ∆j ⊢ ϕ, contradiction.

(∗) For any formula χi, either χi ∈ Θ or ¬χi ∈ Θ.

In fact, suppose that χi /∈ Θ and ¬χi /∈ Θ. Say ¬χi = χj . Then by construction,
∆i ∪ {χi} ⊢ ϕ and ∆j ∪ {¬χi} ⊢ ϕ. So Θ ∪ {χi} ⊢ ϕ and Θ ∪ {¬χi} ⊢ ϕ. Hence
by Theorem 1.8, Θ ⊢ χi → ϕ and Θ ⊢ ¬χi → ϕ. So by Lemma 1.12 we get Θ ⊢ ϕ,
contradiction.

(∗∗) If Θ ⊢ ψ, then ψ ∈ Θ.

In fact, clearly not(Θ ∪ {ψ} ⊢ ϕ) by Theorem 1.8, so (∗∗) follows.
Now let f be the sentential assignment such that f(i) = 1 iff Si ∈ Θ. Now we claim

(∗ ∗ ∗) For every sentential formula ψ, ψ[f ] = 1 iff ψ ∈ Θ.

We prove this by induction on ψ. It is true for ψ = Si by definition. Now suppose that it
holds for ψ. Suppose that (¬ψ)[f ] = 1. Thus ψ[f ] = 0, so by the inductive assumption,
ψ /∈ Θ, and hence by (∗), ¬ψ ∈ Θ. Conversely, suppose that ¬ψ ∈ Θ. If (¬ψ)[f ] = 0,
then ψ[f ] = 1, hence ψ ∈ Θ by the inductive hypothesis. Hence by Lemma 1.9, Θ ⊢ ϕ,
contradiction. So (¬ψ)[f ] = 1.

Next suppose that (∗∗∗) holds for ψ and χ; we show that it holds for ψ → χ. Suppose
that (ψ → χ)[f ] = 1. If χ[f ] = 1, then χ ∈ Θ by the inductive hypothesis. By axiom
(1), Θ ⊢ ψ → χ. Hence by (∗∗), (ψ → χ) ∈ Θ. Suppose that χ[f ] = 0. Then ψ[f ] = 0
also, since (ψ → χ)[f ] = 1. By the inductive hypothesis and (∗) we have ¬ψ ∈ Θ. Hence
Θ ⊢ ¬χ→ ¬ψ by axiom (1), so Θ ⊢ ψ → χ by axiom (3). So (ψ → χ) ∈ Θ by (∗∗).

Conversely, suppose that (ψ → χ) ∈ Θ. Working for a contradiction, suppose that
(ψ → χ)[f ] = 0. Thus ψ[f ] = 1 and χ[f ] = 0. So ψ ∈ Θ and ¬χ ∈ Θ by the inductive
hypothesis and (∗). Since (ψ → χ) ∈ Θ and ψ ∈ Θ, we get Θ ⊢ χ. Since also ¬χ ∈ Θ, we
get Θ ⊢ ϕ by Lemma 1.9, contradiction.

This finishes the proof of (∗ ∗ ∗).
Since Γ ⊆ Θ, (∗ ∗ ∗) implies that ψ[f ] = 1 for all ψ ∈ Γ. Also ϕ[f ] = 0 since

ϕ /∈ Θ.

Corollary 1.15. If ϕ[f ] = 1 whenever ψ[f ] = 1 for all ψ ∈ Γ, then Γ ⊢ ϕ.
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Proof. This is the contrapositive of Theorem 1.14.

Theorem 1.16. ⊢ ϕ iff ϕ is a tautology.

Proof. ⇒ is given by Proposition 1.6(ii). ⇐ follows from Corollary 1.15 by taking
Γ = ∅.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 1.17.
S0 → ¬S1 = 〈2, 3, 1, 4〉

and
(S0 → S1)→ (¬S1 → ¬S0) = 〈2, 2, 3, 4, 2, 1, 4, 1, 3〉.

Proof.

S0 → ¬S1 = 〈2〉⌢S⌢0 ¬S1

= 〈2〉⌢〈3〉⌢〈1〉⌢S1

= 〈2, 3, 1, 4〉;

(S0 → S1)→ (¬S1 → ¬S0) = 〈2〉⌢(S0 → S1)⌢(¬S1 → ¬S0)

= 〈2〉⌢〈2〉⌢S⌢0 S⌢1 〈2〉
⌢¬S⌢1 ¬S0

= 〈2, 2, 3, 4, 2〉⌢〈1〉⌢S⌢1 〈1〉
⌢S0

= 〈2, 2, 3, 4, 2, 1, 4, 1, 3〉.

Proposition 1.18. There is a sentential formula of each positive integer length.

Proof. If m is a positive integer, then

〈

m−1 times
︷ ︸︸ ︷

1, 1, . . . , 1, S0〉

is a formula of length m, it is
m−1 times
︷ ︸︸ ︷
¬¬ · · · ¬ S0.

Proposition 1.19. m is the length of a sentential formula not involving ¬ iff m is odd.

Proof. ⇒: We prove by induction on ϕ that if ϕ is a sentential formula not involving
¬, then the length of ϕ is odd. This is true of sentential variables, which have length 1.
Suppose that it is true of ϕ and ψ, which have length 2m+1 and 2n+1 respectively. Then
ϕ→ ψ, which is 〈1〉⌢ϕ⌢ψ, has length 1 + 2m+ 1 + 2n+ 1 = 2(m+ n+ 1) + 1, which is
again odd. This finishes the inductive proof.
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⇐. We construct formulas without ¬ with length any odd integer by induction. 〈S0〉
is a formula of length 1. If ϕ has been constructed of length 2m+ 1, then S0 → ϕ, which
is 〈1, S0〉⌢ϕ, has length 2m+ 3. This finishes the inductive construction.

Proposition 1.20. The truth table for a sentential formula involving n basic formulas
has 2n rows.

Proof. We prove this by induction on n. For n = 1, there are two rows. Assume that
for n basic formulas there are 2n rows. Given n+ 1 basic formulas, let ϕ be one of them.
For the others, by the inductive hypothesis there are 2n rows. For each such row there
are two possibilities, 0 or 1, for ϕ. So for the n + 1 basic formulas there are 2n · 2 = 2n+1

rows.

Proposition 1.21. The formula

(ϕ→ ψ)↔ (¬ϕ ∨ ψ)

is a tautology.

Proof.

ϕ ψ ϕ→ ψ ¬ϕ ¬ϕ ∨ ψ (ϕ→ ψ)↔ (¬ϕ ∨ ψ)

1 1 1 0 1 1

1 0 0 0 0 1

0 1 1 1 1 1

0 0 1 1 1 1

Proposition 1.22. The formula

[ϕ ∨ (ψ ∧ χ)]↔ [(ϕ ∨ ψ) ∧ (ϕ ∨ χ)]

is a tautology.

Proof. Let θ be the indicated formula.
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ϕ ψ χ ϕ ∨ ψ ϕ ∨ χ (ϕ ∨ ψ) ∧ (ϕ ∨ χ) ψ ∧ χ ϕ ∨ (ψ ∧ χ) θ

1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1 1

1 0 1 1 1 1 0 1 1

1 0 0 1 1 1 0 1 1

0 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1

Proposition 1.23. The formula

(ϕ→ ψ)→ (ϕ→ ¬ψ)

is not a tautology.

Proof.

ϕ ψ ϕ→ ψ ¬ψ ϕ→ ¬ψ (ϕ→ ψ)→ (ϕ→ ¬ψ)

1 1 1 0 0 0

Proposition 1.24. The following is a tautology:

S0 → (S1 → (S2 → (S3 → S1))).

Proof. Suppose that f is an assignment making the indicated formula false; we work
towards a contradiction. Thus

(1) S0[f ] = 1 and

(2) (S1 → (S2 → (S3 → S1)))[f ] = 0.

From (2) we get

(3) S1[f ] = 1 and

(4) (S2 → (S3 → S1))[f ] = 0.

From (4) we get
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(5) S2[f ] = 1 and

(6) (S3 → S1)[f ] = 0.

From (6) we get S1[f ] = 0, contradicting (3).

Proposition 1.25. The following is a tautology.

({[(ϕ→ ψ)→ (¬χ→ ¬θ)]→ χ} → τ)→ [(τ → ϕ)→ (θ → ϕ)].

Proof. Suppose that f is an assignment which makes the given formula false; we
want to get a contradiction. Thus we have

(1) ({[(ϕ→ ψ)→ (¬χ→ ¬θ)]→ χ} → τ)[f ] = 1 and

(2) [(τ → ϕ)→ (θ → ϕ)][f ] = 0.

By (2) we have

(3) (τ → ϕ)[f ] = 1 and

(4) (θ→ ϕ)[f ] = 0.

By (4) we have

(5) θ[f ] = 1 and

(6) ϕ[f ] = 0.

By (3) and (6) we get

(7) τ [f ] = 0.

By (1) and (7) we get

(8) {[(ϕ→ ψ)→ (¬χ→ ¬θ)]→ χ}[f ] = 0.

It follows that

(9) [(ϕ→ ψ)→ (¬χ→ ¬θ)][f ] = 1 and

(10) χ[f ] = 0.

Now by (6) we have

(11) (ϕ→ ψ)[f ] = 1,

and hence by (9),

(12) (¬χ→ ¬θ)[f ] = 1.

By (5) we have

(13) (¬θ)[f ] = 0,

and hence by (12),

(14) (¬χ)[f ] = 0.
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This contradicts (10).

Proposition 1.26. The following statements are logically consistent: If the contract is
valid, then Horatio is liable. If Horation is liable, he will go bankrupt. Either Horatio will
go bankrupt or the bank will lend him money. However, the bank will definitely not lend
him money.

Proof. Let S0 correspond to “the contract is valid”, S1 to “Horatio is liable”, S2 to
“Horatio will go bankrupt”, and S3 to “the bank will lend him money”. Then we want to
see if there is an assignment of values which makes the following sentence true:

(S0 → S1) ∧ (S1 → S2) ∧ (S2 ∨ S3) ∧ ¬S3.

We can let f(0) = f(1) = f(2) = 1 and f(3) = 0, and this gives the sentence the value
1.

Proposition 1.27. {ψ} ⊢ ¬ψ → ϕ.

Proof. Following the proof of Lemma 1.9, the following is a {ψ,¬ψ}-proof:

(a) ¬ψ
(b) ¬ψ → (¬ϕ→ ¬ψ) (1)
(c) ¬ϕ→ ¬ψ (a), (b), MP
(d) (¬ϕ→ ¬ψ)→ (ψ → ϕ) (3)
(e) ψ → ϕ (c), (d), MP
(f) ψ
(g) ϕ (e), (f), MP

Now applying the proof of the deduction theorem, the following is a {ψ}-proof:

(a) [¬ψ → [(¬ψ → ¬ψ)→ ¬ψ]]→ [[¬ψ → (¬ψ → ¬ψ)]
→ (¬ψ → ¬ψ)] (2)

(b) ¬ψ → [(¬ψ → ¬ψ)→ ¬ψ] (1)
(c) [¬ψ → (¬ψ → ¬ψ)]→ (¬ψ → ¬ψ) (a), (b), MP
(d) ¬ψ → (¬ψ → ¬ψ) (1)
(e) ¬ψ → ¬ψ (c), (d), MP
(f) [¬ψ → (¬ϕ→ ¬ψ)]→ [¬ψ → [¬ψ → (¬ϕ→ ¬ψ)]] (1)
(g) ¬ψ → (¬ϕ→ ¬ψ) (1)
(h) ¬ψ → [¬ψ → (¬ϕ→ ¬ψ)]] (f), (g), MP
(i) [(¬ϕ→ ¬ψ)→ (ψ → ϕ)]→ [¬ψ → [(¬ϕ→ ¬ψ)→ (ψ → ϕ)]] (1)
(j) (¬ϕ→ ¬ψ)→ (ψ → ϕ) (3)
(k) ¬ψ → [(¬ϕ→ ¬ψ)→ (ψ → ϕ)] (i), (j), MP
(l) [¬ψ → [(¬ϕ→ ¬ψ)→ (ψ → ϕ)]]→ [[¬ψ → (¬ϕ→ ¬ψ)]

→ [¬ψ → (ψ → ϕ)]] (2)
(m) [¬ψ → (¬ϕ→ ¬ψ)]→ [¬ψ → (ψ → ϕ)] (k), (l), MP
(n) ¬ψ → (ψ → ϕ) (g), (m), MP
(o) ψ → (¬ψ → ψ) (1)
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(p) ψ
(q) ¬ψ → ψ (o), (p), MP
(r) [¬ψ → (ψ → ϕ)]→ [(¬ψ → ψ)→ (¬ψ → ϕ)] (2)
(s) (¬ψ → ψ)→ (¬ψ → ϕ) (n), (r), MP
(t) ¬ψ → ϕ (q), (s), MP
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2. First-order logic

Although set theory can be considered within a single first-order language, with only non-
logical constant ∈, it is convenient to have more complicated languages, corresponding to
the many definitions introduced in mathematics.

All first-order languages have the following symbols in common. Again, as for senten-
tial logic, we take these to be certain natural numbers.

1 (negation)
2 (implication)
3 (the equality symbol)
4 (the universal quantifier)
5m for each positive integer m (variables ranging over elements, but not subsets, of a given
structure) We denote 5m by vm−1. Thus v0 is 5, v1 is 10, and in general vi is 5(i+ 1).

Special first-order languages have additional symbols for the functions and relations and
special elements involved. These will always be taken to be some positive integers not
among the above; thus they are positive integers greater than 4 but not divisible by 5. So
we have in addition to the above logical symbols some non-logical symbols:

Relation symbols, each of a certain positive rank.
Function symbols, also each having a specified positive rank.
Individual constants.

Formally, a first-order language is a quadruple (Rel, Fcn, Cn, rnk) such that Rel, Fcn, Cn
are pairwise disjoint subsets of M (the sets of relation symbols, function symbols, and
individual constants), and rnk is a function mapping Rel∪Fcn into the positive integers;
rnk(S) gives the rank of the symbol S.

Now we will define the notions of terms and formulas, which give a precise formu-
lation of meaningful expressions. Terms are certain finite sequences of symbols. A term
construction sequence is a sequence 〈τ0, . . . , τm−1〉, m > 0, with the following properties:
for each i < m one of the following holds:

τi is 〈vj〉 for some natural number j.

τi is 〈c〉 for some individual constant c.

τi is 〈F〉⌢σ⌢0 σ⌢1 · · ·
⌢ σn−1 for some n-place function symbol F, with each σj equal to τk

for some k < j, depending upon j.

A term is a sequence appearing in some term construction sequence. Note the similarity
of this definition with that of sentential formula given in Chapter 1.

Frequently we will slightly simplify the notation for terms. Thus we might write
simply vj , or c, or Fσ0 . . . σn−1 for the above.

The following two propositons are very similar, in statement and proof, to Propositions
1.1 and 1.2. The first one is the principle of induction on terms.

Proposition 2.1. Let T be a collection of terms satisfying the following conditions:
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(i) Each variable is in T .
(ii) Each individual constant is in T .
(iii) If F is a function symbol of rank m and τ0, . . . , τm−1 ∈ T , then also Fτ0 . . . τm−1 ∈

T .

Then T consists of all terms.

Proof. Let τ be a term. Say that 〈σ0, . . . , σm−1〉 is a term construction sequence
and σi = τ . We prove by complete induction on j that σj ∈ T for all j < m; hence
τ ∈ T . Suppose that j < m and σk ∈ T for all k < j. If σj = 〈vs〉 for some s, then
σj ∈ T . If σj = 〈c〉 for some individual constant c, then sj ∈ T . Finally, suppose that
σj is Fσk0 . . . σkn−1

with each kt < j. Then σkt ∈ T for each t < n by the inductive
hypothesis, and it follows that σj ∈ T . This completes the inductive proof.

Proposition 2.2. (i) Every term is a nonempty sequence.
(ii) If τ is a term, then exactly one of the following conditions holds:

(a) τ is an individual constant.
(b) τ is a variable.
(c) There exist a function symbol F, say of rank m, and terms σ0, . . . , σm−1 such

that τ is Fσ0 . . . σm−1.
(iii) No proper initial segment of a term is a term.
(iv) If F and G are function symbols, say of ranks m and n respectively, and if

σ0, . . . , σm−1, τ0, . . . , τn−1 are terms, and if Fσ0 . . . σm−1 is equal to Gτ0, . . . τn−1, then
F = G, m = n, and σi = τi for all i < m.

Proof. (i): This is clear since any entry in a term construction sequence is nonempty.
(ii): Also clear.
(iii): We prove this by complete induction on the length of a term. So suppose that

τ is a term, and for any term σ shorter than τ , no proper initial segment of σ is a term.
We consider cases according to (ii).

Case 1. τ is an individual constant. Then τ has length 1, and any proper initial
segment of τ is empty; by (i) the empty sequence is not a term.

Case 2. τ is a variable. Similarly.
Case 3. There exist an m-ary function symbol F and terms σ0, . . . , σm−1 such that

τ is Fσ0 . . . σm−1. Suppose that ρ is a term which is a proper initial segment of τ . By
(i), ρ is nonempty, and the first entry of ρ is F. By (ii), ρ has the form Fξ0 . . . ξm−1 for
certain terms ξ0, . . . , ξm−1. Since both σ0 and ξ0 are shorter terms than τ , and one of
them is an initial segment of the other, the induction hypothesis gives σ0 = ξ0. Let i < m
be maximum such that σi = ξi. Since ρ is a proper initial segment of τ , we must have
i < m− 1. But σi+1 and ξi+1 are shorter terms than τ and one is a segment of the other,
so by the inductive hypthesis σi+1 = ξi+1, contradicting the choice of i.

(iv): F is the first entry of Fσ0 . . . σm−1 and G is the first entry of Gτ0, . . . τn−1, so
F = G. Then by (ii) we get m = n. By induction using (iii), each σi = τi.

We now give the general notion of a structure. This will be modified and extended for set
theory later. For a given first-order language L = (Rel, Fcn, Cn, rnk), an L -structure is
a quadruple A = (A,Rel′, F cn′, Cn′) such that A is a nonempty set (the universe of the
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structure), Rel′ is a function assigning to each relation symbol R a rnk(R)-ary relation
on A, i.e., a collection of rnk(R)-tuples of elements of A, Fcn′ is a function assigning to
each function symbol F a rnk(F)-ary opeation on A, i.e., a function assigning a value in A
to each rnk(F)-tuple of elements of A, and Cn′ is a function assigning to each individual

constant c an element of A. Usually instead of Rel′(R), Fcn′(F) and Cn′(c) we write RA,

FA, and cA.
Now we define the “meaning” of terms. This is a recursive definition, similar to the

definition of the values of sentential formulas under assignments:

Proposition 2.3. Let A be a structure, and a a function mapping ω into A. (A is the
universe of A.) Then there is a function F mapping the set of terms into A with the
following properties:

(i) F (vi) = ai for each i ∈ ω.

(ii) F (c) = cA for each individual constant c.

(iii) F (Fσ0 . . . σm−1) = FA(F (σ0), . . . , F (σm−1)) for every m-ary function symbol F
and all terms σ0, . . . , σm−1

Proof. An (A, a)-term sequence is a sequence 〈(τ0, b0), . . . , (τm−1, bm−1)〉 such that
each bi ∈ A and for each i < m one of the following conditions holds:

(1) τi is 〈vj〉 and bi = aj .

(2) τi is 〈c〉 for some individual constant c, and bi = cA.

(3) τi = 〈F〉⌢τ⌢k(0) · · ·
⌢τk(n−1) and bi = FA(bk(0), . . . , bk(n−1)) for some n-ary function

symbol F and some k(0), . . . , k(n− 1) < i.

Now we claim

(4) For any term σ and any (A, a)-term sequences

〈(τ0, b0), . . . , (τm−1, bm−1)〉 and 〈(τ ′0, b
′
0), . . . , (τ ′n−1, b

′
n−1)〉

such that τm−1 = τ ′n−1 = σ we have bm−1 = b′n−1.

We prove (4) by induction on σ, thus using Proposition 2.1. If σ = vi, then bm−1 =

ai = bn−1. If σ is an individual constant c, then bm−1 = cA = b′n−1. Finally, if σ =
〈F〉⌢ρ0 · · ·⌢ ρp−1, then we have:

τm−1 = 〈F〉⌢τ⌢k(0) · · ·
⌢τk(p−1) and bm−1 = FA(bk(0), . . . , bk(p−1));

τ ′n−1 = 〈F〉⌢τ ′⌢l(0) · · ·
⌢τ ′l(p−1) and b′m−1 = FA(b′l(0), . . . , b

′
l(p−1))

with each k(s) and l(t) less than i. By Proposition 2.2(iv) we have τk(s) = τ ′l(s) for every
s < p. Now for every s < p we can apply the inductive hypothesis to τk(s) and the
sequences

〈(τ0, b0), . . . , (τk(s), bk(s)) and 〈(τ ′0, b
′
0), . . . , (τ ′l(s), b

′
l(s))
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to obtain bk(s) = b′l(s). Hence

bm−1 = FA(bk(0), . . . , bk(p−1)) = FA(b′l(0), . . . , b
′
l(p−1)) = b′n−1,

completing the inductive proof of (4).

(5) If 〈τ0, . . . , τm−1〉 is a term construction sequence, then there is an (A, a)-term sequence
of the form 〈(τ0, b0), . . . , (τm−1, bm−1〉.

We prove this by induction on m. For m = 1 we have two possibilities.
Case 1. τ0 is vj for some j ∈ ω. Then 〈(τ0, bj)〉 is as desired.

Case 2. τ0 is c, an individual constant. Then 〈(τ0, cA)〉 is as desired.

Now assume the statement for m − 1 ≥ 1. By the induction hypothesis there is an

(A, a)-term sequence of the form σ
def
= 〈(τ0, b0), . . . , (τm−2, bm−2)〉. Then we have three

possibilities:
Case 1. τm−1 is vj for some j ∈ ω. Then σ⌢〈(τm−1, bj)〉 is as desired.

Case 2. τm−1 is c, an individual constant. Then σ⌢〈(τm−1, c
A)〉 is as desired.

Case 3. τm−1 is 〈F〉⌢τ⌢k(0) · · ·
⌢τk(p−1) for some p-ary function symbol F with each

k(s) < i. Then σ⌢〈(τm−1,F
A(bk(0), . . . , bk(p−1))〉 is as desired.

So (5) holds.
Now we can define F as needed in the Proposition. Let σ be a term. Let 〈τ0, . . . , τm−1〉

be a term construction sequence with τm−1 = σ. By (5), let 〈(τ0, b0), . . . , (τm−1bm−1)〉 be
an (A, a)-term sequence. Then we define F (σ) = bm−1. This definition is unambigu-
ous by (4). Now we check the conditions of the Proposition. Let σ be a term, and let
〈(τ0, b0), . . . , (τm−1, bm−1)〉 be an (A, a)-term sequence with τm−1 = σ.

Case 1. σ = vj for some j ∈ ω. Then F (σ) = bm−1 = aj .

Case 2. σ = c for some individual constant c. Then F (σ) = bm−1 = cA.
Case 3. σ = 〈F〉⌢ρ⌢0 · · ·

⌢ρp−1 with F a p-ary function symbol and each ρs a term.
Then there exist c(0), . . . , c(p − 1) < m − 1 such that ρs = τc(s) for every s < p. Then

F (τc(s)) = bc(s) = τAc(s) for each s < p, and hence

F (σ) = bm−1 = FA(bs(0), . . . , bs(p−1)) = FA(τAs(0), . . . , τ
A
s(p−1)) = FA(ρA0 , . . . , ρ

A
p−1).

With F as in Proposition 2.3, we denote F (σ) by σA(a). Thus

vAi (a) = ai;

cA(a) = cA;

(Fτ0 . . . τm−1)A(a) = FA(τA0 (a), . . . , τAm−1(a)).

Here vi is any variable, c any individual constant, and F any function symbol (of some
rank, say m).
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What σA(a) means intuitively is: replace the individual constants and function sym-
bols by the actual members of A and functions on A given by the structure A, and replace
the variables vi by coresponding elements ai of A; calculate the result, giving an element
of A.

Proposition 2.4. Suppose that τ is a term, A is a structure, a, b assignments, and

a(i) = b(i) for all i such that vi occurs in τ . Then τA(a) = τA(b).

Proof. By induction on τ :

cA(a) = cA = cA(b);

vAi (a) = a(i) = b(i) = vAi (b);

(Fσ0 . . . σm−1)A(a) = FA(σA0 (a), . . . , σAm−1(a))

= FA(σA0 (b), . . . , σAm−1(b))

= (Fσ0 . . . σm−1)A(b).

The last step here is the induction step (many of them, one for each function symbol and
associated terms). The inductive assumption is that a(i) = b(i) for all i for which vi occurs
in Fσ0 . . . σm−1; hence also for each j < m, a(i) = b(i) for all i for which vi occurs in σj ,
so that the inductive hypothesis can be applied.

This proposition enables us to simplify our notation a little bit. If n is such that each

variable occurring in τ has index less than n, then in the notation ϕA(a) we can just use
the first n entries of a rather than the entire infinite sequence.

We turn to the definition of formulas. For any terms σ, τ we define σ = τ to be the sequence
〈3〉⌢σ⌢τ . Such a sequence is called an atomic equality formula. An atomic non-equality
formula is a sequence of the form 〈R〉⌢σ⌢0 · · ·

⌢ σm−1 where R is an m-ary relation symbol
and σ0, . . . σm−1 are terms. An atomic formula is either an atomic equality formula or an
atomic non-equality formula.

We define ¬, a function assigning to each sequence ϕ of symbols of a first-order

language the sequence ¬ϕ
def
= 〈1〉⌢ϕ. → is the function assigning to each pair (ϕ, ψ) of

sequences of symbols the sequence ϕ → ψ
def
= 〈2〉⌢ϕ⌢ψ. ∀ is the function assigning to

each pair (i, ϕ) with i ∈ ω and ϕ a sequence of symbols the sequence ∀viϕ
def
= 〈4, 5i+5〉⌢ϕ.

A formula construction sequence is a sequence 〈ϕ0, . . . , ϕm−1〉 such that for each i < m
one of the following holds:

(1) ϕi is an atomic formula.

(2) There is a j < i such that ϕi is ¬ϕj

(3) There are j, k < i such that ϕi is ϕj → ϕk.

(4) There exist j < i and k ∈ ω such that ϕi is ∀vkϕj .

A formula is an expression which appears as an entry in some formula construction se-
quence.
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The following is the principle of induction on formulas.

Proposition 2.5. Suppose that Γ is a set of formulas satisfying the following conditions:
(i) Every atomic formula is in Γ.
(ii) If ϕ ∈ Γ, then ¬ϕ ∈ Γ.
(iii) If ϕ, ψ ∈ Γ, then (ϕ→ ψ) ∈ Γ.
(iv) If ϕ ∈ Γ and i ∈ ω, then ∀viϕ ∈ Γ.

Then Γ is the set of all formulas.

Proof. It suffices to take any formula construction sequence 〈ϕ0, . . . , ϕm−1〉 and show
by complete induction on i that ϕi ∈ Γ for all i ∈ ω. So, suppose that i < m and ϕj ∈ Γ
for all j < i. By the definition of formula construction sequence, we have the following
cases.

Case 1. ϕi is an atomic formula. Then ϕi ∈ Γ by (i).
Case 2. There is a j < i such that ϕi is ¬ϕj . By the inductive hypothesis, ϕj ∈ Γ.

Hence by (ii), ϕi ∈ Γ.
Case 2. There are j, k < i such that ϕi is ϕj → ϕk. By the inductive hypothesis,

ϕj ∈ Γ and ϕk ∈ Γ. Hence by (iii), ϕi ∈ Γ.
Case 4. There exist j < i and k ∈ ω such that ϕi is ∀vkϕj . By the inductive

hypothesis, ϕj ∈ Γ. Hence by (iv), ϕi ∈ Γ.
This completes the inductive proof.

Proposition 2.6. (i) Every formula is a nonempty sequence.
(ii) If ϕ is a formula, then exactly one of the following conditions holds:

(a) ϕ is an atomic equality formula, and there are terms σ, τ such that ϕ is σ = τ .
(b) ϕ is an atomic non-equality formula, and there exist a positive integer m, a

relation symbol R of rank m, and terms σ0, . . . , σm−1, such that ϕ is Rσ0 . . . σm−1.
(c) There is a formula ψ such that ϕ is ¬ψ.
(d) There are formulas ψ, χ such that ϕ is ψ → χ.
(e) There exist a formula ψ and a natural number i such that ϕ is ∀viψ.

(iii) No proper initial segment of a formula is a formula.
(iv) (a) If ϕ is an atomic equality formula, then there are unique terms σ, τ such that

ϕ is σ = τ .
(b) If ϕ is an atomic non-equality formula, then there exist a unique positive integer

m, a unique relation symbol R of rank m, and unique terms σ0, . . . , σm−1, such that ϕ is
Rσ0 . . . σm−1.

(c) If ϕ is a formula and the first symbol of ϕ is 1, then there is a unique formula
ψ such that ϕ is ¬ψ.

(d) If ϕ is a formula and the first symbol of ϕ is 2, then there are unique formulas
ψ, χ such that ϕ is ψ → χ.

(e) If ϕ is a formula and the first symbol of ϕ is 4, then there exist a unique natural
number i and a unique formula ψ such that ϕ is ∀viψ.

Proof. (i): First note that this is true of atomic formulas, since an atomic formula
must have at least a first symbol 3 or some relation symbol. Knowing this about atomic
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formulas, any entry in a formula construction sequence is nonempty, since the entry is
either an atomic formula or else begins with 1,2, or 4.

(ii): This is true on looking at any entry in a formula construction sequence: either
the entry begins with 3 or a relation symbol and hence (a) or (b) holds, or it begins with
1, 2, or 4, giving (c), (d) or (e). Only one of (a)–(e) holds because of the first symbol in
the entry.

(iii): We prove this by complete induction on the length of the formula. Thus suppose
that ϕ is a formula of length m, and for any formula ψ of length less than m, no proper
initial segment of ψ is a formula. Suppose that χ is a proper initial segment of ϕ and χ is
a formula; we want to get a contradiction. By (ii) we have several cases.

Case 1. ϕ is an atomic equality formula σ = τ for certain terms σ, τ . Thus ϕ is
〈3〉⌢σ⌢τ . Since χ is a formula which begins with 3 (since χ is an initial segment of ϕ and
is nonempty by (i)), (ii) yields that χ is 〈3〉⌢ρ⌢ξ for some terms ρ, ξ. Hence σ⌢ψ = ρ⌢ξ.
Thus σ is an initial segment of ρ or ρ is an initial segment of σ. By Proposition 2.2(iii) it
follows that σ = ρ. Then also τ = ξ, so ϕ = χ, contradiction.

Case 2. ϕ is an atomic non-equality formula Rσ0 . . . σm−1 for some m-ary relation
symbol R and some terms σ0, . . . , σm−1. Then χ is a formula which begins with R, and so
there exist terms τ0, . . . , τm−1 such that χ is Rτ0 . . . τm−1. By induction using Proposition
2.2(iii), σi = τi for all i < m, so ϕ = χ, contradiction.

Case 3. ϕ is ¬ψ for some formula ψ. Then 1 is the first entry of χ, so by (ii) χ has
the form ¬ρ for some formula ρ. Thus ρ is a proper initial segment of ψ, contradicting the
inductive hypothesis, since ψ is shorter than ϕ.

Case 4. ϕ is ψ → θ for some formulas ψ, θ, i.e., it is 〈2〉⌢ψ⌢θ. Then χ starts with 2,
so by (ii) χ has the form 〈2〉⌢σ⌢τ for some formulas σ, τ . Now both ψ and σ are shorter
than ϕ, and one is an initial segment of the other. So ψ = σ by the inductive assumption.
Then τ is a proper initial segment of θ, contradicting the inductive assumption.

Case 5. ϕ is 〈4, 5(i+ 1)〉⌢ψ for some i ∈ ω and some formula ψ. Then by (ii), χ is
〈4, 5(i+ 1)〉⌢θ for some formula θ. So θ is a proper initial segment of ψ, contradiction.

(iv): These conditions follow from Proposition 2.2(iii) and (iii).

Now we come to a fundamental definition connecting language with structures. Again this
is a definition by recursion; it is given in the following proposition. First a bit of notation.
If a : ω → A, i ∈ ω, and s ∈ A, then by ais we mean the sequence which is just like a
except that ais(i) = s.

Proposition 2.7. Suppose that A is an L -structure. Then there is a function G assigning
to each formula ϕ and each sequence a : ω → A a value G(ϕ, a) ∈ {0, 1}, such that

(i) For any terms σ, τ , G(σ = τ, a) = 1 iff σA(a) = τA(a).

(ii) For each m-ary relation symbol R and terms σ0, . . . , σm−1, G(Rσ0 . . . σm−1, a) =

1 iff 〈σA0 (a), . . . , σAm−1(a)〉 ∈ RA.

(iii) For every formula ϕ, G(¬ϕ, a) = 1−G(ϕ, a).

(iv) For all formulas ϕ, ψ, G(ϕ→ ψ, a) = 0 iff G(ϕ, a) = 1 and G(ψ, a) = 0.

(v) For all formulas ϕ and any i ∈ ω, G(∀viϕ, a) = 1 iff for every s ∈ A, G(ϕ, ais) = 1.
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Proof. An (A, a)-formula sequence is a sequence 〈(ϕ0, b0), . . . , (ϕm−1, bm−1)〉 such

that each bs is a function mapping M
def
= {a : a : ω → A} into {0, 1} and for each i < m

one of the following holds:

(1) ϕi is an atomic equality formula σ = τ , and ∀a ∈M [bi(a) = 1 iff σA(a) = τA(a)].

(2) ϕi is an atomic nonequality formula Rσ0 . . . σm−1, and

∀a ∈M [bi(a) = 1 iff 〈σA0 (a), . . . , σAm−1(a)〉 ∈ RA].

(3) There is a j < i such that ϕi = ¬ϕj , and ∀a ∈M [bi(a) = 1− bj(a)].

(4) There are j, k < i such that ϕi = ϕj → ϕk, and ∀a ∈ M [bi(a) = 0 iff bj(a) = 1 and
bk(a) = 0].

(5) There are j < i and k ∈ ω such that ϕi = ∀vkϕj , and ∀a ∈ M [bi(a) = 1 iff ∀u ∈
A[bj(a

k
u) = 1]].

Now we claim

(6) For any formula ψ and any (A, a)-formula sequences

〈(ϕ0, b0), . . . , (ϕm−1, bm−1)〉 and 〈(ϕ′
0, b

′
0), . . . , (ϕ′

n−1, b
′
n−1)〉

such that ϕm−1 = ϕ′
n−1 = ψ we have bm−1 = b′n−1.

We prove (6) by induction on ψ, thus using Proposition 2.5. First suppose that ψ is an
atomic equality formula σ = τ . Then the desired conclusion is clear. Similarly for atomic
nonequality formulas. Now suppose that ψ is ¬χ. Then by Proposition 2.6(c) there are
j < m and k < n such that χ = ϕj = ϕ′

k. By the inductive hypothesis we have bj = b′k,
and hence ∀a ∈M [bm−1(a) = 1− bj(a) = 1− b′k(a) = bn−1(a)], so that bm−1 = b′n−1. Next
suppose that ψ is χ → θ. Then by Proposition 2.6(d) there are j, k < m − 1 such that
χ = ϕj and θ = ϕk, and there are s, t < n− 1 such that χ = ϕ′

s and θ = ϕ′
t. Then bj = b′s

and bk = b′t by the inductive hypothesis. Hence for any a ∈M ,

bm−1(a) = 0 iff bj(a) = 1 and bk = 0 iff b′s = 1 and b′t = 0 iff b′n−1(a) = 0.

Thus bm−1 = b′n−1. Finally, suppose that ψ is ∀vkθ. Then by Proposition 2.6(e) there are
j, s < i such that ϕj = θ and ϕ′

s = θ. So by the inductive hypothesis bj = b′s. Hence for
any a ∈M we have

bm−1(a) = 1 iff for every u ∈ A[bj(a
k
u) = 1]

iff for every u ∈ A[b′s(a
k
u) = 1]

iff b′n−1(a) = 1.

Thus bm−1 = b′n−1, finishing the proof of (6).

(7) If 〈ϕ0, . . . , ϕm−1〉 is a formula construction sequence, then there is an (A, a)-formula
sequence of the form 〈(ϕ0, b0), . . . , (ϕm−1, bm−1)〉.
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We prove (7) by induction on m. For m = 1 we have two possibilities.

Case 1. ϕ0 is an atomic equality formula σ = τ . Let b0(a) = 1 iff σA(a) = τA(a).
Case 2. ϕ0 is an atomic nonequality formula Rσ0 . . . , xm−1. Let b0(a) = 1 iff

〈σA0 (a), . . . , σAm−1〉 ∈ RA.

Now assume the statement in (7) for m− 1 ≥ 1. By the inductive hypothesis there is an

(A, a)-formula sequence of the form ψ
def
= 〈(ϕ0, b0), . . . , (ϕm−2, bm−2)〉. Then we have these

possibilities for ϕm−1.

Case 1. ϕm−1 is σ = τ for some terms σ, τ . Define bm−1(a) = 1 iff σA(a) = τA(a).
Then ψ⌢〈(ϕm−1, bm−1)〉 is as desired.

Case 2. ϕm−1 is Rσ0 . . . σp−1 for some terms σ0, . . . , σp−1. Define bm−1(a) = 1 iff

〈σA0 (a), . . . , σAp−1(a)〉 ∈ RA. Then ψ⌢〈(ϕm−1, bm−1)〉 is as desired.
Case 3. ϕm−1 is ¬ϕi with i < m − 1. Define bm−1(a) = 1 − bi(a) for any a. Then

ψ⌢〈(ϕm−1, bm−1)〉 is as desired.
Case 4. ϕm−1 is ϕi → ϕj with i, j < m − 1. Define bm−1(a) = 0 iff bi(a) = 1 and

bj(a) = 0. Then ψ⌢〈(ϕm−1, bm−1)〉 is as desired.
Case 5. ϕm−1 is ∀vkϕi with i < m− 1. Define bm−1(a) iff for all u ∈ A, bi(a

k
u) = 1.

Then ψ⌢〈(ϕm−1, bm−1)〉 is as desired.

This completes the proof of (7).
Now we can define the function G needed in the Proposition. Let ψ be a formula

and a : ω → A. Let 〈ϕ0, . . . , ϕm−1〉 be a formula construction sequence with ϕm−1 = ψ.
By (7) let 〈(ϕ0, b0), . . . , (ϕm−1, bm−1)〉 be an (A, a)-formula sequence. Then we define
G(ψ, a) = bm−1(a). The conditions in the Proposition are clear.

With G as in Proposition 2.7, we write A |= ϕ[a] iff G(ϕ, a) = 1. A |= ϕ[a] is read: “A is
a model of ϕ under a” or “A models ϕ under a” or “ϕ is satisfied by a in A” or “ϕ holds
in A under the assignment a”. In summary:

A |= (σ = τ)[a] iff σA(a) = τA(b). Here σ and τ are terms.

A |= (Rσ0 . . . σm−1)[a] iff the m-tuple 〈σA0 , . . . , σ
A
m−1〉 is in the relation RA. Here R is an

m-ary relation symbol, and σ0, . . . , σm−1 are terms.

A |= (¬ϕ)[a] iff it is not the case that A |= ϕ[a].

A |= (ϕ → ψ)[a] iff either it is not true that A |= ϕ[a], or it is true that A |= ψ[a].
(Equivalently, iff (A |= ϕ[a] implies that A |= ψ[a]).

A |= (∀viϕ)[a] iff A |= ϕ[ais] for every s ∈ A.

We define some additional logical notions:

ϕ ∨ ψ is the formula ¬ϕ→ ψ; ϕ ∨ ψ is called the disjunction of ϕ and ψ.

ϕ ∧ ψ is the formula ¬(ϕ→ ¬ψ); ϕ ∧ ψ is called the conjunction of ϕ and ψ.

ϕ↔ ψ is the formula (ϕ→ ψ) ∧ (ψ → ϕ); ϕ↔ ψ is called the equivalence between ϕ and
ψ.
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∃viϕ is the formula ¬∀vi¬ϕ; ∃ is the existential quantifier.

These notions mean the following.

Proposition 2.8. Let A be a structure and a : ω → A.
(i) A |= (ϕ ∨ ψ)[a] iff A |= ϕ[a] or A |= ψ[a] (or both).
(ii) A |= (ϕ ∧ ψ)[a] iff A |= ϕ[a] and A |= ψ[a].
(iii) A |= (ϕ↔ ψ)[a] iff (A |= ϕ[a] iff A |= ψ[a]).
(iv) A |= ∃viϕ[a] iff there is a b ∈ A such that A |= ϕ[aib].

Proof. The proof consists in reducing the statements to ordinary mathematical usage.
(i):

A |= (ϕ ∨ ψ)[a] iff A |= (¬ϕ→ ψ)[a]

iff either it is not true that A |= (¬ϕ)[a] or it is true that A |= ψ[a]

iff not(not(A |= ϕ[a])) or A |= ψ[a]

iff A |= ϕ[a] or A |= ψ[a].

(ii):

A |= (ϕ ∧ ψ)[a] iff not(A |= (ϕ→ ¬ψ)[a])

iff not(not(A |= ϕ[a]) or A |= ¬ψ[a])

iff not(not(A |= ϕ[a]) or not(A |= ψ[a]))

iff A |= ϕ[a] and A |= ψ[a].

(iii):

A |= (ϕ↔ ψ)[a] iff A |= ((ϕ→ ψ) ∧ (ψ → ψ))[a]

iff A |= ((ϕ→ ψ)[a] and A |= (ψ → ψ))[a]

iff (A |= ϕ[a] implies that A |= ψ[a]) and

(A |= ψ[a] implies that A |= ϕ[a])

iff (A |= ϕ[a] iff A |= ψ[a]).

(iv):

A |= ∃viϕ[a] iff A |= ¬∀vi¬ϕ[a]

iff not(for all b ∈ A(A |= ¬ϕ[aib]))

iff not(for all b ∈ A(not(A |= ϕ[aib]))

iff there is a b ∈ A such that A |= ϕ[aib].

We say that A is a model of ϕ iff A |= ϕ[a] for every a : ω → A. If Γ is a set of formulas,
we write Γ |= ϕ iff every structure which models each member of Γ also models ϕ. |= ϕ
means that every structure models ϕ. ϕ is then called universally valid.
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Now we want to apply the material of Chapter 1 concerning sentential logic. By definition,
a tautology in a first-order language is a formula ψ such that there exist formulas ϕ0, ϕ1, . . .
and a sentential tautology χ such that ψ is obtained from χ by replacing each symbol Si
occurring in χ by ϕi, for each i < ω.

Theorem 2.9. If ψ is a tautology in a first-order language, then ψ holds in every structure
for that language.

Proof. Let A be any structure, and b : ω → A any assignment. We want to show
that A |= ψ[b]. Let formulas ϕ0, ϕ1, . . . , χ be given as in the above definition. For each
sentential formula θ, let θ′ be the first-order formula obtained from θ by replacing each
sentential variable Si by ϕi. Thus χ′ is ψ. We define a sentential assignment f by setting,
for each i ∈ ω,

f(i) =

{

1 if A |= ϕi[b],
0 otherwise.

Then we claim:

(*) For any sentential formula θ, A |= θ′[b] iff θ[f ] = 1.

We prove this by induction on θ:

If θ is Si, then θ′ is ϕi, and our condition holds by definition. If inductively θ is ¬τ , then
θ′ is ¬τ ′, and

A |= θ′[b] iff not(A |= τ ′[b])

iff not(τ [f ] = 1)

iff τ [f ] = 0

iff θ[f ] = 1.

Finally if inductively θ is τ → ξ, then θ′ is τ ′ → ξ′, and

A |= θ′[b] iff (A |= τ ′[b] implies that A |= ξ′[b]

iff τ [f ] = 1 implies that ξ[f ] = 1

iff θ[f ] = 1.

This finishes the proof of (*).
Applying (*) to χ, we get A |= χ′[b], i.e., A |= ψ[b].

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

A language for the structure (ω,<) is the quadruple ({11}, ∅, ∅, rnk), where rnk is the
function with domain {11} such that rnk(11) = 2.

A language for the set A (no individual constants, function symbols, or relation symbols)
is the quadruple (∅, ∅, ∅, ∅). Note that the last ∅ is the empty function.

Proposition 2.10. + • v0v0v1 is a term in the language for (R,+, ·, 0, 1, <).
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Proof. 〈v0, •v0v0, v1,+ • v0v0v1〉.

Proposition 2.11. In any first-order language, the sequence 〈v0, v0〉 is not a term.

Proof. Suppose that 〈v0, v0〉 is a term. This contradicts Proposition 2.2(ii).

Proposition 2.12. In the language for (ω, S, 0,+, ·), the sequence 〈+, v0, v1, v2〉 is not a
term. Here S(i) = i+ 1 for any i ∈ ω.

Proof. Suppose it is a term. By Proposition 2.2(ii)(c), there are terms σ, τ such that
〈+, v0, v1, v2〉 is 〈+〉⌢σ⌢τ . Thus 〈v0, v1, v2〉 = σ⌢τ . So the term v0 is an initial segment
of the term σ. By Proposition 2.2(iii) it follows that v0 = σ. Hence 〈v1, v2〉 = τ . This
contradicts Proposition 2.2(ii).

The structure (ω, S, 0,+, ·) can be put in the general framework of structures as follows.
It can be considered to be the structure (ω,Rel′, F cn′, Cn′) where Rel′ = ∅, Cn′ is the
function with domain {8} such that Cn′(8) = 0, and Fcn′ is the function with domain
{6, 7, 9} such that Fcn′(6) = S, Fcn′(7) = +, and Fcn′(9) = ·.

Proposition 2.13. In the language for the structure (ω,+), a term has length m iff m is
odd.

Proof. First we show by induction on terms that every term has odd length. This
is true for variables. Suppose that it is true for terms σ and τ . Then also σ + τ has odd
length. Hence every term has odd length.

Second we prove by induction on m that for all m, there is a term of length 2m+ 1.
A variable has length 1, so our assertion holds for m = 0. Assume that there is a term σ
of length 2m+ 1. Then σ+ v0 has length 2m+ 3. This finishes the inductive proof.

Proposition 2.14. In the language for (Q,+, ·) the formula ϕ
def
= ∀v1[v0 · v1 = v1] is such

that for any a : ω → Q, (Q,+, ·) |= ϕ[a] iff a0 = 1.

Proposition 2.15. The following formula ϕ holds in a structure, under any assignment,
iff the structure has at least 3 elements.

∃v0∃v1∃v2(¬(v0 = v1) ∧ ¬(v0 = v2) ∧ ¬(v1 = v2)).

Proposition 2.16. The following formula ϕ holds in a structure, under any assignment,
iff the structure has exactly 4 elements.

∃v0∃v1∃v2∃v3(¬(v0 = v1) ∧ ¬(v0 = v2) ∧ ¬(v0 = v3) ∧ ¬(v1 = v2) ∧ ¬(v1 = v3) ∧ ¬(v2 = v3)

∧ ∀v4(v0 = v4 ∨ v1 = v4 ∨ v2 = v4 ∨ v3 = v4)).

Proposition 2.17. The following formula ϕ in the language for (ω,<) is such that for
any assignment a, (ω,<) |= ϕ[a] iff a0 < a1 and there are exactly two integers between a0

and a1.

v0 < v1 ∧ ∃v2∃v3[v0 < v2 ∧ v2 < v3 ∧ v3 < v1

∧ ∀v4[v0 < v4 ∧ v4 < v1 → v4 = v2 ∨ v4 = v3]].
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Proposition 2.18. The formula

v0 = v1 → (Rv0v2 → Rv1v2)

is universally valid, where R is a binary relation symbol.

Proof. Let A be a structure and a : ω → A an assignment. Suppose that A |= (v0 =

v1)[a]. Then a0 = a1. Also suppose that A |= Rv0v2[a]. Then (a0, a2) ∈ RA. Hence

(a1, a2) ∈ RA. Hence A |= Rv1v2[a], as desired.

Proposition 2.19. The formula

v0 = v1 → ∀v0(v0 = v1)

is not universally valid.

Proof. Consider the structure A
def
= (ω,<), and let a : ω → ω be defined by a(i) = 0

for all i ∈ ω. Then A |= (v0 = v1)[a]. Now A 6|= (v0 = v1)[a0
1] since 1 6= 0, so A 6|= ∀v0(v0 =

v1)[a]. Therefore A 6|= (v0 = v1 → ∀v0(v0 = v1))[a].

Proposition 2.20. ∃v0∀v1ϕ→ ∀v1∃v0ϕ is universally valid.

Proof. Assume that a : ω → A and A |= ∃v0∀v1ϕ[a]. Choose u ∈ A so that
A |= ∀v1ϕ[a0

u]. In order to show that A |= ∀v1∃v0ϕ[a], let w ∈ A be given. Then A |= ϕ01
uw.

It follows that A |= ∃v0ϕ[u1
w]. Hence A |= ∀v1∃v0ϕ[a], as desired.

29



3. Proofs

The purpose of this chapter is give the definition of a mathematical proof, and give the
simplest proofs which will be needed in proving the completeness theorem in the next
chapter. Given a set Γ of formulas in a first-order language, and a formula ϕ in that
language, we explain what it means to have a proof of ϕ from Γ.

The following formulas are the logical axioms. Here ϕ, ψ, χ are arbitrary formulas
unless otherwise indicated.

(L1a) ϕ→ (ψ → ϕ).
(L1b) [ϕ→ (ψ → χ)]→ [(ϕ→ ψ)→ (ϕ→ χ)].
(L1c) (¬ϕ→ ¬ψ)→ (ψ → ϕ).
(L2) ∀vi(ϕ→ ψ)→ (∀viϕ→ ∀viψ), for any i ∈ ω.
(L3) ϕ→ ∀viϕ for any i ∈ ω such that vi does not occur in ϕ.
(L4) ∃vi(vi = σ) if σ is a term and vi does not occur in σ.
(L5) σ = τ → (σ = ρ→ τ = ρ), where σ, τ, ρ are terms.
(L6) σ = τ → (ρ = σ → ρ = τ), where σ, τ, ρ are terms.
(L7) σ = τ → Fξ0 . . . ξi−1σξi+1 . . . ξm−1 = Fξ0 . . . ξi−1τξi+1 . . . ξm−1, where F is an m-ary
function symbol, i < m, and σ, τ, ξ0, . . . , ξi−1, ξi+1, . . . ξm−1 are terms.
(L8) σ = τ → (Rξ0 . . . ξi−1σξi+1 . . . ξm−1 → Rξ0 . . . ξi−1τξi+1 . . . ξm−1), where R is an
m-ary relation symbol, i < m, and σ, τ, ξ0, . . . , ξi−1, ξi+1, . . . ξm−1 are terms.

Theorem 3.1. Every logical axiom is universally valid.

Proof. (L1a–c): Universally valid by Theorem 2.9.
(L2): Assume that

(1) A |= ∀vi(ϕ→ ψ)[a] and
(2) A |= ∀viϕ[a];

We want to show that A |= ∀viψ[a]. To this end, take any b ∈ A; we want to show that
A |= ϕ[aib]. Now by (1) we have A |= (ϕ→ ψ)[aib], hence A |= ϕ[aib] implies that A |= ψ[aib].
Now by (2) we have A |= ϕ[aib], so A |= ψ[aib].

(L3): We prove by induction on ϕ that if vi does not occur in ϕ, and if a, b : ω → A
are such that a(j) = b(j) for all j 6= i, then A |= ϕ[a] iff A |= ϕ[b]. This will imply that
(L3) is universally valid.

• ϕ is σ = τ . Thus vi does not occur in σ or in τ . Then

A |= (σ = τ)[a] iff σA(a) = τA(a)

iff σA(b) = τA(b) by Proposition 2.4

iff A |= (σ = τ)[b].

• ϕ is Rσ0 . . . σm−1 for some m-ary relation symbol and some terms σ0, . . . , σm−1. We are
assuming that vi does not occur in Rσ0 . . . σm−1; hence it does not occur in any term σi.

A |= (Rσ0 . . . σm−1)[a] iff 〈σA0 (a), . . . , σRm−1(a)〉 ∈ RA
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iff 〈σA0 (b), . . . , σRm−1(b)〉 ∈ RA

(by Proposition 2.4)

iff A |= (Rσ0 . . . σm−1)[b].

• ϕ is ¬ψ (inductively).

A |= ϕ[a] iff not(A |= ψ[a])

iff not(A |= ψ[b]) (inductive hypothesis)

iff A |= ϕ[b].

• ϕ is ψ → χ (inductively).

A |= ϕ[a] iff (A |= ψ[a] implies that A |= χ[a])

iff (A |= ψ[b] implies that A |= χ[b])

(inductive hypothesis)

iff A |= ϕ[b].

• ϕ is ∀vkψ (inductively). By symmetry it suffices to prove just one direction. Suppose
that A |= ϕ[a]; we want to show that A |= ϕ[b]. To this end, suppose that u ∈ A; we want
to show that A |= ψ[bku]. Since A |= ϕ[a], we have A |= ψ[aku]. Now k 6= i, since vi does
not occur in ϕ. Hence (aku)(j) = (bku)(j) for all j 6= i. Hence A |= ψ[bku] by the inductive
hypothesis, as desired.

This finishes our proof by induction of the statement made above. Now assume that
A |= ϕ[a] and u ∈ A; we want to show that A |= ϕ[aiu]. This holds by the statement above.

This finishes the proof of (L3).
(L4): Suppose that σ is a term and vi does not occur in σ. To prove that A |=

(∃vi(vi = σ))[a], we want to find u ∈ A such that A |= (vi = σ)[aiu]. Let u = σA(a). Then

(vi)
A[aiu] = u = σA(a) = σA(aiu)

by Proposition 2.4 (since vi does not occur in σ, hence a(j) = aiu(j) for all j such that vj
occurs in σ). Hence A |= (vi = σ)[aiu].

(L5): Assume that A |= (σ = τ)[a] and A |= (σ = ρ)[a]. Then σA(a) = τA(a) and

σA(a) = ρA(a), so τA(a) = ρA(a), hence A |= (τ = ρ)[a].

(L6): Assume that A |= (σ = τ)[a] and A |= (ρ = σ)[a]. Then σA(a) = τA(a) and

ρA(a) = σA(a), so ρA(a) = τA(a), hence A |= (ρ = τ)[a].

(L7): Assume that A |= (σ = τ)[a]. Then σA(a) = τA(a), and so

(Fξ0 . . . ξi−1σξi+1 . . . ξm−1)A(a) = FA(ξA0 (a), . . . , ξAi−1(a), σA(a), ξAi+1(a), . . . , ξAm−1(a))

= FA(ξA0 (a), . . . , ξAi−1(a), τA(a), ξAi+1(a), . . . , ξAm−1(a))

= (Fξ0 . . . ξi−1τξi+1 . . . ξm−1)A(a);
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it follows that A |= (Fξ0 . . . ξi−1σξi+1 . . . ξm−1 = Fξ0 . . . ξi−1τξi+1 . . . ξm−1)[a], hence (L7)
is universally valid.

(L8): Assume that A |= (σ = τ)[a]. Then σA(a) = τA(a). Assume that

A |= (Rξ0 . . . ξi−1σξi+1 . . . ξm−1)[a]; hence

〈ξA0 (a), . . . , ξAi−1(a), σA(a), ξAi+1(a), . . . , ξAm−1(a)〉 ∈ RA; hence

〈ξA0 (a), . . . , ξAi−1(a), τA(a), ξAi+1(a), . . . , ξAm−1(a)〉 ∈ RA; hence

A |= (Rξ0 . . . ξi−1τξi+1 . . . ξm−1)[a];

hence (L8) is universally valid.

Now let Γ be a set of formulas. A Γ-proof is a finite sequence 〈ϕ0, . . . , ϕm−1〉 of formulas
such that for each i < m one of the following conditions holds:

(I1) ϕi is a logical axiom
(I2) ϕi ∈ Γ.
(I3) (modus ponens) There are j, k < i such that ϕj is the formula ϕk → ϕi.
(I4) (generalization) There exist j < i and k ∈ ω such that ϕi is the formula ∀vkϕj .

Then we say that Γ proves ϕ, in symbols Γ ⊢ ϕ, provided that ϕ is an entry in some
Γ-proof. We write ⊢ ϕ in place of ∅ ⊢ ϕ.

Theorem 3.2. If Γ ⊢ ϕ, then Γ |= ϕ.

Proof. Recall the notion Γ |= ϕ from Chapter 2: it says that for every structure A
for the implicit language we are dealing with, if A |= ψ[a] for all ψ ∈ Γ and all a : ω → A,
then A |= ϕ[a] for every a : ω → A. Now it suffices to take a Γ-proof 〈ψ0, . . . , ψm−1〉 and
prove by complete induction on i that Γ |= ψi for each i < m.

Case 1. ψi is a logical axiom. Then the result follows by Theorem 3.1.
Case 2. ψi ∈ Γ. Obviously then Γ |= ψi.
Case 3. There are j, k < i such that ϕj is ϕk → ϕi. Suppose that A is a model of Γ

and a : ω → A. Then A |= ϕk[a] by the inductive hypothesis, and also A |= (ϕk → ϕi)[a]
by the inductive hypothesis. Thus A |= ϕk[a] implies that A |= ϕi[a], so A |= ϕi[a].

Case 3. There exist j < i and k ∈ ω such that ϕi is ∀vkϕj . Given u ∈ A, we want to
show that A |= ϕj [a

k
u]; but this follows from the inductive hypothesis.

One form of the completeness theorem, proved in the next chapter, is that, conversely,
Γ |= ϕ implies that Γ ⊢ ϕ.

In this chapter we will show that many definite formulas ϕ are such that ⊢ ϕ. We begin
with tautologies.

Lemma 3.3. ⊢ ϕ for any first-order tautology ϕ.

Proof. Let χ be a sentential tautology, and let 〈ψ0, ψ1, . . .〉 be a sequence of first-order
formulas such that ϕ is obtained from χ by replacing each sentential variable Si by ψi. For
each sentential formula θ, let θ′ be obtained from θ by replacing each sentential variable
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Si by ψi. By Theorem 1.16, ⊢ χ (in the sentential sense). Hence there is a sentential
proof 〈θ0, . . . , θm〉 with θm = χ. We claim that 〈θ′0, . . . , θ

′
m〉 is a first-order proof. Since

θ′m = χ′ = ϕ, this will prove the lemma. If i ≤ m and θi is a (sentential) axiom, then θ′i is
the corresponding first-order axiom:

[ρ→ (σ → ρ)]′ = [ρ′ → (σ′ → ρ′)];

[[ρ→ (σ → τ ]→ [(ρ→ σ)→ (ρ→ τ)]]′ =

[[ρ′ → (σ′ → τ ′)]→ [(ρ′ → σ′)→ (ρ′ → τ ′)]];

[(¬ρ→ ¬σ)→ (σ → ρ)]′ = [(¬ρ′ → ¬σ′)→ (σ′ → ρ′)].

If j, k < i and θk is θj → θi, then θ′k is θ′j → θ′i.

We proceed with simple theorems concerning equality.

Proposition 3.4. ⊢ σ = σ for any term σ.

Proof. The following is a ∅-proof; on the left is the entry number, and on the right
a justification. Let vi be a variable not occurring in σ.

(1) vi = σ → (vi = σ → σ = σ) (L5)
(2) [vi = σ → (vi = σ → σ = σ)→ [¬(σ = σ)→ ¬(vi = σ)] (taut.)
(3) ¬(σ = σ)→ ¬(vi = σ) ((1), (2), MP)
(4) ∀vi[¬(σ = σ)→ ¬(vi = σ)] ((3), gen.)
(5) ∀vi[¬(σ = σ)→ ¬(vi = σ)]→ [∀vi¬(σ = σ)→ ∀vi¬(vi = σ)] (L2)
(6) ∀vi¬(σ = σ)→ ∀vi¬(vi = σ) (4), (5), MP
(7) ¬(σ = σ)→ ∀vi¬(σ = σ) (L3)
(8) (7)→ [(6)→ [¬(σ = σ)→ ∀vi¬(vi = σ)] (taut.)
(9) (6)→ [¬(σ = σ)→ ∀vi¬(vi = σ)] (7), (8), MP
(10) ¬(σ = σ)→ ∀vi¬(vi = σ) (6), (9), MP
(11) (10)→ [∃vi(vi = σ)→ σ = σ] (taut.)
(12) ∃vi(vi = σ)→ σ = σ (10), (11), MP
(13) ∃vi(vi = σ) (L4)
(14) (13)→ [(12)→ σ = σ] (L1)
(15) (12)→ σ = σ ((13), (14), MP)
(16) σ = σ ((12), (15), MP)

Proposition 3.5. ⊢ σ = τ → τ = σ for any terms σ, τ .

Proof. By (L5) we have

⊢ σ = τ → (σ = σ → τ = σ);

and by Proposition 3.4 we have ⊢ σ = σ. Now

σ = σ → ([σ = τ → (σ = σ → τ = σ)]→ (σ = τ → τ = σ))
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is a tautology, so ⊢ σ = τ → τ = σ.

Proposition 3.6. ⊢ σ = τ → (τ = ρ→ σ = ρ) for any terms σ, τ, ρ.

Proof. By (L5), ⊢ τ = σ → (τ = ρ→ σ = ρ). By Proposition 3.5, ⊢ σ = τ → τ = σ.
Now

(σ = τ → τ = σ)→ ([τ = σ → (τ = ρ→ σ = ρ)]→ [σ = τ → (τ = ρ→ σ = ρ)])

is a tautology, so ⊢ σ = τ → (τ = ρ→ σ = ρ).

We now give several results expressing the principle of substitution of equals for equals.
The main fact is expressed in Theorem 3.16, which says that under certain conditions the
formula σ = τ → (ϕ ↔ ψ) is provable, where ψ is obtained from ϕ by replacing some
occurrences of σ by τ .

Lemma 3.7. If σ and τ are terms, ϕ and ψ are formulas, vi is a variable not occurring
in σ or τ , and ⊢ σ = τ → (ϕ→ ψ), then ⊢ σ = τ → (∀viϕ→ ∀viψ).

Proof.

(1) ⊢ ∀vi[σ = τ → (ϕ→ ψ)] (hypothesis, gen.)
(2) ⊢ ∀vi(σ = τ)→ ∀vi(ϕ→ ψ)] (from (1), using (L2))
(3) ⊢ ∀vi(ϕ→ ψ)→ (∀viϕ→ ∀viψ) ((L2))
(4) ⊢ σ = τ → ∀vi(σ = τ). ((L3))

Now putting (2)–(4) together with a tautology gives the lemma.

To proceed further we need to discuss the notion of free and bound occurrences of variables
and terms. This depends on the notion of a subformula. Recall that a formula is just a
finite sequence of positive integers, subject to certain conditions. Atomic equality formulas
have the form σ = τ for some terms σ, τ , and σ = τ is defined to be 〈3〉⌢σ⌢τ . Atomic non-
equality formulas have the form Rσ0 . . . σm−1 for some m, some m-ary relation symbol R,
and some terms σ0, . . . , σm−1. R is actually some positive integer k greater than 5 and not
divisible by 5, and Rσ0 . . . σm−1 is the sequence 〈k〉⌢σ⌢0 · · ·

⌢ σm−1. Non-atomic formulas
have the form

¬ϕ = 〈1〉⌢ϕ,
ϕ→ ψ = 〈2〉⌢ϕ⌢ψ, or
∀vsϕ = 〈4, 5(s+ 1)〉⌢ϕ.

Thus every formula begins with one of the integers 1,2,3,4 or some positive integer greater
than 5 not divisible by 5 which is a relation symbol. This helps motivate the following
propositions.

Proposition 3.8. If σ = 〈σ0, . . . , σk−1〉 is a term, then each σi is either of the form 5m
with m a positive integer, or it is an odd integer greater than 5 which is a function symbol
or individual constant.
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Proof. We prove this by induction on σ, thus using Proposition 2.1. The proposition
is obvious if σ is a variable or individual constant. Suppose that F is a function symbol of
rank m, τ0, . . . , τm−1 are terms, and σ is Fτ0 . . . τm−1, where we assume the truth of the
proposition for τ0, . . . , τm−1. Suppose that i < k. If i = 0, then σi is F, a function symbol.
If i > 0, then σi is an entry in some τj, and the desired conclusion follows by the inductive
hypothesis.

Proposition 3.9. Let ϕ = 〈ϕ0, . . . ϕk−1〉 be a formula, suppose that i < k, and ϕi is one
of the integers 1,2,3,4 or a positive integer greater than 5 which is a relation symbol. Then
there is a unique segment 〈ϕi, ϕi+1, . . . , ϕj〉 of ϕ which is a formula.

Proof. We prove this by induction on ϕ, thus using Proposition 2.5. We assume the
hypothesis of the proposition. First suppose that ϕ is an atomic equality formula σ = τ
with σ and τ terms. Thus σ = τ is the sequence 〈1〉⌢σ⌢τ . Now by Proposition 2.2(ii), no
entry of a term is among the integers 1, 2, 3, 4 or is a positive integer greater than 5 which
is a relation symbol. It follows from the assumption about i that i = 0, and hence the
desired segment of ϕ is ϕ itself. It is unique by Proposition 2.6(iii). Second suppose that
ϕ is an atomic non-equality formula Rσ0 . . . σm−1 with R an m-ary relation symbol and
σ0, . . . , σm−1 terms. This is very similar to the first case. Rσ0 . . . σm−1 is the sequence
〈R〉⌢σ⌢0 · · ·

⌢ σm−1. By Proposition 2.2(ii) i must be 0, and hence the desired segment of
ϕ is ϕ itself. It is unique by Proposition 2.6(iii).

Now assume inductively that ϕ is ¬ψ; so ϕ is 〈1〉⌢ψ. If i = 0, then ϕ itself is
the desired segment, unique by Proposition 2.6(iii). If i > 0, then ϕi = ψi−1, where
ψ = 〈ψ0, . . . , ψk−1〉. By the inductive hypothesis there is a segment 〈ψi−1, ψi, . . . , ψj〉 of
ψ which is a formula. This gives a segment 〈ϕi, ϕi+1, . . . , ϕj+1〉 of ϕ which is a formula; it
is unique by Proposition 2.6(iii).

Assume inductively that ϕ is ψ → χ for some formulas ψ, χ. So ϕ is 〈2〉⌢ψ⌢χ. If
i = 0, then ϕ itself is the required segment, unique by Proposition 2.6(iii). Now suppose
that i > 0. Now we have ψ = 〈ϕ1, . . . , ϕm〉 and χ = 〈ϕm+1, . . . , ϕk−1〉 for some m. If
1 ≤ i ≤ m, then by the inductive assumption there is a segment 〈ϕi, ϕi+1, . . . , ϕn〉 of ψ
which is a formula. This is also a segment of ϕ, and it is unique by Proposition 2.6(iii). If
m+ 1 ≤ i ≤ k − 1, a similar argument with χ gives the desired result.

Finally, assume inductively that ϕ is ∀vsψ with ψ some formula and s ∈ ω. If i = 0
then ϕ itself is the desired segment, unique by Proposition 2.6(iii). If i > 0 then actually
i > 1 so that ϕi is within ψ, and the inductive hypothesis applies.

The segment of ϕ asserted to exist in Proposition 3.9 is called the subformula of ϕ beginning

at i. For example, consider the formula ϕ
def
= ∀v0[v0 = v2 → v0 = v2]. The formula v0 = v2

occurs in two places in ϕ. In detail, ϕ is the sequence 〈4, 5, 2, 3, 5, 15, 3, 5, 15〉. Thus

ϕ0 = 4;
ϕ1 = 5;
ϕ2 = 2;
ϕ3 = 3;
ϕ4 = 5;
ϕ5 = 15;
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ϕ6 = 3;
ϕ7 = 5;
ϕ8 = 15;

On the other hand, v0 = v2 is the formula 〈3, 5, 15〉. It occurs in ϕ beginning at 3, and
also beginning at 6.

Now a variable vs is said to occur bound in ϕ at the j-th position iff with ϕ =
〈ϕ0, . . . , ϕm−1〉, we have ϕj = vs and there is a subformula of ϕ of the form ∀vsψ =
〈ϕi, ϕi+1, . . . , ϕm〉 with i + 1 ≤ j ≤ m. If a variable vs occurs at the j-th position of ϕ
but does not occur bound there, then that occurrence is said to be free. We give some
examples. Let ϕ be the formula v0 = v1 → v1 = v2. All the occurrences of v0, v1, v2 are
free occurrences in ϕ. Note that as a sequence ϕ is 〈2, 3, 5, 10, 3, 10, 15〉; so ϕ0 = 2, ϕ1 = 3,
ϕ2 = 5, ϕ3 = 10, ϕ4 = 3, ϕ5 = 10, and ϕ6 = 15. The variable v0, which is the integer 5,
occurs free at the 2-nd position. The variable v1, which is the integer 10, occurs free at
the 3rd and 5th positions. The variable v2, which is the integer 15, occurs free at the 6th
position.

Now let ψ be the formula v0 = v1 → ∀v1(v1 = v2). Then the first oc-
curence of v1 is free, but the other two occurrences are bound. As a sequence, ψ is
〈2, 3, 5, 10, 4, 10, 3, 10, 15〉. The variable v1 occurs free at the 3rd position, and bound at
the 5th and 7th positions.

We also need the notion of a term occurring in another term, or in a formula. The following
two propositions are proved much like 3.9.

Proposition 3.10. If σ = 〈σ0, . . . , σm−1〉 is a term and i < m, then there is a unique
term τ which is a segment of σ beginning at i.

Proof. We prove this by induction on σ. For σ a variable or individual constant,
we have m = 1 and so i = 0, and σ itself is the only possibility for τ . Now suppose
that the proposition is true for terms τ0, . . . τn−1, F is an n-ary function symbol, and σ
is Fτ0 . . . τn−1. If i = 0, then σ itself begins at i, and it is the only term beginning at i
by Proposition 2.2(iii). If i > 0, then i is inside some term τk, and so by the inductive
assumption there is a term which is a segment of τk beginning there; this term is a segment
of σ too, and it is unique by Proposition 2.2(iii).

Under the assumptions of Proposition 3.10, we say that τ occurs in σ beginning at i.

Proposition 3.11. If ϕ = 〈ϕ0, . . . , ϕm−1〉 is a formula, i < m, and ϕi is a variable, an
individual constant, or a function symbol, then there is a unique segment of ϕ beginning
at i which is a term.

Proof. We prove this by induction on ϕ. First suppose that ϕ is an atomic equality
formula σ = τ for some terms σ, τ . Thus ϕ is 〈3〉⌢σ⌢τ . So i > 0, and hence i is inside
σ or τ . If i is inside σ, then by Proposition 3.10, there is a term which is a segment of σ
beginning at i; it is also a segment of ϕ, and it is unique by Proposition 2.2(iii). Similarly
for τ .

Suppose inductively that ϕ is ¬ψ. Thus ϕ is 〈1〉⌢ψ. It follows that i > 0, so that ϕi
appears in ψ; then the inductive hypothesis applies.
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Suppose inductively that ϕ is ψ → χ. Thus ϕ is 〈2〉⌢ψ⌢χ. It follows that i > 0, so
that ϕi appears in ψ or χ; then the inductive hypothesis applies.

Finally, suppose that ϕ is ∀vsψ with ψ a formula and s ∈ ω. Thus ϕ is 〈4, 5(s+1)〉⌢ψ.
Hence i > 0. If i = 1, then 〈5(s+1)〉 is the desired segment, unique by Proposition 2.6(iii).
Suppose that i > 1. So ϕi is an entry in ψ and hence by the inductive assumption, there
is a segment 〈ϕi, ϕi+1, . . . ϕm〉 which is a term; this is also a segment of ϕ, and it is unique
by Proposition 2.6(iii).

Under the assumptions of Proposition 3.11, we say that the indicated segment occurs in ϕ
beginning at i.

We now extend the notions of free and bound occurrences to terms. Let σ be a term which
occurs as a segment in a formula ϕ. Say that ϕ = 〈ϕ0, . . . , ϕm−1〉 and σ = 〈ϕi, . . . ϕk〉. We
say that this occurrence of σ in ϕ is bound iff there is a variable vs which occurs bound in
ϕ at some place t with i ≤ t ≤ k; the occurrence of σ is free iff there is no such variable.

We give some examples. The term v0 + v1 is bound in its only occurrence in the
formula ∀v0(v0 + v1 = v2). The same term is bound in its first occurrence and free in its
second occurrence in the formula ∀v0(v0 + v1 = v2) ∧ v0 + v1 = v0.

Suppose that σ, τ, ρ are terms, and τ occurs in σ beginning at i. By the result of
replacing that occurrence of τ by ρ we mean the following sequence ξ. Say σ, τ, ρ have
domains (lengths) m,n, p respectively. Then ξ is the sequence

〈σ0, . . . , σi−1, ρ0, . . . , ρp−1, σi+n, . . . , σm−1〉.

Put another way, if σ is θ⌢τ⌢η with θ of length i, then ξ is θ⌢ρ⌢η.

Proposition 3.12. Suppose that σ, τ, ρ are terms, and the sequence ξ is obtained from ρ
by replacing one occurrence of σ by τ . Then ξ is a term.

Proof. We prove this by induction on ρ, thus by using Proposition 2.1. If ρ is a
variable or an individual constant, then σ must be ρ itself, and ξ is τ , which is a term.
Now suppose that ρ is Fη0 . . . ηm−1 for some m-ary function symbol F and some terms
η0, . . . , ηm−1, and the proposition holds for η0, . . . , ηm−1. Say the occurrence of σ in ρ
begins at i. If i = 0, then σ equals ρ, and hence ξ equals τ , which is a term. If i > 0,
then i is inside some ηj , and hence the occurrence of σ is actually an occurrence in ηj by
Proposition 2.2(iii). Replacing this occurrence of σ in ηj by τ we obtain a term by the
inductive hypothesis; call this term η′j . It follows that ξ is Fη0 . . . ηj−1η

′
j , ηj+1 . . . ηm−1,

which is a term.

As an example, consider the term v0 • (v1 + v2) in the language for (Q,+, ·). Replacing
the occurrence of v1 by v0 • v1 we obtain the term v0 • ((v0 • v1) + v2). Writing this out
in detail, assuming that • corresponds to 9 and + corresponds to 7, we start with the
sequence 〈9, 5, 7, 10, 15〉 and end with the sequence 〈9, 5, 7, 9, 5, 10, 15〉.

Our first form of subsitution of equals for equals only involves terms:

Theorem 3.13. If σ, τ, ρ are terms, and ξ is a sequence obtained from ρ by replacing an
occurrence of σ in ρ by τ , then ξ is a term and ⊢ σ = τ → ρ = ξ.
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Proof. ξ is a term by Proposition 3.12. Now we proceed by induction on ρ. If ρ is
a variable or an individual constant, then σ must be the same as ρ, since ρ has length 1
and σ occurs in ρ. Then ξ is τ , and σ = τ → ρ = ξ is σ = τ → σ = τ , a tautology. So the
proposition is true in this case.

Now assume inductively that ρ is Fη0 . . . ηm−1 with F an m-ary function symbol and
η0, . . . , ηm−1 terms. There are two possibilities for the occurrence of σ. First, possibly σ is
the same as ρ. Then ξ is τ , and again we have the tautology σ = τ → σ = τ , Second, the
occurrence of σ is within some ηi. Then by the inductive hypothesis, ⊢ σ = τ → ηi = η′i,
where η′i is obtained from ηi by replacing the indicated occurrence of σ by τ . Now an
instance of (L7) is

ηi = η′i → Fη0 . . . ηi−1 . . . ηiηi+1 . . . ηm−1 = Fη0 . . . ηi−1 . . . η
′
iηi+1 . . . ηm−1.

Putting this together with ⊢ σ = τ → ηi = η′i and a tautology gives ⊢ σ = τ → ρ = ξ.

Proposition 3.14. Suppose that ϕ is a formula and σ, τ are terms. Suppose that σ occurs
at the i-th place in ϕ, and if i > 0 and ϕi−1 = ∀, then τ is a variable. Let the sequence ψ
be obtained from ϕ by replacing that occurrence of σ by τ . Then ψ is a formula.

Proof. Induction on ϕ. Suppose that ϕ is ρ = ξ. Then by Proposition 3.13, σ
occurs in ρ or ξ. Suppose that it occurs in ρ. Let ρ′ be obtained from ρ by replacing that
occurrence of σ by τ . Then ρ′ is a term by Proposition 3.14. Since ψ is ρ′ = ξ, ψ is a
formula. The case in which σ occurs in ξ is similar. Now suppose that ϕ is Rη0 . . . ηm−1

with R an m-ary relation symbol and η0, . . . , ηm−1 are terms. Then the occurrence of σ
is within some ηi. Let η′i be obtained from ηi by replacing that occurrence by τ . Now ψ
is Rη0 . . . ηi−1η

′
i . . . ηm−1, so ψ is a formula.

Now suppose that the result holds for ϕ′, and ϕ is ¬ϕ′. Then σ occurs in ϕ′, so if
ψ′ is obtained from ϕ′ by replacing the occurrence of σ by τ , then ψ′ is a formula by the
inductive assumption. Since ψ is ¬ψ′ also ψ is a formula.

Next, suppose that the result holds for ϕ′ and ϕ′′, and ϕ is ϕ′ → ϕ′′. Then the
occurrence of σ is within ϕ′ or is within ϕ′′. If it is within ϕ′, let ψ′ be obtained from ϕ′

by replacing that occurrence of σ by τ . Then ψ′ is a formula by the inductive hypothesis.
Since ψ is ψ′ → ϕ′′, also ψ is a formula. If the occurrence is within ϕ′′, let ψ′′ be obtained
from ϕ′′ by replacing that occurrence of σ by τ . Then ψ′′ is a formula by the inductive
hypothesis. Since ψ is ϕ′ → ψ′′, also ψ is a formula.

Finally, suppose that the result holds for ϕ′, and ϕ is ∀vkϕ′. If i = 1, then σ is vk,
and by hypothesis τ is some variable vl. Then ψ is ∀vlϕ′, which is a formula. If i > 1, then
σ occurs in ϕ′, so if ψ′ is obtained from ϕ′ by replacing the occurrence of σ by τ , then ψ′

is a formula by the inductive assumption. Since ψ is ∀vkψ′ also ψ is a formula.

For the exact definition of ψ see the description before Proposition 3.12.

Lemma 3.15. Suppose that σ and τ are terms, ϕ is a formula, and ψ is obtained from ϕ
by replacing one free occurrence of σ in ϕ by τ , such that the occurrence of τ that results
is free in ψ. Then ⊢ σ = τ → (ϕ↔ ψ).
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Proof. We proceed by induction on ϕ. First suppose that ϕ is an atomic equality
formula ρ = ξ. If the occurrence of σ that is replaced is in ρ, let ρ′ be the resulting term.
Then by Proposition 3.13, ⊢ σ = τ → ρ = ρ′. Now (L5) gives ⊢ ρ = ρ′ → (ρ = ξ → ρ′ = ξ).
Putting these two together with a tautology gives ⊢ σ = τ → (ρ = ξ → ρ′ = ξ). By
symmetry, ⊢ σ = τ → (ρ′ = ξ → ρ = ξ). Hence ⊢ σ = τ → (ρ = ξ ↔ ρ′ = ξ).

If the occurrence of σ that is replaced is in ξ, a similar argument using (L6) works.
Second, suppose that ϕ is an atomic non-equality formula Rρ0 . . . ρm−1, with R an m-

ary relation symbol and ρ0, . . . , ρm−1 terms. Say that the occurrence of σ that is replaced
by τ is in ρi, the resulting term being ρ′i. Then by Proposition 3.13, ⊢ σ = τ → ρi = ρ′i.
By (L8) we have

⊢ ρi = ρ′i → (Rρ0 . . . ρm−1 → Rρ0 . . . ρi−1ρ
′
iρi+1 . . . ρm−1),

so by a tautology we get from these two facts

⊢ σ = τ → (Rρ0 . . . ρm−1 → Rρ0 . . . ρi−1ρ
′
iρi+1 . . . ρm−1),

and by symmetry

⊢ σ = τ → (Rρ0 . . . ρi−1ρ
′
iρi+1 . . . ρm−1 → Rρ0 . . . ρm−1),

and then another tautology gives

⊢ σ = τ → (Rρ0 . . . ρm−1 ↔ Rρ0 . . . ρi−1ρ
′
iρi+1 . . . ρm−1),

This finishes the atomic cases. Now suppose inductively that ϕ is ¬χ. The occurrence of σ
in ϕ that is replaced actually occurs in χ; let χ′ be the result of replacing that occurrence
of σ by τ . Now the occurrence of σ in χ is free in χ. In fact, suppose that ∀viθ is a
subformula of χ which has as a segment the indicated occurrence of σ, and vi occurs in
σ. Then ∀viθ is also a subformula of ϕ, contradicting the assumption that the occurrence
of σ is free in ϕ. Similarly the occurrence of τ in χ′ which replaced the occurrence of σ
is free. So by the inductive hypothesis, ⊢ σ = τ → (χ↔ χ′), and hence a tautology gives
⊢ σ = τ → (¬χ↔ ¬χ′), i.e., ⊢ σ = τ → (ϕ↔ ψ).

Suppose inductively that ϕ is χ→ θ.
Case 1. The occurrence of σ in ϕ is within χ. Let χ′ be obtained from χ by replacing

that occurrence by τ , such that that occurrence is free in ψ, hence free in χ′. By the
inductive hypothesis, ⊢ σ = τ → (χ ↔ χ′). Since ψ is χ′ → θ, a tautology gives the
desired result.

Case 2. The occurrence of σ in ϕ is within θ. Let θ′ be obtained from θ by replacing
that occurrence by τ , such that that occurrence is free in ψ, hence free in θ′. By the
inductive hypothesis, ⊢ σ = τ → (θ ↔ θ′). Since ψ is χ→ θ′, a tautology gives the desired
result.

Finally, suppose that ϕ is ∀viρ. Then the occurrence of σ in ϕ that is replaced is
in ρ. Let ρ′ be obtained from ρ by replacing that occurrence of σ by τ . The occurrence
of σ in ρ must be free since it is free in ϕ, as in the treatment of ¬ above; similarly
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for τ and ρ′. Hence by the inductive hypothesis, ⊢ σ = τ → (ρ ↔ ρ′). Now since the
occurrence of σ in ϕ is free, the variable vi does not occur in σ. Similarly, it does not
occur in τ . Hence by Proposition 3.7 and tautologies we get ⊢ σ = τ → (∀viρ ↔ ∀viρ′),
i.e., ⊢ σ = τ → (ϕ↔ ψ).

The hypothesis that the term τ is still free in the result of the replacement in this propo-
sition is necessary for the truth of the proposition. This hypothesis is equivalent to saying
that the occurrence of σ which is replaced is not inside a subformula of ϕ of the form ∀viχ
with vi a variable occurring in τ .

Theorem 3.16. (Substitution of equals for equals) Suppose that ϕ is a formula, σ is a
term, and σ occurs freely in ϕ starting at indices i(0) < · · · < i(m− 1). Also suppose that
τ is a term. Let ψ be obtained from ϕ by replacing each of these occurrences of σ by τ ,
and each such occurrence of τ is free in ψ. Then ⊢ σ = τ → (ϕ↔ ψ).

Proof. We prove this by induction on m. If m = 0, then ϕ is the same as ψ, and
the conclusion is clear. Now assume the result for m, for any ϕ. Now assume that σ
occurs freely in ϕ starting at indices i(0) < · · · < i(m), and no such occurrence is inside a
subformula of ϕ of the form ∀vjχ with vj a variable occurring in τ . Let θ be obtained from
ϕ by replacing the last occurrence of σ, the one beginning at i(m), by τ . By Proposition
3.15, ⊢ σ = τ → (ϕ↔ θ). Now we apply the inductive hypothesis to θ and the occurrences
of σ starting at i(0), . . . , i(m− 1); this gives ⊢ σ = τ → (θ ↔ ψ). Hence a tautology gives
⊢ σ = τ → (ϕ↔ ψ), finishing the inductive proof.

Proposition 3.17. Suppose that ϕ, ψ, χ are formulas, and the sequence θ is obtained from
ϕ by replacing an occurrence of ψ in ϕ by χ. Then θ is a formula.

Proof. Induction on ϕ. If ϕ is atomic, then ψ is equal to ϕ, and θ is equal to χ and
hence is a formula. Suppose the result is true for ϕ′ and ϕ is ¬ϕ′. If ψ = ϕ, again the
desired conclusion is clear. Otherwise the occurrence of ψ is within the subformula ϕ′.
If θ′ is obtained from ϕ′ by replacing that occurrence by χ, then θ′ is a formula by the
inductive hypothesis. Since θ is ¬θ′, also θ is a formula.

Now suppose the result is true for ϕ′ and ϕ′′, and ϕ is ϕ′ → ϕ′′. If ψ = ϕ, again the
desired conclusion is clear. Otherwise the occurrence of ψ is within the subformula ϕ′ or
is within the subformula ϕ′′. If it is within ϕ′ and θ′ is obtained from ϕ′ by replacing that
occurrence by χ, then θ′ is a formula by the inductive hypothesis. Since θ is θ′ → ϕ′′, also
θ is a formula. If it is within ϕ′′ and θ′′ is obtained from ϕ′′ by replacing that occurrence
by χ, then θ′′ is a formula by the inductive hypothesis. Since θ is ϕ′ → θ′′, also θ is a
formula.

Finally, suppose the result is true for ϕ′ and ϕ is ∀viϕ′. If ψ = ϕ, again the desired
conclusion is clear. Otherwise the occurrence of ψ is within the subformula ϕ′. If θ′ is
obtained from ϕ′ by replacing that occurrence by χ, then θ′ is a formula by the inductive
hypothesis. Since θ is ∀viθ′, also θ is a formula.

For the exact meaning of θ see the description before Proposition 3.12.

Another form of the substitution of equals by equals principle is as follows:
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Theorem 3.18. Let ϕ, χ, ρ be formulas, and let ψ be obtained from ϕ by replacing an
occurrence of χ in ϕ by ρ. Suppose that ⊢ χ↔ ρ. Then ⊢ ϕ↔ ψ.

Proof. Induction on ϕ. If ϕ is atomic, then ψ is the same as ρ, and the conclusion is
clear. Suppose inductively that ϕ is ¬ϕ′. If χ is equal to ϕ, then ψ is equal to ρ and the
conclusion is clear. Suppose that χ occurs within ϕ′, and let ψ′ be obtained from ϕ′ by
replacing that occurrence by ρ. Assume that ⊢ χ↔ ρ. Then by the inductive hypothesis
⊢ ϕ′ ↔ ψ′, so ⊢ ¬ϕ′ ↔ ¬ψ′, as desired.

The case in which ϕ is ϕ′ → ϕ′′ is similar. Finally, suppose that ϕ is ∀viϕ′, and χ
occurs within ϕ′. Let ψ′ be obtained from ϕ′ by replacing that occurrence by ρ. Assume
that ⊢ χ↔ ρ. Then ⊢ ϕ′ ↔ ψ′ by the inductive assumption. So by a tautology, ⊢ ϕ′ → ψ′,
and then by generalization ⊢ ∀vi(ϕ′ → ψ′). Using (L2) we then get ⊢ ∀viϕ′ → ∀viψ′.
Similarly, ⊢ ∀viψ′ → ∀viϕ′. Hence using a tautology, ⊢ ∀viϕ′ ↔ ∀viψ′.

Now we work to prove two important logical principles: changing bound variables, and
dropping a universal quantifier in favor of a term.

For any formula ϕ, i ∈ ω, and term σ by Subfviσ ϕ we mean the result of replacing
each free occurrence of vi in ϕ by σ. We now work towards showing that under suitable
conditions, the formula ∀viϕ→ Subfviσ ϕ is provable. The supposition expressed in the first
sentence of the following lemma will be eliminated later on.

Lemma 3.19. Suppose that vi does not occur bound in ϕ, and does not occur in the term
σ.

Assume that no free occurrence of vi in ϕ is within a subformula of ϕ of the form
∀vjχ with vj a variable occurring in σ. Then ⊢ ∀viϕ→ Subfviσ ϕ.

Proof.

(1) ⊢ vi = σ → (ϕ→ Subfviσ ϕ) (by Proposition 3.16 and a tautology)
(2) ⊢ ϕ→ (¬Subfviσ ϕ→ ¬(vi = σ)) (using a tautology)
(3) ⊢ ∀vi[ϕ→ (¬Subfviσ ϕ→ ¬(vi = σ))] (generalization)
(4) ⊢ ∀viϕ→ ∀vi(¬Subfviσ ϕ→ ¬(vi = σ)) (using (L2))
(5) ⊢ ∀vi(¬Subfviσ ϕ→ ¬(vi = σ))→ (∀vi¬Subfviσ ϕ→ ∀vi¬(vi = σ)) ((L2))
(6) ⊢ ∀viϕ→ (∀vi¬Subfviσ ϕ→ ∀vi¬(vi = σ)) ((4), (5), a tautology)
(7) ⊢ ¬∀vi¬(vi = σ)→ (∀viϕ→ ¬∀vi¬Subfviσ ϕ) ((6), a tautology)
(8) ⊢ ¬∀vi¬(vi = σ) ((L4))
(9) ⊢ ∀viϕ→ ¬∀vi¬Subfviσ ϕ) ((7), (8), modus ponens)
(10) ⊢ ¬Subfviσ ϕ→ ∀vi¬Subfviσ ϕ ((L3))
(11) ⊢ ∀viϕ→ Subfviσ ϕ ((9), (10), a tautology)

Lemma 3.20. If i 6= j, ϕ is a formula, vi does not occur bound in ϕ, and vj does not
occur in ϕ at all, then ⊢ ∀viϕ→ ∀vjSubfvivjϕ.

Proof.

⊢ ∀viϕ→ Subfvivjϕ (by Lemma 3.19)
⊢ ∀vj∀viϕ→ ∀vjSubfvivjϕ (using (L2) and a tautology)
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⊢ ∀viϕ→ ∀vj∀viϕ (by (L3))
⊢ ∀viϕ→ ∀vjSubfvivjϕ

Lemma 3.21. If i 6= j, ϕ is a formula, vi does not occur bound in ϕ, and vj does not
occur in ϕ at all, then ⊢ ∀viϕ↔ ∀vjSubfvivjϕ.

Proof. By Proposition 3.20 we have ⊢ ∀viϕ → ∀vjSubfvivjϕ. Now vj does not occur
bound in Subfvivjϕ and vi does not occur in Subfvivjϕ at all. Hence by Proposition 3.20
again, ⊢ ∀vjSubfvivjϕ→ ∀viSubfvjviSubfvivjϕ. Now SubfvjviSubfvivjϕ is actually just ϕ itself; so
⊢ ∀vjSubfvivjϕ→ ∀viϕ. Hence the proposition follows.

For i, j ∈ ω and ϕ a formula, by Subbvivjϕ we mean the result of replacing all bound
occurrences of vi in ϕ by vj . By Proposition 3.14 this gives another formula.

Proposition 3.22. If vi occurs bound in a formula ϕ, then there is a subformula ∀viψ of
ϕ such that vi does not occur bound in ψ.

Proof. Induction on ϕ. Note that the statement to be proved is an implication. If
ϕ is atomic, then vi cannot occur bound in ϕ; thus the hypothesis of the implication is
false, and so the implication itself is true. Now suppose inductively that ϕ is ¬χ, and vi
occurs bound in ϕ. Then it occurs bound in χ, and so by the inductive hypothesis, χ has
a subformula ∀viψ such that vi does not occur bound in ψ. This is also a subformula of
ϕ. The implication case is similar. Finally, suppose that ϕ is ∀vkχ, and vi occurs bound
in ϕ. If it occurs bound in χ, then by the inductive hypothesis χ has a subformula ∀viψ
such that vi does not occur bound in ψ; this is also a subformula of ϕ. If vi does not occur
bound in χ, then we must have i = k since vi occurs bound in ϕ, and then ϕ itself is the
desired subformula.

Theorem 3.23. (Change of bound variables) If ψj does not occur in ϕ, then ⊢ ϕ ↔
Subbvivjϕ.

Proof. We proceed by induction on the number m of bound occurrences of vi in ϕ. If
m = 0, then Subbvivjϕ is just ϕ itself, and the conclusion is clear. Now assume that m > 0
and the conclusion is known for all formulas with fewer than m bound occurrences of vi.
By Proposition 3.22, let ∀viψ be a formula occurring in ϕ such that vi does not occur
bound in ψ. Let k be such that vk does not occur in ϕ, and hence also does not occur in
ψ, and with k 6= j. Note that k 6= i since vk does not occur in ϕ while vi does. Then by
Proposition 3.21 we have

(1) ⊢ ∀viψ ↔ ∀vkSubfvivkψ.

Let ϕ′ be obtained from ϕ by replacing an occurrence of ∀viψ by ∀vkSubfvivkψ. By Theorem
3.18,

(2) ⊢ ϕ↔ ϕ′.
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Now vj does not occur in ϕ′, and ϕ′ has fewer than m bound occurrences of vi. Hence by
the inductive hypothesis,

(3) ⊢ ϕ′ ↔ Subbvivjϕ
′.

Now k 6= i, j and vk does not occur bound in Subfvivkψ. Moreover, vj does not occur in
Subfvivkψ at all. Hence by Proposition 3.20,

⊢ ∀vkSubfvivkψ ↔ ∀vjSubfvkvj Subfvivkψ.

Now clearly Subfvkvj Subfvivkψ = Subfvivjψ; so

(4) ⊢ ∀vkSubfvivkψ ↔ ∀vjSubfvivjψ.

Now Subbvivjϕ can be obtained from Subbvivjϕ
′ by replacing an occurrence of ∀vkSubfvivkψ

by ∀vjSubfvivjψ. Hence by (4) and Theorem 3.18 we get

(5) ⊢ Subbvivjϕ↔ Subbvivjϕ
′.

(2), (3), and (5) now give the desired result, finishing the inductive proof.

We can now strengthen Lemma 3.19 by eliminating one of its hypotheses; the remaining
inessential hypothesis will be eliminated next.

Lemma 3.24. Suppose that vi does not occur in the term σ.
Assume that no free occurrence of vi in a formula ϕ is within a subformula of ϕ of

the form ∀vjχ with vj a variable occurring in σ. Then ⊢ ∀viϕ→ Subfviσ ϕ.

Proof. Choose j so that vj does not occur in ϕ or in σ, with i 6= j. Then by the
change of bound variables theorem 3.23, ⊢ ϕ↔ Subbvivjϕ. From this, using generalization
and (L2) we obtain

(1) ⊢ ∀viϕ↔ ∀viSubbvivjϕ.

Now vi does not occur bound in Subbvivjϕ, and no free occurrence of vi in Subbvivjϕ is in a
subformula of Subbvivjϕ of the form ∀vkψ, with vk a variable occurring in σ. This is true
since it is true of ϕ, and vj does not occur in σ. Hence by Lemma 3.19 we get

(2) ⊢ ∀viSubbvivjϕ→ Subfviσ Subbvivjϕ.

Now vi does not occur at all in Subfviσ Subbvivjϕ, so by change of bound variable,

(3) ⊢ Subfviσ Subbvivjϕ↔ SubbvjviSubfviσ Subbvivjϕ.

But clearly SubbvjviSubfviσ Subbvivjϕ = Subfviσ ϕ. Hence from (1)–(3) and tautologies we get
the result of the lemma.
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Theorem 3.25. (Universal specification) Assume that no free occurrence of vi in a formula
ϕ is within a subformula of ϕ of the form ∀vjχ with vj a variable occurring in a term σ.
Then ⊢ ∀viϕ→ Subfviσ ϕ.

Proof. Choose j so that vj does not occur in ϕ or in σ, with j 6= i. Then by Lemma
3.24, ⊢ ∀viϕ→ Subfvivjϕ. Hence using (L2) we easily get

(1) ⊢ ∀vj∀viϕ→ ∀vjSubfvivjϕ.

By (L3) we have

(2) ⊢ ∀viϕ→ ∀vj∀viϕ.

Now no free occurrence of vj in Subfvivjϕ is within a subformula of Subfvivjϕ of the form
∀vkψ with vk occurring in σ; this is true because it holds for ϕ. Also, vj does not occur in
σ. Hence by Lemma 3.24 we have

(3) ⊢ ∀vjSubfvivjϕ→ Subfvjσ Subfvivjϕ.

Clearly Subfvjσ Subfvivjϕ = Subfviσ ϕ, so from (1)–(3) the desired result follows.

This finishes the fundamental things that can be proved. We now give various corollaries.

Corollary 3.26. ⊢ ∀viϕ→ ϕ.

Proposition 3.27. If vi does not occur free in ϕ, then ⊢ ϕ↔ ∀viϕ.

Proof. By Corollary 3.26 we have

(1) ⊢ ∀viϕ→ ϕ.

Now let vj be a variable not occurring in ϕ. Then by a change of bound variable,

(2) ⊢ ϕ↔ Subbvivjϕ.

Hence using (L2) we easily get

(3) ⊢ ∀viSubbvivjϕ→ ∀viϕ.

Now note that vi does not occur in Subbvivjϕ. Hence by (L3) we get

(4) ⊢ Subbvivjϕ→ ∀viSubbvivjϕ.

Now from (1)–(4) the desired result easily follows.

Proposition 3.28. ⊢ ∀vi∀vjϕ↔ ∀vj∀viϕ, for any formula ϕ and any i, j ∈ ω.
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Proof.

⊢ ∀vi∀vjϕ→ ϕ by Corollary 3.26 twice

⊢ ∀vi∀vi∀vjϕ→ ∀viϕ by (L2)

⊢ ∀vi∀vjϕ→ ∀vi∀vi∀vjϕ using Prop. 3.27

⊢ ∀vi∀vjϕ→ ∀viϕ

⊢ ∀vj∀vi∀vjϕ→ ∀vj∀viϕ by (L2)

⊢ ∀vi∀vjϕ→ ∀vj∀vi∀vjϕ using Prop. 3.27

⊢ ∀vi∀vjϕ→ ∀vj∀viϕ

⊢ ∀vj∀viϕ→ ∀vi∀vjϕ similarly

⊢ ∀vi∀vjϕ↔ ∀vj∀viϕ

Recall that ∃viϕ is defined to be the formula ¬∀vi¬ϕ. The following simple propositions
expand on this.

Proposition 3.29. ⊢ ¬∀viϕ↔ ∃vi¬ϕ for any formula ϕ and any i ∈ ω.

Proof. Proof. By definition, ∃vi¬ϕ is ¬∀vi¬¬ϕ. Now ⊢ ϕ ↔ ¬¬ϕ by a tautology.
Hence using generalization and (L2) we get ⊢ ∀viϕ ↔ ∀vi¬¬ϕ. Hence another tautology
yields ⊢ ¬∀viϕ↔ ¬∀vi¬¬ϕ, i.e., ⊢ ¬∀viϕ↔ ∃vi¬ϕ.

Proposition 3.30. ⊢ ¬∃viϕ↔ ∀vi¬ϕ for any formula ϕ and any i ∈ ω.

Proof. ¬∃viϕ is the formula ¬¬∀vi¬ϕ, so a simple tautology gives the result.

Some important results concerning ∃ are as follows.

Theorem 3.31. If no free occurrence of vi in a formula ϕ is within a subformula of the
form ∀vkψ with vk occurring in a term σ, then ⊢ Subfviσ ϕ→ ∃viϕ.

Proof. By Theorem 3.25 we have ⊢ ∀vi¬ϕ → Subfviσ (¬ϕ). Since clearly Subfviσ (¬ϕ)
is the same as ¬Subfviσ ϕ, a tautology gives ⊢ Subfviσ ϕ→ ∃viϕ.

Corollary 3.32. ⊢ ϕ→ ∃viϕ for any formula ϕ.

Corollary 3.33. ⊢ ∀viϕ→ ∃viϕ.

Proof. By Corollary 3.26 and Corollary 3.32.

Proposition 3.34. If vi does not occur free in ϕ, then ⊢ ϕ↔ ∃viϕ.

Proof. ⊢ ¬ϕ↔ ∀vi¬ϕ. Now use a tautology.

Theorem 3.35. ⊢ ∃vi∀vjϕ→ ∀vj∃viϕ for any formula ϕ.
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Proof.

⊢ ϕ→ ∃viϕ by Corollary 3.32

⊢ ∀vjϕ→ ∀vj∃viϕ generalization, (L2)

⊢ ¬∀vj∃viϕ→ ¬∀vjϕ tautology

⊢ ∀vi[¬∀vj∃viϕ→ ¬∀vjϕ] generalization

⊢ ∀vi[¬∀vj∃viϕ→ ¬∀vjϕ]→ [∀vi¬∀vj∃viϕ→ ∀vi¬∀vjϕ] (L2)

⊢ ∀vi¬∀vj∃viϕ→ ∀vi¬∀vjϕ

⊢ ¬∀vj∃viϕ→ ∀vi¬∀vjϕ by Proposition 3.27

⊢ ∃vi∀vjϕ→ ∀vj∃viϕ tautology

Now we prove several results involving two formulas ϕ and ψ, and some variable vi which
is not free in one of them.

Proposition 3.36. If vi does not occur free in the formula ϕ, and ψ is any formula, then
⊢ ∀vi(ϕ→ ψ)→ (ϕ→ ∀viψ).

Proof. By Proposition 3.27,

(1) ⊢ ϕ→ ∀viϕ.

By (L2) we have ⊢ ∀vi(ϕ→ ψ)→ (∀viϕ→ ∀viψ), and hence by a tautology

(2) ⊢ ∀viϕ→ [∀vi(ϕ→ ψ)→ ∀viψ]

By a tautology, from (1) and (2) we get

⊢ ϕ→ [∀vi(ϕ→ ψ)→ ∀viψ],

and then another tautology gives the desired result.

Proposition 3.37. If vi does not occur free in the formula ψ, then ⊢ ∀vi(ϕ → ψ) →
(∃viϕ→ ψ).

Proof.

(1) ⊢ (ϕ→ ψ)→ (¬ψ → ¬ϕ) (taut.)
(2) ⊢ ∀vi(ϕ→ ψ)→ ∀vi(¬ψ → ¬ϕ) ((1), gen., (L2))
(3) ⊢ ∀vi(¬ψ → ¬ϕ)→ (¬ψ → ∀vi¬ϕ) (Prop. 3.36)
(4) ⊢ (¬ψ → ∀vi¬ϕ)→ (∃viϕ→ ψ) (taut.)

⊢ ∀vi(ϕ→ ψ)→ (∃viϕ→ ψ) ((2)–(4), taut.)

Lemma 3.38. If ϕ and ψ are formulas and vi does not occur free in ψ, then ⊢ ∀viϕ∨ψ ↔
∀vi(ϕ ∨ ψ).
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Proof.
(1) ⊢ ∀viϕ ∨ ψ ↔ (¬ψ → ∀viϕ) taut.
(2) ⊢ ∀viϕ→ ϕ Cor. 3.26
(3) ⊢ (¬ψ → ∀viϕ)→ (¬ψ → ϕ) (2), taut.
(4) ⊢ (¬ψ → ϕ)→ (ϕ ∨ ψ) taut.
(5) ⊢ ∀vi(¬ψ → ϕ)→ ∀vi(ϕ ∨ ψ) (4), gen., (L2)
(6) ⊢ ∀vi(¬ψ → ∀viϕ)→ ∀vi(¬ψ → ϕ) (3), gen., (L2)
(7) (¬ψ → ∀viϕ)→ ∀vi(¬ψ → ∀viϕ) Prop. 3.27
(8) ⊢ ∀viϕ ∨ ψ → ∀vi(ϕ ∨ ψ) (1), (7), (6), (5)
(9) ⊢ ϕ ∨ ψ → (¬ψ → ϕ) taut.
(10) ⊢ ∀vi(ϕ ∨ ψ)→ ∀vi(¬ψ → ϕ) (9), gen., (L2)
(11) ∀vi(¬ψ → ϕ)→ (¬ψ → ∀viϕ) Prop. 3.36
(12) ⊢ (¬ψ → ∀viϕ)→ ∀viϕ ∨ ψ taut.

The desired conclusion now follows from (8) and (10)–(12).

Proposition 3.39. ⊢ ∀vi(ϕ ∧ ψ)↔ ∀viϕ ∧ ∀viψ, for any formulas ϕ, ψ.

Proof.

⊢ ∀vi(ϕ ∧ ψ)→ ϕ ∧ ψ by Corollary 3.26

⊢ ∀vi(ϕ ∧ ψ)→ ϕ using a tautology

⊢ ∀vi∀vi(ϕ ∧ ψ)→ ∀viϕ using (L2)

⊢ ∀vi(ϕ ∧ ψ)→ ∀viϕ using Proposition 3.27

⊢ ∀vi(ϕ ∧ ψ)→ ∀viψ similarly

(1) ⊢ ∀vi(ϕ ∧ ψ)→ ∀viϕ ∧ ∀viψ a tautology

⊢ ∀viϕ→ ϕ by Corollary 3.26

⊢ ∀viψ → ψ by Corollary 3.26

⊢ ∀viϕ ∧ ∀viψ → ϕ ∧ ψ by a tautology

⊢ ∀vi(∀viϕ ∧ ∀viψ)→ ∀vi(ϕ ∧ ψ) using (L2)

⊢ ∀viϕ ∧ ∀viψ → ∀vi(ϕ ∧ ψ). using Proposition 3.27

Now the desired result follows using (1) and a tautology.

Proposition 3.40. If ϕ and ψ are formulas and vi does not occur free in ψ, then ⊢
∃viϕ ∧ ψ ↔ ∃vi(ϕ ∧ ψ).

Proof.

⊢ ¬∃viϕ ∨ ¬ψ ↔ ∀vi¬ϕ ∨ ¬ψ by Prop. 3.30

⊢ ∀vi¬ϕ ∨ ¬ψ ↔ ∀vi(¬ϕ ∨ ¬ψ) by Prop. 3.38

⊢ (¬ϕ ∨ ¬ψ)↔ ¬(ϕ ∧ ψ) taut.

⊢ ∀vi(¬ϕ ∨ ¬ψ)↔ ∀vi¬(ϕ ∧ ψ) gen., (L2)

⊢ ∀vi¬(ϕ ∧ ψ)↔ ¬∃vi(ϕ ∧ ψ). taut.
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From these facts we get ⊢ ¬∃viϕ ∨ ¬ψ ↔ ¬∃vi(ϕ ∧ ψ). The proposition follows by a
tautology.

Proposition 3.41. If ⊢ ϕ↔ ψ, then ⊢ ∀viϕ↔ ∀viψ.

Proof. Assume ⊢ ϕ ↔ ψ. By a tautology, ⊢ ϕ → ψ. Hence by generalization
and (L2), ⊢ ∀viϕ → ∀viψ. Similarly, ⊢ ∀viψ → ∀viϕ. The proposition follows by a
tautology.

Proposition 3.42. If ⊢ ϕ↔ ψ, then ⊢ ∃viϕ↔ ∃viψ.

Proof. Assume ⊢ ϕ ↔ ψ. By a tautology, ⊢ ¬ϕ ↔ ¬ψ. Hence by exercise E3.18,
⊢ ∀vi¬ϕ↔ ∀vi¬ψ. Now a tautology gives the desired result.

Proposition 3.43. ⊢ ∃vi(ϕ ∨ ψ)↔ ∃viϕ ∨ ∃viψ for any formulas ϕ, ψ.

Proof.

⊢ ¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ a tautology

⊢ ∀vi¬(ϕ ∨ ψ)↔ ∀vi(¬ϕ ∧ ¬ψ) by Proposition 3.41

⊢ ∀vi(¬ϕ ∧ ¬ψ)↔ ∀vi¬ϕ ∧ ∀vi¬ψ by Proposition 3.39

⊢ ¬∀vi¬(ϕ ∨ ψ)↔ ¬∀vi¬ϕ ∨ ¬∀vi¬ψ; a tautology

this gives the desired result.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 3.44. Consider the following formulas.

∃v0(v0 < v1) ∧ ∀v1(v0 = v1).
v4 + v2 = v0 ∧ ∀v3(v0 = v1).
∃v2(v4 + v2 = v0).

In the first formula: the first and second occurrences of v0 are bound, and the third one is
free. The first occurrence of v1 is free, and the other two are bound.

In the second formula: the occurrence of v3 is bound. All other occurrences of variables
are free.

In the third formula: the two occurrences of v2 are bound. The other occurrences of
variables are free.

Proposition 3.45. In the formula v0 = v1 + v1 → ∃v2(v0 + v2 = v1),

v0 is free in both of its occcurrences.
v1 is free in all three of its occurrences.
v2 is bound in both of its occurrences.
v1 + v1 is free in its occurrence.
v0 + v2 is bound in its occurrence.
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Proposition 3.46. The condition in Lemma 3.15 that the resulting occurrence of τ is free
is necessary.

Proof. Consider the language for (ω, S), and the formula

v0 = v1 → (∃v1(Sv0 = v1)↔ ∃v1(Sv1 = v1)).

Taking an assignment a : ω → ω with a0 = a1 makes this sentence false; hence it is not
provable, by Theorem 3.2.

Proposition 3.47. The hypothesis of Theorem 3.25 is necessary.

Proof. Consider the formula

∀v0∃v1(v0 < v1)→ ∃v1(v1 < v1).

This formula is not universally valid; it fails to hold in (ω,<), for example.

Proposition 3.48.

⊢ ∀v0∀v1(v0 = v1)→ ∀v0(v0 = v1 ∨ v0 = v2).

Proof.⊢ ∀v0∀v1(v0 = v1)→ v0 = v1; Cor. 3.26 twice, taut. (1)

⊢ ∀v1(v0 = v1)→ v0 = v2; Thm. 3.25 (2)

⊢ ∀v0∀v1(v0 = v1)→ v0 = v2; (2), Cor. 3.26, taut. (3)

⊢ ∀v0∀v1(v0 = v1)→ v0 = v1 ∨ v0 = v2; (1), (3), taut. (4)

⊢ ∀v0∀v0∀v1(v0 = v1)→ ∀v0(v0 = v1 ∨ v0 = v2); (4), (L2), taut. (5)

⊢ ∀v0∀v1(v0 = v1)→ ∀v0(v0 = v1 ∨ v0 = v2). (5), Prop. 3.27, taut.

Proposition 3.49.

⊢ ∃v0(¬v0 = v1 ∧ ¬v0 = v2)→ ∃v0∃v1(¬v0 = v1).

⊢ ¬∀v0(v0 = v1 ∨ v0 = v2)→ ¬∀v0∀v1(v0 = v1); E3.20, taut. (1)

⊢ ¬∀v0(v0 = v1 ∨ v0 = v2)↔ ∃v0¬(v0 = v1 ∨ v0 = v2); Prop. 3.29 (2)

⊢ ¬(v0 = v1 ∨ v0 = v2)↔ (¬(v0 = v1) ∧ ¬(v0 = v2)); taut. (3)

⊢ ∃v0¬(v0 = v1 ∨ v0 = v2)↔ ∃v0(¬(v0 = v1) ∧ ¬(v0 = v2)); (3), Prop. 3.42 (4)

⊢ ¬∀v0(v0 = v1 ∨ v0 = v2)↔ ∃v0(¬(v0 = v1) ∧ ¬(v0 = v2)); (2), (4), taut. (5)

⊢ ¬∀v1(v0 = v1)↔ ∃v1¬(v0 = v1); Prop. 3.29 (6)

⊢ ∃v0¬∀v1(v0 = v1)↔ ∃v0∃v1¬(v0 = v1); (6), Prop. 3.42 (7)

⊢ ¬∀v0∀v1(v0 = v1)↔ ∃v0¬∀v1(v0 = v1); Prop. 3.29 (8)

⊢ ¬∀v0∀v1(v0 = v1)↔ ∃v0∃v1¬(v0 = v1) (7), (8), taut. (9)

⊢ ∃v0(¬v0 = v1 ∧ ¬v0 = v2)→ ∃v0∃v1(¬v0 = v1). (1), (5), (9), taut.
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4. The completeness theorem

The completeness theorem, in its simplest form, says that for any formula ϕ, ⊢ ϕ iff |= ϕ.
We already know the direction ⇒, in Theorem 3.2.

A more general form of the completeness theorem is that Γ ⊢ ϕ iff Γ |= ϕ, for any set
Γ ∪ {ϕ} of formulas. Again the direction ⇒ is given in Theorem 3.2.

Basic for the proof of the completeness theorem is the notion of consistency. A set Γ
of formulas is consistent iff there is a formula ϕ such that Γ 6⊢ ϕ.

Lemma 4.1. For any set Γ of formulas the following conditions are equivalent:
(i) Γ is inconsistent.
(ii) There is a formula ϕ such that Γ ⊢ ϕ and Γ ⊢ ¬ϕ.
(iii) Γ ⊢ ¬(v0 = v0).

Proof. (i)⇒(ii): Assume (i). Since Γ ⊢ ψ for every formula ψ, (ii) is clear.
(ii)⇒(iii): Assume (ii). Then the following is a Γ-proof:

A Γ-proof of ϕ.
A Γ-proof of ¬ϕ.
A ∅-proof of ϕ→ (¬ϕ→ ¬(v0 = v0). (This is a tautology; see Lemma 3.3.)
¬ϕ→ ¬(v0 = v0).
¬(v0 = v0).

(iii)⇒(i): By (iii) we have Γ ⊢ ¬(v0 = v0), while by Proposition 3.4 we have Γ ⊢ v0 = v0.
Then for any formula ϕ, the following is a Γ-proof of ϕ:

A ∅-proof of v0 = v0
A Γ-proof of ¬(v0 = v0)
A ∅-proof of v0 = v0 → (¬(v0 = v0)→ ϕ). (This is a tautology; see Lemma 3.3.)
¬(v0 = v0)→ ϕ
ϕ.

A sentence is a formula which has no variable occurring free in it. A set Γ of sentences
has a model iff there is a structure A for the language in question such that A |= ϕ[a] for
every ϕ ∈ Γ and every a : ω → A.

The following first-order version of the deduction theorem, Theorem 1.8, will be useful.

Theorem 4.2. (First-order deduction theorem) If Γ ∪ {ψ} is a set of formulas, ϕ is a
sentence, and Γ ∪ {ϕ} ⊢ ψ, then Γ ⊢ ϕ→ ψ.

Proof. Let 〈χ0, . . . , χm−1〉 be a (Γ ∪ {ϕ})-proof with χi = ψ for some i < m. We
modify this proof, replacing each χj by one or more formulas, converting the proof to a
Γ-proof, in such a way that ϕ→ χj is in the new proof for every j < m. If χj is a logical
axiom or a member of Γ, we replace it by the three formulas

χj → (ϕ→ χj)

χj

ϕ→ χj .
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If χj is ϕ, we replace it by the five formulas giving a little proof of ϕ→ ϕ; see Lemma 1.7.
If there exist k, l < j such that χk is χl → χj , we replace χj by the formulas

(ϕ→ χk)→ [(ϕ→ χl)→ (ϕ→ χj)]

(ϕ→ χl)→ (ϕ→ χj)

ϕ→ χj .

If there exist k < j and l ∈ ω such that χj is ∀vlχk, we replace χj by the formulas

∀vl(ϕ→ χk)

a proof of ∀vl(ϕ→ χk)→ (ϕ→ ∀vlχk) see Proposition 3.36

ϕ→ χj .

Theorem 4.3. Suppose that every consistent set of sentences has a model. Then Γ ⊢ ϕ
iff Γ |= ϕ, for every set Γ ∪ {ϕ} of formulas.

Proof. Assume that every consistent set of sentences has a model. Note again
that Γ ⊢ ϕ implies that Γ |= ϕ, by Theorem 3.2. We prove the converse by proving its
contrapositive. Thus suppose that Γ ∪ {ϕ} is a set of formulas such that Γ 6⊢ ϕ. We want
to show that Γ 6|= ϕ, i.e., there is a model of Γ which is not a model of ϕ. For any formula
ψ, let [[ψ]] be the closure of ψ, i.e., the sentence

∀vi(0) . . .∀vi(m−1)ψ,

where i(0) < · · · < i(m − 1) lists all the integers j such that vj occurs free in ψ. Let
Γ′ = {[[ψ]] : ψ ∈ Γ}. We claim that Γ′ ∪ {¬[[ϕ]]} is consistent. Suppose not. Then
Γ′ ∪ {¬[[ϕ]]} ⊢ ¬(v0 = v0). Hence by the deduction theorem, Γ′ ⊢ ¬[[ϕ]] → ¬(v0 = v0), so
Γ′ ⊢ v0 = v0 → [[ϕ]]. Hence, using Proposition 3.4, Γ′ ⊢ [[ϕ]]. Now in a Γ′-proof that has
[[ϕ]] as a member, replace each formula

∀vi(0) . . .∀vi(m−1)ψ,

with ψ ∈ Γ, by the sequence

ψ

∀vi(m−1)ψ

· · · · · · · · ·

∀vi(0) . . .∀vi(m−1)ψ.

This converts the proof into a Γ-proof one of whose members is [[ϕ]]. Thus Γ ⊢ [[ϕ]]. Using
Corollary 3.26, it follows that Γ ⊢ ϕ, contradiction.

Hence Γ′ ∪ {¬[[ϕ]]} is consistent. Since this is a set of sentences, by supposition it has
a model M . Clearly M is a model of Γ. Since M is a model of ¬[[ϕ]], clearly there is an
a ∈ ωM such that M |= ¬ϕ[a]. Thus M is not a model of ϕ. This shows that Γ 6|= ϕ.
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To prove that every consistent set of sentences has a model, we need several lemmas,
starting with some additional facts about structures and satisfaction.

Lemma 4.4. Suppose that A is a structure, a and b map ω into A, ϕ is a formula, and
ai = bi for every i such that vi occurs free in ϕ. Then A |= ϕ[a] iff A |= ϕ[b].

Proof. Induction on ϕ. For ϕ an atomic equality formula σ = τ , the hypothesis
means that ai = bi for all i such that vi occurs in σ or τ . Hence, using Proposition 2.4,

A |= ϕ[a] iff σA(a) = τA(a) iff σA(b) = τA(b) iff A |= ϕ[b].

For ϕ an atomic non-equality formula Rη0 . . . ηm−1, the hypothesis means that ai = bi for
all i such that vi occurs in one of the terms ηj . Hence, again using Proposition 2.4,

A |= ϕ[a] iff 〈ηA0 (a), . . . , ηAm−1(a)〉 ∈ RA

iff 〈ηA0 (b), . . . , ηAm−1(b)〉 ∈ RA

iff A |= ϕ[b].

Assume inductively that ϕ is ¬ψ. The hypothesis implies that ai = bi for all i such that
vi occurs free in ψ. Hence

A |= ϕ[a] iff not(A |= ψ[a])

iff not(A |= ψ[b]) (induction hypothesis)

iff A |= ϕ[b].

Assume inductively that ϕ is ψ → χ. The hypothesis implies that ai = bi for all i such
that vi occurs free in ψ or in χ. Hence

A |= ϕ[a] iff not(A |= ψ[a]) or A |= χ[a]

iff not(A |= ψ[b]) or A |= χ[b] (induction hypothesis)

iff A |= ϕ[b].

Now assume inductively that ϕ is ∀vkψ. By symmetry it suffices to show that A |= ϕ[a]
implies that A |= ϕ[b]. So, assume that A |= ϕ[a]. Take any u ∈ A. Then A |= ψ[aku].
We claim that (aku)i = (bku)i for every i such that vi occurs free in ψ. If i 6= k this is true
since vi also occurs free in ϕ, so that ai = bi; and (aku)i = ai = bi = (bku)i. If i = k, then
(aku)i = u = (bku)i. It follows now by the inductive hypothesis that A |= ψ[bku]. Since u is
arbitrary, A |= ϕ[b].

As in the case of terms (see Proposition 2.4 and the comments after it), Lemma 4.4 enables
us to simplify the notation A |= ϕ[a]. Instead of a full assignment a : ω → A, it suffices to
take a function a : {0, . . . , m} → A such that every variable vi occurring free in ϕ is such
that i ≤ m. Then A |= ϕ[a] means that A |= ϕ[b] for any b (or some b) such that b extends
a. If ϕ is a sentence, thus with no free variables, then A |= ϕ means that A |= ϕ[b] for any,
or some, b : ω → A.
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Lemma 4.5. Suppose that τ , ρ, and ν are terms, and ρ is obtained from τ by replacing
all occurrences of vi in τ by ν. Then for any structure A and any assignment a : ω → A,

ρA(a) = τA
(

ai
νA(a)

)

.

Proof. By induction on τ . If τ is vk with k 6= i, then ρ is the same as τ , and both

sides of the above equation are equal to ak. If τ is vi, then ρ is ν, and ρA(a) = νA(a) =

vAi

(

ai
νA(a)

)

= τA
(

ai
νA(a)

)

. If τ is an individual constant k, then ρ is equal to τ , and both

sides of the equation in the lemma are equal to kA.
Now suppose inductively that τ is Fη0 . . . ηm−1. Let µi be obtained from ηi by re-

placing all occurrences of vi by ν. Then

ρA(a) = (Fµ0 . . . µm−1)A(a)

= FA(µA0 (a), . . . , µAm−1(a))

= FA
(

η0

(

ai
νA(a)

)

, . . . , ηm−1

(

ai
νA(a)

))

= (Fη0 . . . ηm−1)
[

ai
νA(a)

]

= τA
(

ai
νA(a)

)

.

Lemma 4.6. Suppose that ϕ is a formula, ν is a term, no free occurrence of vi in ϕ
is within a subformula of the form ∀vkµ with vk a variable occurring in ν, and A is a

structure. Then A |= Subfviν ϕ[a] iff A |= ϕ
[

ai
νA(a)

]

.

Proof. By induction on ϕ. For ϕ a formula σ = τ , let ρ and η be obtained from σ
and τ by replacing all occurrences of vi by ν. Then by Lemma 4.5,

A |= Subfviν ϕ[a] iff A |= (ρ = η)[a]

iff ρA(a) = ηA(a)

iff σA
(

ai
νA(a)

)

= τA
(

ai
νA(a)

)

iff A |= (σ = τ)
(

ai
νA(a)

)

iff A |= ϕ
(

ai
νA(a)

)

.

For ϕ a formula Rσ0 . . . σm−1, let ηi be obtained from σi by replacing all occurrences of
vi by ν. Then

A |= Subfviν ϕ[a] iff A |= (Rη0 . . . ηm−1)[a]

iff 〈ηA0 (a), . . . , ηAm−1(a) ∈ RA

iff
〈

σA0

(

ai
νA(a)

)

, . . . σAm−1

(

ai
νA(a)

)〉

∈ RA

iff A |= (Rσ0 . . . σm−1)
[

ai
νA(a)

]

iff A |= ϕ
[

ai
νA(a)

]

.
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Now suppose inductively that ϕ is ¬ψ. Then

A |= Subfv1ν ϕ[a] iff A |= (¬Subfv1ν ψ) [a]

iff not
(
A |= (Subfv1ν ψ)

)
[a]

iff not
(

A |= ψ
[

ai
νA(a)

])

iff A |= ϕ
[

ai
νA(a)

]

.

Suppose inductively that ϕ is ψ → χ. Then

A |= Subfv1ν ϕ[a] iff not
(
A |= Subfv1ν ψ[a]

)
or A |= Subfv1ν χ[a]

iff not
(

A |= ψ
[

ai
νA(a)

])

or A |= χ
[

ai
νA(a)

]

iff A |= ϕ
[

ai
νA(a)

]

.

Finally, suppose inductively that ϕ is ∀vkψ. Now if vi does not occur free in ϕ, then
Subfviν ϕ is just ϕ itself, and A |= ϕ[a] iff A |= ϕ[ai

νA(a)
] by Lemma 4.4. Hence we may

assume that vi occurs free in ϕ.

If k = i, then Subfviν ϕ is ϕ, and by Lemma 4.4, A |= ϕ
[

ai
νA(a)

]

iff A |= ϕ[a]; so the

theorem holds in this case. Now suppose that k 6= i. Then Subfviν ϕ is ∀vkSubfviν ψ. Suppose
that A |= Subfviν ϕ[a]. Take any u ∈ A. Then A |= Subfviν ψ[aku]. Now no free occurrence
of vi in ψ is within a subformula of the form ∀vsµ with vs occurring in ν. Hence by the

inductive hypothesis A |= ψ
[

(aku)i
νA(aku)

]

. Now since ϕ is ∀vkψ and vi occurs free in ϕ,

the assumption of the lemma says that vk does not occur in ν. Hence νA(a) = νA(aku) by

Proposition 2.4. Hence A |= ψ
[

(aku)i
νA(a)

]

. Since
(
aku
)i

νA(a)
=
(

ai
νA(a)

)k

u
, it follows that

A |= ϕ
[

ai
νA(a)

]

.

Conversely, suppose that A |= ϕ
[

ai
νA(a)

]

. Take any u ∈ A. Then A |= ψ

[(

ai
νA(a)

)k

u

]

.

Since
(

ai
νA(a)

)k

u
=
(
aku
)i

νA(a)
, and νA(a) = νA(aku) (see above), by the inductive hypothesis

we get A |= Subfviν ψ[aku]. It follows that A |= Subfviν ϕ[a].

A set Γ of sentences is complete iff for every sentence ϕ, Γ ⊢ ϕ or Γ ⊢ ¬ϕ. Γ is rich iff for
every sentence of the form ∃viϕ there is an individual constant c such that Γ ⊢ ∃viϕ →
Subfvic (ϕ).

The main lemma for the completeness proof is as follows.

Lemma 4.7. If Γ is a complete, rich, consistent set of sentences, then Γ has a model.

Proof. Let B = {σ : σ is a term in which no variable occurs}. We define ≡ to be the
set

{(σ, τ) : σ, τ ∈ B and Γ ⊢ σ = τ}.
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By Propositions 3.4–3.6, ≡ is an equivalence relation on B. Let π be the function which
assigns to each σ ∈ B the equivalence class [σ]≡, and let A be the set of all equivalence
classes.

We recall some basic facts about equivalence relations. An equivalence relation on a set
M is a set R of ordered pairs (a, b) with a, b ∈M satisfying the following conditions:

(reflexivity) (a, a) ∈ R for all a ∈M .
(symmetry) For all (a, b) ∈ R we have (b, a) ∈ R.
(transitivity) For all a, b, c, if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Given an equivalence relation R on a set M , for each a ∈M we let [a]R = {b ∈M : (a, b) ∈
R}; this is the equivalence class of a. Some basic facts:

(a) For any a, b ∈M , (a, b) ∈ R iff [a]R = [b]R.

Proof. ⇒: suppose that (a, b) ∈ R. Suppose also that x ∈ [a]R. Thus (a, x) ∈ R. Since R
is symmetric, (b, a) ∈ R. Since R is transitive, (b, x) ∈ R. Hence x ∈ [b]R. This proves that
[a]R ⊆ [b]R. Suppose that x ∈ [b]R. Thus (b, x) ∈ R. Since also (a, b) ∈ R, by transitivity
we get (a, x) ∈ R. So x ∈ [a]R. This proves that [b]R ⊆ [a]R, and completes the proof that
[a]R = [b]R.
⇐: Assume that [a]R = [b]R. Since R is reflexive on M , we have (b, b) ∈ R, and hence

b ∈ [b]R. Now [a]R = [b]R, so b ∈ [a]R. Hence (a, b) ∈ R.

(b) For any a, b ∈M , [a]R = [b]R or [a]R ∩ [b]R = ∅.

Proof. Suppose that [a]R ∩ [b]R 6= ∅; say x ∈ [a]R ∩ [b]R. Thus (a, x) ∈ R and (b, x) ∈ R.
By symmetry, (x, b) ∈ R. By transitivity, (a, b) ∈ R. By (a), [a]R = [b]R.

We are now going to define a structure with universe A. If k is an individual constant, let

kA = [k]≡.

(1) If F is an m-ary function symbol and σ0, . . . , σm−1, τ0, . . . , τm−1 are members of B
such that σi ≡ τi for all i < m, then Fσ0 . . . σm−1 ≡ Fτ0 . . . τm−1.

In fact, the hypothesis implies that Γ ⊢ σi = τi for all i < m. Now we claim

(2) Fσ0 . . . σm−1 ≡ Fσ0 . . . σm−iτm−i+1 . . . τm−1 for every positive integer i ≤ m+ 1.

We prove (2) by induction on i. For i = 1 the statement is Fσ0 . . . σm−1 ≡ Fσ0 . . . σm−1,
which holds by Proposition 3.4. Now assume that 1 ≤ i ≤ m and Fσ0 . . . σm−1 ≡
Fσ0 . . . σm−iτm−i+1 . . . τm−1. By logical axiom (L7) we also have

Fσ0 . . . σm−iτm−i+1 . . . τm−1 ≡ Fσ0 . . . σm−i−1τm−i . . . τm−1,

so Proposition 3.6 yields

Fσ0 . . . σm−1 ≡ Fσ0 . . . σm−i−1τm−i . . . τm−1.

This finishes the inductive proof of (2). The case i = m+ 1 in (2) gives (1).

55



(3) If F is an m-ary function symbol, then there is a function FA mapping m-tuples of

members of A into A, such that for any σ0, . . . , σm−1 ∈ B, FA([σ0]≡, . . . , [σm−1]≡) =
[Fσ0 . . . σm−1]≡.

In fact, we can define FA as a set of ordered pairs:

FA = {(x, y) :there are σ0, . . . , σm−1 ∈ B such that

x = 〈[σ0]≡, . . . , [σm−1]≡〉 and y = [Fσ0 . . . σm−1]≡}

Then FA is a function. For, suppose that (x, y), (x, z) ∈ FA. Accordingly choose el-
ements σ0, . . . σm−1 ∈ B and τ0, . . . τm−1 ∈ B such that x = 〈[σ0]≡, . . . , [σm−1]≡〉 =
〈[τ0]≡, . . . , [τm−1]≡, y = [Fσ0 . . . σm−1]≡, and z = [Fτ0 . . . ϕm−1]≡. Thus for any i < m
we have [σi]≡ = [τi]≡, hence σi ≡ τi. From (1) it then follows that Fσ0 . . . σm−1 ≡

Fτ0 . . . ϕm−1, hence y = z. So FA is a function. Clearly then (3) holds.
For R an m-ary relation symbol we define

RA = {x : ∃σ0, . . . σm−1 ∈ B[x = 〈[σ0]≡, . . . , [σm−1]≡〉 and Γ ⊢ Rσ0 . . . σm−1]}.

(4) If R is an m-ary relation symbol and σi ≡ τi for all i < m, then for any positive integer
i < m+ 1, ⊢ Rσ0 . . . σm−1 ↔ Rσ0 . . . σm−iτm−i+1 . . . τm−1.

We prove (4) by induction on i. For i = 1 the conclusion is ⊢ Rσ0 . . . σm−1 ↔ Rσ0 . . . σm−1,
so this holds by a tautology. Now assume our statement for i < m. Then by logical axiom
(L8),

⊢ Rσ0 . . . σm−iτm−i+1 . . . τm−1 → Rσ0 . . . σm−i−1τm−i . . . τm−1;

using Proposition 3.5 we can easily get

⊢ Rσ0 . . . σm−iτm−i+1 . . . τm−1 ↔ Rσ0 . . . σm−i−1τm−i . . . τm−1.

This finishes the inductive proof of (4). Now we have

(5) If R is anm-ary relation symbol and σ0, . . . , σm−1 ∈ B, then 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA

iff Γ ⊢ Rσ0 . . . σm−1.

In fact,⇐ follows from the definition. Now suppose that 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA. Then
by definition there exist τ0, . . . , τm−1 ∈ B such that

〈[σ0]≡, . . . , [σm−1]≡〉 = 〈[τ0]≡, . . . , [τm−1]≡〉 and Γ ⊢ Rτ0 . . . τm−1.

Thus [σi]≡ = [τi]≡, hence σi ≡ τi, hence Γ ⊢ σi = τi, for each i < m. Now by (4),
⊢
∧

i<m(σi = τi) → (Rσ0 . . . σm−1 ↔ Rτ0 . . . τm−1). It follows that Γ ⊢ Rσ0 . . . σm−1, as
desired; so (5) holds.

(6) For any σ ∈ B we have σA = [σ]≡.
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We prove (6) by induction on σ. If σ is an individual constant k, then by definition

kA = [k]≡. Now suppose that (6) is true for τ0, . . . , τm−1 ∈ B and σ is Fτ0 . . . τm−1. Then

σA = FA([τ0]≡, . . . , [τm−1]≡) = [Fτ0 . . . τm−1]≡ = [σ]≡,

proving (6).
The following claim is the heart of the proof.

(7) For any sentence ϕ, Γ ⊢ ϕ iff A |= ϕ.

We prove (7) by induction on the number m of the symbols =, relation symbols, ¬, →,
and ∀ in ϕ. For m = 1, ϕ is atomic, and we have

Γ ⊢ σ = τ iff σ ≡ τ

iff [σ]≡ = [τ ]≡

iff σA = τA by (6)

iff A |= σ = τ ;

Γ ⊢ Rσ0 . . . σm−1 iff 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA by (5)

iff 〈σA0 , . . . , σ
A
m−1〉 ∈ RA by (6)

iff A |= Rσ0 . . . σm−1.

Now we take the inductive steps.

Γ ⊢ ¬ψ iff not(Γ ⊢ ψ)

iff not(A |= ψ)

iff A |= ¬ψ;

Γ ⊢ ψ → χ iff not(Γ ⊢ ψ) or Γ ⊢ χ

iff not(A |= ψ) or A |= χ

iff A |= ψ → χ.

Finally, suppose that ϕ is ∀viψ. First suppose that Γ ⊢ ϕ. We want to show that A |= ϕ,
so take any σ ∈ B and let u = [σ]≡; we want to show that A |= ψ[aiu], where a : ω → A.
Let χ be the sentence Subfviσ ψ. Then by Theorem 3.25 we have Γ ⊢ χ, and hence by the

inductive assumption A |= χ. By (6) we have σA = [σ]≡. Hence by Lemma 4.6 we get
A |= ψ[aiu].

Second suppose that Γ 6⊢ ϕ. Then by completeness Γ ⊢ ¬ϕ, and hence Γ ⊢ ∃vi¬ψ.
Hence by richness there is an individual constant c such that Γ ⊢ ∃vi¬ψ → Subfvic (¬ψ),
hence Γ ⊢ ¬Subfvic ψ, and so Γ 6⊢ Subfvic ψ. By the inductive assumption, A 6|= Subfvic ψ, and
so by (6) and Lemma 4.6, A 6|= ψ[aiu], where a : ω → A and u = [c]≡. So A 6|= ϕ.

This finishes the proof of (7). Applying (7) to members ϕ of Γ we see that A is a model
of Γ.
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The following rather technical lemma will be used in a few places below.

Lemma 4.8. Suppose that Γ is a set of formulas in L , and 〈ψ0, . . . , ψm−1〉 is a Γ-proof
in L . Suppose that C is a set of individual constants such that no member of C occurs in
any member of Γ. Let vj be a variable not occurring in any formula ψk, and for each k let
ψ′
k be obtained from ψk by replacing each member of C by vj. Similarly, for each term σ

let σ′ be obtained from σ by replacing each member of C by vj . Then 〈ψ′
0, ψ

′
1, . . . , ψ

′
m−1〉

is a Γ-proof in L .

Proof. Assume the hypotheses. We need to show that if ψk is a logical axiom, then
so is ψ′

k. We consider the possibilities one by one:

(ϕ→ (ψ → ϕ))′ is ϕ′ → (ψ′ → ϕ′);

((ϕ→ (ψ → χ)→ ((ϕ→ ψ)→ (ϕ→ χ)))′ is

(ϕ′ → (ψ′ → χ′)→ ((ϕ′ → ψ′)→ (ϕ′ → χ′));

((¬ϕ→ ¬ψ)→ (ψ → ϕ))′ is (¬ϕ′ → ¬ψ′)→ (ψ′ → ϕ′);

(∀vk(ϕ→ ψ)→ (∀vkϕ→ ∀vkψ))′ is ∀vk(ϕ′ → ψ′)→ (∀vkϕ
′ → ∀vkψ

′);

(ϕ→ ∀vkϕ)′ is ϕ′ → ∀vkϕ
′ if vk does not occur in ϕ;

(∃vk(vk = σ))′ is ∃vk(vk = σ′) if vk does not occur in σ;

(σ = τ → (σ = ρ→ τ = ρ))′ is (σ′ = τ ′ → (σ′ = ρ′ → τ ′ = ρ′);

(σ = τ → (ρ = σ → ρ = τ))′ is (σ′ = τ ′ → (ρ′ = σ′ → ρ′ = τ ′);

(σ = τ → Fξ0 . . . ξi−1σξi+1 . . . ξm−1 = Fξ0 . . . ξi−1τξi+1 . . . ξm−1)′ is

σ′ = τ ′ → Fξ′0 . . . ξ
′
i−1σ

′ξ′i+1 . . . ξ
′
m−1 = Fξ′0 . . . ξ

′
i−1τ

′ξ′i+1 . . . ξ
′
m−1;

(σ = τ → (Rξ0 . . . ξi−1σξi+1 . . . ξm−1 → Rξ0 . . . ξi−1τξi+1 . . . ξm−1))′ is

σ′ = τ ′ → (Rξ′0 . . . ξ
′
i−1σ

′ξ′i+1 . . . ξ
′
m−1 → Rξ′0 . . . ξ

′
i−1τ

′ξ′i+1 . . . ξ
′
m−1).

Now back to our claim that 〈ψ′
0, . . . , ψ

′
m−1〉 is a Γ-proof. If ψk is a logical axiom, then by

the above, ψ′
k is a logical axiom. If ψk ∈ Γ, then no member of C occurs in ψk, and hence

ψ′
k = ψk. Suppose that s, t < k and ψs is ψt → ψk. Then ψ′

s is ψ′
t → ψ′

k. If s < k and
t ∈ ω, and ψk is ∀vtψs, then ψ′

k is ∀vtψ′
s. Thus our claim holds.

Lemma 4.9. Suppose that c is an individual constant not occurring in any formula in
Γ ∪ {ϕ}. Suppose that Γ ⊢ Subfvic ϕ. Then Γ ⊢ ϕ.

Proof. Let 〈ψ0, . . . , ψm−1〉 be a Γ-proof with ψj = Subfvic ϕ. Let vj and the sequence
〈ψ′

0, . . . , ψ
′
m−1〉 be as in Lemma 4.8, with C = {c}. Then by Lemma 4.8, 〈ψ′

0, . . . , ψ
′
m−1〉

is a Γ-proof. Note that ψ′
j is Subfvivjϕ. Thus Γ ⊢ Subfvivjϕ. Hence Γ ⊢ ∀vjSubfvivjϕ, and so

by Theorem 3.25, Γ ⊢ ϕ.

A first-order language L is finite iff L has only finitely many non-logical symbols. Note
that in a finite language there are infinitely many integers which are not symbols of the
language. We prove the main completeness theorem only for finite languages. This is not
an essential restriction. With an expanded notion of first-order language the present proof
still goes through.
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Lemma 4.10. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . .. Suppose that Γ is a consistent set of formulas in L . Then it
is also consistent as a set of formulas in L ′.

Suppose not. Let 〈ψ0, . . . , ψm−1〉 be a Γ-proof in the L ′ sense with ψi the formula ¬(v0 =
v0). Let C be the set of all constants ci which appear in some formula ψk. Let vj and
〈ψ′

0, ψ
′
1, . . . , ψ

′
m−1〉 be as in Lemma 4.8. Then by Lemma 4.8, 〈ψ′

0, ψ
′
1, . . . , ψ

′
m−1〉 is a

Γ-proof. Clearly each ψ′
k is a L formula. Note that ψ′

i = ψi = ¬(v0 = v0). So Γ is
inconsistent in L , contradiction.

Lemma 4.11. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . ..

Then there is an enumeration 〈ϕ0, ϕ1, . . .〉 of all of the sentences of L ′, and also an
enumeration 〈ψ0, ψ1, . . .〉 of all the sentences of L ′ of the form ∃viχ.

Proof. Recall that a formula is a certain finite sequence of positive integers. First
we describe how to list all finite sequences of positive integers. Given positive integers m
and n, we can list all sequences of members of {1, . . . , m} of length n by just listing them
in dictionary order. For example, with m = 3 and n = 2 our list is

〈1, 1〉

〈1, 2〉

〈1, 3〉

〈2, 1〉

〈2, 2〉

〈2, 3〉

〈3, 1〉

〈3, 2〉

〈3, 3〉

To list all finite sequences, we then do the following:

(1) List all sequences of members of {1} of length 1. (There is only one such, namely 〈1〉.)

(2) List all sequences of members of {1, 2} of length 1 or 2. Here they are:

〈1〉

〈2〉

〈1, 1〉

〈1, 2〉

〈2, 1〉

〈2, 2〉

(3) List all sequences of members of {1, 2, 3} of length 1,2, or 3.
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(4) General step: list all members of {1, . . . , m} of length 1, 2, . . .m.

Let 〈ψ0, ψ1, . . .〉 be the listing described. Now we go through this list and select the
ones which are sentences of L ′, giving the desired list 〈ϕ0, ϕ1, . . .〉. Similarly for the list
〈ψ0, ψ1, . . .〉 of all sentences of the form ∃viχ.

Lemma 4.12. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . ..

Suppose that Γ is a consistent set of sentences of L ′. Then there is a rich consistent
set ∆ of sentences with Γ ⊆ ∆.

Proof. By Lemma 4.11, let 〈ψ0, ψ1, . . .〉 enumerate all the sentences of L ′ of the
form ∃viχ; say that ψk is ∃vt(k)ψ

′
k for all k ∈ ω. Now we define an increasing sequence

〈j(k) : k ∈ ω〉 by recursion. Suppose that j(k) has been defined for all k < l. Let j(l) be
the smallest natural number not in the set

{j(k) : k < l} ∪ {s : cs occurs in some formula ψk with k ≤ l}.

Again we justify this definition. Let M be the set of all functions f defined on some set
m′ = {i ∈ ω : i < m} with m ∈ ω such that for all l < m, f(l) is the smallest number not
in the set

{f(k) : k < l} ∪ {s : cs occurs in some formula ψk with k ≤ l}.

(1) If f, g ∈ M , say with domains s′, t′ respectively, with s ≤ t, then f(k) = g(k) for all
k < s.

We prove this by complete induction on k. Assume that it is true for all k′ < k. Then
f(k) is the smallest number not in the set

{f(k′′) : k′′ < k} ∪ {u : cu occurs in some formula ψ′′
k with k′′ ≤ k} =

{g(k′′) : k′′ < k} ∪ {u : cu occurs in some formula ψ′′
k with k′′ ≤ k},

and this is the same as g(k). So (1) holds.

(2) For each m ∈ ω there is a member of M with domain m′.

We prove this by induction on m. For m = 0 we take the empty function. Assume that
f ∈M has domain m′. Define the extension g of f with domain (m+ 1)′ by letting g(m)
be the smallest number not in the set

{f(k) : k < m} ∪ {s : cs occurs in some formula ψk with k ≤ m}.

This proves (2).
Now we define f(l) to be g(l) for any g ∈M with l in the domain of g.
For each l ∈ ω let

Θl = Γ ∪ {∃vt(k)ψ
′
k → Subf

vt(k)
cj(k)ψ

′
k : k < l}.
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We claim that each set Θl is consistent. We prove this by induction on l. Note that Θ0 = Γ,
which is given as consistent. Now suppose that we have shown that Θl is consistent.
Now Θl+1 = Θl ∪ {∃vt(l)ψ

′
l → Subf

vt(l)
cj(l)ψ

′
l}. Assume that Θl+1 is inconsistent. Then

Θl+1 ⊢ ¬(v0 = v0). By the deduction theorem 4.2, it follows that

Θl ⊢ (∃vt(l)ψ
′
l → Subf

vt(l)
cj(l)ψ

′
l)→ ¬(v0 = v0),

hence easily
Θl ⊢ ¬(∃vt(l)ψ

′
l → Subf

vt(l)
cj(l)ψ

′
l),

so that using tautologies

Θl ⊢ ∃vt(l)ψ
′
l and

Θl ⊢ ¬Subf
vt(l)
cj(l)ψ

′
l.

Now by the definition of the sequence 〈j(k) : k ∈ ω〉, it follows that cj(l) does not occur in
any formula in Θl ∪ {ψ′

l}. Hence by Lemma 4.9 we get Θl ⊢ ¬ψ′
l, and so Θl ⊢ ∀vt(l)¬ψ

′
l.

But we also have Θl ⊢ ∃vt(l)ψ
′
l, so that Θl is inconsistent, contradiction.

Now let ∆ =
⋃

l∈ω Θl. We claim that ∆ is consistent. Suppose not. Then ∆ ⊢ ¬(v0 =
v0). Let 〈ϕ0, . . . ϕm−1〉 be a ∆-proof with ϕi = ¬(v0 = v0). For each k < m such that
ϕk ∈ ∆, choose s(k) ∈ ω such that ϕk ∈ Θs(k). Let l be such that s(l) is largest among
all k < m such that ϕk ∈ Θs(k). Then 〈ϕ0, . . . ϕm−1〉 is a Θs(l)-proof, and hence Θs(l) is
inconsistent, contradiction.

Now clearly Γ ⊆ ∆, since Θ0 = Γ. We claim that ∆ is rich. For, let ∃vlχ be a sentence.
Say ∃vlχ is ψm. Then ∃vlχ is ∃vt(m)ψ

′
m, so that l = t(m) and c = ψ′

m. Now the formula

∃vt(m)ψ
′
m → Subf

vt(m)
cj(m)ψ

′
m

is a member of Θm+1, and hence is a member of ∆. This formula is ∃vlχ → Subfvlcj(m)
χ.

Hence ∆ is rich.

Lemma 4.13. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . ..

Suppose that Γ is a consistent set of sentences of L ′. Then there is a consistent
complete set ∆ of sentences with Γ ⊆ ∆.

Proof. By Lemma 4.11, let 〈ϕ0, ϕ1, . . .〉 be an enumeration of all the sentences of L ′.
We now define by recursion sets Θi of sentences. Let Θ0 = Γ. Suppose that Θi has been
defined so that it is consistent. If Θi ∪{ϕi} is consistent, let Θi+1 = Θi ∪ {ϕi}. Otherwise
let Θi+1 = Θi ∪ {¬ϕi}. We claim that in this otherwise case, still Θi+1 is consistent.
Suppose not. Then Θi+1 ⊢ ¬(v0 = v0), i.e., Θi ∪ {¬ϕi} ⊢ ¬(v0 = v0). By the deduction
theorem, Θi ⊢ ¬ϕi → ¬(v0 = v0), and then by Proposition 3.4 and a tautology Θi ⊢ ϕi.
It follows that Θi ∪ {ϕi} is consistent; otherwise Θi ∪ {ϕi} ⊢ ¬(v0 = v0), hence by the
deduction theorem Θi ⊢ ϕi → ¬(v0 = v0), so by Proposition 4.3 and a tautology Θi ⊢ ¬ϕi.
Together with Θi ⊢ ϕi, this shows that Θi is inconsistent, contradiction. So, Θi ∪ {ϕi} is
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consistent. But this contradicts our “otherwise” condition. So, Θi+1 is consistent. So the
recursion continues.

Once more we give details on the recursion. Let M be the set of all functions f such
that the domain of f is m′ = {0, . . . , m− 1} for some m ∈ ω, and for all i < m one of the
following holds:

(1) i = 0 and f(0) = Γ.

(2) i = j + 1 for some j ∈ ω, f(j) is a set of sentences, f(j) ∪ {ϕj} is consistent, and
f(i) = f(j) ∪ {ϕj}.

(3) i = j + 1 for some j ∈ ω, f(j) is a set of sentences, f(j) ∪ {ϕj} is not consistent, and
f(i) = f(j) ∪ {¬ϕj}.

We claim:

(4) If f, g ∈M , say with domains m′, n′ respectively, with m ≤ n, then f(i) = g(i) for all
i < m.

We prove this by induction on i. For i = 0 we have f(0) = Γ = g(0). Suppose it is true
for i, with i+ 1 < m. Then by the definition of M we have two cases.

Case 1. f(i) is a set of sentences, f(i)∪{ϕi} is consistent, and f(i+ 1) = f(i)∪{ϕi}.
Since f(i) = g(i) by the inductive assumption, the definition of M gives g(i + 1) =
g(i) ∪ {ϕi} = f(i) ∪ {ϕi} = f(i+ 1).

Case 2. f(i) is a set of sentences, f(i) ∪ {ϕi} is not consistent, and f(i + 1) =
f(i) ∪ {¬ϕi}. Since f(i) = g(i) by the inductive assumption, the definition of M gives
g(i+ 1) = g(i) ∪ {¬ϕi} = f(i) ∪ {¬ϕi} = f(i+ 1).

This finishes the inductive proof of (4).

(5) For all f ∈M and all i in the domain of f , f(i) is a set of sentences.

This is easily proven by induction on i.

(6) For each m ∈ ω there is an f ∈M with domain m′.

We prove (5) by inducation on m. For m = 0 we can let f be the empty function. Suppose
f ∈ M with the domain of f equal to m′. If m = 0 we can let g be the function with
domain {0} and g(0) = Γ. Assume that m > 0. By (5), f(m − 1) is a set of sentences.
Then we define g to be the extension of f such that

g(m) =

{
f(m− 1) ∪ {ϕm−1} if this set is consistent,
f(m− 1) ∪ {¬ϕm−1} otherwise.

Thus (6) holds.
Now we define Θi = f(i) for any f ∈M which has i in its domain. Then by (5), each

Θi is a set of sentences, Θ0 = Γ, and

Θi+1 =

{
Θi ∪ {ϕi} if this set is consistent,
Θi ∪ {¬ϕi} otherwise.
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Now we show by induction that each Θi is consistent. Since Θ0 = Γ, Θ0 is consistent by
assumption. Now suppose that Θi is consistent. If Θi ∪ {ϕi} is consistent, then Θi+1 =
Θi ∪ {ϕi} and hence Θi+1 is consistent. Suppose that Θi ∪ {ϕi} is not consistent. Then
Θi ∪ {ϕi} ⊢ ¬(v0 = v0), and hence an easy argument which we have used before gives
Θi ⊢ ¬ϕi. Now Θi+1 = Θi ∪ {¬ϕi}, so if Θi+1 is not consistent we easily get Θi ⊢ ϕi.
Hence Θi is inconsistent, contradiction. This completes the inductive proof.

Now let ∆ =
⋃

i∈ω Θi. Then ∆ is consistent. In fact, suppose not. Then ∆ ⊢ ¬(v0 =
v0). Let 〈ψ0, . . . , ψm−1〉 be a ∆-proof with ψi = ¬(v0 = v0). Let 〈χ0, . . . , χn−1〉 enumerate
all of the members of ∆ which are in the proof. Say χj ∈ Θs(j) for each j < n. Let t be
maximum among all the s(j) for j < n. Then each χk is in Θt, so that 〈ψ0, . . . , ψm−1〉 is
a Θt-proof. It follows that Θt is inconsistent, contradiction.

So ∆ is consistent. Since Θ0 = Γ, we have Γ ⊆ ∆. Finally, ∆ is complete, since every
sentence is equal to some ϕi, and our construction assures that ϕi ∈ ∆ or ¬ϕi ∈ ∆.

Lemma 4.14. Let L be a first-order language. Let L ′ extend L by adding new non-
logical symbols Suppose that M is an L ′-structure, and N is the L -structure obtained
from M by removing the denotations of the new non-logical symbols. Suppose that ϕ is a
formula of L , and a : ω →M . Then M |= ϕ[a] iff N |= ϕ[a].

Proof. First we prove the following similar statement for terms:

(1) If σ is a term of L , then σM (a) = σN (a).

We prove this by induction on σ:

vMi (a) = ai = vNi (a);

kM (a) = kM = kN = kN (a) for k an individual constant of L

(Fσ0 . . . σm−1)M (a) = FM (σM0 (a), . . . σMm−1(a))

= FN (σN0 (a), . . . σNm−1(a))

= (Fσ0 . . . σm−1)N (a).

Here F is a function symbol of L . Thus (1) holds.
Now we prove the lemma itself by induction on ϕ:

M |= (σ = τ)[a] iff σM (a) = τM (a)

iff σN (a) = τN (a)

iff N |= (σ = τ)[a];

M |= (Rσ0 . . . σm−1)[a] iff 〈σM0 (a), . . . , σMm−1(a)〉 ∈ RM

iff 〈σN0 (a), . . . , σNm−1(a)〉 ∈ RN

iff N |= (Rσ0 . . . σm−1)[a];

M |= (¬ϕ)[a] iff not(M |= ϕ[a])

iff not(N |= ϕ[a])
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iff N |= (¬ϕ)[a];

M |= (ϕ→ ψ)[a] iff not(M |= ϕ[a]) or M |= ψ[a]

iff not(N |= ϕ[a]) or N |= ψ[a]

iff N |= (ϕ→ ψ)[a];

M |= (∀viϕ)[a] iff for all u ∈M(M |= ϕ[aiu])

iff for all u ∈ N(N |= ϕ[aiu])

iff N |= (∀viϕ)[a].

Theorem 4.15. (Completeness Theorem 1) Every consistent set of sentences in a finite
language has a model.

Proof. Let Γ be a consistent set of sentences in the finite language L . Let L ′ be
obtained from L by adjoining individual constants ci for each i ∈ ω. By Lemmas 4.12
and 4.13 let ∆ be a consistent rich complete set of sentences in L ′ such that Γ ⊆ ∆.
By Lemma 4.7, let M be a model of ∆. Let N be the L -structure obtained from M by
removing the denotations of the constants ci for i ∈ ω. By Lemma 4.14, N is a model of
Γ.

Theorem 4.16. (Completeness Theorem 2) Let Γ ∪ {ϕ} be a set of formulas in a finite
language. Then Γ ⊢ ϕ iff Γ |= ϕ.

Proof. By Theorems 4.3 and 4.15.

Theorem 4.17. (Completeness Theorem 3) For any formula ϕ, ⊢ ϕ iff |= ϕ.

Proof. Note that the implicit language L here is arbitrary, not necessarily finite. ⇒
holds by Theorem 4.3. Now suppose that |= ϕ in the sense of L : for every L -structure
M and every a : ω → M we have M |= ϕ[a]. Let L ′ be the language whose non-logical
symbols are those occurring in ϕ. There are finitely many such symbols, so L ′ is a finite
language. By Lemma 4.14 we have |= ϕ in the sense of L ′. Hence by Theorem 4.16, ⊢ ϕ
in the sense of L ′. But every L ′-proof is also an L -proof; so ⊢ ϕ in the sense of L .

As the final topic of this chapter we consider the role of definitions. To formulate the
results we need another elementary logical notion. We define ∃!viϕ to be the formula
∃vi[ϕ ∧ ∀vj [Subfvivjϕ → vi = vj ]], where j is minimum such that j 6= i and vj does not
occur in ϕ.

Theorem 4.18. A |= ∃!viϕ[a] iff there is a unique u ∈ A such that A |= ϕ[aiu].

Proof. ⇒: Assume that A |= ∃!viϕ[a]. Choose u ∈ A such that

(1) A |= (ϕ ∧ ∀vj [Subfvivjϕ→ vi = vj ])[a
i
u].

In particular, A |= ϕ[aiu]. Suppose that also A |= ϕ[aiw]. By Lemma 4.4, A |= ϕ[(ajw)iw],
i.e.,

A |= ϕ[(ajw)i
vj(a

j
w)

].
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Now we apply Lemma 4.6, with a replaced by ajw and obtain

A |= Subfvivjϕ[ajw].

Since vi does not occur free in Subfvivjϕ, this implies that

(2) A |= Subfvivjϕ[(aiu)jw].

Now by (1) we have
A |= (Subfvivjϕ→ vi = vj)[(a

i
u)jw],

so by (2) we have u = w.
⇐: Suppose that u ∈ A is unique such that A |= ϕ[aiu]. To check the other part

of ∃!viϕ, suppose that w ∈ A and A |= Subfvivjϕ[(aiu)jw]. Since vi does not occur free in

Subfvivjϕ, it follows by Proposition 4.4 that A |= Subfvivjϕ[ajw]. Applying Lemma 4.6 with a

replaced by ajw we obtain A |= ϕ[(ajw)i
vj(a

j
w)

], i.e., A |= ϕ[(ajw)iw]. By Proposition 4.4 again

this yields A |= ϕ[aiw]. Hence by supposition u = w, as desired.

By a theory we mean a pair (L ,Γ) such that L is a first-order language and Γ is a set
of formulas in L . A theory (L ′,Γ′) is a simple definitional expansion of a theory (L ,Γ)
provided that the following conditions hold:

(1) L ′ is obtained from L by adding one new non-logical symbol.

(2) If the new symbol of L ′ is an m-ary relation symbol R, then there is a formula ϕ of
L with free variables among v0, . . . , vm−1 such that

Γ′ = Γ ∪ {Rv0 . . . vm−1 ↔ ϕ}.

(3) If the new symbol of L ′ is an individual constant c, then there is a formula ϕ of L

with free variables among v0 such that Γ ⊢ ∃!v0ϕ and

Γ′ = Γ ∪ {c = v0 ↔ ϕ}.

(4) If the new symbol of L ′ is an m-ary function symbol F, then there is a formula ϕ of
L with free variables among v0, . . . , vm such that Γ ⊢ ∀v0 . . .∀vm−1∃!vmϕ and

Γ′ = Γ ∪ {Fv0 . . . vm−1 = vm ↔ ϕ}.

The basic facts about definitions are that the defined terms can always be eliminated, and
adding a definition does not change what is is provable in the original language. In order
to prove these two facts, we first show that any formula can be put in a certain standard
form, which is interesting in its own right. A formula ϕ is standard provided that every
atomic subformula of ϕ has one of the following forms:

vi = vj for some i, j ∈ ω.
c = v0 for some individual constant c.
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Rv0 . . . vm−1 for some m-ary relation symbol R.
Fv0 . . . vm−1 = vm for some m-ary function symbol F.

Lemma 4.19. If c is an individual constant and i 6= 0, then ⊢ c = vi ↔ ∃v0(v0 = vi∧c =
v0).

Proof. We argue model-theoretically. Suppose that A is a structure and a : ω → A.

If A |= (c = vi)[a], then cA = ai. Then vA0 (a0
ai) = ai and vAi (a0

ai) = ai. Hence A |= (v0 =

vi ∧ c = v0)[a0
ai

], and so A |= ∃v0(v0 = vi ∧ c = v0)[a]. Thus A |= (⊢ c = vi)[a] implies

that A |= ∃v0(v0 = vi ∧ c = v0)[a].
Conversely, suppose that A |= ∃v0(v0 = vi ∧ c = v0)[a]. Choose x ∈ A such that A |=

(v0 = vi ∧ c = v0)[a0
x]. Then x = vA0 (a0

x) = vAi (a0
x) = ai and cA = vA0 (a0

x) = ai = vAi (a).
Hence A |= (⊢ c = vi)[a].

So we have shown that A |= (⊢ c = vi)[a] iff A |= ∃v0(v0 = vi ∧ c = v0)[a]. It
follows that |= c = vi ↔ ∃v0(v0 = vi ∧ c = v0). Hence by the completeness theorem,
⊢ c = vi ↔ ∃v0(v0 = vi ∧ c = v0).

Lemma 4.20. Suppose that R is an m-ary relation symbol and 〈i(0), . . . , i(m − 1)〉 is a
sequence of natural numbers such that m ≤ i(j) for all j < m. Also assume that k < m.
Then

⊢ Rv0 . . . vk−1vi(k) . . . vi(m−1) ↔ ∃vk[vk = vi(k) ∧Rv0 . . . vkvi(k+1) . . . vi(m−1)].

Proof. Again we argue model-theoretically. Suppose that A is a structure and a :
ω → A. First suppose that

A |= Rv0 . . . vk−1vi(k) . . . vi(m−1)[a]

Thus

〈a0, . . . , ak−1, ai(k), . . . , ai(m−1)〉 ∈ RA hence

〈(akai(k))0, . . . , (a
k
ai(k)

)k−1, (a
k
ai(k)

)i(k), . . . , (a
k
ai(k)

)i(m−1)〉 ∈ RA hence

〈(akai(k))0, . . . , (a
k
ai(k)

)k−1, (a
k
ai(k)

)k, . . . , (a
k
ai(k)

)i(m−1)〉 ∈ RA hence

A |= [vk = vi(k) ∧Rv0 . . . vkvi(k+1) . . . vi(m−1)][a
k
ai(k)

] hence

A |= ∃vk[vk = vi(k) ∧Rv0 . . . vkvi(k+1) . . . vi(m−1)][a].(∗)

Second, suppose that (∗) holds. Choose s ∈ A such that

A |= [vk = vi(k) ∧Rv0 . . . vkvi(k+1) . . . vi(m−1)][a
k
s ]

Then s = ai(k) and 〈a0, . . . , ak−1, s, ai(k+1), . . . , ai(m−1)〉 ∈ RA, so

〈a0, . . . , ak−1, ai(k), ai(k+1), . . . , ai(m−1)〉 ∈ RA,
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so A |= Rv0 . . . vk−1vi(k) . . . vi(m−1)[a].
Now the Lemma follows by the completeness theorem.

Lemma 4.21. Suppose that R is an m-ary relation symbol and 〈i(0), . . . , i(m − 1)〉 is a
sequence of natural numbers such that m ≤ i(j) for all j < m. Then there is a standard
formula ϕ with free variables vi(j) for j < m such that ⊢ Rvi(0) . . . vi(m−1) ↔ ϕ.

Proof. This follows by an easy induction from Lemma 4.20.

The proof of the following lemma is very similar to the proof of Lemma 4.20.

Lemma 4.22. Suppose that F is an m-ary function symbol and 〈i(0), . . . , i(m)〉 is a
sequence of natural numbers such that m+1 ≤ i(j) for all j ≤ m. Also assume that k < m
Then

⊢Fv0 . . . vk−1vi(k) . . . vi(m−1) = vi(m) ↔

∃vk[vk = vi(k) ∧Fv0 . . . vkvi(k+1) . . . vi(m−1) = vi(m)].

Proof. Again we argue model-theoretically. Suppose that A is a structure and a :
ω → A. First suppose that A |= (Fv0 . . . vk−1vi(k) . . . vi(m−1) = vi(m))[a]. Then

FA(a0, . . . , ak−1, ai(k), . . . , ai(m−1) = ai(m), hence

FA((aki(k))0, . . . , (a
k
i(k))k−1, (a

k
i(k))i(k), . . . , (a

k
i(k))i(m−1) = (aki(k))i(m), hence

FA((aki(k))0, . . . , (a
k
i(k))k−1, (a

k
i(k))k, . . . , (a

k
i(k))i(m−1) = (aki(k))i(m), hence

A |= (vk = vi(k) ∧ Fv0 . . . vkvi(k+1) . . . vi(m−1) = vi(m))[a
k
i(k)], hence

A |= ∃vk[vk = vi(k) ∧Fv0 . . . vkvi(k+1) . . . vi(m−1) = vi(m)][a].(∗)

Second, suppose that (∗) holds. Choose s so that

A |= [vk = vi(k) ∧Fv0 . . . vkvi(k+1) . . . vi(m−1) = vi(m)][a
k
s ].

Then s = ai(k) and FA(a0, . . . , s, ai(k+1) . . . ai(m−1)) = ai(m). Hence

FA(a0, . . . , ak−1, ai(k), ai(k+1) . . . ai(m−1)) = ai(m),

and so A |= (Fv0 . . . vk−1vi(k) . . . vi(m−1) = vi(m))[a].
The Lemma now follows by the completeness theorem.

Lemma 4.23. Suppose that F is an m-ary function symbol and 〈i(0), . . . , i(m)〉 is a
sequence of natural numbers such that m+1 ≤ i(j) for all j ≤ m. Then there is a standard
formula ϕ with free variables vi(j) for j ≤M such that ⊢ Fvi(0) . . . vi(m−1) = vi(m) ↔ ϕ.

Proof. By an easy induction using Lemma 4.22 there is a formula ψ with free variables
vi(j) for j ≤ m such that the only nonlogical atomic formula which is a segment of ψ is
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Fv0 . . . vm−1 = vi(m) and ⊢ Fvi(0) . . . vi(m−1) = vi(m) ↔ ϕ. Now for any structure A and
any a : ω → A we have

(∗) A |= (Fv0 . . . vm−1 = vi(m) ↔ ∃vm[vm = vi(m) ∧ Fv0 . . . vm−1 = vm)][a].

To prove (∗), first suppose that A |= (Fv0 . . . vm−1 = vi(m))[a]. Thus F(a0, . . . , am−1) =
ai(m). Hence

F(a0, . . . , am−1) = ai(m) hence

F((amai(m)
)0, . . . , (a

m
ai(m)

)m−1) = (amai(m)
)i(m) hence

A |= (vm = vi(m) ∧ Fv0 . . . vm−1 = vm)[amai(m)
] hence

A |= ∃vm[vm = vi(m) ∧ Fv0 . . . vm−1 = vm)][a](∗∗)

Second, assume (∗∗). Choose s ∈ A such that A |= [vm = vi(m) ∧Fv0 . . . vm−1 = vm)][ams ].

It follows that s = ai(m) and FA(a0, . . . , am−1 = s, so FA(a0, . . . , am−1 = ai(m), hence

A |= (Fv0 . . . vm−1 = vi(m))[a].
This proves (∗). From (∗) the Lemma is clear.

Lemma 4.24. Suppose that F is an m-ary function symbol, σ0, . . . , σm−1 are terms, the
integers i(0), . . . , i(m) are all greater than m and do not appear in any of the terms σj,
and k < m. Then

⊢Fvi(0) . . . vi(k−1)σk . . . σm−1 = vi(m)

↔ ∃vi(k)[σk = vi(k) ∧ Fvi(0) . . . vi(k)σk+1 . . . σm−1 = vi(m)].

Proof. Arguing model-theoretically, let A be a structure and a : ω → A. Let

b = a
i(k)

σA
k

(a)
. First suppose that A |= (Fvi(0) . . . vi(k−1)σk . . . σm−1 = vi(m))[a]. Thus

FA(ai(0), . . . , ai(k−1), σ
A
k (a), . . . , σAm−1(a)) = vAi(m)(a) hence

FA(bi(0), . . . , bi(k−1), bi(k), σ
A
k+1(b), . . . , σAm−1(b)) = vAi(m)(b) hence

A |= (σk = vi(k) ∧Fvi(0) . . . vi(k)σk+1 . . . σm−1 = vi(m))[b] hence

A |= ∃vi(k)(σk = vi(k) ∧Fvi(0) . . . vi(k)σk+1 . . . σm−1 = vi(m))[a].(∗)

Second, suppose that (∗) holds. Choose s ∈ A so that

A |= (σk = vi(k) ∧ Fvi(0) . . . vi(k)σk+1 . . . σm−1 = vi(m))[a
i(k)
s ].

Hence σAk (a
i(k)
s ) = s and

FA((ai(k)s )i(0), . . . , (a
i(k)
s )i(k), σ

A
k+1(ai(k)s ), . . . σA(ai(k)s ) = (ai(k)s )i(m), hence

FA((ai(k)s )i(0), . . . , σ
A
k (ai(k)s ), σAk+1(ai(k)s ), . . . σA(ai(k)s ) = (ai(k)s )i(m), hence

FA(ai(0), . . . , ai(k−1), σ
A
k (a), . . . , σAm−1(a)) = vAi(m)(a) hence

A |= (Fvi(0) . . . vi(k−1)σk . . . σm−1 = vi(m))[a]
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Lemma 4.25. Suppose that F is an m-ary function symbol, σ0, . . . , σm−1 are terms, the
integers i(0), . . . , i(m) are all greater than m and do not appear in any of the terms σj.

Then there is a formula ϕ with free variables among vi(0), . . . , vi(m) such that the
atomic subformulas of ϕ are the formulas σk = vi(k) for k < m along with the formula
Fvi(0) . . . vi(m−1) = vi(m), and ⊢ Fσ0 . . . σm−1 = vi(m) ↔ ϕ.

Lemma 4.26. Suppose that τ is a term and i ∈ ω is greater than m for each m such that
a function symbol of rank m occurs in τ , and such that vm does not occur in τ .

Then there is a standard formula ϕ with the same free variables occurring in τ = vm,
such that ⊢ τ = vm ↔ ϕ.

Proof. We go by induction on τ . If τ is vi, then we can take ϕ to be vi = vm. If
τ is an individual constant c, then Lemma 4.19 gives the desired result. Finally, suppose
inductively that τ is Fσ0 . . . σm−1. Then the desired result follows by Lemma 4.26, the
inductive hypothesis, and Lemma 4.23.

Lemma 4.27. For any terms σ, τ there is a standard formula ϕ with the same free
variables as σ = τ such that ⊢ σ = τ ↔ ϕ.

Proof. Let i be greater than each m such that there is a function symbol of rank m
appearing in σ = τ , and also such that vi does not occur in σ = τ . Then

(1) ⊢ σ = τ ↔ ∃vi(σ = vi ∧ τ = vi).

We prove (1) model-theoretically. First suppose that A |= (σ = τ)[a]. Thus σA(a) = τA(a).
By Proposition 2.4 we then have

σA(ai
σA(a)

) = τA(ai
αA(a)

) hence

A |= (σ = vi ∧ τ = vi)[a
i

σA(a)
] hence

A |= ∃vi(σ = vi ∧ τ = vi)[a].(∗)

Second, suppose that (∗) holds. Choose s ∈ A such that A |= (σ = vi ∧ τ = vi)[a
i
s]. Thus

σA(ais) = s = τA(ais), hence σA(a) = τA(a) by Proposition 2.4. That is, A |= (σ = τ)[a].
This finishes the proof of (1).

Now by (1) and Lemma 4.26 our lemma follows.

The proof of the following lemma is very similar to that of Lemma 4.24.

Lemma 4.28. Suppose that R is an m-ary relation symbol, σ0, . . . , σm−1 are terms, the
integers i(0), . . . , i(m) are all greater than m and do not appear in any of the terms σj,
and k < m. Then

⊢Rvi(0) . . . vi(k−1)σk . . . σm−1

↔ ∃vi(k)[σk = vi(k) ∧Rvi(0) . . . vi(k)σk+1 . . . σm−1].
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Proof. Arguing model-theoretically, let A be a structure and a : ω → A. Let

b = a
i(k)

σA
k

(a)
. First suppose that A |= (Rvi(0) . . . vi(k−1)σk . . . σm−1[a]. Thus

〈ai(0), . . . , ai(k−1), σ
A
k (a), . . . , σAm−1(a) ∈ RA, hence

〈bi(0), . . . , bi(k−1), bi(k), σ
A
k+1(b), . . . , σAm−1(b) ∈ RA, hence

A |= (σk = vi(k) ∧Rvi(0) . . . vi(k)σk+1 . . . σm−1)[b] hence

A |= ∃vi(k)(σk = vi(k) ∧Rvi(0) . . . vi(k)σk+1 . . . σm−1)[a].(∗)

Second, suppose that (∗) holds. Choose s ∈ A so that

A |= (σk = vi(k) ∧Rvi(0) . . . vi(k)σk+1 . . . σm−1)[ai(k)s ].

Hence σAk (a
i(k)
s ) = s and

〈(ai(k)s )i(0), . . . , (a
i(k)
s )i(k), σ

A
k+1(ai(k)s ), . . . σA(ai(k)s )〉 ∈ RA, hence

〈(ai(k)s )i(0), . . . , σ
A
k (ai(k)s ), σAk+1(ai(k)s ), . . . σA(ai(k)s )〉 ∈ RA, hence

〈ai(0), . . . , ai(k−1), σ
A
k (a), . . . σAm−1(a)〉 ∈ RA, hence

A |= (Rvi(0) . . . vi(k−1)σk . . . σm−1)[a]

Theorem 4.29. For any formula ϕ there is a standard formula ψ with the same free
variables as ϕ such that ⊢ ϕ↔ ψ.

Proof. We proceed by induction on ϕ. For ϕ an atomic equality formula σ = τ the
desired result is given by Lemma 4.27. Now suppose that ϕ is an atomic nonequality formul
Rσ0 . . . σm−1. Using induction we see from Lemma 4.28 that there is a formula ϕ whose
atomic parts are of the form σk = vi(k) and Rvi(0 . . . vi(m−1) such that ⊢ Rσ0 . . . σm−1 ↔ ϕ,
and each i(k) is greater than each n such that a function symbol of rank n occurs in some
σl, and also is such that no vi(k) occurs in any σs, and eack i(k) > m. Now by Lemmas
4.21 and 4.26, ⊢ ϕ ↔ ψ for some standard formula ψ. The condition on free variables
holds in each of these steps. Thus the atomic cases of the induction hold.

The induction steps are easy:
Suppose that ⊢ ϕ↔ ψ with ψ standard. Then ⊢ ¬ϕ↔ ¬ψ and ¬ψ is standard.
Suppose that ⊢ ϕ ↔ ψ with ψ standard and ⊢ ϕ′ ↔ ψ′ with ψ′ standard. Then

⊢ (ϕ→ ψ)↔ (ψ → ψ′) and ψ → ψ′ is standard.
Suppose that ⊢ ϕ↔ ψ with ψ standard. Then ⊢ ∀viϕ↔ ∀viψ with ∀viψ standard.

The following theorem expresses that defined notions can be eliminated.

Theorem 4.30. Let (L ′,Γ′) be a simple definitional expansion of (L ,Γ), and let ϕ be a
formula of L ′. Then there is a formula ψ of L with the same free variables as ϕ such
that Γ′ ⊢ ϕ↔ ψ.
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(Note here that ⊢ is in the sense of L ′.)

Proof. Let χ be a standard formula (of L ′) such that ⊢ ϕ↔ χ, such that χ has the
same free variables as ϕ. Now we consider cases depending on what the new symbol s of
L ′ is. Let θ be as in the definition of simple definitional expansion, with θ instead of ϕ.

Case 1. s is an individual constant c. Then we let ψ be obtained from χ by replacing
every subformula c = v0 of χ by θ.

Case 2. s is an m-ary relation symbol R. Then we let ψ be obtained from χ by
replacing every subformula Rv0 . . . vm−1 of χ by θ.

Case 3. s is an m-ary function symbol F. Then we let ψ be obtained from χ by
replacing every subformula Fv0 . . . vm−1 = vm of χ by θ.

The following theorem expresses that a simple definitional expansion does not increase the
set of old formulas which are provable.

Theorem 4.31. Let (L ′,Γ′) be a simple definitional expansion of (L ,Γ) with L finite,
and let ϕ be a formula of L . Suppose that Γ′ ⊢ ϕ. Then Γ ⊢ ϕ.

Proof. By the completeness theorem we have Γ′ |= ϕ, and it suffices to show that
Γ |= ϕ. So, suppose that A |= ψ for each ψ ∈ Γ. In order to show that A |= ϕ, suppose

that a : ω → A; we want to show that A |= ϕ[a]. We define an L ′-structure A
′

by defining
the denotation of the new symbol s of L ′. The three cases are treated similarly, but we
give full details for each of them.

Case 1. s is c, an individual constant. By the definition of simple definitional expan-
sion, there is a formula χ of L with free variables among v0 such that Γ ⊢ ∃!v0χ, and
Γ′ = Γ ∪ {c = v0 ↔ χ}. Then Γ |= ∃!v0χ. Since A |= Γ, it follows that A |= χ[a0

x] for a

unique x ∈ A. Let cA
′

= x. We claim that A
′
|= (c = v0 ↔ χ). In fact, suppose that

b : ω → A. If A
′
|= (c = v0)[b], then b0 = cA

′

= x. Then a0
x and b agree at 0, so by

Lemma 4.4, since the free variables of χ are among v0, we have A |= χ[b]. By Lemma

4.14, A
′
|= χ[b]. Conversely, suppose that A

′
|= χ[b]. Then b and a0

b(0) agree on 0, so

A
′
|= χ[a0

b(0)]. Hence A |= χ[a0
b(0)] by Lemma 4.14. Since also A |= χ[a0

x] and A |= ∃!v0χ,

it follows that b(0) = x. Hence A
′
|= (c = v0)[b]. This proves the claim.

By the claim, A
′

is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a
model of ϕ, as desired.

Case 2. s is F, an m-ary function symbol. By the definition of simple defi-
nitional expansion, there is a formula χ of L with free variables among v0, . . . , vm
such that Γ ⊢ ∀v0 . . .∀vm−1∃!vmχ, and Γ′ = Γ ∪ {Fv0 . . . vm−1 = vm ↔ χ}. Then
Γ |= ∀v0 . . .∀vm−1∃!vmχ. Let x(0), . . . , x(m − 1) ∈ A. Since A |= Γ, it follows that

A |= χ[(· · · (a0
x(0))

1
x(1)) · · ·)

m−1
x(m−1))

m
y ] for a unique y ∈ A. Let FA

′

(x(0), . . . , x((m−1)) = y.

We claim that A
′
|= (Fv0 . . . vm−1 = vm ↔ χ). In fact, suppose that b : ω → A. If

A
′
|= (Fv0 . . . vm−1 = vm)[b], then FA

′

(b0, . . . , bm−1) = bm. Now b and (· · · (a0
b0

)1b1) · · ·)mbm
and b agree on {0, . . . , m}, so by the definition of FA

′

we get A |= χ[(· · · (a0
b0

)1b1) · · ·)mbm ],

and hence also A |= χ[b], and by Lemma 4.14 A
′
|= χ[b].
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Conversely, suppose that A
′
|= χ[b]. Then A |= [(· · · (a0

b0
)1b1) · · ·)mbm ], and therefore

FA
′

(b0, . . . , bm−1) = bm. This proves the claim.

By the claim, A
′

is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a
model of ϕ, as desired.

Case 3. s is R, an m-ary relation symbol. By the definition of simple definitional
expansion, there is a formula χ of L with free variables among v0, . . . , vm−1 such that
Γ′ = Γ ∪ {Rv0 . . . vm−1 ↔ χ}. Let

RA
′

= {〈a0, . . . , am−1〉 : A |= χ[a]

for some a : ω → A which extends 〈a0, . . . , am−1〉}.

We claim that A
′
|= (Rv0 . . . vm−1 ↔ χ). In fact, suppose that b : ω → A. If A

′
|=

(Rv0 . . . vm−1[b], then 〈b0, . . . , bm−1〉 ∈ RA
′

, and so there is an extension a : ω → A of
〈b0, . . . , bm−1〉 such that A |= χ[a]. Since a and b agree on all k such that vk occurs in χ,

it follows that A |= χ[b], and hence A
′
|= χ[b].

Conversely, suppose that A
′
|= χ[b]. Then A |= χ[b] by Lemma 4.14, and it follows

that 〈b0, . . . , bm−1〉 ∈ RA
′

. This proves the claim.

By the claim, A
′

is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a
model of ϕ, as desired.

Theorem 4.32. Let m be an integer ≥ 2, and suppose that (Li+1,Γi+1) is a simple
definitional expansion of (Li,Γi) for each i < m. Suppose that ϕ is an Lm formula. Then
there is an L0 formula ψ with the same free variables as ϕ such that Γm ⊢ ϕ↔ ψ.

Proof. By induction on m. If m = 2, the conclusion follows from Theorem 4.30. now
assume the result for m and suppose that (Li+1,Γi+1) is a simple definitional expansion
of (Li,Γi) for each i ≤ m. Let ϕ be a formula of Lm+1. Then by Theorem 4.30 there
is a formula ψ of L with the same free variables as ϕ such that Γm+1 ⊢ ϕ ↔ ψ. By
the inductive hypothesis, there is a formula χ with the same free variables as ψ such that
Γm ⊢ ψ ↔ χ. Then Γm+1 ⊢ ϕ↔ χ.

Theorem 4.33. Let m be an integer ≥ 2, and suppose that (Li+1,Γi+1) is a simple
definitional expansion of (Li,Γi) for each i < m. Also assume that L0 is finite. Suppose
that ϕ is an L0 formula and Γm ⊢ ϕ. Then Γ0 ⊢ ϕ.

Proof. By induction on m. If m = 2, the conclusion follows from Theorem 4.31. now
assume the result for m and suppose that (Li+1,Γi+1) is a simple definitional expansion
of (Li,Γi) for each i ≤ m. Suppose that ϕ is an L0 formula and Γm+1 ⊢ ϕ. Then by
Theorem 4.31, Γm ⊢ ϕ, and so by the inductive assumption, Γ0 ⊢ ϕ.

Proposition 4.34. Suppose that Γ ⊢ ϕ → ψ, Γ ⊢ ϕ → ¬ψ, and Γ ⊢ ¬ϕ → ϕ. Then Γ is
inconsistent.

Proof. The formula (¬ϕ→ ϕ)→ ϕ is a tautology. Hence by Lemma 3.3, Γ ⊢ (¬ϕ→
ϕ) → ϕ. Since also Γ ⊢ ¬ϕ → ϕ, it follows that Γ ⊢ ϕ. Hence Γ ⊢ ψ and Γ ⊢ ¬ψ. Hence
by Lemma 4.1, Γ is inconsistent.
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Proposition 4.35. Let L be a language with just one non-logical constant, a binary
relation symbol R. Let Γ consist of all sentences of the form ∃v1∀v0[Rv0v1 ↔ ϕ] with ϕ a
formula with only v0 free. Then Γ is inconsistent.

Proof.
By Theorem 3.25 we have

(1) Γ ⊢ ∀v0[Rv0v1 ↔ ¬Rv0v0]→ [Rv1v1 ↔ ¬Rv1v1].

Now [Rv1v1 ↔ ¬Rv1v1]→ ¬(v0 = v0) is a tautology, so from (1) we obtain

Γ ⊢ ∀v0[Rv0v1 ↔ ¬Rv0v0]→ ¬(v0 = v0);

then generalization gives

Γ ⊢ ∀v1[∀v0[Rv0v1 ↔ ¬Rv0v0]→ ¬(v0 = v0)].

Then by Proposition 3.37 we get

Γ ⊢ ∃v1∀v0[Rv0v1 ↔ ¬Rv0v0]→ ¬(v0 = v0).

But the hypothesis here is a member of Γ, so we get Γ ⊢ ¬(v0 = v0). Hence by Lemma
4.1, Γ is inconsistent.

Proposition 4.36. The first-order deduction theorem fails if the condition that ϕ is a
sentence is omitted.

Proof. Take Γ = ∅, let ϕ be the formula v0 = v1, and let ψ be the formula v0 = v2.
Then

{v0 = v1} ⊢ v0 = v1

{v0 = v1} ⊢ ∀v1(v0 = v1)

{v0 = v1} ⊢ ∀v1(v0 = v1)→ v0 = v2 by Theorem 3.25

{v0 = v1} ⊢ v0 = v2.

On the other hand, let A be the structure with universe ω and define a = 〈0, 0, 1, 1, . . .〉.
Clearly A 6|= [v0 = v1 → v0 = v2][a]. Hence 6⊢ v0 = v1 → v0 = v2 by Theorem 3.2.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 4.37. In the language for A
def
= (ω, S, 0,+, ·), let τ be the term v0 + v1 · v2

and ν the term v0 + v2. Let a be the sequence 〈0, 1, 2, . . .〉. Let ρ be obtained from τ by
replacing the occurrence of v1 by ν. Then

(a) ρ is v0 + (v0 + v2) · v2; as a sequence of integers it is 〈7, 5, 9, 7, 5, 15, 15〉.

(b) ρA(a) = 0 + (0 + 2) · 2 = 4.

(c) νA(a) = 0 + 2 = 2.
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(d) a1

νA(a)
= 〈0, 2, 2, 3, . . .〉. integers.

(e) ρA(a) = τA(a1

νA(a)
) (cf. Lemma 4.4.)

Proposition 4.38. In the language for A
def
= (ω, S, 0,+, ·), let ϕ be the formula ∀v0(v0·v1 =

v1), let ν be the formula v1 + v1, and let a = 〈1, 0, 1, 0, . . .〉. Then
(a) Subfv1ν ϕ is ∀v0(v0 · (v1 + v1) = v1 + v1; as a sequence of integers it is

〈4, 5, 3, 9, 5, 7, 10, 10, 7, 10, 10〉.

(b) νA(a) = (v1 + v1)A(〈1, 0, 1, 0, . . .〉) = 0 + 0 = 0.
(c) a1

νA(a)
= 〈1, 0, 1, 0, . . .〉.

(d) A |= Subfv1ν ϕ[a]
(e) A |= ϕ[a1

νA(a)
]

Proof. Only (d) and (e) need a proof.
(d): A |= Subfv1ν ϕ[a] iff A |= [∀v0(v0 · (v1 + v1) = v1 + v1][〈1, 0, 1, 0, . . .〉] iff for all

a ∈ ω, a · (0 + 0) = 0 + 0, which is true.
(e): A |= ϕ[a1

νA(a)
] iff A |= [∀v0(v0 · v1 = v1][〈1, 0, 1, 0, . . .〉] iff for all a ∈ ω, a · 0 = 0,

which is true.

Proposition 4.39. The condition in Lemma 4.6 that

no free occurrence of vi in ϕ is within a subformula of the form ∀vkµ with vk a variable
occurring in ν

is necessary for the conclusion of the lemma.

Proof. In the language for A = (ω, S, 0,+, ·), let ϕ be the formula ∃v1[Sv1 = v0],
ν = v1, and a = 〈1, 1, . . .〉. Note that the condition on v0 fails. Now Subfv0v1ϕ is the formula

∃v1[Sv1 = v1], and there is no a ∈ ω such that Sa = a, and hence A 6|= Subfv0v1ϕ[a]. Also,

νA(a) = vA1 (a) = a1 = 1, and hence a0

νA(a)
= 〈1, 1, . . .〉. Since S0 = 1, it follows that

A |= ϕ[a0

νA(a)
].

Proposition 4.40. Let A be an L -structure, with L arbitrary. Define Γ = {ϕ : ϕ is a
sentence and A |= ϕ[a] for some a : ω → A}. Then Γ is complete and consistent.

Proof. Note by Lemma 4.4 that A |= ϕ[a] for some a : ω → A iff A |= ϕ[a] for every
a : ω → A. Let ϕ be any sentence. Take any a : ω → A. If A |= ϕ[a], then ϕ ∈ Γ and
hence Γ ⊢ ϕ. Suppose that A 6|= ϕ[a]. Then A |= ¬ϕ[a], hence ¬ϕ ∈ Γ, hence Γ ⊢ ¬ϕ.

This shows that Γ is complete. Suppose that Γ is not consistent. Then Γ ⊢ ¬(v0 = v0)
by Lemma 4.1. Then Γ |= ¬(v0 = v0) by Theorem 3.2. Since A is a model of Γ, it is also
a model of ¬(v0 = v0), contradiction.

Proposition 4.41. Call a set Γ strongly complete iff for every formula ϕ, Γ ⊢ ϕ or
Γ ⊢ ¬ϕ. If Γ is strongly complete, then Γ ⊢ ∀v0∀v1(v0 = v1).
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Proof. Assume that Γ is strongly complete. Then Γ ⊢ v0 = v1 or Γ ⊢ ¬(v0 = v1). If
Γ ⊢ v0 = v1, then by generalization, Γ ⊢ ∀v0∀v1(v0 = v1). Suppose that Γ ⊢ ¬(v0 = v1).
Then by generalization, Γ ⊢ ∀v0¬(v0 = v1). By Theorem 3.25, Γ ⊢ ∀v0¬(v0 = v1) →
¬(v1 = v1). Hence Γ ⊢ ¬(v1 = v1). But also Γ ⊢ v1 = v1 by Proposition 3.4, so Γ is
inconsistent by Lemma 4.1, and hence again Γ ⊢ ∀v0∀v1(v0 = v1).

Proposition 4.42. If Γ is rich, then for every term σ with no variables occurring in σ
there is an individual constant c such that Γ ⊢ σ = c.

Proof. By richness we have Γ ⊢ ∃v0(v0 = σ) → c = σ for some individual constant
c. Then using (L4) it follows that Γ ⊢ c = σ.

Proposition 4.43. If Γ is rich, then for every sentence ϕ there is a sentence ψ with no
quantifiers in it such that Γ ⊢ ϕ↔ ψ.

Proof. We proceed by induction on the number m of symbols ¬, →, ∀ in ϕ. (More
exactly, by the number of the integers 1,2,4 that occur in the sequence ϕ.) If m = 0,
then ϕ is atomic and we can take ψ = ϕ. Assume the result for m and suppose that ϕ
has m + 1 integers 1,2,4 in it. Then there are three possibilities. First, ϕ = ¬ϕ′. Let
ψ′ be a quantifier-free sentence such that Γ ⊢ ϕ′ ↔ ψ′. Then Γ ⊢ ϕ ↔ ¬ψ′. Second,
ϕ = (ϕ′ → ϕ′′). Choose quantifier-free sentences ψ′ and ψ′′ such that Γ ⊢ ϕ′ ↔ ψ′ and
Γ ⊢ ϕ′′ ↔ ψ′′. Then Γ ⊢ ϕ ↔ (ψ′ → ψ′′). Third, ϕ = ∀viϕ′. By richness, let c be an
individual constant such that Γ ⊢ ∃vi¬ϕ′ → Subfvic ¬ϕ

′. Then by Theorem 3.31 we get

(1) Γ ⊢ ∃vi¬ϕ′ ↔ Subfvic ¬ϕ
′.

Now Subfvic ϕ
′ has only m integers 1,2,4 in it, so by the inductive hypothesis there is a

sentence ψ with no quantifiers in it such that Γ ⊢ Subfvic ϕ
′ ↔ ψ and hence

(2) Γ ⊢ Subfvic ¬ϕ
′ ↔ ¬ψ.

From (1) and (2) and a tautology we get Γ ⊢ ¬∃vi¬ϕ′ ↔ ψ. Then by Proposition 3.31,
Γ ⊢ ∀viϕ′ ↔ ψ, finishing the inductive proof.

Proposition 4.44. The following set Γ of sentences says that < is a linear ordering and
there are infinitely many elements. This set Γ is not complete.

¬∃v0(v0 < v0);

∀v0∀v1∀v2[v0 < v1 ∧ v1 < v2 → v0 < v2];

∀v0∀v1[v0 < v1 ∨ v0 = v1 ∨ v1 < v0];
∧

i<j<n

¬(vi = vj) for every positive integer n.

Proof. The following sentence ϕ holds in (Q, <) but not in (ω,<):

∀v0∀v1[v0 < v1 → ∃v2(v0 < v2 ∧ v2 < v1)].
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Since ϕ does not hold in (ω,<), we have Γ 6⊢ ϕ, by Theorem 4.2. But since ϕ holds in
(Q, <), we also have Γ 6⊢ ¬ϕ by Theorem 4.2. So Γ is not complete.

Proposition 4.45. If a sentence ϕ holds in every infinite model of a set Γ of sentences,
then there is an m ∈ ω such that it holds in every model of Γ with at least m elements.

Proof. Suppose that ϕ holds in every infinite model of a set Γ of sentences, but for
every m ∈ ω there is a model M of Γ with at least m elements such that ϕ does not hold
in M . Let ∆ be the following set:

Γ ∪







∧

i<j<n

¬(vi = vj) : n a positive integer






∪ {¬ϕ}.

Our hypothesis implies that every finite subset ∆′ of ∆ has a model; for if m is the
maximum of all n such that the above big conjunction is in ∆′, then the hypothesis yields
a model of ∆′. By the compactness theorem we get a model N of ∆. Thus N is an infinite
model of Γ in which ϕ does not hold, contradiction.

Proposition 4.46. Let L be the language of ordering. There is no set Γ of sentences
whose models are exactly the well-ordering structures.

Proof. Suppose there is such a set. Let us expand the language L to a new one
L ′ by adding an infinite sequence cm, m ∈ ω, of individual constants. Then consider the
following set Θ of sentences: all members of Γ, plus all sentences cm+1 < cm for m ∈ ω.
Clearly every finite subset of Θ has a model, so let A = (A,<, ai)i<ω be a model of Θ itself.
(Here ai is the 0-ary function, i.e., element of A, corresponding to ci.) Then a0 > a1 > · · ·;
so {ai : i ∈ ω} is a nonempty subset of A with no least element, contradiction.

Proposition 4.47. Suppose that Γ is a set of sentences, and ϕ is a sentence. If Γ |= ϕ,
then ∆ |= ϕ for some finite ∆ ⊆ Γ.

Proof. We prove the contrapositive: Suppose that for every finite subset ∆ of Γ,
∆ 6|= ϕ. Thus every finite subset of Γ ∪ {¬ϕ} has a model, so Γ ∪ {¬ϕ} has a model,
proving that Γ 6|= ϕ.

Proposition 4.48. Suppose that f is a function mapping a set M into a set N . Let
R = {(a, b) : a, b ∈M and f(a) = f(b)}. Then R is an equivalence relation on M .

Proof. If a ∈M , then f(a) = f(a), so (a, a) ∈ R. Thus R is reflexive on M . Suppose
that (a, b) ∈ R. Then f(a) = f(b), so f(b) = f(a) and hence (b, a) ∈ R. Thus R is
symmetric. Suppose that (a, b) ∈ R and (b, c) ∈ R. Then f(a) = f(b) and f(b) = f(c), so
f(a) = f(c) and hence (a, c) ∈ R.

Proposition 4.49. Suppose that R is an equivalence relation on a set M . Then there is a
function f mapping M into some set N such that R = {(a, b) : a, b ∈M and f(a) = f(b)}.
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Let N be the collection of all equivalence classes under R. For each a ∈M let f(a) = [a]R.
Then (a, b) ∈ R iff a, b ∈M and [a]R = [b]R iff a, b ∈M and f(a) = f(b).

Proposition 4.50. Let Γ be a set of sentences in a first-order language, and let ∆ be the
collection of all sentences holding in every model of Γ. Then ∆ = {ϕ : ϕ is a sentence and
Γ ⊢ ϕ}.

Proof. For ⊆, suppose that ϕ ∈ ∆. To prove that Γ ⊢ ϕ we use the compactness
theorem, proving that Γ |= ϕ. Let A be any model of Γ. Since ϕ ∈ ∆, it follows that A is
a model of Γ, as desired.

For ⊇, suppose that ϕ is a sentence and Γ ⊢ ϕ. Then by the easy direction of
the completeness theorem, Γ |= ϕ. That is, every model of Γ is a model of ϕ. Hence
ϕ ∈ ∆.
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ELEMENTARY SET THEORY

5. The axioms of set theory

ZFC, the axioms of set theory, are formulated in a language which has just one nonlogical
constant, a binary relation symbol ∈. The development of set theory can be considered as
taking place entirely within this language, or in various finite definitional extensions of it.

Before introducing any set-theoretic axioms at all, we can introduce some more ab-
breviations.

x ⊆ y abbreviates ∀z(z ∈ x→ z ∈ y).
x ⊂ y abbreviates x ⊆ y ∧ x 6= y.

For x ⊆ y we say that x is included or contained in y, or that x is a subset of y. Then
x ⊂ y means proper inclusion, containment, or subset.

Now we introduce the axioms of ZFC set theory. We give both a formal and informal
description of them. The informal versions will suffice for much of these notes.

Axiom 1. (Extensionality) If two sets have the same members, then they are equal.
Formally:

∀x∀y[∀z(z ∈ x↔ z ∈ y)→ x = y].

Note that the other implication here holds on the basis of logic.

Axiom 2. (Comprehension) Given any set z and any property ϕ, there is a subset of z
consisting of those elements of z with the property ϕ.

Formally, for any formula ϕ with free variables among x, z, w1, . . . , wn we have an
axiom

∀z∀w1 . . .∀wn∃y∀x(x ∈ y ↔ x ∈ z ∧ ϕ).

Note that the variable y is not free in ϕ.
From these first two axioms the existence of a set with no members, the empty set ∅,

, follows:

Proposition 5.1. There is a unique set with no members.

Proof. On the basis of logic, there is at least one set z. By the comprehension axiom,
let y be a set such that ∀x(x ∈ y ↔ x ∈ z ∧ x 6= x). Thus y does not have any elements.
By the extensionality axiom, such a set y is unique.

Proposition 5.1 is written in usual mathematical fashion. More formally we would write

ZFC ⊢ ∃v0[∀v1[¬(v1 ∈ v0)] ∧ ∀v2[∀v1[¬(v1 ∈ v2)]→ v0 = v2]].

The same applies to most of the results which we will state. But some results are metathe-
orems, describing a whole collection of results of this sort.

In general, the set asserted to exist in the comprehension axiom is unique; we denote it by
{x ∈ z : ϕ}. We sometimes write {x : ϕ} if a suitable z is evident. Note that this notation
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cannot be put into the framework of definitional extensions. But it is clear that uses of it
can be eliminated, if necessary.

Axiom 3. (Pairing) For any sets x, y there is a set which has them as members (possibly
along with other sets). Formally:

∀x∀y∃z(x ∈ z ∧ y ∈ z).

The unordered pair {x, y} is by definition the set {u ∈ z : u = x or u = y}, where z is
as in the pairing axiom. The definition does not depend on the particular such z that is
chosen. This same remark can be made for several other definitions below. We define the
singleton {x} to be {x, x}.

Axiom 4. (Union) For any family A of sets, we can form a new set A which has as
elements all elements which are in at least one member of A (maybe A has even more
elements). Formally:

∀A ∃A∀Y ∀x(x ∈ Y ∧ Y ∈ A → x ∈ A).

With A as in this axiom, we define
⋃

A = {x ∈ A : ∃Y ∈ A (x ∈ Y )}. We call
⋃

A the
union of A . Also, let x ∪ y =

⋃
{x, y}. This is the union of x and y.

Axiom 5. (Power set) For any set x, there is a set which has as elements all subsets of x,
and again possibly has more elements. Formally:

∀x∃y∀z(z ⊆ x→ z ∈ y).

Axiom 6. (Infinity) There is a set which intuitively has infinitely many elements:

∃x[∅ ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)].

If we take the smallest set x with these properties we get the natural numbers, as we will
see later.

Axiom 7. (Replacement) If a function has domain a set, then its range is also a set.
Here we use the intuitive notion of a function. Later we define the rigorous notion of a
function. The present intuitive notion is more general, however; it is expressed rigorously
as a formula with a function-like property. The rigorous version of this axiom runs as
follows.

For each formula with free variables among x, y, A, w1, . . . , wn, the following is an
axiom.

∀A∀w1 . . .∀wn[∀x ∈ A∃!yϕ→ ∃Y ∀x ∈ A∃y ∈ Y ϕ].

For the next axiom, we need another definition. For any sets x, y, let x∩y = {z ∈ x : z ∈ y}.
This is the intersection of x and y.

Axiom 8. (Foundation) Every nonempty set x has a member y which has no elements in
common with x. This is a somewhat mysterious axiom which rules out such anti-intuitive
situations as a ∈ a or a ∈ b ∈ a.

∀x[x 6= ∅ → ∃y ∈ x(x ∩ y = ∅)].
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Axiom 9. (Choice) This axiom will be discussed carefully later; it allows one to pick out
elements from each of an infinite family of sets. A convenient form of the axiom to start
with is as follows. For any family A of nonempty sets such that no two members of A

have an element in common, there is a set B having exactly one element in common with
each member of A .

∀A [∀x ∈ A (x 6= ∅)∧∀x ∈ A ∀y ∈ A (x 6= y → x∩y = ∅)→ ∃B∀x ∈ A ∃!y(y ∈ x∧y ∈ B).

The axiom of choice will not be used until later, where we will give several
equivalent forms of it.
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6. Elementary set theory

Here we will see how the axioms are used to develop very elementary set theory. To some
extent the main purpose of this chapter is to establish common notation.

The proof of the following theorem shows what happens to Russell’s paradox in our
axiomatic development. Russell’s paradox runs as follows, working in naive, non-axiomatic
set theory. Let x = {y : y /∈ y}. If x ∈ x, then x /∈ x; but also if x /∈ x, then x ∈ x.
Contradiction.

Theorem 6.1. ¬∃z∀x(x ∈ z).

Proof. Suppose to the contrary that ∀x(x ∈ z). Let y = {x ∈ z : x /∈ x}. Then
(y ∈ y ↔ y /∈ y), contradiction.

Lemma 6.2. If {x, y} = {u, v}, then one of the following conditions holds:
(i) x = u and y = v;
(ii) x = v and y = u.

Proof. Since x ∈ {x, y} = {u, v}, we have x = u or x = v.
Case 1. x = u. Since y ∈ {x, y} = {u, v}, we have y = u or y = v. If y = v, that is

as desired. If y = u, then x = y too, and v ∈ {u, v} = {x, y}, so v = x = y. In any case,
y = v.

Case 2. x = v. By symmetry to case 1, y = u.

Now we can define the notion of an ordered pair: (x, y) = {{x}, {x, y}}.

Lemma 6.3. If (x, y) = (u, v), then x = u and y = v.

Proof. Assume that (x, y) = (u, v). Thus {{x}, {x, y}} = {{u}, {u, v}}. By Lemma
6.1, this gives two cases.

Case 1. {x} = {u} and {x, y} = {u, v}. Then x ∈ {x} = {u}, so x = u. By Lemma
6.1 again, {x, y} = {u, v} implies that either y = v, or else x = v and y = u; in the latter
case, y = u = x = v. So y = v in any case.

Case 2. {x} = {u, v} and {x, y} = {u}. Then u ∈ {u, v} = {x}, so u = x. Similarly
v = x. Now y ∈ {x, y} = {u}, so y = u = x = v.

This lemma justifies the following definition:

1st(a, b) = a and 2nd(a, b) = b.

These are the first and second coordinates of the ordered pair.
The notion of intersection is similar to that of union, but there is a minor problem

concerning what to define the intersection of the empty set to be. We have decided to let
it be the empty set.

Theorem 6.4. For any set F there is a set y such that if F 6= ∅ then ∀x[x ∈ y ↔ ∀z ∈
F [x ∈ z]], while y = ∅ if F = ∅.
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Proof. Let F be given. If F = ∅, let y = ∅. Otherwise, choose w ∈ F and let
y = {x ∈ w : ∀z ∈ F [x ∈ z]}.

The set y in Theorem 6.4 is clearly unique, and we denote it by
⋂

F . This is the inter-
section of F . We already introduced in Chapter 2 the notations

⋃
, ∪, and ∩. To round

out the simple Boolean operations we define

A\B = {x ∈ A : x /∈ B}.

This is the relative complement of B in A.
Sets a, b are disjoint iff a ∩ b = ∅.
The replacement schema will almost always be used in connection with the compre-

hension schema. Namely, under the assumption ∀x ∈ A∃!yϕ(x, y), we choose Y by the
replacement axiom, so that ∀x ∈ A∃y ∈ Y ϕ(x, y); then we form

{y ∈ Y : ∃x ∈ Aϕ(x, y)}.

Lemma 6.5. ∀A∀B∃Z∀z(z ∈ Z ↔ ∃x ∈ A∃y ∈ B(z = (x, y))).

Proof. Define

Z = {z ∈P(P(A ∪B)) : ∃a ∈ A∃b ∈ B[z = (a, b)]}.

Thus if z ∈ Z then ∃a ∈ A∃b ∈ B[z = (a, b)]. Now suppose that a ∈ A, b ∈ B, and
z = (a, b). Then a, b ∈ A∪B, so {a}, {a, b} ∈P(A∪B), and so z = (a, b) = {{a}, {a, b}} ∈
P(P(A ∪B)), and hence z ∈ Z.

We now define A×B to be the unique Z of Lemma 6.5; this is the cartesian product of A
and B. Normally we would define A×B as follows:

A×B = {(x, y) : x ∈ A ∧ y ∈ B}.

This notation means
{u : ∃x, y(u = (x, y) ∧ x ∈ A ∧ y ∈ B)},

which is justified by the lemma.
An important informal notation is

(∗) {τ(x, y) ∈ A : ϕ(x, y)},

where τ(x, y) is some set determined by x and y. That is, there is a formula ψ(w, x, y) in
our set theoretic language such that ∀x, y∃!wψ(w, x, y), and τ(x, y) is this w. For example
τ(x, y) might be x ∪ y, or (x, y). Then (∗) really means

(∗∗) {w ∈ A : ∃x, y[ψ(w, x, y)∧ ϕ(x, y)]}.

A relation is a set of ordered pairs.
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Lemma 6.6. If (x, y) ∈ R then x, y ∈
⋃⋃

R.

Proof. x ∈ {x} ∈ {{x}, {x, y}} = (x, y) ∈ R, so x ∈
⋃⋃

R. Similarly y ∈
⋃⋃

R.

This lemma justifies the following definitions of the domain and range of a set R (we think
of R as a relation, but the definitions apply to any set):

dmn(R) = {x : ∃y((x, y) ∈ R)};

rng(R) = {y : ∃x((x, y) ∈ R)}.

Now we define, using the notation above,

R−1 = {(x, y) ∈ rng(R)× dmn(R) : (y, x) ∈ R}.

This is the inverse or converse of R. Note that R−1 is a relation, even if R is not. Clearly
(x, y) ∈ R−1 iff (y, x) ∈ R, for any x, y, R. Usually we use this notation only when R is
a function (defined shortly as a special kind of relation), and even then it is more general
than one might expect, since the function in question does not have to be 1-1 (another
notion defined shortly).

A function is a relation f such that

∀x ∈ dmn(f)∃!y ∈ rng(f)[(x, y) ∈ f ].

Some common notation and terminology is as follows. f : A → B means that f is a
function, dmn(f) = A, and rng(f) ⊆ B. We say then that f maps A into B. If f : A→ B
and x ∈ A, then f(x) is the unique y such that (x, y) ∈ f . This is the value of f with
the argument x. We may write other things like fx, f

x in place of f(x). Note that if
f, g : A → B, then f = g iff ∀a ∈ A[f(a) = g(a)]. If f : A → B and C ⊆ A, the
restriction of f to C is f ∩ (C ×B); it is denoted by f ↾ C. The image of a subset C of A

is f [C]
def
= rng(f ↾ C). Note that f [C] = {f(c) : c ∈ C}. If D ⊆ B then the preimage of D

under f is f−1[D]
def
= {x ∈ A : f(x) ∈ D}. x 7→ τ means (x, τ) ∈ f .

For any sets f, g we define

f ◦ g = {(a, b) : ∃c[(a, c) ∈ g and (c, b) ∈ f ]}.

This is the composition of f and g. We usually apply this notation when there are sets
A,B,C such that g : A→ B and f : B → C.

Lemma 6.7. (i) If g : A→ B and f : B → C, then (f ◦g) : A→ C and ∀a ∈ A[(f ◦g)(a) =
f(g(a))].

(ii) If g : A→ B, f : B → C, and h : C → D, then h ◦ (f ◦ g) = (h ◦ f) ◦ g.

Proof. (i): First we show that f ◦g is a function. Suppose that (a, b), (a, b′) ∈ (f ◦g).
Accordingly choose c, c′ so that (a, c) ∈ g, (c, b) ∈ f , (a, c′) ∈ g, and (c′, b′) ∈ f . Then
g(a) = c, f(c) = b, g(a) = c′, and f(c′) = b′. So c = c′ and hence b = b′. This shows
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that f ◦ g is a function. Clearly dmn(f ◦ g) = A and rng(f ◦ g) ⊆ C. For any a ∈ A
we have (a, g(a)) ∈ g and (g(a), f(g(a))) ∈ f , and hence (a, f(g(a))) ∈ (f ◦ g), so that
(f ◦ g)(a) = f(g(a)).

(ii): By (i), both functions map A into D. For any a ∈ A we have

(h ◦ (f ◦ g))(a) = h((f ◦ g)(a)) = h(f(g(a))) = (h ◦ f)(g(a)) = ((h ◦ f) ◦ g)(a).

Hence the equality holds.

Given f : A → B, we call f injective, or 1-1, if f−1 is a function; we call f surjective, or
onto, if rng(f) = B; and we call f bijective if it is both injective and surjective.

A function f will sometimes be written in the form 〈f(i) : i ∈ I〉, where I = dmn(f).
As an informal usage, we will even define functions in the form 〈. . . x . . . : x ∈ I〉, meaning
the function f with domain I such that f(x) = . . . x . . . for all x ∈ I.

If A is a function with domain I, we define

⋃

i∈I

Ai =
⋃

rng(A) and
⋂

i∈I

Ai =
⋂

rng(A).

Proposition 6.8. If f : A → B and 〈Ci : i ∈ I〉 is a system of subsets of A, then
f
[⋃

i∈I Ci
]

=
⋃

i∈I f [Ci].

Proof.

x ∈ f

[
⋃

i∈I

Ci

]

iff x ∈ rng

(

f ↾
⋃

i∈I

Ci

)

iff ∃y ∈
⋃

i∈I

Ci[f(y) = x]

iff ∃i ∈ I∃y ∈ Ci[f(y) = x]

iff ∃i ∈ I[x ∈ rng(f ↾ Ci)]

iff ∃i ∈ I[x ∈ f [Ci]]

iff x ∈
⋃

i∈I

f [Ci].

Proposition 6.9. If f : A→ B and C,D ⊆ A, then f [C ∩D] ⊆ f [C] ∩ f [D].

Proof. Take any x ∈ f [C ∩D]. Choose y ∈ C ∩D such that x = f(y). Since y ∈ C,
we have x ∈ f [C]. Similarly, x ∈ f [D]. So x ∈ f [C]∩f [D]. Since x is arbitrary, this shows
that f [C ∩D] ⊆ f [C] ∩ f [D].

Proposition 6.10. There are f : A→ B and C,D ⊆ A such that f [C∩D] 6= f [C]∩f [D].

Proof. Let dmn(f) = {a, b} with a 6= b and with f(a) = a = f(b). Let C = {a}
and D = {b}. Then C ∩ D = ∅, so f [C ∩ D] = ∅, while f [C] = {a} = f [D] and hence
f [C] ∩ f [D] = {a} 6= ∅. So f [C ∩D] 6= f [C] ∩ f [D].
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Proposition 6.11. If f : A→ B and C,D ⊆ A, then f [C]\f [D] ⊆ f [C\D].

Proof. Suppose that x ∈ f [C]\f [D]. Choose c ∈ C such that x = f(c). Since
x /∈ f [D], we have c /∈ D. So c ∈ C\D and hence x ∈ f [C\D],

Proposition 6.12. There are f : A→ B and C,D ⊆ A, such that f [C]\f [D] 6= f [C\D].

Proof. Take the same f, C,D as for Proposition 6.10. Then C\D = {a} and so
f [C\D] 6= ∅. But f [C] = {a} = f [D], so f [C]\f [D] = ∅.

Proposition 6.13. If f : A → B and 〈Ci : i ∈ I〉 is a system of subsets of B, then
f−1

[⋃

i∈I Ci
]

=
⋃

i∈I f
−1[Ci].

Proof. For any b ∈ B we have

b ∈ f−1

[
⋃

i∈I

Ci

]

iff f(b) ∈
⋃

i∈I

Ci

iff ∃i ∈ I[f(b) ∈ Ci]

iff ∃i ∈ I[b ∈ f−1[Ci]]

iff b ∈
⋃

i∈I

f−1[Ci].

Proposition 6.14. If f : A → B and 〈Ci : i ∈ I〉 is a system of subsets of B, then
f−1

[⋂

i∈I Ci
]

=
⋂

i∈I f
−1[Ci].

Proof. For any a,

a ∈ f−1

[
⋂

i∈I

Ci

]

iff f(a) ∈
⋂

i∈I

Ci

iff ∀i ∈ I[f(a) ∈ Ci]

iff ∀i ∈ I[a ∈ f−1[Ci]]

iff a ∈
⋂

i∈I

f−1[Ci].

Proposition 6.15. If f : A→ B and C,D ⊆ B, then f−1[C\D] = f−1[C]\f−1[D].

Proof. For any a,

a ∈ f−1[C\D] iff f(a) ∈ C\D

iff f(a) ∈ C and f(a) /∈ D

iff a ∈ f−1[C] and a /∈ f−1[D]

iff a ∈ f−1[C]\f−1[D].
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Proposition 6.16. If f : A→ B and C ⊆ A, then

{b ∈ B : f−1[{b}] ⊆ C} = B\f [A\C].

Proof. First suppose that b is in the left side; but suppose also, aiming for a contradiction,
that b ∈ f [A\C]. Say b = f(a), with a ∈ A\C. Then a ∈ f−1[{b}], so a ∈ C, contradiction.

Second, suppose that b is in the right side. Take any a ∈ f−1[{b}]. Then f(a) = b,
and it follows that a ∈ C, as desired.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 6.17. For any sets A,B define A△B = (A\B) ∪ (B\A); this is called the
symmetric difference of A and B. If A,B,C are given sets, then A△(B△C) = (A△B)△C.

Proof. Let D = A ∪B ∪ C, A′ = D\A, B′ = D\B, and C′ = D\C. Then

A△B = (A ∩B′) ∪ (B ∩ A′);

(A△B)′ = ((A ∩B′) ∪ (B ∩A′))′

= (A ∩B′)′ ∩ (B ∩ A′)′

= (A′ ∪B) ∩ (B′ ∪ A)

= (A′ ∩B′) ∪ (A ∩B).

These equations hold for any sets A,B. Now

A△(B△C) = (A ∩ (B△C)′) ∪ ((B△C) ∩ A′

= (A ∩ ((B′ ∩ C′) ∪ (B ∩ C))) ∪ (((B ∩ C′) ∪ (C ∩B′)) ∩A′)

= (A ∩B′ ∩ C′) ∪ (A ∩B ∩ C) ∪ (A′ ∩B ∩ C′) ∪ (A′ ∩B′ ∩ C).

This holds for any sets A,B,C. Hence

(A△B)△C = C△(A△B)

= (C ∩A′ ∩B′) ∪ (C ∩A ∩B) ∪ (C′ ∩ A ∩B′) ∪ (C′ ∩ A′ ∩B)

= A△(B△C).

For any set A let
IdA = {〈x, x〉 : x ∈ A}.

Thus
IdA = {y ∈ A× A : ∃x ∈ A[y = 〈x, x〉]}.

Proposition 6.18. Suppose that f : A→ B. Then f is surjective iff there is a g : B → A
such that f ◦ g = IdB.

Proof. ⇐: given b ∈ B, we have b = (f ◦ g)(b) = f(g(b)); so f is surjective.
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⇒: Assume that f is surjective. Let

A = {{(b, a) : a ∈ A, f(a) = b} : b ∈ B}.

Each member of A is nonempty; for let x ∈ A . Choose b ∈ B such that x = {(b, a) : a ∈
A, f(a) = b}. Choose a ∈ A such that f(a) = b. So (b, a) ∈ x.

The members of A are pairwise disjoint: suppose x, y ∈ A with x 6= y. Choose b, c
so that x = {(b, a) : a ∈ A, f(a) = b} and y = {(b, a) : a ∈ A, f(a) = c}. If u ∈ x ∩ y, then
there exist a, a′ ∈ A such that u = (b, a), f(a) = b, and also (u = (c, a′), f(a′) = c. So by
Theorem 6.3, b = c. But then x = y, contradiction.

Now by the axiom of choice, let C have exactly one element in common with each
member of A . Then define

g = {(b, a) ∈ C : a ∈ A, f(a) = b}.

Now g is a function. For, suppose that (b, a), (b, a′) ∈ g. Let x = {(b, a′′) : a′′ ∈ A, f(a′′) =
b}. Then (b, a), (b, a′) ∈ C ∩ x, so (b, a) = (b, a′). Hence a = a′.

Clearly g ⊆ B × A. Next, dmn(g) = B, for suppose that b ∈ B. Choose x ∈
C ∩ {(b, a′′) : a′′ ∈ A, f(a′′) = b}; say x = (b, a) with a ∈ A, f(a) = b. Then x ∈ g and so
b ∈ dmn(g).

Thus g : B → A. Take any b ∈ B, and let g(b) = a. So (b, a) ∈ g and hence f(a) = b.
So f ◦ g = IdB .

Proposition 6.19. Let A be a nonempty set. Suppose that f : A→ B. Then f is injective
iff there is a g : B → A such that g ◦ f = IdA.

Proof. First suppose that f is injective. Fix a ∈ A, and let

g = f−1 ∪ {(b, a) : b ∈ B\rng(f)}.

Then g is a function. In fact, suppose that (b, c), (b, d) ∈ g. If both are in f−1, then
(c, b(, (d, b) ∈ f , so f(c) = b = f(d) and hence c = d since f is injective. If (b, c) ∈ f−1

and b ∈ B\rng(f), the (c, b) ∈ f , so b ∈ rng(f), contradiction. If (b, c), (b, d) /∈ f−1, then
c = d = a.

Clearly then g : B → A. For any a ∈ A we have (a, f(a)) ∈ f , hence (f(a), a) ∈ f−1 ⊆
g, and so g(f(a)) = a.

Second, suppose that g : B → A and g ◦ f = IdA. Suppose that f(a) = f(a′). Then
a = (g ◦ f)(a) = g(f(a)) = g(f(a′)) = (g ◦ f)(a′) = a′.

Proposition 6.20. Suppose that f : A→ B. f is a bijection iff there is a g : B → A such
that f ◦ g = IdB and g ◦ f = IdA.

Proof. ⇒: Assume that f is a bijection. By E6.11 there is a g : B → A such that
g ◦ f = IdA. We claim that f ◦ g = IdB . Since f is a bijection, the relation f−1 is also a
bijection. Now for any b ∈ B,

(f ◦ g)(b) = f(g(b)) = f(g(f(f−1(b)))) = f((g ◦ f)(f−1(b))) = f(f−1(b)) = b.
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So f ◦ g = IdB , as desired.
⇐: Assume that g is as indicated. Then f is injective, since f(a) = f(b) implies

that a = g(f(a)) = g(f(a′)) = a′. And f is surjective, since for a given b ∈ B we have
f(g(b)) = b.

For any sets R, S define

R|S = {(x, z) : ∃y((x, y) ∈ R ∧ (y, z) ∈ S)}.

Thus
R|S = {(x, z) ∈ dmn(R)× rng(S) : ∃y((x, y) ∈ R ∧ (y, z) ∈ S)}.

Proposition 6.21. Suppose that f, g : A→ A. Then

(A×A)\[((A× A)\f)|((A×A)\g)]

is a function.

Proof. Suppose that (x, y), (x, z) are in the indicated set, with y 6= z. By symmetry
say f(x) 6= y. Then (x, y) ∈ [(A × A)\f ], so it follows that (y, z) ∈ g, as otherwise
(x, z) ∈ [((A×A)\f)|((A×A)\g)]. Hence (y, y) /∈ g, so (x, y) ∈ [((A×A)\f)|((A×A)\g)],
contradiction.

Proposition 6.22. Suppose that f : A → B is a surjection, g : A → C, and ∀x, y ∈
A[f(x) = f(y)→ g(x) = g(y)]. Then there is a function h : B → C such that h ◦ f = g.

Proof. Let h = {(f(a), g(a)) : a ∈ A}. Then h is a function, for suppose that
(x, y), (x, z) ∈ h. Choose a, a′ ∈ A so that x = f(a), y = g(a), x = f(a′), and y = g(a′).
Thus f(a) = f(a′), so g(a) = g(a′), as desired.

Since f is a surjection it is clear that dmn(h) = B. Clearly rng(h) ⊆ C. So h : B → C.
If a ∈ A, then (f(a), b(a)) ∈ h, hence h(f(a)) = g(a). This shows that h ◦ f = g.

Proposition 6.23. There are sets A and B for which the statement

∀A ∈ A ∀B ∈ B(A ⊆ B) implies that
⋃

A ⊆
⋂

B

is wrong.
Proof. If A has a nonempty member and B is empty, the implication does not

hold.

Proposition 6.24. If B 6= ∅, then the statement in Proposition 6.23 holds.

Proof. Suppose that a ∈
⋃
A and B ∈ B; we want to show that a ∈ B. Choose

A ∈ A such that a ∈ A. Since A ⊆ B, we have a ∈ B.

Proposition 6.25. Suppose that ∀A ∈ A ∃B ∈ B(A ⊆ B). Then
⋃

A ⊆
⋃

B.

Proof. Suppose that a ∈
⋃

A ; we want to show that a ∈ B. Choose A ∈ A such
that a ∈ A. Then choose B ∈ B such that A ⊆ B. Then a ∈ B. Hence a ∈

⋃
B.
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Proposition 6.26. There are sets A and B such that the statement

∀A ∈ A ∃B ∈ B(B ⊆ A) implies that
⋂

B ⊆
⋂

A .

is wrong.

Proof. If A is empty and
⋂

B is nonempty, the statement is false.

Proposition 6.27. If A 6= ∅, then the statement in Proposition 6.26 holds.

Proof. Suppose that b ∈
⋂

B and A ∈ A ; we want to show that b ∈ A. Choose
B ∈ B such that B ⊆ A. Now b ∈ B since b ∈

⋂
B, so b ∈ A.
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7. Ordinals, I

In this chapter we introduce the ordinals and give basic facts about them.
A set A is transitive iff ∀x ∈ A∀y ∈ x(y ∈ A); in other words, iff every element of

A is a subset of A. This is a very important notion in the foundations of set theory, and
it is essential in our definition of ordinals. An ordinal number, or simply an ordinal, is a
transitive set of transitive sets. We use the first few Greek letters to denote ordinals. If
α, β, γ are ordinals and α ∈ β ∈ γ, then α ∈ γ since γ is transitive. This partially justifies
writing α < β instead of α ∈ β when α and β are ordinals. This helps the intuition in
thinking of the ordinals as kinds of numbers. We also define α ≤ β iff α < β or α = β.

By a vacuous implication we have:

Proposition 7.1. ∅ is an ordinal.

Because of this proposition, the empty set is a number; it will turn out to be the first
nonnegative integer, the first ordinal, and the first cardinal number. For this reason, we
will use 0 and ∅ interchangably, trying to use 0 when numbers are involved, and ∅ when
they are not.

Proposition 7.2. If α is an ordinal, then so is α ∪ {α}.

Proof. If x ∈ y ∈ α ∪ {α}, then x ∈ y ∈ α or x ∈ y = α. Since α is transitive, x ∈ α
in either case. So α∪{α} is transitive. Clearly every member of α∪{α} is transitive.

We denote α ∪ {α} by α+′ 1. After introducing addition of ordinals, it will turn out that
α+ 1 = α+′ 1 for every ordinal α, so that the prime can be dropped. This ordinal α+′ 1
is the successor of α. We define 1 = 0 +′ 1, 2 = 1 +′ 1, etc. (up through 9; no further since
we do not want to try to justify decimal notation).

Proposition 7.3. If A is a set of ordinals, then
⋃
A is an ordinal.

Proof. Suppose that x ∈ y ∈
⋃
A. Choose z ∈ A such that y ∈ z. Then z is an

ordinal, and x ∈ y ∈ z, so x ∈ z; hence x ∈
⋃
A. Thus

⋃
A is transitive.

If u ∈
⋃
A, choose v ∈ A such that u ∈ v. then v is an ordinal, so u is transitive.

We sometimes write sup(A) for
⋃
A. In fact,

⋃
A is the least ordinal ≥ each member of

A. We prove this shortly.

Proposition 7.4. Every member of an ordinal is an ordinal.

Proof. Let α be an ordinal, and let x ∈ α. Then x is transitive since all members of
α are transitive. Suppose that y ∈ x. Then y ∈ α since α is transitive. So y is transitive,
since all members of α are transitive.

Theorem 7.5. ∀x(x /∈ x).

Proof. Suppose that x is a set such that x ∈ x. Let y = {x}. By the foundation
axiom, choose z ∈ y such that z ∩ y = ∅. But z = x, so x ∈ z ∩ y, contradiction.
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Theorem 7.6. There does not exist a set which has every ordinal as a member.

Proof. Suppose to the contrary that A is such a set. Let B = {x ∈ A : x is an
ordinal}. Then B is a set of transitive sets and B itself is transitive. Hence B is an
ordinal. So B ∈ A. It follows that B ∈ B. contradicting Theorem 7.5.

Theorem 7.6 is what happens in our axiomatic framework to the Burali-Forti paradox.

Theorem 7.7. If α and β are ordinals, then α = β, α ∈ β, or β ∈ α.

Proof. Suppose that this is not true, and let α and β be ordinals such that α 6= β,
α /∈ β, and β /∈ α. Let A = (α +′ 1) ∪ (β +′ 1). Define B = {γ ∈ A : ∃δ ∈ A[γ 6= δ, γ /∈ δ,
and δ /∈ γ]}. Thus α ∈ B, since we can take δ = β. So B 6= ∅. By the foundation axiom,
choose γ ∈ B such that γ ∩ B = ∅. Let C = {δ ∈ A : γ 6= δ, γ /∈ δ, and δ /∈ γ}. So C 6= ∅
since γ ∈ B. By the foundation axiom choose δ ∈ C such that δ ∩ C = ∅. We will now
show that γ = δ, which is a contradiction.

Suppose that ε ∈ γ. Then ε /∈ B. Clearly ε ∈ A, so it follows that ∀ϕ ∈ A[ε = ϕ or
ε ∈ ϕ or ϕ ∈ ε]. Since δ ∈ A we thus have ε = δ or ε ∈ δ or δ ∈ ε. If ε = δ then δ ∈ γ,
contradiction. If δ ∈ ε, then δ ∈ γ since γ is transitive, contradiction. So ε ∈ δ. This
proves that γ ⊆ δ.

Suppose that ε ∈ δ. Then ε /∈ C. It follows that γ = ε or γ ∈ ε or ε ∈ γ. If γ = ε
then γ ∈ δ, contradiction. If γ ∈ ε then γ ∈ δ since δ is transitive, contradiction. So ε ∈ γ.
This proves that δ ⊆ γ.

Hence δ = γ, contradiction.

Proposition 7.8. α ≤ β iff α ⊆ β.

Proof. ⇒: Assume that α ≤ β and x ∈ α. Then x < α ≤ β, so x < β since β is
transitive. Hence x ∈ β. Thus α ⊆ β.
⇐: Assume that α ⊆ β. If β < α, then β < β, hence β ∈ β, contradicting Theorem

7.5. Hence α ≤ β by Theorem 7.7.

Proposition 7.9. α < β iff α ⊂ β.

Proof. α < β iff (α ≤ β and α 6= β) iff (α ⊆ β and α 6= β) (by Proposition 7.8) iff
α ⊂ β.

Proposition 7.10. α < β iff α+′ 1 ≤ β.

Proof. ⇒: Assume that α < β. If β < α +′ 1, then β ∈ α ∪ {α}, so β ∈ α or β = α.
Since α ∈ β, this implies that β ∈ β, contradicting Theorem 7.5. Hence by Theorem 7.7,
α+′ 1 ≤ β.
⇐: Assume that α+′ 1 ≤ β. Then α < α+′ 1 ≤ β, so α < β.

Proposition 7.11. There do not exist ordinals α, β such that α < β < α+′ 1.

Theorem 7.12. If A is a set of ordinals, then α ≤
⋃
A for each α ∈ A, and if β is an

ordinal such that α ≤ β for all α ∈ A then
⋃
A ≤ β.
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Proof. Suppose that A is a set of ordinals. If α ∈ A, then α ⊆
⋃
A, and so α ≤

⋃
A

by Proposition 7.8.
Now suppose that β is an ordinal such that α ≤ β for all α ∈ A. Take any x ∈

⋃
A.

Choose y ∈ A such that x ∈ y. Then y ≤ β. Also x < y, so x < β. Hence x ∈ β. This
proves that

⋃
A ⊆ β. Hence

⋃
A ≤ β by Proposition 7.8.

Theorem 7.13. If Γ is a nonempty set of ordinals, then
⋂

Γ is an ordinal,
⋂

Γ ∈ Γ, and
⋂

Γ ≤ α for every α ∈ Γ.

Proof. The members of
⋂

Γ are clearly ordinals, so for the first statement it suffices
to show that

⋂
Γ is transitive. Suppose that α ∈ β ∈

⋂
Γ; and suppose that γ ∈ Γ. Then

β ∈ γ, and hence α ∈ γ since γ is transitive. This argument shows that α ∈
⋂

Γ. Since α
is arbitrary, it follows that

⋂
Γ is transitive, and hence is an ordinal.

For every α ∈ Γ we have
⋂

Γ ⊆ α, and hence
⋂

Γ ≤ α by Proposition 7.8.
Suppose that

⋂
Γ /∈ Γ. For any α ∈ Γ we have

⋂
Γ ⊆ α, hence

⋂
Γ ≤ α, hence

⋂
Γ < α

since α ∈ Γ but we are assuming that
⋂

Γ /∈ Γ. But this means that ∀α ∈ Γ[
⋂

Γ ∈ α]. So
⋂

Γ ∈
⋂

Γ, contradiction.

Ordinals are divided into three classes as follows. First there is 0, the empty set. An
ordinal α is a successor ordinal if α = β +′ 1 for some β. Finally, α is a limit ordinal if it
is nonzero and is not a successor ordinal. Thus 1, 2, etc. are successor ordinals.

To prove the existence of limit ordinals, we need the infinity axiom. Let x be as in
the statement of the infinity axiom. Thus 0 ∈ x, and y ∪ {y} ∈ x for all y ∈ x. We define

ω =
⋂

{z ⊆ x : 0 ∈ z and y ∪ {y} ∈ z for all y ∈ z}.

This definition does not depend on the choice of x. In fact, suppose that also 0 ∈ x′, and
y ∪ {y} ∈ x′ for all y ∈ x′; we want to show that

⋂

{z ⊆ x : 0 ∈ z and y ∪ {y} ∈ z for all y ∈ z}

=
⋂

{z ⊆ x′ : 0 ∈ z and y ∪ {y} ∈ z for all y ∈ z}.

Let A = {z ⊆ x : 0 ∈ z and y ∪ {y} ∈ z for all y ∈ z} and A ′ = {z ⊆ x′ : 0 ∈
z and y∪{y} ∈ z for all y ∈ z}. Suppose that w ∈

⋂
A , and suppose that z ∈ A ′. Clearly

z ∩ x ∈ A , so w ∈ z ∩ x, so w ∈ z. This shows that w ∈
⋂

A ′. Hence
⋂

A ⊆
⋂

A ′. The
other inclusion is proved in the same way.

The members of ω are natural numbers.

Theorem 7.14. If A ⊆ ω, 0 ∈ A, and y ∪ {y} ∈ A for all y ∈ A, then A = ω.

Proof. With x as in the definition of ω, we clearly have x ∩ A ∈ A where A is as
above. Hence ω ⊆ x ∩A ⊆ A, so A = ω.

Proposition 7.15. 0 ∈ ω, and for all y ∈ ω, also y +′ 1 ∈ ω.
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Proof. With A as above, if z ∈ A , then 0 ∈ z. So 0 ∈
⋂

A = ω. Now suppose that
y ∈ ω and z ∈ A . Then y ∈ z, and it follows that y +′ 1 ∈ z. Hence y +′ 1 ∈ ω.

Theorem 7.16. ω is the first limit ordinal.

Proof. Let A = {y ∈ ω : y is an ordinal}. Then 0 ∈ A by Propositions 7.1 and 7.15.
Suppose that y ∈ A. Then y ∈ ω, so y +′ 1 ∈ ω by Proposition 7.15. Also, y is an ordinal,
so y +′ 1 is an ordinal by Proposition 7.2. This shows that y +′ 1 ∈ A. It follows that
A = ω, by Theorem 7.17. Hence every member of ω is an ordinal, and hence is transitive.

Next, let B = {y ∈ ω : y ⊆ ω}. Then 0 ∈ B by Proposition 7.15. Suppose that y ∈ B.
Then y ∈ ω, so y +′ 1 ∈ ω by Proposition 7.15. Also, y ⊆ ω. Since y ∈ ω, it follows
that y ∪ {y} ⊆ ω. So y +′ 1 ∈ B. Hence B = ω by Theorem 7.17. This shows that ω is
transitive, and hence is an ordinal.

Next, let C = {y ∈ ω : y is not a limit ordinal}. 0 ∈ ω by Theorem 7.15, and by
definition 0 is not a limit ordinal, so 0 ∈ C. Suppose that y ∈ C. Then y ∈ ω, so y+′1 ∈ ω.
Also, by definition y +′ 1 is not a limit ordinal. So y +′ 1 ∈ C. It follows that C = ω, and
hence for every α < ω, α is not a limit ordinal.

Since 0 ∈ ω, ω 6= 0. If ω = y+′ 1, then y ∈ ω and hence ω = y+′ 1 ∈ ω, contradiction.
Thus ω is a limit ordinal.

Proposition 7.17. The following conditions are equivalent:
(i) α is a limit ordinal;
(ii) α 6= 0, and for every β < α there is a γ such that β < γ < α.
(iii) α =

⋃
α 6= 0.

Proof. (i)⇒(ii): suppose that α is a limit ordinal. So α 6= 0, by definition. Suppose
that β < α. Then β +′ 1 ≤ α by Proposition 7.10. Hence β +′ 1 < α since α is not a
successor ordinal. Thus β < β +′ 1 < α.

(ii)⇒(iii): if β ∈
⋃
α, choose γ ∈ α such that β ∈ γ. Then β ∈ α since α is an ordinal.

This shows that
⋃
α ⊆ α.

If β ∈ α, choose γ with β < γ < α. Thus β ∈
⋃
α. This proves that α =

⋃
α, and

α 6= 0 is given.
(iii)⇒(i): suppose that α = β +′ 1. Then β ∈ α =

⋃
α, so choose γ ∈ α such that

β ∈ γ. Thus β < γ ≤ β, so β < β, contradiction.

Proposition 7.18. If α = β +′ 1, then
⋃
α = β.

Proof. Assume that α = β +′ 1. Suppose that γ ∈
⋃
α. Choose δ ∈ α such that

γ ∈ δ. Thus γ < δ < α, so δ ≤ β, hence γ ∈ β. This shows that
⋃
α ⊆ β.

If γ ∈ β, then γ ∈ β ∈ α, so γ ∈
⋃
α. So

⋃
α = β.

We now give some equivalent definitions of ordinals. A well-ordered set is a pair (A,<)
such that A is a set, < is a relation included in A×A, < is irreflexive on A (a 6< a for all
a ∈ A), < is transitive (a < b < c implies that a < c), < is linear on A (for all a, b ∈ A,
either a = b, a < b, or b < a), and any nonempty subset X of A has a least element (an
element a ∈ X such that a ≤ b for all b ∈ X).
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Theorem 7.19. The following conditions are equivalent:
(i) x is an ordinal.
(ii) x is transitive and (x, {(y, z) ∈ x× x : y ∈ z}) is a well-ordered set.
(iii) x is transitive, and for all y, z ∈ x, y = z or y ∈ z or z ∈ y.
(iv) For all y, if y ⊂ x and y is transitive, then y ∈ x.
(v) The following two conditions hold:

(a) For all y ∈ x, either y ∪ {y} = x or y ∪ {y} ∈ x.
(b) For all y ⊆ x, either

⋃
y = x or

⋃
y ∈ x.

Proof. (i)⇒(ii): Assume (i). By definition, x is transitive. Let R = {(y, z) ∈ x× x :
y ∈ z}). Obviously R is a relation. By definition, R ⊆ x × x. R is irreflexive on x by
Theorem 7.5. R is transitive since x is transitive. R is linear on x by Theorem 7.7. The
final well-ordering property follows from Theorem 7.13.

(ii)⇒(iii): Assume (ii). Then (iii) is obvious.
(iii)⇒(iv): Assume (iii), and suppose that y ⊂ x and y is transitive. Choose z ∈ x\y

such that z ∩ (x\y) = ∅. If u ∈ y, then u ∈ x since y ⊂ x. So u, z ∈ x, so by hypothesis
we have u ∈ z, u = z, or z ∈ u. Now u 6= z since z /∈ y and u ∈ y. And z /∈ u, since z ∈ u
would imply, because y is transitive and u ∈ y, that z ∈ y, which is not true. Hence u ∈ z.
This is true for any u ∈ y. So y ⊆ z. Clearly also z ⊆ y, so y = z ∈ x.

(iv)→(i): Assume (iv). Let y = {z ∈ x : z is an ordinal}. So y ⊆ x. Suppose that
y ⊂ x. Now y is transitive, for assume that z ∈ y. Thus z ∈ x and z is an ordinal. Suppose
that w ∈ z. Then w ∈ x since x is transitive, and w is an ordinal since z is an ordinal. So
w ∈ y. Thus, indeed, y is transitive. So by assumption y ∈ x. Now y is a transitive set
of transitive sets, so y is an ordinal. It follows that y ∈ y, contradiction. This proves that
x = y. So x is a transitive set of transitive sets, and hence x is an ordinal.

(i)⇒(v): Assume (i). (a) holds by Proposition 7.10. Now suppose that y ⊆ x. If
z ∈

⋃
y, choose w ∈ y such that z ∈ w. Then also w ∈ x, so z ∈ x since x is transitive.

This shows that
⋃
y ⊆ x. By Proposition 7.3,

⋃
y is an ordinal. Hence by Proposition 7.8,

⋃
y ≤ x.

(v)⇒(i): Assume (v). By Theorem 7.6 there is an ordinal α not in x. Then by
Theorem 7.13 there is a least β ∈ α∪ {α} such that β /∈ x. Now we have two possibilities:

Case 1. β =
⋃
β. Now β ⊆ x, so by (ii) second clause, since

⋃
β = β /∈ x we have

x =
⋃
β, hence x is an ordinal, as desired.

Case 2. β = (
⋃
β) + 1. Thus

⋃
β is an ordinal smaller than β, so it is in x. By (i),

since β =
⋃
β + 1 /∈ x we have x = (

⋃
β) + 1, hence x is an ordinal.
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8. Recursion

In this chapter we prove a general recursion theorem which will be used many times in
these notes. The theorem involves classes, so we begin with a few remarks about classes
and sets.

Classes and sets

Although expressions like {x : x = x} and {α : α is an ordinal} are natural, they cannot
be put into the framework of our logic for set theory. These “collections” are “too big”.
It is intuitively indispensible to continue using such expressions. One should understand
that when this is done, there is a rigorous way of reformulating what is said. These big
collections are called classes; their rigorous counterparts are simply formulas of our set
theoretic language. We can also talk about class functions, class relations, the domain
of class functions, etc. Most of the notions that we have introduced so far have class
counterparts. In particular, we have the important classes V, the class of all sets, and On,
the class of all ordinals. They correspond to the formulas “x = x” and “α is an ordinal”.
We attempt to use bold face letters for classes; in some cases the classes in question are
actually sets. A class which is not a set is called a proper class.

Well-founded class relations

If A is a class, a class relation R is well-founded on A iff R ⊆ A × A and for every
nonempty subset X of A there is an x ∈ X such that for all y ∈ X it is not the case that
(y, x) ∈ R. Such a set x is called R-minimal.

This notion is important even if A and R are mere sets. Two important examples of
well-founded class relations are as follows.

Proposition 8.1. The class relation {(x, y) : x ∈ y} is well-founded on V.

Proof. Let X be a nonempty subset of V. This just means that X is a nonempty
set. By the foundation axiom, choose x ∈ X such that x ∩X = ∅. Then for all y ∈ X it
is not the case that y ∈ x.

Proposition 8.2. The class relation {(α, β) : α < β} is well-founded on On.

Proof. Let X be a nonempty subset of On. Thus X is a nonempty set of ordinals.
By Theorem 4.14 we have

⋂
X ∈ X and for all y ∈ X it is not the case that y ∈

⋂
X .

On the other hand, the class relation R = {(x, y) : y ∈ x} is not well-founded on V. In
fact the set ω does not have an R-minimal element, since if m ∈ ω then also m +′ 1 ∈ ω
and (m+′ 1, m) ∈ R.

Recall that our intuitive notion of class is made rigorous by using formulas instead.
Thus we would talk about a formula ϕ(x, y) being well-founded on another formula ψ(x).
In the case of ∈, we are really looking at the formula x ∈ y being well-founded on the
formula x = x. So, rigorously we are associating with two formulas ϕ(x, y) and ψ(x)
another formula “ϕ(x, y) is well-founded on ψ(x)”, namely the following formula:

∀x∀y[ϕ(x, y)→ ψ(x) ∧ ψ(y)] ∧ ∀X [∀x ∈ Xψ(x) ∧X 6= ∅ → ∃x ∈ X∀y ∈ X¬ϕ(y, x)].
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Let A be a class and R a class relation with R ⊆ A × A. For any x ∈ A we define
predAR(x) = {y ∈ A : (y, x) ∈ R}. We say that R is set-like on A iff R ⊆ A ×A and
predAR(x) is a set for all x ∈ A.

For example, for R = {(x, y) : x ∈ y} we have predVR(x) = x for any set x, and R is
set-like on V. For R = {(α, β) : α < β}} we have predOnR(α) = α for any ordinal α, and
R is set-like on On.

On the other hand, R = {(α, β) : α > β} is not set-like on On, since for example
predOnR(0) = {α : α > 0} and this is not a set, as otherwise On = {0} ∪ predOnR(0)
would be a set.

Formally we are dealing with formulas ϕ(x, y) and ψ(x), such that ∀x, y[ϕ(x, y) →
ψ(x) ∧ ψ(y)]. Then predϕψ is the formula ϕ(y, x), and “ϕ is set-like on ψ” is the formula

∀x[ψ(x)→ ∃z∀y[y ∈ z ↔ ϕ(y, x)]].

Now let R be a class relation. We define

R∗ = {(a, b) : ∃n ∈ ω\1∃f [f is a function with domain n+′ 1 and

∀i < n[(f(i), f(i+′ 1)) ∈ R and f(0) = a and f(n) = b]]}.

This is called the transitive closure of R.
Formally, given a formula ϕ(x, y), we define another formula ϕ∗:

∃n ∈ ω\1∃f [f is a function with domain n+′ 1 and

∀i < n[ϕ(f(i), f(i+′ 1)) and f(0) = x and f(n) = y]]}.

The actual formula in our set-theoretical language is long, since we have to replace the
definitions of ω, function, ordered pair, etc. by formulas involving ∈ alone.

We actually do not need the fact that R∗ is transitive, but we do need the following
facts. If R ⊆ A×A and x ∈ A, let pred′

AR(x) = {x} ∪ predAR(x).

Theorem 8.3. Let R be a class relation.
(i) R ⊆ R∗.
(ii) If R ⊆ A×A, x ∈ A, (u, v) ∈ R, and v ∈ pred′

AR∗(x), then u ∈ pred′
AR∗(x).

Proof. (i): Suppose that (a, b) ∈ R. Let f be the function with domain 2 such that
f(0) = a and f(1) = b. This function shows that (a, b) ∈ R∗.

(ii): Assume the hypotheses. There are two cases.
Case 1. v = x. Then (u, x) ∈ R, so by (i), (u, x) ∈ R∗. Hence u ∈ predAR(x) ⊆

pred′
AR(x).
Case 2. v ∈ predAR∗(x). Choose n and f correspondingly. Let

g = {(0, u)} ∪ {(i+′ 1, f(i)) : i ≤ n}.

Then g is a function with domain n+′2, g(0) = u, g(n+′1) = x, and ∀i < n+′1[(g(i), g(i+′

1)) ∈ R]. Hence u ∈ predAR∗(x) ⊆ pred′
AR∗(x).
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Theorem 8.4. If R is set-like on A, then also R∗ is set-like on A.

Proof. Let x ∈ A; we want to show that predAR∗(x) is a set. For each n ∈ ω\1 let

Dn = {y ∈ A : there is a function f with domain n+′ 1 such that

f(0) = y, f(n) = x and ∀i < n[(f(i), f(i+′ 1)) ∈ R]}

We will prove by induction on n that each Dn is a set. First take n = 1. Now D1 =
{y ∈ A :there is a function f with domain 2 such that f(0) = y, f(1) = x, and (y, x) ∈
R} = predAR(x), so D1 is a set by hypothesis. Now assume that Dn is a set. Let
F(y) = predAR(y) for each y ∈ Dn. This makes sense, since by hypothesis each class
predAR(y) is a set. So F is a function whose domain is the set Dn. By the replacement
and comprehension axioms, its range is a set. That is, {predAR(y) : y ∈ Dn} is a set. Now
we claim

(∗) Dn+′1 =
⋃

{predAR(y) : y ∈ Dn}.

This claim shows that Dn+′1 is a set, completing the inductive proof.
To prove the claim, first suppose that z ∈ Dn+′1. Let f be a function with domain

n +′ 2 such that f(0) = z, f(n +′ 1) = x, and ∀i < n +′ 1[(f(i), f(i +′ 1) ∈ R. Define
g with domain n +′ 1 by setting g(i) = f(i +′ 1) for all i < n +′ 1. Then g(0) = f(1),
g(n) = f(n+′ 1) = x. and for all i < n, (g(i), g(i+′ 1)) = (f(i+′ 1), f(i+′ 2)) ∈ R. Hence
g(0) ∈ Dn. Clearly (z, g(0)) ∈ R, so z ∈ predAR(g(0)). Thus z is in the right side of (∗).

Second, suppose that z is in the right side of (∗). Say z ∈ predAR(y) with y ∈ Dn. So
(z, y) ∈ R, and there is a function f with domain n+′ 1 such that f(0) = y, f(n) = x, and
∀i < n[(f(i), f(i+′1)) ∈ R]. Define g with domain n+′2 by setting g(0) = z and g(i+′1) =
f(i) for all i < n +′ 1. Then g(n+′ 1) = f(n) = x and ∀i < n +′ 1[(g(i), g(i+′ 1)) ∈ R].
Hence z ∈ Dn+′1, and the claim is proved.

Now for each n ∈ ω\1 let G(n) = Dn. Then G is a function whose domain is the set
ω\1, so by replacement and comprehension, it range is a set. Thus {Dn : n ∈ ω\1} is a
set. Now we claim

predAR∗(x) =
⋃

{Dn : n ∈ ω\1}.

This claim will finish the proof. We have

⋃

{Dn : n ∈ ω\1} = {y ∈ A : ∃n ∈ ω\1∃f [f is a function with domain n+′ 1

such that f(0) = y, f(n) = x, and ∀i < n[(f(i), f(i+′ 1)) ∈ R]]

= predAR∗(x).

Theorem 8.5. If R is well-founded and set-like on a class A, then every nonempty
subclass of A has an R-minimal element.

Proof. Suppose that X is a nonempty subclass of A. Take any x ∈ X. Now
pred′

AR∗(x)∩X is a nonempty subset of A, by Theorem 8.4 and the comprehension axioms.
Let y be an R-minimal element of pred′

AR∗(x) ∩X. In particular, y ∈ X. Suppose that
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(z, y) ∈ R. Then z ∈ predAR(y). By Theorem 8.3(ii) it follows that z ∈ pred′
AR∗(x).

Hence z /∈ X by the choice of y. so y is the desired R-minimal element of X.

Theorem 8.6. If F is a class function and a is a set contained in the domain of F, then
there is a (set) function f with domain a such that f(x) = F(x) for all x ∈ a.

Proof. Let G(x) = (x,F(x)) for all x ∈ dmn(F. By the replacement and compre-
hension axioms, the class {G(x) : x ∈ a} is a set. This class is {(x,F(x)) : x ∈ a}. Thus
it is the desired function f .

In terms of formulas, F corresponds to a formula ϕ(x, y) such that for all x there is at most

one y such that ϕ(x, y). Then G corresponds to the formula ψ(x, y)
def
= ∃z[ϕ(x, z) ∧ y =

(x, z)]. Clearly for all x there is at most one y such that ψ(x, y), and if ψ(x, y) then
y = (x, z) where ϕ(x, z) holds.

The function asserted to exist in Theorem 8.6 will be denoted by F ↾ a.

Theorem 8.7. (The recursion theorem) Suppose that R is a class relation which is well-
founded and set like on a class A, and G is a class function mapping A×V into V. Then
there is a class function F mapping A into V such that F(a) = G(a,F ↾ predAR(a)) for
all a ∈ A.

Proof. We say that a function f is an approximation to F iff dmn(f) ⊆ A and for
every a ∈ dmn(f) we have predAR(a) ⊆ dmn(f) and f(a) = G(a, f ↾ predAR(a)).

(1) If f and f ′ are approximations to F and a ∈ dmn(f) ∩ dmn(f ′), then f(a) = f ′(a).

In fact, suppose that this is not true. Then the set X = {a ∈ dmn(f) ∩ dmn(f ′) : f(a) 6=
f ′(a)} is nonempty. Let a be an R-minimal element of X . Now if b ∈ predAR(a) then
b ∈ dmn(f)∩dmn(f ′) and (b, a) ∈ R, hence b /∈ X ; so f(b) = f ′(b). Thus f ↾ predAR(a) =
f ′ ↾ predAR(a). It follows that

f(a) = G(a, f ↾ predAR(a)) = G(a, f ′ ↾ predAR(a)) = f ′(a),

contradiction. So (1) holds.

(2) If f is an approximation to F, x ∈ dmn(f), n is a positive integer, g is a function with
domain n+′ 1, g(n) = x, and ∀i < n[(g(i), g(i+′ 1)) ∈ R], then g(0) ∈ dmn(f).

To prove this, assuming that f is an approximation to F and x ∈ dmn(f), we prove
by induction on n ≥ 1 that if g is a function with domain n +′ 1, g(n) = x, and ∀i <
n[(g(i), g(i +′ 1)) ∈ R], then g(0) ∈ dmn(f). For n = 1 we have (g(0), x) ∈ R, so
g(0) ∈ predAR(x) and hence g(0) ∈ dmn(f). Assume that it is true for n, and now assume
that g is a function with domain n+′ 2, g(n+′ 1) = x, and ∀i < n+′ 1[(g(i), g(i+′ 1)) ∈ R].
Define h(i) = g(i+′1) for all i < n. Then h(n) = g(n+′1) = x and ∀i < n[(h(i), h(i+′1)) =
(g(i +′ 1), g(i +′ 2)) ∈ R]. Hence h(0) ∈ dmn(f) by the inductive hypothesis. Since
(g(0), h(0)) = (g(0), g(1)) we have (g(0), h(0)) ∈ R and hence g(0) ∈ dmn(f). This
finishes the inductive proof of (2).

(3) If f is an approximation to F and x ∈ dmn(f), then pred′
AR∗(x) ⊆ dmn(f).
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This is clear from (2) and the definition of pred′
AR∗(x).

(4) If f is an approximation to F and x ∈ dmn(f), then f ↾ pred′
AR∗(x) is an approximation

to F.

In fact, if a ∈ pred′
AR∗(x) then predAR(a) ⊆ pred′

AR∗(x) by Theorem 8.3(ii). Suppose
that a ∈ pred′

AR∗(x). Then

(f ↾ pred′
AR∗(x))(a) = f(a) = G(a, f ↾ predAR(a))

= G(a, (f ↾ pred′
AR∗(x)) ↾ predAR(a)).

This proves (4).

(5) For all x ∈ A there is an approximation f to F such that x ∈ dmn(f).

Suppose not. Let X = {x ∈ A : there does not exist an approximation f to F such that
x ∈ dmn(f)}. So X is a nonempty subclass of A. By Theorem 8.5, let x be an R-minimal
element of X. Now if (y, x) ∈ R then y /∈ X, and so there is an approximation f to F
such that y ∈ dmn(f). Then by (4), also f ↾ pred′

AR∗(y) is an approximation to F. If
also g is an approximation to F such that y ∈ dmn(g), then by (4) g ↾ pred′

AR∗(y) is an
approximation to F. By (1), f ↾ pred′

AR∗(y) = g ↾ pred′
AR∗(y). Thus there is a unique

approximation to F whose domain is pred′
AR∗(y). This is true for all y ∈ predAR(x), so

by replacement and comprehension there is a set

A
def
= {f : f is an approximation to F with domain

pred′
AR∗(y), for some y ∈ predAR(x)}.

Let g =
⋃

A . We claim that g is an approximation to F. We prove this in several steps.
First, g is a function. For suppose that (a, b), (a, c) ∈ g. Choose f, f ′ ∈ A such

that (a, b) ∈ f and (a, c) ∈ f ′. Since both f and f ′ are approximations to F and a ∈
dmn(f) ∩ dmn(f ′), it follows from (1) that b = c.

Second, the domain of g is
⋃
{pred′

AR∗(y) : y ∈ predAR(x)}. In fact, if a ∈ dmn(g)
then there is an f ∈ A such that a ∈ dmn(f), and dmn(f) = pred′

AR∗(y) for some
y ∈ predAR(x); so a is in the indicated union. If y ∈ predAR(x), then pred′

AR∗(y) is
the domain of some f ∈ A , and hence pred′

AR∗(y) ⊆ dmn(g). So the domain of g is as
indicated.

Next, if a ∈ dmn(g) then predAR(a) ⊆ dmn(g). For, suppose that b ∈ predAR(a).
Then a ∈ dmn(f) for some f ∈ A , hence a ∈ pred′

AR∗(y) for some y ∈ predAR(x), so
b ∈ pred′

AR∗(y) by Theorem 8.3(ii), and it follows that b ∈ dmn(g). This proves that
predAR(a) ⊆ dmn(g).

The final condition for g to be an approximation to F is shown as follows. Suppose that
a ∈ dmn(g). Choose y ∈ predAR(x) such that a ∈ dmn(f), where f is an approximation
to F with domain pred′

AR(y). Then

g(a) = f(a) = G(a, f ↾ pred′
AR(y)) = G(a, g ↾ pred′

AR(y)).

Now let h = g ∪ {(x,G(x, g ↾ predAR(x)))}. We claim that h is an approximation to F.
Since x ∈ dmn(h), this is a contradiction, proving (5).
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To prove the claim, first note that h is a function, since x /∈ dmn(g) by the choice
of x, since g is an approximation. Clearly dmn(h) ⊆ A. Suppose that a ∈ dmn(h). if
a ∈ dmn(g), then predAR(a) ⊆ dmn(g) ⊆ dmn(h). If a = x and y ∈ predAR(x), then
y ∈ pred′

AR∗ ⊆ dmn(g) ⊆ dmn(h). Hence predAR(x) ⊆ dmn(h). Finally, if a ∈ dmn(g),
then

h(a) = g(a) = G(a, g ↾ predAR(a)) = G(a, h ↾ predAR(a)).

If a = x, then

h(a) = h(x) = G(x, g ↾ predAR(x)) = G(x, h ↾ predAR(x)).

So we have proved (5).
Now by (5), for all a ∈ A there is a b such that there is an f such that f is an

approximation to F and b ∈ dmn(f). By (1), this b is uniquely determined by a. Hence
there is a class function F′ such that for all a ∈ A, F′(a) is equal to such a b. Moreover,
if f is as indicated and b ∈ predAR(a), then F′(b) = f(b). Thus F′ ↾ predAR(a) = f ↾

predAR(a). It follows that

F′(a) = f(a) = G(a, f ↾ predAR(a)) = G(a,F′ ↾ predAR(a)).

Theorem 8.8. Suppose that R is a class relation which is well-founded and set like
on a class A, and G is a class function mapping A × V into V. Suppose that F and
F′ are class functions mapping A into V such that F(a) = G(a,F ↾ predAR(a)) and
F′(a) = G(a,F′ ↾ predAR(a)) for all a ∈ A. Then F = F′.

Proof. Suppose not. Then X
def
= {a ∈ A : F(a) 6= F′(a)} is a nonempty subclass of

A. Hence by Theorem 8.5 let a be an R-minimal element of X. If (b, a) ∈ R, then b /∈ X,
and hence F(b) = F′(b). Thus F ↾ predAR(a) = F′ ↾ predAR(a). So

F(a) = G(a,F ↾ predAR(a)) = G(a,F′ ↾ predAR(a)) = F′(a),

contradiction.

We make some remarks about the rigorous formulation of Theorems 8.7 and 8.8. In
Theorem 8.7 we are given formulas ϕ(x, y), ψ(x), and χ(x, y, z) corresponding to R, A,
and G. We assume that ϕ is well-founded and set-like on ψ. The assumption on χ is

∀x∀y[ψ(x)→ ∃!zχ(x, y, z)]

∧ ∀x∀y∀z[χ(x, y, z)→ ψ(x)].

The conclusion is that there is a formula θ(x, y) such that

∀x[ψ(x)→ ∃!yθ(x, y)]∧ ∀x∀y[θ(x, y)→ ψ(x)](∗)

∧ ∀x∃y∃f [f is a function ∧ ∀u∀v[(u, v) ∈ f ↔ ϕ(u, x) ∧ θ(u, v)] ∧ χ(x, f, y)]]
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The proof defines the formula θ explicitly. Namely, let µ(f) be the following formula, the
rigorous version of “f is an approximation to F”:

f is a function ∧ ∀ x[x ∈ dmn(f)→ ϕ(x)]∧

∀x∀y[x ∈ dmn(f) ∧ ϕ(y, x)→ y ∈ dmn(f)]∧

∀a∀g[a ∈ dmn(f) ∧ g is a function ∧ ∀y[y ∈ dmn(g)↔ ϕ(y, x)]∧

∀y ∈ dmn(g)[g(y) = f(y)]→ χ(a, g, f(a))]

Then θ(x, y) is the formula ∃f [µ(f) ∧ x ∈ dmn(f) ∧ f(x) = y].
The rigorous version of Theorem 8.8 is that if θ′(x, y) is another formula satisfying

(∗) (with θ replaced by θ′), then ∀x∀y[θ(x, y)↔ θ′(x, y)].

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 8.9. There are A,R such that R is not well-founded on A and is not set-like
on A.

Proof. We take On and R, where R = {(α, β) : α > β}. As shown after 8.2, R is not
set-like on On. It is also not well-founded on On, since ω is a nonempty set of ordinals,
but if m ∈ ω then (m+′ 1, m) ∈ R, so that ω does not have an R-minimal element.

Proposition 8.10. There are proper classes A,R such that R is not well-founded on A
but is set-like on A.

Proof. Let A = On and let

R = {(m,n) : m,n ∈ ω and m > n} ∪ {(α, β) : α < β}.

Proposition 8.11. There are sets A,R such that R is not well-founded on A but is
set-like on A.

Proof. Let A = ω and R = {(m,n) : m,n ∈ ω and m > n. Then ω does not have an
R-minimal element, since for any m ∈ ω we have (m+′ 1, m) ∈ R.

Proposition 8.12. There are A,R such that R is well-founded on A but is not set-like
on A.

Proof. Let A = V and R = {(a, ∅) : a ∈ V, a 6= ∅}. Thus predAR(∅) = V, so
R is not set-like on V. Now let X be a nonempty set. If X = {∅}, then ∅ ∈ X and
∀a ∈ X [(a, ∅) /∈ R]. If X 6= {∅}, take any a ∈ X\{∅}. Then ∀b ∈ X [(b, a) /∈ R].

Proposition 8.13. Suppose that R is a class relation contained in A ×A, x ∈ A, and
v ∈ predAR∗(x). Then if n ∈ ω\1, f is a function with domain n+′ 1, ∀i < n[(f(i), f(i+′

1)) ∈ R] and f(n) = v, then f(0) ∈ predAR∗(x).

Proof. Suppose that R is a class relation contained in A × A, x ∈ A, and v ∈
predAR∗(x). We take n = 1 in the condition to be proved. So, suppose that f is a function
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with domain 2 such that ∀i < 1[(f(i), f(i+′ 1)) ∈ R] and f(1) = v. Thus (f(0), v) ∈ R,
so f(0) ∈ predAR(v). By Lemma 8.3(ii), f(0) ∈ predAR∗(x).

Now suppose that if n ∈ ω\1, f is a function with domain n+′ 1, ∀i < n[(f(i), f(i+′

1)) ∈ R] and f(n) = v, then f(0) ∈ predAR∗(x). Suppose also now that f is a function
with domain n +′ 2, ∀i < n +′ 1[(f(i), f(i+′ 1)) ∈ R] and f(n +′ 1) = v. Define g with
domain n +′ 1 by setting g(i) = f(i +′ 1) for all i < n +′ 1. Then ∀i < n[(g(i), g(i +′

1)) = (f(i +′ 1), f(i +′ 2)) ∈ R] and g(n) = f(n +′ 1) = v. Hence by the inductive
assumption, f(1) = g(0) ∈ predAR∗(x). We also have (f(0), f(1)) ∈ R, so by Lemma
8.3(ii), f(0) ∈ predAR∗(x).

Proposition 8.14. Suppose that R is a class relation contained in A ×A, (u, v) ∈ R∗,
and (v, w) ∈ R∗. Then (u, w) ∈ R∗.

Proof. Assume that R is a class relation contained in A × A, (u, v) ∈ R∗, and
(v, w) ∈ R∗. Since (u, v) ∈ R∗, there exist n ∈ ω\1 and a function f with domain n +′ 1
such that ∀i < n[(f(i), f(i +′ 1)) ∈ R, f(0) = u, and f(n) = v. From exercise E8.4 it
follows that (u, w) ∈ R∗.

Proposition 8.15. There is a proper class X which has a proper class of ∈-minimal
elements.

Proof. Let X = {{α} : α ≥ 2}. We claim that all elements of X are ∈-minimal.
Suppose that α, β ≥ 2 and {α} ∈ {β}. Then {α} = β, Since β ≥ 2 we have 0, 1 ∈ β, so
0 = α = 1, contradiction.

Proposition 8.16. There is a proper class relation R contained in A × A for some
proper class A, and a class function G mapping A×V into V such that R is set-like on
A but not well-founded on A and there is no class function F mapping A into V such that
F(a) = G(a,F〈predAR(a)) for all a ∈ A.

Proof. Let A = On and

R = {(m,n) : m,n ∈ ω and m > n} ∪ {(α, β) : ω ≤ α < β}.

Thus R is a proper class relation contained in A ×A. Clearly R is set-like on On but it
is not well-founded on On. Define G : On×V→ V by setting

G(α, a) =

{

{a(α+′ 1)} if α ∈ ω and a is a function with domain {m ∈ ω : m > α},
∅ otherwise.

Suppose that F : A → V is such that F(α) = G(α,F ↾ predOnR(α)) for all α ∈ On. Let
f = F ↾ ω. Choose b ∈ rng(f) such that b ∩ rng(f) = ∅. Say b = f(m) with m ∈ ω. Now

f(m) = F(m) = G(m,F ↾ predOnR(m)) = G(m,F ↾ {n : n ∈ ω, n > m})

= {F(m+′ 1)} = {f(m+′ 1)},

so that f(m+′ 1) ∈ f(m) ∩ rng(f), contradiction.

102



Proposition 8.17. There is a proper class relation R contained in some A×A for some
proper class A and a class function G mapping A ×V into V such that R is set-like on
A but not well-founded on A but still there is a class function F mapping A into V such
that F(a) = G(a,F〈predAR(a)) for all a ∈ A.

Proof. Let A and R be as in Proposition 8.16, but define G(α, a) = α for all α ∈ On
and all a ∈ V. Then the function F : On → V such that F(α) = α for all α ∈ On is as
desired.
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9. Ordinals, II

Transfinite induction

The transfinite induction principles follow rather easily from the following generalization
of Theorem 7.13.

Theorem 9.1. Let A be an ordinal, or On. Then every nonempty subclass of A has a
least element.

Proof. This follows from Theorem 8.5.

There are two forms of the principle of transfinite induction, given in the following two
theorems.

Theorem 9.2. Let A be an ordinal or On. Suppose that B ⊆ A and the following
condition holds:

∀α ∈ A[α ⊆ B⇒ α ∈ B].

Then B = A.

Proof. Suppose not, and let α be the least element of A\B. Thus α ⊆ B, so by
hypothesis α ∈ B, contradiction.

Corollary 9.3. Suppose that B is a class of ordinals and the following condition holds:

∀α[α ⊆ B⇒ α ∈ B].

Then B = On.

Corollary 9.4. Suppose that β is an ordinal, X ⊆ β, and the following condition holds:

∀α < β[α ⊆ X ⇒ α ∈ X ].

Then X = β.

Theorem 9.5. Suppose that A is an ordinal or On, B ⊆ A, and the following conditions
hold:

(i) If 0 ∈ A, then 0 ∈ B.
(ii) If α+′ 1 ∈ A and α ∈ B, then α +′ 1 ∈ B.
(iii) If α is a limit ordinal, α ∈ A, and α ⊆ B, then α ∈ B.

Then B = A.

Proof. Suppose not, and let α be the least element of A\B. Then α 6= 0 by (i). If
α = β+′1 for some β, then β < α, so β ∈ B, and then α ∈ B by (ii), contradiction. Finally,
suppose that α is a limit ordinal. Then α ⊆ B, and so α ∈ B by (iii), conradiction.

Corollary 9.6. Suppose that B ⊆ On and the following conditions hold:
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(i) 0 ∈ B.
(ii) If α ∈ B, then α+′ 1 ∈ B.
(iii) If α is a limit ordinal and α ⊆ B, then α ∈ B.

Then B = On.

Transfinite recursion

Theorem 9.7. Suppose that G is a class function mapping On ×V into V. Then there
is a unique class function F mapping On into V such that F(α) = G(α,F ↾ α) for every
ordinal α.

Proof. We apply Theorems 8.7 and 8.8 with R = {(α, β) : α < β}.

Well-order

A partial order is a pair (P,<) such that P is a set, < is a relation contained in P × P ,
< is irreflexive (x 6< x for all x ∈ P ), and < is transitive (for all x, y, z ∈ P , x < y < z
implies that x < z). For (P,<) a partial order, we define p1 ≤ p2 iff p1 < p2 or p1 = p2.
A linear order is a partial order (P,<) such that for all x, y ∈ P , either x < y, x = y, or
y < x. A well-order is a linear order (P,<) such that for every nonempty X ⊆ P there is
an x ∈ X such that ∀y ∈ X [y 6< x]. This element x is called the <-least element of X .

Proposition 9.8. For any ordinal α, (α,<) is a well-order.

Proposition 9.9. If (P,<) is a well-order, then < is well-founded.

If (P,<) and (Q,≺) are partial orders, then a function f : P → Q is strictly increasing iff
∀p1, p2 ∈ P [p1 < p2 ⇒ f(p1) ≺ f(p2)].

Proposition 9.10. If (A,<) and (B,≺) are linearly orders and f : A → B is strictly
increasing, then ∀a0, a1 ∈ A[a0 < a1 ⇔ f(a0) ≺ f(a1)].

Proof. The direction ⇒ is given by the definition. Now suppose that it is not true
that a0 < a1. Then a1 ≤ a0, so f(a1) ≤ f(a0). So f(a0) < f(a1) is not true.

Proposition 9.11. If (A,<) is a well-ordered set and f : A → A is strictly increasing,
then x ≤ f(x) for all x ∈ A.

Proof. Suppose not. Then then set B
def
= {x ∈ A : f(x) < x} is nonempty. Let b be

the least element of B. Thus f(b) < b. Hence by the choice of b, we have f(b) ≤ f(f(b)).
Hence by Proposition 9.10, b ≤ f(b), contradiction.

Let (A,<) and (B,≺) be partial orders. An isomorphism from (A,<) onto (B,≺) is a
function f mapping A onto B such that ∀a1, a2 ∈ A[a1 < a2 iff f(a1) ≺ f(a2)].

Proposition 9.12. If (A,<) and (B,≺) are isomorphic well-orders, then there is a unique
isomorphism f mapping A onto B.
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Proof. The existence of f follows from the definition. Suppose that both f and g are
isomorphisms from A onto B. Then f−1 ◦g is a strictly increasing function from A into A,
so by Proposition 9.11 we get x ≤ (f−1 ◦ g)(x) for every x ∈ A; so f(x) ≤ g(x) for every
x ∈ A. Similarly, g(x) ≤ f(x) for every x ∈ A, so f = g.

Corollary 9.13. If α 6= β, then (α,<) and (β,<) are not isomorphic.

Proof. Suppose to the contrary that f is an isomorphism from (α,<) onto (β,<),
with β < α. Then f is a strictly increasing function mapping α into α. Hence β ≤ f(β) < β
by Proposition 9.11, contradiction.

The following theorem is fundamental. The proof is also of general interest; it can be
followed in outline form in many other situations.

Theorem 9.14. Every well-order is isomorphic to an ordinal.

Proof. Let (A,≺) be a well-order. We may assume that A 6= ∅. We define a class
function G : On×V→ V as follows. For any ordinal α and set x,

G(α, x) =
{
≺ -least element of A\rng(x) if x is a function and this set is nonempty,
A otherwise.

Now by Theorem 9.7 let F : On→ V be such that F(β) = G(β,F ↾ β) for each ordinal β.

(1) If β < γ and F(β) = A, then F(γ) = A.

For, A\rng(F ↾ γ) ⊆ A\rng(F ↾ β), so A\rng(F ↾ β) empty implies that A\rng(F ↾ γ) is
empty, giving (1).

(2) if β < γ and F(γ) 6= A, then F(β) 6= A and F(β) ≺ F(γ).

The first assertion follows from (1). For the second assertion, note that A\rng(F ↾ γ) ⊆
A\rng(F ↾ β), hence F(γ) ∈ A\rng(F ↾ β), so F(β) � F(γ) by definition. Also F(β) ∈
rng(F ↾ γ), and F(γ) /∈ rng(F ↾ γ), so F(β) ≺ F(γ), as desired in (2).

(3) There is an ordinal γ such that F(γ) = A.

In fact, suppose not. Let B = {a ∈ A : ∃α[F(α) = a]}. Then F−1 maps B onto On, so by
the replacement axiom, On is a set, contradiction.

Choose γ minimum such that F(γ) = A. (Note that F(0) 6= A, since A is nonempty
and so has a least element.) By (2), F ↾ γ is strictly inceasing and maps onto A. Hence
F ↾ γ is the desired isomorphism, using Proposition 9.10.

Ordinal class functions

We say that F is an ordinal class function iff F is a class function whose domain is an
ordinal, or the whole class On, and whose range is contained in On. We consider three
properties of an ordinal class function F with domain A:

• F is strictly increasing iff for any ordinals α, β ∈ A, if α < β then F(α) < F(β).
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• F is continuous iff for every limit ordinal α ∈ A, F(α) =
⋃

β<αF(β).

• F is normal iff it is continuous and strictly increasing.

The following is a version of Proposition 9.11, with essentially the same proof.

Proposition 9.15. If F is a strictly increasing ordinal class function with domain A,
then α ≤ F(α) for every ordinal α ∈ A.

Proof. Suppose not, and let α be the least member of A such that F(α) < α.
Then F(F(α)) < F(α), so that F(α) is an ordinal β smaller than α such that F(β) < β,
contradiction.

Proposition 9.16. If F is a continuous ordinal class function with domain A, and
F(α) < F(α+′ 1) for every ordinal α such that α +′ 1 ∈ A, then F is strictly increasing.

Proof. Fix an ordinal γ ∈ A, and suppose that there is an ordinal δ ∈ A with γ < δ
and F(δ) ≤ F(γ); we want to get a contradiction. Take the least such δ.

Case 1. δ = θ +′ 1 for some θ. Thus γ ≤ θ. If γ = θ, then F(γ) < F(δ) by
the hypothesis of the proposition, contradicting our supposition. Hence γ < θ. Hence
F(γ) < F(θ) by the minimality of δ, and F(θ) < F(δ) by the assumption of the proposition,
so F(γ) < F(δ), contradiction.

Case 2. δ is a limit ordinal. Then there is a θ < δ with γ < θ, and so by the minimality
of δ we have

F(γ) < F(θ) ≤
⋃

ε<δ

F(ε) = F(δ),

contradiction.

Proposition 9.17. Suppose that F is a normal ordinal class function with domain A,
and ξ ∈ A is a limit ordinal. Then F(ξ) is a limit ordinal too.

Proof. Suppose that γ < F(ξ). Thus γ ∈
⋃

η<ξ F(η), so there is a η < ξ such that
γ < F(η). Now F(η) < F(ξ). Hence F(ξ) is a limit ordinal.

Proposition 9.18. Suppose that F and G are normal ordinal class functions, with do-
mains A,B respectively, and the range of F is contained in B. Then also G◦F is normal.

Proof. Clearly G◦F is strictly increasing. Now suppose that ξ ∈ A is a limit ordinal.
Then F(ξ) is a limit ordinal by Proposition 9.17.

Suppose that ρ < ξ. Then F(ρ) < F(ξ), so G(F(ρ)) ≤
⋃

η<F(ξ) G(η) = G(F(ξ)).
Thus

(∗)
⋃

ρ<ξ

G(F(ρ)) ≤ G(F(ξ)).

Now if η < F(ξ), then by the continuity of F, η <
⋃

ρ<ξ F(ρ), and hence there is a
ρ < ξ such that η < F(ρ); so G(η) < G(F(ρ)). So for any η < F(ξ) we have G(η) ≤
⋃

ρ<ξ G(F(ρ)). Hence

G(F(ξ)) =
⋃

η<F(ξ)

G(η) ≤
⋃

ρ<ξ

G(F(ρ));
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together with (∗) this gives the continuity of G ◦ F .

Ordinal addition

We use the general recursion theorem to define ordinal addition:

Theorem 9.19. There is a unique function + mapping On ×On into On such that the
following conditions hold for any α:

(i) α+ 0 = α;
(ii) α + (β +′ 1) = (α+ β) +′ 1;
(iii) α+ γ =

⋃

β<γ(α+ β) for γ a limit ordinal.

Proof. For the existence we use the main recursion theorem, Theorem 8.7. Let
A = On×On, and let R = {((α, β), (α, γ) : β < γ. Then predAR(α, β) = {α} × β, a set.
Thus R is set-like. Given a nonempty subset X of A, choose (α, γ) ∈ X , and then choose
β minimum such that (α, β) ∈ X . Clearly (α, β) is an R-minimal element of X . Thus R
is well-founded on A.

Now we define G : A×V→ V. For any α, β and any set x, let

G((α, β), x) =







α if β = 0,
x(α, γ) +′ 1 if x is a function with domain {α} × β

and β = γ +′ 1,
⋃

γ<β x(α, γ) if x is a function with domain {α} × β
and β is a limit ordinal,

∅ otherwise.

Then by Theorem 8.7 let F : A → V be such that F(y) = G(y,F ↾ predAR(y)) for any
y ∈ A. Then

F(α, 0) = G((α, 0),F ↾ predAR((α, 0))) = α;

F(α, β +′ 1) = G((α, β +′ 1),F ↾ predAR((α, β +′ 1)))

= F(α, β) +′ 1;

F(α, β) = G((α, β),F ↾ predAR((α, β)))

=
⋃

γ<β

F(α, γ) if β is a limit ordinal.

Thus writing α+ β instead of F(α, β) we see that F is as desired.
Now suppose that +o also satisfies the conditions of the theorem. We show that

α+ β = α+o β for all α, β, by fixing α and going by induction on β, using Corollary 9.9.
We have α+0 = α = α+oβ. Assume that α+β = α+oβ. Then α+(β+′1) = (α+β)+′1 =
(α +o β) +′ 1 = α +o (β +′ 1). Assume that β is a limit ordinal and α + γ = α +o γ for
every γ < β. Then α+ β =

⋃

γ<β α+ γ =
⋃

γ<β α +o γ = α+o β.

Proposition 9.20. α+ 1 = α+′ 1 for any ordinal α.

Proof. α+ 1 = α+ (0 +′ 1) = (α+ 0) +′ 1 = α+′ 1.
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Now we can stop using the notation α +′ 1, using α+ 1 instead.
We state the simplest properties of ordinal addition in the following theorem., Weakly

increasing means that α < β implies that F(α) ≤ F(β).

Theorem 9.21. (i) If m,n ∈ ω, then m+ n ∈ ω.
(ii) For any ordinal α, the class function F which takes each ordinal β to α + β is a

normal function.
(iii) For any ordinal β, the class function F which takes each ordinal α to α + β is

weakly increasing.
(iv) α+ (β + γ) = (α+ β) + γ.
(v) β ≤ α+ β.
(vi) 0 + α = α.
(vii) α ≤ β iff there is a δ such that α+ δ = β.
(viii) α < β iff there is a δ > 0 such that α+ δ = β.

Proof. (i): with m fixed we use induction on n, thus appealing to Theorem 7.14. We
have m+0 = m ∈ ω. Assume that n ∈ ω and m+n ∈ ω. then m+(n+1) = (m+n)+1 ∈ ω,
completing the induction.

(ii): by Proposition 9.19.
(iv): Fix α and β; we proceed by induction on γ. The case γ = 0 is obvious. Assume

that α+ (β + γ) = (α+ β) + γ. Then

α+ (β + (γ + 1)) = α+ ((β + γ) + 1)

= (α+ (β + γ)) + 1

= ((α+ β) + γ) + 1

= (α+ β) + (γ + 1).

Finally, suppose that γ is a limit ordinal and we know our result for all δ < γ. Let F,G,H
be the ordinal class functions such that, for any ordinal δ,

F(δ) = α+ δ;

G(δ) = (α+ β) + δ;

H(δ) = β + δ.

Thus according to (ii), all three of these functions are normal. Hence, using Proposition
9.18,

α+ (β + γ) = F(H(γ))

=
⋃

δ<γ

F(H(δ))

=
⋃

δ<γ

(α+ (β + δ))

=
⋃

δ<γ

((α+ β) + δ
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=
⋃

δ<γ

G(δ)

= G(γ)

= (α+ β) + γ.

(v): by (ii) and Proposition 9.15.
(vi): induction on α. 0 + 0 = 0. If 0 + α = α, then 0 + (α+ 1) = (0 + α) + 1 = α+ 1.

If α is limit and 0 + β = β for all β < α, then 0 + α =
⋃

β<α(0 + β) =
⋃

β<α β = α.
(vii): In the ⇒ direction, assume that α ≤ β. Now β ≤ α + β by (v). Let δ be

minimum such that β ≤ α + δ. Suppose that β < α + δ. If δ = ε + 1 for some ε, then
β < (α + ε) + 1 and hence β ≤ α + ε using Proposition 7.10. This contradicts the choice
of δ. A similar contradiction is reached if δ is a limit ordinal. So β = α + δ.

For the⇐ direction, we prove that α ≤ α+δ for all δ by induction on δ. It is clear for
δ = 0. Assume that α ≤ α+ δ. Now α+ δ < (α+ δ) + 1 = α+ (δ+ 1), so α ≤ α+ (δ+ 1).
Finally, suppose that δ is a limit ordinal and α ≤ α + γ for all γ < δ. Clearly then
α ≤

⋃

γ<χ(α+ γ) = α + δ.
(viii): If α < β, choose δ by (vii) so that α + δ = β. Since α 6= β we have δ > 0. For

the other direction, if α + δ = β with δ > 0, then α = α + 0 < α+ δ = β, using (ii).
(iii): Suppose that γ < α. By (viii), choose δ > 0 such that γ+δ = α. Then β ≤ δ+β

by (v), and so by (ii) and (iv), γ + β ≤ γ + (δ + β) = (γ + δ) + β = α+ β.

Note that + is not commutative. In fact, 1 +ω = ω < ω+ 1. The ordinal class function F,
which for a fixed β takes each ordinal α to α + β, is not continuous. For example, ω + 1
is not equal to

⋃

m∈ω(m+ 1), as the latter is equal to ω.

Ordinal multiplication

Theorem 9.22. There is a unique function · mapping On ×On into On such that the
following conditions hold:

α · 0 = 0;

α · (β + 1) = α · β + α;

α · β =
⋃

γ<β

(α · γ) for β limit.

Proof. The proof is very similar to the proof of Theorem 9.19. We start with A and
R as in that proof.

Now we define G : A×V→ V. For any α, β and any set x, let

G((α, β), x) =







0 if β = 0,
x(α, γ) + α if x is a function with domain {α} × β

and β = γ +′ 1,
⋃

γ<β x(α, γ) if x is a function with domain {α} × β
and β is a limit ordinal,

∅ otherwise.
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Then by Theorem 8.7 let F : A → V be such that F(y) = G(y,F ↾ predAR(y)) for any
y ∈ A. Then

F(α, 0) = G((α, 0),F ↾ predAR((α, 0))) = 0;

F(α, β +′ 1) = G((α, β +′ 1),F ↾ predAR((α, β +′ 1)))

= F(α, β) + α;

F(α, β) = G((α, β),F ↾ predAR((α, β)))

=
⋃

γ<β

F(α, γ) if β is a limit ordinal.

Thus writing α · β instead of F(α, β) we see that F is as desired.
Now suppose that ·o also satisfies the conditions of the theorem. We show that α ·β =

α ·o β for all α, β, by fixing α and going by induction on β, using Corollary 9.9. We have
α ·0 = 0 = α ·o β. Assume that α ·β = α ·o β. Then α · (β+1) = (α ·β) +α = (α ·o β) +1 =
α ·o (β + 1). Assume that β is a limit ordinal and α · γ = α ·o γ for every γ < β. Then
α · β =

⋃

γ<β(α · γ) =
⋃

γ<β(α ·o γ) = α ·o β.

Here are some basic properties of ordinal multiplication:

Theorem 9.23. (i) If m,n ∈ ω, then m · n ∈ ω.
(ii) If α 6= 0, then α · β < α · (β + 1);
(iii) If α 6= 0, then the class function assigning to each ordinal β the product α · β is

normal.
(iv) 0 · α = 0;
(v) α · (β + γ) = (α · β) + (α · γ);
(vi) α · (β · γ) = (α · β) · γ;
(vii) If α 6= 0, then β ≤ α · β;
(viii) If α < β then α · γ ≤ β · γ;
(ix) α · 1 = α.
(x) α · 2 = α + α.
(xi) If α, β 6= 0 then α · β 6= 0.

Proof. (i): Induction on n, with m fixed. m · 0 = 0 ∈ ω. Assume that m · n ∈ ω.
Then m · (n+1) = m ·n+m; this is in ω by the inductive hypothesis and Theorem 9.21(i).

(ii): Using 9.21(ii), α · β = α · β + 0 < α · β + α = α · (β + 1).
(iii): this follows from (ii) and Proposition 9.16.
(iv): We prove this by induction on α. 0 · 0 = 0. Assuming that 0 · α = 0, we have

0 · (α+ 1) = 0 · α+ 0 = 0 + 0 = 0. Assuming that α is a limit ordinal and 0 · γ = 0 for all
γ < α, we have 0 · α =

⋃

γ<α(0 · γ) =
⋃

γ<α 0 = 0.
(v) Fix α and β. By (iv) we may assume that α 6= 0; we then proceed by induction on

γ. We define some ordinal class functions F,F′,G: for any γ, F(γ) = β+γ; F′(γ) = α·β+γ;
G(γ) = α · γ. These are normal functions by (iii) and Theorem 9.21(ii).

First of all,

α · (β + 0) = α · β = (α · β) + 0 = (α · β) + (α · 0),
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so (v) holds for γ = 0. Now assume that (v) holds for γ. Then

α · (β + (γ + 1)) = α · ((β + γ) + 1)

= α · (β + γ) + α

= (α · β) + (α · γ) + α

= (α · β) + (α · (γ + 1)),

as desired.
Finally, suppose that δ is a limit ordinal and we know (v) for all γ < δ. Then

α · (β + δ) = G(F(δ))

= (G ◦ F)(δ)

=
⋃

γ<δ

(G ◦ F)(γ)

=
⋃

γ<δ

(α · (β + γ))

=
⋃

γ<δ

((α · β) + (α · γ))

=
⋃

γ<δ

F′(G(γ))

=
⋃

γ<δ

(F′ ◦G)(γ)

= (F′ ◦G)(δ)

= (α · β) + (α · δ),

as desired. This completes the proof of (v).
(vi): For α = 0, 0 · (β · γ) = 0 by (iv), and by (iv) again, (0 · β) · γ = 0 · γ = 0. For

β = 0, α · (0 · γ) = α · 0 = 0 using (iv), and (α · 0) · γ = 0 · γ = 0, using (iv) again.
So we assume that α, β 6= 0. With fixed α, β we now proceed by induction on γ. Let

F and G be the class functions defined by F(δ) = β · δ and G(δ) = α · δ for all δ. These
are normal functions by (iii). Then α · (β · 0) = α · 0 = 0 = (α · β) · 0. Assuming that
α · (β · γ) = (α · β) · γ, we have

α · (β · (γ + 1)) = α · (β · γ + β)

= α · (β · γ) + α · β

= (α · β) · γ + α · β

= (α · β) · (γ + 1).

Finally, for δ limit, assuming that α · (β · γ) = (α · β) · γ for all γ < δ, we have

α · (β · δ) = G(F(δ))
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= (G ◦ F)(δ)

=
⋃

γ<δ

G(F(γ))

=
⋃

γ<δ

α · (β · γ)

=
⋃

γ<δ

(α · β) · γ

= (α · β) · δ.

(vii): follows from (ii) and Proposition 9.15.
(viii): Fix α < β. We prove that α·γ ≤ β·γ by induction on γ. We have α·0 = 0 = β·0,

so α · 0 ≤ β · 0. Suppose that α · γ ≤ β · γ. Then

α · (γ + 1) = α · γ + α

≤ β · γ + α induction hypothesis, Theorem 9.21(iii)

< β · γ + β Theorem 9.21(ii)

= β · (γ + 1).

Finally, suppose that γ is a limit ordinal and α · δ ≤ β · δ for every δ < γ. Then

α · γ =
⋃

δ<γ

(α · δ)

≤
⋃

δ<γ

(β · δ) induction hypothesis, Proposition 7.8

= β · γ.

(ix): α · 1 = α · (0 + 1) = α · 0 + α = 0 + α = α using Proposition 9.21(vi).
(x): α · 2 = α · (1 + 1) = α · 1 + α = α + α.
(xi): With α 6= 0 fixed we go by induction on β, proving that β 6= 0 implies that

α · β 6= 0. This is vacuously true for β = 0. Assume that the implication holds for β, and
assume that β + 1 6= 0. Then α · (β + 1) = α · β + α > α · β + 0 = α · β using (iii); so
α · (β + 1) 6= 0. Finally, suppose that β is a limit ordinal and the implication holds for all
γ < β. Then α · β =

⋃

γ<β(α · γ) ≥ α · 1 6= 0.

The commutative law for multiplication fails in general. For example, 2 · ω = ω while
ω · 2 = ω + ω > ω. Also the distributive law (α+ β) · γ = α · γ + β · γ fails in general. For
example, (1 + 1) · ω = 2 · ω = ω, while 1 · ω+ 1 · ω = ω+ ω > ω. Here we use the fact that
1 · ω = ω. In fact, 1 · α = α for any ordinal α, as is easily shown by induction on α.

Ordinal exponentiation

Theorem 9.24. There is a unique function mapping On × On into On such that the
following conditions hold, where we write the value of the function at an argument (α, β)
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as αβ:

α0 = 1;

αβ+1 = αβ · α;

αβ =
⋃

γ<β

(αγ) for β limit.

Proof. The proof is very similar to the proofs of Theorem 9.19 and 9.22. We start
with A and R as in those proofs.

Now we define G : A×V→ V. For any α, β and any set x, let

G((α, β), x) =







1 if β = 0,
x(α, γ) · α if x is a function with domain {α} × β

and β = γ +′ 1,
⋃

γ<β x(α, γ) if x is a function with domain {α} × β
and β is a limit ordinal,

∅ otherwise.

Then by Theorem 8.7 let F : A → V be such that F(y) = G(y,F ↾ predAR(y)) for any
y ∈ A. Then

F(α, 0) = G((α, 0),F ↾ predAR((α, 0))) = 1;

F(α, β +′ 1) = G((α, β +′ 1),F ↾ predAR((α, β +′ 1)))

= F(α, β) · α;

F(α, β) = G((α, β),F ↾ predAR((α, β)))

=
⋃

γ<β

F(α, γ) if β is a limit ordinal.

Thus writing αβ instead of F(α, β) we see that F is as desired.
Now suppose that F′ also satisfies the conditions of the theorem. We show that

αβ = F′(α, β) for all α, β, by fixing α and going by induction on β, using Corollary 9.9.
We have α0 = 1 = F′(α, β). Assume that αβ = F′(α, β). Then αβ+1 = (αβ) · α =
F′(α, β) · α = F′(α, β + 1). Assume that β is a limit ordinal and αγ = F′(α, γ) for every
γ < β. Then αβ =

⋃

γ<β α
γ =

⋃

γ<β F′(α, γ) = F′(α, β).

Now we give the simplest properties of exponentiation.

Theorem 9.25. (i) If m,n ∈ ω, then mn ∈ ω.
(ii) 00 = 1;
(iii) 0β+1 = 0;
(iv) 0β = 1 for β a limit ordinal;
(v) 1β = 1;
(vi) If α 6= 0, then αβ 6= 0;
(vii) If α > 1 then αβ < αβ+1;
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(viii) If α > 1, then the ordinal class function assigning to each ordinal β the value
αβ is normal;

(ix) If α > 1, then β ≤ αβ;
(x) If 0 < α < β, then αγ ≤ βγ ;
(xi) For α 6= 0, αβ+γ = αβ · αγ;
(xii) For α 6= 0, (αβ)γ = αβ·γ.

Proof. (i): With m fixed we go by induction on n. m0 = 1 ∈ ω. Assume that
mn ∈ ω. Then mn+1 = mn ·m ∈ ω by the induction hypothesis and Theorem 9.23(i).

(ii): Obvious.
(iii): 0β+1 = 0β · 0 = 0.
(iv): We prove by induction on β that

0β =

{
1 if β = 0,
0 if β is a successor ordinal,
1 if β is a limit ordinal.

This is clearly true for β = 0, and if it is true for γ then it is true for γ + 1 by (iii). Now
suppose that β is a limit ordinal and it is true for all γ < β. Thus 0γ is 0 or 1 for each
γ < β, and 00 = 1 with 0 < β, so 0β =

⋃

γ<β 0γ = 1.

(v): we prove this by induction on β. 10 = 1. Assume that 1β = 1. Then 1β+1 =
1β · 1 = 1 · 1 = 1. Assume that β is a limit ordinal and 1γ = 1 for all γ < β. Then
1β =

⋃

γ<β 1γ = 1.

(vi) With α 6= 0 fixed, we go by induction on β. α0 = 1 6= 0. Assume that αβ 6= 0.
Then αβ+1 = αβ · α 6= 0 by the inductive hypothesis and Theorem 9.23(xi). Assume that
β is a limit ordinal and αγ 6= 0 for all γ < β. Then αβ =

⋃

γ<β α
γ 6= 0 by the inductive

hypothesis, since 0 < β and α0 6= 0.
(vii): We have αβ+1 = αβ · α > αβ · 1 = αβ using (vi) and Theorem 9.23(iii),(ix).
(viii): by (vii) and Theorem 9.16.
(ix): by (viii) and Theorem 9.15.
(x): With 0 < α < β, induction on γ. α0 = 1 = β0. Assume that αγ ≤ βγ . Then

αγ+1 = αγ · α ≤ βγ · α (by the inductive hypothesis and Theorem 9.23(viii)) < βγ · β (by
Theorem 9.23 (iii)) = βγ+1. Now assume that αγ ≤ αβ for all γ < δ, where δ is a limit
ordinal. Then αδ =

⋃

γ<δ α
γ ≤

⋃

γ<δ β
γ = βδ, using Proposition 7.12.

(xi): By (v) we may assume that α > 1. Define F(δ) = β+δ, G(δ) = αδ, H(δ) = αβ ·δ.
These are normal functions by Theorem 9.21(ii), Theorem 9.23(iii) and (vi), and (viii).

Now we go by induction on γ. αβ+0 = αβ = αβ · 1 = αβ · α0. Assume that αβ+γ =
αβ · αγ . Then αβ+γ+1 = αβ+γ ·α = αβ ·αγ ·α+ aβ ·αγ+1. Finally, suppose that δ is limit
and αβ+γ = αβ · αγ for every γ < δ. Then

αβ+δ = G(F(δ))

=
⋃

γ<δ

G(F(γ))

=
⋃

γ<δ

αβ+γ
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=
⋃

γ<δ

(αβ · αγ)

=
⋃

γ<δ

H(γ)

= H(δ)

= αβ · αδ.

(xii): First note that it holds for β = 0, since (α0)γ = 1γ = 1 and α0·γ = α0 = 1.
Similarly, it holds for α = 1. Now assume that α > 1 and β > 0. Let F(δ) = αδ for any δ,
and G(δ) = β · δ for any δ. Then F and G are normal functions. Now we prove the result
by induction on γ. First, (αβ)0 = 1 = α0 = αβ·0. Now assume that (αβ)γ = αβ·γ . Then

(αβ)γ+1 = (αβ)γ · αβ = αβ·γ · αβ = αβ·γ+β = αβ·(γ+1).

Finally, suppose that δ is a limit ordinal and (αβ)γ = αβ·γ for all γ < δ. Then

(αβ)δ =
⋃

γ<δ

(αβ)γ

=
⋃

γ<δ

αβ·γ

=
⋃

γ<δ

F(G(γ))

= F(G(δ))

= αβ·δ

Theorem 9.26. (division algorithm) Suppose that α and β are ordinals, with β 6= 0. Then
there are unique ordinals ξ, η such that α = β · ξ + η with η < β.

Proof. First we prove the existence. Note that α < α + 1 ≤ β · (α + 1). Thus there
is an ordinal number ρ such that α < β · ρ; take the least such ρ. Obviously ρ 6= 0. If ρ is
a limit ordinal, then because β · ρ =

⋃

σ<ρ(β · σ), it follows that there is a σ < ρ such that
α < β · σ, contradicting the minimality of ρ. Thus ρ is a successor ordinal ξ + 1. By the
definition of ρ we have β · ξ ≤ α. Hence there is an ordinal η such that β · ξ + η = α. We
claim that η < β. Otherwise, α = β · ξ + η ≥ β · ξ + β = β · (ξ + 1) = β · ρ, contradicting
the definition of ρ. This finishes the proof of existence.

For uniqueness, suppose that also α = β · ξ′ + η′ with η′ < β. Suppose that ξ 6= ξ′.
By symmetry, say ξ < ξ′. Then

α = β · ξ + η < β · ξ + β = β · (ξ + 1) ≤ β · ξ′ ≤ β · ξ′ + η′ = α,

contradiction. Hence ξ = ξ′. Hence also η = η′.

Theorem 9.27. (extended division algorithm)Let α and β be ordinals, with α 6= 0 and
1 < β. Then there exist unique ordinals γ, δ, ε such that the following conditions hold:
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(i) α = βγ · δ + ε.
(ii) γ ≤ α.
(iii) 0 < δ < β,
(iv) ε < βγ .

Proof. We have α < α + 1 ≤ βα+1; so there is an ordinal ϕ such that α < βϕ. We
take the least such ϕ. Clearly ϕ is a successor ordinal γ + 1. So we have βγ ≤ α < βγ+1.
Now βγ 6= 0, since β > 1. Hence by the division algorithm there are ordinals δ, ε such that
α = βγ · δ + ε, with ε < βγ . Now δ < β; for if β ≤ δ, then

α = βγ · δ + ε ≥ βγ · β = βγ+1 > α,

contradiction. We have δ 6= 0, as otherwise α = ε < βγ , contradiction.. Also, γ ≤ α, since

α = βγ · δ + ε ≥ βγ ≥ γ.

This proves the existence of γ, δ, ε as called for in the theorem.
Suppose that γ′, δ′, ε′ also satisfy the indicated conditions; thus

(1) α = βγ
′

· δ′ + ε′,

(2) γ′ ≤ α,

(3) 0 < δ′ < β,

(4) ε′ < βγ
′

.

Suppose that γ 6= γ′; by symmetry, say that γ < γ′. Then

α = βγ · δ + ε < βγ · δ + βγ = βγ · (δ + 1) ≤ βγ · β = βγ+1 ≤ βγ
′

≤ α,

contradiction. Hence γ = γ′. Hence by the ordinary division algorithm we also have δ = δ′

and ε = ε′.

We can obtain an interesting normal form for ordinals by re-applying Theorem 9.27 to the
“remainder” ε over and over again. That is the purpose of the following definitions and
results. This generalizes the ordinary decimal and binary systems of notation, by taking
β = 10 or β = 2 and restricting to natural numbers. For infinite ordinals it is useful to
take β = ω; this gives the Cantor normal form.

To abbreviate some long expressions, we let N(β,m, γ, δ) stand for the following state-
ment:

β is an ordinal > 1, m is a positive integer, γ and δ are sequences of ordinals each of
length m, and:

(1) γ(0) > γ(1) > · · · > γ(m− 1);

(2) 0 < δ(i) < β for each i < m.

117



If N(β,m, γ, δ), then we define

k(β,m, γ, δ) = βγ(0) · δ(0) + βγ(1) · δ(1) + · · ·+ βγ(m−1) · δ(m− 1).

Lemma 9.28. Assume that N(β,m, γ, δ) and N(β, n, γ′, δ′). Then:
(i) k(β,m, γ, δ) ≥ γ(0).
(ii) If m > 1 and N(β,m, γ, δ), then N(β,m−1, 〈γ(1), . . . , γ(m−1)〉, 〈δ(1), . . . , δ(m−

1)〉).
(iii) If m > 1, then k(β,m, γ, δ) = βγ(0) · δ(0) + k(β,m − 1, 〈γ(1), . . . , γ(m −

1)〉, 〈δ(1), . . . , δ(m− 1)〉).
(iv) k(β,m, γ, δ) < βγ(0) · (δ(0) + 1) ≤ βγ(0)+1.
(v) If γ(0) 6= γ′(0), then k(β,m, γ, δ) < k(β, n, γ′, δ′) iff γ(0) < γ′(0).
(vi) If γ(0) = γ′(0) and δ(0) 6= δ′(0), then k(β,m, γ, δ) < k(β, n, γ′, δ′) iff δ(0) < δ′(0).
(vii) If γ(j) = γ′(j) and δ(j) = δ′(j) for all j < i, while γ(i) 6= γ′(i), then

k(β,m, γ, δ) < k(β, n, γ′, δ′) iff γ(i) < γ′(i).
(viii) If γ(j) = γ′(j) and δ(j) = δ′(j) for all j < i, while γ(i) = γ′(i) and δ(i) 6= δ′(i),

then k(β,m, γ, δ) < k(β, n, γ′, δ′) iff δ(i) < δ′(i).
(ix) If γ ⊆ γ′, δ ⊆ δ′, and m < n, then k(β,m, γ, δ) < k(β, n, γ′, δ′).

Proof. (i): k(β,m, γ, δ) ≥ βγ(0) ≥ γ(0).
(ii), (iii): Clear.
(iv): Induction on m. It is clear for m = 1. Now suppose inductively that m > 1.

Then

βγ(0) · δ(0) + βγ(1) · δ(1) + · · ·+ βγ(m−1) · δ(m− 1)

= βγ(0) · δ(0) + k(β,m− 1, 〈γ(1), . . . , γ(m− 1)〉, 〈δ(1), . . . , δ(m− 1)〉) by (iii)

< βγ(0) · δ(0) + βγ(1) · (δ(1) + 1) (inductive hypothesis)

≤ βγ(0) · δ(0) + βγ(1)+1

≤ βγ(0) · δ(0) + βγ(0)

= βγ(0) · (δ(0) + 1)

≤ βγ(0) · β

= βγ(0)+1.

For (v), assume the hypothesis, and suppose that γ(0) < γ′(0). Then

k(β,m, γ, δ) < βγ(0) · (δ(0) + 1) ≤ βγ(0)+1

≤ βγ
′(0)

≤ k(β, n, γ′, δ′).

By symmetry (v) now follows.
For (vi), assume the hypothesis, and suppose that δ(0) < δ′(0). Then

k(β,m, γ, δ) < βγ(0) · (δ(0) + 1) = βγ
′(0) · (δ(0) + 1)

≤ βγ
′(0) · δ′(0)

≤ k(β, n, γ′, δ′)
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By symmetry (vi) now follows.
(vii) is clear from (v), by deleting the first i summands of the sums.
(viii) is clear from (vi), by deleting the first i summands of the sums.
(ix) is clear.

Theorem 9.29. (expansion theorem) Let α and β be ordinals, with α 6= 0 and 1 < β.
Then there exist a unique m ∈ ω and finite sequences 〈γ(i) : i < m〉 and 〈δ(i) : i < m〉 of
ordinals such that the following conditions hold:

(i) α = βγ(0) · δ(0) + βγ(1) · δ(1) + · · ·+ βγ(m−1) · δ(m− 1).
(ii) α ≥ γ(0) > γ(1) > · · · > γ(m− 1).
(iii) 0 < δ(i) < β for each i < m.

Proof. For the existence, with β > 1 fixed we proceed by induction on α. Assume
that the theorem holds for every α′ < α such that α′ 6= 0, and suppose that α 6= 0. By
Theorem 9.27, let ϕ, ψ, θ be such that

(1) α = βϕ · ψ + θ,

(2) ϕ ≤ α,

(3) 0 < ψ < β,

(4) θ < βϕ.

If θ = 0, then we can take our sequences to be 〈γ(0)〉 and 〈δ(0)〉, with γ(0) = ϕ and
δ(0) = ψ. Now assume that θ > 0. Then

θ < βϕ ≤ βϕ · ψ + θ = α;

so θ < α. Hence by the inductive assumption we can write

θ = βγ(0) · δ(0) + βγ(1) · δ(1) + · · ·+ βγ(m−1) · δ(m− 1)

with

(5) θ ≥ γ(0) > γ(1) > · · · > γ(m− 1).

(6) 0 < δ(i) < β for each i < m.

Then our desired sequences for α are

〈ϕ, γ(0), γ(1), . . . , γ(m− 1)〉 and 〈ψ, δ(0), δ(1), . . . , δ(m− 1)〉.

To prove this, we just need to show that ϕ > γ(0). If ϕ ≤ γ(0), then

βϕ ≤ βγ(0) ≤ θ,

contradiction.
This finishes the existence part of the proof.
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For the uniqueness, we use the notation introduced above, and proceed by induction
on α. Suppose the uniqueness statement holds for all nonzero α′ < α, and now we have
N(β,m, γ, δ), N(β, n, γ′, δ′), and

α = k(β,m, γ, δ) = k(β, n, γ′, δ′).

We suppose that the uniqueness fails. Say m ≤ n. Then there is an i < m such that
γ(i) 6= γ′(i) or δ(i) 6= δ′(i); we take the least such i. Then we have a contradiction of
Lemma 9.28.

Lemma 9.30. (i) If ω ≤ α, then 1 + α = α.
(ii) If δ 6= 0, then ω ≤ ωδ and 1 + ωδ = ωδ.

Proof. (i): By Theorem 9.21(vii) there is a β such that ω + β = α. Hence 1 + α =
1 + ω + β = ω + β = α.

(ii) ω = ω1 ≤ ωδ, and 1 + ωδ = ωδ by (i).

Lemma 9.31. If α < ωβ then α+ ωβ = ωβ.

Proof. First we prove

(1) If γ < β, then ωγ + ωβ = ωβ.

In fact, suppose that γ < β. Then there is a nonzero δ such that γ + δ = β. Then

ωγ + ωβ = ωγ + ωγ+δ = ωγ + ωγ · ωδ = ωγ · (1 + ωδ) = ωγ · ωδ = ωβ.

By an easy ordinary induction, we obtain from (1)

(2) If γ < β and m ∈ ω, then ωγ ·m+ ωβ = ωβ .

Now we turn to the general case. If β = 0 or α < ω, the desired conclusion is clear. So
suppose that ω ≤ α and β > 0. Then we can write α = ωγ ·m+ δ with m ∈ ω and δ < ωγ.
Then

ωβ ≤ α+ ωβ = ωγ ·m+ δ + ωβ ≤ ωγ · (m+ 1) + ωβ = ωβ

Theorem 9.32. The following conditions are equivalent:
(i) β + α = α for all β < α. (Absorption under addition)
(ii) For all β, γ < α, also β + γ < α.
(iii) α = 0, or α = ωβ for some β.

Proof. (i)⇒(ii): Assuming (i), if β, γ < α, then β + γ < β + α = α.
(ii)⇒(iii): Assume (ii). If α = 0 or α = 1, condition (iii) holds, so suppose that 2 ≤ α.

Then clearly (ii) implies that α ≥ ω. Choose β,m, γ such that m ∈ ω, α = ωβ ·m + γ,
and γ < ωβ. If γ 6= 0, then ωβ ·m < ωβ ·m+ γ = α, and also γ < ωβ < α, so that (ii) is
contradicted. So γ = 0. If m > 1, write m = n+ 1 with n 6= 0. Then

α = ωβ ·m = ωβ · (n+ 1) = ωβ · n+ ωβ,
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and ωβ · n, ωβ < α, again contradicting (ii). Hence m = 1, as desired in (iii).
Finally, (iii)⇒(i) by Lemma 9.31.

Lemma 9.33. If α 6= 0 and m is a positive integer, then m · ωα = ωα.

Proof. Induction on α. It is clear for α = 1. Assuming it true for α, we have
m · ωα+1 = m · ωα · ω = ωα · ω = ωα+1. Assuming it is true for every β < α with α a limit
ordinal, we have 1 + α = α, and so m · ωα = m · ω · ωα = ω · ωα = ωα.

Theorem 9.34. The following conditions are equivalent:
(i) For all β, if 0 < β < α then β · α = α. (absorption under multiplication)
(ii) For all β, γ < α, also β · γ < α.

(iii) α ∈ {0, 1, 2} or there is a β such that α = ω(ωβ).

Proof. (i)⇒(ii): Assume (i), and suppose that β, γ < α. If β = 0, then β ·γ = 0 < α.
If β 6= 0, then β · γ < β · α = α.

(ii)⇒(iii): Assume (ii), and suppose that α /∈ {0, 1, 2}. Clearly then ω ≤ α. Now if
β, γ < α, then β + γ < α. In fact, if β ≤ γ, then β + γ ≤ γ + γ = γ · 2 < α by (ii); and
if γ < β then β + γ < β + β = β · 2 < α. Hence by Theorem 9.32 there is a γ such that
α = ωγ . Now if δ, ε < γ, then ωδ, ωε < ωγ = α, and hence ωδ+ε = ωδ · ωε < α = ωγ , so
that δ + ε < γ. Hence by Theorem 9.32, γ = ωβ for some β.

(iii)⇒(i): Assume (iii). Clearly 0, 1, 2 satisfy (i), so assume that α = ω(ωβ). Take any
γ < α with γ 6= 0. If γ < ω, then γ · α = α by Lemma 9.33. So assume that ω ≤ γ. Write
γ = ωδ ·m+ ε with m ∈ ω and ε < ωδ. Then δ < β, and so

α = ω(ωβ) ≤ γ · ω(ωβ) = (ωδ ·m+ ε) · ω(ωβ)

≤ (ωδ ·m+ ωδ) · ω(ωβ)

= ωδ · (m+ 1) · ω(ωβ)

≤ ωδ+1 · ω(ωβ)

= ωδ+1+ωβ

= ω(ωβ)

= α

Proposition 9.35. 1 +m = m+ 1 for any m ∈ ω.

Proof. (Ordinary) induction on m. 0+1 = 1 = 1+0 using Theorem 9.21(vi). Assume
that 1 +m = m+ 1. Then 1 + (m+ 1) = (1 +m) + 1 = (m+ 1) + 1.

Proposition 9.36. m+ n = n+m for any m,n ∈ ω.

Proof. With m fixed, induction on n. 0 + m = m = m+ 0 using Theorem 9.21(vi).
Assume that m+n = n+m. Then (n+1)+m = n+(1+m) = n+(m+1) (by Proposition
9.35) = (n+m) + 1 = (m+ n) + 1 = m+ (n+ 1).
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Proposition 9.37. ω ≤ α iff 1 + α = α.

Proof. ⇒ holds by Lemma 9.30(i). For ⇐, if α < ω, then 1 + α = α + 1 > α by
Proposition 9.35.

Proposition 9.38. For any ordinals α, β let

α⊕ β = (α× {0}) ∪ (β × {1}).

We define a relation ≺ as follows. For any x, y ∈ α ⊕ β, x ≺ y iff one of the following
three conditions holds:

(i) There are ξ, η < α such that x = (ξ, 0), y = (η, 0), and ξ < η.
(ii) There are ξ, η < β such that x = (ξ, 1), y = (η, 1), and ξ < η.
(ii) There are ξ < α and η < β such that x = (ξ, 0) and y = (η, 1).

Then (α⊕ β,≺) is a well order which is isomorphic to α+ β.

Proof. Clearly ≺ is a well-order. We show by transfinite induction on β, with α
fixed, that (α⊕ β,≺) is order isomorphic to α+ β. For β = 0 we have α+ β = α+ 0 = α,
while α ⊕ β = α ⊕ 0 = α × {0}. Clearly ξ 7→ (ξ, 0) defines an order-isomorphism from α
onto (α× {0},≺). So our result holds for β = 0. Assume it for β, and suppose that f is
an order-isomorphism from α+ β onto (α⊕ β,≺). Now the last element of α⊕ (β + 1) is
(β, 1), and the last element of α+ (β + 1) is α+ β, so the function

f ∪ {(α+ β, (β, 1))}

is an order-isomorphism from α + (β + 1) onto α⊕ (β + 1).
Now assume that β is a limit ordinal, and for each γ < β, the ordinal α + γ is

isomorphic to α ⊕ γ. For each such γ let fγ be the unique isomorphism from α + γ onto
α⊕ γ. Note that if γ < δ < β, then fδ ↾ γ is an isomorphism from α+ γ onto α⊕ γ; hence
fδ ↾ γ = fγ . It follows that

⋃

γ<β

fγ

is an isomorphism from α+ β onto α⊕ β, finishing the inductive proof.

Proposition 9.39. Given ordinals α, β, we define the following relation ≺ on α× β:

(ξ, η) ≺ (ξ′, η′) iff ((ξ, η) and (ξ′, η′) are in α× β and:

η < η′, or (η = η′ and ξ < ξ′).

We may say that this is the anti-dictionary or anti-lexicographic order.
Then the set α×β under the anti-lexicographic order is a well order which is isomorphic

to α · β.

Proof. We may assume that α 6= 0. It is straightforward to check that ≺ is a
well-order.
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Now we define, for any (ξ, η) ∈ α× β,

f(ξ, η) = α · η + ξ.

We claim that f is the desired order-isomorphism from α× β onto α · β. If (ξ, η) ∈ α× β,
then

f(ξ, η) = α · η + ξ < α · η + α = α · (η + 1) ≤ α · β.

Thus f maps into α · β.
To show that f is one-one, suppose that (ξ, η), (ξ′, η′) ∈ α× β and f(ξ, η) = f(ξ′, η′).

Then by Theorem 9.26, (ξ, η) = (ξ′, η′). So f is one-one.
To show that f maps onto α · β, let γ < α · β. Choose ξ and η so that γ = α · η + ξ

with ξ < α. Now η < β, as otherwise

γ = α · η + ξ ≥ α · η ≥ α · β.

It follows that f(ξ, η) = α · η + ξ = γ. so f is onto.
Finally, we show that the order is preserved. Suppose that (ξ, η) ≺ (ξ′, η′). Then one

of these cases holds:
Case 1. η < η′. Then

f(ξ, η) = α · η + ξ < α · η + α = α · (η + 1) ≤ α · η′ ≤ α · η′ + ξ′ = f(ξ′, η′),

as desired.
Case 2. η = η′ and ξ < ξ′. Then f(ξ, η) < f(ξ′, η′).

Now it follows that f is the desired isomorphism.

Proposition 9.40. Suppose that α and β are ordinals, with β 6= 0. We define

αβw = {f ∈ αβ : {ξ < α : f(ξ) 6= 0} is finite}.

For f, g ∈ αβw we write f ≺ g iff f 6= g and f(ξ) < g(ξ) for the greatest ξ < α for which
f(ξ) 6= g(ξ).

Then (αβw,≺) is a well-order which is order-isomorphic to the ordinal exponent βα.
(A set X is finite iff there is a bijection from some natural number onto X.)

Proof. If α = 0, then βα = 1, and αβw also has only one element, the empty function
(= the emptyset). So, assume that α 6= 0. If β = 1, then αβw has only one member, namely
the function with domain α whose value is always 0. This is clearly order-isomorphic to 1,
as desired. So, suppose that β > 1.

Now we define a function f mapping βα into αβw. Let f(0) be the member of αβw

which takes only the value 0. Now suppose that 0 < ε < βα. By Theorem 9.29 write

ε = βγ(0) · δ(0) + βγ(1) · δ(1) + · · ·+ βγ(m−1) · δ(m− 1),
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where ε ≥ γ(0) > γ(1) > · · · > γ(m − 1) and 0 < δ(i) < β for each i < m. Note that
βγ(0) ≤ ε < βα, so γ(0) < α. Then we define, for any ζ < α,

(f(ε))(ζ) =

{
0 if ζ /∈ {γ(0), . . . , γ(m− 1)},
δ(i) if ζ = γ(i) with i < m.

Clearly f(ε) ∈ αβw. To see that f maps onto αβw, suppose that x ∈ αβw. If x takes only
the value 0, then f(0) = x. Suppose that x takes on some nonzero value. Let

{ξ < α : x(ξ) 6= 0} = {γ(0), γ(1), . . . , γ(m− 1)},

where γ(0) > γ(1) > · · · > γ(m− 1). Let δ(i) = x(γ(i)) for each i < m, and let

ε = βγ(0) · δ(0) + βγ(1) · δ(1) + · · ·+ βγ(m−1) · δ(m− 1).

Clearly then f(ε) = x.
Now we complete the proof by showing that for any ε, θ < βα, ε < θ iff f(ε) < f(θ).

This equivalence is clear if one of ε, θ is 0, so suppose that both are nonzero. Write

ε = βγ(0) · δ(0) + βγ(1) · δ(1) + · · ·+ βγ(m−1) · δ(m− 1),

where α ≥ γ(0) > γ(1) > · · · > γ(m− 1) and 0 < δ(i) < β for each i < m, and

θ = βγ
′(0) · δ′(0) + βγ

′(1) · δ′(1) + · · ·+ βγ
′(n−1) · δ′(n− 1),

where α ≥ γ′(0) > γ′(1) > · · · > γ′(n− 1) and 0 < δ′(i) < β for each i < n.
By symmetry we may suppose that m ≤ n. Note that N(β,m, γ, δ), k(β,m, γ, δ) = ε,

N(β, n, γ′, δ′), and k(β, n, γ′, δ′) = θ. We now consider several possibilities.
Case 1. ε = θ. Then clearly f(ε) = f(θ).
Case 2. γ ⊆ γ′, δ ⊆ δ′, and m < n. Thus ε < θ. Also, γ′(m) is the largest ξ < α such

that (f(ε))(ξ) 6= (f(θ))(ξ), and (f(ε))(ξ) = 0 < δ′(m) = (f(θ))(γ′(m)), so f(ε) < f(θ).
Case 3. There is an i < m such that γ(j) = γ′(j) and δ(j) = δ′(j) for all j < i, while

γ(i) 6= γ′(i). By symmetry, say that γ(i) < γ′(i). Then we have ε < θ. Since γ′(i) is the
largest ξ < α such that (f(ε))(ξ) 6= (f(θ))(ξ), and (f(ε))(γ′(i)) = 0 < δ′(i) = (f(θ))(γ′(i)),
we also have f(ε) < f(θ).

Case 4. There is an i < m such that γ(j) = γ′(j) and δ(j) = δ′(j) for all j < i, while
γ(i) = γ′(i) and δ(i) 6= δ′(i). By symmetry, say that δ(i) < δ′(i). Then we have ε < θ.
Since γ(i) is the largest ξ < α such that (f(ε))(ξ) 6= (f(θ))(ξ), and (f(ε))(γ′(i)) = δ(i) <
δ′(i) = (f(θ))(γ′(i)), we also have f(ε) < f(θ).

We have observed that ordinal addition is not commutative; see before Theorem 9.22. We
now introduce an addition of ordinals which is commutative; this is the Hessenberg natural
sum.

Given two nonzero ordinal numbers α and β, we write them in Cantor normal form:

α = ωγ(0) · δ(0) + ωγ(1) · δ(1) + · · ·+ ωγ(m−1) · δ(m− 1) with

α ≥ γ(0) > γ(1) > · · · > γ(m− 1) and 0 < δ(i) < ω for each i < m;

β = ωγ
′(0) · δ′(0) + ω′γ(1) · δ′(1) + · · ·+ ω′γ(n−1) · δ′(n− 1)with

α ≥ γ′(0) > γ′(1) > · · · > γ′(n− 1) and 0 < δ′(i) < ω for each i < n.
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Now enumerate {γ(i) : i < m} ∪ {γ′(i) : i < n} as {γ′′(i) : i < p} with γ′′(0) > γ′′(1) >
· · · > γ′′(p). For i < p define

δ′′(i) =

{

δ(j) if δ(j) = δ′′(i) for some j,
0 otherwise;

δ′′′(i) =

{

δ′(j) if δ′(j) = δ′′(i) for some j,
0 otherwise;.

Then we have

α = ωγ
′(0) · δ′′(0) + ωγ

′(1) · δ′′(1) + · · ·+ ωγ
′(p−1) · δ′′(p− 1) with

α ≥ γ′(0) > γ′(1) > · · · > γ′(p− 1) and 0 ≤ δ(i) < ω for each i < p;

β = ωγ
′(0) · δ′′′(0) + ω′γ′(1) · δ′′′(1) + · · ·+ ω′γ(n−1) · δ′′′(p− 1)with

α ≥ γ′(0) > γ′(1) > · · · > γ′(p− 1) and 0 ≤ δ′′′(i) < ω for each i < p;

moreover, for each k < p δ′′k 6= 0 or δ′′′(k) 6= 0. Now for any ordinal α we define α#0 =
0#α = α; and for α, β 6= 0 we define

α#β =
∑

k<p

ωγ
′(k) · (δ′′(k) + δ′′′(k)).

Proposition 9.41. (i) α#0 = α = 0#α.
(ii) α#β = β#α.
(iii) α#(β#γ) = (α#β)#γ.
(iv) α ≤ α′ and β ≤ β′ imply that α#β ≤ α′#β′.
(v) α ≤ α′ and β < β′ imply that α#β < α′#β′.
(vi) α < α′ and β ≤ β′ imply that α#β < α′#β′.
(vii) α + β ≤ α#β.

Note that # is not continuous in either argument. For example, ω#(ω+1) = (ω+1)#ω =
ω · 2 + 1.

Proposition 9.42. Let (A,<) be a well order. Suppose that B ⊂ A and ∀b ∈ B∀a ∈
A[a < b→ a ∈ B]. Then there is an element a ∈ A such that B = {b ∈ A : b < a}.

Proof. Let a be the least element of A\B. We claim that a is as desired. For, if
b ∈ B, then it cannot happen that a ≤ b, since this would imply that a ∈ B; so b < a.
And if b < a, then b ∈ B by the minimality of a.

Proposition 9.43. Let (A,<) be a well order. Suppose that B ⊂ A and ∀b ∈ B∀a ∈
A[a < b→ a ∈ B]. Then (A,<) is not isomorphic to (B,<).

Proof. Suppose that f is such an isomorphism from (A,<) onto (B,<). By Propo-
sition 9.35, let a ∈ A be such that B = {x ∈ A : x < a}. By Proposition 9.11, a ≤ f(a),
contradicting the assumption that f maps into B.
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Proposition 9.44. Suppose that f is a one-one function mapping an ordinal α onto a set
A. Then there is a relation ≺ which is a subset of A× A such that (A,<) is a well-order
and f is an isomorphism of (α,<) onto (A,≺).

Proof. Define ≺= {(a, b) ∈ A × A : f−1(a) < f−1(b)}. We check that (A,<) is a
well-order. If a ∈ A and a ≺ a, then f−1(a) < f−a(a), contradiction. So ≺ is irreflexive.
Suppose that a ≺ b ≺ c. Then f−1(a) < f−1(b) < f−1(c), so f−1(a) < f−1(c) and hence
a ≺ c. So ≺ is transitive. Now given a, b ∈ A, either f−1(a) < f−1(b) or f−1(a) = f−1(b)
or f−1(b) < f−1(a), so a ≺ b or a = b or b ≺ a. Thus (A,≺) is a linear order. Finally,
suppose that ∅ 6= X ⊆ A. Then ∅ 6= f−1[X ], so let ξ be the least element of f−1[X ].
Then f(ξ) ∈ X . Suppose that b ∈ X . Then f−1(b) ∈ f−1[X ], so ξ ≤ f−1(b). Hence
f(ξ) � b. This shows that f(ξ) is the ≺-least element of X . We have shown that (A,≺) is
a well-order.

We are given that f is a bijection from α onto A. If ξ, η ∈ α and ξ < η, then
f(ξ) ≺ f(η). If f(ξ) ≺ f(η), then ξ < η. Thus f is an isomorphism.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 9.45. For every nonzero ordinal α there are only finitely many ordinals β
such that α = γ · β for some γ.

Proof. Suppose there are infinitely many such β; let 〈βi : i ∈ ω〉 be a one-one
enumeration of infinitely many of them. For each i ∈ ω let γi be such that α = γi · βi.
Clearly βi < βj iff γj < γi. We define 〈ij : j ∈ ω〉 by recursion. Let i0 be such that βi0 is
the smallest element of {βk : k ∈ ω}. Having defined i0, . . . , is, let is+1 be such that βis+1

is the smallest element of
{βk : k ∈ ω}\{βik : k ≤ s}

Clearly βi0 < βi1 < · · ·, and hence γi0 > γi1 > · · ·, contradiction.

Proposition 9.46. n(ωω) = ω(ωω) for every natural number n > 1.

Proof. Note that nω = ω by an easy argument. Hence

ω(ωω) = (nω)(ω
ω)

= n(ω·(ωω))

= n(ωω). by Theorem 9.32

Proposition 9.47. The following conditions are equivalent for any ordinals α, β:
(i) α+ β = β + α.
(ii) There exist an ordinal γ and natural numbers k, l such that α = γ ·k and β = γ · l.

Proof. ⇒: Assume that α + β = β + α. The desired conclusion is clear if α = 0 or
β = 0, so assume that α, β 6= 0. Write α = ωδ · k + ε with δ ≤ α, 0 < k ∈ ω, and ε < ωδ,
and write β = ωρ · l + σ with ρ ≤ β, 0 < l ∈ ω, and σ < ωρ. If δ < ρ, then

α+ β = β < β + α,
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contradiction. A similar contradiction is reached if ρ < δ. So δ = ρ. Now

α+ β = ωδ · (k + l) + σ = β + α = ωδ · (k + l) + ε,

so σ = ε. Hence α = (ωδ + ε) · k and β = (ωδ + ε) · l, as desired.
⇐: Obvious.

Proposition 9.48. Suppose that α < ωγ. Then α+ β + ωγ = β + ωγ.

Proof. Suppose that α, β, γ are ordinals and α < ωγ. If also β < ωγ, then α+β < ωγ

by Theorem 9.31, and also by Theorem 9.31 α + β + ωγ = ωγ and β + ωγ = ωγ.
Now suppose that ωγ ≤ β. Write β = ωγ · δ + ε with δ > 0 and ε < ωγ .

(1) α+ ωγ · ϕ = ωγ · ϕ for every positive ϕ.

We prove (1) by induction on ϕ. It is true for ϕ = 1 by Theorem 9.31. Assume that
it holds for ϕ. Then

α+ ωγ · (ϕ+ 1) = α + ωγ · ϕ+ ωγ = ωγ · ϕ+ ωγ = ωγ · (ϕ+ 1),

as desired. Finally, assume that ϕ is limit and (1) holds for all ψ < ϕ. Let F (ϕ) = α + ϕ
for all ϕ, and G(ϕ) = ωγ · ϕ. Both of these are normal functions. Hence

α+ ωγ · ϕ = F (G(ϕ)) =
⋃

ψ<ϕ

F (G(ψ)) =
⋃

ψ<ϕ

(α+ ωγ · ψ) =
⋃

ψ<ϕ

(ωγ · ψ) = ωγ · ϕ,

finishing the inductive proof of (1).
Now by (1) we have

α+ β + ωγ = α + ωγ · δ + ε+ ωγ = ωγ · δ + ε+ ωγ = β + ωγ .

Proposition 9.49. The following conditions are equivalent:
(i) α is a limit ordinal
(ii) α = ω · β for some β 6= 0.
(iii) For every m ∈ ω\1 we have m · α = α, and α 6= 0.

Proof. (i)⇒(ii): Assume (i). By Theorem 9.26 write α = ω · β + n with n < ω. If
β = 0, then α = n, contradiction. If n 6= 0, then α = ω · β + (n− 1) + 1, contradiction.

(ii)⇒(iii): Assume (ii). By Theorem 9.23(iii), α 6= 0. Suppose that m ∈ ω\1. Then
m · ω =

⋃

n∈ω(m · n) = ω by Theorem 9.23(iii), so m · α = α.
(iii)⇒(i): Assume (iii), but suppose that α = β + 1. Then α = 2 · α = 2 · (β + 1) =

2 · β + 2 > α, contradiction.qed

Proposition 9.50. (α+ β) · γ ≤ α · γ + β · γ for any ordinals α, β, γ.

Proof. Assume that α, β, γ 6= 0. Write α = ωδ · k + ε with δ ≤ α, 0 6= k ∈ ω, ε < ωδ,
and β = ωρ · l + σ with ρ ≤ β, 0 6= l ∈ ω, σ < ωρ. Also, write γ = ω · ξ +m with m ∈ ω.
Now we consider some cases.
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Case 1. δ < ρ. Then α+ β = β, and the desired conclusion follows.
Case 2. δ = ρ. Note that if m > 0, then

α ·m = ωδ · k ·m+ ε;

β ·m = ωδ · l ·m+ σ;

(α+ β) ·m = ωδ · (k + l) ·m+ σ.

If ξ = 0 it is then clear that (α+ β) · γ = α · γ + β · γ. Hence assume that ξ > 0. Then

α · γ = α · ω · ξ + α ·m

= ωδ+1 · ξ + α ·m;

β · γ = ωδ+1 · ξ + β ·m;

α · γ + β · γ = ωδ+1 · ξ · 2 + β ·m;

(α+ β) · γ = ωδ+1 · ξ + (α+ β) ·m.

Now clearly (α+ β) ·m = ωδ · (k + l) ·m+ σ < ωδ+1 · σ + β ·m, so the desired conclusion
follows.

Case 3. ρ < δ. Then if m > 0 we have

α ·m = ωδ · k ·m+ ε;

β ·m = ωρ · l ·m+ σ;

α ·m+ β ·m = ωδ · k ·m+ ε+ ωρ · l ·m+ σ;

(α+ β) ·m = ωδ · k ·m+ ε+ ωρ · l + σ.

Hence the desired conclusion follows if ξ = 0. Assume now that ξ 6= 0. Then

α · γ = ωδ+1 · ξ + α ·m;

β · γ = ωρ+1 · ξ + β ·m;

α · γ + β · γ = ωδ+1 · ξ + α ·m+ ωρ+1 · ξ + β ·m;

(α+ β) · γ = ωδ+1 · ξ + ωδ · k ·m+ ε+ ωρ · l + σ

= ωδ+1 · ξ + α ·m+ ωρ · l + σ.

Again the desired conclusion holds.
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10. The axiom of choice

We give a small number of equivalent forms of the axiom of choice; these forms should be
sufficient for most mathematical purposes. The axiom of choice has been investigated a
lot, and we give some references for this after proving the main theorem of this chapter.

The set of axioms of ZFC with the axiom of choice removed is denoted by ZF; so we
work in ZF in this chapter.

The two main equivalents to the axiom of choice are as follows.

Zorn’s Lemma. If (A,<) is a partial order such that A 6= ∅ and every subset of A simply
ordered by < has an upper bound, then A has a maximal element under <, i.e., an element
a such that there is no element b ∈ A such that a < b.

Well-ordering principle. For every set A there is a well-ordering of A, i.e., there is a
relation < such that (A,<) is a well-order.

In addition, the following principle, usually called the axiom of choice, is equivalent to the
actual form that we have chosen:

Choice-function principle. If A is a family of nonempty sets, then there is a function
f with domain A such that f(a) ∈ a for every a ∈ A. Such a function f is called a choice
function for A.

Lemma 10.1. Suppose that (A,<) is a partial order and a ∈ A. Then A 6< a.

Proof. Suppose to the contrary that A < a. Then (A, a) ∈<⊆ A × A, so A ∈ A,
contradicting Theorem 7.5.

Theorem 10.2. In ZF the following four statements are equivalent:
(i) the axiom of choice;
(ii) the choice-function principle;
(iii) Zorn’s lemma.
(iv) the well-ordering principle.

Proof. Axiom of choice ⇒ choice-function principle. Assume the axiom of
choice, and let A be a family of nonempty sets. Let

A = {X : ∃a ∈ A[X = {(a, x) : x ∈ a}]}.

Since each member of A is nonempty, also each member of A is nonempty. GivenX, Y ∈ A

with X 6= Y , choose a, b ∈ A such that X = {(a, x) : x ∈ a} and Y = {(b, x) : x ∈ b}.
Thus a 6= b since A 6= B. The basic property of ordered pairs then implies that A∩B = ∅.

So, by the axiom of choice, let B have exactly one element in common with each
element of A . Define f = {b ∈ B : there exist a ∈ A and x such that b = (a, x)}. Clearly
f is the desired choice function for A.

Choice-function principle ⇒ Zorn’s lemma. Assume the choice-function prin-
ciple, and also assume the hypotheses of Zorn’s lemma. Let f be a choice function for
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P(A)\{∅}. Define G : On×V→ V by setting, for any ordinal α and any set x,

G(α, x) =







f({a ∈ A : x(β) < a for all β < α}) if x is a function with domain α
and this set is nonempty,

A otherwise.

Let F be obtained from G by the recursion theorem 6.7; thus for any ordinal α,

F(α) = G(α,F ↾ α) =

{
f({a ∈ A : F(β) < a for all β < α}) if this set is nonempty,
A otherwise.

(1) If α < β ∈ On and F(β) 6= A, then F(α) 6= A, and F(α) < F(β).

In fact, suppose that F(α) = A. Now by the definition of F(β), the set {a ∈ A : F(γ) < a
for all γ < β} is nonempty. Let a be a member of this set. Now α < β, so A = F(α) < a,
contradicting Lemma 10.1.

Since F(β) = f({a ∈ A : F(γ) < a for all γ < β}) and α < β, it follows that
F(α) < F(β).

(2) There is an ordinal α such that F(α) = A.

Otherwise, by (1), F is a one-one function from On into A. So by the comprehension
axioms, rng(F) is a set, and hence by the replacement axioms, On = F−1[rngF] is a set,
contradicting Theorem 7.6.

Let α be minimum such that F(α) = A. Now F[α] is linearly ordered by (1), so by the
hypothesis of Zorn’s lemma, there is an a ∈ A such that F(β) ≤ a for all β < α. Now the set
{a ∈ A : f(β) < f(0) for all β < 0} is trivially nonempty, since A is nonempty, so F(0) 6= A.
Hence α > 0. If α is a limit ordinal, then for any β < α we have F(β) < F(β + 1) ≤ a,
and hence F(α) 6= A, contradiction. Hence α is a successor ordinal β + 1, and so F(β) is
a maximal element of A.

Zorn’s lemma ⇒ well-ordering principle. Assume Zorn’s lemma, and let A be
any set. We may assume that A is nonempty. Let

P = {(B,<) : B ⊆ A and (B <) is a well-ordering structure}.

We partially order P as follows: (B,<) ≺ (C,≪) iff B ⊆ C, ∀a, b ∈ B[a < b iff a≪ b], and
∀b ∈ B∀c ∈ C\B[b≪ c]. Clearly this does partially order P . P 6= ∅, since ({a}, ∅) ∈ P for
any a ∈ A. Now suppose that Q is a nonempty subset of P simply ordered by ≺. Let

D =
⋃

(B,<)∈Q

B,

<D =
⋃

(B,<)∈Q

< .

Clearly (D,<D) is a linear order with D ⊆ A. Suppose that X is a nonempty subset of
D. Fix z ∈ X , and choose (B,<) ∈ Q such that z ∈ B. Then X ∩ B is a nonempty
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subset of B; let x be its least element under <. Suppose that y ∈ X and y <D x. Choose
(C,≪) ∈ Q such that x, y ∈ C and y ≪ x. Since Q is simply ordered by ≺, we have two
cases.

Case 1. (C,≪) � (B,<). Then y ∈ C ⊆ B and y ∈ X . so y < x, contradicting the
choice of x.

Case 2. (B,<) ≺ (C,≪). If y ∈ B, then y < x, contradicting the choice of x. So
y ∈ C\B. But then x≪ y, contradiction.

Thus we have shown that x is the <D-least element of X . So (D,<D) is the desired
upper bound for Q.

Having verified the hypotheses of Zorn’s lemma, we get a maximal element (B,<) of
P . Suppose that B 6= A. Choose any a ∈ A\B, and let

C = B ∪ {a},

<C =< ∪{(b, a) : b ∈ B}.

Clearly this gives an element (C,<C) of P such that (B,<) ≺ (C,<C), contradiction.
Well-ordering principle⇒ Axiom of choice. Assume the well-ordering principle,

and let A be a family of pairwise disjoint nonempty sets. Let C =
⋃

A , and let ≺ be
a well-order of C. Define B = {c ∈ C : c is the ≺-least element of the P ∈ A for which
c ∈ P}. Clearly B has exactly one element in common with each member of A.

There are many statements which are equivalent to the axiom of choice on the basis of ZF.
We list some striking ones. A fairly complete list is in

Rubin, H.; Rubin, J. Equivalents of the axiom of choice. North-Holland (1963),
134pp.

(About 100 forms are listed, with proofs of equivalence.)

1. For every relation R there is a function f ⊆ R such that dmn(f) = dmn(R).

2. For any sets A,B, either there is an injection of A into B or one of B into A.

3. For any transitive relation R there is a maximal S ⊆ R which is a linear ordering.

4. Every product of compact spaces is compact.

5. Every formula having a model of size ω also has a model of any infinite size.

6. If A can be well-ordered, then so can P(A).

There are also statements which follow from the axiom of choice but do not imply it on
the basis of ZF. A fairly complete list of such statement is in

Howard, P.; Rubin, J. Consequences of the axiom of choice. Amer. Math. Soc.
(1998), 432pp.

(383 forms are listed)

Again we list some striking ones:

1. Every Boolean algebra has a maximal ideal.
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2. Any product of compact Hausdorff spaces is compact.

3. The compactness theorem of first-order logic.

4. Every commutative ring has a prime ideal.

5. Every set can be linearly ordered.

6. Every linear ordering has a cofinal well-ordered subset.

7. The Hahn-Banach theorem.

8. Every field has an algebraic closure.

9. Every family of unordered pairs has a choice function.

10. Every linearly ordered set can be well-ordered.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 10.3. Any vector space over a field has a basis (possibly infinite).

Proof. Let V be any vector space over F . Let A = {X ⊆ V : X is linearly
independent}, partially ordered by ⊆. Then A 6= ∅, since trivially ∅ ∈ A. Now suppose
that B is a subset of A simply ordered by ⊆. We claim that

⋃
B ∈ A; this will verify

the hypothesis of Zorn’s lemma. Suppose that v1, . . . , vn ∈
⋃
B, a1, . . . , an ∈ F , and

a1v1 + · · · + anvn = 0; we want to show that all ai are 0. For each i = 1, . . . , n choose
Xi ∈ B such that vi ∈ Xi. Now {Xi : i = 1, . . . , n} has a largest member Xj under ⊆, since
B is simply ordered. [Easy proof by induction on n.] Clearly vi ∈ Xj for all i = 1, . . . , n.
Since Xj is linearly independent, it follows that each ai = 0, as desired.

Now we apply Zorn’s lemma to obtain a maximal member Y of A under ⊆. We claim
that Y is a basis for V . Since Y is linearly independent, it suffices to show that Y spans
V . Suppose that w ∈ V . If w ∈ Y , then obviously w is in the span of Y . Suppose that
w /∈ Y . Then Y ⊂ Y ∪ {w} so by the maximality of Y , Y ∪ {w} is linearly dependent.
Hence there is a natural number n, distinct elements v1, . . . , vn ∈ Y ∪ {w}, and elements
a1, . . . , an ∈ F , not all 0, such that a1v1 + · · ·+anvn = 0. Since Y is linearly independent,
not all vi are in Y ; say that vj = w. Then again because Y is linearly independent, we
must have aj 6= 0. So

w =

(

−
a1

aj
v1

)

+ · · ·+

(

−
aj−1

aj
vj−1

)

+

(

−
aj+1

aj
vj+1

)

+ · · ·+

(

−
an
aj
vn

)

,

so that w is in the span of Y , as desired.

Proposition 10.4. A subset C of R is closed iff the following condition holds:

For every sequence f ∈ ωC, if f converges to a real number x, then x ∈ C.

Here to say that f converges to x means that

∀ε > 0∃M∀m ≥M [|fm − x| < ε].
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If 〈Cm : m ∈ ω〉 is a sequence of nonempty closed subsets of R, ∀m ∈ ω∀x, y ∈ Cm[|x−y| <
1/(m+ 1)], and Cm ⊇ Cn for m < n, then

⋂

m∈ω Cm is nonempty.

Proof. Let c be a choice function for P(R)\{∅}. For each m ∈ ω let fm = c(Cm). We
claim that f is a Cauchy sequence, and hence it converges to some point x. For, let ε > 0
be given. Choose m ∈ ω such that 1

m+1 < ε. Then for any n, p ≥ m we have fn, fp ∈ Cm
and hence by a hypothesis of the exercise, |fn − fp| <

1
m+1

< ε, as desired. Now for any
m ∈ ω we have fn ∈ Cm for all n ≥ m, and hence x ∈ Cm. Thus x ∈

⋂

m∈ω Cm.

Proposition 10.5. Every nontrivial commutative ring with identity has a maximal ideal.
Nontrivial means that 0 6= 1.

Proof. Let R be a nontrivial commutative ring with identity. Let A be the collection
of all proper ideals, partially ordered under ⊂. Obviously A 6= ∅. Suppose that B is a
nonempty subset of A simply ordered by ⊂. Let I =

⋃
B. We claim that I is a proper

ideal, so that it is an upper bound for B. In fact, if a, b ∈ I, choose J,K ∈ B such that
a ∈ J and b ∈ K. Since B is simply ordered by ⊂, by symmetry say J ⊂ K. Then
a, b ∈ K, hence a + b and a − b are also in K, and hence they are in I too. Also, if a ∈ I
and b ∈ R, then a · b ∈ I by an even easier argument. Thus I is an ideal. Clearly 1 /∈ I, so
I is proper.

By Zorn’s lemma, A has a maximal element L. Clearly L is a maximal ideal.

Proposition 10.6. A function g : R → R is continuous at a ∈ R iff for every sequence
f ∈ ωR which converges to a, the sequence g ◦ f converges to g(a). g is continuous at a iff
the following condition holds:

∀ε > 0∃δ > 0∀x ∈ R[|x− a| < δ → |g(x)− g(a)| < ε].

→: Suppose that g is continuous at a but the indicated condition fails. Thus

(∗) ∃ε > 0∀δ > 0∃x ∈ R[|x− a| < δ and |g(x)− g(a)| ≥ ε].

Let c be a choice function for R. For each m ∈ ω let

fm = c

{

x ∈ R

[

|x− a| <
1

m+ 1
and |g(x)− g(a)| ≥ ε

]}

.

Then f converges to a. In fact, given ξ > 0, choose M such that 1
M−1

< ξ. Then for

any m ≥ M , |fm − a| <
1

m+1 ≤
1

M−1 < ξ. Since f converges to a and g is continuous
at a, it follows that g ◦ f converges to g(a). Hence we can choose N such that ∀n ≥
N [|g(fm)− g(a)| < ε]. But by the definition of f , |g(fN)− g(a)| ≥ ε, contradiction.
←: Assume the indicated condition, and suppose that f ∈ ωR converges to a. In

order to show that g ◦ f also converges to a, let ε > 0 be given. By the condition, choose
δ > 0 such that ∀x ∈ R[|x− a| < δ → |g(x)− g(a)| < ε]. Since f converges to a, choose
M such that ∀m ≥M [|fm − a| < δ]. Then for any m ≥M we have |g(fm)− g(a)| < ε, as
desired.
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Proposition 10.7. (In ZF) If m ∈ ω and 〈Ai : i ∈ m〉 is a system of nonempty sets, then
there is a function f with domain m such that f(i) ∈ Ai for all i ∈ m.

Proof. For m = 0, the system itself is empty, and the desired function f is the empty
set.

Now suppose that 〈Ai : i ∈ m + 1〉 is a system of nonempty sets, and we know our
result for a system of m nonempty sets. So, let f be a function with domain m such that
f(i) ∈ Ai for all i ∈ m. Pick a ∈ Am, and let g = f ∪ {(m, a)}. Clearly g is as desired,
completing the inductive proof.

Proposition 10.8. If A is a nonempty set, R is a relation, R ⊆ A × A, and for every
a ∈ A there is a b ∈ A such that aRb, then there is a function f : ω → A such that
f(i)Rf(i+ 1) for all i ∈ ω.

This is called the Principle of Dependent Choice; it is weaker than the axiom of choice,
but cannot be proved in ZF).

Proof. Let c be a choice function for nonempty subsets of A. We define f : ω → A
by recursion, as follows. Fix a ∈ A. For any m ∈ ω let

f(m) =

{
a if m = 0,
c({x ∈ A : f(n)Rx}) if m = n+ 1 and {x ∈ A : f(n)Rx} 6= 0,
a otherwise.

By induction, f(i)Rf(i+ 1) for every i ∈ ω, as desired.

Proposition 10.9. In ZF, for any set A there is an ordinal α such that there is no one-one
function mapping α into A.

Proof. Let X be the set of all well-orderings contained in A×A. Now each ≺∈ X is
isomorphic to an ordinal β≺. Let α =

⋃

≺∈X(β≺+1). Suppose that f is a one-one function
mapping α into A. Let ≺= {(f(ξ), f(η)) : ξ < η}. Then ≺ is a well-ordering contained in
A×A, and so βX = α; consequently α ∈ α, contradiction.

Proposition 10.10. (ZF) The following are equivalent:
(i) The axiom of choice.
(ii) If < is a partial ordering and ≺ is a simple ordering which is a subset of <, then

there is a maximal (under ⊆) simple ordering ≪ such that ≺ is a subset of ≪, which in
turn is a subset of <.

(iii) For any two sets A and B, either there is a one-one function mapping A into B
or there is a one-one function mapping B into A.

(iv) For any two nonempty sets A and B, either there is a function mapping A onto
B or there is a function mapping B onto A.

(v) Every family of finite character has a maximal element under ⊆. Here a family
F of subsets of a set A has finite character if for all X ⊆ A, X ∈ F iff every finite subset
of X is in F .

(vi) For any relation R there is a function f ⊆ R such that dmnR = dmn f .
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Proof. (i)⇒(ii): Assume (i). Let

A = {≪:≪ is a simple ordering and ≺⊆≪⊆<}.

Note that A is nonempty, since ≺∈ A . We partially order A by inclusion. To check the
hypothesis of Zorn’s lemma, suppose that B is a nonempty subset of A simply ordered by
inclusion. We claim that

⋃
B ∈ A ; this is clear, by checking all the necessary conditions.

For example,
⋃

B is transitive since if (a, b), (b, c) ∈
⋃

B, then there are R, S ∈ B with
(a, b) ∈ R and (b, c) ∈ S; by symmetry R ⊆ S, hence (a, b), (b, c) ∈ S, hence (a, c) ∈ S,
hence (a, c) ∈

⋃
B.

So we apply Zorn’s lemma to obtain a maximal member ≪ of A ; this is as desired.
(ii)⇒(iii): Assume (ii). Given sets A and B, define f < g iff f and g are one-one

functions which are subsets of A × B, and f ⊂ g. Apply (ii) to < and the empty simple
ordering. We get a maximal simple ordering ≺ such that ≺⊆<. Let f =

⋃
(≺). Since ≺

is a simply ordered collection of one-one functions, it is clear that f is a one-one function.
It suffices to show that dmn(f) = A or rng(f) = B. Suppose that this is not true, and
choose a ∈ A\dmn(f) and b ∈ B\rng(f). Let g = f ∪ {(a, b)}. Clearly g is a one-one
function contained in A×B. Thus if we define ≺′ as an extension of ≺ with g ≺′ f for all
g in the domain of ≺, we get a proper extension of ≺, contradiction.

(iii)⇒(iv): Assume (iii). Let A and B be nonempty sets. By (iii) and symmetry, say
that f is a one-one function mapping A into B. Fix a ∈ A, and define g with domain B
by setting, for each b ∈ B,

g(b) =

{

f−1(b) if b ∈ rng(f),
a otherwise.

Clearly g maps B onto A, as desired.
(iv)⇒(i): Assume (iv) We show that any set A can be well-ordered, as follows. Use

Proposition 10.9 to find an ordinal α which cannot be mapped one-one into P(A).Suppose
that f : A → α maps onto α. Let g = 〈f−1[{β}] : β < α〉. Clearly g maps α into P(A).
Suppose that g(β) = g(γ). Thus f−1[{β}] = f−1[{γ}]. Choose a ∈ A such that f(a) = β;
this is possible because f maps onto α. thus a ∈ f−1[{β}] = f−1[{γ}], so f(a) ∈ {γ},
hence β = f(a) = γ. So g is one-one, contradicting the choice of α.

Now it follows from (iv) that there is a function f mapping α onto A. Define a ≺ b
iff the least element of f−1[{a}] is less than the first element of f−1[{b}]. Clearly ≺ is a
linear order on A. To show that it is a well-order, let B be a nonempty subset of A. Let
β be the least element of f−1[B]. Then f(β) is clearly the ≺-least element of B.

(i)⇒(v): Assume (i). Let F , a nonempty family of subsets of A, have finite character.
We consider F as a partially ordered set under inclusion. It is nonempty by assumption.
Now suppose that G is a nonempty subset of F linearly ordered by inclusion. To show
that

⋃
G ∈ F , it suffices to show that every finite F subset of it is in F , by the definition

of finite character. For each a ∈ F choose Xa ∈ G such that a ∈ Xa. Since G is linearly
ordered by inclusion, choose a ∈ F such that Xb ⊆ Xa for all b ∈ F . Now Xa ∈ F since
G ⊆ F , and F is a finite subset of Xa, so F ∈ F by the definition of finite character.

Thus we have verified the hypotheses of Zorn’s lemma, and it gives the desired maximal
element.

135



(v)⇒(vi): Assume (v). Given a relation R, let F consist of all functions contained
in R. We verify that F has finite character. It is obviously nonempty, since ∅ ∈ F . Of
course, if f ∈ F , then every finite subset of f is in F . Now suppose that f ⊆ R and
every finite subset of f is in F . We just need to show that f is a function. Suppose that
(a, b), (a, c) ∈ f . Then {(a, b), (a, c)} is a finite subset of f , and so it is in F , which means
that it is a function, and so b = c. Thus f is a function.

Now by (v), let f be a maximal member of F under inclusion. So, f is a function
included in R. Suppose that a ∈ dmn(R)\dmn(f). Choose b such that (a, b) ∈ R. Then
f ⊂ f ∪ {(a, b)} ∈ F , contradiction. Therefore, dmn(R) = dmn(f), as desired.

(vi)⇒(i): Assume (vi). Given a family 〈Ai : i ∈ I〉 of nonempty sets, let R = {(i, x) :
i ∈ I and x ∈ Ai}. Let f be a function such that dmn(f) = dmn(R). Thus dmn(f) = I
and f(i) ∈ Ai for all i ∈ I.
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11. Cardinals

This chapter is concerned with the basics of cardinal arithmetic.

Definition and basic properties

To abbreviate longer expressions, we say that sets A and B are equipotent iff there
is a bijection between them. A cardinal, or cardinal number, is an ordinal α which is not
equipotent with a smaller ordinal. We generally use Greek letters κ, λ, µ for cardinals.
Obviously if κ and λ are distinct cardinals, then they are not equipotent.

Proposition 11.1. For any set X there is an ordinal α equipotent with X.

Proof. By the well-ordering principle, let < be a well-ordering of X . Then X under
< is isomorphic to an ordinal.

By this proposition, any set is equipotent with a cardinal—namely the least ordinal equipo-
tent with it. This justifies the following definition. For any set X , the cardinality, or size,
or magnitude, etc. of X is the unique cardinal |X | equipotent with X . The basic property
of this definition is given in the following theorem.

Theorem 11.2. For any sets X and Y , the following conditions are equivalent:
(i) |X | = |Y |.
(ii) X and Y are equipotent.

The following proposition gives obvious facts about the particular way that we have defined
the notion of cardinality.

Proposition 11.3. (i) |α| ≤ α.
(ii) |α| = α iff α is a cardinal.

Lemma 11.4. If 0 6= m ∈ ω then there is an n ∈ ω such that m = n+ 1.

Proof. Assume that 0 6= m ∈ ω. By Theorem 7.16, m is a successor ordinal α + 1.
Since ω is transitive we have α ∈ ω.

Proposition 11.5. Every natural number is a cardinal.

Proof. We prove by ordinary induction on n that for every natural number n and
for every natural number m, if m < n then there is no bijection from n to m. This is
vacuously true for n = 0. Now assume it for n, but suppose that m is a natural number
less than n + 1 and f is a bijection from n + 1 onto m. Since n + 1 6= 0, obviously also
m 6= 0. So m = m′ +1 for some natural number m′, by Lemma 11.4. Let g be the bijection
from m onto m which interchanges m′ and f(n) and leaves fixed all other elements of m.
Then g ◦ f is a bijection from n + 1 onto m which takes n to m′. Hence (g ◦ f) ↾ n is a
bijection from n onto m′, and m′ < n, contradicting the inductive hypothesis.

Thus the natural numbers are the first cardinals, in the ordering of cardinals determined
by the fact that they are special kinds of ordinals. A set is finite iff it is equipotent with
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some natural number; otherwise it is infinite. The following general lemma helps to prove
that ω is the next cardinal.

Lemma 11.6. If (A,<) is a simple order, then every finite nonempty subset of A has a
greatest element.

Proof. We prove by induction on m ≥ 1 that if X ⊆ A and |X | = m then X has
a greatest element. For m = 1 this is obvious. Now assume the implication for m, and
suppose that X ⊆ A and |X | = m + 1. Let f be a bijection from m + 1 onto X , and let
X ′ = X\{f(m)}. So |X ′| = m, and so X ′ has a largest element x. If f(m) < x, then x is
the greatest element of X . If x < f(m), then f(m) is the greatest element of X .

Theorem 11.7. ω is a cardinal.

It is harder to find larger cardinals, but they exist; in fact the collection of cardinals is so
big that, like the collection of ordinals, it does not exist as a set. We will see this a little
bit later.

Note that a cardinal is infinite iff it is greater or equal ω. The following fact will be
useful later.

Proposition 11.8. Every infinite cardinal is a limit ordinal.

Proof. Suppose not: κ is an infinite cardinal, and κ = α+ 1. We define f : α→ κ as
follows: f(0) = α, f(m+ 1) = m for all m ∈ ω, and f(β) = β for all β ∈ α\ω. Clearly f
is one-one and maps onto κ, contradiction.

Lemma 11.9. If κ and λ are cardinals and f : κ→ λ is one-one, then κ ≤ λ.

Proof. We define α ≺ β iff α, β ∈ κ and f(α) < f(β). Clearly ≺ well-orders κ. Let g
be an isomorphism from (κ,≺) onto an ordinal γ. Thus κ ≤ γ by the definition of cardinals.
If α < β < γ, then g−1(α) ≺ g−1(β), hence by definition of ≺, f(g−1(α)) < f(g−1(β)).
Thus f ◦ g−1 : γ → λ is strictly increasing. Hence by Proposition 6.15, α ≤ (f ◦ g−1)(α)
for all α < γ, so λ 6< γ, hence γ ≤ λ. We already know that κ ≤ γ, so κ ≤ λ.

The purpose of this lemma is to prove the following basic theorem.

Theorem 11.10. If A ⊆ B, then |A| ≤ |B|.

Proof. Let κ = |A|, λ = |B|, and let f and g be one-one functions from κ onto A and
of λ onto B, respectively. Then g ◦f−1 is a one-one function from κ into λ, so κ ≤ λ.

Corollary 11.11. For any sets A and B the following conditions are equivalent:
(i) |A| ≤ |B|.
(ii) There is a one-one function mapping A into B.
(iii) A = ∅, or there is a function mapping B onto A.

Proof. Let f be a bijection from |A| to A, and g a bijection from |B| to B,
(i)⇒(ii): Assume that |A| ≤ |B|. Then |A| ⊆ |B| by Proposition 4.8, and g ◦ f−1 is a

one-one mapping from A into B.
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(ii)⇒(iii): Assume that h : A → B is one-one and A 6= ∅. Fix a ∈ A, and define
k : B → A by setting, for any b ∈ B,

k(b) =

{

h−1(b) if b ∈ rng(h),
a otherwise.

Clearly k maps B onto A.
(iii)⇒(i): Obviously A = ∅ implies that 0 = |A| ≤ |B|. Now suppose that h maps B

onto A. Then for any α < |A| there is a b ∈ B such that h(b) = f(α), and hence there is
a β < |B| such that h(g(β)) = f(α). For each α < |A| let k(α) = min{β < |B| : h(g(β)) =
f(α)}. Then h ◦ g ◦ k = f , so k is one-one. By Lemma 11.9, |A| ≤ |B|.

Corollary 11.12. If there is a one-one function from A into B and a one-one function
from B into A, then there is a one-one function from A onto B.

This corollary is called the Cantor-Bernstein, or Schröder-Bernstein theorem. Our proof,
if traced back, involves the axiom of choice. It can be proved without the axiom of choice,
and this is sometimes desirable when describing a small portion of set theory to students.

Proposition 11.13. If m ∈ ω, A is a set with |A| = m+1, and a ∈ A, then |A\{a}| = m.

Proof. Let f : A→ m+ 1 be a bijection. Let g be a bijection from m+ 1 onto m+ 1
which interchanges m and f(a), leaving other elements fixed. Then g ◦ f is a bijection of
A onto m+ 1, and (g ◦ f)(a) = m. Hence (g ◦ f)〈(A\{a}) is a bijection from A\{a} onto
m.

Theorem 11.14. Suppose that m ∈ ω and A and B are sets of size m. Let f : A → B.
Then f is one-one iff f is onto.

Proof. We prove the statement

∀m ∈ ω∀A,B, f [(|A| = |B| = m and f : A→ B)⇒ (f is one-one ⇔ f is onto)]

by induction on m. It is obvious for m = 0. Suppose it is true for m, and |A| = |B| = m+1
and f : A→ B.

First suppose that f is one-one. Pick a ∈ A. Then by Proposition 11.13, |A\{a}| =
|B\{f(a)}| = m. Now f ↾ (A\{a}) maps into B\{f(a)}, since if x ∈ A\{a} and f(x) =
f(a) then f being one-one is contradicted. Now f ↾ (A\{a}) is one-one, so by the inductive
hypothesis f ↾ (A\{a}) is onto. Clearly then f is onto.

Second suppose that f is onto. Let g : m + 1 → A be a bijection. Now for any
b ∈ B there is an a ∈ A such that f(a) = b, hence there is an i ∈ m + 1 such that
f(g(i)) = b. Let h(b) be the least such i. Then (f ◦ g ◦ h)(b) = b for all b ∈ B. It follows
that h : B → m + 1 is one-one. Hence by the first step above, h is onto. To show that
f is one-one, suppose that f(a0) = f(a1). Choose i0, i1 ∈ m + 1 such that g(i0) = a0

and g(i1) = a1. Since h is onto, choose b0, b1 ∈ B such that h(b0) = i0 and h(b1) = i1.
Then b0 = f(g(h(b0))) = f(g(i0)) = f(a0) = f(a1) = f(g(i1)) = f(g(h(b1))) = b1. Hence
i0 = h(b0) = h(b1) = i1, and a0 = g(i0) = g(i1) = a1.
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Theorem 11.14 does not extend to infinite sets.

The following simple theorem is very important and basic for the theory of cardinals. It
embodies in perhaps its simplest form the Cantor diagonal argument.

Theorem 11.15. For any set A we have |A| < |P(A)|.

Proof. The function given by a 7→ {a} is a one-one function from A into P(A), and
so |A| ≤ |P(A)|. [Saying that a 7→ {a} is giving the value of the function at the argument
a.] Suppose equality holds. Then there is a one-one function f mapping A onto P(A). Let
X = {a ∈ A : a /∈ f(a)}. Since f maps onto P(A), choose a0 ∈ A such that f(a0) = X .
Then a0 ∈ X iff a0 /∈ X , contradiction.

By this theorem, for every ordinal α there is a larger cardinal, namely |P(α)|. Hence we
can define α+ to be the least cardinal > α. Cardinals of the form κ+ are called successor
cardinals; other infinite cardinals are called limit cardinals. Is κ+ = |P(κ)|? The statement
that this is true for every infinite cardinal κ is the famous generalized continuum hypothesis
(GCH). The weaker statement that ω+ = |P(ω)| is the continuum hypothesis (CH).

It can be shown that the generalized continuum hypothesis is consistent with our
axioms. But also its negation is consistent; in fact, the negation of the weaker continuum
hypothesis is consistent. All of this under the assumption that our axioms are consistent.
(It is not possible to prove this consistency.)

Theorem 11.16. If Γ is a set of cardinals, then
⋃

Γ is also a cardinal.

Proof. We know already that
⋃

Γ is an ordinal. Suppose that κ
def
= |
⋃

Γ| <
⋃

Γ. By
definition of

⋃
, there is a λ ∈ Γ such that κ < λ. (Membership is the same as <.) Now

λ ⊆
⋃

Γ. So λ = |λ| ≤ |
⋃

Γ| = κ, contradiction.

We can now define the standard sequence of infinite cardinal numbers, by transfinite re-
cursion.

Theorem 11.17. There is a class ordinal function ℵ with domain On such that the
following conditions hold.

(i) ℵ0 = ω.

(ii) ℵβ+1 = ℵ+
β for any ordinal β.

(iii) ℵβ =
⋃

γ<β ℵγ for every limit ordinal β.

Proof. We define G : On×V→ V as follows. For any ordinal α and any set x,

G(α, x) =







ω if α = 0,
(x(β))+ if α = β + 1 for some ordinal β and

x is a function with domain α and x(β) is an ordinal
⋃

β<α x(β) if α is a limit ordinal and x is a function
with domain α and ordinal values

∅ otherwise.
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Now we apply Theorem 6.7 and get a function F : On→ V such that F(α) = G(α,F ↾ α)
for every ordinal α. Then

F(0) = G(0,F ↾ 0) = ω;

F(β + 1) = G(β + 1,F ↾ (β + 1)) = (F(β))+

F(α) = G(α,F ↾ α) =
⋃

β<α

F(β) for α limit

For historical reasons, one sometimes writes ωα in place of ℵα. Now we get the following
two results by Propositions 9.15 and 9.16.

Lemma 11.18. If α < β, then ℵα < ℵβ.

Lemma 11.19. α ≤ ℵα for every ordinal α.

Theorem 11.20. For every infinite cardinal κ there is an ordinal α such that κ = ℵα.

Proof. Let κ be any infinite cardinal. Then κ ≤ ℵκ < ℵκ+1. Here κ + 1 refers to
ordinal addition. This shows that there is an ordinal α such that κ < ℵα; choose the least
such α. Clearly α 6= 0 and α is not a limit ordinal. Say α = β + 1. Then ℵβ ≤ κ < ℵβ+1,
so κ = ℵβ.

We can now say a little more about the continuum hypothesis. Not only is it consistent that
it fails, but it is even consistent that |P(ω)| = ℵ2, or |P(ω)| = ℵ17, or |P(ω)| = ℵω+1;
the possibilities have been spelled out in great detail. Some impossible situations are
|P(ω)| = ℵω and |P(ω)| = ℵω+ω; we will establish this later in this chapter.

Addition of cardinals

Let κ and λ be cardinals. We define

κ+ λ = |{(α, 0) : α ∈ κ} ∪ {(β, 1) : β ∈ λ}|.

The idea is to take disjoint copies κ× {0} and λ× {1} of κ and λ and count the number
of elements in their union.

Two immediate remarks should be made about this definition. First of all, this is not,
in general, the same as the ordinal sum κ + λ. We depend on the context to distinguish
the two notions of addition. For example, ω + 1 = ω in the cardinal sense, but not in
the ordinal sense. In fact, we know that ω < ω + 1 in the ordinal sense. To show that
ω+ 1 = ω in the cardinal sense, it suffices to define a one-one function from ω onto the set

{(m, 0) : m ∈ ω} ∪ {(0, 1)}.

Let f(0) = (0, 1) and f(m+ 1) = (m, 0) for any m ∈ ω.
Secondly, the definition is consistent with our definition of addition for natural num-

bers (as a special case of ordinal addition), and thus it does coincide with ordinal addition
when restricted to ω; this will be proved shortly.

141



Proposition 11.21. If A ∩B = ∅, then |A ∪B| = |A|+ |B|.

Proof. We have |A| + |B| = |{(α, 0) : α ∈ |A|} ∪ {(α, 1) : α ∈ |B|}|. Now let
f : A→ |A| and g : B → |B| be bijections. Define h with domain A ∪B by

h(a) = (f(a), 0) for all a ∈ A,

h(b) = (g(b), 1) for all b ∈ B.

Then it is clear that h is a bijection from A∪B onto {(α, 0) : α ∈ |A|} ∪ {(α, 1) : α ∈ |B|}.
Hence |A ∪B| = |{(α, 0) : α ∈ |A|} ∪ {(α, 1) : α ∈ |B|}| = |A|+ |B|.

Proposition 11.22. If m and n are natural numbers, then addition in the ordinal sense
and in the cardinal number sense are the same.

Proof. For this proof we denote ordinal addition by +′ and cardinal addition by +.
With m ∈ ω fixed we prove that m+′n = m+n by induction on n. The case n = 0 is clear.
Now suppose that m+′n = m+n. Then m+′ (n+′1) = (m+′n)+′1 = (m+′n)∪{m+′n}.
On the other hand,

m+ (n+′ 1) = |{(i, 0) : i ∈ m} ∪ {(i, 1) : i ∈ n+′ 1}|

= |{(i, 0) : i ∈ m} ∪ {(i, 1) : i ∈ n ∪ {n}}|

= |{(i, 0) : i ∈ m} ∪ {(i, 1) : i ∈ n} ∪ {(n, 1)}|

= |{(i, 0) : i ∈ m} ∪ {(i, 1) : i ∈ n}|+ 1

= (m+′ n) +′ 1 = m+′ (n+′ 1).

Aside from simple facts about addition, there is the remarkable fact that κ + κ = κ for
every infinite cardinal κ. We shall prove this as a consequence of the similar result for
multiplication.

The definition of cardinal addition can be extended to infinite sums, and very ele-
mentary properties of the binary sum are then special cases of more general results; so we
proceed with the general definition. Let 〈κi : i ∈ I〉 be a system of cardinals (this just
means that κ is a function with domain I whose values are always cardinals). Then we
define

∑

i∈I

κi =

∣
∣
∣
∣
∣

⋃

i∈I

(κi × {i})

∣
∣
∣
∣
∣
.

This is a generalization of summing two cardinals, as is immediate from the definitions:

Proposition 11.23. If 〈κi : i ∈ 2〉 is a system of cardinals (meaning that κ is a function
with domain 2 such that both κ0 and κ1 are cardinals), then

∑

i∈2 κi = κ0 + κ1.

The following is easily proved by induction on |I|:

Proposition 11.24. If 〈mi : i ∈ I〉 is a system of natural numbers, with I finite, then
∑

i∈I mi is a natural number.
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We mention some important but easy facts concerning the cardinalities of unions:

Proposition 11.25. If 〈Ai : i ∈ I〉 is a system of pairwise disjoint sets, then
∣
∣
⋃

i∈I Ai
∣
∣ =

∑

i∈I |Ai|.

Proposition 11.26. If 〈Ai : i ∈ I〉 is any system of sets, then
∣
∣
⋃

i∈I Ai
∣
∣ ≤

∑

i∈I |Ai|.

Proof. For each i ∈ I let fi be a bijection from |Ai| onto Ai. (We use the axiom of
choice here.) For any i ∈ I and α ∈ |Ai| let g((α, i)) = fi(α). Then g maps

⋃

i∈I(|Ai|×{i})
onto

⋃

i∈I Ai. Hence by Corollary 11.11,

∣
∣
∣
∣
∣

⋃

i∈I

Ai

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

⋃

i∈I

(|Ai| × {i})

∣
∣
∣
∣
∣

=
∑

i∈I

|Ai|.

Corollary 11.27. If 〈κi : i ∈ I〉 is a system of cardinals, then
⋃

i∈I κi ≤
∑

i∈I κi.

Finally, we gather together some simple arithmetic of infinite sums:

Proposition 11.28. (i)
∑

i∈I 0 = 0.
(ii)

∑

i∈0 κi = 0.
(iii)

∑

i∈I κi =
∑

i∈I,κi 6=0 κi.
(iv) If I ⊆ J , then

∑

i∈I κi ≤
∑

i∈J κi.
(v) If κi ≤ λi for all i ∈ I, then

∑

i∈I κi ≤
∑

i∈I λi.
(vi)

∑

i∈I 1 = |I|.
(vii) If κ is infinite, then κ+ 1 = κ.

Proof. (i):
∑

i∈I 0 =
∣
∣
⋃

i∈I(0× {i})
∣
∣ = |∅| = 0.

(ii):
∑

i∈0 κi =
∣
∣
⋃

i∈0(κi × {i})
∣
∣ = |∅| = 0.

(iii):
∑

i∈I κi =
∣
∣
⋃

i∈I(κi × {i})
∣
∣ =

∣
∣
∣
⋃

i∈I,κi 6=0(κi × {i}
∣
∣
∣ =

∑

i∈I,κi 6=0 κi.

(iv): Assume that I ⊆ J . Then
⋃

i∈I(κi × {i}) ⊆
⋃

i∈J(κi × {i}) and so the desired
conclusion follows by Theorem 11.10.

(v): Assume that κi ≤ λi for all i ∈ I. Then
⋃

i∈I(κi × {i}) ⊆
⋃

i∈I(λi × {i}), and
Theorem 11.10 applies.

(vi): We have
∑

i∈I 1 =
∣
∣
⋃

i∈I(1× {i})
∣
∣. Now the mapping i 7→ (0, i) is a bijection

from I to
⋃

i∈I(1× {i}), so the desired conclusion follows.
(vii) We define a function f mapping κ into {(α, 0) : α < κ} ∪ {(0, 1)} as follows. For

any α < κ,

f(α) =







(0, 1) if α = 0,
(β, 0) if α = β + 1 ∈ ω,
(α, 0) if ω ≤ α < κ.

It is clear that f is a bijection, as desired.
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Multiplication of cardinals

By definition,

κ · λ = |κ× λ|.

Again this is different from ordinal multiplication, and we depend on the context to
distinguish between them. For example, in the ordinal sense ω · 2 > ω · 1 = ω but in the
cardinal sense ω · 2 = ω. One can see the latter by using the following function f from ω
to ω × 2: f(2m) = (m, 0) and f(2m+ 1) = (m, 1) for any m ∈ ω.

The following simple result can be used in verifying many simple facts concerning
products.

Proposition 11.29. If A is equipotent with C and B is equipotent with D, then A×B is
equipotent with C ×D.

Proof. Assume the hypothesis. Say f : A → C is a bijection, and g : B → D is
a bijection. Define h : A × B → C × D by setting h(a, b) = (f(a), g(b)). Clearly h is a
bijection from A×B onto C ×D.

Proposition 11.30. (i) κ · λ = λ · κ;
(ii) κ · (λ · µ) = (κ · λ) · µ;
(iii) κ · (λ+ µ) = κ · λ+ κ · µ;
(iv) κ · 0 = 0;
(v) κ · 1 = κ;
(vi) κ · 2 = κ+ κ;
(vii)

∑

i∈I κ = κ · |I|;
(viii) If κ ≤ µ and λ ≤ ν, then κ · λ ≤ µ · ν.

Proof. (i): For any α ∈ κ and β ∈ λ let f(α, β) = (β, α). Clearly f is a bijection
from κ× λ onto λ× κ.

(ii): We have κ · (λ · µ) = |κ× (λ · µ)| = |κ× |λ× µ||. Let f be a bijection from λ · µ
onto λ × µ. Define g : κ × |λ × µ| → (κ × λ) × µ by setting, for α ∈ κ and β ∈ |λ × µ|,
g(α, β) = ((α, 1stf(β)), 2ndf(β)). Clearly g is a bijection.

We have (κ · λ) · µ = |(κ · λ) × µ| = ||κ × λ| × µ|. Now let h : κ · λ → κ × λ be a
bijection. Define k : |κ × λ| × µ → (κ × λ) × µ by setting, for α ∈ |κ × λ| and β ∈ µ,
k(α, β) = (h(α), β). Clearly h is a bijection.

Now h−1 ◦ g is a bijection from κ× |λ× µ| onto |κ× λ| × µ, as desired.
(iii): We have

κ · (λ+ µ) = |κ× (λ+ µ)|

= |κ× |(λ× {0}) ∪ (µ× {1})||

= |κ× (λ× {0}) ∪ (µ× {1})) using Proposition 11.29;

κ · λ+ κ · µ = |(κ · λ)× {0}) ∪ (κ · µ)× {1})|

= |(|κ× λ| × {0}) ∪ (|κ× µ| × {1}|.
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Take bijections g : |κ× λ| → κ× λ and h : |κ× µ| → κ× µ. Now we define

h : κ× ((λ× {0}) ∪ (µ× {1})| → (|κ× λ| × {0}) ∪ (|κ× µ| × {1}.

Let α ∈ κ, β ∈ λ and γ ∈ µ. Then we define

h((α, (β, 0))) = (g−1((α, β)), 0);

h((α, (γ, 1))) = (g−1(α, γ)), 1)

It suffices to show that h is a bijection. Clearly it is one-one. For ontoness, given α ∈ |κ×λ|
we have

h((1st(g(α), (2nd(g(α)), 0)) = (g−1((1st(g(α)), 2nd(g(α)))), 0) = (α, 0),

and similarly for α ∈ |κ× µ|.
(iv): κ · 0 = |κ× 0| = |0| = 0.
(v): κ · 1 = |κ× 1| = κ, since α 7→ (α, 0) is a bijection from κ to κ× 1.
(vi): κ · 2 = |κ× 2| and κ+ κ = |(κ× {0}) ∪ (κ× {1})| = |κ× 2|.
(vii):

∑

i∈I κ =
∣
∣
⋃

i∈I(κ · {i})
∣
∣ and κ · |I|| = |κ × |I||. Let f be a bijection from I

to |I|. For any α ∈ κ and i ∈ I let g((α, i)) = (α, f(i)). Clearly g is a bijection from
⋃

i∈I(κ · {i}) onto κ× |I|.
(viii): Assume that κ ≤ µ and λ ≤ ν. Then κ× λ ⊆ µ× ν, so the desired conclusion

follows by Theorem 11.10.

Proposition 11.31. Multiplication of natural numbers means the same in the cardinal
number sense as in ordinal sense.

Proof. For this proof we use ◦ for ordinal multiplication and · for cardinal mul-
tiplication. We prove with fixed m ∈ ω that m ◦ n = m · n for all n ∈ ω. We have
m ◦ 0 = 0 and m · 0 = |m × 0| = |0| = 0. Assume that m ◦ n = m · n. Then
m ◦ (n + 1) = m ◦ n + m = m · n + m = m · n + m · 1 = m · (n + 1) using Proposi-
tion 11.30(iii).

The basic theorem about multiplication of infinite cardinals is as follows.

Theorem 11.32. κ · κ = κ for every infinite cardinal κ.

Proof. Suppose not, and let κ be the least infinite cardinal such that κ ·κ 6= κ. Then
κ = κ ·1 ≤ κ ·κ, and so κ < κ ·κ. We now define a relation ≺ on κ×κ. For all α, β, γ, δ ∈ κ,

(α, β) ≺ (γ, δ) iff max(α, β) < max(γ, δ)

or max(α, β) = max(γ, δ) and α < γ

or max(α, β) = max(γ, δ) and α = γ and β < δ.

Clearly this is a well-order. It follows that (κ× κ,≺) is isomorphic to an ordinal α; let f
be the isomorphism. We have |α| = |κ× κ| = κ · κ > κ by the remark at the beginning of
this proof. So κ < α. Therefore there exist β, γ ∈ κ such that f(β, γ) = κ. Now

f [{(δ, ε) ∈ κ× κ : (δ, ε) ≺ (β, γ)}] = κ,
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so, with ϕ = max(β, γ)+1,

κ = |{(δ, ε) ∈ κ× κ : (δ, ε) ≺ (β, γ)}|

≤ |ϕ× ϕ| = |ϕ| · |ϕ|.

But ϕ < κ, so either ϕ is finite, and |ϕ| · |ϕ| is then also finite, or else ϕ is infinite, and
|ϕ| · |ϕ| = |ϕ| by the minimality of κ. In any case, |ϕ| · |ϕ| < κ, contradiction.

Corollary 11.33. If κ and λ are nonzero cardinals and at least one of them is infinite,
then κ+ λ = κ · λ = max(κ, λ).

Proof. Say wlog κ ≤ λ. Then κ+ λ ≤ λ+ λ = λ · 2 ≤ λ · λ = λ ≤ κ+ λ.

Corollary 11.34. If 〈Ai : i ∈ I〉 is any system of sets, then

∣
∣
∣
∣
∣

⋃

i∈I

Ai

∣
∣
∣
∣
∣
≤ |I| ·

⋃

i∈I

|Ai|.

Proof. For each i ∈ I let gi : Ai → |Ai| be a bijection (using the axiom of choice).
Moreover, let c be a choice function for nonempty subsets of I. Now we define a function f
mapping

⋃

i∈I Ai into I×
⋃

i∈I |Ai|. Take any a ∈
⋃

i∈I Ai, and let j = c({i ∈ I : a ∈ Ai}).
Then we set f(a) = (j, gj(a)). Clearly f is one-one, and hence

∣
∣
∣
∣
∣

⋃

i∈I

Ai

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
I ×

⋃

i∈I

|Ai|

∣
∣
∣
∣
∣

by Corollary 11.11

=

∣
∣
∣
∣
∣
|I| ×

⋃

i∈I

|Ai|

∣
∣
∣
∣
∣

by Proposition 11.29

= |I| ·
⋃

i∈I

|Ai|.

A set A is countable if |A| ≤ ω. So another corollary is

Corollary 11.35. A countable union of countable sets is countable.

Proposition 11.36. If 〈κi : i ∈ I〉 is a system of nonzero cardinals, and either I is infinite
or some κi is infinite, then

∑

i∈I κi = |I| ·
⋃

i∈I κi.

Proof. We have

∑

i∈I

κi ≤
∑

i∈I

⋃

j∈I

κj by Proposition 11.28(v)

= |I| ·
⋃

j∈I

κj by Proposition 11.30(vi)
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This proves ≤ in the proposition.
Next,

⋃

i∈I κi ≤
∑

i∈I κi by Proposition 11.27, and |I| =
∑

i∈I 1 (by Proposition
11.28(vi)) ≤

∑

i∈I κi (by Proposition 11.28(v)). Now the direction ≥ of the proposition
follows from Corollary 11.33.

By the above results, the binary operations of addition and multiplication of cardinals are
trivial when applied to infinite cardinals; and the infinite sum is also easy to calculate.
We now introduce infinite products which, as we shall see, are not so trivial. We need the
following standard elementary notion: for 〈Ai : i ∈ I〉 a family of sets, we define

∏

i∈I

Ai = {f : f is a function, dmn(f) = I, and ∀i ∈ I[f(i) ∈ Ai]}.

This is the cartesian product of the sets Ai. Now if 〈κi : i ∈ I〉 is a system of cardinals,
we define

c∏

i∈I

κi =

∣
∣
∣
∣
∣

∏

i∈I

κi

∣
∣
∣
∣
∣
.

Some elementary properties of this notion are summarized in the following proposition.

Proposition 11.37. (i)
∣
∣
∏

i∈I Ai
∣
∣ =

∏c
i∈I |Ai|.

(ii) If κi = 0 for some i ∈ I, then
∏c
i∈I κi = 0.

(iii)
∏c
i∈0 κi = 1.

(iv)
∏c
i∈I κi =

∏c
i∈I,κi 6=1 κi.

(v)
∏c
i∈I 1 = 1.

(vi) If κi ≤ λi for all i ∈ I, then
∏c
i∈I κi ≤

∏c
i∈I λi.

(vii)
∏c
i∈2 κi = κ0 · κ1.

Proof. (i): For each i ∈ I, let fi be a one-one function mapping Ai onto |Ai. (We
are using the axiom of choice here.) Note that

∏c
i∈I |Ai| =

∣
∣
∏

i∈I |Ai|
∣
∣. Thus we want

to find a bijection from
∏

i∈I Ai onto
∏

i∈I |Ai|. For each x ∈
∏

i∈I Ai and j ∈ I let
(g(x))j = fj(xj). Thus g :

∏

i∈I Ai →
∏

i∈I |Ai|. Suppose that g(x) = g(y). Then for any
j ∈ I we have fj(xj) = ((g(x))j = ((g(y))j = fj(yj), and hence xj = yj ; so x = y. Thus
g is one-one. Given y ∈

∏

i∈I |Ai|, define xj = f−1
j (yj) for any j ∈ I. Then x ∈

∏

i∈I Ai
and (g(x))j = fj(xj) = fj(f

−1
j (yj)) = yj ; so g(x) = y. This shows that g is onto.

(ii): If κi = 0 for some i ∈ I, then
∏

j∈I Aj = ∅, and hence
∏c
j∈I Aj =

∣
∣
∣
∏

j∈I Aj

∣
∣
∣ =

|∅| = 0.
(iii): We have

∏c
i∈0 κi =

∣
∣
∏

i∈0 κi
∣
∣ = |{∅}| = 1.

(iv): We have
∏c
i∈I κi =

∣
∣
∏

i∈I κi
∣
∣ and

∏c
i∈I,κi 6=1 κi =

∣
∣
∣
∏

i∈I,κi 6=1 κi

∣
∣
∣, so we want a

bijection from
∏

i∈I κi onto
∏

i∈I,κi 6=1 κi. For each x ∈
∏

i∈I κi let f(x) = x ↾ {i ∈ I : κi 6=
1}. If f(x) = f(y), then for any i ∈ I,

x(i) =

{

(f(x))(i) if κi 6= 1
0 if κ1 = 1

=

{

(f(y))(i) if κi 6= 1
0 if κ1 = 1

= y(i).
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Thus f is one-one. Clearly it is onto.
(v): We have

∏c
i∈I 1 =

∣
∣
∏

i∈I 1
∣
∣. Hence it suffices to show, using (iii), that if I 6= ∅

then
∏

i∈I 1 has only one element. This is clear.
(vi): Assume that κi ≤ λi for all i ∈ I. Then

∏

i∈I κi ⊆
∏

i∈I λi, so (vi) follows from
Theorem 11.10.

(vii): We have
∏c
i∈2 κi =

∣
∣
∏

i∈2 κi
∣
∣, and κ0 ·κ1 = |κ0×κ1|. Hence it suffices to describe

a bijection from
∏

i∈2 κi onto κ0×κ1. For each x ∈
∏

i∈2 κi let f(x) = (x(0), x(1)). Clearly
f is as desired.

General commutative, associative, and distributive laws hold also:

Proposition 11.38. (Commutative law) If 〈κi : i ∈ I〉 is a system of cardinals and
f : I → I is one-one and onto, then

c∏

i∈I

κi =

c∏

i∈I

κf(i).

Proof. For each x ∈
∏

i∈I κi define g(x) ∈
∏

i∈I κf(i) by setting (g(x))i = xf(i).
Clearly g is a bijection, and the proposition follows.

Proposition 11.39. (Associative law) If 〈κij : (i, j) ∈ I × J〉 is a system of cardinals,
then

c∏

i∈I





c∏

j∈J

κij



 =

c∏

(i,j)∈I×J

κij .

Proof. Note that
∏c
i∈I

(
∏c
j∈J κij

)

=
∣
∣
∣
∏

i∈I

∣
∣
∣
∏

j∈J κij

∣
∣
∣

∣
∣
∣. For each i ∈ I let fi be

a bijection from
∣
∣
∏

i∈J κij
∣
∣ onto

∏

i∈J κij (using the axiom of choice). Now we define g

mapping
∏

i∈I

∣
∣
∣
∏

j∈J κij

∣
∣
∣ to

∏

(i,j)∈I×J κij by setting, for any x ∈
∏

i∈I

∣
∣
∣
∏

j∈J κij

∣
∣
∣ and any

(i, j) ∈ I × J , (g(x))ij = (fi(xi))j . To show that g is one-one, suppose that g(x) = g(y).
Take any (i, j) ∈ I × J . Then (fi(xi))j = (g(x))ij = (g(y))ij = (fi(yi))j. Since j is
arbitrary, fi(xi) = fi(yi). Since fi is one-one, xi = yi. Since i is arbitrary, x = y. Thus g

is one-one. To show that g is onto, let z ∈
∏

(i,j)∈I×J κij . Define x ∈
∏

i∈I

∣
∣
∣
∏

j∈J κij

∣
∣
∣ by

setting xi = f−1
i (〈zij : j ∈ J〉). Then (g(x))ij = (fi(xi))j = zij ; so g(x) = z.

Proposition 11.40. (Distributive law) If 〈λi : i ∈ I〉 is a system of cardinals, then

κ ·
∑

i∈I

λi =
∑

i∈I

(κ · λi).

Proof. We have

κ ·
∑

i∈I

λi =

∣
∣
∣
∣
∣
κ×

∣
∣
∣
∣
∣

⋃

i∈I

(λi × {i})

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
;

∑

i∈I

(κ · λi) =

∣
∣
∣
∣
∣

⋃

i∈I

((κ · λi)× {i})

∣
∣
∣
∣
∣
.
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Let f be a bijection from
∣
∣
⋃

i∈I(λi × {i})
∣
∣ onto

⋃

i∈I(λi × {i}). For each i ∈ I let gi be a
bijection from κ · λi onto κ× λi (using the axiom of choice). Now we define a function

h : κ×

∣
∣
∣
∣
∣

⋃

i∈I

(λi × {i})

∣
∣
∣
∣
∣
→
⋃

i∈I

((κ · λi)× {i}).

Let (α, β) ∈ κ ×
∣
∣
⋃

i∈I(λi × {i})
∣
∣. Say f(β) = (γ, i) with i ∈ I and γ ∈ λi. Then we set

h((α, β)) = (g−1
i (α, γ), i).

To show that h is one-one, suppose that h((α, β)) = h((α′, β′)). Say f(β) = (γ, i) and
f(β′) = (γ′, j). Then

(g−1
i (α, γ), i) = h((α, β)) = h((α′, β′)) = (g−1

j (α′, γ′), j).

It follows that i = j and g−1
i (α, γ) = g−1

j (α′, γ′), hence (α, γ) = (α′, γ′). So α = α′ and
γ = γ′. Therefore f(β) = f(β′), so β = β′. We have shown that (α, β) = (α′, β′). Hence
h is one-one.

To show that h is onto, let z ∈
⋃

i∈I((κ · λi) × {i}); say i ∈ I and z = (α, i) with
α ∈ κ · λi. Let g(α) = (β, γ) with β ∈ κ and γ ∈ λi. Then (γ, i) ∈ λi × {i}. Let
δ = f−1(γ, i). Then we claim that h((β, δ)) = z. For, we have f(δ) = (γ, i), and hence
h((β, δ)) = (g−1

i (β, γ), i) = (α, i) = z.

Theorem 11.41. (König) Suppose that 〈κi : i ∈ I〉 and 〈λi : i ∈ I〉 are systems of
cardinals such that λi < κi for all i ∈ I. Then

∑

i∈I

λi <
c∏

i∈I

κi.

Proof. The proof is another instance of Cantor’s diagonal argument. Suppose that
this is not true; thus

∏c
i∈I κi ≤

∑

i∈I λi. It follows that there is a one-one function f
mapping

∏c
i∈I κi into {(α, i) : i ∈ I, α < λi}. For each i ∈ I let

Ki = {(f−1(α, i))i : α < λi, (α, i) ∈ rng(f)}.

Clearly Ki ⊆ κi. Now |Ki| ≤ λi < κi, so we can choose xi ∈ κi\Ki (using the axiom of
choice). Say f(x) = (α, i). Then xi = (f−1(α, i))i ∈ Ki, contradiction.

Exponentiation of cardinals

We define
κλ = |λκ|.

The following simple proposition will be useful.

Proposition 11.42. If |A| = |A′| and |B| = |B′|, then |AB| = |A
′

B′|.

149



Proof. Let f : A → A′ and g : B → B′ be bijections. For any x ∈ AB let
F (x) = g ◦ x ◦ f−1. Thus F (x) ∈ A′

B′. If F (x) = F (y), then x = g−1 ◦ F (x) ◦ f =
g−1◦F (y)◦f = y. So F is one-one. It is onto, since given z ∈ A′

B′ we have g−1◦z◦f ∈ AB,
and F (g−1 ◦ z ◦ f) = z.

The elementary arithmetic of exponentiation is summarized in the following proposition:

Proposition 11.43. (i) κ0 = 1.
(ii) If κ 6= 0, then 0κ = 0.
(iii) κ1 = κ.
(iv) 1κ = 1.
(v) κ2 = κ · κ.
(vi) κλ · κµ = κλ+µ.
(vii) (κ · λ)µ = κµ · λµ.
(viii) (κλ)µ = κλ·µ.
(ix) If κ ≤ λ 6= 0 and µ ≤ ν, then κµ ≤ λν.
(x)

∏c
i∈I κ = κ|I|.

(xi) κ
∑

i∈I
λi =

∏c
i∈I κ

λi .

(xii)
(∏c

i∈I κi
)λ

=
∏c
i∈I κ

λ
i .

Proof. (i): κ0 = |0κ|. Now 0κ = {∅}, so κ0 = 1.
(ii): if κ 6= 0, then 0κ = |κ0| and κ0 = ∅, so κ0 = 0.
(iii): κ1 = |1κ|, and 1κ = {{(0, α)} : α < κ}. The mapping α 7→ {(0, α)} is a bijection

from κ onto {{(0, α)} : α < κ}.
(iv): 1κ = |κ1|, and κ1 has only one member, the function with domain κ and value

always 0.
(v): κ2 = |2κ| and κ · κ = |κ× κ|. For any x ∈ 2κ let f(x) = (x(0), x(1)). Clearly f is

a bijection from 2κ onto κ× κ.
(vi): κλ · κµ = ||λκ| × |µκ|| = |λκ × µκ|, using Proposition 11.29. Also, κλ+µ =

||(λ×{0})∪(µ×{1})|κ| = |(λ×{0})∪(µ×{1})κ|, using Proposition 11.42. Hence it suffices to define
a bijection from λκ×µκ to (λ×{0})∪(µ×{1})κ. If x ∈ λκ and y ∈ µκ, define (h(x, y))((α, 0)) =
x(α) for any α ∈ λ, and (h(x, y))((α, 1)) = y(α) for any α ∈ µ. To show that h is one-one,
suppose that x, x′ ∈ λκ, y, y′ ∈ µκ, and h(x, y) = h(x′, y′). To show that x = x′, take any
α ∈ λ. Then x(α) = (h(x, y))((α, 0)) = (h(x′, y′))((α, 0)) = x′(α). So x = x′. Similarly
y = y′, so h is one-one. To show that h is onto, take any z ∈ (λ×{0})∪(µ×{1})κ. Define x ∈ λκ
by setting x(α) = z((α, 0)) for any α ∈ λ, and define y ∈ µκ by setting y(α) = z((α, 1))
for any α ∈ µ. Then h(x, y) = z, since for any α ∈ λ we have (h(x, y))((α, 0)) = x(α) =
z((α, 0)) and for any α ∈ µ we have (h(x, y))((α, 1)) = y(α) = z((α, 1)).

(vii): (κ ·λ)µ = |µ|κ×λ|| = |µ(κ×λ)| using Proposition 11.42. κµ ·λµ = ||µκ|×|µλ|| =
|(µκ)× (µλ)| using Proposition 11.29. Hence it suffices to define a bijection from µ(κ× λ)
onto (µκ)×(µλ). For any x ∈ µ(κ×λ), define f(x) = (g(x), h(x)), where g(x) is the member
of µκ such that (g(x))(α) = 1st(x(α)) for any α ∈ µ, and h(x) is the member of µλ such that
(h(x))(α) = 2nd(x(α)) for any α ∈ µ. To show that f is one-one, suppose that f(x) = f(y).
Then g(x) = g(y), so for any α ∈ µ we have 1st(x(α)) = (g(x))(α) = (g(y))(α) = 1st(y(α)).
Similarly, 2nd(x(α)) = 2nd(y(α)) for any α ∈ µ. Hence x(α) = y(α) for any α ∈ µ. Thus
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x = y. So f is one-one. To show that f is onto, suppose that (u, v) ∈ (µκ)× (µλ). Define
x ∈ µ(κ × λ) by setting x(α) = (u(α), v(α)) for any α ∈ µ. Say f(x) = (g(x), h(x)).
Then (g(x))(α) = 1st(x(α)) = u(α) for any α ∈ µ; so g(x) = u. Similarly, h(x) = v. So
f(x) = (u, v), as desired.

(viii): (κλ)µ = |µ|λκ|| = |µ(λκ)|, using Proposition 11.42. κλ·µ = ||λ×µ|κ| = |λ×µκ|
using Proposition 11.42. Hence it suffices to define a bijection from µ(λκ) onto λ×µκ. For
any x ∈ µ(λκ) and any α ∈ λ and β ∈ µ, let (f(x))(α, β) = (x(α))(β). To show that f is
one-one, suppose that x, y ∈ µ(λκ) and f(x) = f(y). Take any α ∈ λ and β ∈ µ. Then
(x(α))(β) = (f(x))(α, β) = (f(y))(α, β) = (y(α))(β). This being true for all β ∈ µ, it
follows that x(α) = y(α). This is true for all α ∈ λ, so x = y.

To see that f is onto, suppose that z ∈ λ×µκ. Define x ∈ λ(µκ) by setting (x(α))(β) =
z(α, β) for any α ∈ λ and β ∈ µ. Then for any α ∈ λ and β ∈ µ we have (f(x))(α, β) =
(x(α))(β) = z(α, β). So f(x) = z.

(ix): Assume that κ ≤ λ 6= 0 and µ ≤ ν. For every x ∈ µκ let x+ ∈ νλ be an extension
of x. Then the mapping x 7→ x+ is a one-one function from µκ into νλ. So (ix) follows.

(x):
∏c
i∈I κ =

∣
∣
∏

i∈i κ
∣
∣ and κ|I| = ||I|κ| = |Iκ| using Proposition 11.42. Note that

actually
∏

i∈i κ = Iκ.

(xi): κ
∑

i∈I
λi =

∣
∣
∣
|
⋃

i∈I
(λi×{i})|

κ
∣
∣
∣ =

∣
∣
∣

⋃

i∈I
(λi×{i})

κ
∣
∣
∣, using Proposition 11.42. Also,

∏c
i∈I κ

λi = |
∏

i∈I |
λiκ|| = |

∏

i∈I
λiκ|, using Proposition 11.37(i). Hence it suffices to

define a bijection from
⋃

i∈I
(λi×{i})

κ onto
∏

i∈I
λiκ. Take any x ∈

⋃

i∈I
(λi×{i})

κ, i ∈ I,
and α ∈ λi. Define (f(x))i(α) = x(α, i). Then f is one-one. For, suppose that f(x) =
f(y). Take any i ∈ I and α ∈ λi. Then x(α, i) = (f(x))i(α) = (f(y))i(α) = y(α, i).

Hence x = y. To show that f is onto, let z ∈
∏

i∈I
λiκ. Define x ∈

⋃

i∈I
(λi×{i})

κ by
setting, for any i ∈ I and α ∈ λi, x(α, i) = (z(i))(α). Then for any i ∈ I and α ∈ λi,
(f(x))i(α) = x(α, i) = (z(i))(α). So f(x) = z.

(xii):
(∏c

i∈I κi
)λ

=
∣
∣λ
∣
∣
∏

i∈I κi
∣
∣
∣
∣ =

∣
∣λ
∏

i∈I κi
∣
∣, using Proposition 11.42. Also, we

have
∏c
i∈I κ

λ
i =

∣
∣
∏

i∈I |
λκi|

∣
∣ =

∣
∣
∏

i∈I
λκi
∣
∣, using Proposition 11.37(i). Hence it suffices to

define a bijection from λ
∏

i∈I κi onto
∏

i∈I
λκi. For any x ∈ λ

∏

i∈I κi, i ∈ I, and α ∈ λ,
let (f(x))i(α) = (x(α))i. Then f is one-one. For, assume that f(x) = f(y). Then for any
α ∈ λ and i ∈ I we have (x(α))i = (f(x))i(α) = (f(y))i(α) = (y(α))i. So x = y. Also, f is
onto. For, suppose that z ∈

∏

i∈I
λκi. Define x ∈ λ

∏

i∈I κi by setting (x(α))i = zi(α) for
any α ∈ λ and i ∈ I. Then for any i ∈ I and α ∈ λ we have (f(x))i(α) = (x(α))i = zi(α).
So f(x) = z.

Proposition 11.44. If m,n ∈ ω, then mn ∈ ω, and mn has the same meaning in the
ordinal or cardinal sense.

Proof. For this proof, denote ordinal exponentiation by exp(m,n). With m fixed, we
show that mn ∈ ω and mn = exp(m,n) by induction on n. We have m0 = 1 by Proposition
11.43(i), and exp(m, 0) = 1 also. Now assume that mn ∈ ω and mn = exp(m,n). Then
mn+1 = mn ·m1 = mn ·m by Proposition 11.43(vi),(iii). We also have exp(m,n + 1) =
exp(m,n) ·m, so the inductive hypothesis gives the desired conclusion.

Proposition 11.45. |P(A)| = 2|A|.
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For each X ⊆ A define χX ∈
A2 by setting

χX(a) =
{

1 if a ∈ X ,
0 otherwise.

[This is the characteristic function of X .] It is easy to check that χ is a bijection from
P(A) onto A2.

The calculation of exponentiation is not as simple as that for addition and multiplication.
The following result gives one of the most useful facts about exponentiation, however.

Theorem 11.46. If 2 ≤ κ ≤ λ ≥ ω, then κλ = 2λ.

Proof. Note that each function f : λ→ λ is a subset of λ×λ. Hence λλ ⊆P(λ×λ),
and so λλ ≤ |P(λ× λ)|. Therefore,

2λ ≤ κλ ≤ λλ ≤ |P(λ× λ)| = 2λ·λ = 2λ;

so all the entries in this string of inequalities are equal, and this gives κλ = 2λ.

Cofinality, and
regular and singular cardinals

Further cardinal arithmetic depends on the notion of cofinality. For later purposes we
define a rather general version of this notion. Let (P,<) be a partial order. A subset X of
P is dominating iff for every p ∈ P there is an x ∈ X such that p ≤ x. The cofinality of P
is the smallest cardinality of a dominating subset of P . We denote this cardinal by cf(P ).

A subset X of P is unbounded iff there does not exist a p ∈ P such that x ≤ p for all
x ∈ X . If P is simply ordered without largest element, then these notions—dominating
and unbounded—coincide. In fact, suppose that X is dominating but not unbounded.
Since X is not unbounded, choose p ∈ P such that x ≤ p for all x ∈ X . Since P does
not have a largest element, choose q ∈ P such that p < q. Then because X is dominating,
choose x ∈ X such that q ≤ x. Then q ≤ x ≤ p < q, contradiction. Thus X dominating
implies that X is unbounded. Now suppose that Y is unbounded but not dominating.
Since Y is not dominating, there is a p ∈ P such that p 6≤ x, for all x ∈ Y . Since P is a
simple order, it follows that x < p for all x ∈ Y . This contradicts Y being unbounded.

We apply these notions to infinite cardinals, which are simply ordered sets with no last
element. Obviously any infinite cardinal κ is a dominating subset of itself; so cf(κ) ≤ κ. A
cardinal κ is regular iff κ is infinite and cf(κ) = κ. An infinite cardinal that is not regular
is called singular.

Theorem 11.47. For every infinite cardinal κ, the cardinal κ+ is regular.

Proof. Suppose that Γ ⊆ κ+, Γ is unbounded in κ+, and |Γ| < κ+. Hence

κ+ =

∣
∣
∣
∣
∣
∣

⋃

γ∈Γ

γ

∣
∣
∣
∣
∣
∣

≤
∑

γ∈Γ

|γ| ≤
∑

γ∈Γ

κ = κ · κ = κ,
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contradiction. The first equality here holds because Γ is unbounded in κ+ and κ+ is a
limit ordinal.

This theorem almost tells the full story about when a cardinal is regular. Examples of
singular cardinals are ℵω+ω and ℵω1

. But it is conceivable that there are regular cardinals
not covered by Theorem 11.47. An uncountable regular limit cardinal is said to be weakly
inaccessible. A cardinal κ is said to be inaccessible if it is regular, uncountable, and has
the property that for any cardinal λ < κ, also 2λ < κ. Clearly every inaccessible cardinal
is also weakly inaccessible. Under GCH, the two notions coincide. If it is consistent
that there are weak inaccessibles, then it is consistent that 2ω is weakly inaccessible; but
of course it definitely is not inaccessible. It is consistent with ZFC that there are no
uncountable weak inaccessibles at all. These consistency results will be proved later in
these notes. It is reasonable to postulate the existence of inaccessibles, and they are useful
in some situations. In fact, the subject of large cardinals is one of the most studied in
contemporary set theory, with many spectacular results.

Theorem 11.48. Suppose that (A,<) is a simple order with no largest element. Then
there is a strictly increasing function f : cf(A)→ A such that rng(f) is unbounded in A.

Proof. Let X be a dominating subset of A of size cf(A), and let g be a bijection from
cf(A) onto X . We define a function f : cf(A) → X by recursion, as follows. If f(β) ∈ X
has been defined for all β < α, where α < cf(A), then {f(β) : β < α} has size less than
cf(A), and hence it is not dominating. Hence there is an a ∈ A such that f(β) < a for all
β < α. We let f(α) be an element of X such that a, g(α) ≤ f(α).

Clearly f is strictly increasing. If a ∈ A, choose α < cf(A) such that a ≤ g(α). Then
a ≤ f(α).

Proposition 11.49. Suppose that (A,<) is a simple ordering with no largest element.
Then cf(cf(A)) = cf(A).

Proof. Clearly cf(α) ≤ α for any ordinal α; in particular, cf(cf(A)) ≤ cf(A). Now by
Theorem 11.48, let f : cf(A)→ A be strictly increasing with rng(f) unbounded in A. Now
cf(A) is an infinite cardinal, and hence it is a limit ordinal by Proposition 11.8. Hence
Theorem 11.48 again applies, and we can let g : cf(cf(A)) → cf(A) be strictly increasing
with rng(g) unbounded in cf(A). Clearly f ◦ g : cf(cf(A)) → A is strictly increasing. We
claim that rng(f ◦ g) is unbounded in A. For, given a ∈ A, choose α < cf(A) such that
a ≤ f(α), and then choose β < cf(cf(A)) such that α ≤ g(β). Then a ≤ f(α) ≤ f(g(β)),
proving the claim. It follows that cf(A) ≤ cf(cf(A)).

Proposition 11.50. If κ is a regular cardinal, Γ ⊆ κ, and |Γ| < κ, then
⋃

Γ < κ.

Proof. Since cf(κ) = κ, from the definition of cf it follows that Γ is bounded in κ.
Hence there is an α < κ such that γ ≤ α for all γ ∈ Γ. So

⋃
Γ ≤ α < κ.

Proposition 11.51. If A is a linearly ordered set with no greatest element, κ is a regular
cardinal, and f : κ→ A is strictly increasing with rng(f) unbounded in A, then κ = cf(A).
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Proof. By the definition of cf we have cf(A) ≤ κ. Suppose that cf(A) < κ. By
Theorem 11.48 let g : cf(A) → A be strictly increasing with rng(g) unbounded in A. For
each α < cf(α) choose βα < κ such that g(α) ≤ f(βα). Then {βα : α < cf(A)} ⊆ κ and
|{βα : α < cf(A)}| < κ, so by Proposition 11.50,

⋃

α<cf(A) βα < κ. Let γ < κ be such that

βα < γ for all α < cf(A). Then f(γ) is a bound for rng(g), contradiction.

Proposition 11.52. A cardinal κ is regular iff for every system 〈λi : i ∈ I〉 of cardinals
less than κ, with |I| < κ, one also has

∑

i∈I λi < κ.

Proof. ⇒: Assume that κ is regular, 〈λi : i ∈ I〉 is a system of cardinals less than κ,
and |I| < κ. We have {λi : i ∈ I} ⊆ κ and |{λi : i ∈ I}| ≤ |I|, so by Proposition 11.50,
⋃

i∈I λi < κ. Hence
∑

i∈I

λi ≤
∑

i∈I

⋃

i∈I

λi = |I| ·
⋃

i∈I

λi < κ.

⇐: Assume the indicated condition. Suppose that Γ ⊆ κ and |Γ| < κ. Then 〈|α| : α ∈ Γ〉
is a system of cardinals less than κ, and |Γ| < κ. Hence |

⋃
Γ| ≤

∑

λ∈Γ |λ| < κ, so also
⋃

Γ < κ. Thus κ is regular.

Proposition 11.53. If κ is an infinite singular cardinal, then there is a strictly increasing
sequence 〈λα : α < cf(κ)〉 of infinite successor cardinals such that κ =

∑

α<cf(κ) λα.

Proof. By Theorem 11.48, let f : cf(κ) → κ be strictly increasing such that rng(f)
is unbounded in κ. We define the desired sequence by recursion. Suppose that λβ < κ
has been defined for all β < α, with α < cf(κ). Then

⋃

β<α λβ < κ by the definition of
cofinality. So also



max



f(α),
⋃

β<α

λβ









+

< κ,

and we define λα to be this cardinal.
Now f(δ) ≤

∑

α<cf(κ) λα for each δ < cf(κ), so

κ =
⋃

δ∈cf(κ)

f(δ) ≤
∑

α<cf(κ)

λα ≤
∑

α<cf(κ)

κ = κ · cf(κ) = κ.

The main theorem of cardinal arithmetic

Now we return to the general treatment of cardinal arithmetic.

Theorem 11.54. (König) If κ is infinite and cf(κ) ≤ λ, then κλ > κ.

Proof. If κ is regular, then κλ ≥ κκ = 2κ > κ. So, assume that κ is singular. Then
by Theorem 11.53 there is a system 〈µα : α < cf(κ)〉 of nonzero cardinals such that each
µα is less than κ, and

∑

α<cf(κ) µα = κ. Hence, using Theorem 11.41,

κ =
∑

α<cf(κ)

µα <
∏

α<cf(κ)

κ = κcf(κ) ≤ κλ.
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Corollary 11.55. For λ infinite we have cf(2λ) > λ.

Proof. Suppose that cf(2λ) ≤ λ. Then by Theorem 11.54, (2λ)λ > 2λ. But (2λ)λ =
2λ·λ = 2λ, contradiction.

We can now verify a statement made earlier about possibilities for |P(ω)|. Since |P(ω)| =
2ω, the corollary says that cf(|P(ω)) > ω. So this implies that |P(ω)| cannot be ℵω or
ℵω+ω. Here ω + ω is the ordinal sum of ω with ω. It rules out many other possibilities of
this sort.

We now prove a lemma needed for the last major theorem of this subsection, which
says how to compute exponents (in a way).

Lemma 11.56. If κ is a limit cardinal and λ ≥ cf(κ), then

κλ =






⋃

µ<κ
µ a cardinal

µλ






cf(κ)

.

Proof. By Theorem 11.48, let γ : cf(κ) → κ be strictly increasing with rng(γ)
unbounded in κ, and with 0 < γ0. We define F : λκ→

∏

α<cf(κ)
λγα as follows. If f ∈ λκ,

α < cf(κ), and β < λ, then

((F (f))α)β =
{
f(β) if f(β) < γα,
0 otherwise.

Now F is a one-one function. For, if f, g ∈ λκ and f 6= g, say β < λ and f(β) 6= g(β).
Choose α < cfκ such that f(β) and g(β) are both less than γα. Then ((F (f))α)β = f(β) 6=
g(β) = ((F (g))α)β, from which it follows that F (f) 6= F (g). Since F is one-one,

κλ = |λκ| ≤

∣
∣
∣
∣
∣
∣

∏

α<cf(κ)

λγα

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣

∏

α<cf(κ)






⋃

µ<κ
µ a cardinal

λµ






∣
∣
∣
∣
∣
∣
∣

=






⋃

µ<κ
µ a cardinal

µλ






cf(κ)

≤ (κλ)cf(κ) = κλ·cf(κ) = κλ,

and the lemma follows.

The following theorem is not needed for the main result, but it is a classical result about
exponentiation.
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Theorem 11.57. (Hausdorff) If κ and λ are infinite cardinals, then (κ+)λ = κλ · κ+.

Proof. If κ+ ≤ λ, then both sides are equal to 2λ. Suppose that λ < κ+. Then

(κ+)λ = |λ(κ+)| =

∣
∣
∣
∣
∣

⋃

α<κ+

λα

∣
∣
∣
∣
∣

≤
∑

α<κ+

|α|λ ≤ κλ · κ+ ≤ (κ+)λ,

as desired.

Here is the promised theorem giving computation rules for exponentiation. It essentially
reduces the computation of κλ to two special cases: 2λ, and κcf(κ). Generalizations of the
results mentioned about the continuum hypothesis give a pretty good picture of what can
happen to 2λ. The case of κcf(κ is more complicated, and there is still work being done on
what the possibilities here are. Shelah used his PCF theory to prove that ℵℵ0

ω ≤ 2ℵ0 +ℵω4
.

Theorem 11.58. (main theorem of cardinal arithmetic) Let κ and λ be cardinals with
2 ≤ κ and λ ≥ ω. Then

(i) If κ ≤ λ, then κλ = 2λ.
(ii) If κ is infinite and there is a µ < κ such that µλ ≥ κ, then κλ = µλ.
(iii) Assume that κ is infinite and µλ < κ for all µ < κ. Then λ < κ, and:

(a) if cf(κ) > λ, then κλ = κ;
(b) if cf(κ) ≤ λ, then κλ = κcf(κ).

Proof. (i) has already been noted, in Theorem 11.46. Under the hypothesis of (ii),

κλ ≤ (µλ)λ = µλ ≤ κλ,

as desired.
Now assume the hypothesis of (iii). In particular, 2λ < κ, so of course λ < κ. Next,

assume the hypothesis of (iii)(a): cf(κ) > λ. Then

κλ = |λκ| =

∣
∣
∣
∣
∣

⋃

α<κ

λα

∣
∣
∣
∣
∣

(since λ < cf(κ))

≤
∑

α<κ

|α|λ ≤ κ,

giving the desired result.
Finally, assume the hypothesis of (iii)(b): cf(κ) ≤ λ. Since λ < κ, it follows that κ is

singular, so in particular it is a limit cardinal. Then by Lemma 11.56,

κλ =






⋃

µ<κ
µ a cardinal

µλ






cf(κ)

≤ κcf(κ) ≤ κλ.
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In theory one can now compute κλ for infinite κ, λ as follows. If κ ≤ λ, then κλ = 2λ.
Suppose that κ > λ. Let κ′ be minimum such that (κ′)λ = κλ. Then ∀µ < κ′[µλ < κ′]. In
fact, if µ < κ′ and µλ ≥ κ′, then (κ′)λ ≤ (µλ)λ = µλ·λ = µλ < κλ = (κ′)λ, contradiction.
Now (κ′)λ is computed by 11.58(iii).

Under the generalized continuum hypothesis the computation of exponents is very
simple:

Corollary 11.59. Assume GCH, and suppose that κ and λ are cardinals with 2 ≤ κ and
λ infinite. Then:

(i) If κ ≤ λ, then κλ = λ+.
(ii) If cf(κ) ≤ λ < κ, then κλ = κ+.
(iii) If λ < cf(κ), then κλ = κ.

Proof. (i) is immediate from Theorem 11.58(i). For (ii), assume that cf(κ) ≤ λ < κ.
Then κ is a limit cardinal, and so for each µ < κ we have µλ ≤ (max(µ, λ))+ < κ; hence by
Theorem 11.58(iii)(b) and Theorem 11.54 we have κλ = κcf(κ) > κ; since κcf(κ) ≤ κκ = κ+,
it follows that κλ = κ+. For (iii), assume that λ < cf(κ). If there is a µ < κ such that
µλ ≥ κ, then by Theorem 11.58(ii), κλ = µλ ≤ (max(λ, µ))+ ≤ κ, as desired. If µλ < κ
for all µ < κ, then κλ = κ by Theorem 11.58(iii)(a).

Proposition 11.60. There are sets A, B, and a one-one function f : A → B such that
|A| = |B| and f is not onto.

Proof. Let A = B = ω and f(m) = m+ 1 for all m ∈ ω.

Proposition 11.61. There are sets A, B, and an onto function f : A → B such that
|A| = |B| and f is not one-one.

Proof. Let A = B = ω and f(0) = 0, f(m+ 1) = m for all m ∈ ω.

Proposition 11.62. The restriction λ 6= 0 is necessary in Proposition 11.43(ix).

Proof. Take κ = λ = 0, µ = 0, ν = 1. Then κµ = 00 = 1 and λν = 01 = 0.

Proposition 11.63. (ZF) Let F : P(A) → P(A), and assume that for all X, Y ⊆ A,
if X ⊆ Y , then F (X) ⊆ F (Y ). Let A = {X : X ⊆ A and X ⊆ F (X)}, and set
X0 =

⋃

X∈A
X. Then X0 ⊆ F (X0).

Proof. For any Y ∈ A we have Y ⊆ X0, and hence Y ⊆ F (Y ) ⊆ F (X0)), so
X0 ⊆ F (X0).

Proposition 11.64. (ZF) Under the assumptions of Proposition 11.63 we actually have
X0 = F (X0).

Proof. By Proposition 11.63, X0 ⊆ F (X0), so F (X0) ⊆ F (F (X0)), hence F (X0) ∈
A , hence F (X0) ⊆ X0; together with Proposition 11.63 this proves that X0 = F (X0).
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Proposition 11.65. (ZF) Suppose that f : A → B is one-one and g : B → A is also
one-one. For every X ⊆ A let F (X) = A\g[B\f [X ]]. Then for all X, Y ⊆ A, if X ⊆ Y
then F (X) ⊆ F (Y ).

Proof. We have f [X ] ⊆ f [Y ], so B\f [Y ] ⊆ B\f [X ], hence g[B\f [Y ]] ⊆ g[B\f [X ]],
hence F (X) = A\g[B\f [X ]] ⊆ A\g[B\f [Y ]] = F (Y ).

Proposition 11.66. (ZF) (Cantor-Schröder-Bernstein theorem) Assume that f and g are
as in Proposition 11.65, and choose F as in that proposition. Let X0 be as in Proposition
11.63. Then A\X0 ⊆ rng(g). Then define h : A→ B by setting, for any a ∈ A,

h(a) =

{
f(a) if a ∈ X0,
g−1(a) if a ∈ A\X0.

Then that h is one-one and maps onto B.

Proof. A\X0 = A\F (X0) = g[B\f [X ]] ⊆ rng(g). Now note that h ↾ X0 is a
bijection from X0 to f [X0], and h ↾ (A\X0) is a bijection from A\X0 to g−1[A\X0] =
g−1[g[B\f [X0]]] = B\f [X0]. So h is the union of two functions with disjoint domains and
disjoint ranges, so h is a one-one function, and it maps A onto B.

Proposition 11.67. If α and β are ordinals, then |α∔ β| = |α|+ |β|, where ∔ is ordinal
addition and + is cardinal addition.

Proof. Clear by Proposition 9.41.

Proposition 11.68. If α and β are ordinals, then |α⊙ β| = |α|+ |β|, where ⊙ is ordinal
multiplication and + is cardinal addition.

Proof. Clear by Proposition 9.42.

Proposition 11.69. If α and β are ordinals, 2 ≤ α, and ω ≤ β, then |·αβ | = |α|·|β|. Here
the dot to the left of the first exponent indicates that ordinal exponentiation is involved.

Proof. First note that |α| ≤ α ≤ ·αβ and |β| ≤ β ≤ ·αβ , so |α| · |β| ≤ |·αβ |. Hence it
suffices to prove the other direction, which we do by induction on β, starting with β = ω.
First, β = ω: If α < ω, then |·αω| =

∣
∣
⋃

m∈ω
·αm

∣
∣ = ω = |α| · |ω|. If α ≥ ω, then

|·αω| = |
⋃

m∈ω

·αm| ≤
∑

m∈ω

|·αm| ≤
∑

m∈ω

|α| ≤ ω · |α|,

as desired.

Now we assume the result for β ≥ ω. Then

|·αβ+1| = |·αβ ⊙ α| = |·αβ | · |α| = |α| · |β| · |α| = |α| · |β|.
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using the inductive hypothesis. Finally, if β is a limit ordinal > ω and the result is true
for all γ < β, then

|·αβ | =

∣
∣
∣
∣
∣
∣

⋃

γ<β

·αγ

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

⋃

ω≤γ<β

·αγ

∣
∣
∣
∣
∣
∣

≤
∑

ω≤γ<β

|·αγ |

=
∑

ω≤γ<β

|α| · |γ| ≤
∑

ω≤γ<β

|α| · |β| ≤ |α| · |β| · |β| = |α| · |β|.

Proposition 11.70. If |A| ≤ |B| then |P(A)| ≤ |P(B)|.

Proof. Let f be a one-one function mapping A into B. For each X ∈ P(A) let
g(X) = f [X ]. So g maps P(A) into P(B). We claim that g is one-one. For, suppose
that X, Y ∈ P(A) and X 6= Y . Say by symmetry that x ∈ X\Y . Then f(x) ∈ f [X ] but
f(x) /∈ f [Y ] by one-oneness.

Proposition 11.71.
c∏

i∈I

∑

j∈Ji

κij =
∑

f∈P

c∏

i∈I

κi,f(i),

where P =
∏

i∈I Ji.

Proof. The left side is the number of elements of

(1)
∏

i∈I




⋃

j∈Ji

(κij × {j})



 ,

and the right side is the number of elements of

(2)
⋃

f∈P

(
∏

i∈I

κi,f(i) × {f}

)

.

For each f ∈ P let Ff be a bijection from
∏

i∈I κi,f(i) onto
∏

i∈I κi,f(i). Now given x in
(1) we define G(x) in (2) as follows. For each i ∈ I we have xi ∈

⋃

j∈Ji
(κij × {j}), and so

there is a unique j ∈ Ji such that x ∈ κij × {j}; let fx(i) be this j. Thus fx ∈ P . Now
1st(xi) ∈ κi,fx(i) for all i ∈ I, so 〈1st(xi) : i ∈ I〉 ∈

∏

i∈I κi,fx(i). Now we define

G(x) = (Ffx(〈1st(xi) : i ∈ I〉), fx).

Clearly G(x) is in (2).
Suppose that G(x) = G(y). Now fx = 2nd(G(x)) = 2nd(G(y) = fy. Write fx = g.

Then for any i ∈ I,

1st(xi) = (F−1
g (1st(G(x))))i

= (F−1
g (1st(G(y))))i

= 1st(yi),
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and 2nd(xi) = g(i) = 2nd(yi). So xi = yi. Hence x = y. So G is one-one.
To show that G maps onto (2), suppose that z is a member of (2). Choose h ∈ P such

that z ∈ (
∏

i∈I κi,h(i))× {h}. Now F−1
h (1st(z)) ∈

∏

i∈I κi,h(i), so for each i ∈ I we can let

xi = ((F−1
h (1st(z))i, h(i)).

Then x is in (1). Moreover, clearly fx = h. Then 1st(xi) = (F−1
h (1st(z))i, hence 〈1st(xi) :

i ∈ I〉 = F−1
h (1st(z)), and so

G(x) = (Ffx(〈1st(xi) : i ∈ I〉), fx)

= (Fh(〈1st(xi) : i ∈ I〉), h)

= (Fh(F−1
h (1st(z))), h)

= (1st(z), 2nd(z))

= z,

as desired.

Proposition 11.72. For any cardinal κ we have κ+ = {α : α is an ordinal and |α| ≤ κ}.

Proof. First suppose that α < κ+. Then |α| ≤ α, so |α| ≤ κ. Now suppose that
|α| ≤ κ. Thus there is a one-one function from α into κ. If κ+ ≤ α, then we could also get
a one-one function from κ+ into κ, so κ+ = |κ+| ≤ |κ| = κ, contradiction. So α < κ+, as
desired.

Proposition 11.73. For every infinite cardinal λ there is a cardinal κ > λ such that
κλ = κ.

Proof. Let κ = (2λ)+. Then by Hausdorff’s theorem,

κλ = ((2λ)+)λ = (2λ)λ · (2λ)+ = 2λ · (2λ)+ = (2λ)+ = κ.

Proposition 11.74. For every infinite cardinal λ there is a cardinal κ > λ such that
κλ > κ.

Proof. Let λ = ℵα. Note that cf(ℵα+ω) = ω ≤ λ. Let κ = ℵα+ω. Then κλ > κ.

Proposition 11.75. For every n ∈ ω, and every infinite cardinal κ, ℵκn = 2κ · ℵn.

Proof. We prove this by induction on n. n = 0: ℵκ0 = 2κ = 2κ · ℵ0. Assume it for n.
Then by Hausdorff’s theorem,

ℵκn+1 = ((ℵn)+)κ = ℵκn · (ℵn)+ = 2κ · ℵn · ℵn+1 = 2κ · ℵn+1.

Proposition 11.76. ℵℵ1
ω = 2ℵ1 · ℵℵ0

ω .
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Proof. Note that ℵω =
∑

m∈ω ℵm, since ℵn ≤
∑

m∈ω ℵm for each n ∈ ω, hence

ℵω ≤
∑

m∈ω

ℵm ≤
∑

m∈ω

ℵω = ω · ℵω = ℵω.

Hence by Theorem 11.41 we have ℵω <
∏

m∈ω ℵm+1 ≤
∏

m∈ω ℵm. So

ℵℵ1
ω ≤

(
∏

m∈ω

ℵm

)ℵ1

=
∏

m∈ω

ℵℵ1
m

=
∏

m∈ω

(2ℵ1 · ℵm) by Proposition 11.75

= 2ℵ1 ·
∏

m∈ω

ℵm

≤ 2ℵ1 ·
∏

m∈ω

ℵω

= 2ℵ1 · ℵℵ0
ω

≤ ℵℵ1
ω .

Proposition 11.77. ℵℵ0
ω =

∏c
n∈ω ℵn.

Proof. By the argument at the beginning of the proof of Proposition 11.76, ℵω =
∑

m∈ω ℵm <
∏

m∈ω ℵm. Hence

ℵℵ0
ω ≤

(
∏

m∈ω

ℵm

)ℵ0

=
∏

m∈ω

ℵℵ0
m =

∏

m∈ω

(2ℵ0 ·ℵm) = 2ℵ0 ·
∏

m∈ω

ℵm =
∏

m∈ω

ℵm ≤
∏

m∈ω

ℵω = ℵℵ0
ω .

Proposition 11.78. For any infinite cardinal κ, (κ+)κ = 2κ.

Proof. By Hausdorff’s theorem, (κ+)κ = κκ · κ+ = 2κ · κ+ = 2κ.

Proposition 11.79. If κ is an infinite cardinal and C is the collection of all cardinals
less than κ, then |C| ≤ κ.

Proof. Let κ = ℵα. Then |C| = ω + |α| ≤ ω + α ≤ ℵα = κ.

Proposition 11.80. If κ is an infinite cardinal and C is the collection of all cardinals
less than κ, then

2κ =

(
∑

ν∈C

2ν

)cf(κ)

.
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Proof. First suppose that κ is a successor cardinal λ+. Then

2κ ≤

(
∑

ν∈C

2ν

)κ

=

(
∑

ν∈C

2ν

)cf(κ)

≤

(
∑

ν∈C

2λ

)κ

= (|C| · 2λ)κ ≤ (2κ)κ = 2κ,

as desired.
Now suppose that κ is a limit cardinal. Let 〈µξ : ξ < cf(κ)〉 be a strictly increasing

sequence of cardinals with supremum κ. Then

2κ = 2

∑

ξ<cf(κ)
µξ =

∏

ξ<cf(κ)

2µξ ≤

(
∑

ν∈C

2λ

)cf(κ)

≤ (2κ)cf(κ) = 2κ.

Proposition 11.81. For any limit ordinal τ ,
∏c
ξ<τ 2ℵξ = 2ℵτ .

Proof.

2ℵτ = 2

∑

ξ<τ
ℵξ =

∏

ξ<τ

2ℵξ .

Proposition 11.82. Assume that κ is an infinite cardinal, and 2λ < κ for every cardinal
λ < κ. Then 2κ = κcf(κ).

Proof. If κ is a successor cardinal, then cf(κ) = κ and the desired conclusion is clear.
Suppose that κ is a limit cardinal. Let 〈µξ : ξ < cf(κ)〉 be a strictly increasing sequence of
cardinals with supremum κ. Then

2κ = 2

∑

ξ<cf(κ)
µξ =

∏

ξ<cf(κ)

2µξ ≤
∏

ξ<cf(κ)

κ = κcf(κ) ≤ κκ = 2κ.

Theorem 11.83. (Cf. the proof of Theorem 11.43.) For all ordinals α, β, γ, δ define

(α, β) ≺ (γ, δ) iff max(α, β) < max(γ, δ)

or max(α, β) = max(γ, δ) and α < γ

or max(α, β) = max(γ, δ) and α = γ and β < δ.

Clearly this is a well-order. Let Γ(γ, δ) be the ordinal which is the order type of {(α, β) :
(α, β) < (γ, δ)}. Then the following conditions are equivalent, for any ordinal α:

(i) Γ(α, α) = α.

(ii) α = 0 or there is an ordinal ξ such that α = ωω
ξ

.

Proof. The proof goes by a series of lemmas.

Lemma 1. Γ(α+ 1, α+ 1) = Γ(α, α) + α · 2 + 1.
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Lemma 2. Γ(n, n)) = n2 for all n ∈ ω.

Proof. Induction on n, using Lemma 1.

Lemma 3. Γ(ω, ω) = ω.

Lemma 4. If α < β, then (α, γ) < (β, γ).

Proof. Case 1. γ ≤ α. Then max(α, γ) = α < β = max(β, γ), so (α, γ) < (β, γ).
Case 2. α < γ < β. Then max(α, γ) = γ < β = max(β, γ), so (α, γ) < (β, γ).
Case 3. β ≤ γ. Then max(α, γ) = γ = max(β, γ) and α < β, so (α, γ) < (β, γ).

Lemma 5. If α < β, then (γ, α) < (γ, β).

Proof. Case 1. γ ≤ α. Then max(γ, α) = α < β = max(γ, β). So (γ, α) < (γ, β).
Case 2. α < γ < β. Then max(α, γ) = γ < β = max(γ, β), so (γ, α) < (γ, β).
Case 3. β ≤ γ. Then max(γ, α) = γ = max(γ, β) and α < β, so (γ, α) < (γ, β).

Lemma 6. β ≤ Γ(β, 0).

Proof. In fact, (0, 0) < (1, 0) < (2, 0) < · · · < (ξ, 0) · · · for ξ < β.

Lemma 7. β + γ ≤ Γ(β, γ).

Proof. Induction on γ. It holds for γ = 0 by Lemma 6. Assume it for γ. Then
Γ(β, γ + 1) > Γ(β, γ) ≥ β + γ, so Γ(β, γ + 1) ≥ β + γ + 1. Now assume that it holds for
all δ < γ. Then Γ(β, γ) ≥ supδ<γ Γ(β, δ) ≥ supδ<γ(β + δ) = β + γ.

Lemma 8. If Γ(α, α) = α and β, γ < α, then β + γ < α.

Proof. By Lemma 7, β + γ ≤ Γ(β, γ) < Γ(α, α) = α.

Lemma 9. If Γ(α, α) = α and β, γ < α, then β · γ ≤ Γ(β + γ, β + γ).

Proof. Induction on γ. It is clear for γ = 0. Assume that γ + 1 < α and β · γ ≤
Γ(β + γ, β + γ). Then

Γ(β + γ + 1, β + γ + 1) = Γ(β + γ, β + γ) + (β + γ) · 2 + 1

≥ β · γ + β = β · (γ + 1).

Now suppose that γ is limit and ∀δ < γ[β · δ ≤ Γ(β + δ, β + δ)]. Then

Γ(β + γ, β + γ) =
⋃

δ<γ

Γ(β + δ, β + δ)

≥
⋃

δ<γ

β · δ = β · γ.

Lemma 10. If Γ(α, α) = α, then α = 0 or there is a β such that α = ωω
β

.
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Lemma 11. If α = 0 or α = ωω
ξ

for some ξ, then Γ(α, α) = α.

Proof. We may assume that α = ωω
ξ

with ξ > 0.
Case 1. ξ = η + 1 for some η. Note that

ωω
η+1

= ωω
η·ω =

⋃

n∈ω

ωω
η·n.

(1) ∀n ∈ ω\1∀β < ωω
η·n[Γ(β, β) ≤ ωω

η·n

· β].

For a fixed n ∈ ω\1 we prove this by induction on β. It is clear for β = 0. Assume it for
β. Then

Γ(β + 1, β + 1) = Γ(β, β) + β · 2 + 1 ≤ ωω
η·n

· β + β · 2 + 1

< ωω
η·n

· β + ωω
η·n

= ωω
η·n

· (β + 1).

Now assume that β < ωω
η·n is limit, and for all δ < β, Γ(δ, δ) ≤ ωω

η·n

· δ. Then

Γ(β, β) =
⋃

δ<β

Γ(δ, δ) ≤
⋃

δ<β

(ωω
η·n

· δ) = ωη·n · β.

This proves (1). If follows that ∀β < α[Γ(β, β) < α].
Case 2. ξ is limit.

(2) ∀η ∈ ξ\1∀β < ωω
η

[Γ(β, β) ≤ ωω
η

· β].

The proof is like that for (1).

Now Theorem 11.83 follows from Lemmas 10 and 11.

For each n ∈ ω\1 define

s <n t iff s, t ∈ nOn ∧max(rng(s)) < max(rng(t)) or

max(rng(s)) = max(rng(t)) and si < ti,

where i < n is minimum such that si 6= ti

Lemma 11.84. If n ∈ ω\1, then <n is a well-order, and for each ordinal α, o.t.(nωα) =
ωα.

Proof. Clearly <n is a well-order. Now let α be any ordinal. If ξ < ωα, then
〈〈η, η, . . .〉 : η < ξ〉 is a strictly increasing sequence of members of nωα, so ωα ≤ o.t.(nωα).
Suppose that ωα < o.t.(nωα). Then there is an s ∈ nωα such that o.t.({t ∈ nOn : t <n
s}) = ωα. Now |{t ∈ nOn : t <n s}| =

∏

i<n(|si|+ 1) < ωα, contradiction.

Lemma 11.85. There is a well-order <′ of <ωω of order type ω.

Proof. Clearly |<ωω| = ω. Let f be a bijection from <ωω onto ω. For s, t ∈ <ωω
define s < t iff f(s) < f(t).
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Theorem 11.86. There is a well-order < of <ωOn such that for every ordinal α, <ωωα
has order type ωα.

Proof. For each n ∈ ω\1 let snξ : ξ ∈ On enumerate nOn in increasing order according
to <n. Now for any u, v ∈ <ωOn we define

u < v iff (1) u, v ∈ <ωω and u <′ v, or
(2) u ∈ <ωω and ∃β ∈ rng(v)[ω ≤ β], or
(3) ∃β ∈ rng(u)[ω ≤ β] and ∃β ∈ rng(v)[ω ≤ β] and dmn(u) < dmn(v) and ∃ξ[u =

s
dmn(u)
ξ and v = s

dmn(v)
ξ ], or

(4) ∃β ∈ rng(u)[ω ≤ β] and ∃β ∈ rng(v)[ω ≤ β] and ∃ξ, η[ξ < η and u = s
dmn(u)
ξ and

v = s
dmn(v)
η ].

Clearly under <, <ωω is the same as <ωω under <′, and so it has order type ω. For α > 0,
we have

<ωωα = <ωω ∪
⋃

n∈ω\1

⋃

ξ<ωα

snξ ,

and this has order type ω · ωα = ωα.

The following theorem and corollaries are due to Galvin and Hajnal.

Theorem 11.87. Let κ and λ be uncountable regular cardinals such that ∀δ < λ[δκ < λ].
Assume that 〈µα : α < κ〉 is a sequence of cardinals such that ∀α < κ[

∏c
β<α µβ < ℵλ].

Then
∏c
α<κ µα < ℵλ.

The proof will be given after stating some corollaries and lemmas.

Corollary 11.88. Let κ and λ be uncountable regular cardinals such that ∀δ < λ[δκ < λ].
Suppose that ∀σ < κ[τσ < ℵλ].

Then τκ < ℵλ.

Proof. Assume the hypotheses. For each α < κ let µα = τ . Then for any α < κ,
∏c
β<α µβ = τ |α| < ℵλ. Hence by Theorem 11.87, τκ =

∏c
α<κ µα < ℵλ.

Corollary 11.89. Let κ and λ be uncountable regular cardinals such that ∀δ < λ[δκ < λ].
Suppose that τ is a cardinal such that cf(τ) = κ, and ∀σ < τ [2σ < ℵλ].

Then 2τ < ℵλ.

Proof.

(1) There is a sequence 〈νξ : ξ < κ〉 of cardinals such that ∀ξ, η[ξ < η < κ→ νξ ≤ νη < τ ]
and

∑

ξ<κ νξ = τ .

In fact, if τ > κ this follows from Proposition 11.53. If τ = κ, let each νξ = 1; then use
Proposition 11.30(vi). So (1) holds.

Now for each ξ < κ let µξ = 2νξ . Now suppose that α < κ. Let σ =
∑

β<α νβ . Then

σ ≤ |α| · να =
{
|α| < τ if κ = τ ,
< τ if κ < τ .
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Hence
c∏

β<α

µβ =

c∏

β<α

2νβ = 2σ < ℵλ,

using Proposition 11.43(xi) and Theorem 11.87. Hence by Theorem 11.87 and Proposition
11.43(xi).

2τ = 2

∑

ξ<κ
νξ =

c∏

ξ<κ

2νξ =
c∏

ξ<κ

µξ < ℵλ.

Corollary 11.90. Let κ be an uncountable regular cardinal and let ρ and τ be cardinals
such that 2 ≤ ρ and ∀σ < κ[τσ < ℵ(ρκ)+ ]

Then τκ < ℵ(ρκ)+ .

Proof. Let λ = (ρκ)+. Then for all δ < λ, δκ ≤ (ρκ)κ = ρκ > λ. Also, ∀σ < κ[τσ <
ℵ(ρκ)+ = ℵλ. Hence by Corollary 11.89, τκ < ℵλ = ℵ(ρκ)+ .

Corollary 11.91. Suppose that ρ and τ are cardinals, ρ ≥ 2, cf(τ) = κ > ω, and
∀σ < τ [2σ < ℵ(ρκ)+ ].

Then 2τ < ℵ(ρκ)+ .

Proof. Let λ = (ρκ)+. If δ < λ, then δ ≤ ρκ and so δκ < λ. If σ < τ , then 2σ < ℵλ.
Hence by Corollary 11.90, 2τ < ℵ(ρκ)+ .

Corollary 11.92. Let ξ be an ordinal with cf(ξ) > ω. Assume that ∀α < ξ[2ℵα <
ℵ(|ξ|cf(ξ))+ ].

Then 2ℵξ < ℵ(|ξ|cf(ξ))+ .

Proof. Let ρ = |ξ|, τ = ℵξ, and κ = cf(ξ). Then |ξ| ≥ 2 and cf(τ) = cf(ξ) = κ > ω

(1) ∀σ < τ [2σ < ℵ(ρκ)+ ].

In fact, suppose that σ < τ .
Case 1. σ < ω. Obiously then 2σ < ℵ(ρκ)+ .
Case 2. σ = ℵα for some α. Then α < ξ, so

2σ = 2ℵα < ℵ(|ξ|cf(ξ))+ = ℵ(ρκ)+ .

Thus ∀σ < τ [2σ < ℵ(ρκ)+ ]. It follows from Corollary 5 that 2ℵξ = 2τ < ℵ(ρκ)+ = ℵ(|ξ|cf(ξ))+.

Corollary 11.93. If ℵα is strong limit singular with cf(α) > ω, then 2ℵα < ℵ(2|α|)+ .

Proof. Assume that ℵα is strong limit singular with cf(α) > ω. Let ρ = 2, κ = |α|+,
and τ = ℵα. If σ < τ , then 2σ < ℵα ≤ ℵ(2|α|)+ . Hence by Corollary 11.92, 2ℵα < ℵ(2|α|)+ .
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Corollary 11.94. Let ξ be an ordinal with cf(ξ) > ω. Assume ∀σ < cf(ξ)∀α < ξ[ℵσα <
ℵ(|ξ|cf(ξ))+ ].

Then ℵ
cf(ξ)
ξ < ℵ(|ξ|cf(ξ))+ ].

Proof. Let ρ = |ξ|, κ = cf(ξ), and τ = ℵξ. Then ρ ≥ 2 and for all σ < κ,

τσ = ℵσξ = |σℵξ| =

∣
∣
∣
∣
∣
∣

σ




⋃

α<ξ

ℵα





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

⋃

α<ξ

(σℵα)

∣
∣
∣
∣
∣
∣

≤
∑

α<ξ

ℵσα

≤ |ξ| · ℵ|ξ|cf(ξ) = ℵ|ξ|cf(ξ) < ℵ(|ξ|cf(ξ))+ = ℵ(ρκ)+

Hence by Corollary 11.92, ℵ
cf(ξ)
ξ = τκ < ℵ(ρκ)+ = ℵ(|ξ|cf(ξ))+ .

Corollary 11.95. If ∀α < ω1[2ℵα < ℵ(2ℵ1)+ ], then 2ℵω1 < ℵ(2ℵ1 )+ .

Proof. Take ξ = ω1 in Corollary 11.94.

Corollary 11.96. If ∀α < ω1[ℵωα < ℵ(2ℵ1 )+ ], then ℵℵ1
ω1
< ℵ(2ℵ1)+ .

Proof. Take ξ = ω1 in Corollary 11.95.

If A = 〈Aα : α < κ〉 is a system of sets, an almost disjoint transversal for A, a.d.t., is a set
F ⊆

∏

α<κAα such that ∀f, g ∈ F [f 6= g → |{α < κ : f(α) = g(α)}| < κ].

Lemma 11.97. Let 〈κα : α < λ〉 be a system of cardinals, with λ a cardinal. For each
α < λ let Aα =

∏

β<α κβ. Then there is an a.d.t. F for A with |F | =
∏c
α<λ κα.

Proof. Let τ =
∏c
α<λ κα, and let 〈gξ : ξ < τ〉 enumerate

∏

α<λ κα without repeti-
tions. For each ξ < τ and α < λ let fξ(α) = gξ ↾ α. Thus fξ ∈

∏

α<λAα for each ξ < τ .
If ξ, η < τ and ξ 6= η, then gξ 6= gη; choose β minimum so that gξ(β) 6= gη(β). Then for
any α < λ, fξ(α) = fη(α) iff gξ ↾ α = gη ↾ α iff α ≤ β. So |{α < λ : fξ(α) = fη(α)}| < κ.
Hence rng(f) is the required a.d.t.

Lemma 11.98. Let λ be an uncountable regular cardinals, and κ a cardinal. Assume that
∀δ < λ[δκ < λ]. Let A = 〈Aα : α < κ〉 be a system of sets such that ∀α < κ[|Aα| < ℵλ].
Suppose that F is an a.d.t. for A,

Then |F | < ℵλ.

The proof will be given after the following proof of the theorem.

Proof of Theorem 11.87. Assume the hypotheses, and for all α < κ let Aα =
∏

β<α µβ . By Lemma 98 there is an a.d.t. F for A with |F | =
∏c
α<λ µα. Now for each

α < κ, |Aα| =
∏c
β<α µβ < αλ. Then by Lemma 11.98

∏c
α<λ µα = |F | < ℵλ.

Proof of Lemma 11.98. First note:

(1) If |Aα| = |Bα| for all α < κ, and let τ be a cardinal. Then (there is an a.d.t. F for A
with |F | = τ) iff (there is an a.d.t. G for B with |G| = τ).
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In fact, assume that |Aα| = |Bα| for all α < κ. By symmetry it suffices to assume that
F is an a.d.t. for A and find an a.d.t. G for B such that |F | = |G|. For each α < κ
let fα : Aα → Bα be a bijection. For each g ∈ F define g′ ∈

∏

α<κBα by setting
g′(α) = fα(g(α)). Let G = {g′ : g ∈ F}. If g, h ∈ F and g 6= h, then

g(α) = h(α) iff fα(g(α)) = fα(h(α)) iff g′(α) = h′(α).

It follows that |F | = |G| and G is an a.d.t. for B. So (1) holds.

Let κON be the class of ordinal-valued functions with domain κ. For ϕ, ψ ∈ κON define
ϕ ≺ ψ iff |{α < κ : ϕ(α) ≥ ψ(α)}| < κ.

(2) ≺ is a well-founded partial order on κON.

In fact, clearly ≺ is irreflexive. Suppose that ϕ ≺ ψ ≺ θ. Then

{α < κ : ϕ(α) < ψ(α)} ∩ {α < κ : ψ(α) < θ(α)} ⊆ {α < κ : ϕ(α) < θ(α)},

so
{α < κ : ϕ(α) ≥ θ(α)} ⊆ {α < κ : ϕ(α) ≥ ψ(α)} ∪ {α < κ :: ψ(α) ≥ θ(α)},

and hence ϕ ≺ θ.
Now suppose that · · ·ϕn+1 ≺ ϕn ≺ · · · ≺ ϕ0. For all n ∈ ω let Xn = {α < κ :

ϕn+1(α) ≥ ϕn(α)}. Then |Xn| < κ for all n ∈ ω. Then Y
def
=
⋃

n∈ωXn has size less than
κ. Choose α ∈ κ\Y . Then ∀n[ϕn+1(α) < ϕn(α)], contradiction. So (2) holds.

For each ϕ ∈ κON let

T (ϕ) = sup{|F | : F is an a.d.t. for ϕ}.

(3) It suffices to show that ∀ϕ ∈ κλ[T (ℵ ◦ ϕ) < ℵλ].

In fact, assume the statement in (3), and suppose that ∀δ < λ[δκ < λ], A = 〈Aα : α < κ〉,
∀α < κ[|Aα| < ℵλ], and F is an a.d.t. for A. For each α < κ let

A′
α =

{
Aα if Aα is infinite,
Bα with Aα ⊆ Bα and |Bα| = ω otherwise.

Clearly F is an a.d.t. for B. Now let ϕ ∈ κλ be such that |Bα| = ℵϕ(α) for all α < κ. By
(1) there is an a.d.t. G for ℵ ◦ ϕ such that |F | = |G|. Thus by (3), |F | < ℵλ.

Now we prove (3) by contradiction: suppose it does not hold, and let ϕ ∈ κλ be
minimal such that ℵλ ≤ T (ℵ ◦ ϕ). We define

I = {X ⊆ κ : ∃ψ ∈ κλ[∀α ∈ X [ψ(α) < ϕ(α) or ψ(α) = 0] and T (ℵ ◦ ψ) ≥ ℵλ]}.

Obviously

(4) If Y ⊆ X ∈ I then Y ∈ I.

(5) [κ]<κ ⊆ I.
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In fact, let X ∈ [κ]<κ. For any α ∈ κ define

ψ(α) =

{
0 if α ∈ X ,
ϕ(α) if α /∈ X .

We claim that ψ shows that X ∈ I. For this it suffices to show that T (ℵ ◦ ψ) ≥ ℵλ. Let
F be an a.d.t. for ℵ ◦ ϕ such that |F | ≥ ℵλ. For each f ∈ F define f ′ ∈

∏

α<κ ℵψ(α) by
setting for any α ∈ κ

f ′(α) =

{
0 if α ∈ X ,
f(α) if α /∈ X .

If f, g ∈ F and f ′ = g′, then {α < κ : f(α) = g(α)} ⊇ (κ\X) and κ\X has size κ, so
f = g. Let G = {f ′ : f ∈ F}. Thus |G| = |F |. If f, g ∈ F and f 6= g, then

{α < κ : f ′(α) = g′(α)} = X ∪ {α ∈ κ\X : f(α) = g(α)},

and this set has size less than κ. It follows that G is an a.d.t. for ℵ ◦ ψ of size ≥ ℵλ,
proving (5).

(6) I is κ-complete.

For, suppose that 0 < δ < κ and Xµ ∈ I for all µ < δ. Say that for all µ < δ we have
ψµ ∈ κλ such that

∀α ∈ Xµ[ψµ(α) < ϕ(α) or ψµ(α) = 0] and T (ℵ ◦ ψµ) ≥ ℵλ.

For all α < κ let χ(α) = minµ<δ ψµ(α).

(7) There is a system 〈Sµ : µ < δ〉 of pairwise disjoint subsets of κ such that
⋃

µ<δ Sµ = κ
and ∀µ < δ∀α ∈ Sµ[χ(α) = ψµ(α)].

In fact, for each µ < δ let S′
µ = {α < κ : χ(α) = ψµ(α)}. Then let Sµ = S′

µ\
⋃

ν<µ S
′
ν .

Clearly 〈Sµ : µ < δ〉 is a pairwise disjoint system of subsets of κ. For any α ∈ κ let µ
be minimum such that α ∈ S′

µ. Then α ∈ Sµ. So
⋃

µ<δ Sµ = κ. Clearly ∀µ < δ∀α ∈
Sµ[χ(α) = ψµ(α)]. Thus (7) holds.

(8) If τ is a cardinal and ∀µ < δ[〈fµξ : ξ < τ〉 is an a.d.t. for ℵ ◦ ψµ], and ∀ξ < τ [hξ =
⋃

µ<δ(fµξ ↾ Sµ)], then F
def
= {hξ : ξ < τ} is an a.d.t. for ℵ ◦ χ.

In fact, if ξ < τ then ∀µ < δ[hξ ↾ Sµ ∈
∏

α∈Sµ
ℵψµ ], and hence hξ ∈

∏

α∈κ ℵχ(α). If ξ, η < τ
and ξ 6= η, then

{α < κ : hξ(α) = hη(α)} =
⋃

µ<δ

{α ∈ Sµ : fµξ(α) = fµ,η(α)}.

Since δ < κ and ∀µ < δ[|{α ∈ Sµ : fµξ(α) = fµ,η(α)}| < κ and κ is regular, we have
|{α < κ : hξ(α) = hη(α)}| < κ. This proves (8).

Now clearly ∀α ∈
⋃

α<δXµ[χ(α) < ϕ(α) or χ(α) = 0]. Also, for each µ < δ we have
an a.d.t. Gµ for ℵ ◦ ψµ with |Gµ| ≥ ℵλ. Choose µ < δ with |Gµ| minimum, and now for
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any ν < δ let G′
ν be a subset of Gν of size |Gµ|. Say |Gµ| = τ . Write G′

ν = {fµξ : ξ < τ}.
Then by (8) we get an a.d.t. F for ℵ ◦ χ of size |Gµ. Hence

⋃

µ<δ Xµ ∈ I, proving (6).
Now let

X0 = {α < κ : ϕ(α) = 0};

X1 = {α < κ : ϕ(α) is a limit ordinal};

X2 = {α < κ : ϕ(α) is a successor ordinal}.

(9) |X0| < κ (Hence X0 ∈ I.)

For, suppose that |X0| = κ. Then we claim

(10) T (ℵ ◦ ϕ) ≤ ℵκ0 .

For, suppose that F is an a.d.t for ℵ ◦ ϕ and |F | > ℵκ0 . Then there exist distinct f, g ∈ F
such that f ↾ X = g ↾ X . So |{α < κ : f(α) = g(α)}| = κ, contradiction. So (10) holds.

But by an assumption of the lemma, ∀δ < λ[δκ < λ]. So ℵκ0 < λ ≤ ℵλ. Hence (10)
contradicts the choice of ϕ. Hence (9) holds.

(11) I is a proper ideal.

Suppose to the contrary that κ ∈ I. Choose ψ ∈ κλ so that ∀α ∈ κ[ψ(α) < ϕ(α) or ψ(α) =
0] and T (ℵ ◦ ψ) ≥ ℵλ]}. Then ψ ≺ ϕ, since {α < κ : ψ(α) ≥ ϕ(α)} = {α < κ : ϕ(α) =
0} = X0. Since T (ℵ ◦ ψ) ≥ ℵλ, this contradicts the minimality of ϕ. So (11) holds.

(12) X1 ∈ I.

To prove this, first note that since λ is uncountable and regular and κ < λ, there is an
ordinal ρ < λ such that ϕ ∈ κρ. Let Q be the set of all functions χ ∈ κλ such that
∀α ∈ X1[ψ(α) < ϕ(α)] and ∀α ∈ (κ\X1)[ψ(α) = 0]. Then |Q| ≤ |ρ|κ < λ. Now since
T (ℵ◦ϕ) ≥ ℵλ, for each µ < λ there is an a.d.t. Fµ for ℵ◦ϕ such that |Fµ| > ℵµ. For each
µ < λ and ψ ∈ Q let Fψµ = Fµ ∩

∏

α<κ ℵψ(α).

(13) ∀µ < λ∀ψ ∈ Q[Fψµ is an a.d.t. for ℵ ◦ ψ].

In fact, Fψµ ⊆
∏

α<κ ℵψ(α). Suppose that f, g ∈ Fψµ and f 6= g. Since Fψµ ⊆ Fµ it follows
that |{α < κ : f(α) = g(α)}| < κ. So (13) holds.

(14) Fµ =
⋃

ψ∈Q F
ψ
µ .

In fact, ⊇ is clear. Now if f ∈ Fµ, then for all α ∈ X1, ϕ(α) is a limit ordinal, and
f(α) ∈ ℵϕ(α), so there is a ψ(α) < ϕ(α) such that f(α) ∈ ℵψ(α); and let ψ(α) = 0 for

α ∈ κ\X1. Then ψ ∈ Q and f ∈ Fψµ . This proves (14).
Now if |Q| ≤ µ < λ, then |Fµ| > ℵµ, and hence by (14) there is a ψµ ∈ Q such that

|F
ψµ
µ | > ℵµ. Now λ\|Q| =

⋃

χ∈Q{µ ∈ λ\|Q| : ψµ = χ} and λ is regular, so there is a χ ∈ Q
such that |{µ ∈ λ\|Q| : ψµ = χ}| = λ. Thus for every µ < λ choose µ′ ∈ λ\|Q| such that
µ < µ′ and ψµ′ = χ. Then Fχµ′ = Fµ′ ∩

∏

α<κ ℵχ(α) has size > ℵµ′ . Hence T (ℵ ◦ χ) ≥ ℵλ.
This proves (12).
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For each X ⊆ X2 define ψX ∈
κλ as follows: for any α ∈ κ let

ψX(α) =

{
ϕ(α)− 1 if α ∈ X ,
ϕ(α) if α /∈ X .

(15) For all X ∈P(X2)\I there is a ρ(X) < λ such that T (ℵ ◦ ψX) ≤ ℵρ(X).

In fact, clearly ∀α ∈ X [ψX(α) < ϕ(α)]. Since X /∈ I, it follows that T (ℵ ◦ ψX) < ℵλ, so
(15) follows.

Now clearly

(16) There is a ρ < λ such that 2κ ≤ ℵρ and ∀X ∈P(X2)\I[ρ(X) ≤ ρ].

Now let F be an a.d.t. for ℵ ◦ ϕ such that |F | > ℵρ+1. For all f ∈ F and X ∈ P(X2)\I
let HX(f) = {g ∈ F : ∀α ∈ X [g(α) < f(α)]}. Now for all f ∈ F and X ∈ P(X2)\I and
all α < κ let

AfXα =

{
f(α) if α ∈ X ,
ℵϕ(α) if α /∈ X .

(17) For all f ∈ F and X ∈P(X2)\I, HX(f) is an a.d.t. for AfX .

In fact, if g ∈ HX(f), then α ∈ X → [g(α) < f(α) = AfXα ] and α ∈ κ\X → [g(α) ∈
ℵϕ(α) = AfXα ]. Thus HX(f) ⊆

∏

α<κA
fX
α . Now suppose that g, h ∈ HX(f) with g 6= h.

Then g, h ∈ F , and hence |{α < κ : g(α) = h(α)}| < κ. so (17) holds.

(18) ∀f ∈ F∀X ∈P(X2)\I∀α < κ[|AfXα | ≤ ℵψX(α)].

In fact, assume that f ∈ F , X ∈ P(X2)\I, and α < κ. If α ∈ X , then AfXα = f(α), and
f(α) ∈ ℵϕ(α). Since X ⊆ X2, we have ϕ(α) = (ϕ(α)− 1) + 1, and hence |AfXα | = |f(α)| ≤

ℵψX(α). If α /∈ X , then AfXα = ℵf(α) and so |AfXα | = ℵf(α) = ℵψX(α). So (18) holds.

(19) For all f ∈ F and X ∈ P(X2)\I there is an a.d.t. GfX for ℵ ◦ ψX such that
|GfX | = |HX(f)|.

Assume that f ∈ F and X ∈ P(X2)\I. By (18) for each α < κ let hα be an injection of
AfXα into ℵψX(α). By (1) and (17), there is an a.d.t. GfX for 〈hα[Afxα ] : α < κ such that

|GfX | = |HX(f)|. Clearly GfX is an a.d.t. for ℵ ◦ ψX . So (19) holds.
Thus

∀f ∈ F∀X ∈P(X2)\I[|HX(f)| = |GfX | ≤ T (ℵ ◦ ψX) ≤ ℵρ(X) ≤ ℵρ.

Now for any f ∈ F let H(f) =
⋃
{HX(f) : X ∈ P(X2)\I}. Then for any f ∈ F ,

|H(f)| ≤ 2κ · ℵρ = ℵρ. Recall that F > ℵρ+1. Let G ⊆ F with |G| = ℵρ+1.

(20) (F\G)\
⋃

g∈GH(g) 6= ∅.

In fact, |F | > ℵρ+1, |G| = ℵρ+1, and ∀g ∈ H[|H(g)| ≤ ℵρ]. So (20) is clear.
We choose f0 ∈ (F\G)\

⋃

g∈GH(g). Clearly G\H(f0) 6= ∅; we choose g0 ∈ G\H(f0).
Clearly

(21) f0, g0 ∈ F , f0 6= g0, f0 /∈ H(g0) and g0 /∈ H(f0).
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(22) {α < κ : f0(α) = g0(α)} ∈ I.

This holds since f, g ∈ F and f 6= g, by (5).

(23) {α ∈ X2 : f0(α) < g0(α)} ∈ I.

In fact, let X = {α ∈ X2 : f0(α) < g0(α)}. Then f ∈ HX(g). If X /∈ I, then f ∈ H(g),
contradicting (21). So (23) holds. Similarly,

(24) {α ∈ X2 : g0(α) < f0(α)} ∈ I.

Now

κ = X0 ∪X1 ∪ {α < κ : f0(α) = g0(α)}

∪ {α ∈ X2 : f0(α) < g0(α)} ∪ {α ∈ X2 : g0(α) < f0(α)},

and all the sets on the right are in I, by (9), (12), (22), (23), and (24). This contradicts
(6) and (11).
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MODELS OF SET THEORY

12. The set-theoretical hierarchy

The hierarchy of sets is defined recursively as follows:

Theorem 12.3. There is a class function V : On→ V satisfying the following conditions:
(i) V0 = ∅.
(ii) Vα+1 = P(Vα).
(iii) Vγ =

⋃

α<γ Vα for γ limit.

Proof. We apply Theorem 9.7. Define G : On×V→ V as follows. For any ordinal
α and set x, let

G(α, x) =







∅ if x = ∅,
P(x(β)) if x is a function with domain α = β + 1,
⋃

β<α x(β) if x is a function with domain α, and α is a limit ordinal,
∅ otherwise.

So we apply Theorem 9.7 to obtain a class function F : On → V such that for every
ordinal α, F(α) = G(α,F ↾ α). Hence

F(0) = G(0,F ↾ 0) = G(0, ∅) = ∅;

F(β + 1) = G(β + 1,F ↾ β + 1) = P(F(β));

F(α) = G(α,F ↾ α) =
⋃

β<α

F(β) for α limit.

Recall from chapter 7 the notion of a transitive set. We have used this notion only for
defining ordinals so far. But the general notion will now play an important role in what
follows.

Theorem 12.4. For every ordinal α the following hold:
(i) Vα is transitive.
(ii) Vβ ⊆ Vα for all β < α.

Proof. We prove these statements simultaneously by induction on α. They are clear
for α = 0. Assume that both statements hold for α; we prove them for α + 1. First we
prove

(1) Vα ⊆ Vα+1.

In fact, suppose that x ∈ Vα. By (i) for α, the set Vα is transitive. Hence x ⊆ Vα, so
x ∈P(Vα) = Vα+1. So (1) holds.

Now (ii) follows. For, suppose that β < α + 1. Then β ≤ α, so Vβ ⊆ Vα by (ii) for α
(or trivially if β = α). Hence by (1), Vβ ⊆ Vα+1.

To prove (i) for α+1, suppose that x ∈ y ∈ Vα+1. Then y ∈P(Vα), so y ⊆ Vα, hence
x ∈ Vα. By (1), x ∈ Vα+1, as desired.

For the final inductive step, suppose that γ is a limit ordinal and (i) and (ii) hold for
all α < γ. To prove (i) for γ, suppose that x ∈ y ∈ Vγ . Then by definition of Vγ , there is
an α < γ such that y ∈ Vα. By (i) for α we get x ∈ Vα. So x ∈ Vγ by the definition of Vγ .
Condition (ii) for γ is obvious.
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V0 = ∅

V1 = {∅}

V2 = {∅, {∅}}

·

·

·

Vω

Vω+1

·
·
· Vω1

·
·
·

A very important fact about this hierarchy is that every set is a member of some Vα. To
prove this, we need the notion of transitive closure. We introduced and used this notion
in Chapter 8, but we will prove the following independent of this.

Theorem 12.5. For any set a there is a transitive set b with the following properties:
(i) a ⊆ b.
(ii) For every transitive set c such that a ⊆ c we have b ⊆ c.

Proof. We first make a definition by recursion. Define G : On×V→ V by setting,
for an α ∈ On and any x ∈ V

G(α, x) =







a if x = ∅,
x(m) ∪

⋃
x(m) if x is a function with domain m+ 1 with m ∈ ω,

0 otherwise
.

By Theorem 9.7 let F : On → V be such that F(α) = G(α,F ↾ α) for any α ∈ On.
Let d = F ↾ ω. Then d0 = F(0) = G(0,F ↾ 0) = G(0, ∅) = a. For any m ∈ ω we
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have dm+1 = F(m + 1) = G(m + 1,F ↾ (m + 1)) = F(m) ∪
⋃

F(m) = dm ∪
⋃
d(m).

Let b =
⋃

m∈ω dm. Then a = d0 ⊆ b. Suppose that x ∈ y ∈ b. Choose m ∈ ω such
that y ∈ dm. Then x ∈

⋃
dm ⊆ dm+1 ⊆ b. Thus b is transitive. Now suppose that c is

a transitive set such that a ⊆ c. We show by induction that dm ⊆ c for every m ∈ ω.
First, d0 = a ⊆ c, so this is true for m = 0. Now assume that it is true for m. Then
dm+1 = dm ∪

⋃
dm ⊆ c ∪

⋃
c = c, completing the inductive proof.

Hence b =
⋃

m∈ω dm ⊆ c.

The set shown to exist in Theorem 12.5 is called the transitive closure of a, and is denoted
by trcl(a).

Theorem 12.6. Every set is a member of some Vα.

Proof. Suppose that this is not true, and let a be a set which is not a member of
any Vα. Let A = {x ∈ trcl(a ∪ {a}) : x is not in any of the sets Vα}. Then a ∈ A, so A
is nonempty. By the foundation axiom, choose x ∈ A such that x ∩ A = 0. Suppose that
y ∈ x. Then y ∈ trcl(a ∪ {a}), so y is a member of some
Vα. Let αy be the least such α. Let β =

⋃

y∈x αy. Then by 12.1(ii), x ⊆ Vβ . So x ∈ Vβ+1,
contradiction.

Thus by Theorem 12.6 we have V =
⋃

α∈On Vα. An important technical consequence of
Theorem 12.6 is the following definition, known as Scott’s trick:

• Let R be a class equivalence relation on a class A. For each a ∈ A, let α be the smallest
ordinal such that there is a b ∈ Vα with (a, b) ∈ R, and define

typeR(a) = {b ∈ Vα : (a, b) ∈ R}.

This is the “reduced” equivalence class of a. It could be that the collection of b such that
(a, b) ∈ R is a proper class, but typeR(a) is always a set.

On the basis of our hierarchy we can define the important notion of rank of sets:

• For any set x, the rank of x, denoted by rank(x), is the smallest ordinal α such that
x ∈ Vα+1.

We take α + 1 here instead of α just for technical reasons. Some of the most important
properties of ranks are given in the following theorem.

Theorem 12.7. Let x be a set and α an ordinal. Then
(i) Vα = {y : rank(y) < α}.
(ii) For all y ∈ x we have rank(y) < rank(x).
(iii) rank(y) ≤ rank(x) for every y ⊆ x.
(iv) rank(x) = supy∈x(rank(y) + 1).
(v) rank(α) = α.
(vi) Vα ∩On = α.

Proof. (i): Suppose that y ∈ Vα. Then α 6= 0. If α is a successor ordinal β + 1, then
rank(y) ≤ β < α. If α is a limit ordinal, then y ∈ Vβ for some β < α, hence y ∈ Vβ+1 also,
so rank(y) ≤ β < α. This proves ⊆.
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For ⊇, suppose that β
def
= rank(y) < α. Then y ∈ Vβ+1 ⊆ Vα, as desired.

(ii): Suppose that x ∈ y. Let rank(y) = α. Thus y ∈ Vα+1 = P(Vα), so y ⊆ Vα and
hence x ∈ Vα. Then by (i), rank(x) < α.

(iii): Let rank(x) = α. Then x ∈ Vα+1, so x ⊆ Vα. Let y ⊆ x. Then y ⊆ Vα, and so
y ∈ Vα+1. Thus rank(y) ≤ α.

(iv): Let α be the indicated sup. Then ≥ holds by (ii). Now if y ∈ x, then rank(y) <
α, and hence y ∈ Vrank(y)+1 ⊆ Vα. This shows that x ⊆ Vα, hence x ∈ Vα+1, hence
rank(x) ≤ α, finishing the proof of (iv).

(v): We prove this by transfinite induction. Suppose that it is true for all β < α.
Then by (iv),

rank(α) = sup
β<α

(rank(β) + 1) = sup
β<α

(β + 1) = α.

Finally, for (vi), using (i) and (v),

Vα ∩On = {β ∈ On : β ∈ Vα} = {β ∈ On : rank(β) < α} = {β ∈ On : β < α} = α.

We now define a sequence of cardinals by recursion:

Theorem 12.8. There is a function i : On→ V such that the following conditions hold:

i0 = ω;

iα+1 = 2iα ;

iγ =
⋃

α<γ

iα for γ limit.

Proof. Define G : On×V→ V by setting, for any ordinal α and any set x,

G(α, x) =







ω if x = ∅,
2x(β) if x is a function with domain α = β + 1 and

range a set of cardinals,
⋃

β<α x(β) if x is a function with domain a limit ordinal α.

Then we obtain F : On → V by Theorem 6.7: for any ordinal α, F(α) = G(α,F ↾ α).
Hence

F(0) = G(0,F ↾ 0) = G(0, ∅) = ω;

F(β + 1) = G(β + 1,F ↾ (β + 1)) = 2F(β);

F(α) = G(α,F ↾ α) =
⋃

β<α

F(β) for α limit.

Thus under GCH, ℵα = iα for every ordinal α; in fact, this is just a reformulation of
GCH.

Theorem 12.9. (i) n ≤ |Vn| ∈ ω for any n ∈ ω.
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(ii) For any ordinal α, |Vω+α| = iα.

Proof. (i) is clear by ordinary induction on n. We prove (ii) by the three-step
transfinite induction (where γ is a limit ordinal below):

|Vω| =

∣
∣
∣
∣
∣

⋃

n∈ω

Vn

∣
∣
∣
∣
∣

= ω = i0 by (i);

|Vω+α+1 = |P(Vω+α)|

= 2|Vω+α|

= 2iα (inductive hypothesis)

= iα+1;

|Vω+γ| =

∣
∣
∣
∣
∣
∣

⋃

β<γ

Vω+β

∣
∣
∣
∣
∣
∣

≤
∑

β<γ

|Vω+β|

=
∑

β<γ

iβ (inductive hypothesis)

≤
∑

β<γ

iγ

= |γ| · iγ

= iγ .

To finish this last inductive step, note that for each β < γ we have iβ = |Vω+β| ≤ |Vω+γ |,
and hence iγ ≤ |Vω+γ |.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Lemma 12.10. (I.13.26) If α ≥ ω2, then |Vα| = iα.

Proof. We have |Vω+α| = iα for all α. If α ≥ ω2, write α = ω2 + β. Then
|Vα| = |Vω2+β | = |Vω+ω2+β | = iω2+β = iα.

We now give some further results about well-orders and related concepts; see Chapters 7
and 9.

If R well-orders A, we denote by type(A,R) the unique ordinal isomorphic to (A,R).

Lemma 12.11. (I.8.5) If R well-orders A and X ⊆ A, then R well-orders X, and
type(X,R) ≤ type(A,R).

Proof. Let f be an isomorphism from (A,R) onto an ordinal α, which by definition
is type(A,R). Clearly R well-orders X . Let g be an isomorphism from (X,R) onto an
ordinal β, which by definition is type(X,R). Then f ◦ g−1 : β → α is strictly increasing.
By Proposition 9.15, β ≤ α.
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Let R be a relation and A a class. An R-path of n steps on A is a function s with domain
n + 1 such that rng(s) ⊆ A and ∀j < n[s(j)Rs(j + 1)]. Then s is called a path from s(0)
to s(n).

The transitive closure of R on A is the relation R∗
A defined by xR∗

Ay iff there is an
R-path on A from x to y. Note that R∗, defined before Theorem 8.3, is R∗

V .
R is acyclic on A iff R∗

A is irreflexive on A.

Proposition 12.12. (I.9.8) If R is well-founded on A, then R is acyclic on A.

Proof. Assume that R is well-founded on A but R is cyclic on A; say aR∗
Aa. Let s

be a path from a to a. Let x ∈ rng(s) be R-minimal. Say x = s(i).
Case 1. i > 0. Then s(i− 1)Rx, contradiction.
Case 2. i = 0. Then if s has domain n + 1 we have s(n − 1)Rs(n) = a = x,

contradiction.

Proposition 12.13. (I.9.8) If A is finite and R is acyclic on A, then R is well-founded
on A.

Proof. Suppose that R is acyclic on A and A is finite. Suppose that ∅ 6= X ⊆ A. If
there are no R-paths in X , then any element of X is R-minimal. Suppose that there are
R-paths in X . Let s be a longest R-path in X consisting of distinct elements. Then s(0)
is an R-minimal element of X , for if bRs(0) and b ∈ X , then b 6= s(i) for all i < dmn(s)
by the acyclic condition, and this would give a longer R-path in X , contradiction.

Lemma 12.14. (I.9.9) Let R be a relation on a class A, and suppose that Φ : A→ ON is
such that ∀x, y ∈ A[xRy → Φ(x) < Φ(y)]. Then R is well-founded.

Proof. Suppose that ∅ 6= X ⊆ A. Take a ∈ X such that Φ(a) is the least element of
{Φ(x) : x ∈ X}. Then a is R-minimal.

Theorem 12.15. trcl(a) = {x : x ∈∗V a}.

Proof. A path of one step shows that a ⊆ {x : x ∈∗V a}. By induction on the number
of steps, if c is transitive and a ⊆ c, then {x : x ∈∗V a} ⊆ c.

Proposition 12.16. (I.9.13) If R is well-founded and set-like on A, then there is a function
F : A→ V such that F (a) =

⋃
{F (b) ∪ {F (b)} : bRa} for any a ∈ A.

Proof. We apply the recursion theorem 8.7. Define G : A × V → V as follows. For
any a ∈ A and f ∈ V ,

G(a, f) =

{⋃
{f(b) ∪ {f(b)} : bRa} if f is a function with domain predAR(a),
∅ othewise.

Applying Theorem 8.7 we obtain F : A→ V such that for all a ∈ A,

F (a) = G(a, F ↾ predAR(a)) =
⋃

{F (b) ∪ {F (b)} : bRa}
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We denote the function of Proposition 12.16 by rankAR.

Proposition 12.17. (I.9.14) If R is well-founded and set-like on A, then:
(i) ∀a ∈ A[rankAR(a) is an ordinal].
(ii) ∀a, b ∈ A[aRb→ rankAR(a) < rankAR(b)].
(iii) ∀a ∈ A[rankAR(a) = supyRx(rankAR(y) + 1)].

Proof. (i): Suppose not, and let a be R-minimal such that rankAR(a) is not an
ordinal. Then ∀b[bRa→ rankAR(b) is an ordinal], and hence rankAR(a) =

⋃
{rankAR(b)∪

{rankAR(b)} : bRa} is an ordinal, contradiction.
(ii) and (iii): clear.

Lemma 12.18. (I.9.15) For any relation R and class A, if R is well-founded and set-like
on A, then R∗

A is well-founded on A.

Proof. Suppose that xR∗y. Let s be a path from x to y in A. Thus there is a natural
number n such that dmn(s) = n+1, s(0) = x, s(n) = y, and s(y)Rs(j+1) for all j < n−1.
By induction, rankAR(x) < rankAR(s(j)) for all j ∈ [1, n], so rankAR(x) < rankAR(y).

Hence R∗
A is well-founded by Lemma 12.14

Lemma 12.19. (I.9.16) Assume that R is well-founded and set-like on A. Assume that
b ∈ A and α < rankAR(b). Then there is an a ∈ A such that aR∗

Ab and rankAR(a) = α.

Proof. Assume not, and let

X = {b ∈ A : ∃α[α < rankAR(b) and ¬∃a ∈ A[rankAR(a) = α and aR∗b]]}.

Thus X 6= ∅. Let b be an R-minimal element of X , and choose α accordingly. Now
α < rankAR(b) =

⋃
{rankAR(t) + 1 : t ∈ A and tRb}, so we can choose t ∈ A with tRb and

α < rankAR(t) + 1. Thus α ≤ rankAR(t).
Case 1. rankAR(t) = α. Since tRb, this contradicts b ∈ X .
Case 2. α < rankAR(t). Now t /∈ X since tRb, by the minimality of b. Hence there is

an a ∈ A such that rankAR(a) = α and aR∗t. Since tRb, we get aR∗b. This contradicts
b ∈ X .

Proposition 12.20. rankON,< = rank.

Proof. Assume not. Then X
def
= {a : rankON,<(a) 6= rank(a)} is nonempty. By

Theorem 8.5 choose a ∈ X such that ∀b ∈ a[b /∈ X ]. Then

rankON,<(a) =
⋃

{rankON,<(b) ∪ {rankON,<(b)} : b < a}

=
⋃

{rank(b) ∪ {rank(b)} : b < a} = rank(a),

contradiction.

Lemma 12.21. (I.9.18) If A ⊆ B and R is well-founded and set-like on B, and if b ∈ A,
then rankAR(b) ≤ rankBR(b).
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Proof. Suppose not, and let b be an R-mimimal element of {x ∈ A : rankAR(x) >
rankB,R(x). Then

rankAR(b) =
⋃

{rankAR(x) + 1 : x ∈ A and xRb}

≤
⋃

{rankBR(x) + 1 : x ∈ B and xRb} = rankBR(b),

contradiction.

Lemma 12.22. (I.9.18) If A ⊆ B and R is well-founded and set-like on B, and if b ∈ A
and predBR∗(b) ⊆ A, then rankAR(b) = rankBR(b).

Proof. Assume not, and let b be an R-mimimal element of

{x ∈ A : rankAR(x) 6= rankBR(x) and predBR∗(x) ⊆ A}.

Note that xRb implies that x ∈ A and predBR∗(x) ⊆ A, since predBR∗(b) ⊆ A. Hence

rankAR(b) =
⋃

{rankAR(x) + 1 : x ∈ A and xRb}

=
⋃

{rankBR(x) + 1 : x ∈ B and xRb} = rankBR(b),

contradiction.

Lemma 12.23. (I.9.26) rank({x, y}) = max(rank(x), rank(y)) + 1.

Proof.

rank({x, y}) =
⋃

{rank(z) + 1 : z ∈ {x, y}}

= max(rank(x) + 1, rank(y) + 1)

= max(rank(x), rank(y)) + 1.

Lemma 12.24. (I.9.26) rank((x, y)) = max(rank(x), rank(y)) + 2.

Lemma 12.25. (I.9.26) rank(P(x)) = rank(x) + 1.

Proof.

rank(P(x)) =
⋃

{rank(y) + 1 : y ∈P(x)} =
⋃

{rank(y) + 1 : y ⊆ x} = rank(x) + 1.

Lemma 12.26. (I.9.26) rank(
⋃
x) ≤ rank(x).

Proof. If y ∈
⋃
x, then there is a z ∈ x such that y ∈ z; so rank(y) < rank(z) <

rank(x), hence rank(y) + 1 < rank(x). Hence rank(
⋃
x) = supy∈

⋃
x(rank(y) + 1) ≤

rank(x).
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Lemma 12.27. (I.9.26) rank(x ∪ y) = max(rank(x), rank(y)).

Proof.

rank(x ∪ y) =
⋃

{rank(z) + 1 : z ∈ x ∪ y}

=
⋃

{rank(z) + 1 : z ∈ x} ∪
⋃

{rank(z) + 1 : z ∈ y}

= max(rank(x), rank(y)).

Lemma 12.28. (I.9.26) rank(trcl(x)) = rank(x).

Proof. Clearly ∀y ∈ trcl(x)[rank(y) < rank(x)], so rank(trcl(x)) ≤ rank(x); the other
inequality follows since x ⊆ trcl(x).

Suppose that R is well-founded and set-like on A. For each y ∈ A we define

mosAR(y) = {mosAR(x) : x ∈ A and xRy}.

Lemma 12.29. (I.9.32) If R is well-founded and set-like on A, then mosAR[A] is transitive.

Proof. Assume that R is well-founded and set-like on A, and u ∈ v ∈ mosAR[A]. Say
v = mosAR(y) with y ∈ A. Since u ∈ v, choose x ∈ A with xRy and u = mosAR(x). Thus
u ∈ mosAR[A].

A relation R is extensional on A iff ∀x, y ∈ A[{z ∈ A : zRx} = {z ∈ A : zRy} → x = y].

Lemma 12.30. (I.9.34) If A is transitive, then ∈ is extensional on A.

Lemma 12.31. (I.9.35) Suppose that R is well-founded and set-like on A. Then mosAR
is one-one iff R is extensional on A.

Proof. If R is not extensional on A, then there exist x, y ∈ A such that {z ∈ A :
zRx} = {z ∈ A : zRy} but x 6= y. Hence mosAR(x) = mosAR(y), so mos is not one-one.

Now suppose that R is extensional on A; we show that mosAR is one-one. Suppose that
mosAR is not one-one. So there exist distinct a, b ∈ A such that mosAR(a) = mosAR(b).
Let X = {c ∈ A : ∃d ∈ A[c 6= d and mosAR(c) = mosAR(d)]}. Thus a ∈ X , so X 6= ∅. Let
c be an R-minimal element of X . By definition of X , let d ∈ A be such that c 6= d and
mosAR(c) = mosAR(d). Since R is extensional on A and c 6= d, there are two cases.

Case 1. There is a z ∈ A such that zRc but not(zRd). Then mosAR(z) ∈ mosAR(c) =
mosAR(d) = {mosAR(x) : x ∈ A and xRd}. Say mosAR(z) = mosAR(x) with xRd and
x ∈ A. Since c is an R-minimal element of X and zRc, it follows that z /∈ X . Hence
∀y ∈ A[mosAR(z) = mosAR(y) → z = y]. Since mosAR(z) = mosAR(x), we thus have
z = x. But not(zRd) while xRd, contradiction.

Case 2. There is a z ∈ A such that not(zRc) but zRd. Then mosAR(z) ∈ mosAR(d) =
mosAR(c) = {mosAR(x) : x ∈ A and xRc}. Say mosAR(z) = mosAR(x) with xRc and
x ∈ A. Since c is an R-minimal element of X and xRc, it follows that x /∈ X . Hence
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∀y ∈ A[mosAR(x) = mosAR(y) → x = y]. Since mosAR(z) = mosAR(x), we thus have
z = x. But not(zRc) while xRc, contradiction.

Lemma 12.32. (I.9.35) If R is well-founded, set-like, and extensional on A, then mos is
an isomorphism from (A,R) onto (mosAR[A],∈).

Proof. If x, y ∈ A and xRy, then mosAR(x) ∈ mosAR(y) by definition. Now suppose
that x, y ∈ A and mosAR(x) ∈ mosAR(y). Choose zRy with z ∈ A so that mosAR(x) =
mosAR(z). Then x = z, so xRy.

Lemma 12.33. (I.9.36) Suppose that ∈ is well-founded, set-like, and extensional on A.
Also suppose that T ⊆ A is transitive. Then mosA∈(y) = y for all y ∈ T .

Proof. Suppose not, and let a be an ∈-minimal element of {y ∈ T : mosA∈(y) 6= y}.
Then mosA∈(a) = {mosA∈(y) : y ∈ A and y ∈ a} = {y : y ∈ A and y ∈ a} = a,
contradiction.

Lemma 12.34. (I.9.36) Suppose that ∈ is well-founded, set-like, and extensional on A,
and A is transitive. Then mosA∈ = idA.

Lemma 12.35. (I.9.37) Suppose that A and B are transitive classes and f is a bijection
from A onto B such that ∀a0, a1 ∈ A[a0 ∈ ai ↔ f(a0) ∈ f(a1)]. Then f = idA, and
A = B.

Proof. We claim that f(a) = mosA∈(a) for all a ∈ A. Suppose this is not true, and
let a be an ∈-minimal element of {y ∈ A : y 6= mosA∈(y)}. If y ∈ a, then y ∈ A since
A is transitive, so y = mosA∈(y) by the minimality of a. Thus a ⊆ {mosA∈(y) : y ∈ A
and y ∈ a}. Conversely, suppose that y ∈ A and y ∈ a. Then by the minimality of a,
y = mosA∈(y); so mosA∈(y) ∈ a. This shows that a = mosA∈(a), contradiction. So the
claim holds.

Now by Lemma 12.34 our lemma follows.

Lemma 12.36. (I.9.37) If A is a transitive class and f is a permutation of A such that
∀a0, a1 ∈ A[a0 ∈ a1 ↔ f(a0) ∈ f(a1)], then f = idA.

Lemma 12.37. (I.9.38) If (trcl(A) ∪ {A},∈) ∼= (trcl(B) ∪ {B},∈), then A = B.

Proof. By Lemma 12.35, trcl(A)∪{A} = trcl(B)∪{B}. Hence A = B since A is the
∈-maximal element of trcl(A) ∪ {A}; similarly for B.

Proposition 12.38. (I.9.39) If R is well-founded and set-like on A, then rankAR is one-
one iff R∗ is a total order on A.

Proof. ⇒: assume that rankAR is one-one, and a, b ∈ A with a 6= b. Say rankAR(a) <
rankAR(b). By Lemma 12.18 choose c ∈ A with cR∗b and rankAR(a) = rankAR(c). Then
a = c, so aR∗b.
⇐: assume that R∗ is a total order, a, b ∈ A, and a 6= b. Say aR∗b. Then rankAR(a) <

rankAR(b). Thus rank is one-one.
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Proposition 12.39. (I.9.40) If R1 ⊆ R2 are both well-founded and set like on A, then
∀y ∈ A[rankAR1

(y) ≤ rankAR2
(y)].

Proof. Suppose not, and let y be R1-minimal such that rankAR2
(y) < rankAR1

(y).
Then

rankAR1
(y) =

⋃

{rankAR1
(x) + 1 : xR1y}

≤
⋃

{rankAR2
(x) + 1 : xR1y}

≤
⋃

{rankAR2
(x) + 1 : xR2y}

= rankAR2
(y),

contradiction.

Proposition 12.40. (I.9.40) If R1 ⊆ R2 are both well-founded and set like on A, and if
R2 ⊆ R∗

1, then ∀y ∈ A[rankAR1
(y) = rankAR2

(y)].

Proof. Assume the hypotheses. By Lemma 12.17 let y be R∗
1-minimal such that

rankAR1
(y) < rankAR2

(y). Then

rankAR2
(y) =

⋃

{rankAR2
(x) + 1 : xR2y}

≤
⋃

{rankAR1
(x) + 1 : xR∗

1y}

Now xR∗
1y implies that rankAR1

(x) + 1 ≤ rankAR1
(y), so the above is ≤ rankAR1

(y),
contradiction.

Proposition 12.41. (I.9.41) Assume that R is well-founded and set-like on A, and R is
a transitive relation on A. Then ∀a ∈ A[mosAR(a) = rankAR(a)].

Proof. Suppose not, and let a be R-minimal such that mosAR(a) 6= rankAR(a). Then

mosAR(a) = {mosAR(x) : xRa} = {rankAR(x) : xRa}

Call this set X . Thus X is a set of ordinals. We claim that it is transitive. For, suppose
that α ∈ rank(x) with xRa. By Lemma 12.18 there is a yR∗x such that α = rankAR(y).
Since R is transitive, we have R∗ = R. So yRa and hence α ∈ X .

Thus X is a transitive set of transitive sets, so that X is an ordinal. Now X ⊆
rankAR(a). So X 6= rankAR(a). Choose β ∈ rankAR(a)\X . Say β ∈ rankAR(z) + 1 with
zRa. Then β ≤ rankAR(z) ∈ X , so β ∈ X , contradiction.

Proposition 12.42. (I.9.42) If R well-orders a set A, then mosAR = rankAR, and mosAR
is the isomorphism from (A,R) onto an ordinal.

Proof. We have mosAR = rankAR by Proposition 12.41. Clearly R is extensional, so
by Lemma 12.32 mos is an isomorphism from (A,R) onto (mosAR[A],∈) = (rankAR[A],∈).
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Now rankAR[A] is a set of ordinals, and it is transitive since mosAR[A] = rankAR[A]; see
Lemma 12.29. So rankAR[A] is an ordinal.

Proposition 12.43. (I.9.44) For any relation R on a class A and any a ∈ A, R is
well-founded on predAR∗(a) iff R is well-founded on {a} ∪ predAR∗(a).

Proof. ⇐ is clear. Now assume that R is well-founded on predAR∗(a), and ∅ 6= W ⊆
{a} ∪ predAR∗(a). If a /∈W the desired conclusion is clear. If a ∈W and is an R-minimal
element of W , this is as desired. Suppose that a ∈ W but it is not an R-minimal element
of W . Let W ′ = W\{a}, and let b be an R-minimal element of W ′. Suppose that aRb.
Choose c ∈ W such that cRa. Then cRb, contradiction. Thus b is an R-minimal element
of W .

Let R be set-like on A. The well-founded initial segment WFAR is the set of all a ∈ A
such that R is well-founded on predAR∗(a). For a ∈ WFAR define rankWF (a) =
rankpredAR∗ (a),R(a).

Proposition 12.44. (I.9.46) Let R be set-like on A and let W = WFAR. Then A\W does
not have an R-minimal element.

Proof. Suppose that a is an R-minimal element of A\W . Thus predAR(a) ⊆ W . In
fact, predAR∗(a) ⊆ W . For, if b ∈ predAR∗(a)\predAR(a), then there is a c ∈ predAR(a)
such that b ∈ predAR∗(c). Since R is well-founded on predAR∗(c), it is also well-founded
on predAR∗(b), so that b ∈W .

Since a /∈W , there is a nonempty X ⊆ predAR∗(a) with no R-minimal element. Take
any b ∈ X . Then b is not an R-minimal element of X , so X ∩ predAR(b) is nonempty.
Now R is well-founded on predAR∗(b) by the previous paragraph, so let c be an R-minimal
element of X ∩ predAR∗(b). Since X does not have an R-minimal element, choose d ∈ X
with dRc. But d ∈ X ∩ predAR∗(b), contradiction.

Proposition 12.45. (I.9.46) Let R be set-like on A and let W = WFAR. Then R is
well-founded on W

Proof. Suppose thatX is a nonempty subset ofW . Take any a ∈ X . If a is R-minimal
in X , this is as desired. Otherwise, the set X ∩ predAR(a) is nonempty. Since a ∈ W , R
is well founded on the set predAR∗(a). Let b be an R-minimal element of X ∩ predAR∗(a).
Suppose that c ∈ X and cRb. Then also c ∈ predAR∗(a), contradiction.

Proposition 12.46. (I.9.46) Let R be set-like on A and let W = WFAR. Then for a ∈ W ,
rankAR∗(a) = rankWR(a).

Proof. Suppose that a ∈ W . Let A′ = {a} ∪ predAR∗(a). Then A′ ⊆ W , and
predW,R∗(a) ⊆ A′. Hence rankAR(a) = rankA′,R(a) = rankW,R(a) by Lemma 12.22.

Proposition 12.47. (I.9.46) Let R be set-like on A and let W = WFAR. Then for any
a ∈ A, a ∈W iff predAR∗(a) ⊆W iff predAR(a) ⊆W .
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Proof. Suppose that a ∈ A. If a ∈W , clearly predAR∗(a) ⊆W . If predAR∗(a) ⊆W ,
obviously predAR(a) ⊆ W . Suppose that predAR(a) ⊆ W . Suppose that ∅ 6= X ⊆
predAR∗(a). Take any b ∈ X . If bRa then b ∈ pred(a) ⊆ W . Hence either b is an R-
minimal element of X , or ∅ 6= {c ∈ X : cRb} ⊆ predAR∗(b) and {c ∈ X : cR∗b} has an
R-minimal element d since b ∈W ; and clearly d is an R-minimal element of X .

Proposition 12.48. (I.9.47) A relation R on a set A is anti-transitive iff ∀n ∈ ω∀s ∈
n+3A[∀i < n+ 2[s(i)Rs(i+ 1)]→ not(s(0)Rs(n+ 2))].

Suppose that R is a well-founded and set-like relation on a set A and all elements of
A have finite rankAR. Then there is a unique anti-transitive H ⊆ R such that H∗ = R∗.

Proof. Let

H = {(a, b) : aRb and ¬∃n ∈ ω∃s ∈ n+3A[s0 = a and sn+2 = b and ∀i < n+ 2[siRsi+1]]}.

Clearly H is anti-transitive,
Now we show by induction on rankAR(b) that for all a, if aR∗b then aH∗b. This is

clear for rank 0, by a vacuous implication. Now suppose it is true for all i ≤ m, suppose
that b has rank m+ 1, and aR∗b. Let n be maximum such that there is an s ∈ n+1A with
s0 = a, sn = b, and siRsi+1 for all i < n. If n = 1, then clearly aHb. If n > 1, then
sn−1Hb and aH∗sn−1 by the inductive hypothesis, so aH∗b.

For uniqueness, suppose that also H ′ ⊆ R is anti-transitive with H ′∗ = R∗, but
H 6= H ′.

Case 1. H 6⊆ H ′. Say aHb but not(aH ′b). Then aRb, so aR∗b, hence aH ′∗b. Let
n be maximum such that there is an s ∈ n+2A with s(0) = a, s(n) = b, and ∀i <
n + 1[s(i)H ′s(i + 1)]. Since not(aH ′b), we have n > 0. Now ∀i < n + 1[s(i)Rs(i + 1)].
Since aRb, this contradicts aHb.

Case 2. H ′ 6⊆ H. Say aH ′b but not(aHb). Hence there exist n ∈ ω and s ∈ n+3A
such that s0 = a, sn+2 = b, and ∀i < n+ 2[siRsi+1]. Thus ∀i < n+ 2[siR

∗si+1] and hence
∀i < n + 2[siH

′∗si+1]. It follows that there exist an m ∈ ω with m ≥ n and a t ∈ m+3A
such that t0 = a, tm+2 = b, and ∀i < m + 2[tiH

′ti+1]. Since aH ′b, this contradicts H ′

being anti-transitive.

Proposition 12.49. (I.9.47) Let R = {(i, j) : i, j ∈ ω + ω and i < j}. Then there is no
anti-transitive H ⊆ R such that H∗ = R∗.

Proof. Suppose that H ⊆ R is anti-transitive and H∗ = R∗. Now 0Rω, so 0R∗ω,
hence 0H∗ω. It follows that there is an i ∈ ω such that iHω. Also, (i+1)Rω, so (i+1)R∗ω,
hence (i+ 1)H∗ω. It follows that there is a j ∈ ω with i < j such that jHω. Now for any
k ∈ ω we have kR(k + 1), hence kR∗(k + 1), hence kH∗(k + 1), hence kH(k + 1). Then
iH(i+ 1)H · · ·HjHω and iHω, contradicting H anti-transitive.

Proposition 12.50. (I.9.49) If R is well-founded and set-like on A, then there exist a
class M and an isomorphism from (A,R) onto (M,∈).

Proof. For each y ∈ A let F (y) = {F (x) : xRy} ∪ {(0, y), (1, y), 2, y)}. Suppose
that F (x) = F (y). Now (0, x) ∈ F (x) = F (y). Since any element F (z) has at least three
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elements, and (0, x) has at most two elements, it follows that (0, x) = (0, y) and hence
x = y.

Clearly xRy implies that F (x) ∈ F (y). Now suppose that F (x) ∈ F (y). Again since
F (x) has at least three elements and each (ε, y) has at most two elements, it follows that
there is a zRy such that F (x) = F (z). Then x = z, and so xRy.

Proposition 12.51. (I.9.50) If R is set-like on A but not well-founded on A, then there
is a function G : V × V → V such that there is no function F : A → V such that
∀a ∈ A[F (a) = G(a, F ↾ {x ∈ A : xRa}).

Proof. Define

G(x, s) =

{⋃
{s(y) ∪ {s(y)} : y ∈ dmn(s)} if s is a function,
∅ otherwise

Suppose that F : A → V is such that ∀a ∈ A[F (a) = G(a, F ↾ {x ∈ A : xRa})].
Let X be a nonempty subset of A with no R-minimal element. Choose a ∈ F [X ] such
that a ∩ F [X ] = ∅. Say a = F (y) with y ∈ X . Take any z such that zRy. Then
z ∈ dmn(F ↾ {x : xRy}), and so F (z) ∪ {F (z)} ⊆ G(y, F ↾ {x : xRy}) = F (y). Thus
F (z) ∈ F (z) ∪ {F (z)} = F (y) = a, contradiction.

(I.13.27) For any infinite cardinal κ, H(κ) = {x : |trcl(x)| < κ}. Elements of H(ω) are
hereditarily finite, and elements of H(ω1) are hereditarily countable.

Lemma 12.52. (I.13.28) For any infinite cardinal κ, H(κ) ⊆ Vκ.

Proof. Suppose that x ∈ H(κ). Let α = rank(x). If ξ < α, then there is a z ∈ trcl(x)
such that rank(z) = ξ, by Lemma 12.18. Clearly rank(z) < rank(x) for all z ∈ trcl(x).
Thus α = {rank(z) : z ∈ trcl(x)}. Now 〈rank(z) : z ∈ trcl(x)〉 maps trcl(x) onto α. Hence
|α| ≤ |trcl(z)| < κ, so α < κ.

Lemma 12.53. (I.13.28) For any infinite cardinal κ, |H(κ)| = 2<κ,

Proof. If λ < κ, then P(λ) ⊆ H(κ), so 2λ ≤ |H(κ)|. Hence 2<κ ≤ |H(κ)|.
Now we define a function F : H(κ)→

⋃

λ<κ P(λ× λ). If x ∈ H(κ), let λ = |trcl(x)∪
{x}|; so λ < κ. Let f : trcl(x) ∪ {x} → λ be a bijection, and let F (x) = {(f(u), f(v)) :
u, v ∈ trcl(x) ∪ {x} and u ∈ v}. Then f is an isomorphism from (trcl(x) ∪ {x},∈) onto
(λ, F ). Hence F is one-one by Lemma 12.37. Hence

|H(κ)| ≤

∣
∣
∣
∣
∣

⋃

λ<κ

P(λ× λ)

∣
∣
∣
∣
∣
≤
∑

λ<κ

2λ = 2<κ.

Lemma 12.54. (I.13.29) If κ > ω, then H(κ) = Vκ iff κ = iκ.

Proof. ⇒: Assume that H(κ) = Vκ. If ω2 ≤ α < κ, then |Vα| = iα by Lemma 12.10.
Now Vα ∈ Vκ = H(κ), and Vα is transitive, so |trcl(Vα)| = |Vα| = iα < κ. It follows that
iκ ≤ κ. But also κ ≤ iκ, so κ = iκ.
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⇐: Assume that κ = iκ. Take any x ∈ Vκ. Then x ∈ Vα for some α with ω2 ≤ α < κ.
Then, using Lemma 12.10 |trcl(x)| ≤ |Vα| = iα < iκ = κ. Thus x ∈ H(κ). So we have
shown that Vκ ⊆ H(κ). Hence by Lemma 12.52, Vκ = H(κ).

Lemma 12.55. (I.13.32) Suppose that κ is regular. If y ⊆ H(κ) and |y| < κ, then
y ∈ H(κ).

Proof. trcl(y) =
⋃

z∈y({z} ∪ trcl(z)), so |trcl(y)| ≤
∑

z∈y(1 + |trcl(z)|) < κ.

Lemma 12.56. (I.13.32) Suppose that κ is regular. If f : z → H(κ) and z ∈ H(κ), then
f ∈ H(κ) and rng(f) ∈ H(κ).

Proof. If (z, u) ∈ f , then

trcl((z, u)) = trcl({{z}, {z, u}}) = {{z}, {z, u}} ∪ trcl({z}) ∪ trcl({z, u})

= {{z}, {z, u}, z, u} ∪ trcl(z) ∪ trcl(u),

and hence |trcl((z, u))| < κ, i.e., (z, u) ∈ H(κ). So f ⊆ H(κ). Also, |f | = |z| < κ.
Hence f ∈ H(κ) by Lemma 12.55. If u ∈ rng(f), choose v ∈ z such that f(z) = u. Then
u ∈ {v, u} ∈ (v, u) ∈ f , so u ∈ trcl(f). Thus rng(f) ⊆ trcl(f), hence trcl(rng(f)) ⊆ trcl(f).
So rng(f) ∈ H(κ).

Proposition 12.57. (I.13.33) iℵ0
ω =

∏

n∈ω in = iω+1.

Proof.

iωω ≤ iiω
ω = 2iω = iω+1 = 2iω = 2

∑

n∈ω
in =

∏

n∈ω

2in ≤
∏

n∈ω

in ≤ iωω

For the next results we need a simple result from infinite combinatorics. For cardinals
κ, λ, µ we write κ → (λ, µ)2 iff whenever [κ]2 = A ∪ B either there is an X ∈ [κ]λ such
that [X ]2 ⊆ A or there is an X ∈ [κ]µ such that [X ]2 ⊆ B.

Theorem 12.58. (Dushnik, Miller) For any infinite cardinal κ we have κ→ (κ, ω)2.

Proof. Suppose that f : [κ]2 → 2; we want to find a set X ∈ [κ]κ such that
f [[X ]2] = {0}, or a set X ∈ [κ]ω such that f [[X ]2] = {1}.

For each x ∈ κ let B(x) = {y ∈ κ\{x} : f({x, y}) = 1}. Now we claim:

Claim. Suppose that for every X ∈ [κ]κ there is an x ∈ X such that |B(x) ∩ X | = κ].
Then there is an infinite X ⊆ κ such that f [[X ]2] ⊆ {1}.

Proof of claim. Assume the hypothesis. We define xn, Yn for n ∈ ω by recursion.
Let Y0 = κ. Assume that Yn ∈ [κ]κ has been defined. Then by supposition there is an
xn ∈ Yn such that |B(xn) ∩ Yn| = κ. Let Yn+1 = B(xn) ∩ Yn. Now if n < m < ω, then
xm ∈ Yn+1 ⊆ B(xn), and hence f({xn, xm}) = 1. Thus {xn : n ∈ ω} is an infinite subset
of κ such that f [[{xn : n ∈ ω}]2] ⊆ {1}, as desired.
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First suppose that κ is regular, and assume that there is no X ∈ [κ]κ such that f [[X ]2] ⊆
{0}. We will verify the hypothesis of the claim; this gives the desired conclusion. So,
suppose that X ∈ [κ]κ. By Zorn’s lemma let Y ⊆ X be maximal such that f [[Y ]2] ⊆ {0}.
Thus |Y | < κ by assumption. Now

X\Y ⊆
⋃

y∈Y

{x ∈ X\Y : f({x, y}) = 1} =
⋃

y∈Y

[B(y) ∩ (X\Y )].

Since |Y | < κ and κ is regular, there is a y ∈ Y such that |B(y) ∩X | = κ. This verifies
the hypothesis of the claim.

Second suppose that κ is singular, and suppose that there is no infinite X ⊆ κ such
that f [[X ]2] ⊆ {1}. Then by the claim,

(∗) ∃X ∈ [κ]κ∀x ∈ X [|B(x) ∩X | < κ].

Let 〈λξ : ξ < cf(κ)〉 be a strictly increasing sequence of regular cardinals with supremum
κ and with cf(κ) < λ0, and let 〈Yξ : ξ < cf(κ)〉 be a system of pairwise disjoint subsets of
X such that ∀ξ < cf(κ)[|Yξ| = λξ]. By the regular case, λξ → (λξ, ω)2 for each ξ < cf(κ).
It follows that for each ξ < cf(κ) there is a Zξ ∈ [Yξ]

λξ such that f [[Zξ]
2] ⊆ {0}. Now for

each ξ < cf(κ), by (∗),

Zξ =
⋃

α<cf(κ)

{x ∈ Zξ : |B(x) ∩X | < λα}.

Since |Zξ| = λξ > cf(κ) and λξ is regular, there is an h(ξ) < cf(κ) such that

Wξ
def
= {x ∈ Zξ : |B(x) ∩X | < λh(ξ)}

has size λξ.
Now we define a sequence 〈αξ : ξ < cf(κ)〉 of ordinals less than κ by recursion. If αη

has been defined for all η < ξ, with ξ < cf(κ), then the set {αη : η < ξ} ∪ {λh(η) : η < ξ}
is bounded below κ and so there is an αξ < κ greater than each member of this set. Thus
if η < ξ then αη < αξ and λh(η) < αξ. Now for any ξ < cf(κ) let

Sξ = Wαξ\
⋃






B(x) ∩X : x ∈

⋃

η<ξ

Wαη






.

Note that if η < ξ < cf(κ) then |Wαη | = λαη < λαξ and ξ < cf(k) < λ0 < λαξ , so
∣
∣
∣
⋃

η<ξWαη

∣
∣
∣ < λαξ . Moreover, if η < ξ and x ∈ Wαη , then |B(x)∩X | < λh(αη) < λξ. Hence

for each x ∈
⋃

η<ξWαη we have |B(x)∩X | < λαξ . Hence |Sξ| = λαξ . Let T =
⋃

ξ<cf(κ) Sξ.

So |T | = κ. We claim that f [[T ]2] ⊆ {0}. For, suppose that x, y ∈ T with x 6= y.
Case 1. There is a ξ < cf(κ) such that x, y ∈ Sξ. Now Sξ ⊆ Wαξ ⊆ Zαξ , so

f({x, y}) = 0.

188



Case 2. There exist η < ξ < cf(κ) such that x ∈ Sη and y ∈ Sξ. (The case x ∈ Sξ
and y ∈ Sη is treated similarly.) Then x ∈Wαη , so y /∈ B(x), i.e. f({x, y}) = 0.

Proposition 12.59. (I.13.37) Let κ be an infinite cardinal and let ⊳ be a well-order of κ.
Then there is an X ∈ [κ]κ such that ⊳ and < agree on X.

Proof. We use the Dushnik-Miller theorem κ→ (κ, ω)2. Let

[X ]2 = {{x, y} : x < y and x ⊳ y} ∪ {{x, y} : x < y and y ⊳ x}.

If Y ∈ [X ]ω is homogeneous for the second member here, then we get x0 < x1 < · · · in Y
such that x0 ⊲ x1 ⊲ · · ·, contradiction. So there is a homogeneous set of size κ for the first
member, as desired.

Proposition 12.60. (I.13.38) (Milner-Rado paradox) If κ is an infinite cardinal and
κ ≤ α < κ+, then there are Xn ⊆ α for n < ω such that

⋃

n<ω Xn = α and ∀n ∈
ω[type(Xn) ≤ κn].

Proof. We prove this by induction on α, where κ ≤ α < κ+. It is clear for α = κ.
Assume that it is true for α. Say

⋃

n<ω Xn = α and type(Xn) ≤ κn. Then
⋃

n<ω(Xn ∪
{α}) = α + 1 and type(Xn ∪ {α}) ≤ κn+1.

Now suppose that α is limit and we know the result for all β ∈ [κ, α). For each
β < α let 〈Xβn : n ∈ ω〉 be such that β =

⋃

n<ω Xβn and type(Xβ,n) ≤ κn+1. Let
〈βγ : γ < cf(α)〉 be strictly increasing, continuous, with β0 = 0 and with union α. Define
Xn =

⋃

γ<cf(α)(Xβγ+1,n\βγ). Then

⋃

n<ω

Xn =
⋃

n<ω

⋃

γ<cf(α)

(Xβγ+1,n
\βγ)

=
⋃

γ<cf(α)

⋃

n∈ω

(Xβγ+1,n
\βγ)

=
⋃

γ<cf(α)

(βγ+1\βγ)

= α

Moreover, type(Xn) ≤ κn · cf(α) ≤ κn+1.

Proposition 12.61. The elements of Vα for α < 5 are as follows:

V0 = ∅.

V1 = P(V0) = P(∅) = {∅} = 1.

V2 = P(V1) = P({∅}) = {∅, {∅}} = 2.

V3 = P(V2) = P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}. Note that V3 has four elements,
but it is not equal to 4, since, for example, {{∅}} ∈ V3\4.
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For V4, it helps to use the usual abbreviations for natural numbers. Thus V3 = {0, 1, 2, {1}}.
We list out the subsets of V3 with 0,1,2,3,4 elements:

V4 = P(V3) = {0 0 elements; 1 of these

{0}, {1}, {2}, {{1}} 1 element, 4 of these

{0, 1}, {0, 2}, {0, {1}}, {1, 2}, {1, {1}}, {2, {1}} 2 elements, 6 of these

{0, 1, 2}, {0, 1, {1}}, {0, 2, {1}}, {1, 2, {1}} 3 elements, 4 of these

{0, 1, 2, {1}} 4 elements, 1 of these.}

Proposition 12.62. There is a class function S with domain On such that for any ordinal
α,

S(α) =
⋃

β<α

P(S(β)).

Proof. We apply the recursion theorem 9.7. Define G : On×V→ V by setting, for
any ordinal α and any set x,

G(α, x) =

{⋃

β<αP(x(β)) if x is a function with domain α,
∅ otherwise.

Then obtain F : On → V by Theorem 6.7: for any ordinal α, F(α) = G(α,F ↾ α). Thus
F(α) =

⋃

β<αP(F(β)).

Proposition 12.63. With S as in Proposition 12.62, ∀α ∈ On[S(α) = Vα].

Proof. We prove that Vα = S(α) for all α by induction:

S(0) =
⋃

β<0

P(S(β)) = ∅ = V0;

S(α+ 1) =
⋃

β<α+1

P(S(β))

=
⋃

β<α

P(S(β)) ∪P(S(α))

= Vα ∪P(Vα) (inductive hypothesis)

= Vα+1 (using Theorem 12.4(ii));

S(α) =
⋃

β<α

P(S(β)) (with α limit)

=
⋃

γ<α

⋃

β<γ

P(S(β))

=
⋃

γ<α

Vγ (inductive hypothesis)

= Vα.
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Proposition 12.64.
(i) rank(x ∩ y) ≤ min(rank(x), rank(y));
(ii) rank(x ∩ y) can take any value ≤ min(rank(x), rank(y));
(iii) rank(x\y) ≤ rank(x);
(iv) rank(x\y) can take any value ≤ rank(x);
(v) rank(dmn(R)) ≤

⋃⋃
rank(R);

(vi) If β ≤
⋃⋃

α, then there is an R such that rank(R) = α and rank(dmn(R)) = β;
(vii) For any ordinals α, β the following are equivalent:

(a) There is an R such that rank(R) = α and rank(R−1) = β.
(b) β ≤ α and one of the following holds:

(I) β = γ + 3 for some ordinal γ;
(II) β is a limit ordinal.

Proof. (i): Let α and β be as in (iv). We claim that rank(x ∩ y) ≤
min(rank(x), rank(y)). To prove this, by symmetry assume that α ≤ β. Then x∩ y ⊆ x ⊆
Vα, so rank(x ∩ y) ≤ α.

(ii): Now suppose that γ is any ordinal, and suppose that δ ≤ γ. We define two sets
x and y such that min(rank(x), rank(y)) = γ while rank(x ∩ y) = δ. Let x = δ ∪ {γ} and
y = γ. Then rank(x) = γ + 1, rank(y) = γ, and rank(x ∩ y) = rank(δ) = δ.

(iii): Let α = rank(x). We claim that rank(x\y) ≤ α. In fact, x\y ⊆ x ⊆ Vα, so
x\y ∈ Vα+1, and so rank(x\y) ≤ α.

(iv): Let β ≤ α; we define x, y so that rank(x) = α while rank(x\y) = β. Let x = α
and y = α\β.

(v): Let α = rank(R). We claim that rank(dmn(R)) ≤
⋃⋃

α. For, take any x ∈
dmn(R). Choose y such that (x, y) ∈ R. So x ∈ {x} ∈ (x, y) ∈ R; it follows that
x ∈

⋃⋃
R. So dmn(R) ⊆

⋃⋃
R, and so rank(dmn(R)) ≤ rank(

⋃⋃
R) =

⋃⋃
α by (ix).

(vi): We claim that if β ≤
⋃⋃

α, then there is a set R such that rank(R) = α while
rank(dmn(R)) = β. To give the examples here, we consider two cases.

Case 1. β = 0. Then we take R = α. We use the easy fact that no ordinal is an ordered
pair. [(a, b) has at most two elements, and is a nonempty set. So the only possibilities for
(a, b) to be an ordinal are (a, b) = 1 or (a, b) = 2. Since (a, b) = {{a}, {a, b}}, neither case
is really possible, since the members of (a, b) are nonempty.]

Case 2. 0 < β. Let R = {(ξ, 0) : ξ < β} ∪ α. To see that this works, note that
dmn(R) = β = rank(β). But we also need to see that rank(R) ≤ α. For this we consider
several subcases.

Subcase 2.1. α is a limit ordinal. Then
⋃⋃

α = α, rank({(ξ, 0) : ξ < β}) ≤ α
Subcase 2.2. α = γ + 1 for some limit ordinal γ. Since β ≤ γ, clearly rank({(ξ, 0) :

ξ < β}) ≤ γ < α
Subcase 2.3. α = γ + 2 for some limit ordinal γ. Similar to Subcase 2.2.
Subcase 2.4. α = γ + n for some limit ordinal γ and some n ∈ ω\3. Then

β ≤ γ + n− 2, and so rank({(ξ, 0) : ξ < β}) ≤ γ + n
Subcase 2.5. 0 < β ≤ α− 2, with α ∈ ω\3. Again clearly ok.

These are all of the possibilities.
(vii): We first note that if a and b have ranks ξ, η respectively, then (a, b) has

rank max(ξ, η) + 2 by (iii). Hence if S is a collection of ordered pairs, then rank(S) =
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sup{rank(s)+1 : s ∈ S}, and hence rank(S) is either a limit ordinal (if {rank(s)+1 : s ∈ S}
does not have a greatest element) or it is of the form γ + 3. It follows that if rank(R) = α
and rank(R−1) = β, then β ≤ α and (I) or (II) holds.

Now suppose that β ≤ α. If β = γ + 3 for some γ, let R = {(γ, γ)} ∪ α; then
rank(R) = α and rank(R−1) = β. If β is a limit ordinal, let R = {(γ, γ) : γ < β} ∪α; then
rank(R) = α and rank(R−1) = β.

Proposition 12.65. Define xRy iff (x, 1) ∈ y. Then R is well-founded and set-like on
V.

Proof. Suppose that X is a nonempty set. Choose x ∈ X of smallest rank. Suppose
that y ∈ X and yRx. Thus (y, 1) ∈ x, so y ∈ {y} ∈ (y, 1) ∈ x, and hence rank(y) <
rank(x), contradiction. Hence R is well-founded on V.

For any y ∈ V we have predVR(y) = {x : (x, 1) ∈ y}. Note that if (x, 1) ∈ y then x ∈
{x} ∈ {{x}, {x, 1}} = (x, 1) ∈ y, so x ∈

⋃⋃
y. So predVR(y) = {x ∈

⋃⋃
y : (x, 1) ∈ y},

and hence predVR(y) is a set. Thus R is set-like on V.

Proposition 12.66. Define xRy iff x ∈ trcl(y). Then R is well-founded and set like on
V.

Clearly xRy implies that rank(x) < rank(trcl(y)) = rank(y), so R is well-founded. For
any a ∈ V, the class {b ∈ V : bRa} = {b : b ∈ trcl(a)} = trcl(a), a set.
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13. Absoluteness

Roughly speaking, a formula is absolute provided that its meaning does not change in
going from one set to a bigger one, or vice versa. The exact definition is as follows.

• Suppose that M ⊆ N are classes and ϕ(x1, . . . , xn) is a formula of our set-theoretical
language. We say that ϕ is absolute for M,N iff

∀x1, . . . , xn ∈M[ϕM(x1, . . . , xn) iff ϕN(x1, . . . , xn)].

An important special case of this notion occurs when N = V. Then we just say that ϕ is
absolute for M.

More formally, we associate with three formulas µ(y, w1, . . . , wm), ν(y, w1, . . . , wm),
ϕ(x1, . . . , xn) another formula “ϕ is absolute for µ, ν”, namely the following formula:

∀x1, . . . , xn




∧

1≤i≤n

µ(xi)→ [ϕµ(x1, . . . , xn)↔ ϕν(x1, . . . , xn)]



 .

In full generality, very few formulas are absolute, as we will see later. Usually we need to
assume that the sets are transitive. Then there is an important set of formulas all of which
are absolute; this class is defined as follows.

• The set of ∆0-formulas is the smallest set Γ of formulas satisfying the following conditions:
(a) Each atomic formula is in Γ.
(b) If ϕ and ψ are in Γ, then so are ¬ϕ and ϕ ∧ ψ.
(c) If ϕ is in Γ, then so are ∃x ∈ yϕ and ∀x ∈ yϕ.

Recall here that ∃x ∈ yϕ and ∀x ∈ yϕ are abbreviations for ∃x(x ∈ y ∧ ϕ) and ∀x(x ∈
y → ϕ) respectively.

Theorem 13.1. If M is transitive and ϕ is ∆0, then ϕ is absolute for M.

Proof. We show that the collection of formulas absolute for M satisfies the con-
ditions defining the set ∆0. Absoluteness is clear for atomic formulas. It is also clear
that if ϕ and ψ are absolute for M, then so are ¬ϕ and ϕ ∧ ψ. Now suppose that
ϕ is absolute for M; we show that ∃x ∈ yϕ is absolute for M. Implicitly, ϕ can in-
volve additional parameters w1, . . . , wn. Assume that y, w1, . . . , wn ∈ M. First sup-
pose that ∃x ∈ yϕ(x, y, w1, . . . , wn). Choose x ∈ y so that ϕ(x, y, w1, . . . , wn). Since
M is transitive, x ∈ M. Hence by the “inductive assumption”, ϕM(x, y, w1, . . . , wn)
holds. This shows that (∃x ∈ yϕ(x, y, w1, . . . , wn))M. Conversely suppose that (∃x ∈
yϕ(x, y, w1, . . . , wn))M. Thus ∃x ∈ M[x ∈ y ∧ ϕM(x, y, w1, . . . , wn). By the inductive
assumption, ϕ(x, y, w1, . . . , wn). So this shows that ∃x ∈ yϕ(x, y, w1, . . . , wn). The case
∀x ∈ yϕ is treated similarly.

Ordinals and special kinds of ordinals are absolute since they could have been defined using
∆0 formulas:

Theorem 13.2. The following are absolute for any transitive class:
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(i) x is an ordinal (iii) x is a successor ordinal (v) x is ω
(ii) x is a limit ordinal (iv) x is a finite ordinal (vi) x is i (each i < 10)

Proof.

x is an ordinal↔∀y ∈ x∀z ∈ y[z ∈ x] ∧ ∀y ∈ x∀z ∈ y∀w ∈ z[w ∈ y];

x is a limit ordinal↔∃y ∈ x[y = y] ∧ x is an ordinal ∧ ∀y ∈ x∃z ∈ x(y ∈ z);

x is a successor ordinal↔x is an ordinal ∧ x 6= ∅ ∧ x is not a limit ordinal;

x is a finite ordinal↔∀y[y /∈ x] ∨ (x is a successor ordinal

∧ ∀y ∈ x(∀z[z /∈ y] ∨ y is a successor ordinal));

x = ω ↔x is a limit ordinal ∧ ∀y ∈ x(y is a finite ordinal);

finally, we do (vi) by induction on i. The case i = 0 is clear. Then

y = i+ 1↔ ∃x ∈ y[x = i ∧ ∀z ∈ y[z ∈ x ∨ z = x] ∧ ∀z ∈ x[z ∈ y] ∧ x ∈ y].

The following theorem, while obvious, will be very useful in what follows.

Theorem 13.3. Suppose that S is a set of sentences in our set-theoretic language, and
M and N are classes which are models of S. Suppose that

S |= ∀x1, . . . , xn[ϕ(x1, . . . , xn)↔ ψ(x1, . . . , xn)].

Then ϕ is absolute for M,N iff ψ is.

Of course we will usually apply this when S is a subset of ZFC.
Recall that all of the many definitions that we have made in our development of set

theory are supposed to be eliminable in favor of our original language. To apply Theorem
13.3, we should note that the development of the very elementary set theory in Chapter 6
did not use the axiom of choice or the axiom of infinity. We let ZF be our axioms without
the axiom of choice, and ZF− Inf the axioms ZF without the axiom of infinity.

The status of the functions that we have defined requires some explanation. Whenever
we defined a function F of n arguments, we have implicitly assumed that there is an
associated formula ϕ whose free variables are among the first n + 1 variables, so that the
following is derivable from the axioms assumed at the time of defining the function:

∀v0, . . . , vn−1∃!vnϕ(v0, . . . , vn).

Recall that “∃!vn” means “there is exactly one vn”. Now if we have a class model M in
which this sentence holds, then we can define FM by setting, for any x0, . . . , xn−1 ∈M,

FM(x0, . . . , xn−1) = the unique y such that ϕM(x0, . . . , xn−1, y).

In case M satisfies the indicated sentence, we say that F is defined in M. Given two class
models M ⊆ N in which F is defined, we say that F is absolute for M,N provide that ϕ
is. Note that for F to be absolute for M,N it must be defined in both of them.
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Proposition 13.4. Suppose that M ⊆ N are models in which F is defined. Then the
following are equivalent:

(i) F is absolute for M,N.
(ii) For all x0, . . . , xn−1 ∈M we have FM(x0, . . . , xn−1) = FN(x0, . . . , xn−1).

Proof. Let ϕ be as above.
Assume (i), and suppose that x0, . . . , xn−1 ∈M. Let y = FM(x0, . . . , xn−1). Then y ∈

M, and ϕM(x0, . . . , xn−1, y), so by (i), ϕN(x0, . . . , xn−1, y). Hence FN(x0, . . . , xn−1) = y.
Assume (ii), and suppose that x0, . . . , xn−1, y ∈M. Then

ϕM(x0, . . . , xn−1, y) iff FM(x0, . . . , xn−1) = y (definition of F)

iff FN(x0, . . . , xn−1) = y (by (ii))

iff ϕN(x0, . . . , xn−1, y) (definition of F).

The following theorem gives many explicit absoluteness results, and will be used frequently
along with some similar results below. Note that we do not need to be explicit about how
the relations and functions were really defined in Chapter 6; in fact, we were not very
explicit about that in the first place.

Theorem 13.5. The following relations and functions were defined by formulas equivalent
to ∆0-formulas on the basis of ZF−Inf, and hence are absolute for all transitive class models
of ZF− Inf:

(i) x ∈ y (vi) (x, y) (xi) x ∪ {x}
(ii) x = y (vii) ∅ (xii) x is transitive
(iii) x ⊆ y (viii) x ∪ y (xiii)

⋃
x

(iv) {x, y} (ix) x ∩ y (xiv)
⋂
x (with

⋂
∅ = ∅)

(v) {x} (x) x\y

Note here, for example, that in (iv) we really mean the 2-place function assigning to sets
x, y the unordered pair {x, y}.

Proof. (i) and (ii) are already ∆0 formulas. (iii):

x ⊆ y ↔ ∀z ∈ x(z ∈ y).

(iv):
z = {x, y} ↔ ∀w ∈ z(w = x ∨ w = y) ∧ x ∈ z ∧ y ∈ z.

(v): Similarly. (vi):

z = (x, y)↔ ∀w ∈ z[w = {x, y} ∨ w = {x}] ∧ ∃w ∈ z[w = {x, y}] ∧ ∃w ∈ z[w = {x}].

(vii):
x = ∅ ↔ ∀y ∈ x(y 6= y).

(viii):

z = x ∪ y ↔ ∀w ∈ z(w ∈ x ∨ w ∈ y) ∧ ∀w ∈ x(w ∈ z) ∧ ∀w ∈ y(w ∈ z).
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(ix):

z = x ∩ y ↔ ∀w ∈ z(w ∈ x ∧ w ∈ y) ∧ ∀w ∈ x(w ∈ y → w ∈ z).

(x):

z = x\y ↔ ∀w ∈ z(w ∈ x ∧ w /∈ y) ∧ ∀w ∈ x(x /∈ y → w ∈ z).

(xi):

y = x ∪ {x} ↔ ∀w ∈ y(w ∈ x ∨ w = x) ∧ ∀w ∈ x(w ∈ y) ∧ x ∈ y.

(xii):

x is transitive↔ ∀y ∈ x(y ⊆ x).

(xiii):

y =
⋃

x↔ ∀w ∈ y∃z ∈ x(w ∈ z) ∧ ∀w ∈ x(w ⊆ y).

(xiv):

y =
⋂

x↔ [x 6= ∅ ∧ ∀w ∈ y∀z ∈ x(w ∈ z)

∧ ∀w ∈ x∀t ∈ w[∀z ∈ x(t ∈ z)→ t ∈ y] ∨ [x = ∅ ∧ y = ∅].

A stronger form of Theorem 13.5. For each of the indicated relations and functions,
we do not need the model to be all of ZF− Inf. In fact, we need only finitely many of the
axioms of ZF− Inf: enough to prove the uniqueness condition for any functions involved,
and enough to prove the equivalence of the formula with a ∆0-formula, since ∆0 formulas
are absolute for any transitive class model. To be absolutely rigorous here, one would need
an explicit definition for each relation and function symbol involved, and then an explicit
proof of equivalence to a ∆0 formula; given these, a finite set of axioms becomes clear.
And since any of the relations and functions of Theorem 13.5 require only finitely many
basic relations and functcions, this can always be done. For Theorem 13.5 it is easy enough
to work this all out in detail. We will be interested, however, in using this fact for more
complicated absoluteness results to come.

As an illustration, however, we do some details for the function {x, y}. The definition
involved is naturally taken to be the following:

∀x, y, z[z = {x, y} ↔ ∀w[w ∈ z ↔ w = x ∨ x = y]].

The axioms involved are the pairing axiom and one instance of the comprehension axiom:

∀x, y∃w[x ∈ w ∧ y ∈ w];

∀x, y, w∃z∀u(u ∈ z ↔ u ∈ w ∧ (u = x ∨ u = y)).

{x, y} is then absolute for any transitive class model of these three sentences, by the proof
of (iv) in Theorem 13.5, for which they are sufficient.

For further absoluteness results we will not reduce to ∆0 formulas. We need the
following extensions of the absoluteness notion.
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• Suppose that M ⊆ N are classes, and ϕ(w1, . . . , wn) is a formula. Then we say
that ϕ is absolute upwards for M,N iff for all w1, . . . , wn ∈ M, if ϕM(w1, . . . , wn),
then ϕN(w1, . . . , wn). It is absolute downwards for M,N iff for all w1, . . . , wn ∈ M, if
ϕN(w1, . . . , wn), then ϕM(w1, . . . , wn). Thus ϕ is absolute for M,N iff it it is both abso-
lute upwards for M,N and absolute downwards for M,N.

Theorem 13.6. Suppose that ϕ(x1, . . . , xn, w1, . . . , wm) is absolute for M,N. Then
(i) ∃x1, . . .∃xnϕ(x1, . . . , xn, w1, . . . , wm) is absolute upwards for M,N.
(ii) ∀x1, . . .∀xnϕ(x1, . . . , xn, w1, . . . , wm) is absolute downwards for M,N.

Theorem 13.7. Absoluteness is preserved under composition. In detail: suppose that
M ⊆ N are classes, and the following are absolute for M,N:

ϕ(x1, . . . , xn);
F, an n-ary function ;
For each i = 1, . . . , n, an m-ary function Gi.

Then the following are absolute:
(i) ϕ(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)).
(ii) The m-ary function assigning to x1, . . . , xm the value

F(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)).

Proof. We use Theorem 13.6:

ϕ(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm))↔∃z1, . . .∃zn

[

ϕ(z1, . . . , zn)

∧
n∧

i=1

(zi = Gi(x1, . . . , xm))

]

;

ϕ(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm))↔∀z1, . . .∀zn

[ n∧

i=1

(zi = Gi(x1, . . . , xm))

→ ϕ(z1, . . . , zn)

]

;

y = F(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm))↔∃z1, . . .∃zn

[

(y = F(z1, . . . , zn))

∧
n∧

i=1

(zi = Gi(x1, . . . , xm))

]

;

y = F(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm))↔∀z1, . . .∀zn

[ n∧

i=1

(zi = Gi(x1, . . . , xm))

→ (y = F(z1, . . . , zn))

]

.
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Theorem 13.8. Suppose that M ⊆ N are classes, ϕ(y, x1, . . . , xm, w1, . . . , wn) is absolute
for M,N, and F and G are n-ary functions absolute for M,N. Then the following are
also absolute for M,N:

(i) z ∈ F(x1, . . . , xm).
(ii) F(x1, . . . , xm) ∈ z.
(iii) ∃y ∈ F(x1, . . . , xm)ϕ(y, x1, . . . , xm, w1, . . . , wn).
(iv) ∀y ∈ F(x1, . . . , xm)ϕ(y, x1, . . . , xm, w1, . . . , wn).
(v) F(x1, . . . , xm) = G(x1, . . . , xm).
(vi) F(x1, . . . , xm) ∈ G(x1, . . . , xm).

Proof.

z ∈ F(x1, . . . , xm)↔ ∃w[z ∈ w ∧ w = F(x1, . . . , xm)];

↔ ∀w[w = F(x1, . . . , xm)→ z ∈ w];

F(x1, . . . , xm) ∈ z ↔ ∃w ∈ z[w = F(x1, . . . , xm)];

∃y ∈ F(x1, . . . , xm)ϕ(y, x1, . . . , xm, w1, . . . , wn)

↔ ∃w∃y ∈ w[w = F(x1, . . . , xm) ∧ ϕ(y, x1, . . . , xm, w1, . . . , wn)];

↔ ∀w[w = F(x1, . . . , xm)→ ∃y ∈ wϕ(y, x1, . . . , xm, w1, . . . , wn)];

(iv)–(vi) are proved similarly.

We now give some more specific absoluteness results.

Theorem 13.9. The following relations and functions are absolute for all transitive class
models of ZF− Inf:

(i) x is an ordered pair (iv) dmn(R) (vii) R(x)
(ii) A×B (v) rng(R) (viii) R is a one-one function
(iii) R is a relation (vi) R is a function (ix) x is an ordinal

Note concerning (vii): This is supposed to have its natural meaning if R is a function and
x is in its domain; otherwise, R(x) = ∅.

Proof.

x is an ordered pair↔
(

∃y ∈
⋃

x
)(

∃z ∈
⋃

x
)

[x = (y, z)];

y = A×B ↔(∀a ∈ A)(∀b ∈ B)[(a, b) ∈ y]∧

(∀z ∈ y)(∃a ∈ A)(∃b ∈ B)[z = (a, b)];

R is a relation↔∀x ∈ R[x is an ordered pair];

x = dmn(R)↔(∀y ∈ x)
(

∃z ∈
⋃⋃

R
)

[(x, z) ∈ R]∧
(

∀y ∈
⋃⋃

R
)(

∀z ∈
⋃⋃

R
)

[(y, z) ∈ R→ y ∈ x];

x = rng(R)↔(∀y ∈ x)
(

∃z ∈
⋃⋃

R
)

[(z, x) ∈ R]∧
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(

∀y ∈
⋃⋃

R
)(

∀z ∈
⋃⋃

R
)

[(y, z) ∈ R→ z ∈ x];

R is a function↔R is a relation ∧
(

∀x ∈
⋃⋃

R
)(

∀y ∈
⋃⋃

R
)

(

∀z ∈
⋃⋃

R
)

[(x, y) ∈ R ∧ (x, z) ∈ R→ y = z];

y = R(x)↔[R is a function ∧ (x, y) ∈ R]∨

[R is not a function ∧ (∀z ∈ y)(z 6= z)]∨

[x /∈ dmn(R) ∧ (∀z ∈ y)(z 6= z)];

R is a one-one function↔R is a function∧

∀x ∈ dmn(R)∀y ∈ dmn(R)[R(x) = R(y)→ x = y];

x is an ordinal↔x is transitive ∧ (∀y ∈ x)(y is transitive).

Theorem 13.10. If M is a transitive class model of ZF, then M is closed under the
following set-theoretic operations:

(i) ∪ (iv) (a, b) 7→ {a, b} (vii)
⋃

(ii) ∩ (v) (a, b) 7→ (a, b) (viii)
⋂

(iii) (a, b) 7→ a\b (vi) x 7→ x ∪ {x}

Moreover, [M]<ω ⊆M.

Proof. (i)–(viii) are all very similar, so we only treat (i). Let a, b ∈M. Then because
M |= ZF, there is a c ∈M such that (c = a ∪ b)M. By absoluteness, c = a ∪ b.

Now we prove that x ∈M for all x ∈ [M]<ω by induction on |x|. If |x| = 0, then x = ∅.
Now M |= ∃v∀w[w /∈ v] by Proposition 5.1. So choose s ∈M such that M |= ∀w[w /∈ s].
By transitivity, s = ∅. Thus ∅ ∈M. If a ∈M, then M |= ∃v∀w[w ∈ v ↔ w = a]. Choose
s ∈M such that M |= ∀w[w ∈ s ↔ w = a]. By absoluteness, s = {a}. So {a} ∈M. So
our statement holds for all x with |x| = 1. Now suppose that x ∈M for all x ⊆M such
that |x| = n. Suppose that y ⊆M and |y| = n+ 1. Take any a ∈ y. Then |y\{a}| = n, so
y\{a} ∈M . Hence by (i), y = (y\{a}) ∪ {a} ∈M.

Our final abstract absoluteness result concerns recursive definitions.

Theorem 13.11. Suppose that R is a class relation which is well-founded and set-like on
A, and G : A×V→ V. Let F be given by Theorem 8.7: for all x ∈ A,

F(x) = G(x,F ↾ predAR(x).

Let M be a transitive class model of ZF, and assume the following additional conditions
hold:

(i) G, R, and A are absolute for M.
(ii) (R is set-like on A)M.
(iii) ∀x ∈M ∩A[predAR(x) ⊆M].

Conclusion: F is absolute for M.

Proof. First we claim
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(1) (R is well-founded on A)M.

In fact, by absolutenss RM = R ∩ (M ×M) and AM = A ∩M, so it follows that in
M every nonempty subset of AM has an RM-minimal element. Hence we can apply the
recursion theorem within M to define a function H : AM →M such that for all x ∈ AM,

H(x) = GM(x,H ↾ predM
AMRM(x)).

We claim that H = F ↾ AM, which will prove the theorem. In fact, suppose that x is
R-minimal such that x ∈ AM and F(x) 6= H(x). Then using absoluteness again,

H(x) = GM(x,H ↾ predM
AMRM(x)) = G(x,H ↾ predAR(x) = F(x),

contradiction.

Theorem 13.11 is needed for many deeper applications of absoluteness. We illustrate its
use by the following result.

Theorem 13.12. The following are absolute for transitive class models of ZF.
(i) α+ β (ordinal addition) (iv) rank(x)
(ii) α · β (ordinal multiplication) (v) trcl(x)
(iii) αβ (ordinal exponentiation)

Proof. In each case it is mainly a matter of identifying A,R,G to which to apply
Theorem 13.11; checking the conditions of that theorem are straightforward.

(i): A = On, R = {(α, β) : α, β ∈ On, and α ∈ β}, and G : On ×V → V is defined
as follows:

G(α, f) =







α if f = ∅,
f(β) ∪ {f(β)} if f is a function with domain an ordinal β + 1,
⋃

γ∈β f(γ) if f is a function with domain a limit ordinal β,
∅ otherwise.

(ii) and (iii) are treated similarly. For (iv), take R = {(x, y) : x ∈ y}, A = V, and define
G : V ×V→ V by setting, for all x, f ∈ V,

G(x, f) =

{⋃

y∈x(f(y) ∪ {f(y)}) if f is a function with domain x,
∅ otherwise.

For (v), let R = {(i, j) : i, j ∈ ω and i < j}, A = ω, and define G : ω×V → V by setting,
for all m ∈ ω and f ∈ V,

G(m, f) =







x if m = 0,
f(
⋃
m) ∪

⋃
f(
⋃
m) if m > 0 and f is a function with domain m,

∅ otherwise

Then the function F obtained from Theorem 13.11 is absolute for transitive class models
of ZF, and trcl(x) =

⋃

m∈ω F(m).
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Theorem 13.13. If M is a transitive model of ZF, then:
(i) PM(x) = P(x) ∩M for any x ∈M;
(ii) VM

α = Vα ∩M for any α ∈M.

Proof. (i): Assume that x ∈M. Then for any set y,

y ∈P
M(x) iff y ∈M and (y ⊆ x)M

iff y ∈M and y ⊆ x

iff y ∈P(x) ∩M.

(ii): Assume that α ∈M. Then for any set x,

x ∈ VM
α iff x ∈M and rankM(x) < α

iff x ∈M and rank(x) < α

iff x ∈ Vα ∩M

Proposition 13.14. “R well-orders A” is absolute for models of ZF.

Proof. Let M be a model of ZF. Suppose that R,A ∈M. Clearly

(R well-orders A) iff ∃x∃f [x is an ordinal ∧ f : x→ A is a bijection

∧ ∀β, γ ∈ x[β < γ iff (f(β), f(γ)) ∈ R]].

From this and elementary absoluteness results it is clear that (R well-orders A)M implies
that (R well-orders A). Now suppose that (R well-orders A). Let x and f be such that x
is an ordinal, f : x→ A is a bijection, and ∀β, γ ∈ x[β < γ iff (f(β), f(γ)) ∈ R]. Since M
is a model of ZF, let y, g ∈M be such that in M we have: y is an ordinal, g : y → A is a
bijection, and ∀β, γ ∈ y[β < γ iff (g(β), g(γ)) ∈ R]. By simple absoluteness results, this is
really true. Then x = y and f = g by the uniqueness conditions in 9.12–9.13.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 13.15. (I.16.6) Let pow(x, y) be ∀z[z ∈ y ↔ z ⊆ x]. Let γ be a limit ordinal
with a, b ∈ Vγ. Then Vγ |= pow[a, b] iff b = P(a).

Proof. First suppose that Vγ |= pow[a, b]. Thus Vγ |= ∀z[z ∈ b ↔ z ⊆ a]. Suppose
that x ∈ b. Then x ∈ Vγ since Vγ is transitive, so Vγ |= x ⊆ a. Hence x ⊆ a, so x ∈P(a).
Conversely, suppose that x ⊆ a. Now rank(x) ≤ rank(a), so x ∈ Vγ . Hence Vγ |= x ⊆ a,
so x ∈ b. This shows that P(a) = b.

Second, suppose that b = P(a). Take any z ∈ Vγ . If z ∈ b, then z ⊆ a, hence
Vγ |= z ⊆ a. If Vγ |= z ⊆ a, then z ⊆ a, and hence z ∈ b. Therefore, Vγ |= pow[a, b].

Proposition 13.16. Let γ > ω1 be a limit ordinal. Then there is a countable transitive
M and ordinals α, β ∈ M such that M ≡ Vγ, not(α ∼ β)M , but (α ∼ β)Vγ . Here α ∼ β
means that there is a bijection from α to β.
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Proof. Let A be countable such that ω, ω1 ∈ A and (A,∈) � (Vγ ,∈). Since Vγ |=
¬∃f [f is a bijection from ω onto ω1], it follows that A |= ¬∃f [f is a bijection from ω onto
ω1]. Now extensionality holds in Vγ , hence in A. It follows that mosA∈ is an isomorphism
from A onto some set M . Now Vγ |= [ω is an ordinal], so A |= [ω is an ordinal] and
M |= [mosA∈(ω) is an ordinal]. Let α = mosA∈(ω). Also Vγ |= [ω is the first limit ordinal],
so A |= [ω is the first limit ordinal] and M |= [mosAR(ω) is the first limit ordinal]. So
α = ω. Similarly, mosA∈(ω1) is an ordinal; call it β. M |= ¬∃f [f is a bijection from ω
onto β]. Since M is countable and transitive, so is β.

Proposition 13.17. (I.16.17) Let M = ON ∪ {{α, β} : α < β ∈ ON}. Then M is
transitive, and ∩M is not defined.

Proof. Suppose that x ∈ y ∈ M . If y ∈ ON , then also x ∈ ON ⊆ M . If y = {α, β}
with α < β, then x = α or x = β, hence x ∈ ON ⊆M . Thus M is transitive.

Suppose that ∩M is defined. Choose z ∈ M such that for all x ∈ M , x ∈ z iff
x ∈ {0, 1} and x ∈ {1, 2}. Clearly this implies that z = {1}, contradiction.

Proposition 13.18. The formula ∃x(x ∈ y) is not absolute for all nonempty sets, but it
is absolute for all nonempty transitive sets.

Proof. Let A = {{∅}}. Then ∃x(x ∈ {∅}) holds in V , but not in A, since there is no
a ∈ A such that a ∈ {∅}.

Now suppose that B is a nonempty transitive set, and y ∈ B. Then y has an element
iff it has an element in B, and so ∃x(x ∈ y) iff ∃x ∈ B(x ∈ y) iff (∃x(x ∈ y))B. So the
formula is absolute for B. (Note that ∃x(x ∈ y) is not quite a ∆0 formula.)

Proposition 13.19. The formula ∃z(x ∈ z) is not absolute for every nonempty transitive
set.

Proof. Take the transitive set 2. Then ∃z(1 ∈ z), but this does not hold in 2, since
there is no z ∈ 2 such that 1 ∈ z.

202



14. Checking the axioms

Now we give some simple facts which will be useful in checking the axioms of ZFC in the
transitive classes which we will define. See Chapter 5 for the original form of the axioms.

Theorem 14.1. The extensionality axiom holds in any nonempty transitive class.

Proof. Let M be any transitive class. The relativized version of the extensionality
axiom is

∀x ∈M∀y ∈M[∀z ∈M(z ∈ x↔ z ∈ y)→ x = y].

To prove this, assume that x, y ∈M, and suppose that for all z ∈M, z ∈ x iff z ∈ y. Take
any z ∈ x. Because M is transitive, we get z ∈M. Hence z ∈ y. Thus z ∈ x implies that
z ∈ y. The converse is similar. So x = y.

The following theorem reduces checking the comprehension axioms to checking a closure
property.

Theorem 14.2. Suppose that M is a nonempty class, and for each formula ϕ with with
free variables among x, z, w1, . . . , wn,

∀z, w1, . . . , wn ∈M[{x ∈ z : ϕM(x, z, w1, . . . , wn)} ∈M].

Then the comprehension axioms hold in M.

Proof. The straightforward relativization of an instance of the comprehension axioms
is

∀z ∈M∀w1 ∈M . . .∀wn ∈M∃y ∈M∀x ∈M(x ∈ y ↔ x ∈ z ∧ ϕM).

So, we take z, w1, . . . , wn ∈M. Let

y = {x ∈ z : ϕM(x, z, w1, . . . , wn)};

by hypothesis, we have y ∈M. Then for any x ∈M,

x ∈ y iff x ∈ z and ϕM(x, z, w1, . . . , wn).

The following theorems are obvious from the forms of the pairing axiom and union axioms:

Theorem 14.3. Suppose that M is a nonempty class and

∀x, y ∈M∃z ∈M(x ∈ z and y ∈ z).

Then the pairing axiom holds in M.

Theorem 14.4. Suppose that M is a nonempty class and

∀x ∈M∃z ∈M
(⋃

x ⊆ z
)

.
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Then the union axiom holds in M.

For the next result, recall that z ⊆ x is an abbreviation for ∀w(w ∈ z → w ∈ x).

Theorem 14.5. Suppose that M is a nonempty transitive class. Then the following are
equivalent:

(i) The power set axiom holds in M.
(ii) For every x ∈M there is a y ∈M such that P(x) ∩M ⊆ y.

Proof. (i)⇒(ii): Assume (i). Thus

(1) ∀x ∈M∃y ∈M∀z ∈M[∀w ∈M(w ∈ z → w ∈ x)→ z ∈ y].

To prove (ii), take any x ∈ M. Choose y ∈ M as in (1). Suppose that z ∈ P(x) ∩M.
Clearly then ∀w ∈M(w ∈ z → w ∈ x), so by (1), z ∈ y, as desired in (ii).

(ii)⇒(i): Assume (ii). This time we want to prove (1). So, suppose that x ∈ M.
Choose y ∈M as in (ii). Now suppose that z ∈M and ∀w ∈M(w ∈ z → w ∈ x). Then
the transitivity of M implies that ∀w(w ∈ z → w ∈ x), i.e., z ⊆ x. So by (ii), z ∈ y, as
desired.

Theorem 14.6. Suppose that M is a transitive class, and for every formula ϕ with free
variables among x, y, A, w1, . . . , wn and for any A,w1, . . . , wn ∈M the following implica-
tion holds:

∀x ∈ A∃!y[y ∈M ∧ ϕM(x, y, A, w1, . . . , wn)] implies that

∃Y ∈M[{y ∈M : ∃x ∈ AϕM(x, y, A, w1, . . . , wn)} ⊆ Y ]].

Then the replacement axioms hold in M.

Proof. Assume the hypothesis of the theorem. We write out the relativized version
of an instance of the replacement axiom in full, remembering to replace the quantifier ∃!
by its definition:

∀A ∈M∀w1 ∈M . . .∀wn ∈M

[∀x ∈M[x ∈ A→ ∃y ∈M[ϕM(x, y, A, w1, . . . , wn) ∧ ∀u ∈M

[ϕM(x, u, A, w1, . . . , wn)→ y = u]]]→

∃Y ∈M∀x ∈M[x ∈ A→ ∃y ∈M[y ∈ Y ∧ ϕM(x, y, A, w1, . . . , wn)]]].

To prove this, assume that A,w1, . . . , wn ∈M and

∀x ∈M[x ∈ A→ ∃y ∈M[ϕM(x, y, A, w1, . . . , wn) ∧ ∀u ∈M

[ϕM(x, y, A, w1, . . . , wn)→ y = u]]].

Since M is transitive, we get

∀x ∈ A∃y ∈M[ϕM(x, y, A, w1, . . . , wn) ∧ ∀u ∈M[ϕM(x, y, A, w1, . . . , wn)→ y = u]],
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so that

(1) ∀x ∈ A∃!y[y ∈M ∧ ϕM(x, y, A, w1, . . . , wn)].

Hence by the hypothesis of the theorem we get Y ∈M such that

(2) {y ∈M : ∃x ∈ AϕM(x, y, A, w1, . . . , wn)} ⊆ Y.

Suppose that x ∈M and x ∈ A. By (1) we get y ∈M such that ϕM(x, y, A, w1, . . . , wn).
Hence by (2) we get y ∈ Y , as desired.

Theorem 14.7. If M is a transitive class, then the foundation axiom holds in M.

Proof. The foundation axiom, with the defined notion ∅ eliminated, is

∀x[∃y(y ∈ x)→ ∃y[y ∈ x ∧ ∀z ∈ y(z /∈ x)]].

Hence the relativized version is

∀x ∈M[∃y ∈M(y ∈ x)→ ∃y ∈M[y ∈ x ∧ ∀z ∈M[z ∈ y → z /∈ x]]].

So, take any x ∈ M, and suppose that there is a y ∈ M such that y ∈ x. Choose y ∈ x
so that y ∩ x = ∅. Then y ∈ M by transitivity. If z ∈ M and z ∈ y, then z /∈ x, as
desired.

Theorem 14.8. Suppose that M is a transitive class, and ω ∈ M. Then the infinity
axiom holds in M.

Proof. As a sentence in the language of set theory we take the infinity axiom to be
the following:

∃x[∃y ∈ x∀z ∈ y[z 6= z] ∧ ∀y ∈ x∃z ∈ x[∀w ∈ z[w ∈ y ∨ w = y] ∧ ∀w ∈ y[w ∈ z] ∧ y ∈ z]].

We claim that

M |=∃y ∈ ω∀z ∈ y[z 6= z] ∧ ∀y ∈ ω∃z ∈ ω

[∀w ∈ z[w ∈ y ∨ w = y] ∧ ∀w ∈ y[w ∈ z] ∧ y ∈ z]].

In fact, ∅ ∈M since ∅ ∈ ω ∈M. Hence M |= ∀z ∈ ∅[z 6= z]. So M |= ∃y ∈ ω∀z ∈ y[z 6= z].
Now suppose that a ∈M and a ∈ ω. Then a∪{a} ∈ ω ∈M, so a∪{a} ∈M. Suppose

that c ∈M and c ∈ a∪{a}. Then c ∈ a or c = a. Thus M |= ∀w ∈ a∪{a}[w ∈ a∨w = a].
Suppose that d ∈ M and d ∈ a. Then d ∈ a ∪ {a}. Thus M |= ∀w ∈ a[w ∈ a ∪ {a}].
Finally, M |= [a ∈ a ∪ {a}]. This shows that

M |= ∃z ∈ ω[∀w ∈ z[w ∈ a ∨ w = a] ∧ ∀w ∈ a[w ∈ z] ∧ a ∈ z]].

Hence
M |= ∀y∃z ∈ ω[∀w ∈ z[w ∈ y ∨ w = y] ∧ ∀w ∈ y[w ∈ z] ∧ y ∈ z]].
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Hence the claim holds, and so the infinity axiom holds in M.

Lemma 14.9. (II.4.20) Suppose that B is infinite, and (B,∈) satisfies extensionality. Let
κ be an infinite cardinal, and let S ⊆ B with |S| ≤ κ ≤ |B|.

Then there is a transitive M such that S ⊆M , (M,∈) ≡ (B,∈), and |M | = κ.

Proof. By the downward Löwenheim-Skolem theorem let A � B be such that S ⊆ A
and |A| = κ. Then A satisfies extensionality, and ∈ is well-founded on A, so mosA∈ is
an isomorphism from (A,∈) onto some (M,∈) with M transitive. Since S is transitive,
mosAR(y) = y for all y ∈ S by Lemma 12.33. Hence S ⊆M .

Proposition 14.10. (II.4.26) Let M be a transitive class in which extensionality, com-
prehension, pairing, and union hold. Suppose that ω ⊆ a ∈M . Then ω ∈M .

Proof. By comprehension let w ∈M be such that

M |=∀y[y ∈ w↔ y ∈ a and [∀z[∃w ∈ z∀v ∈ w[v 6= v]

and ∀w ∈ z∃v ∈ z∀u[u ∈ v ↔ u ∈ w or u = w]→ y ∈ z]]

Clearly ∅ ∈ w. If b ∈ w, clearly b ∪ {b} ∈ w. Hence ω ⊆ w. Now suppose that ω 6= w.
Choose b ∈ w\ω such that b∩(w\ω) = ∅. Then ∅ 6= b since ∅ ∈ ω and b /∈ ω. So ∅ ∈ w\{b}.
If c ∈ w\{b} then c ∪ {c} ∈ w. If b = c ∪ {c}, then c ∈ b, hence c ∈ ω since b ∩ (w\ω) = ∅.
Then b = c ∪ {c} ∈ ω, contradiction. So c ∪ {c} ∈ w\{b}. It follows that w ⊆ w\{b},
contradicting b ∈ w. So ω = w.

Proposition 14.11. (II.4.26) Let M be a transitive class in which extensionality, com-
prehension, pairing, union, and infinity hold. Then ω ∈M .

Proof. Recall from the proof of Theorem 14.8 the formulation of the infinity axiom
in the language of set theory (∈ only). So let a ∈M be such that

M |=∃y ∈ a∀z ∈ y[z 6= z] ∧ ∀y ∈ a∃z ∈ a

[∀w ∈ z[w ∈ y ∨ w = y] ∧ ∀w ∈ y[w ∈ z] ∧ y ∈ z]].

Since M models extensionality, comprehension, pairing, and union, it follows by abso-
luteness that ∅ ∈ M and u ∪ {u} ∈ M whenever u ∈ M . Hence ∅ ∈ a and for all
b ∈ a[b ∪ {b} ∈ a]. So ω ⊆ a. Hence ω ∈M by Proposition 14.10.

Lemma 14.12. (II.4.27) Suppose that M is a transitive class such that the comprehension
axioms hold in M , and suppose that for every subset x ⊆ M there is a y ∈ M such that
x ⊆ y. Then all of the ZF axioms hold in M .

Proof. By Theorems 14.1 and 14.7, extensionality and foundation hold in M . If
x, y ∈M , then {x, y} ⊆M , and so there is a z ∈M such that {x, y} ⊆ z, hence x ∈ z and
y ∈ z. Thus pairing holds in M . If F ∈M , then

⋃
F ⊆M , hence there is a y ∈M such
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that
⋃

F ⊆ y. So union holds in M by Theorem 14.4. For replacement, assume that the
hypothesis of Theorem 14.6 holds. By replacement in the real world, choose Z such that

(∗) ∀x[x ∈ A→ ∃z[z ∈ Z and z ∈M and ϕM (x, z, A, w1, . . . , wn)]]

Then let W = {y ∈ Z : y ∈ M and ∃x ∈ AϕM (x, y, A, w1, . . . , wn)}. Then W ⊆ M ,
so there is a Y ∈ M such that W ⊆ Y . Now suppose that y ∈ M , x ∈ A, and
ϕM (x, y, A, z1, . . . , zn). Choose z ∈ Z such that z ∈ M and ϕM (x, z, A, w1, . . . , wn), by
(∗). By the uniqueness condition in the hypothesis of Theorem 14.6, y = z. Hence y ∈W ,
so y ∈ Y . It follows that {y ∈M : ∃x ∈ AϕM(x, y, A, w1, . . . , wn)} ⊆ Y , as desired. The
power set axiom holds by Theorem 14.5. By induction it is clear that ω ⊆ M . Choose
y ∈ M so that ω ⊆ y. Then by Proposition 14.11, ω ∈ M . By Theorem 14.10, infinity
holds in M .

Theorem 14.13. (II.2.1) If κ is uncountable and regular, then H(κ) |= ZFC − P .

Proof. Clearly H(κ) is transitive, so extensionality and foundation hold in H(κ).
Also, ω ∈ H(κ), so by Theorem 14.8, infinity holds in H(κ). The comprehension axioms
hold in H(κ) by Theorem 14.2, since using the notation there, if z ∈ H(κ) then {x ∈ z :
ϕH(κ)(x, z, w1, . . . , wn)} ⊆ z and hence {x ∈ z : ϕH(κ)(x, z, w1, . . . , wn)} ∈ H(κ). Pairing
and union hold in H(κ) by Theorems 14.3 and 14.4. For the replacement axioms, we apply
Theorem 14.6. Assume that ϕ is a formula with free variables among x, y, A, w1, . . . , wn
and A,w1, . . . , wn ∈ H(κ) and

∀x ∈ A∃!y[y ∈ H(κ) ∧ ϕH(κ)(x, y, A, w1, . . . , wn)].

For each a ∈ A let f(a) ∈ H(κ) be such that ϕH(κ)(x, f(a), A, w1, . . . , wn). Since A ∈ H(κ),
we have |A| < κ. Hence trcl(f [A]) = f [A] ∪

⋃

a∈A trcl(f(a)) has size less than κ, since κ
is regular. Clearly trcl(f [A]) is as desired in the conclusion of 14.6. Clearly the axiom of
choice holds in H(κ).

ZC is ZFC without replacement.

Theorem 14.14. (II.2.2) If γ is a limit ordinal > ω, then Vγ |= ZC.

Proof. Vγ is transitive, so extensionality and foundation hold. For a ∈ Vγ we have
P(a) ∈ Vγ , and so comprehension holds. Clearly pairing and union hold. Power set is
clear. Infinity holds by Theorem 14.8. Clearly choice holds.

Theorem 14.15. (II.2.3) If κ is strongly inaccessible, then H(κ) = Vκ.

Proof. Clearly κ = iκ, so this follows from Lemma 12.54.

Theorem 14.16. (II.2.3) If κ is strongly inaccessible, then Vκ is a model of ZFC.

Proof. By Theorem 14.14 it suffices to prove that replacement holds in Vκ. Us-
ing the notation of Theorem 14.6, suppose that A,w1, . . . , wn ∈ Vκ and ∀x ∈ A∃!y ∈
Vκϕ

Vκ(x, y, A, w1, . . . , wn). For each x ∈ A let f(x) ∈ Vκ be such that

ϕVκ(x, f(x), A, w1, . . . , wn).
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Since A ∈ Vκ, we have |A| < κ by Theorem 14.15. Hence |f [A]| < κ. Since κ is regular,
⋃

a∈A rank(f(a)) < κ, and so there is an α < κ such that f [A] ⊆ Vα, so f [A] ∈ Vα+1 ⊆ Vκ.
Hence replacement holds.

Corollary 14.17. If κ is uncountable, regular, but not strongly inaccessible, then the
power set axiom is false in H(κ).

Proof. Say λ < κ ≤ 2λ. Clearly λ ∈ H(κ). If X ⊆ λ, then trcl(X) ⊆ λ, so|trcl(X)| ≤
λ < κ. Thus P(λ) ∩H(κ) = P(λ). By Theorem 14.5, if power set holds in H(κ), then
there is a y ∈ H(κ) such that P(λ) ⊆ y. Then 2λ = |P(λ)| ≤ |y| < κ, contradiction.

208



15. Reflection theorems

A set theory structure is an ordered pair A = (A,R) such that A is a non-empty set and R
is a binary relation contained in A×A. The model-theoretic notions introduced in Chapter
2 can be applied here.

A notion similar to that of a model is relativization. Suppose that M is a class. We
associate with each formula ϕ its relativization to M, denoted by ϕM. The definition goes
by recursion on formulas:

(x = y)M is x = y
(x ∈ y)M is x ∈ y
(ϕ→ ψ)M is ϕM → ψM.
(¬ϕ)M is ¬ϕM.
(∀xϕ)M is ∀x[x ∈M→ ϕM].

The more rigorous version of this definition associates with each pair ψ, ϕ of formulas a
third formula which is called the relativization of ϕ to ψ.

We say that ϕ holds in M or is true in M, iff ϕM holds, i.e., iff ZFC ⊢ ϕM.

Theorem 15.1. Let Γ be a set of sentences, ϕ a sentence, and M a class. Let ΓM =
{χM : χ ∈ Γ}. Suppose that Γ |= ϕ. Then

ΓM |= M 6= ∅ → ϕM.

Proof. Assume the hypothesis of the theorem, let A = (A,E) be any set theory
structure, assume that A is a model of ΓM, and suppose that A ∩M 6= ∅. We want to
show that A is a model of ϕM. To do this, we define another structure B = (B,F ) for our
language. Let B = A ∩M, and let F = E ∩ (B ×B). Now we claim:

(*) For any formula χ and any c ∈ ωB, A |= χM[c] iff B |= χ[c].

We prove (*) by induction on χ:

A |= (vi = vj)
M[c] iff ci = cj

iff B |= (vi = vj)[c];

A |= (vi ∈ vj)
M[c] iff ciEcj

iff ciFcj

iff B |= (vi ∈ vj)[c];

A |= (¬χ)M[c] iff not[A |= χM[c]]

iff not[B |= χ[c]] (induction hypothesis)

iff B |= ¬χ[c];

A |= (χ→ θ)M[c] iff [A |= χM[c] implies that A |= θM[c]]

iff [B |= χ[c] implies that B |= θ[c]

(induction hypothesis)

iff B |= (χ→ θ)[c].
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We do the quantifier step in each direction separately. First suppose that A |= (∀viχ)M[c].
Thus A |= [∀vi[vi ∈M → χM][c]. Take any b ∈ B. Then b ∈M, so A |= χM[cib]. By the
inductive hypothesis, B |= χ[cib]. This proves that B |= ∀viχ[c].

Conversely, suppose that B |= ∀viχ[c]. Suppose that a ∈ A and A |= (vi ∈ M)[cia].
Then a ∈ B, so B |= χ[cia]. By the inductive hypothesis, A |= χM[cia]. So we have shown
that A |= ∀vi[vi ∈M→ χM ][c]. That is, A |= (∀viχ)M[c].

This finishes the proof of (*).
Now A is a model of ΓM, so by (*), B is a model of Γ. Hence by assumption, B is a

model of ϕ. So by (*) again, A is a model of ϕM.

The following theorem gives the basic idea of consistency proofs in set theory; we express
this as follows. Remember by the completeness theorem that a set Γ of sentences is
consistent iff it has a model.

Corollary 15.2. Suppose that Γ and ∆ are collections of sentences in our language of set
theory. Suppose that M is a class, and Γ |= [M 6= ∅ and ϕM] for each ϕ ∈ ∆. Then Γ
consistent implies that ∆ is consistent.

Proof. Suppose to the contrary that ∆ does not have a model. Then trivially
∆ |= ¬(x = x). By Theorem 15.1, ∆M |= M 6= ∅ → ¬(x = x). Hence by hypothesis we
get Γ |= ¬(x = x), contradiction.

We now want to consider to what extent sentences can reflect to proper subclasses of V;
this is a natural extension of our considerations for absoluteness.

Actually we are dealing here with a set-theoretic version of the model theoretic notion
of elementary substructure. The model theoretic notion will be important later on, so we
describe the basic definition and give an important lemma about the notion.

If A = (A,R) and B = (B, S) are set theory structures, then we say that A is an
elementary substructure of B, in symbols A � B, iff A ⊆ B, R = S∩(A×A), and for every
formula ϕ(x0, . . . , xn−1) and all a0, . . . , an−1 ∈ A, A |= ϕ[a0, . . . , an] iff B |= ϕ[a0, . . . , an].
(See Chapter 2.)

Lemma 15.3. (Tarski) Let A = (A,R) and B = (B, S) be set theory structures, and
suppose that A ⊆ B and R = S ∩ (A× A). Then the following conditions are equivalent:

(i) A � B.
(ii) For every formula ∀xϕ(x, y0, . . . , yn−1) and all a0, . . . , an−1 ∈ A, if ∀b ∈ A[B |=

ϕ(b, a0, . . . , an−1)] then ∀b ∈ B[B |= ϕ(b, a0, . . . , an−1)].

Proof. (i)⇒(ii): Assume (i), and suppose that ∀xϕ(x, y0, . . . , yn−1) is a formula,
a0, . . . , an−1 ∈ A, and ∀b ∈ A[B |= ϕ(b, a0, . . . , an−1)]. Since A � B, it follows that
∀b ∈ A[A |= ϕ(b, a0, . . . , an−1)]. Thus A |= ∀xϕ(x, a0, . . . , an−1). Then again by A � B,
B |= ∀xϕ(x, a0, . . . , an−1). So ∀b ∈ B[B |= ϕ(b, a0, . . . , an−1)].

(ii)⇒(i): Assume (ii). We prove for a0, . . . , an−1 ∈ A

A |= ϕ[a0, . . . , an] iff B |= ϕ[a0, . . . , an]

by induction on ϕ. The atomic cases are clear, as are the induction steps involving ¬
and →. Now suppose that A |= ∀xϕ(x, a0, . . . , an). Thus ∀b ∈ A[A |= ϕ(b, a0, . . . , an−1)].
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Hence by the inductive hypothesis, ∀b ∈ A[B |= ϕ(b, a0, . . . , an−1)]. Hence by (ii), ∀b ∈
B[B |= ϕ(b, a0, . . . , an−1), i.e., B |= ∀xϕ(x, a0, . . . , an).

Conversely, suppose that B |= ∀xϕ(x, a0, . . . , an). Thus ∀b ∈ B[B |= ϕ(b, a0, . . . , an)].
Hence ∀b ∈ A[B |= ϕ(b, a0, . . . , an)]; then ∀b ∈ A[A |= ϕ(b, a0, . . . , an)] by the inductive
hypothesis, that is, A |= ∀xϕ(x, a0, . . . , an).

Lemma 15.3′. (Tarski) Let A = (A,R) and B = (B, S) be set theory structures, and
suppose that A ⊆ B and R = S ∩ (A× A). Then the following conditions are equivalent:

(i) A � B.
(ii′) For every formula ∃xϕ(x, y0, . . . , yn−1) and all a0, . . . , an−1 ∈ A, if ∃b ∈ B[B |=

ϕ(b, a0, . . . , an−1)] then ∃b ∈ A[B |= ϕ(b, a0, . . . , an−1)].

Proof. Assume Lemma 15.3(ii), and suppose we have a formula ∃xϕ(x, y0, . . . , yn−1)
and elements a0, . . . , an−1 ∈ A such that ∃b ∈ B[B |= ϕ(b, a0, . . . , an−1)]. Then not(∀b ∈
B[B |= ¬ϕ(b, a0, . . . , an−1)], so by Lemma 15.3(ii) ∃b ∈ A[B |= ϕ(b, a0, . . . , an−1)].

The other direction is similar.

Lemma 15.4. Suppose that M and N are classes with M ⊆ N. Let ϕ0, . . . , ϕn be a list
of formulas such that if i ≤ n and ψ is a subformula of ϕi, then there is a j ≤ n such that
ϕj is ψ. Then the following conditions are equivalent:

(i) Each ϕi is absolute for M,N.
(ii) If i ≤ n and ϕi has the form ∀xϕj(x, y1, . . . , yt) with x, y1, . . . , yt exactly all the

free variables of ϕj, then

∀y1, . . . , yt ∈M[∀x ∈MϕN
j (x, y1, . . . , yt)→ ∀x ∈ NϕN

j (x, y1, . . . , yt)].

Proof. (i)⇒(ii): Assume (i) and the hypothesis of (ii). Suppose that y1, . . . , yt ∈M
and ∀x ∈ MϕN

j (x, y1, . . . , yt). Thus by absoluteness ∀x ∈ MϕM
j (x, y1, . . . , yt). Hence by

absoluteness again, ∀x ∈ NϕN
j (x, y1, . . . , yt)).

(ii)⇒(i): Assume (ii). We prove that ϕi is absolute for M,N by induction on the
length of ϕi. This is clear if ϕi is atomic, and it easily follows inductively if ϕi has the
form ¬ϕj or ϕj → ϕk. Now suppose that ϕi is ∀xϕj(x, y1, . . . , yt), and y1, . . . , yt ∈ M.
then

ϕM
i (y1, . . . , yt)↔∀x ∈MϕM

j (x, y1, . . . , yt) (definition of relativization)

↔∀x ∈MϕN
j (x, y1, . . . , yt) (induction hypothesis)

↔∀x ∈ NϕN
j (x, y1, . . . , yt) (by (ii)

↔ϕN
i (y1, . . . , yt) (definition of relativization)

Theorem 15.5. Suppose that Z(α) is a set for every ordinal α, and the following condi-
tions hold:

(i) If α < β, then Z(α) ⊆ Z(β).
(ii) If γ is a limit ordinal, then Z(γ) =

⋃

α<γ Z(α).
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Let Z =
⋃

α∈On Z(α). Then for any formulas ϕ0, . . . , ϕn−1,

∀α∃β > α[ϕ0, . . . , ϕn−1 are absolute for Z(β),Z].

Proof. Assume the hypothesis, and let an ordinal α be given. We are going to apply
Lemma 15.4 with N = Z, and we need to find an appropriate β > α so that we can take
M = Z(β) in 15.4.

We may assume that ϕ0, . . . , ϕn−1 is subformula-closed; i.e., if i < n, then every
subformula of ϕi is in the list. Let A be the set of all i < n such that ϕi begins with a
universal quantifier. Suppose that i ∈ A and ϕi is the formula ∀xϕj(x, y1, . . . , yt), where
x, y1, . . . , yt are exactly all the free variables of ϕj . We now define a class function Gi as
follows. For any sets y1, . . . , yt,

Gi(y1, . . . , yt) =

{

the least η such that ∃x ∈ Z(η)¬ϕZ
j (x, y1, . . . , yt) if there is such,

0 otherwise.

Then for each ordinal ξ we define

Fi(ξ) = sup{Gi(y1, . . . , yt) : y1, . . . , yt ∈ Z(ξ)};

note that this supremum exists by the replacement axiom.
Now we define a sequence γ0, . . . , γp, . . . of ordinals by induction on n ∈ ω. Let

γ0 = α+ 1. Having defined γp, let

γp+1 = max(γp+1, sup{Fi(ξ) : i ∈ A, ξ ≤ γp}+ 1).

Finally, let β = supp∈ω γp. Clearly α < β and β is a limit ordinal.

(1) If i ∈ A, y1, . . . , yt ∈ Z(β), and ∃x ∈ Z¬ϕZ
i (x, y1, . . . , yt), then there is an x ∈ Z(β)

such that ¬ϕZ
i (x, y1, . . . , yt).

In fact, choose p such that y1, . . . , yt ∈ Z(γp). Then Gi(y1, . . . , yt) ≤ Fi(γp) < γp+1.
Hence an x as in (1) exists, with x ∈ Z(γp+1).

(1) clearly gives the desired conclusion.

Corollary 15.6. (The reflection theorem) For any formulas ϕ1, . . . , ϕn,

ZF |= ∀α∃β > α[ϕ1, . . . , ϕn are absolute for Vβ ].

Theorem 15.7. Suppose that Z is a class and ϕ1, . . . , ϕn are formulas. Then

∀X ⊆ Z∃A[X ⊆ A ⊆ Z and ϕ1, . . . , ϕn are absolute

for A,Z and |A| ≤ max(ω, |X |)].

Proof. We may assume that ϕ1, . . . , ϕn is subformula closed. For each ordinal α let
Z(α) = Z ∩ Vα. Clearly there is an ordinal α such that X ⊆ Vα, and hence X ⊆ Z(α).
Now we apply Theorem 15.5 to obtain an ordinal β > α such that

(1) ϕ1, . . . , ϕn are absolute for Z(β),Z.
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Let ≺ be a well-order of Z(β). Let B be the set of all i < n such that ϕi begins with a
universal quantifier. Suppose that i ∈ B and ϕi is the formula ∀xϕj(x, y1, . . . , yt), where
x, y1, . . . , yt are exactly all the free variables of ϕj . We now define a function Hi for each
i ∈ B as follows. For any sets y1, . . . , yt ∈ Z(β),

Hi(y1, . . . , yt) =

{

the ≺-least x ∈ Z(β) such that ¬ϕ
Z(β)
i (x, y1, . . . , yt) if there is such,

the ≺-least element of Z(β) otherwise.

Let A ⊆ Z(β) be closed under each function Hi, with X ⊆ A. We claim that A is as
desired. To prove the absoluteness, it suffices by Lemma 15.38 to take any formula ϕi with
i ∈ A, with notation as above, assume that y1, . . . , yt ∈ A and ∃x ∈ Z¬ϕZ

j (x, y1, . . . , yt),

and find x ∈ A such that ¬ϕZ
j (x, y1, . . . , yt). By (1) in the proof of Lemma 4.37, there is

an x ∈ Z(β) such that ¬ϕZ
j (x, y1, . . . , yt). Hence Hi(y1, . . . , yt) is an element of A such

that ¬ϕZ
j (Hi(y1, . . . , yt), y1, . . . , yt), as desired.

It remains only to check the cardinality estimate. This is elementary.

Lemma 15.8. Suppose that F is a bijection from A onto M, and for any a, b ∈ A we have
a ∈ b iff F(a) ∈ F(b). Then for any formula ϕ(x1, . . . , xn) and any x1, . . . , xn ∈ A,

ϕA(x1, . . . , xn)↔ ϕM(F(x1), . . . ,F(xn)).

Proof. An easy induction on ϕ.

Theorem 15.9. Suppose that Z is a transitive class and ϕ0, . . . , ϕm−1 are sentences.
Suppose that X is a transitive subset of Z. Then there is a transitive set M such that
X ⊆M , |M | ≤ max(ω, |X |), and for every i < m, ϕMi ↔ ϕZ

i .

Proof. We may assume that the extensionality axiom is one of the ϕi’s. Now we
apply Theorem 15.7 to get a set A as indicated there. By Proposition 12.31, there is a
transitive set M and a bijection mos from A onto M such that for any a, b ∈ A, a ∈ b
iff mosAR(a) ∈ mosAR(b). Hence all of the desired conditions are clear, except possibly
X ⊆M . By Lemma 12.33 we have mosAR(x) = x for all x ∈ X . Hence X ⊆M .

Corollary 15.10. Suppose that S is a set of sentences containing ZFC. Suppose also that
ϕ0, . . . , ϕn−1 ∈ S. Then

S |= ∃M

(

M is transitive, |M | = ω, and
∧

i<n

ϕMi

)

.

Proof. Take Z = V and X = ω in Theorem 15.9.

The following corollary can be taken as a basis for working with countable transitive models
of ZFC.
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Theorem 15.11. Suppose that S is a consistent set of sentences containing ZFC. Expand
the basic set-theoretic language by adding an individual constant M. Then the following
set of sentences is consistent:

S ∪ {M is transitive} ∪ {|M| = ω} ∪ {ϕM : ϕ ∈ S}.

Proof. Suppose that the indicated set is not consistent. Then there are ϕ0, . . . , ϕm−1

in S such that
S |= M is transitive and |M| = ω → ¬

∧

i<n

ϕM
i ;

it follows that

S |= ¬∃M

(

M is transitive, |M| = ω, and
∧

i<n

ϕM
i

)

,

contradicting Corollary 15.10.

Theorem 15.12. (II.5.10) Suppose that κ is an uncountable regular cardinal and 〈A(ξ) :
ξ ≤ κ〉 satisfies the following conditions:

(i) ∀ξ < η ≤ κ[A(ξ) ⊆ A(η)].

(ii) ∀ limit η ≤ κ
[

A(η) =
⋃

ξ<η A(ξ)
]

.

(iii) ∀ξ < κ[|A(ξ)| < κ.
(iv) |A(κ)| = κ.

Then ∀ξ < κ∃η < κ[ξ < η and A(η) � A(κ) and η is a limit ordinal].

Proof. Let A be the set of all formulas in the ∈-language of set theory which begin
with a universal quantifier. For each ϕ ∈ A we define a function Gϕ as follows. Say
ϕ is ∀xψϕ(x, y1, . . . , yn). Then Gϕ is a function with domain n(A(κ)) such that for any
a1, . . . , an ∈ A(κ),

Gϕ(a1, . . . , an) =
{

least α < κ : ∃x ∈ A(α)¬ψϕ(x, a1, . . . , an) if there is such an α,
0 otherwise.

Then for each ordinal α < κ we define

Fϕ(α) = sup{Gϕ(a1, . . . , an) : a1, . . . , an ∈ A(α)}.

Note that Fϕ(α) < κ since |A(α)| = |α| < κ.
Now we define a sequence γi of ordinals less than κ by recursion on i < ω. Now by

(iv) we can let γ0 be greater than ξ such that A(γ0) 6= ∅. Having defined γi, let

γi+1 = max(γi + 1, sup{Fϕ(η) : ϕ a formula, η ≤ γi}).

Let η =
⋃

i∈ω γi. Note that η < κ. Clearly ξ < η and A(η) 6= ∅. Now we claim
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(*) If ϕ ∈ A, say ϕ = ∀xψϕ(x, y1, . . . , yn), then

∀a1, . . . , an ∈ A(η)[∀x ∈ A(η)ψA(κ)
ϕ (x, a1, . . . , an)→ ∀x ∈ A(κ)ψA(κ)

ϕ (x, a1, . . . , an)].

In fact, suppose that ϕ ∈ A, ϕ = ∀xψϕ(x, y1, . . . , yn), a1, . . . , an ∈ A(η), and ∃x ∈

A(κ)¬ψ
A(κ)
ϕ (x, a1, . . . , an). Say a1, . . . , an ∈ A(γi). Then Gϕ(a1, . . . , an) < Fϕ(γi) <

γi+1 < η, so ∃x ∈ A(η)¬ψϕ(x, a1, . . . , an). This proves (*).
Now we prove by induction on ϕ that for any a1, . . . , an ∈ A(η), ϕA(η)(a1, . . . , an)

iff ϕA(κ)(a1, . . . , an). This is clear for atomic formulas, and the inductive steps for ¬
and → are clear. Now suppose inductively that ϕ is ∀xψϕ(x, y1, . . . , yn). First suppose

that ϕA(η)(a1, . . . , an). Thus ∀x ∈ A(η)ψ
A(η)
ϕ (x, a1, . . . , an). Hence by the induction hy-

pothesis, ∀x ∈ A(η)ψ
A(κ)
ϕ (x, a1, . . . , an), so by (*), ∀x ∈ A(κ)ψ

A(κ)
ϕ (x, a1, . . . , an), i.e.,

ϕA(κ)(a1, . . . , an).

Second, suppose that ϕA(κ)(a1, . . . , an), i.e., ∀x ∈ A(κ)ψ
A(κ)
ϕ (x, a1, . . . , an). So ∀x ∈

A(η)ψ
A(κ)
ϕ (x, a1, . . . , an), hence by the inductive hypothesis, ∀x ∈ A(η)ψ

A(η)
ϕ (x, a1, . . . , an).

This finishes the induction.
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16. Consistency of no inaccessibles

Theorem 16.1. If ZFC is consistent, then so is ZFC+“there do not exist uncountable
inaccessible cardinals”.

Proof. For brevity we interpret “inaccessible” to mean “uncountable and inaccessi-
ble”. Let

M = {x : ∀α[α inaccessible → x ∈ Vα]}

Thus M is a class, and M ⊆ Vα for every inaccessible α (if there are such). We claim that
M is a model of ZFC+“there do not exist uncountable inaccessible cardinals”. To prove
this, we consider two possibilities.

Case 1. M = V. Then of course M is a model of ZFC. Suppose that α is inaccessible.
Then since M = V we have V ⊆ Vα, which is not possible, since Vα is a set. Thus M is a
model of ZFC + “there do not exist uncountable inaccessible cardinals”.

Case 2. M 6= V. Let x be a set which is not in M. Then there is an ordinal α such
that α is inaccessible and x /∈ Vα. In particular, there is an inaccessible α, and we let κ
be the least such.

(1) M = Vκ.

In fact, if x ∈ M, then x ∈ Vα for every inaccessible α, so in particular x ∈ Vκ. On the
other hand, if x ∈ Vκ, then x ∈ Vα for every α ≥ κ, so x ∈ Vα for every inaccessible α, and
so x ∈M. So (1) holds.

Now we show that Vκ is as desired. By Theorem 14.16, Vκ is a model of ZFC.
Suppose that x ∈ Vκ and (x is an inaccessible cardinal)Vκ ; we want to get a contradiction.
In particular, (x is an ordinal)Vκ , so by absoluteness, x is an ordinal. Absoluteness clearly
implies that x is infinite. We claim that x is a cardinal. For, if f : y → x is a bijection
with y < x, then clearly f ∈ Vκ, and hence by absoluteness (f : y → x is a bijection and
y < x)Vα , contradiction. Similarly, x is regular; otherwise there is an injection f : y → x
with rng(f) unbounded in x, so clearly f ∈ Vκ, and absolutenss again yields a contradiction.
Thus x is a regular cardinal. Hence, since κ is the smallest inaccessible, there is a y ∈ x such
that there is a one-one function g from x into P(y). Again, g ∈ Vκ, and easy absoluteness
results contradicts (x is an inaccessible cardinal)Vκ .
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17. Constructible sets

(I.5.23) Let A be an L -structure, and P ⊆ A. Suppose that k ∈ ω\1. A set
S ⊆ kA is definable over A with parameters in P iff for some n ≥ 0 there is a for-
mula ϕ(x1, . . . , xk, y1, . . . , yn) of L such that for some b = 〈b1, . . . , bn〉 ∈ P , S = {a : A |=
ϕ(a, b)}.

For k ∈ ω\1, a set S ⊆ kA is definable over A with parameters iff it is definable over
A with parameters in A.

For k ∈ ω\1, a set S ⊆ kA is definable over A without parameters iff it is definable
over A with parameters in ∅.

For a ∈ A and P ⊆ A, we say that a is definable over A with parameters in P iff {a}
is definable over A with parameters in P .

For a ∈ A, we say that a is definable over A without parameters iff {a} is definable
over A without parameters.

Proposition 17.1. (I.15.24) If every element of A is definable without parameters, then
for every k ∈ ω\1, if S ⊆ kA is definable with parameters, then it is definable without
parameters.

Proof. Assume that every element of A is definable without parameters, k ∈ ω\1,
and S ⊆ kA is definable with parameters; say S = {a : A |= ϕ(a, b)}, where a has length
k, b has length n, and b is a sequence of elements of A. For each i = 1, . . . , n the set {bi}
is definable without parameters; say {bi} = {x ∈ A : A |= ψi(x)}. Then

S = {a : A |= ∃v

[

ϕ(a, v) ∧
n∧

i=1

ψi(vi)

]

(I.15.25) If A is a nonempty set and P ⊆ A, then D(A, P ) is the set of all subsets of A
which are definable over (A,∈) with parameters from P .
D+(A) = D(A,A).
D−(A) = D(A, ∅).
D+(∅) = D−(∅) = {∅}.

Proposition 17.2. (I.15.26) Every finite subset of A is in D+(A).

Proof. Let {b1, . . . , bn} be a finite subset of A. Then

{b1, . . . , bn} =

{

a ∈ A : A |=
n∨

i=1

[a = bi]

}

Proposition 17.3. (I.15.28) Assume that P ⊆ A and R is a relation on A which well-
orders A and is definable over A with parameters in P . Let H (A, P ) be the set of all
elements of A that are definable with parameters in P .

Then H (A, P ) is an elementary submodel of A.
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Proof. We apply Lemma 15.3. Assume that A |= ∃yψ(a, y) with each ai ∈H (A, P ).
Say A |= ϕi(ai, bi) with each bi ⊆ P . Let c be the R-least element of A such that

A |= ∃x

[
∧

i<m

ϕi(xi, bi) ∧ ψ(x, c))

]

Then c ∈H (A, P ) and A |= ψ(a, c).

Proposition 17.4. (I.15.27) If ϕ(x, y1, . . . , yn) is a formula in the language of set theory,
then

ZFC ⊢ ∀A∀b1, . . . , bn ∈ A[{x ∈ A : ϕA(x, b1, . . . , bn)} ∈ D+(A)].

(II.6.1) We define

L(0) = ∅;

L(β + 1) = D+(L(β));

L(γ) =
⋃

β<γ

L(β) for limit γ;

L =
⋃

α∈ON

L(α).

Lemma 17.5. (II.6.2) L(α) ⊆ Vα.

Proof. Induction on α. It is obvious for α = 0. Assume it for α, and suppose that
x ∈ L(α+ 1). Thus x ⊆ L(α) ⊆ Vα, so x ∈ Vα+1. The limit case is clear.

Lemma 17.6. (II.6.2) L(β) is transitive.

Proof. Induction on β. β = 0 is clear. Now assume that L(β) is transitive. Now
L(β) ⊆ L(β + 1), since if a ∈ L(β) then a = {x ∈ L(β) : x ∈ a} because L(β) is transitive,
and this shows that a ∈ D+(Lβ) = L(β + 1). Now let a ∈ L(β + 1). Then a ∈ P(L(β)),
so a ⊆ L(β) ⊆ L(β + 1).

The case of limit β is clear.

Lemma 17.7. (II.6.2) If α ≤ β, then L(α) ⊆ L(β).

Proof. By induction, with α fixed. The cases β = α and β limit are easy. Now
suppose that a ∈ L(β). Then a = {x ∈ L(β) : x ∈ a} because L(β) is transitive, and this
shows that a ∈ D+(Lβ) = L(β + 1).

Lemma 17.8. (II.6.2) L(β) ∩ON = β.

Proof. Induction on β. The cases β = 0 and β limit are clear. Now suppose that
L(β)∩ON = β. Then β ⊆ L(β) ⊆ L(β+1), so β ⊆ L(β+1)∩ON ⊆ Vβ+1∩ON = β+1 =
β ∪ {β}. So it suffices to show that β ∈ L(β + 1). Now

β = L(β) ∩ON = {a ∈ L(β) : (a is an ordinal)L(β)} ∈ D+(L(β)) = L(β + 1).
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(II.6.3) For x ∈ L, the L-rank ρ(x) of x is the least α such that x ∈ L(α+ 1).

Lemma 17.9. (II.6.4) L(α) = {x ∈ L : ρ(x) < α}.

Proof. Suppose that x ∈ L(α). If α = β + 1, then ρ(x) ≤ β < α. If α is limit, then
x ∈ L(β) for some β < α, and β + 1 < α with x ∈ L(β + 1), hence ρ(x) ≤ β < α. So ⊆
holds.

If x ∈ L and ρ(x) < α, then x ∈ L(ρ(x) + 1) ⊆ L(α).

Lemma 17.10. (II.6.4) L(α+ 1)\L(α) = {x ∈ L : ρ(x) = α}.

Lemma 17.11. (II.6.4) If x ∈ y ∈ L, then ρ(x) < ρ(y).

Proof. Let α = ρ(y). So x ∈ y ∈ L(α + 1) = D+(L(α)) ⊆ P(L(α)), so x ∈ L(α),
hence ρ(x) < α by Lemma 17.9.

Lemma 17.12. (II.6.5) L(α) ∈ L(α+ 1).

Proof. Lα = {x ∈ L(α) : x = x} ∈ D+(Lα) = Lα+1.

Lemma 17.13. (II.6.5) ρ(L(α)) = ρ(α) = α.

Proof. ρ(L(α)) ≤ α by Lemma 17.12. If ρ(L(α)) < α, then L(α) ∈ L(ρ(L(α) + 1)) ⊆
L(α), contradiction. So ρ(L(α)) = α.

By Lemma 17.8 we have α = {x ∈ L(α) : x is an ordinal} ∈ D+(L(α)) = L(α+ 1), so
ρ(α) ≤ α. If ρ(α) < α, then α ∈ L(ρ(α) + 1) ⊆ L(α), so α ∈ L(α) ∩ ON = α by Lemma
17.8, contradiction.

Lemma 17.14. (II.6.6) Every finite subset of L(α) is in L(α+ 1).

Proof. If F ∈ [L(α)]<ω, then F =
{

x ∈ L(α) :
∨

y∈F (x = y)
}

∈ D+(L(α) = L(α+1).

Lemma 17.15. (II.6.7) L(α) = Vα for all α ≤ ω.

Proof. L(n) = Vn for all n ∈ ω by induction, using Lemma 17.14. L(ω) = Vω by
taking unions.

Lemma 17.16. (II.6.9) |D+(A)| = |A| for all infinite A.

Lemma 17.17. (II.6.10) |L(α)| = |α| for all infinite α.

Proof. Since α ⊆ L(α) by Lemma 17.8, we have |α| ≤ |L(α)|. Now we prove
|L(α)| = |α| for all infinite α by induction on α. It is true for α = ω by Lemma 17.15. Now
assume that |L(α)| = |α|. Then |L(α + 1)| = |D+(L(α))| = |L(α)| = |α|. using Lemma
17.16. For α limit > ω,

|L(α)| =

∣
∣
∣
∣
∣
∣

⋃

β<α

L(β)

∣
∣
∣
∣
∣
∣

≤
∑

β<α

|L(β)| =
∑

ω≤β<α

|L(β)| =
∑

ω≤β<α

|β| = |α|.
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Theorem 17.18. (II.6.11) L is a model of ZF.

Proof. We will apply Lemma 14.12. Given x ⊆ L, let α = sup{ρ(z) + 1 : z ∈ x}.
Then x ⊆ L(α) ∈ L, using Lemma 17.12.

A typical instance of the comprehension axioms, relativized to L, is as follows:

∀z ∈ L∀w1 ∈ L . . .∀wn ∈ L∃y ∈ L∀x ∈ L[x ∈ y ↔ x ∈ z and ϕL].

So, let z, w1, . . . , wn ∈ L. Let y = {x ∈ z : ϕL}. Now there is an α such that z, w1, . . . , wn ∈
L(α). By the reflection theorem (Theorem 15.5) there is a β > α such that ϕ is absolute
for L(β), L. Then

y = {x ∈ z : ϕL} = {x ∈ z : ϕL(β)}

= {x ∈ L(β) : x ∈ z and ϕL(β)} ∈ D+(L(β) = L(β + 1) ⊆ L

Lemma 17.19. (II.6.12) If x, y ∈ L, then {x, y} ∈ L and ρ({x, y}) = max(ρ(x), ρ(y)) + 1.

Proof. Let ρ(x) = α and ρ(y) = β. Say α ≤ β. Then x, y ∈ L(β + 1). So
{x, y} = {z ∈ L(β + 1) : z = x or z = y} ∈ D+(L(β + 1)) = L(β + 2). This shows that
{x, y} ∈ L and ρ({x, y}) ≤ β + 1. Now y ∈ {x, y}, so β = ρ(y) < ρ({x, y}) by Lemma
17.11, so ρ({x, y}) = β + 1.

Lemma 17.20. (II.6.12) If x, y ∈ L, then (x, y) ∈ L and ρ((x, y)) = max(ρ(x), ρ(y)) + 2.

Lemma 17.21. (II.6.12) If x ∈ L, then
⋃
x ∈ L and ρ (

⋃
x) ≤ ρ(x).

Proof. Let α = ρ(x). Then x ∈ L(α + 1) = D+(L(α)), so there is a formula ϕ
with constants from L(α) and one free variable such that x = {y ∈ L(α) : ϕL(α)(y)}. If
y ∈

⋃
x, say y ∈ z ∈ x, so z ∈ L(α) and so y ∈ L(α) since L(α) is transitive. Thus

⋃
x = {y ∈ L(α) : ∃z ∈ L(α)ϕL(α)(z)}. Hence

⋃
x ∈ D+(L(α)) = L(α + 1); so

⋃
x ∈ L

and ρ (
⋃
x) ≤ ρ(x).

Lemma 17.22. (II.6.12) If x, y ∈ L, then x ∪ y ∈ L and ρ(x ∪ y) ≤ max(ρ(x), ρ(y)).

Proof. Let α = ρ(x) and β = ρ(y). Say α ≤ β. Now y ∈ L(β + 1) = D+(L(β)),
so there is a formula ϕ with constants from L(β) and with one free variable such that
y = {z ∈ L(β) : ϕL(β)}. Also there is a formula ψ with constants from L(β) and with
one free variable such that x = {z ∈ L(β) : ψL(β)}; if x ∈ L(β) we can take ψ to be
v = x. Now x ∪ y = {z ∈ L(β) : ϕL(β) or ψL(β)} ∈ D+(L(β), so x ∪ y ∈ L and
ρ(x ∪ y) ≤ max(ρ(x), ρ(y)).

Lemma 17.23. For the language L of set theory, the formula “ϕ is a formula of L ” is
absolute for transitive models of ZF.

Proof. Let F be the collection of all formula construction sequences; see page 20.
Thus for any f , f ∈ F iff there is an m ∈ ω\1 such that f is a function with domain m,
and for each i < m one of the following conditions holds:
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(1) There exist j, k < ω such that fi = 〈3, 5(j + 1), 5(k+ 1)〉. (fi is vj = vk.)

(2) There exist j, k < ω such that fi = 〈6, 5(j + 1), 5(k + 1)〉. (fi is vj ∈ vk, with 6 the
“symbol” for ∈.)

(3) There is a j < i such that fi = 〈1〉⌢fj . (fi is ¬fj .)

(4) There exist j, k < i such that fi = 〈2〉⌢f⌢j fk. (fi is fj → fk.)

(5) There exist j < i and k ∈ ω such that fi = 〈4, 5(k + 1)〉⌢fj . (fi is ∀vkfj .)

Now ϕ is a formula iff there is an f ∈ F and an i ∈ dmn(f) such that ϕ = fi.

Lemma 17.24. In the language for set theory, the relation (A,∈) |= ϕ[x] is absolute for
transitive models of ZF, where A is a nonempty set, ϕ is a formula, and x ∈ ωA.

Proof. Let T be the set of all f such that there is an m ∈ ω\1 such that f is a
function with domain m and for each i < m one of the following conditions holds:

(1) There exist j, k ∈ ω such that fi = (vj = vk, S) with S = {x ∈ ωA : xj = xk}.

(2) There exist j, k ∈ ω such that fi = (vj ∈ vk, S) with S = {x ∈ ωA : xj ∈ xk}.

(3) There is a j < i such that fi = (¬1st(fj), S), with S = ωA\2nd(fj).

(4) There exist j, k < i such that fi = (1st(fj) → 1st(fk), S), with S = (ωA\2nd(fj)) ∪
2nd(fk).

(5) There exist j < i and k ∈ ω such that fi = (∀vk1st(fj), S), with S = {x ∈ ωA : ∀y ∈
ωA[y ↾ (ω\{k}) = x ↾ (ω\{k})→ y ∈ 2nd(fj)}.

Then (A,∈) |= ϕ[x] iff there exist an f ∈ T and an i ∈ dmn(f) such that ϕ = 1st(fi) and
x ∈ 2nd(fi).

Lemma 17.25. D+(A) is absolute for transitive models of ZF.

Proof.

X ∈ D+(A) iff ∃ϕ(x, y1, . . . , ym)∃b1, . . . , bm ∈ A∀a ∈ A

[a ∈ X iff (A,∈) |= ϕ[a, b1, . . . , bm]].

Lemma 17.26. (II.6.13) The function 〈L(α) : α ∈ ON〉 is absolute for transitive models
of ZF.

Proof. Let M be a transitive model of ZF. We will apply Theorem 13.11. Let
A = ON and R = {(α, β) : α < β}. Thus R is well-founded and set-like on A. Define
G : A×V→ V as follows:

G(α, x) =







∅ if x = ∅,
D+(x(β)) if x is a function with domain α = β + 1,
⋃

β<α x(β) if x is a function with domain α, and α is a limit ordinal,
∅ otherwise.
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Thus L is the function obtained by Theorem 9.7. Clearly G,R,A are absolute for M.
The statement “R is set-like on A” is “∀x ∈ ON[{y : y < x} is a set]”, i.e. “∀x ∈
ON∃z∀y[y ∈ z ↔ y ∈ x]”, and the relativization to M clearly holds. Since M is transitive,
∀x ∈ ON ∩M[x ⊆M].

Corollary 17.27. (II.6.14) (V = L)L, i.e., (∀x∃α[x ∈ L(α)])L.

Proof. Since ON ⊆ L and “ordinal” and 〈L(α) : α ∈ ON〉 are absolute, it suffices to
show that ∀x ∈ L∃α ∈ ON [x ∈ L(α)], and this is obvious.

(II.6.15) For any transitive set M let o(M) = M ∩ON .

Proposition 17.28. If M is a transitive set, then o(M) is the first ordinal not in M .

Proof. If x ∈ M ∩ ON , then x ⊆ M ∩ ON . So o(M) is a transitive set of ordinals,
and hence is an ordinal. If o(M) ∈M , then o(M) ∈M ∩ON = o(M), contradiction. If α
is an ordinal not in M , then α /∈M ∩ON , so M ∩ON ≤ α.

Lemma 17.29. (II.6.16) If M is transitive and M |= ZF − P , then there is no largest
ordinal in M .

Proof. M |= ∀x∃y∀z[z ∈ y ↔ z = x or z ∈ x].

Lemma 17.30. (II.6.16) If M is transitive and M |= ZF − P , then M |= V = L iff
M = L(o(M)).

Proof. Let γ = o(M). By absoluteness, L(α) ∈ M for all α < γ. By Lemma 17.29,
γ is a limit ordinal. Since L(γ) =

⋃

α<γ L(α), it follows that L(γ) ⊆M . Now

M |= V = L iff ∀x ∈M∃α ∈M ∩ON [x ∈ L(α)]

iff ∀x ∈M∃α ∈ γ[x ∈ L(α)

iff M ⊆ L(γ)

iff M = L(γ).

(II.6.17) A formula ϕ in the language for set theory is good iff its free variables are exactly
v0, . . . , vn for some n ∈ ω. Let 〈ϕi : i ∈ ω〉 be a one-one list of all the good formulas.
Say ϕi = ϕi(v0, . . . , vni) for each i ∈ ω. For A 6= ∅, i ∈ ω, and b ∈ niA, let D(A, i, b) =
{a ∈ A : (A,∈) |= ϕi(a, b)}. For each S ∈ D+(A) let i(S,A) be the least i ∈ ω such that
S = D(A, i, b) for some b ∈ niA.

(II.6.18) If R is a well-order of A, then R(n) is the lexicographic order of nA. For
S ∈ D+(A), p(S,R) is the R(ni(S,A))-first b ∈ ni(S,A)A such that S = D(A, i(S,A), b). Then
we define W = W (A,R) by setting

S1WS2 iff S1, S2 ∈ D
+(A) and

{
i(S1, A) < i(S2, A) or
i(S1, A) = i(S2, A) and p(S1, R)R(ni(S1,A))p(S2, R).

Clearly W (A,R) is a well-order of D+(A).
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(II.6.19) We define ⊳δ ⊆ L(δ)× L(δ) by recursion as follows:

x ⊳δ y iff x, y ∈ L(δ) and

{
ρ(x) < ρ(y) or
ρ(x) = ρ(y) and xW (L(ρ(x)), ⊳ρ(x))y.

Then we define

x <L y iff x, y ∈ L and

{
ρ(x) < ρ(y) or
ρ(x) = ρ(y) and x ⊳ρ(x)+1 y.

Theorem 17.31. (II.6.20) <L well-orders L. Each L(δ) is an initial segment, with
⊳δ =<L ∩(L(δ)× L(δ))

Assuming V = L, <L well-orders V , and AC holds.

Lemma 17.32. (II.6.22) If κ is an uncountable regular cardinal, then L(κ) |= ZF − P +
V = L.

Proof. Let M = L(κ). Foundation and extensionality hold since L(κ) is transitive.
Pairing holds by Lemma 17.19 and Theorem 14.3. Union holds by Lemma 17.21 and
Theorem 14.4. By Theorem 14.8, infinity holds in M .

We turn to replacement, where we apply Theorem 14.6. Assume that ϕ is a formula
with free variables among x, y, A, w1, . . . , wn and A,w1, . . . , wn ∈ L(κ) and

∀x ∈ A∃!y[y ∈ L(κ) ∧ ϕL(κ)(x, y, A, w1, . . . , wn)].

For each a ∈ A let f(a) ∈ L(κ) be such that ϕL(κ)(x, f(a), A, w1, . . . , wn). Then choose
α so that A,w1, . . . , wn ∈ L(α), with ω ≤ α < κ. Note that |A| ≤ |L(α)| = |α| < κ
by Lemma 17.17.. Define f : A → L(κ) by setting f(x) = the y ∈ L(κ) such that

ϕL(κ)(x, y, A, w1, . . . , wn). Then ∀x ∈ A[ρ(f(x)) < κ]. Hence β
def
= supx∈A ρ(f(x)) < κ.

Let Y = L(β). So Y ∈ L(κ) by Lemma 17.12. Clearly Y is as desired.
A typical instance of the comprehension axioms, relativized to L(κ), is as follows:

∀z ∈ L(κ)∀w1 ∈ L(κ) . . .∀wn ∈ L(κ)∃y ∈ L(κ)∀x ∈ L(κ)[x ∈ y ↔ x ∈ z and ϕL(κ)].

So, let z, w1, . . . , wn ∈ L(κ). Let y = {x ∈ z : ϕL(κ)}. Now there is an α < κ such that
z, w1, . . . , wn ∈ L(α). Now by Theorem 15.11 there is an η ∈ (α, κ) such that L(η) � L(κ).
Hence y = {x ∈ L(η) : x ∈ z and ϕL(η)} ∈ D+(L(η)) = L(η + 1) ⊆ L(κ).

Thus L(κ) is a model of ZF − P . Now o(L(κ)) = L(κ) ∩ ON by Lemma 17.8, so
L(κ) = L(o(L(k))) and hence by Lemma 17.30, L(κ) |= V = L.

Theorem 17.33. (II.6.23) If V = L, then L(κ) = H(κ) for every infinite cardinal κ.

Proof. First note that L(κ) ⊆ H(κ). In fact, suppose that x ∈ L(κ). Choose α < κ
such that x ∈ L(α). Then trcl(x) ⊆ L(α), so |trcl(x)| ≤ |L(α)| < κ and hence x ∈ H(κ).

Now assume that κ = λ+ and b ∈ H(λ+). Let T = trcl({b}). Then b ∈ T and
|T | ≤ λ. Take an uncountable regular cardinal θ which is greater than the least β such that
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T ∈ L(β). By the downward Löwenheim-Skolem theorem there is an A such that A � L(θ),
T ⊆ A, and |A| ≤ λ. Let mosA∈ be the Mostowski isomorphism of A onto a transitive
set B. By Lemma 12.33, mosA∈(x) = x for all x ∈ T . In particular, b = mosA∈(b) ∈ B.
By Lemma 17.32, L(θ) |= ZF − P + V = L, so also B |= ZF − P + V = L. Hence by
Lemma 17.30, there is a β such that B = L(β), so |β| = |B| = |A| ≤ λ. So β < λ+ and
b ∈ B = L(β) ⊆ L(λ+). This shows that H(λ+) ⊆ L(λ+). It then follows that for limit γ,
H(γ) ⊆ L(γ).

Theorem 17.34. (II.6.23) V = L implies GCH.

Proof. Let λ be an infinite cardinal. Then using Theorem 17.33, P(λ) ⊆ H(λ+) =
L(λ+), so 2λ = |P(λ)| ≤ |L(λ+| = λ+.

Theorem 17.35. ON ⊆ L.

Proof. By Lemma 17.8.

Theorem 17.36. (II.6.25) If κ is any cardinal, then L |= [κ is a cardinal].

Proof. ¬∃α < κ∃f : α → κ[f is a surjection]. This holds in L by downwards
absoluteness.

Theorem 17.37. (II.6.25) If κ is weakly inaccessible, then L |= [κ is strongly inaccessible].

Proof. ∀α ∈ κ∃λ ∈ κ[α ∈ λ and λ is a cardinal], so this holds in L by absoluteness.
Hence L |= [κ is a limit cardinal]. Also, ∀α < κ∀f : α → κ∃β < κ∀ξ < α[f(ξ) < β]; this
holds in L by absoluteness, so L |= [κ is regular limit]. Since L |= [V = L], the theorem
follows.

Theorem 17.38. (II.6.25) Assume that V = L and κ is strongly inaccessible. Then
L(κ) = H(κ) = Vκ |= [ZFC + V = L].

Proof. L(κ) = H(κ) by Theorem 17.33. H(κ) = Vκ by Lemma 12.54. Vκ |= ZFC by
Theorem 14.16. Vκ |= V = L by Theorem 17.32.

Corollary 17.39. (II.6.26) If there is a weakly inaccessible cardinal, then there is a
countable transitive M such that M |= ZFC + V = L.

Proof. Let κ be weakly inaccessible. By Theorem 17.37 we have L |= [κ is strongly
inaccessible]. Now L |= [V = L] by Corollary 17.27. Hence by Theorem 17.38, in L we
have Vκ |= [ZFC + V = L]. Now apply Lemma 14.9.

An inner model of ZF is a transitive class which is a model of ZF and contains all the
ordinals.

Theorem 17.40. (minimality) If M is an inner model of ZF, then L ⊆M .

Proof. By Lemma 17.26. LMα = Lα for every ordinal α.
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Theorem 17.41. (condensation) For every limit ordinal α, if M ≡ee Lα and M is
transitive, then there is a limit ordinal β ≤ α such that M = Lβ.

Proof. First we claim that M is extensional. For,

Lα |= ∀x, y[∀z[z ∈ x↔ z ∈ y]→ x = y], so

M |= ∀x, y[∀z[z ∈ x↔ z ∈ y]→ x = y].

So, suppose that x, y ∈M and ∀z ∈M [z ∈ x↔ z ∈ y]. Since M is transitive, ∀z[z ∈ x↔
z ∈ y], hence x = y.

Now let β = M ∩ON. Since M is transitive, β is an ordinal, and β ⊆M .

(1) 0 < β.

For, Lα |= ∃x∀y ∈ x[y 6= y], so M |= ∃x∀y ∈ x[y 6= y]. Choose x ∈ M so that ∀y ∈
M ∩ x[y 6= y]. Thus M ∩ x = ∅. Since M is transitive, x = ∅. So (1) holds.

(2) β is a limit ordinal.

For,

Lα |=∀γ[γ is an ordinal→ ∃δ[δ is an ordinal ∧ [γ < δ]]], so

M |=∀γ[γ is an ordinal→ ∃δ[δ is an ordinal ∧ [γ < δ]]].

Now let γ < β. Then γ ∈M and by absoluteness M |= [γ is an ordinal], so ∃δ ∈M [M |= [δ
is an ordinal] ∧ [γ < δ]]. Thus by absoluteness, δ ∈M and γ < δ, so (2) holds

(3) Lβ ⊆M .

For, Lα |= ∀δ ∈ ON∃y[y = Lδ]. Hence M |= ∀δ ∈ ON∃y[y = Lδ]. So for every δ < β
there is a y ∈M such that M |= [y = Lδ]. By absoluteness, y = Lδ. So (3) holds.

(4) M ⊆ Lβ.

For, Lα |= ∀x∃y∃z[y is an ordinal and z = Ly ∧x ∈ z]. Hence M |= ∀x∃y∃z[y is an ordinal
and z = Ly ∧ x ∈ z]. Now take any a ∈ M . Choose an ordinal γ ∈ M and z ∈ M such
that M |= [z = Lγ ] and x ∈ z. By absoluteness, z = Lγ .

(II.6.29) For any sets A,B with A 6= ∅ we define D′(A,B) = {S ⊆ A : S is definable over
(A,∈, B ∩ A) with parameters from A}. Then for any sets B,C we define

L(B,C, 0) =

{
∅ if C = ∅,
{C} ∪ trcl(C) otherwise;

L(B,C, β + 1) = D′(L(B,C, β), B);

L(B,C, γ) =
⋃

β<γ

L(B,C, β) for γ limit;

L(B,C) =
⋃

β∈ON

L(B,C, β);

Lβ(C) = L(∅, C, β);

L(C) = L(∅, C);

Lβ[B] = L(B, ∅, β);

L[B] = L(B, ∅).
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Proposition 17.42. Lα[B] ⊆ Vα.

Proof. See the proof of Lemma 17.5.

Proposition 17.43. Let rank({C} ∪ trcl(C)) = δ. Then Lα(C) ⊆ Vδ+α for all α.

Proof. Induction on α. L0(C) = L(∅, C, 0) = {C} ∪ trcl(C) ∈ Vδ+1 = P(Vδ), so
L0(C) ⊆ Vδ. Now assume that Lα(C) ⊆ Vδ+α. Then

Lα+1(C) = L(∅, C, α+ 1) = D′(L(∅, C, α), ∅)

⊆P(L(∅, C, α)) = P(Lα(C)) ⊆P(Vδ+α) = Vδ+α+1.

The limit case is clear.

Proposition 17.44. L(B,C, α) is transitive.

Proof. Induction on α. It is clear for α = 0. Now suppose true for α. Then
L(B,C, α) ⊆ L(B,C, α + 1), since if a ∈ L(B,C, α) then a = {x ∈ L(B,C, α) : x ∈ a}
since L(B,C, α) is transitive, and so a ∈ D′(L(B,C, α), B) = L(B,C, α+1). Now suppose
that x ∈ L(B,C, α+ 1). Thus x ∈ D′(L(B,C, α), B)⊆ L(B,C, α) ⊆ L(B,C, α+ 1).

The limit case is clear.

Proposition 17.45. If α ≤ β, then L(B,C, α) ⊆ L(B,C, β).

Proof. By induction, with α fixed. The cases α = β and β limit are clear. Now
suppose that a ∈ L(B,C, β). Then a = {x ∈ L(B,C, β) : x ∈ a} since L(B,C, β) is
transitive, and this shows that a ∈ D′(L(B,C, β), B) = L(B,C, β + 1).

Proposition 17.46. Lβ [B] ∩ON = β for all β.

Proof. See the proof of Lemma 17.8.

Proposition 17.47. ({C}∪trcl(C))∩ON is an ordinal, and if we let δ = ({C}∪trcl(C))∩
ON, then Lβ(C) ∩ON = δ + β for any β.

Proof. ({C} ∪ trcl(C)) ∩ ON is a transitive set of transitive sets, and so it is an
ordinal. Let δ = ({C} ∪ trcl(C)) ∩ ON. We prove that Lβ(C) ∩ ON = δ + β for all β
by induction on β. L0(C) ∩ON = δ is given. Now suppose that Lβ(C) ∩ON = δ + β.
Now δ+ β ⊆ Lβ(C) ⊆ Lβ+1(C) ⊆ Vδ+β+1 by Proposition 7.43. Hence δ+ β ⊆ Lβ+1(C) ⊆
Vδ+β+1∩ON = δ+β+1 = δ+β+{δ+β}. Hence it suffices to show that δ+β ∈ Lβ+1(C).
Now

δ + β = Lβ(C) ∩ON = {a ∈ Lβ(C) : (a is an ordinal)Lβ(C)} ∈ D′(Lβ(C)) = Lβ+1(C).

The limit case is clear.

For x ∈ L(C) let ρC(x) be the least α such that x ∈ Lα+1(C). For x ∈ L[B] let ρB(x) be
the least α such that x ∈ Lα+1[B].
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Proposition 17.48. (i) L0(C) = {C} ∪ trcl(C), and ρC(x) = 0 for all x ∈ L0(C).
(ii) If α > 0, then Lα(C) = {x ∈ L(C) : ρC(x) < α}.

Proof. (i): clear. (ii): Assume that α > 0. Suppose that x ∈ Lα(C). If α = β + 1,
then ρC(x) ≤ β < α. If α is limit, then x ∈ Lβ(C) for some β < α, and β + 1 < α with
x ∈ Lβ+1(C), hence ρC(x) ≤ β < α. So ⊆ holds.

If x ∈ L(C) and ρC(x) < α, then x ∈ Lρ(x)+1(C) ⊆ Lα(C).

Proposition 17.49. Lα[B] = {x ∈ L[B] : ρB(x) < α}.

Proof. See the proof of Lemma 17.9.

Proposition 17.50. (i) If α > 0, then Lα+1(C)\Lα(C) = {x ∈ L(C) : ρC(x) = α}.
(ii) Lα+1[B]\Lα[B] = {x ∈ L[B] : ρB(x) = α}.

Proposition 17.51. (i) If x ∈ y ∈ L(C)\L1(C), then ρC(x) < ρC(y).
(ii) If x ∈ y ∈ L[B], then ρB(x) < ρB(y).

Proof. (i): Let α = ρC(y). Thus α ≥ 1. So x ∈ y ∈ Lα+1(C) = D′(L(∅, C, α), ∅) ⊆
P(L(∅, C, α), so x ∈ L(∅, C, α), hence ρC(x) < α by Proposition 17.48.

(ii): similarly.

Proposition 17.52. (i) Lα(C) ∈ Lα+1(C).
(ii) Lα[B] ∈ Lα+1[B].

Proof. (i): Lα(C) = {x ∈ Lα(C) : x = x} ∈ D′(∅, C, α) = Lα+1(C).
(ii): similarly.

Proposition 17.53. (i) ρC(Lα(C)) = α;
(ii) ρB(Lα[B]) = α.

Proof. (i): ρC(Lα(C)) ≤ α by Proposition 17.52. If ρC(Lα(C)) < α, then Lα(C) ∈
LρC(Lα(C))+1(C) ≤ Lα(C), contradiction.

(ii): similarly.

Proposition 17.54. ρB(α) = α.

Proof. See the proof of Lemma 17.13.

Proposition 17.55. Let δ = ({C} ∪ trcl(C)) ∩ON. Then
(i) ρC(α) = 0 if α ≤ δ.
(ii) ρC(α) = γ if α = δ + γ.

Proof. (i): Suppose that α ≤ δ. Then α ∈ L1(C), so ρC(α) = 0.
(ii): We have δ+γ ∈ δ+γ+1 = Lγ+1(C) by Proposition 17.47. Hence ρC(δ+γ) ≤ γ.

Suppose that ρC(δ + γ) < γ. Then δ + γ ∈ LρC(δ+γ)+1(C) ∩ON ⊆ Lγ(C) ∩ON = δ + γ,
contradiction.

Proposition 17.56. Every finite subset of L(B,C, α) is a member of L(B,C, α+1).
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Proposition 17.57. Ln[B] = Vn for all n ≤ ω.

Proof. By induction, Ln[B] = Vn for all n ∈ ω. Hence also Lω[B] = Vω.

Proposition 17.58. |D′(A,B)| = |A| for every infinite A.

Proposition 17.59. Let δ = |{C} ∪ trcl(C)|.
(i) If δ is finite, let ε0 = δ and εn+1 = 2εn for all n ∈ ω. Then |L(B,C, n)| = εn for

all n ∈ ω, and |L(B,C, ω)| = ω.
(ii) If δ is infinite, then |L(B,C, n)| = |δ| for all n ≤ ω.

Proposition 17.60. |L(B,C, α)| = |α|+ |{C} ∪ trcl(C)| for all infinite α.

Proof. Induction on α. It is true for α = ω by Proposition 17.59. Now assume
that |L(B,C, α)| = |α| + |{C} ∪ trcl(C)|. Then |L(B,C, α+ 1)| = |D′(L(B,C, α), B)| =
|α+ 1|+ |{C} ∪ trcl(C)|. For α limit > ω,

|L(B,C, α)| =

∣
∣
∣
∣
∣
∣

⋃

β<α

L(B,C, β)

∣
∣
∣
∣
∣
∣

≤
∑

β<α

|L(B,C, β)| =
∑

ω≤β<α

|L(B,C, β)|

=
∑

ω≤β<α

(|β|+ |{C} ∪ trcl(C)|) = |α|+ |{C} ∪ trcl(C)|.

Proposition 17.61. L(B,C) is a model of ZF.

Proof. The proof of Theorem 17.18 carries over.

Proposition 17.62. D′(A,B) is absolute for transitive models of ZF.

Proof.

X ∈ D′(A,B)) iff ∃ϕ(x, y1, . . . , ym)∃b1, . . . , bm ∈ A∀a ∈ A

[a ∈ X iff (A,∈, B ∩A) |= ϕ[a, b1, . . . , bm]].

Proposition 17.63. The function 〈L(B,C, α) : α ∈ ON〉 is absolute for transitive models
of ZF.

Proof. See the proof of Theorem 17.26.

Proposition 17.64. Let B = B ∩ L[B]. Then L[B] = L[B] and B ∈ L[B].

Proof. We prove by induction that ∀α ∈ ON[Lα[B] = Lα[B]]. This is clear for
α = 0, and the case α limit is clear. Now assume that Lα[B] = Lα[B]. Then

Lα+1[B] = D′(L(B.0, α), B)

= {S ⊆ L(B, 0, α) : S is definable over (L(B, 0, α),∈, B ∩ L(B, 0, α))

with parameters from A}

= {S ⊆ L(B, 0, α) : S is definable over (L(B, 0, α),∈, B ∩ L(B, 0, α))

with parameters from A}

= D′(L(B.0, α), B)

= Lα+1[B].
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Thus L[B] = L[B]. Now there is an ordinal α such that B ∩ L[B] = B ∩ Lα[B], and then
B = {x ∈ L(B, 0, α) : x ∈ B∩Lα[B]}, so that B is definable over ((L(B, 0, α), 0, B∩Lα[B]).
Thus B ∈ L(B, 0, α+ 1).

Proposition 17.65. (V = L[B])L[B], i.e., (∀x∃α[x ∈ L(B, 0, α)])L[B].

Proof. (∀x∃α[x ∈ L(B, 0, α)])L[B] is

∀x ∈ L[B]∃α ∈ L[B](L(B, 0, α)])L[B].

So, given x ∈ L[B], choose α with x ∈ Lα[B] and B ∈ Lα[B]. Then x ∈ (L(B, 0, α)])L[B]

by absoluteness.

Lemma 17.66. Assume that M is an extensional set and (M,∈, N) � (Lα[B],∈, B ∩
Lα[B]). Then

(i) N = M ∩B.
(ii) If π is the transitive collapse of M onto P then for any formula ϕ in the expanded

language and any x ∈ ωM ,

(P,∈, π[B ∩M ]) |= ϕ[π ◦ x] iff (Lα[B],∈, B ∩ Lα[B]) |= ϕ[x].

Proof.
(i): N = M ∩B ∩ Lα[B] = M ∩B.
(ii) Induction on ϕ. Let R be the one-place relation symbol corresponding to B ∩

Lα[B].

(1) ϕ is vi ∈ R. Then

(Lα[B],∈, B ∩ Lα[B]) |= xi ∈ B ∩ Lα[B] iff (M,∈, B ∩M) |= xi ∈ B ∩M

iff (P,∈, π[B ∩M ]) |= π(xi) ∈ π[B ∩M ].

(2) Other cases are clear.

Lemma 17.67. Assume that M is an extensional set and (M,∈, N) � (Lα[B],∈, B ∩
Lα[B]). Let π be the transitive collapse of M onto P . Then for any S ⊆ M , π[S] ∈
D′(P, π[B ∩M ]) iff S = S′ ∩M for some S′ ∈ D′(Lα[B], B).

Proof. Suppose that S ⊆M . First suppose that π[S] ∈ D′(P,B∩M). Let ϕ(v0) be a
formula in the expanded language such that π[S] = {π(x) : x ∈M, (P,∈, P ∩π[B ∩M ]) |=
ϕ(π(x))}. Hence by Lemma 17.66, π[S] = {π(x) : x ∈ M, (Lα[B],∈, B ∩ Lα[B]) |= ϕ(x)},
so that S = {x : x ∈M, (Lα[B],∈, B ∩ Lα[B]) |= ϕ(x)}, as desired.

The converse is obtained by reversing steps.

Lemma 17.68. Assume that M is an extensional set and (M,∈, N) � (Lα[B],∈, B ∩
Lα[B]). Let π be the transitive collapse of M onto P . Then for any α ∈ P ∩ON and any
S ⊆M , π[S] ∈ L(π[B ∩M ], 0, α) iff S ∈ {S′ ∩M : S′ ∈ L(B, 0, α)}.
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Proof. We prove this by induction on α. It is clear for α = 0 and for α limit. Now
assume it for α. Then for any S ⊆M ,

π[S] ∈ Lα+1(π[B ∩M ], 0, α) iff π[S] ∈ D′(L(π[B ∩M ], 0, α), π[B ∩M ])

iff ∃S′ ∈ D′(L[B], B)(S = S′ ∩M)

iff S ∈ {S′ ∩M : S′ ∈ L(B, 0, α+ 1)}.

Theorem 17.69. Assume that M is an extensional set and (M,∈, N) � (Lα[B],∈, B ∩
Lα[B]). Let π be the transitive collapse of M onto P . Let γ = P ∩ ON. Then (P,∈
, π[B ∩M ]) = Lγ [π[B ∩M ].

Proof.

(Lα[B],∈, B ∩ Lα[B]) |= ∀x∃β[x ∈ Lβ [B]], so by Lemma 3,

(Lα[B],∈, B ∩ Lα[B]) |= ∀x∃β[π[x ∩M ] ∈ Lβ [π[B ∩M ]]], so

(P,∈, π[B ∩M ]) |= ∀x∃β[x ∈ Lβ [π[B ∩M ]]], hence

(P,∈, π[B ∩M ]) = (Lγ[B ∩M ],∈, π[B ∩M ]).

A formula ϕ in the language for (A,∈, A ∩ G) is good’ iff its free variables are exactly
v0, . . . , vn for some n ∈ ω. Let 〈ϕi : i ∈ ω〉 be a one-one list of all the good’ formulas. Say
ϕi = ϕi(v0, . . . , vni) for each i ∈ ω. For A 6= ∅, i ∈ ω, and b ∈ niA, let D′(A,B, i, b) =
{a ∈ A : (A,∈, B) |= ϕi(a, b)}. For each S ∈ D′(A,B) let i(S,A) be the least i ∈ ω such
that S = D′(A,B, i, b) for some b ∈ niA.

If R is a well-order of A. then R(n) is the lexicographic order of nA. For S ∈ D′(A,B),
p(S,R) is the R(ni(S,A))-first b ∈ ni(S,A)A such that S = D(A, i(S,A), b). Then we define
W = W (A,B,R) by setting

S1WS2 iff S1, S2 ∈ D
+(A) and

{
i(S1, A) < i(S2, A) or
i(S1, A) = i(S2, A) and p(S1, R)R(ni(S1,A))p(S2, R).

Clearly W (A,B,R) is a well-order of D+(A).
(II.6.19) We define ⊳δ ⊆ Lδ[B]× Lδ[B] by recursion as follows:

x ⊳δ y iff x, y ∈ L(δ) and

{
ρ(x) < ρ(y) or
ρ(x) = ρ(y) and xW (L(ρ(x)), B, ⊳ρ(x))y.

Then we define

x <L[B] y iff x, y ∈ L[B] and

{
ρB(x) < ρB(y) or
ρB(x) = ρB(y) and x ⊳ρB(x)+1 y.

Theorem 17.70. <L[B] well-orders L[B], and each Lδ[B] is an initial segment, with
⊳δ =<L[B] ∩(Lδ[B]× Lδ[B]

Assuming V = L[B], <L[B] well-orders V [B], and AC holds.
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Proposition 17.71. If C ⊆ α for some ordinal α, then there is a well-order of L(C).

Proof. As in the proof of Theorem 17.31, starting with the given well-order of L0(C).

Proposition 17.72. Choose α so that B ∩ L[B] ∈ Lα[B], using Proposition 17.64. Then
in L[B], 2κ = κ+ for all κ > α.

Proof. First we claim

(1) H(κ+) ⊆ Lα[B].

In fact, we repeat the proof of Theorem 17.33 to the application of the Löwenheim-Skolem
theorem, obtaining (A,X) � L(B, 0, α). Now let Y = B ∩ L[B]; so Y ∈ Lα[B]. Thus
Y is an allowable parameter in defining D ′(Lα[B], B), and so {Y } ∈ Lα+1[B]. Hence
(Lα+1[B],∈, Lα+1[B] ∩ B) |= ∃x∀y[y ∈ x ↔ y ∈ Lα+1[B] ∩B], so A |= ∃x∀y[y ∈ x ↔ y ∈
X ]. Now the rest of the proof gives (1).

Now P(κ) ⊆ H(κ+) = Lκ+ [B], so 2κ = |P(κ)| ≤ |Lκ+ [B]| = κ+.

Theorem 17.73. If A ∈ L[X ], then L[A] ⊆ L[X ].

Proof. Assume that A ∈ L[X ]. Since L[X ] is transitive, A ∩ L[X ] = A ∈ L[X ].
Hence L[A] ⊆ L[X ] by Theorem 17.65.

Theorem 17.74. For every set X there is a set A of ordinals such that L[X ] = L[A].

Proof. Choose α so that X ∈ Lα[X ], with α limit. In Lα[X ] let f be a bijection from
an ordinal θ onto trcl({X}). Define αEβ iff f(α) ∈ f(β). Let Γ be the natural bijection
of ON × ON onto ON. Let A = Γ(E). Then A ∈ L[X ], so L[A] ⊆ L[X ] by Theorem
17.65.

Now A ∈ Lsup(A)+1[A]. Hence E = Γ−1[A] ∈ L[A]. Hence (θ, E) ∈ L[A]. Let M

be the transitive collapse of (θ, E) in L[A]. Then X ∈ M and hence X ∈ L[A]. So by
Theorem 17.64, L[A] = L[X ].

Theorem 17.75. If M � (Lω1
,∈), then M = Lα for some limit ordinal α ≤ ω1.

Proof. We claim that M is transitive. For, suppose that X ∈M . Then X ∈ Lω1
. In

Lω1
there is a function g mapping ω onto X . Let f be the <ω1

-least such. Thus

(Lω1
,∈) |= ∃!f [f maps ω onto X ∧ ∀g[g maps ω onto X → f <ω1

g]], so

(M,∈) |= ∃!f [f maps ω onto X ∧ ∀g[g maps ω onto X → f <ω1
g]].

Choose f ∈M so that

(M,∈) |= [f maps ω onto X ∧ ∀g[g maps ω onto X → f <ω1
g]]; hence

(Lω1
|= [f maps ω onto X ∧ ∀g[g maps ω onto X → f <ω1

g]].

By absoluteness, f really is a function mapping ω onto X . If x ∈ X , choose n such that
f(n) = x. Now (Lω1

,∈) |= ∃n ∈ ω∃y[f(n) = y], so (M,∈) |= ∃n ∈ ω∃y[f(n) = y]. Choose
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n ∈ ωM and y ∈ M so that (M,∈) |= [f(n) = y]. Then (Lω1
,∈) |= [n ∈ ω ∧ [f(n) = y]].

By absoluteness, n ∈ ω and f(n) = y. So x = y ∈M .
This shows that M is transitive. By Theorem 17.41, M = Lα for some limit ordinal

α ≤ ω1.

Theorem 17.76. If M � (Lω2
,∈), then there is an α ≤ ω1 such that ω1 ∩M = α.

Proof. First we claim that if γ < ω1 and γ ∈ M , then γ ⊆ M . This is true by
the argument in the proof of Theorem 17.75. Now let α = ω1 ∩M . So α is a collection
of cardinals. If γ ∈ α, then γ ⊆ M by the claim. So α is transitive. Hence it is an
ordinal.

Theorem 17.77. If α ≥ ω and X is a constructible subset of α, then X ∈ Lβ, where β is
the least cardinal greater than α.

Proof. Assume that α ≥ ω and X is a constructible subset of α. Say X ∈ Lκ. Let
M be an elementary substructure of Lκ such that X ∈M , α ⊆M , and |M | = |α|. Let N
be the transitive collapse of M via a function π. Then π is the identity on X , so X ∈ N .
Then N = Lγ with |Lγ | = |M | = |α|. Hence X ∈ Lγ ⊆ Lβ, where β is the least cardinal
greater than α.

Theorem 17.78. Assume V = L[A] with A ⊆ ω1. Then GCH holds.

Proof. First we show that 2ω = ω1. Take any X ⊆ ω. Say X ∈ LβX [A] with ω1 ≤ βX .
Let (MX , ∅, Q) � (LβX [A], ∅, A) be such that X ∈ MX , ω ⊆ MX , MX ∩ ω1 ∈ ω1, and
|MX | = ω. Thus Q = A∩MX . Let δX = M ∩ω1. Then A∩ δX = A∩MX ∩ω1 = A∩MX .
Let (NX , ∅, π[A ∩ δX ]) be the transitive collapse of (MX , ∅, A ∩ δX) via the function π.
Since δX ⊆ M , π is the identity on δX . Hence π[A ∩ δX ] = A ∩ δX and X ∈ NX . Then
there is an ordinal γX such that (NX , ∅, π[A ∩ δX ]) = LγX [A ∩ δX ]. Now γX < ω1 since
|γX | = |LγX [A ∩ δX ]| = |N | = |M | = ω. Also, δX < ω1.

Thus P(ω) ⊆
⋃

µ,ν<ω1
Lµ[A ∩ ν], and this set has size ω1. So 2ω = ω1.

Now suppose that λ is uncountable. We want to show that 2λ = λ+ in V. Let Y ⊆ λ.
Set T = trcl({Y }). Choose θ so that T ∈ Lθ[A]. Let (M,∈, N) � (Lθ[A],∈, A ∩ Lθ[A]),
with ω1 ∪ T ⊆ M and |M | = λ. Hence we get γ < λ+ such that Y ∈ Lγ [π[A ∩M ]]. Now
A ∩M = A, so π[A ∩M ] = π[A] = A. Thus Y ∈ Lγ [A] ⊆ Lλ+ [A]. This is true for each
Y ⊆ λ, so P(λ) ⊆ Lλ+ [A]. Hence 2λ = λ+.

Theorem 17.79. If α ≥ ω is a countable ordinal, then there is A ⊆ ω such that L[A] |= [α
is countable].

Proof. Let W ⊆ ω × ω be a well-order of ω of order type α. Let f : ω → ω × ω
be a bijection, and let A = f [W ]. Since A ⊆ ω, we have A = A ∩ L[A] ∈ L[A]. Hence
W ∈ L[A]. In L[A], using W we can define a bijection from α onto ω.

Theorem 17.80. If ω1 of V is not a limit cardinal in L, then there is an A ⊆ ω such that

ω1 = ω
L[A]
1 .

232



Proof. Say that α is a cardinal in L and ωL1 is the successor of α in L. Then
α < ωL1 ≤ ω1, so α is a countable ordinal. Let A ⊆ ω be such that L[A] |= [α is countable].

Thus α < ω
L[A]
1 ≤ ω1. If ω

L[A]
1 < ω1, then in L, α = |ω

L[A]
1 |; hence this also holds in L[A]

since L ⊆ L[A]. But |α| = ω in L[A], contradiction. Thus ω
L[A]
1 = ω1.

Theorem 17.81. There is an A ⊆ ω1 such that ω1 = ω
L[A]
1 .

Proof. For each α with ω ≤ α < ω1 choose Aα so that L[Aα] |= [α is countable]. Let
A ⊆ ω1 × ω1 be such that ∀α < ω1[Aα = {ξ < ω1 : (α, ξ) ∈ A}].

(1) ∀α < ω1[Aα ∈ L[A]].

In fact, choose β so that α, ω ∈ Lβ[A]. Then Aα = {ξ ∈ Lβ [A] : (Lβ[A],∈, A ∩ Lβ [A]) |=
(ξ ∈ ω ∧ (α, ξ) ∈ A ∩ Lβ [A])}.

From (1), L[Aα] ⊆ L[A]. Hence α is countable in L[A]. So ω
L[A]
1 = ω1.

Theorem 17.82. If ω2 is not inaccessible in L, then there is an A ⊆ ω1 such that

ω
L[A]
1 = ω1 and ω

L[A]
2 = ω2.

First note:

(1) ωL1 ≤ ω1.

In fact, for any α < ωL1 , α is countable in L, and hence is really countable.
Now for the theorem, since ω2 is regular in L but not inaccessible, and since GCH

holds in L, there is a cardinal κ of L such that ω2 = (κ+)L. Now ω1 ≤ κ. In fact, if
κ < ω1, then since ω1 is a cardinal in L, we get (κ+)L ≤ ω1 < ω2 = (κ+)L, contradiction.
So ω1 ≤ κ < ω2. Let W be a well-order of ω1 of order type κ. For each countable ordinal
α, let Aα ⊆ ω be such that α is countable in L[Aα]. Let

B = {(α, ξ, 0) : α < ω1, ξ ∈ Aα} ∪ {(α, β, 1) : (α, β) ∈W}.

Let f : ω1 × ω1 × 2 → ω1 be a bijection, and set C = f [B]. Now for each countable
ordinal α, Aα = {ξ < ω1 : (α, ξ, 0) ∈ B}, so Aα ∈ L[C]. Hence L[Aα] ⊆ L[C]. It follows

that α is countable in L[C]. Hence ω1 = ω
L[C]
1 . Also, W ∈ L[C], so |κ|L[C] = ω1, Hence

ω2 = ω
L[C]
2 .

(II.8.2, II.8.3) If M is a transitive set, then ODM is the set of all elements of M that are
definable in (M,∈) with parameters in On ∩M . Then we define

OD =
⋃

α∈On

ODVα .

Theorem 17.83. (II.8.4) For any formula ϕ(x0, . . . , xm−1, y) the following is provable in
ZF:

∀α0, . . . , αm−1∀w[[ϕ(α,w) ∧ ∃!yϕ(α, y)→ w ∈ OD].
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Proof. Assume that α0, . . . , αm−1 are ordinals. Choose β so that α0, . . . , αm−1 <
β. By Theorem 15.4 let γ > β be such that ∃!wϕ(v, w) and ϕ(v, w) are absolute for
Vγ , V . Suppose that ϕ(α,w) and ∃!wϕ(α,w). By absoluteness of ∃!wϕ(v, w) we have
∃!wϕVγ (α,w). So choose a ∈ Vγ such that ϕVγ (α, a). Then by absoluteness of ϕ(v, w) we
have ϕ(α, a). Since ϕ(α,w) and ∃!wϕ(α,w), it follows that a = w. Hence {w} = {s ∈ Vγ :
Vγ |= ϕ(α, s}.

Theorem 17.84. Vα ∈ OD for all α.

Proof. We apply Theorem 17.83. Let ϕ(x, y) be the following formula:

x is an ordinal and ∃f [f is a function and dmn(f) = x ∪ {x}

and f(0) = ∅ and ∀β ∈ x[f(β ∪ {β}) = P(f(β))]

and ∀limitγ ≤ α[f(γ) =
⋃

β∈γ

f(β)] and f(x) = y]

Then ϕ(α, Vα) and ∃!wϕ(α,w). So by Theorem 17.83, Vα ∈ OD.

(II.8.6) HOD = {x ∈ OD : trcl(x) ⊆ OD}.

Proposition 17.85. (II.8.7) On ⊆ HOD ⊆ OD.

Proof. For any ordinal α, α = {x ∈ Vα : x is an ordinal}, so α ∈ ODVα , and so
α ∈ OD. Clearly then On ⊆ HOD. Obviously HOD ⊆ OD.

Proposition 17.86. (II.8.7) HOD is transitive.

Proof. Suppose that x ∈ y ∈ HOD. Then y ∈ OD and trcl(y) ⊆ OD. Since
x ∈ trcl(y), we have x ∈ OD. Also, trcl(x) ⊆ trcl(y), so x ∈ HOD.

Proposition 17.87. (II.8.8) For any set a the following are equivalent:
(i) a ∈ HOD.
(ii) a ∈ OD and a ⊆ HOD.

Proof. (i)⇒(ii): obvious.
(ii)⇒(i): Assume (ii). Since a ∈ HOD and HOD is transitive, we have trcl(a) ⊆

HOD. So a ∈ HOD.

Proposition 17.88. For any nonzero ordinal α, ODVα ∈ OD.

Proof. Let ϕ(α, y) be the following formula:

∀z[z ∈ y ↔ ∃ a formula ψ(x1, . . . , xn, w)∃β1, . . . , βn < α

[{z} = {a : Vα |= ψ(β1, . . . , βn, a)}]].

Thus ϕ(α,ODVα). So by Theorem 17.83, ODVα ∈ OD.
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Now we can define a one-one function F with domain On and range all sequences

〈ϕ(x0, . . . , xn−1, y), β, α0, . . . , αn−1〉

such that ϕ is a formula with the indicated free variables, and α0, . . . , αn−1 < β. Now let
ψ(γ, y) say that, with

F (γ) = 〈ϕ(x0, . . . , xn−1, w), β, α0, . . . , αn−1〉,

(∃!wϕ(α0, . . . , αn−1, w))Vβ and (ϕ(α0, . . . , αn−1, y))Vβ , or y = ∅ if there does not exist a
unique such w.

Proposition 17.89. (II.8.5) ∀γ∃!yψ(γ, y) and ∀w 6= ∅[w ∈ OD↔ ∃γψ(γ, w)].

Proof. Clearly ∀γ∃!yψ(γ, y). Now suppose that w 6= ∅ and w ∈ OD. Say w ∈ ODVβ .
Then there exist a formula ϕ(x0, . . . , xn−1, y) and ordinals α0, . . . , αn−1 < β such that
{y} = {a ∈ Vβ : Vβ |= ϕ(α0, . . . , αn−1, a)}. Say

F (γ) = 〈ϕ(x0, . . . , xn−1, w), β, α0, . . . , αn−1〉.

Then ψ(γ, w).
Next suppose that w 6= ∅ and ψ(γ, w). Say

F (γ) = 〈ϕ(x0, . . . , xn−1, w), β, α0, . . . , αn−1〉.

Then (ϕ(α0, . . . , αn−1, w))Vβ , so w ∈ OD.

Proposition 17.90. (II.8.9) For any ordinal α, (Vα ∩HOD) ∈ OD.

Proof. Let ϕ(α,w) be the following formula:

∀z[z ∈ w↔ z ∈ Vα ∧ ∀n\1∀y ∈
ntrcl(z)[∀i < n− 1[yi ∈ yi+1] ∧ yn−1 ∈ z → ∃γψ(γ, y0)]]

Now (Vα ∩HOD) ∈ OD by Theorem 17.83.

Proposition 17.91. (II.8.9) For any ordinal α, (Vα ∩HOD) ∈ HOD.

Proof. By Theorem 17.83.

Theorem 17.92. (II.8.10) HOD is a model of ZFC.

Proof. First we consider comprehension. By Theorem 14.2 it suffices to assume that
z, w1, . . . , wn ∈ HOD and show that {x ∈ z : ϕHOD(x, z, w1, . . . , wn)} ∈ HOD. Choose
ordinals γ, δ1, . . . , δn such that ψ(γ, z), ψ(δ1, w1), . . . , ψ(δn, wn). Let α > γ, δ1, . . . , δn,
and also such that z, w1, . . . , wn ∈ Vα. Then by Theorem 15.4 choose β > α such
that ψ is absolute for Vβ , V . Choose ε so that ψ(ε, Vβ ∩ HOD). Let y = {x ∈ z :
ϕHOD(x, z, w1, . . . , wn)}. Let χ(γ, δ1, . . . , δn, ε, x) be the following formula:

∃z[ψ(γ, z) ∧ x ∈ z] ∧ ∃w1 . . .∃wn[ψ(δ1, w1) ∧ . . . ∧ ψ(δn, wn) ∧ ϕ′],
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where ϕ′ is obtained from ϕVβ∩HOD(x, z, w1, . . . , wn) by replacing each quantifier ∀u ∈
Vβ ∩HOD by

∀u ∈ Vβ [∃v[ψ(ε, v) ∧ u ∈ v]→

Now for all x,

x ∈ y iff x ∈ z ∧ ϕHOD(x, z, w1, . . . , wn)

iff x ∈ z ∧ ϕVβ∩HOD(x, z, w1, . . . , wn)

iff x ∈ z ∧ χ(γ, δ1, . . . , δn, ε, x).

Thus y = {x ∈ z : χ(γ, δ1, . . . , δn, ε, x)}. By Theorem 17.71, y ∈ OD. Since y ⊆ z ⊆
HOD, we have y ⊆ HOD. Hence y ∈ HOD by Proposition 17.75.

For the rest of the axioms of ZF we apply Lemma 14.12. So let x ⊆ HOD. Choose α
so that x ⊆ Vα. Thus x ⊆ (Vα ∩HOD) ∈ HOD.

Finally, for the axiom of choice, suppose that ∅ 6= x ∈ HOD. Now for each u ∈ x
there is a smallest ordinal γu such that ψ(γu, u). We define R = {(u, v) : u, v ∈ x and
γx < γy}. Clearly R well-orders x and R ∈ OD.

Theorem 17.93. V = L implies V = OD = HOD.

Proof. It suffices to show that an arbitrary set x is ordinal definable. Since there is a
definable well-order of V , let f : α→ x be an onto map, and let ϕ(α, x) say that f : α→ x
is onto. Hence x ∈ OD.
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INFINITE COMBINATORICS

18. Real numbers in set theory

We give several ways of thinking about the real numbers, and illustrate them with four
invariants, concerning certain ideals.

Let Fn(I, J, κ) = {f ∈ [I × J ]<κ : f is a function}. Let I be an ideal on a set A such
that [A]<ω ⊆ I and A /∈ I.

add(I) = min
{

κ : ∃E ∈ [I]κ
[⋃

E /∈ I
]}

;

cov(I) = min
{

κ : ∃E ∈ [I]κ
[

A =
⋃

E
]}

;

non(I) = min{κ : ∃X ∈ [A]κ[X /∈ I]}

cof(I) = min{κ : ∃X ∈ [I]κ∀C ∈ I∃B ∈ X [C ⊆ B]}.

Lemma 18.1. For A infinite, the cardinals add(I), cov(I), non(I), cof(I) are well-defined
and infinite.

Proof.
add(I): Let E = {{a} : a ∈ A}. Then

⋃
E = A /∈ I. If F ⊆ I is finite, then

⋃
F ∈ I.

cov(I): Let E = {{a} : a ∈ A}. Then
⋃
E = A. If F ⊆ I is finite, then

⋃
F ∈ I,

hence
⋃
F 6= A.

non(I): A ∈ [A]|A| and A /∈ I. X ∈ I for all X ∈ [A]<ω.
cof(I): I ∈ [I]|I| and ∀C ∈ I∃B ∈ I[C ⊆ B]. If X ⊆ I is finite, then

⋃
X ∈ I, and if

a ∈ A ⊆
⋃
X then there is no B ∈ X such that {a} ⊆ B.

Lemma 18.2. For all X ∈ [I]κ with κ < add(I) we have
⋃
X ∈ I.

Lemma 18.3. Let
add′(I) = sup

{

κ : ∀X ∈ [I]κ
[⋃

X ∈ I
]}

Then add(I) = (add′(I))+ if add′(I) is a successor cardinal, or is a limit cardinal and the
supremum is attained; add(I) = add′(I) if add′(I) is a limit cardinal and the supremum
is not attained.

Lemma 18.4. For all X ∈ [I]κ with κ < cov(I) we have
⋃
X 6= A.

Lemma 18.5. Let
cov′(I) = sup

{

κ : ∀X ∈ [I]κ
[⋃

X 6= A
]}

Then cov(I) = (cov′(I))+ if cov′(I) is a successor cardinal, or is a limit cardinal and the
supremum is attained; cov(I) = cov′(I) if cov′(I) is a limit cardinal and the supremum is
not attained.

Lemma 18.6. For all X ∈ [A]κ with κ < non(I) we have X ∈ I.
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Lemma 18.7. Let
non′(I) = sup{κ : ∀X ∈ [A]κ[X ∈ I]}

Then non(I) = (non′(I))+ if non′(I) is a successor cardinal, or is a limit cardinal and the
supremum is attained; non(I) = non′(I) if non′(I) is a limit cardinal and the supremum
is not attained.

Lemma 18.8. (III.1.7.1) add(I) ≤ cf(non(I)) ≤ non(I) ≤ |A|.

Proof. Let κ = non(I). Choose X ∈ [A]κ such that X /∈ I. Let X =
⋃

α<cf(κ) Yα

with each |Yα| < κ. Hence Y ∈ cf(κ)I. Then X =
⋃

α<cf(κ) Yα /∈ I, so add(I) ≤ cf(κ).

We have A /∈ I, so non(I) ≤ |A|.

Lemma 18.9. (III.1.7.2) add(I) ≤ cov(I) ≤ |A|.

Proof. Let κ = cov(I), and choose X ∈ [A]κ such that A =
⋃
X . Then

⋃
X /∈ I, so

add(I) ≤ κ. Since A /∈ I, we have cov(I) ≤ |A|.

Lemma 18.10. (III.1.7.3) add(I) is regular.

Proof. Suppose that λ
def
= add(I) is singular, and let κ ∈ cf(λ)λ be such that

supµ<cf(λ) κµ = λ. By the definition of add, let X ∈ λI be such that
⋃

µ<λXµ /∈ I.
For each µ < cf(λ) we have

⋃

ξ<κµ
Xξ ∈ I. Since cf(λ) < λ, it follows that

⋃

µ<cf(λ)




⋃

ξ<κµ

Xξ



 =
⋃

ξ<λ

Xξ ∈ I,

contradiction.

Proposition 18.11. add(I) ≤ cf(cof(I)).

Proof. Let cof(I) = κ, and let X ∈ [I]κ be such that ∀C ∈ I∃D ∈ X [C ⊆ D]. Write
X =

⋃

α<cf(κ) Yα with each |Yα| < κ. Then for each α < cf(κ) there is a Cα ∈ I such that

for all D ∈ Yα[Cα 6⊆ D]. Let E =
⋃

α<cf(κ)Cα. Then E /∈ I. In fact, otherwise there is a
D ∈ X such that E ⊆ D. Say D ∈ Yα. Then Cα ⊆ D, contradiction.

Thus add(I) ≤ cf(cof(I)).

Proposition 18.12. cov(I) ≤ cof(I).

Proof. Let κ = cof(I), and let X ∈ [I]κ be such that ∀C ∈ I∃B ∈ X [C ⊆ B].
For each a ∈ A choose Ba ∈ X such that {a} ⊆ Ba. Then A =

⋃

a∈ABa =
⋃
X . So

cov(I) ≤ cof(I).

Proposition 18.13. non(I) ≤ cof(I).

Proof. Let κ = cof(I), and let X ∈ [I]κ be such that ∀C ∈ I∃B ∈ X [C ⊆ B]. For
each B ∈ X we have B 6= A; let xB ∈ A\B. Let C = {xB : B ∈ X}. If C ∈ I, choose
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B ∈ X such that C ⊆ B. Then xB ∈ C, so xB ∈ B, contradiction. Thus C /∈ I. So
non(I) ≤ cof(I).

Proposition 18.14. Let A = ω1, I = [ω1]<ω. Then add(I) = ωχ, cov(I) = ω1, non(I) =
ω, and cof(I) = ω1.

Proof. These statements are clear, except possibly for cof(I) = ω1. Clearly cof(I) ≤
ω1. Suppose that X ∈ [I]≤ω and ∀C ∈ I∃B ∈ X [B ⊆ C]. Choose α ∈ ω1\

⋃
X . Choose

B ∈ X such that {α} ⊆ B; this is impossible.

Proposition 18.15. Let A = λ be singular, I = [λ]<λ. Then add(I) = cf(λ).

Proposition 18.16. Let A = λ be singular, I = [λ]<λ. Then cov(I) = cf(λ).

Proposition 18.17. Let A = λ be singular, I = [λ]<λ. Then non(I) = λ.

Proposition 18.18. Let A = λ be singular, I = [λ]<ω. Then add(I) = ω.

Proposition 18.19. Let A = λ be singular, I = [λ]<ω. Then non(I) = ω.

Proposition 18.20. Let A = λ be singular, I = [λ]<ω. Then cov(I) = λ.

A relational triple is a triple A = (A0, A1, A) such that A0 and A1 are sets and A ⊆ A0×A1.
The norm of a relational triple A = (A0, A1, A) is min{|Y | : Y ⊆ A1 and ∀x ∈ A0∃y ∈
Y [xAy]}; the norm is denoted by ||A||. The dual of a relational triple A = (A0, A1, A) is
the relational triple (A1, A0, {(x, y) : (y, x) /∈ A}); it is denoted A⊥. We also let A⊥

0 = A1,
A⊥

1 = A0, and A⊥ = {(x, y) : (y, x) /∈ A}, A morphism from a relational triple (A0, A1, A)

to a relational triple (B0, B1.B) is a pair ϕ
def
= (ϕ0, ϕ1) such that:

ϕ0 : B0 → A0;
ϕ1 : A1 → B1;
∀a ∈ A1∀b ∈ B0[ϕ0(b)Aa→ bBϕ1(a)].

Given such a morphism ϕ, we define ϕ⊥ = (ϕ1, ϕ0).

Proposition 18.21. If ϕ : A→ B, then ϕ⊥ : B⊥ → A⊥.

Proof. We have ϕ1 : A1 → B1, so ϕ1 : A⊥
0 → B⊥

0 . Similarly, ϕ0 : B0 → A0, so
ϕ0 : B⊥

1 → A⊥
1 . Finally, if b ∈ B⊥

1 and a ∈ A⊥
0 , then b ∈ B0 and a ∈ A1, so ϕ0(b)Aa →

bBϕ1(a)], hence not(bBϕ1(a))→ not(ϕ0(b)Aa), hence ϕ1(a)B⊥b→ aA⊥ϕ0(a).

Proposition 18.22. If there is a morphism ϕ : A → B, then ||B|| ≤ ||A|| and ||A⊥|| ≤
||B⊥||.

Proof. Let Y ⊆ A1 be such that ∀x ∈ A0∃y ∈ Y [xAy]}, and |Y | = ||A||. Then
ϕ1[Y ] ⊆ B1 and for all x ∈ B0 there is a y ∈ Y such that ϕ0(x)Ay, hence xBϕ1(y). So
||B|| ≤ ||ϕ1[Y ]|| ≤ ||Y || = ||A||.

Applying this to ϕ⊥ : B⊥ → A⊥, we get ||A⊥|| ≤ ||B⊥||.
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For any ideal I on P(ω2) let Cov(I) = (ω2, I. ∈).

Proposition 18.23. ||Cov(I)|| = cov(I).

Proof. ||Cov(I) = min{|Y | : Y ⊆ I and ∀x ∈ ω2∃y ∈ Y [x ∈ y]} = cov(I).

Proposition 18.24. ||Cov⊥(I)|| = non(I).

Proof. We have Cov⊥(I) = (I, ω2, {(a, f) : f /∈ a}). Hence ||Cov⊥(I)|| = min{|X | :
X ⊆ ω2 and ∀a ∈ I∃f ∈ X [f /∈ a]} = non(I).

Proposition 18.25. Suppose that f is a homeomorphism of a space X onto a space Y .
Then

(i) add(meagerX) = add(meagerY );
(ii) cov(meagerX) = cov(meagerY );
(iii) non(meagerX) = non(meagerY );
(iv) cof(meagerX) = cof(meagerY ).

Now we show that add, non, cov, and cof have the same values for meager for each of the
following notions of reals:

irrat R ω2 P(ω) ωω C
(0, 1) Ω [ω]ω [0, 1] Θ

Here Ω, Θ, and C are defined below.

The irrationals and ωω

Theorem 18.26. ωω under the product topology is homeomorphic to the irrationals.

Proof. Let a = 〈a0, a1, . . .〉 be an infinite sequence of integers such that ai > 0 for all
i > 0. We want to give a precise definition of the continued fraction

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

To start with, we assume that a is a sequence of positive real numbers with domain either
ω or some positive integer. We define [a0, . . . , al] for each l < dmn(a) by recursion:

[a0] = a0;

[a0, . . . , ak+1] = a0 +
1

[a1, . . . , ak+1]

We want to be very explicit as to how these approximations can be written as certain
fractions. To this end we make the following recursive definitions:

p(a, 0) = a0; q(a, 0) = 1;

p(a, 1) = a0a1 + 1; q(a, 1) = a1.
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For k ≥ 2:

(1)
p(a, k) = akp(a, k − 1) + p(a, k − 2);

q(a, k) = akq(a, k − 1) + q(a, k − 2).

Note that p(a, k) > 0 and q(a, k) > 0 for all k ≥ 0. Also, let a′ = 〈a1, a2, . . .〉. Now we
claim that for all i ∈ ω,

p(a, i+ 1) = a0p(a
′, i) + q(a′, i);

q(a, i+ 1) = p(a′, i).

We prove these equations by induction on i. For i = 0 we have

p(a, 1) = a0a1 + 1 = a0p(a
′, 0) + q(a′, 0);

q(a, 1) = a1 = p(a′, 0),

as desired. For i = 1,

p(a, 2) = a2p(a, 1) + p(a, 0)

= a0a1a2 + a2 + a0

= a0(a1a2 + 1) + a2

= a0p(a
′, 1) + q(a′, 1);

q(a, 2) = a2q(a, 1) + q(a, 0)

= a1a2 + 1

= p(a′, 1),

as desired. Now we do the inductive step for i ≥ 2:

p(a, i+ 1) = ai+1p(a, i) + p(a, i− 1)

= ai+1(a0p(a
′, i− 1) + q(a′, i− 1)) + a0p(a

′, i− 2) + q(a′, i− 2)

= a0(ai+1p(a
′, i− 1) + p(a′, i− 2)) + ai+1q(a

′, i− 1) + q(a′, i− 2)

= a0p(a
′, i) + q(a′, i);

q(a, i+ 1) = ai+1q(a, i) + q(a, i− 1)

= ai+1p(a
′, i− 1) + p(a′, i− 2)

= p(a′, i),

as desired. So the above equations hold.
Note by an easy induction that p(a, k), q(a, k) > 0 for all k. Now we claim:

(2) [a0, . . . , ak] =
p(a, k)

q(a, k)

for every k ∈ ω. We prove (2) by induction on k. For k = 0, we have

[a0] = a0 =
p(a, 0)

q(a, 0)
,
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as desired. For k = 1, we have

[a0, a1] = a0 +
1

a1
=
a0a1 + 1

a1
=
p(a, 1)

q(a, 1)
,

as desired. Inductively, for k ≥ 2,

[a0, . . . , ak] = a0 +
1

[a1, . . . , ak]

= a0 +
q(a′, k − 1)

p(a′, k − 1)

=
a0p(a

′, k − 1) + q(a′, k − 1)

p(a′, k − 1)

=
p(a, k)

q(a, k)
,

as desired.
From now on we shall write pk, qk in place of p(a, k), q(a, k) if a is understood. We

also define p−1 = 1 and q−1 = 0. Then the equations (1) also hold for k = 1, since

a1p0 + p−1 = a0a1 + 1 = p1 and

a1q0 + q−1 = a1 = q1.

Next we claim that for k ≥ 1,

(3) qkpk−1 − pkqk−1 = −(qk−1pk−2 − pk−1qk−2).

In fact, multiply the equations (1) by qk−1 and pk−1 respectively:

pkqk−1 = akpk−1qk−1 + pk−2qk−1;

qkpk−1 = akqk−1pk−1 + qk−2pk−1.

Subtracting the first of these equations from the second gives (3).
Now q0p−1 − p0q−1 = 1, so by (3) and induction we get, for k ≥ 0,

(4) qkpk−1 − pkqk−1 = (−1)k.

Hence for k ≥ 1 we have

(5)
pk−1

qk−1
−
pk
qk

=
(−1)k

qkqk−1
.

Next, for any k ≥ 1,

(6) qkpk−2 − pkqk−2 = (−1)k−1ak .
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To see this, multiply the equations (1) by qk−2 and pk−2 respectively:

pkqk−2 = akpk−1qk−2 + pk−2qk−2;

qkpk−2 = akqk−1pk−2 + qk−2pk−2.

Now subtract the first from the second and use (4): (6) follows.
From (6):

(7)
pk−2

qk−2
−
pk
qk

=
(−1)k−1ak
qkqk−2

.

Hence:
〈
p2k

q2k
: k ∈ ω

〉

is an increasing sequence;(8)

〈
p2k+1

q2k+1
: k ∈ ω

〉

is an decreasing sequence;(9)

Next we claim

(10)
p2k

q2k
<
p2l+1

q2l+1
for all k, l ∈ ω

In fact, let m = max(k, l). Then

p2k

q2k
≤
p2m

q2m
by (8)

<
p2m+1

q2m+1
by (5)

≤
p2l+1

q2l+1
by (9)

So (10) holds. Next we claim:

(11) pk < pk+1 and qk+1 < qk+2 for all k ∈ ω.

In fact, this is clear from the recursive definitions.
Now we assume that our sequence a is infinite, and all ai are positive integers. It

follows from (8), (9), (10), (11), and (5) that the approximations pk
qk

converge, and by
definition the limit is the value of the infinite continued fraction described at the beginning.
For a0 a negative integer but all ai positive integers for i > 0, we define a′ = 〈1, a1, a2, . . .〉
and define the continued fraction to be

a0 − 1 + lim
k→∞

p(a′, k)

q(a′, k)

Now we want to see how to represent any real number as a finite or infinite continued
fraction. We make a recursive definition for any real number α > 1. Let r(α, 0) = α.
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Suppose that we have defined r(α, i) > 1. Write r(α, i) = a(α, i)+s(α, i+1) with a(α, i) a
positive integer and s(α, i+ 1) a nonnegative real < 1. If s(α, i+ 1) = 0, the construction
stops. Otherwise we define r(α, i+ 1) = 1

s(α,i+1) . This finishes the construction. Let l(α)

be the index i such that s(α, i+ 1) = 0, or l(α) = ω if there is no such index. We need the
following technical fact.

(12) If α > 1 and l(α) > 1, then l(r(α, 1)) = l(α)− 1, and for each j ≤ l(α)− 1 we have
r(r(α, 1), j) = r(α, j + 1) and a(r(α, 1), j) = a(α, j + 1).

By induction on j we prove that r(r(α, 1), j) is defined and equals r(α, j + 1) for each
j ≤ l(α)− 1. For j = 0 we have r(r(α, 1), 0) defined and it equals r(α, 1), as desired. Now
assume our result for j, with j + 1 ≤ l(α)− 1. Then

r(r(α, 1), j) = r(α, j + 1) = a(α, j + 1) + s(α, j + 2).

Now j + 2 ≤ l(α), so s(α, j + 2) > 0, and hence by definition, r(α, j + 2) = 1
s(α,j+2) =

r(r(α, 1), j + 1). This completes the inductive proof.
Now if j ≤ l(α)− 1, then

r(r(α, 1), j) = a(r(α), 1), j) + s(r(α, 1), j + 1);

r(α, j + 1) = a(α, j + 1) + s(α, j + 2);

so a(r(α, 1), j) = a(α, j + 1). Finally, if j = l(α), then r(α, j) = a(α, j), and hence
r(r(α, 1), j − 1) = r(α, j) = a(α, j) and so l(r(α, 1)) = j − 1, as desired in (12).

(13) If α > 1 and n ≤ l(α), then α = [a(α, 0), a(α, 1), . . . , a(α, n− 1), r(α, n)].

We prove this by induction on n. For n = 0, [r(α, 0)] = α. Assume that our condition is
true for n, and n+ 1 ≤ l(α). Then

[a(α, 0),a(α, 1), . . . , a(α, n), r(α, n+ 1)]

= a(α, 0) +
1

[a(α, 1), a(α, 2), . . . , a(α, n), r(α, n+ 1)]

= a(α, 0) +
1

[a(r(α, 1), 0)a(r(α, 1), 1), . . . , a(r(α, 1), n− 1), r(r(α, 1), n)]

= a(α, 0) +
1

r(α, 1)

= a(α, 0) + s(α, 1)

= α,

completing the inductive proof.

(14) If α > 1 is rational, then the above definition of r(α, i)’s terminates after finitely many
steps.

In fact, it suffices to show that if r(α, i) = b
c with b, c positive integers and g.c.d(b, c) = 1,

and r(α, i + 1) is defined, then r(α, i + 1) has the form d
e , with d and e positive integers
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with e < c. To prove this, recall that r(α, i) = a(α, i) + s(α, i + 1), with s(α, i + 1) a
nonnegative real < 1, and r(α, i+ 1) = 1

s(α,i+1)
. Thus

b

c
= r(α, i) = a(α, i) + s(α, i+ 1) and hence

b = ca(α, i) + cs(α, i+ 1);(15)

Hence

r(α, i+ 1) =
1

s(α, i+ 1)

=
1

r(α, i)− a(α, i)

=
1

b
c
− a(α, i)

=
c

b− ca(α, i)

=
c

cs(α, i+ 1)
by (15),

and cs(α, i+ 1) is a positive integer < c, as desired.

(16) If α is rational, then there exist integers a0, a1, . . . , an with ai > 0 for all i > 0 such
that α = [a0, a1, . . . , an].

In fact, let m be an integer such that α + m > 1; if α > 1, let m = 0. By (14),

n
def
= l(α +m) is finite. We then have r(α + m,n) = a(α +m,n). Hence by (13) we have

α+m = [a(α+m, 0), . . . , a(α+m,n)], and the desired conclusion follows.

(17) If 〈a0, a1, . . .〉 is a sequence of rational numbers each greater than 0, then also
[a0, a1, . . . , an] is rational for each n.

This is clear from the basic definition, by induction.

(18) Let α > 1 be irrational. Then by (17), the sequence

b
def
= 〈a(α, 0), a(α, 1), . . .〉

never terminates. We claim that for each positive integer n,

α =
p(b, n− 1)r(α, n) + p(b, n− 2)

q(b, n− 1)r(α, n) + q(b, n− 2)
.

We prove by induction that for every positive integer n, this holds for all irrationals α > 1.
First, the case n = 1:

p(b, 0)r(α, 1) + p(b,−1)

q(b, 0)r(α, 1) + q(b,−1)
=
a(α, 0)r(α, 1) + 1

r(α, 1)

= a(α, 0) +
1

r(α, 1)

= a(α, 0) + s(α, 1)

= r(α, 0)

= α,
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as desired. Now we assume our statement for n. In fact, we apply it to r(α, 1) rather than
α. Note that r(α, 1) > 1, and it is irrational by (17) and (13). Let

c = 〈a(α, 1), a(α, 2), . . .〉

= 〈a(r(α, 1), 0), a(r(α, 1), 1), . . .〉,

by (12). Hence, starting with the inductive hypothesis,

r(α, 1) =
p(c, n− 1)r(r(α, 1), n) + p(c, n− 2)

q(c, n− 1)r(r(α, 1), n) + q(c, n− 2)

=
p(c, n− 1)r(α, n+ 1) + p(c, n− 2)

q(c, n− 1)r(α, n+ 1) + q(c, n− 2)
.

Hence, using the equations following (1),

α = r(α, 0)

= a(α, 0) + s(α, 1)

= a(α, 0) +
1

r(α, 1)

= a(α, 0) +
q(c, n− 1)r(α, n+ 1) + q(c, n− 2)

p(c, n− 1)r(α, n+ 1) + p(c, n− 2)

=
a(α, 0)p(c, n− 1)r(α, n+ 1) + a(α, 0)p(c, n− 2) + q(c, n− 1)r(α, n+ 1) + q(c, n− 2)

p(c, n− 1)r(α, n+ 1) + p(c, n− 2)

=
p(b, n)r(α, n+ 1) + p(b, n− 1)

q(b, n)r(α, n+ 1) + q(b, n− 1)
,

which finishes the inductive proof of (18).

We now omit the parameter b, as it is understood in what follows.

(19) Let α > 1 be irrational. Then for every positive integer n,

α−
pn
qn

=
(pn−1qn−2 − qn−1pn−2)(rn − an)

(qn−1rn + qn−2)(qn−1an + qn−2)
.

To prove this, first note by (18) and (1) that

(20) α−
pn
qn

=
pn−1rn − pn−2

qn−1rn + qn−2
−
pn−1an + pn−2

qn−1an + qn−2
.

Now we have

(pn−1rn − pn−2)(qn−1an + qn−2)− (pn−1an + pn−2)(qn−1rn + qn−2)

= pn−1qn−1anrn + pn−1qn−2rn + pn−2qn−1an + pn−2qn−2

− pn−1qn−1anrn − pn−1qn−2an − pn−2qn−1rn − pn−2qn−2

= (pn−1qn−2 − qn−1pn−2)(rn − an).
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Hence from (20) we get (19).

(21) For irrational α > 1 we have

α = [a(α, 0), a(α, 1), . . .].

In fact, note from (4) that pn−1qn−2 − qn−1pn−2 = (−1)n−1, while by definition we have
r(α, n)− a(α, n) = s(α, n+ 1) < 1. Hence by (19),

∣
∣
∣
∣
α−

pn
qn

∣
∣
∣
∣
≤

1

(qn−1rn + qn−2)(qn−1an + qn−2)
<

1

q2n−2

,

and hence (21) follows from (11).
Now for any irrational α > 1, define

f(α) = 〈a(α, 0), a(α, 1), . . .〉.

Then by the above results, f is a one-to-one function mapping the set N of irrationals >
1 onto the set ω(ω\1). The latter set is clearly homeomorphic to ωω.

(22) The set of irrationals > 1 is homeomorphic to the entire set of irrationals.

To see this, define g by setting, for each irrational x > 1,

g(x) =
{
x+m if 0 < m < x < m+ 1 with m ∈ ω,
x+ 3m+ 1 if −m < x < −m+ 1 with m ∈ ω.

Then g maps (m,m + 1)irr one-one onto (2m, 2m + 1)irr for each positive integer m, and
(−m,−m+ 1)irr one-one onto (2m+ 1, 2m+ 2)irr for each m ∈ ω. Clearly g is the desired
homeomorphism.

Thus to finish the proof of Theorem 18.26 it suffices to show that f , defined above, is
a homeomorphism. To do this, we need the following fact.

(23) Suppose that a0, . . . , an, b0, . . . , bn−1 are positive integers and r is a real number > 1.
Assume that

[a0, . . . , an−1] < [b0, . . . , bn−1, r] < [a0, . . . , an] if n is odd

[a0, . . . , an−1] > [b0, . . . , bn−1, r] > [a0, . . . , an] if n is even

Then ai = bi for all i < n. Cf here (2), (8), (9), (10).

We prove (23) by induction on n. For n = 1 the assumption is that a0 < b0 + 1
r < a0 + 1

a1
.

So clearly a0 = b0. Now assume (23) for an odd n; we prove it for n + 1 and n + 2. So,
first suppose that

[a0, . . . , an] > [b0, . . . , bn, r] > [a0, . . . , an+1].

Thus

a0 +
1

[a1, . . . , an]
> b0 +

1

[b1, . . . , bn, r]
> a0 +

1

[a1, . . . , an+1]
,
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and it follows that a0 = b0 and

[a1, . . . , an] < [b1, . . . , bn, r] < [a1, . . . , an+1];

then the inductive hypothesis yields ai = bi for all i = 1, . . . , n, which proves our statement
for n+ 1.

The inductive step to n+ 2 is clearly similar. So (23) holds.
Now to show that f is continuous, suppose that s ∈ n(ω\1); we want to show that

f−1[O(s)] is open. We may assume that n = 2m + 1 for some natural number m. Let
α ∈ f−1[Os]. Define ai = a(α, i) for all i. Thus a0 = s0, . . . , a2m = s2m. By (2) and
(8)–(10) we have [a0, . . . , a2m] < α < [a0, . . . , a2m+1]. Choose ε so that [a0, . . . , a2m] + ε <
α < α+ ε < [a0, . . . , a2m+1]. We claim:

(24) For every irrational β > 1, if |α− β| < ε, then β ∈ f−1[O(s)].

This will prove continuity of f . To prove (24), assume its hypothesis, and let bi = b(β, i)
for all i.

Case 1. β < α. Thus α− β < ε. Hence [a0, . . . , a2m] < [a0, . . . , a2m] + ε < α < β + ε,
so [a0, . . . , a2m] < β. If [a0, . . . , a2m+1] ≤ β, then by (8)–(10), α < β, contradiction. So
β < [a0, . . . , a2m+1]. Now β = [b0, . . . , b2m, r2m+1] by (13), so by (23), ai = bi for all
i ≤ 2m, as desired.

Case 2. α < β. Thus β − α < ε, so β < α+ ε. Hence

[a0, . . . , a2m] < α < β < α+ ε < [a0, . . . , a2m+1],

and the argument is finished as in Case 1.
So (24) holds, and f is continuous.

(25) f is an open mapping.

For, suppose that α > 1 is irrational, and ε is a positive real number; we want to show
that f [Sε(α)] is open. Let b ∈ f [Sε(α)]; we want to find a finite sequence s such that
b ∈ O(s) ⊆ f [Sε(α)]. Say b = f(β) with β ∈ Sε(α). So |α− β| < ε. Choose m such that

1

q(b, 2m)q(b, 2m+ 1)
< ε− |α− β|.

This is possible by (11). Let s = 〈b0, . . . , b2m+1〉. So b ∈ O(s). Now suppose that c ∈ O(s).
Then

[b0, . . . , b2m] = [c0, . . . , c2m] < [c] < [c0, . . . , c2m+1] = [b0, . . . , b2m+1]

by (8)–(10). Also,

[b0, . . . , b2m] = [c0, . . . , c2m] < β < [c0, . . . , c2m+1] = [b0, . . . , b2m+1]

by (8)–(10). Now

[b0, . . . , b2m+1]− [b0, . . . , b2m] =
p(b, 2m+ 1)

q(b, 2m+ 1)
−
p(b, 2m)

q(b, 2m)
by (2)

=
1

q(b, 2m)q(b, 2m+ 1)

< ε− |α− β|.
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Hence
|[c]− α| ≤ |[c]− β|+ |β − α| < ε,

and so c = f([c]) ∈ f [Sε(α)], as desired.

Meager for R and (0, 1).

Proposition 18.27. R is homeomorphic to (0, 1).

Proof. For each x ∈ (0, 1) let f(x) = − 1
x

+ 1
1−x . Then if x < y we have

1 <
y

x
;

1

y
<

1

x
−

1

x
< −

1

y
;

− y < −x; 1− y < 1− x; 1 <
1− x

1− y
;

1

1− x
<

1

1− y
;

f(x) < f(y).

In particular, f is one-one. Also, limx→0 f(x) = −∞ and limx→1 f(x) = ∞. So the
proposition follows.

Proposition 18.28. If A ⊆ (0, 1) is nowhere dense in (0, 1), then A is nowhere dense in
[0, 1].

Proof. Suppose that A ⊆ (0, 1) is nowhere dense in (0, 1). Take any a < b with
(a, b) ∩ [0, 1] 6= ∅; we want to show that (a, b) ∩ [0, 1]\A 6= ∅. Clearly (a, b) ∩ (0, 1) 6= ∅, so
(a, b) ∩ (0, 1)\A 6= ∅. So (a, b) ∩ [0, 1]\A 6= ∅.

Corollary 18.29. If A ⊆ (0, 1) is meager in (0, 1), then A is meager in [0, 1].

Proposition 18.30. If A ⊆ [0, 1] is nowhere dense in [0, 1], then A ∩ (0, 1) is nowhere
dense in (0, 1).

Proof. Suppose that A ⊆ [0, 1] is nowhere dense in [0, 1]. Take any a < b with (a, b)∩
(0, 1) 6= ∅; we want to show that (a, b)∩(0, 1)\(A∩(0, 1)) 6= ∅. Now (max(a, 0),min(b, 1)) =
(a, b)∩(0, 1) 6= ∅ and (max(a, 0),min(b, 1) ⊆ [0, 1], so (max(a, 0),min(b, 1))\A 6= ∅. Clearly
(max(a, 0),min(b, 1))\A ⊆ (a, b) ∩ (0, 1)\(A ∩ (0, 1)).qed

Corollary 18.31. If A ⊆ [0, 1] is meager in [0, 1], then A∩(0, 1) is meager in (0, 1).

Proposition 18.32. (i) add(meager[0,1]) = add(meager(0,1));
(ii) cov(meager[0,1]) = cov(meager(0,1));
(iii) non(meager[0,1]) = non(meager(0,1));
(iv) cof(meager[0,1]) = cof(meager(0,1)).

Proof. (i): First let κ = add(meager[0,1]) and suppose that E ∈ [add(meager[0,1])]
κ

with
⋃
E /∈ add(meager[0,1]). Then by Corollary 18.31, E′ = {A ∩ (0, 1) : A ∈ E} ⊆

P(meager(0,1)). If
⋃
E′ ∈ add(meager(0,1)), then clearly

⋃

E ⊆
⋃

E′ ∪ {0, 1} ∈ add(meager[0,1]),
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contradiction.
Second let κ = add(meager(0,1)) and suppose that E ∈ [add(meager(0,1))]

κ with
⋃
E /∈ add(meager(0,1)). Then by Corollary 18.29, E ⊆ P(meager[0,1]). If

⋃
E ∈

add(meager[0,1]), then by Corollary 18.31,
⋃
E = (

⋃
E) ∩ (0, 1) ∈ add(meager(0,1)), con-

tradiction.
(ii): First let κ = cov(meager[0,1]) and suppose that E ∈ [add(meager[0,1])]

κ with
[0, 1] =

⋃
E. Then by Corollary 18.31, E′ = {A ∩ (0, 1) : A ∈ E} ⊆ P(meager(0,1)).

Hence (0, 1) =
⋃
E′.

Second let κ = cov(meager(0,1)) and suppose that E ∈ [add(meager(0,1))]
κ with

(0, 1) =
⋃
E. Then by Corollary 18.29, E ⊆P(meager[0,1]). Now [0, 1] =

⋃
E ∪ {0, 1}.

(iii): First let κ = non(meager[0,1]) and X ∈ [[0, 1]]κ with X /∈ non(meager[0,1]). Then
X\{0, 1} ∈ [(0, 1)]κ and X\{0, 1} /∈ non(meager(0,1)) by Corollary 18.29.

Second let κ = non(meager(0,1)) and X ∈ [(0, 1)]κ with X /∈ non(meager(0,1)). Then
X ∈ [(0, 1)]κ with X /∈ non(meager[0,1]) by Corollary 18.31.

(iv): First let κ = cof(meager[0,1]) and X ∈ [cof(meager[0,1])]
κ such that ∀A ∈

cof(meager[0,1])∃B ∈ X [A ⊆ B]. Let X ′ = {B ∩ (0, 1) : B ∈ X}. Then

X ′ ∈P(cof(meager(0,1)))

by Corollary 18.31. Suppose that A ∈ cof(meager(0,1)). Then by Corollary 18.29,

A ∈ cof(meager[0,1]).

So there is a B ∈ X such that A ⊆ B. Hence A ⊆ B ∩ (0, 1).
Second let κ = non(meager(0,1)) and X ∈ [cof(meager(0,1))]

κ such that

∀A ∈ cof(meager(0,1))∃B ∈ X [A ⊆ B].

Let X ′ = {B ∪ {0, 1} : B ∈ X}. Clearly X ′ ∈ [cof(meager[0,1])]
κ. Suppose that A ∈

cof(meager[0,1]). Then A ∩ (0, 1) ∈ cof(meager(0,1)) by Corollary 18.31. Choose B ∈ X
such that A ∩ (0, 1) ⊆ B. Then A ⊆ B ∪ {0, 1}.

Meager for irrat and R

Lemma 18.33. If A ⊆ R is nowhere dense in R, then A∩ irrat is nowhere dense in irrat.

Proof. Assume that A ⊆ R is nowhere dense in R. Then ∀a, b ∈ R[a < b implies that
(a, b)\A 6= ∅], so ∀a, b ∈ R[a < b implies that ∃c, d ∈ R[c < d and (c, d) ⊆ (a, b)\A]]. Now
the closure of A∩ irrat in irrat is A∩ irrat. Given a, b ∈ R with a < b, choose c, d ∈ R such
that c < d and (c, d) ⊆ (a, b)\A. Then

(c, d) ∩ irrat ⊆ ((a, b) ∩ irrat)\(A ∩ irrat).

Thus A ∩ irrat is nowhere dense in irrat.

Lemma 18.34. If A is meagerR, then A ∩ irrat is meagerirrat.
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Lemma 18.35. If A ⊆ irrat is nowhere dense in irrat, then it is nowhere dense in R.

Proof. Assume that A ⊆ irrat is nowhere dense in irrat. Then ∀a, b ∈ R[a < b
implies that (a, b) ∩ irrat\(A ∩ irrat) 6= ∅. Given a, b ∈ R with a < b, choose c, d ∈ R with
c < d and (c, d) ∩ irrat ⊆ (a, b) ∩ irrat\(A ∩ irrat). We claim that (c, d) ⊆ (a, b)\A. Now
(c, d) ∩ (a, b) = (max(c, a),min(d, b)). Suppose that (max(c, a),min(d, b)) ∩ A 6= ∅. Then
there is an x ∈ (max(c, a),min(d, b)) ∩ A. So x is irrational, contradiction.

Lemma 18.36. If A is meagerirrat, then A is meagerR.

Lemma 18.37. add(meagerR) = add(meagerirrat).

Proof. First let κ = add(meagerirrat), and let E ⊆ meagerirrat be such that |E| = κ
and

⋃
E /∈ meagerirrat. By Lemma 18.35, E ⊆ meagerR. We have

⋃
E /∈ meagerR by

Lemma 18.34.
Second, let κ = add(meagerR), and let E ⊆ meagerR be such that |E| = κ and

⋃
E /∈ meagerR. Then E′ = {X ∩ irrat : X ∈ E} ⊆ meagerirrat by Lemma 18.34. Hence

E′ ∪ {Q} ⊆ meagerirrat. If
⋃

(E′ ∪ {Q}) ∈ meagerirrat, then
⋃
E ⊆

⋃
(E′ ∪ {Q}) ∈

meagerirrat ⊆ meagerR by Lemma 18.36, contradiction.

Lemma 18.38. cov(meagerR) = cov(meagerirrat).

Proof. First let κ = cov(meagerR), and let E ∈ [meagerR]κ be such that R =
⋃
E. For each A ∈ E we have A ∩ irrat ∈ meagerirrat by Corollary 18.34. Moreover,

⋃

A∈E(A ∩ irrat) = irrat. So cov(meagerirrat) ≤ κ.
Second let κ = cov(meagerirrat), and let E ∈ [meagerirrat]

κ be such that irrat =
⋃
E.

Let E′ = E ∪ {{q} : q ∈ Q}. Then by Lemma 18.36, E′ ∈P(meagerR), and
⋃
E′ = R. So

cov(meagerR) ≤ κ.

Lemma 18.39. non(meagerR) = non(meagerirrat).

Proof. First let κ = non(meagerR), and let X ∈ [R]κ such that X /∈ meagerR. Then
X ∩ irrat /∈ meagerirrat, as otherwise, with Y = (X ∩ irrat) ∪ {{q} : q ∈ Q} we would have
X ⊆ Y ∈ meagerR, using Lemma 18.36.

Second let κ = non(meagerirrat), and let X ∈ [irrat]κ such that X /∈ meagerirrat. By
Lemma 18.34, X /∈ meagerR. Hence non(meagerR) ≤ κ.

Lemma 18.40. cof(meagerR) = cof(meagerirrat).

Proof. First let κ = cof(meagerR), and let X ∈ [meagerR]κ be such that ∀A ∈
meagerR∃B ∈ X [A ⊆ B]. Let Y = {A ∩ irrat : A ∈ X}. Then by Lemma 18.34,
Y ∈ P(meagerirrat), and ∀A ∈ meagerirrat∃B ∈ Y [A ⊆ B], using also Lemma 18.36.
Hence cof(meagerirrat) ≤ κ.

Second let κ = cof(meagerirrat), with X ∈ [meagerirrat]
κ so that ∀A ∈ meagerirrat∃B ∈

X [A ⊆ B]. Let Y = {A ∪ Q : A ∈ X . Then by Lemma 18.36, Y ∈ P(meagerR). If
A ∈ meagerR, then A ∩ irrat ∈ meagerirrat by Lemma 18.34, and so there is a B ∈ X such
that A ∩ irrat ⊆ B. Then A ⊆ B ∪Q ∈ Y . Hence cof(meagerR) ≤ κ.
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The Cantor set and ω2.

Let

C =

{

x ∈ [0, 1] : ∃t ∈ ω\1{0, 2}

[

x =

∞∑

i=1

ti
3i

]}

.

C is the Cantor set. For a < b let

f([a, b]) =

{[

a, a+
1

3
(b− a)

]

,

[

a+
2

3
(b− a), b

]}

.

Define A with domain ω recursively by

A0 = {[0, 1]};

An+1 =
⋃

X∈An

f(X).

Lemma 18.41. For every positive integer n and every set Y , Y ∈ An iff there is a
t : (n+ 1)\1→ {0, 2} such that

Y =

[
n∑

i=1

ti
3i
,

n∑

i=1

ti
3i

+
1

3n

]

.

Proof. For n = 1 we have A1 = f([0, 1]) = {[0, 1
3 ], [ 23 , 1]}. With t1 = 0 we have

[
∑n
i=1

ti
3i ,
∑n
i=1

ti
3i + 1

3n ] = [0, 1
3 ], and with t1 = 2 we have [

∑n
i=1

ti
3i ,
∑n
i=1

ti
3i + 1

3n ] = [ 23 , 1],
as desired.

Now assume the equality for n ≥ 1. First suppose that Y ∈ An+1. Then there is an
X ∈ An such that Y ∈ f(X). By the inductive hypothesis choose t : (n + 1)\1 → {0, 2}
such that

X =

[
n∑

i=1

ti
3i
,

n∑

i=1

ti
3i

+
1

3n

]

.

Note that X has size 1
3n

.
Case 1.

Y =

[
n∑

i=1

ti
3i
,
n∑

i=1

ti
3i

+
1

3n+1

]

.

Let s ↾ ((n+ 1)\1) = t ↾ ((n+ 1)\1) and s(n+ 1) = 0. Then

(∗) Y =

[
n+1∑

i=1

si
3i
,

n+1∑

i=1

si
3i

+
1

3n+1

]

.

Case 2.

Y =

[
n∑

i=1

ti
3i

+
2

3n+1
,
n∑

i=1

ti
3i

+
1

3n

]

.
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Let s ↾ ((n+ 1)\1) = t ↾ ((n+ 1)\1) and s(n+ 1) = 2. Then (∗) holds.
Second, suppose that (∗) holds. Let t = s ↾ ((n+ 1)\1). If s(n+ 1) = 0, then

Y =

[
n∑

i=1

ti
3i
,
n∑

i=1

ti
3i

+
1

3n+1

]

;

If s(n+ 1) = 2, then

Y =

[
n∑

i=1

ti
3i

+
2

3n+1
,

n∑

i=1

ti
3i

+
1

3n

]

.

Hence in either case,

Y ∈ f

([
n∑

i=1

ti
3i
,

m∑

i=1

ti
3i

+
1

3n

])

,

and [
n∑

i=1

ti
3i
,
m∑

i=1

ti
3i

+
1

3n

]

∈ An

by the inductive hypothesis. Hence Y ∈ An+1.

Theorem 18.42. C =
⋂

n∈ω

⋃
An.

Proof. Suppose that x ∈ C and n ∈ ω. Choose s ∈ ω\1{0, 2} such that x =
∑∞
i=1

si
3i .

Let t = s ↾ ((n+ 1)\1). Then

x ∈

[
n∑

i=1

ti
3i
,
n∑

i=1

ti
3i

+
1

3n

]

since
∑∞
i=n+1

ti
3i ≤

1
3n . Thus by Lemma 18.41, x ∈

⋃
An.

Now suppose that x /∈ C. If x /∈ [0, 1], clearly x /∈
⋂

n∈ω (
⋃
An). So suppose that

x ∈ [0, 1], and choose t ∈ ω\13 such that x =
∑∞

i=1
ti
3i

. Choose n minimal such that tn = 1.

Suppose x ∈
⋃
An. By Lemma 18.41, choose s ∈ (n+1)\1{0, 2} such that

n∑

i=1

si
3i
≤ x ≤

n∑

i=1

si
3i

+
1

3n
.

We claim that t ↾ n = s ↾ n. Otherwise there is a least m < n such that tm 6= sm. If
tm < sm, then tm = 0 since tm ∈ {0, 2} because m < n. Hence

x =
∞∑

i=1

ti
3i

=
m∑

i=1

ti
3i

+
∞∑

i=m+1

ti
3i
≤

m∑

i=1

ti
3i

+
1

3m
<

m∑

i=1

si
3i
≤

n∑

i=1

si
3i
≤ x,

contradiction. If sm < tm, then sm = 0 and tm = 2, and

x ≤
n∑

i=1

si
3i

+
1

3n
≤

m∑

i=1

si
3i

+

∞∑

i=m+1

2

3i
=

m∑

i=1

si
3i

+
1

3m
<

m∑

i=1

ti
3i
≤ x,

253



contradiction.
So s ↾ n = t ↾ n.
Case 1. sn = 2. Then

x =

∞∑

i=1

ti
3i

=

n∑

i=1

ti
3i

+

∞∑

i=n+1

ti
3i
≤

n∑

i=1

ti
3i

+
1

3n
=

n∑

i=1

si
3i
≤ x

It follows that ti = 2 for all i ≥ n + 1, and hence x = (t ↾ n)⌢〈2, 0, 0, 0, . . .〉 ∈ C,
contradiction.

Case 2. sn = 0. Then

x =

∞∑

i=1

ti
3i
≤

n∑

i=1

si
3i

+
1

3n
=

n∑

i=1

ti
3i
≤ x;

it follows that ti = 0 for all i > n; hence x = (t ↾ n)⌢〈0, 2, 2, 2, . . .〉 ∈ C, contradiction.

Theorem 18.43. C is homeomorphic to ω2.

Proof. For each t ∈ ω2 let

f(t) =

∞∑

i=1

2ti−1

3i
.

Clearly f maps onto C. It is one-one; for suppose that s, t ∈ ω2 with s 6= t. Let n be
minimum such that sn 6= tn. Say sn = 0 and tn = 1. Then

f(s) =

∞∑

i=1

2si−1

3i
=

n∑

i=1

2si−1

3i
+

∞∑

i=n+1

2si−1

3i

≤
n∑

i=1

2si−1

3i
+

∞∑

i=n+1

2

3i
=

n∑

i=1

2si−1

3i
+

1

3n
<

n∑

i=1

2si−1

3i
+

2

3n
≤

∞∑

i=1

2ti−1

3i
= f(t).

So f is one-one. Now f is continuous. For, suppose that U is open in R and t ∈ f−1[U ].
Say (f(t)− ε, f(t) + ε) ⊆ U . Choose n so that 3−n < ε. Let V = {s ∈ ω2 : s ↾ n = t ↾ n}.
For any s ∈ V we have

|f(s)− f(t)| =

∣
∣
∣
∣
∣
∣

∞∑

n+1≤i

2(s(i− 1)− t(i− 1))

3i

∣
∣
∣
∣
∣
∣

≤
∞∑

n+1≤i

2

3i
=

1

3n
< ε.

Thus V ⊆ f−1[U ]. So f is continuous. By Engelking Theorem 3.1.13, f is a homeomor-
phism.

Ω and ω2.

254



If z ∈ ω2 let z◦ =
∑∞
i=1(zi−12−i). Note that clearly 0 ≤ z◦. Also, if z 6= 〈1, 1, . . .〉 then

z◦ < 1. In fact, choose j such that zj = 0. then

z◦ =
∞∑

i=1

(zi−12−i) =

j
∑

i=1

(zi−12−i) +
∞∑

i=j+2

(zi−12−i)

≤

j
∑

i=1

(zi−12−i) +

∞∑

i=j+2

2−i =

j
∑

i=1

(zi−12−i) + 2−j−1 < 1.

For z ∈ [0, 1) let z′ ∈ ω2 be such that z =
∑∞
i=1(z′i−12−i), with z′ not eventually 1. Let

Ω = {x ∈ ω2 : x is not eventually 1 and x 6= 〈0, 0, 0, . . .〉}. For each m ∈ ω and each f ∈ m2
let Wf = {x ∈ ω2 : f ⊆ x} and W ′

f = {x ∈ Ω : f ⊆ x}. Let M = {x ∈ ω2 : x is eventually
1 or x = 〈0, 0, 0, . . .〉}.

Lemma 18.44. If x, y ∈ ω2 and neither x nor y is eventually 1, and if x 6= y, then
∑∞
i=1(xi−12−i) 6=

∑∞
i=1(yi−12−i).

Proof. Suppose that x, y ∈ ω2 and neither is eventually 1, and x 6= y. Let j be
minimum such that xj 6= yj . Wlog xj = 0 and yj = 1. Choose k > j such that xk = 0.
Then

x =

k∑

i=1

(xi−12−i) +

∞∑

i=k+2

xi−12−i ≤
k∑

i=1

(xi−12−i) +

∞∑

i=k+2

2−i

=
k∑

i=1

(xi−12−i) + 2−k−1 <
k∑

i=1

(xi−12−i) +
∞∑

i=k+1

2−i

=

j
∑

i=1

(xi−12−i) + 2−k ≤
∞∑

i=1

(yi2
−i),

so
∑∞
i=1(xi−12−i) 6=

∑∞
i=1(yi−12−i).

Lemma 18.45. (i) If x ∈ ω2 is not eventually 1, then x◦′ = x.
(ii) If x ∈ [0, 1), then x′◦ = x.

Proof. (i): Suppose that x ∈ ω2 is not eventually 1. Now x◦′ = z′, where x◦ =
∑∞
i=1(z′i−12−i) with z′ not eventualy 1; but also x◦ =

∑∞
i=1(xi−12−i). So x = z′ by

Lemma 18.44.
(ii): obvious.

Lemma 18.46. Ω is dense in ω2.

Proof. Given m ∈ ω and f ∈ m2, let x ∈W ′
f be such that x is not eventually 1.

Lemma 18.47. If X ⊆ ω2 is nowhere dense in ω2, then X ∩ Ω is nowhere dense in Ω.
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Proof. Suppose that X ⊆ ω2 is nowhere dense in ω2. Suppose that W ′
f is given. Now

ω2\X is dense in ω2, so Wf\X 6= ∅. Choose g with Wg ⊆ Wf\X . Take x ∈WG ∩Ω. Then
x ∈W ′

f\(X ∩ Ω). This shows that X ∩Ω is nowhere dense in Ω.

Corollary 18.48. If X ⊆ ω2 is meager in ω2, then X ∩Ω is meager in Ω.

Lemma 18.49. If X ⊆ Ω is nowhere dense in Ω, then X is nowhere dense in ω2.

Proof. Suppose that X ⊆ Ω is nowhere dense in Ω, We want to show that for any
f ∈ <ω2, Wf\X 6= ∅. We have W ′

f\(X ∩ Ω) 6= ∅, so Wf\X 6= ∅.

Corollary 18.50. If X ⊆ Ω is meager in Ω, then X is meager in ω2.

Lemma 18.51. add(meagerω2) = add(meagerΩ).

Proof. First let κ = add(meagerω2) and suppose that E ∈ [meagerω2]κ with
⋃
E /∈

meagerω2. Let E′ = {A ∩ Ω : A ∈ E}. Then by Corollary 18.48, E′ ⊆ meagerΩ, and
|E′| ≤ κ. Suppose that

⋃
E′ ∈ meagerΩ. Then by Corollary 18.50,

⋃
E′ ∈ meagerω2.

Now M is countable, and
⋃
E ⊆

⋃
E′ ∪ M , so

⋃
E ∈ meagerω2, contradiction. Thus

add(meagerΩ) ≤ add(meagerω2).
Second let κ = add(meagerΩ) and suppose that E ∈ [meagerΩ]κ with

⋃
E /∈ meagerΩ.

By Corollary 18.50, E ∈ [meagerω2]κ. Suppose that
⋃
E ∈ meagerω2. By Corollary 18.48,

⋃
E = (

⋃
E) ∩ Ω ∈ meagerΩ, contradiction.

Lemma 18.52. cov(meagerω2) = cov(meagerΩ).

Proof. First let κ = cov(meagerω2) and suppose that E ∈ [meagerω2]κ with
⋃
E =

ω2. Let E′ = {A∩Ω : A ∈ E}. Then by Corollary 18.48, E′ ⊆P(meagerΩ), and |E′| ≤ κ.
Clearly

⋃
E′ = Ω. So cov(meagerΩ) ≤ κ.

Second let κ = cov(meagerΩ) and suppose that E ∈ [meagerΩ]κ with
⋃
E = Ω.

By Corollary 18.50, E ∈ [meagerω2]κ. Then M ∪
⋃
E = ω2. Hence cov(meagerω2) =

cov(meagerΩ).

Lemma 18.53. non(meagerω2) = non(meagerΩ).

Proof. First let κ = non(meagerω2) and suppose that X ∈ [ω2]κ with X /∈ meagerω2.
Then |X ∩ Ω| ≤ κ. Suppose that X ∩ Ω ∈ meagerΩ. Then by Corollary 18.50, X ∩ Ω ∈
meagerω2) so X ⊆ (X ∩Ω) ∪M ∈ meagerω2, contradiction.

Second let κ = non(meagerΩ) and suppose that X ∈ [Ω]κ with X /∈ meagerΩ. Then
X ∈ [ω2]κ and by Corollary 18.48 X /∈ meagerω2.

Lemma 18.54. cof(meagerω2) = cof(meagerΩ).

Proof. First let κ = cof(meagerω2) and suppose that X ∈ [meagerω2]κ is such that
∀A ∈ meagerω2∃B ∈ X [A ⊆ B]. Let X ′ = {A ∩ Ω : A ∈ X}. So |X | ≤ κ, and by
Corollary 18.48, X ′ ⊆ P(meagerΩ). Suppose that A ∈ meagerΩ. Then by Corollary
18.50, A ∈ meagerω2, so there is a B ∈ X such that A ⊆ B. Then A ⊆ B ∩Ω ∈ X ′. Hence
cof(meagerΩ) ≤ κ.
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Second let κ = cof(meagerΩ) and suppose that X ∈ [meagerΩ]κ is such that ∀A ∈
meagerΩ∃B ∈ X [A ⊆ B]. Let X ′ = {A ∪ M : A ∈ X}. So |X ′| ≤ κ. Suppose that
A ∈ meagerω2. Then by Corollary 18.48, A ∩Ω ∈ meagerΩ, so there is a B ∈ X such that
A ∩Ω ⊆ B. Then A ⊆ B ∪M ∈ X ′. Hence cof(meagerω2) = cof(meagerΩ).

(0, 1) and Ω

Lemma 18.55. If h ∈ ω2 is not eventually 1 and hm = 0, then

∞∑

i=1

(hi−12−i) <

m∑

i=1

(hi−12−i) + 2−m−1.

Proof. Assume that h ∈ ω2 is not eventually 1 and hm = 0. Choose n > m so that
hn = 0. Then

∞∑

i=1

(hi−12−i) ≤
n∑

i=1

(hi−12−i) +

∞∑

i=n+2

2−i

=

n∑

i=1

(hi−12−i) + 2−n−1

<

n∑

i=1

(hi−12−i) + 2−n−1 + 2−n−2

≤
m∑

i=1

(hi−12−i) +

∞∑

i=m+2

2−i

=

m∑

i=1

(hi−12−i) + 2−m−1.

If A ⊆ ω2, we let A◦ = {x◦ : x ∈ A}; and for X ⊆ [0, 1) we let Xp = {x′ : x ∈ X}.

Lemma 18.56. If 0 < a < b < 1, then there is an f such that (W ′
f )◦ ⊆ (a, b).

Proof. Assume that 0 < a < b < 1. Let m be minimum such that a′m 6= b′m. If
a′m = 1 and b′m = 0, then

b =

∞∑

i=1

(b′i−12−i) ≤
m∑

i=1

(b′i−12−i) +

∞∑

i=m+2

2−i

=
m∑

i=1

(b′i−12−i) + 2−m−1 =
m+1∑

i=1

(a′i−12−i) ≤ a,

contradiction. Hence a′m = 0 and b′m = 1.
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Choose p > n > m such that a′n = a′p = 0. Let f = 〈a′i : i < n〉⌢〈1〉⌢〈a′i : n+ 1 ≤ i ≤
p〉. We claim that (W ′

f )◦ ⊆ (a, b). Take any g ∈ W ′
f ; we want to show that a < g◦ < b,

i.e.,

(1)

∞∑

i=1

(a′i−12−i) <

∞∑

i=1

(gi−12−i) <

∞∑

i=1

(b′i−12−i)

We have

∞∑

i=1

(a′i−12−i) <

n∑

i=1

(a′i−12−i) + 2−n−1 by Lemma 18.55

=
n+1∑

i=1

(fi−12−i) =
n+1∑

i=1

(gi−12−i) ≤
∞∑

i=1

(gi−12−i)

≤

p+1
∑

i=1

(gi−12−i) +

∞∑

i=p+2

2−i =

p+1
∑

i=1

(gi−12−i) + 2−p−1

<
n+1∑

i=1

(gi−12−i) +
∞∑

i=n+2

2−i

=
n+1∑

i=1

(gi−12−i) + 2−n−1 =
n∑

i=1

(a′i−12−i) + 2−n + 2−n−1

≤
m∑

i=1

(b′i−12−i) +
∞∑

i=m+1

2−i =
m+1∑

i=1

(b′i−12−i) ≤
∞∑

i=1

(b′i−12−i).

Lemma 18.57. For any f ∈ <ω2 there exist a, b with 0 < a < b < 1 and (a, b) ⊆ (W ′
f )◦.

Proof. Say f ∈ m2. Let a = f⌢〈1, 0, 0, 0, . . .〉 and b = f⌢〈1, 1, 0, 0, . . .〉. Clearly
0 < a◦ < b◦ < 1. We claim that (a◦, b◦) ⊆ ◦W ′

f . Suppose that a◦ < z < b◦. In particular,
z ∈ (0, 1) and z′ ∈ Ω. If a = z′, then a◦ = z′◦ = z, contradiction. So a 6= z′. Similarly
b 6= z′. Let n be minimum such that an 6= z′n. Suppose that n < m.

Subcase 1. an = 0, z′n = 1. Then

b◦ =

∞∑

i=1

(bi−12−i) =

n+1∑

i=1

(ai−12−i) +

∞∑

i=n+2

(bi−12−i)

≤
n∑

i=1

(ai−12−i) +

∞∑

i=n+2

2−i =

n∑

i=1

(ai−12−i) + 2−n−1

=
n∑

i=1

(z′i−12−i) + 2−n−1 ≤
∞∑

i=1

(z′i−12−i) = z,

contradiction.
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Subcase 2. an = 1, z′n = 0. Then

z =

∞∑

i=1

(z′i−12−i) ≤
n∑

i=1

(z′i−12−i) +

∞∑

i=n+2

2−i

=

n∑

i=1

(ai−12−i) + 2−n−1 ≤
∞∑

i=1

(ai−12−i) = a◦,

contradiction.
It follows that m ≤ n, hence f ⊆ z′ and so z′ ∈ W ′

f . Thus z = z′◦ ∈ (W ′
f )◦.

Lemma 18.58. If A ⊆ Ω is nowhere dense, then A◦ is nowhere dense in (0, 1).

Proof. Suppose that A ⊆ Ω is nowhere dense, U is open, U ∩ (0, 1) 6= ∅. We want to
show that U\A◦ 6= ∅. Wlog U = (a, b) with 0 ≤ a < b ≤ 1. We want to find 0 ≤ c < d ≤ 1
such that (c, d) ⊆ (a, b)\A◦. By Lemma 18.56 choose f such that (W ′

f )◦ ⊆ (a, b). Now

W ′
f\A 6= ∅, so there is a g such that W ′

g ⊆W
′
f\A. By Lemma 18.57 choose 0 < c < d < 1

so that (c, d) ⊆ (W ′
g)

◦. Thus (c, d) ⊆ (W ′
g)

◦ ⊆ (W ′
f )◦ ⊆ (a, b). Suppose that x ∈ (c, d)∩A◦;

we want to get a contradiction. Say y ∈ (c, d) ∩ A◦. Say y = z◦ with z ∈ A. But also
y ∈ (c, d) ⊆ (W ′

g)
◦, so there is a w ∈ W ′

g such that y = w◦. Since W ′
g ⊆ W ′

f\A, we have
w /∈ A. But z, w ∈ Ω, so z = z◦′ = y′ = w◦′ = w, contradiction.

Corollary 18.59. If A ⊆ Ω is meager, then A◦ is meager in (0, 1).

Lemma 18.60. If A ⊆ (0, 1) is nowhere dense in (0, 1), then Ap is nowhere dense in Ω.

Proof. Assume that A ⊆ (0, 1) is nowhere dense in (0, 1) Let Wf be given; we
want to show that Wf ∩ Ω\Ap 6= ∅. By Lemma 18.57 choose 0 < a < b < 1 so that
(a, b) ⊆ (W ′

f )◦. Now (a, b)\A is dense, hence nonempty and open. Choose 0 < c <

d < 1 with (c, d) ⊆ (a, b)\A. By Lemma 18.56 choose W ′
g such that (W ′

g)
◦ ⊆ (c, d).

So (W ′
g)

◦ ⊆ (W ′
f )◦, and hence W ′

g ⊆ W ′
f . Suppose that W ′

g ⊆ Ap; we want to get a
contradiction. Then W ′

g ∩ A
p 6= ∅. Say x ∈ W ′

g ∩ Ap. Choose y ∈ A with x = y′. Then

y = x◦ ∈ (W ′
g)

◦ ⊆ (c, d) ⊆ (a, b)\A, contradiction.

Corollary 18.61. If A ⊆ (0, 1) is meager in (0, 1). then Ap is meager in Ω.

Lemma 18.62. add(meagerΩ) = add(meager(0,1)).

Proof. First let κ = add(meagerΩ) and suppose that E ∈ [meagerΩ]κ with
⋃
E /∈

meagerΩ. Let E′ = {A◦ : A ∈ E}. So by Corollary 18.59, E′ ∈ P(meager(0,1)). Clearly
|E′| ≤ κ. Suppose that

⋃
E′ ∈ meager(0,1). By Corollary 18.61, (

⋃
E′)p ∈ meagerΩ.

Take any A ∈ E. Then A◦ ∈ E′, so A◦ ⊆
⋃
E′. Hence A = A◦p ⊆ (

⋃
E′)p. Thus

⋃
E ⊆ (

⋃
E′)p ∈ meagerΩ, so

⋃
E ∈ meagerΩ, contradiction.

Second let κ = add(meager(0,1)) and suppose that E ∈ [meager(0,1)]
κ with

⋃
E /∈

meager(0,1). Let E′ = {Ap : A ∈ E}. So by Corollary 18.61, E′ ⊆ P(meagerΩ). Suppose
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that
⋃
E′ ∈ meagerΩ. By Corollary 18.59, (

⋃
E′)◦ ∈ meager(0,1). If A ∈ E, then Ap ∈ E′,

so Ap ⊆
⋃
E′, hence A = Ap◦ ⊆ (

⋃
E′)◦, so

⋃
E ⊆ (

⋃
E′)◦, contradiction.

Lemma 18.63. cov(meagerΩ) = cov(meager(0,1)).

Proof. First let κ = cov(meagerΩ) and suppose that E ∈ [meagerΩ]κ with Ω =
⋃
E.

Let E′ = {A◦ : A ∈ E}. Then by Corollary 18.59, E′ ⊆ P(meager(0,1)). If a ∈ (0, 1),
then a′ ∈ Ω, hence there is an A ∈ E such that a′ ∈ A. So a = ap◦ ∈ ◦[A] ∈ E′. Thus
(0, 1) ⊆

⋃
E′.

Seecond let κ = cov(meager(0,1)) and suppose that E ∈ [meager(0,1)]
κ with (0, 1) =

⋃
E. Let E′ = {Ap : A ∈ E}. Then E′ ⊆P(meagerΩ) by Corollary 18.61. Suppose that

x ∈ Ω. Then x◦ ∈ (0, 1), so there is an A ∈ E such that x◦ ∈ A. Hence x = x◦p ∈ Ap ∈ E′.
This shows that

⋃
E′ = Ω.

Lemma 18.64. non(meagerΩ) = non(meager(0,1)).

Proof. First let κ = non(meagerΩ) and suppose that X ∈ [Ω]κ such that X /∈
meagerΩ. Suppose that X◦ is meager in (0, 1). Then X = X◦p is meager in Ω by Corollary
18.61, contradiction. It follows that non(meager(0,1)) ≤ κ.

Second let κ = non(meager(0,1)) and suppose that X ∈ [(0, 1)]κ such that X /∈
meager(0,1). Suppose that Xp ∈ meagerΩ. Then X = Xp◦ ∈ meager(0,1) by Lemma
18.59, contradiction. Hence non(meagerΩ) = non(meager(0,1)).

Lemma 18.65. cof(meagerΩ) = cof(meager(0,1)).

Proof. First let κ = cof(meagerΩ) and suppose that X ∈ [meagerΩ]κ is such that
∀A ∈ meagerΩ∃B ∈ X [A ⊆ B]. Let X ′ = {A◦ : A ∈ X}. Then by Corollary 18.59,
X ′ ⊆ P(meager(0,1)), and clearly |X ′| ≤ κ. Suppose that A ∈ meager(0,1). Then by
Corollary 18.61, Ap ∈ meagerΩ. Hence there is a B ∈ X such that Ap ⊆ B. Then
A = Ap◦ ⊆ ◦[B] ∈ X ′. It follows that cof(meager(0,1)) ≤ κ.

Second let κ = cof(meager(0,1)) and suppose that X ∈ [meager(0,1)]
κ is such that

∀A ∈ meager(0,1)∃B ∈ X [A ⊆ B]. Let X ′ = {Ap : A ∈ X}. Then by Corollary 18.61, X ′ ⊆
P(meagerΩ), and clearly |X ′| ≤ κ. Suppose that A ∈ meagerΩ. Then A◦ ∈ meager(0,1)
by Corollary 18.59, so there is a B ∈ X such that A◦ ⊆ B. Then A = A◦p ⊆ ′[B] ∈ X ′. It
follows that cof(meagerΩ) = cof(meager(0,1)).

For finite disjoint F,G ⊆ ω we define UFG = {X ⊆ ω : F ⊆ X and X ∩G = ∅}.

Lemma 18.66. {UFG : F,G ∈ [ω]<ω and F ∩ G = ∅} forms a basis for a topology on
P(ω), and χ is a homeomorphism from ω2 onto P(ω).

Let Θ = {x ∈ ω2 : {i ∈ ω : x(i) = 1} is infinite}.

Lemma 18.67. Θ is dense in ω2, and if X ⊆ ω2 is nowhere dense, then X ∩Θ is nowhere
dense in Θ.

Proof. Clearly Θ is dense in ω2. Now ω2\X is nonempty and open, so there is a
Wf ⊆ ω2\X. Then Wf ∩Θ ⊆ Θ\(X ∩Θ).
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Lemma 18.68. If X ⊆ ω2 is meagerω2, then X ∩Θ is meager in Θ.

Lemma 18.69. If X ⊆ Θ is nowhere dense in Θ, then X is nowhere dense in ω2.

Proof. Let U be a nonempty open set in ω2. We want to show that U ∩ (ω2\X) 6= ∅.
Now U ∩Θ 6= ∅, and X ∩Θ is the closure of X in Θ. Hence

∅ 6= U ∩Θ ∩ (Θ\(X ∩Θ)) = U ∩Θ\X ⊆ U ∩ (ω2\X),

as desired.

Lemma 18.70. If X ⊆ Θ is meager in Θ, then X is meager in ω2.

Lemma 18.71. add(meagerω2) = add(meagerΘ).

Proof. Suppose that E ∈ [meagerω2]κ and
⋃
E /∈ meagerω2, with κ = add(meagerω2).

Let E′ = {X ∩Θ : X ∈ E}. Then E′ ⊆ meagerΘ by Lemma 18.68. Suppose that
⋃
E′ ∈

meagerΘ. By Lemma 18.70,
⋃
E′ ∈ meagerω2. Let M = {x ∈ ω2 : {i ∈ I : x(i) = 1} is

finite}. Then M is countable, and
⋃
E ⊆

⋃
E′ ∪M , so

⋃
E is meager, contradiction.

Second suppose that E ∈ [meagerΘ]κ and
⋃
E /∈ meagerΘ, with κ = add(meagerΘ).

By Lemma 18.70, E ⊆ meagerω2. Suppose that
⋃
E ∈ meagerω2. By Lemma 18.68,

⋃
E ∈ meagerΘ, contradiction.

Lemma 18.72. cov(meagerω2) = cov(meagerΘ).

Proof. First suppose that E ∈ [meagerω2]κ and ω2 =
⋃
E, with κ = cov(meagerω2).

Let E′ = {X ∩ Θ : X ∈ E}. Then E′ ⊆ meagerΘ by Lemma 18.68. We have
⋃
E′ =

(
⋃
E) ∩Θ = ω2 ∩Θ = Θ.

Second suppose that E ∈ [meagerΘ]κ and
⋃
E = Θ, κ = cov(meagerΘ). Let M =

{x ∈ ω2 : {i ∈ I : x(i) = 1} is finite}. Then M is countable, hence meager in ω2, and
⋃
E ∪M = ω2.

Lemma 18.73. non(meagerω2) = non(meagerΘ).

Proof. First suppose that X ∈ [ω2]κ with X /∈ meagerω2 and |X | = non(meagerω2).
If X ∩ Θ ∈ meagerΘ, then X ⊆ (X ∩ Θ) ∪M ∈ meagerω2 by Lemma 18.70, with M as
above, contradiction.

Second suppose that X ∈ [Θ]κ with X /∈ meagerΘ and |X | = non(meagerΘ). Then by
Lemma 18.68, X is not meager in ω2.

Lemma 18.74. cof(meagerω2) = cof(meagerΘ).

Proof. First suppose that X ∈ [meagerω2]κ such that ∀A ∈ meagerω2∃B ∈ X [A ⊆ B],
with κ = cof(meagerω2). Let Y = {B∩Θ : B ∈ X}. Then Y ⊆ meagerΘ by Lemma 18.68.
Suppose that A ∈ meagerΘ. Then A ∈ meagerω2 by Lemma 18.70. Hence there is a B ∈ X
such that A ⊆ B. So B ∩Θ ∈ Y and A ⊆ B ∩Θ.

Second suppose that X ∈ [meagerΘ]κ such that ∀A ∈ meagerΘ∃B ∈ X [A ⊆ B], with
κ = cof(meagerΘ). Let M be as above. Let Y = {B ∪M : B ∈ X}. Then Y ⊆ meagerω2
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by Lemma 18.70. Suppose that A ∈ meagerω2. Then A ∩Θ ∈ meagerΘ by Lemma 18.68.
Choose B ∈ X such that A ∩Θ ⊆ B. Then A ⊆ B ∪M ∈ Y .

Lemma 18.75. With the relative topology on [ω]ω, Θ is homeomorphic to [ω]ω.

measures

We give background on measures, and prove that add, non, cov, and cof are the same
applied to null sets in the sense of [0, 1], ω2, Θ, or [ω]ω.

If A is a σ-algebra of subsets of X , then a measure on A is a function µ : A→ [0,∞] such
that µ(∅) = 0 and µ(

⋃

i∈ω ai) =
∑

i∈ω µ(ai) if a ∈ ωA and ai ∩ aj = ∅ for all i 6= j. Note
that ai = ∅ is possible for some i ∈ ω.

We give some important properties of measures:

Proposition 18.76. Suppose that µ is a measure on a σ-algebra A of subsets of X. Then:
(i) If Y, Z ∈ A and Y ⊆ Z, then µ(Y ) ≤ µ(Z).
(ii) If Y ∈ ωA, then µ(

⋃

n∈ω Yn) ≤
∑

n∈ω µ(Yn).
(iii) If Y ∈ ωA and Yn ⊆ Yn+1 for all n ∈ ω, then µ(

⋃

n∈ω Yn) = supn∈ω µ(Yn).
(iv) If Y ∈ ωA and µ(Y0) < ∞ and Yn ⊇ Yn+1 for all n ∈ ω, then µ(

⋂

n∈ω Yn) =
infn∈ω µ(Yn).

Proof. (i): We have µ(Z) = µ(Y ) + µ(Z\Y ) ≥ µ(Y ).
(ii): Let Zn = Yn\

⋃

m<n Ym. By induction,
⋃

m≤n Zm =
⋃

m≤n Ym, and hence
⋃

m∈ω Zm =
⋃

m∈ω Ym. Now

µ

(
⋃

m∈ω

Ym

)

= µ

(
⋃

m∈ω

Zm

)

=
∑

m∈ω

µ(Zm) ≤
∑

m∈ω

µ(Ym).

(iii): Again let Zn = Yn\
⋃

m<n Ym. By induction, Yn =
⋃

m≤n Zm. Hence

µ

(
⋃

n∈ω

Yn

)

= µ

(
⋃

n∈ω

Zn

)

=
∑

n∈ω

µ(Zn)

= lim
n→∞

∑

m≤n

µ(Zm)

= lim
n→∞

µ




⋃

m≤n

Zm





= lim
n→∞

µ(Yn)

= sup
n∈ω

µ(Yn).
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(iv): Y0\Yn ⊆ Y0\Yn+1 for all n, so, by (iii),

µ

(
⋃

n∈ω

(Y0\Yn)

)

= sup
n∈ω

µ(Y0\Yn).

Hence

µ(Y0) = µ

(

Y0\
⋂

n∈ω

Yn

)

+ µ

(
⋂

n∈ω

Yn

)

,

so

µ

(
⋂

n∈ω

Yn

)

= µ(Y0)− µ

(

Y0\
⋂

n∈ω

Yn

)

= µ(Y0)− sup
n∈ω

µ(Y0\Yn).

Now for any n ∈ ω, µ(Y0) = µ(Y0\Yn) + µ(Yn), and hence

µ(Y0)− sup
n∈ω

µ(Y0\Yn) ≤ µ(Y0)− µ(Y0\Yn) = µ(Yn).

Also, if x ≤ µ(Yn) for all n, then x ≤ µ(Y0)− µ(Y0\Yn), hence µ(Y0\Yn) ≤ µ(Y0) − x for
all n, so supn∈ω µ(Y0\Yn) ≤ µ(Y0)− x, and so x ≤ µ(Y0)− supn∈ω µ(Y0\Yn). This proves
(iv).

measure spaces and outer measures

A measure space is a triple (X,Σ, µ) such that:

(1) X is a set

(2) Σ is a σ-algebra of subsets of X .

(3) µ is a measure on Σ.

Given a measure space as above, a subset A of X is a µ-null set iff there is an E ∈ Σ such
that A ⊆ E and µ(E) = 0.

Theorem 18.77. If (X,Σ, µ) is a measure space, then the collection of µ-null sets is a
σ-ideal of subsets of X.

Proof. Let I be the collection of all µ-null sets. Clearly ∅ ∈ I, and B ⊆ A ∈ I implies
that B ∈ I. Now suppose that 〈Ai : i ∈ ω〉 is a system of members of I. For each i ∈ ω
choose Ei ∈ Σ such that Ai ⊆ Ei and µ(Ei) = 0. Then

⋃

i∈I Ai ⊆
⋃

i∈I Ei, and

µ

(
⋃

i∈ω

Ei

)

≤
∑

i∈ω

µ(Ei) = 0.

An outer measure on a set X is a function µ : P(X) → [0,∞] satisfying the following
conditions:

(1) µ(∅) = 0.

263



(2) If A ⊆ B ⊆ X , then µ(A) ≤ µ(B).

(3) For every A ∈ ωP(X), µ(
⋃

n∈ω An) ≤
∑

n∈ω µ(An).

If θ is an outer measure on a set X , then a subset E of X is θ-measurable iff for every
A ⊆ X ,

θ(A) = θ(A ∩ E) + θ(A\E).

Note that every subset E ⊆ X such that θ(E) = 0 is automatically θ-measurable.

Theorem 18.78. Let θ be an outer measure on a set X. Let Σ be the collection of all
θ-measurable subsets of X. Then (X,Σ, θ ↾ Σ) is a measure space. Moreover, if E ⊆ X
and θ(E) = 0, then E ∈ Σ.

Proof. Note that Σ is obviously closed under complementation. Obviously

(1) If A,E ⊆ X , then θ(A) ≤ θ(A ∩ E) + θ(A\E).

Clearly ∅ ∈ Σ and Σ is closed under complements. Next we show that Σ is closed under
∪. Suppose that E, F ∈ Σ and A ⊆ X . Then

θ(A ∩ (E ∪ F ))+θ(A\(E ∪ F )) ≤ θ((A ∩ (E ∪ F ) ∩E)) + θ(A ∩ (E ∪ F )\E)))

+ θ(A\(E ∪ F ))

= θ(A ∩ E) + θ((A\E) ∩ F ) + θ((A\E)\F )

= θ(A ∩ E) + θ(A\E)

= θ(A)

≤ θ(A ∩ (E ∪ F )) + θ(A\(E ∪ F )) by (1).

This proves that E ∪ F ∈ Σ. Thus we have shown that Σ is a field of subsets of X .
Next we show that Σ is closed under countable unions. So, suppose that E ∈ ωΣ, and

let K =
⋃

n∈ω En. For every m ∈ ω let

Gm =
⋃

n≤m

En.

Then clearly each Gm is in Σ. Now we define F0 = G0, and for m > 0, Fm = Gm\Gm−1.
Then also each Fm is in Σ. By induction,

⋃

n≤m Fn = Gm. Hence
⋃

n∈ω Fn =
⋃

n∈ω En.
Now temporarily fix a positive integer n and an A ⊆ X . Then

θ(A ∩Gn) = θ(A ∩Gn ∩Gn−1) + θ(A ∩Gn\Gn−1) = θ(A ∩Gn−1) + θ(A ∩ Fn);

hence by induction θ(A ∩Gn) =
∑

m≤n θ(A ∩ Fm).
Now we unfix n. Now A ∩K =

⋃

n∈ω(A ∩ Fn), so

θ(A ∩K) ≤
∑

n∈ω

θ(A ∩ Fn) = lim
n→∞

∑

m≤n

θ(A ∩ Fm) = lim
n→∞

θ(A ∩Gm).
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Also, note that if m < n then Gm ⊆ Gn, hence X\Gn ⊆ X\Gm, and so

θ(A\K) = θ

(

A\
⋃

n∈ω

Gn

)

= θ

(
⋂

n∈ω

(A\Gn)

)

≤ inf
n∈ω

θ(A\Gn) = lim
n→∞

θ(A\Gn).

Hence

θ(A ∩K) + θ(A\K) ≤ lim
n→∞

θ(A ∩Gn) + lim
n→∞

θ(A\Gn)

= lim
n→∞

(θ(A ∩Gn) + θ(A\Gn))

= θ(A)

≤ θ(A ∩K) + θ(A\K).

This proves that K ∈ Σ, so that Σ is closed under countable unions.
Finally, suppose that 〈En : n ∈ ω〉 is a system of pairwise disjoint members of Σ.

Let K =
⋃

n∈ω En. Hence θ(K) ≤
∑

n∈ω θ(En). Conversely, for each n ∈ ω let Gn =
⋃

m≤nEm. Then

θ(Gn+1) = θ(Gn+1 ∩ En+1) + θ(Gn+1\En+1) = θ(En+1) + θ(Gn).

Hence by induction, θ(Gn) =
∑

m≤n θ(Em) for every n, and hence

θ(K) ≥ θ(Gn) =
∑

m≤n

θ(Em),

and so θ(K) ≥
∑

n∈ω θ(En).
For the “moreover” statement, suppose that E ⊆ X and θ(E) = 0, Then for any

A ⊆ X , θ(A) ≤ θ(A ∩E) + θ(A\E) = θ(A\E) ≤ θ(A).

measure on κ2

Let κ be an infinite cardinal. For each f ∈ Fn(κ, 2, ω) let Uf = {g ∈ κ2 : f ⊆ g}. Hence
U∅ = κ2. Note that the function taking f to Uf is one-one. For each f ∈ Fn(κ, 2, ω) let
θ0(Uf ) = 1/2|dmn(f)|. Thus θ0(U∅) = 1. Let C = {Uf : f ∈ Fn(κ, 2, ω)}. Note that κ2 ∈ C.
For any A ⊆ κ2 let

θ(A) = inf

{
∑

n∈ω

θ0(Cn) : C ∈ ωC and A ⊆
⋃

n∈ω

Cn

}

.

Proposition 18.79. θ is an outer measure on κ2.

Proof. For (1), for any m ∈ ω let f ∈ Fn(κ, 2, ω) have domain of size m. Then
∅ ⊆ Uf and θ0(Uf ) = 1

2m . Hence θ(∅) = 0.
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For (2), if A ⊆ B ⊆ κ2, then

{

C ∈ ωC : B ⊆
⋃

n∈ω

Cn

}

⊆

{

C ∈ ωC : A ⊆
⋃

n∈ω

Cn

}

,

and hence µ(A) ≤ µ(B).
For (3), assume that A ∈ ωP(κ2). We may assume that

∑

n∈ω θ(An) < ∞. Let
ε > 0; we show that θ(

⋃

n∈ω An) ≤
∑

n∈ω θ(An) + ε, and the arbitrariness of ε then
gives the desired result. For each n ∈ ω choose Cn ∈ ωC such that An ⊆

⋃

m∈ω C
n
m and

∑

m∈ω θ0(Cnm) ≤ θ(An) + ε
2n . Then

⋃

n∈ω An ⊆
⋃

n∈ω

⋃

m∈ω C
n
m and

θ

(
⋃

n∈ω

An

)

≤
∑

n∈ω

∑

n∈ω

θ0(Cnm) ≤
∑

n∈ω

θ(An) + ε,

as desired.

Let Σ0 be the set of all θ-measurable subsets of ω2.

Proposition 18.80. If ε ∈ 2 and α < κ, then {f ∈ κ2 : f(α) = ε} ∈ Σ0.

Proof. Let E = {f ∈ κ2 : f(α) = ε}, and let X ⊆ κ2; we want to show that
θ(X) = θ(X ∩ E) + θ(X\E). ≤ holds by the definition of outer measure. Now suppose
that δ > 0. Choose C ∈ ωC such that X ⊆

⋃

n∈ω Cn and
∑

n∈ω θ0(Cn) < θ(X) + δ. For
each n ∈ ω let Cn = Ufn with fn ∈ Fn(κ, 2, ω). For each n ∈ ω, if α /∈ dmn(fn), replace
Cn by Ug and Uh, where g = fn ∪ {(α, 0)} and h = fn ∪ {(α, 1)}; let the new sequence be
C′ ∈ ωC. Note that

θ0(Cn) = θ0(Ufn) =
1

2|dmn(fn)|
= θ0(Ug) + θ0(Uh).

Then
∑

n∈ω θ(Cn) =
∑

n∈ω θ(C
′
n) and X ⊆

⋃

n∈ω C
′
n. Say C′

n = Ugn for each n ∈ ω. Note
that α ∈ dmn(gn) for each n ∈ ω. Let M = {n ∈ ω : gn(α) = ε} and N = {n ∈ ω : gn(α) =
1− ε}. Then M,N is a partition of ω such that X ∩E ⊆

⋃

n∈M C′
n and X\E ⊆

⋃

n∈N C
′
n.

Hence

θ(X ∩E) + θ(X\E) ≤
∑

n∈M

θ(C′
n) +

∑

n∈N

θ(C′
n) =

∑

n∈ω

θ(C′
n) < θ(X) + δ.

Since δ is arbitrary, it follows that θ(X) = θ(X ∩E) + θ(X\E).

For f : 2→ R we define
∫
f = 1

2f(0) + 1
2f(1).

Proposition 18.81. If fn : 2→ [0,∞) for each n ∈ ω and ∀t < 2[
∑

n∈ω fn(t) <∞], then
∑

n∈ω

∫
fn <∞, and

∑

n∈ω

∫
fn =

∫ ∑

n∈ω fn.

Proof.
∫
∑

n∈ω

fn =
1

2

∑

n∈ω

fn(0) +
1

2

∑

n∈ω

fn(1) =
∑

n∈ω

(
1

2
fn(0) +

1

2
fn(1)

)

=
∑

n∈ω

∫

fn.
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Proposition 18.82. θ(κ2) = 1.

Proof. It is obvious that κ2 ∈ Σ0, and that θ(κ2) ≤ θ0(κ2) = 1. Suppose that
θ(κ2) < 1. Choose C ∈ ωC such that 2κ =

⋃

n∈ω Cn and
∑

n∈ω θ0(Cn) < 1, with C
one-one. For each n ∈ ω let Cn = Ufn , where fn ∈ Fn(κ, 2, ω).

(1) ∀g ∈ Fn(κ, 2, ω)∃n ∈ ω[fn ⊆ g or g ⊆ fn].

In fact, let g ∈ Fn(κ, 2, ω). Let h ∈ κ2 with g ⊆ h. Choose n such that h ∈ Cn. Then
fn ⊆ h. So fn ⊆ g or g ⊆ fn.

(2) Let M = {n ∈ ω : ∀m 6= n[fm 6⊆ fn]}. Then κ2 ⊆
⋃

n∈M Ufn .

For, given g ∈ κ2 choose m ∈ ω such that g ∈ Cm. Thus fm ⊆ g. Let n ∈ ω with fn ⊆ fm
and |dmn(fn)| minimum. Then fn ⊆ g and n ∈M , as desired.

(3) |M | ≥ 2.

In fact, obviously M 6= ∅. Suppose that M = {n}. Since
∑

n∈M θ0(Cn) < 1, we have
fn 6= ∅. Then κ2 ⊆ Ufn , contradiction.

(4) M is infinite.

In fact, suppose that M is finite, and let m = sup{|dmn(fn)| : n ∈M}. Let g ∈ Fn(κ, 2, ω)
be such that |dmn(g)| = m+1. Then by (1), fn ⊆ g for all n ∈M . By (3), this contradicts
the definition of M .

Let J =
⋃

n∈M dmn(fn).

(5) J is infinite.

For, suppose that J is finite. Now M =
⋃

G⊆J{n ∈M : dmn(fn) = G}, so there is a G ⊆ J

such that {n ∈M : dmn(fn) = G} is infinite. But clearly |{n ∈M : dmn(fn) = G}| ≤ 2|G|,
contradiction.

Let i : ω → J be a bijection. For n, k ∈ ω let f ′
nk be the restriction of fn to the

domain {α ∈ dmn(fn) : ∀j < k[α 6= ij ]}, and let

αnk =
1

2|dmn(f ′
nk

)|
.

Now for n, k ∈ ω and t < 2 we define

εnk(t) =

{
αn,k+1 if ik /∈ dmn(fn),
αn,k+1 if ik ∈ dmn(fn) and fn(ik) = t,
0 otherwise.

(6)
∫
εnk = αnk for all n, k ∈ ω.

In fact,
∫

εnk =
1

2
εnk(0) +

1

2
εnk(1)

=

{
αn,k+1 if ik /∈ dmn(fn),
1
2αn,k+1 if ik ∈ dmn(fn)

= αnk.
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Now we define by induction elements tk ∈ 2 and subsets Mk of M . Let M0 = M . Note
that

αn0 =
1

2|dmn(fn)|
;

∑

n∈M

αn0 =
∑

n∈M

1

2|dmn(fn)|
=
∑

n∈M

θ0(Cn) < 1.

Now suppose that Mk and ti have been defined for all i < k, so that
∑

n∈Mk
αnk < 1.

Note that this holds for k = 0. Now

1 >
∑

n∈Mk

αnk =
∑

n∈Mk

∫

εnk by (6)

=

∫
∑

n∈Mk

εnk by Proposition 18.81.

It follows that there is a tk < 2 such that
(∑

n∈Mk
εnk
)

(tk) < 1. Let

Mk+1 = {n ∈M : ∀j < k + 1[ij /∈ dmn(fn), or ij ∈ dmn(fn) and fn(ij) = tj ]}.

If n ∈Mk+1, then εnk(tk) = αn,k+1. Hence

∑

n∈Mk+1

αn,k+1 =
∑

n∈Mk+1

εnk(tk) ≤

(
∑

n∈Mk

εnk

)

(tk) < 1.

Also, Mk+1 6= ∅. For, let g ∈ κ2 such that g(ij) = tj for all j ≤ k. Say g ∈ Cn with n ∈M .
Then fn ⊆ g. Hence ij /∈ dmn(fn), or ij ∈ dmn(fn) and fn(ij) = tj . Thus n ∈Mk+1.

This finishes the construction. Now let g ∈ κ2 be such that g(ij) = tj for all j ∈ ω.
Say g ∈ Cn with n ∈ M . Then fn ⊆ g. The domain of fn is a finite subset of J . Choose
k ∈ ω so that dmn(fn) ⊆ {ij : j < k}. Then n ∈Mk. Hence f ′

nk = ∅ and so αnk = 1. This
contradicts

∑

m∈Mk
αmk < 1.

Let ν be the tiny function with domain 2 which interchanges 0 and 1. For any f ∈ κ2 let
F (f) = ν ◦ f .

Proposition 18.83.
(i) F is a permutation of κ2.
(ii) For any f ∈ Fn(κ, 2, ω) we have F [Uf ] = Uν◦f .
(iii) For any X ⊆ κ2 we have θ(X) = θ(F [X ]).
(iv) ∀E ∈ Σ0[F [E] ∈ Σ0].

Proof. (i): Clearly F is one-one, and F (F (f)) = f for any f ∈ κ2. So (i) holds.
(ii): For any g ∈ κ2,

g ∈ F [Uf ] iff ∃h ∈ Uf [g = F (h)]

iff ∃h ∈ κ2[f ⊆ h and g = ν ◦ h]

iff ∃h ∈ κ2[ν ◦ f ⊆ ν ◦ h and g = ν ◦ h]

iff ν ◦ f ⊆ g

iff g ∈ Uν◦f
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(iii): Clearly θ0(Uf ) = θ0(F [Uf ]) for any f ∈ Fn(κ, 2, ω). Also, A ⊆
⋃

n∈ω Cn iff F [A] ⊆
⋃

n∈ω F [Cn]. So (iii) holds.
(iv): Suppose that E ∈ Σ0. Let X ⊆ κ2. Then

θ(X ∩ F [E]) + θ(X\F [E]) = θ(F [F [X ]]∩ F [E]) + θ(F [F [X ]]\F [E])

= θ(F [F [X ] ∩E]) + θ(F [F [X ]\E])

= θ(F [X ] ∩E) + θ(F [X ]\E)

= θ(E) = θ(F [E]).

Proposition 18.84. If α < κ and ε < 2, then θ(U{(α,ε)}) = 1
2 .

Proof. By Proposition 18.83 we have θ(U{(α,ε)}) = θ(U{(α,1−ε)}), so the result follows
from Proposition 18.82.

Proposition 18.85. For each f ∈ Fn(κ, 2, ω) we have Uf ∈ Σ0 and θ(Uf ) = 1
2|dmn(f)| .

Proof. We have Uf =
⋂

α∈dmn(f) U{(α,f(α))}. Note that if α ∈ dmn(f), then

U{(α,f(α))} = {g ∈ κ2 : g(α) = f(α)}; hence U{(α,f(α))} ∈ Σ0 by Proposition 18.80, and so

Uf ∈ Σ0. We prove that θ(Uf ) = 1
2|dmn(f)| by induction on |dmn(f)|. For |dmn(f)| = 1, this

holds by Proposition 18.84. Now assume that it holds for |dmn(f)| = m. For any f with
|dmn(f)| = m and α /∈ dmn(f) we have 2−|dmn(f)| = θ(Uf ) = θ(Uf∪{(α,0)})+θ(Uf∪{(α,1)}).

Since θ(Uf∪{(α,ε)}) ≤ θ0(Uf∪{(α,ε)}) = 2−|dmn(f)|−1 for each ε ∈ 2, it follows that

θ(Uf∪{(α,ε)}) = 2−|dmn(f)|−1 for each ε ∈ 2.

Proposition 18.86. If F is a finite subset of κ2, then F ∈ Σ0 and θ(F ) = 0.

Proof. This is obvious if F = ∅. For F = {f} we have F ⊆ Uf↾n for each n ∈ ω, and
so θ(F ) = 0. Then it is clear that F ∈ Σ0. Now the general case follows easily.

Proposition 18.87. If X ⊆ κ2 is measurable, then θ(X) = inf{ϕ(U) : X ⊆ U and U is
open}.

Proof. By Proposition 18.85, θ(Uf ) = θ0(Uf ) for each f ∈ Fn(κ, 2, ω). Hence by the
definition preceding Proposition 18.79,

θ(X) ≤ inf

{

θ

(
⋃

n∈ω

Ufn

)

: f ∈ ωFn(κ, 2, ω), X ⊆
⋃

n∈ω

Ufn

}

≤ inf

{
∑

{θ(Ufn) : f ∈ ωFn(κ, 2, ω), X ⊆
⋃

n∈ω

Ufn

}

= inf

{
∑

{θ0(Ufn) : f ∈ ωFn(κ, 2, ω), X ⊆
⋃

n∈ω

Ufn

}

= θ(X).
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Proposition 18.88. If X ⊆ κ2 is measurable, then there is a system 〈fnm : n,m ∈ ω〉 with
each fnm ∈ Fn(κ, 2, ω) such that X ⊆

⋂

n∈ω

⋃

m∈ω Ufnm and θ((
⋂

n∈ω

⋃

m∈ω Ufnm)\X) = 0.

Proof. By the proof of Proposition 18.87, for each n ∈ ω let 〈fnm : m ∈ ω〉 be such
that each fnm ∈ Fn(κ, 2, ω), X ⊆

⋃

m∈ω Ufnm , and θ(
⋃

m∈ω Ufnm)− θ(X) ≤ 1
n+1 . Then

∀n ∈ ω

[

X ⊆
⋂

p∈ω

⋃

m∈ω

Ufpm ⊆
⋃

m∈ω

Ufnm

]

;

∀n ∈ ω

[

θ

(
⋂

n∈ω

⋃

m∈ω

Ufnm

)

− θ(X) ≤ θ

(
⋃

m∈ω

Ufnm

)

− θ(X) ≤
1

n+ 1

]

;

θ

(
⋂

n∈ω

⋃

m∈ω

Ufnm

)

− θ(X) = 0;

θ

(
⋂

n∈ω

⋃

m∈ω

Ufnm

)

= θ

((
⋂

n∈ω

⋃

m∈ω

Ufnm

)

\X

)

+ θ(X);

θ

((
⋂

n∈ω

⋃

m∈ω

Ufnm

)

\X

)

= 0.

measure on R

For any a, b ∈ R let [a, b) = {x ∈ R : a ≤ x < b}. Note that if a ≥ b, then [a, b) = ∅. Note
that if [a, b) = [c, d), a < b, and c < d, then a = c and b = d. For any a, b ∈ R we define

λ([a, b)) =
{

0 if a ≥ b,
b− a if a < b.

A set of the form [a, b) is called a half-open interval.

Lemma 18.89. Suppose that I is a half-open interval, 〈Ji : i ∈ ω〉 is a system of half-open
intervals, and I ⊆

⋃

i∈ω Ji. Then

λ(I) ≤
∑

j∈ω

λ(Ji).

Proof. If I = ∅ this is obvious. So suppose that I 6= ∅. Then there exist real numbers
a < b such that I = [a, b). Let

A =






x ∈ [a, b] : x− a ≤

∑

j∈ω

λ(Jj ∩ (−∞, x))






.

Obviously a ∈ A, and A is bounded above by b, so c
def
= sup(A) exists. Now

c− a = sup
x∈A

(x− a)

≤ sup
x∈A

∑

j∈ω

λ(Jj ∩ (−∞, x))

≤
∑

j∈ω

λ(Jj ∩ (−∞, c)).
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Hence c ∈ A. Now suppose that c < b. Thus c ∈ [a, b), so there is a k ∈ ω such that c ∈ Jk.

Say Jk = [u, v). Then x
def
= min(v, b) > c. Then λ(Jj ∩ (−∞, c)) ≤ λ(Jj ∩ (−∞, x)) for

each j, and λ(Jk ∩ (−∞, x)) = λ(Jk ∩ (−∞, c)) + x− c. Hence

∑

j∈ω

λ(Jj ∩ (−∞, x)) ≥
∑

j∈ω

λ(Jj ∩ (−∞, c)) + x− c

≥ c− a+ x− c = x− a.

Here we used the above inequality on c − a. Thus we have shown that x ∈ A. But
x > c = sup(A), contradiction.

Hence c = b, so b ∈ A.

Now for any A ⊆ R let

θ′(A) = inf

{
∑

j∈ω

λ(Ij) : 〈Ij : j ∈ ω〉 is a sequence of half-open intervals

such that A ⊆
⋃

j∈ω

Ij

}

.

Lemma 18.90. (i) θ′ is an outer measure on R.
(ii) θ′(I) = λ(I) for every half-open interval I.

Proof. (i): Clearly (1) and (2) hold. Now for (3), suppose that 〈Ai : i ∈ ω〉 is a
sequence of subsets of X . Let B =

⋃

i∈ω Ai. For each i ∈ ω let 〈Iij : j ∈ ω〉 be a sequence
of half-open intervals such that Ai ⊆

⋃

j∈ω Iij and

∑

j∈ω

λ(Iij) ≤ θ
′(Ai) +

ε

2i
.

Note that this holds even if θ′(Ai) =∞. Let p : ω → ω × ω be a bijection.

(1) B ⊆
⋃

m∈ω

I1st(p(m)),2nd(p(m)).

In fact, if b ∈ B, choose i ∈ I such that b ∈ Ai, and then choose j ∈ ω such that b ∈ Iij .
Let m = p−1(i, j). Then

b ∈ I1st(p(m)),2nd(p(m)),

as desired in (1).

(2)
∑

m∈ω

λ(I1st(p(m)),2nd(p(m))) ≤
∑

i∈ω

∑

j∈ω

λ(Iij).

In fact, let m ∈ ω, and set

n = max({1st(p(i)) : i ≤ m} ∪ {2nd(p(i)) : i ≤ m}).
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Then
m∑

i=0

λ(I1st(p(m)),2nd(p(m))) ≤
n∑

i=0

n∑

j=0

λ(Iij) ≤
∑

i∈ω

∑

j∈ω

λ(Iij),

and (2) follows.
Hence using (1) we have

θ′

(
⋃

i∈ω

Ai

)

= θ′(B)

≤
∑

m∈ω

λ(I1st(p(m)),2nd(p(m)))

≤
∑

i∈ω

∑

j∈ω

λ(Iij)

≤
∑

i∈ω

(

θ′(Ai) +
ε

2i

)

=
∑

i∈ω

θ′(Ai) +
∑

i∈ω

ε

2i

=
∑

i∈ω

θ′(Ai) + 2ε.

Hence (3) in the definition of outer measure holds.
Clearly θ′(I) ≤ λ(I). The other inequality follows from Lemma 18.89.

Corollary 18.91. For θ′ the explicit outer measure defined above on R, and with

Σ1 = {E ⊆ R : for every A ⊆ X,

θ′(A) = θ′(A ∩ E) + θ′(A\E)},

the system (R,Σ1, θ
′ ↾ Σ1) is a measure space.

Lemma 18.92. (−∞, x) is measurable for every x ∈ R.

Proof. First we show

(1) λ(I) = λ(I ∩ (−∞, x)) + λ(I\(−∞, x)) for every half-open interval I.

This is obvious if I ⊆ (−∞, x) or I ⊆ [x,∞). So assume that neither of these cases hold.
Then with I = [a, b) we must have a < x < b. Then

λ(I ∩ (−∞, x)) + λ(I\(−∞, x)) = λ([a, x)) + λ([x, b))

= λ([a, x)) + λ([x, b))

= x− a+ b− x

= b− a

= λ([a, b))

= λ(I).
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So (1) holds.
Now for the proof of the lemma, let A ⊆ R and let ε > 0. We show that θ′(A ∩

(−∞, x)) + θ′(A\(−∞, x)) ≤ θ′(A) + ε, which will prove the lemma. By the definition
of θ′, there is a sequence 〈Ij : j ∈ ω〉 of half-open intervals such that A ⊆

⋃

j∈ω Ij and
∑

j∈ω λ(Ij) ≤ θ′(A) + ε. Now 〈Ij ∩ (−∞, x) : j ∈ ω〉 and 〈Ij\(−∞, x) : j ∈ ω〉 are
sequences of half-open intervals, A ∩ (−∞, x) ⊆

⋃

j∈ω(Ij ∩ (−∞, x)), and A\(−∞, x) ⊆
⋃

j∈ω(Ij\(−∞, x)), so

θ′(A ∩ (−∞, x)) + θ′(A\(−∞, x)) ≤
∞∑

j=0

λ(Ij ∩ (−∞, x)) +

∞∑

j=0

λ(Ij\(−∞, x))

=

∞∑

j=0

λ(Ij) ≤ θ
′(A) + ε.

Theorem 18.93. Every Borel subset of R is Lebesgue measurable.

Proof. It suffices to show that every open set is Lebesgue measurable. It then suffices
to prove the following:

(1) If U is a nonempty open subset of R, then there is a family A of half-open intervals
with rational coefficients such that U =

⋃
A .

To prove (1), let A be the set of all half-open intervals contained in U . Now take any
x ∈ U . Since U is open, there are real numbers y < z such that x ∈ (y, z) ⊆ U . Choose
rational numbers r, s such that y < r < x < s < z. Then x ∈ [r, s) ⊆ U , as desired.

Corollary 18.94. Every Lebesgue null set is Lebesgue measurable. Every singleton is a
null set, and every countable set is a null set.

Lemma 18.95. Suppose that µ is a measure and E, F,G are µ-measurable. Then

µ(E△F ) ≤ µ(E△G) + µ(G△F ).

Proof.

µ(E△F ) = µ(E\F ) + µ(F\E)

= µ((E\F ) ∩G) + µ((E\F )\G) + µ(F\E) ∩G) + µ((F\E)\G)

≤ µ(G\F ) + µ(E\G) + µ(G\E) + µ(F\G)

= µ(E△G) + µ(G△F ).

Lemma 18.96. If E is Lebesgue measurable with finite measure, then for any ε > 0
there is an open set U ⊇ E such that θ′(E) ≤ θ′(U) ≤ θ′(E) + ε. Moreover, there is a
system 〈Kj : j < ω〉 of open intervals such that U =

⋃

j<ωKj and θ′(U) ≤
∑

j<ω θ
′(Kj) ≤

θ′(E) + ε.
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Proof. By the basic definition of Lebesgue measure,

0 = θ′(E) = inf

{
∑

j∈ω

θ′(Ij) : 〈Ij : j ∈ ω〉 is a sequence of half-open intervals

such that A ⊆
⋃

j∈ω

Ij

}

.

Hence we can choose a sequence 〈Ij : j ∈ ω〉 of half-open intervals such that E ⊆
⋃

j∈ω Ij
and

θ′




⋃

j∈ω

Ij



 ≤
∑

j∈ω

θ′(Ij) ≤ θ
′(E) +

ε

2
.

Write Ij = [aj, bj) with aj < bj . Define

Kj =
(

aj −
ε

2j+2
, bj

)

; then

E ⊆
⋃

j∈ω

Kj and

θ′




⋃

j∈ω

Kj



 ≤
∑

j∈ω

θ′(Kj)

=
∑

j∈ω

( ε

2j+2
+ θ′(Ij)

)

=
∑

j∈ω

ε

2j+2
+
∑

j∈ω

θ′(Ij)

≤
ε

2
+ θ′(E) +

ε

2
= θ′(E) + ε.

Corollary 18.97. (i) If A is Lebesgue measurable and θ′(A) is finite, then θ′(A) =
inf{θ′(U) : U open, A ⊆ U}.

(ii) If A is Lebesgue measurable with finite measure, then θ′(A) = sup{θ′(C) : C
closed, C ⊆ A}.

(iii) If A is measurable and θ′(A) =∞, then sup{θ′(C) : C closed, C ⊆ A} =∞.

Proof. Only (iii) needs a proof. Let ε > 0. For each n ∈ ω let

a2n = n;

b2n = n+ 1;

a2n+1 = −n− 1;

b2n+1 = −n.
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For each n ∈ ω let Cn be a closed subset of [an, bn) ∩ A such that

θ′([an, bn) ∩A\Cn) <
ε

2n
.

Then

θ′(A) =
∑

n∈ω

θ′([an, bn) ∩ A)

=
∞

lim
n=0

θ′([[a0, b0) ∩A] ∪ . . . ∪ [[an, bn) ∩A])

=
∞

lim
n=0

θ′([[a0, b0) ∩A\C0] ∪ . . . ∪ [[an, bn) ∩ A\Cn])

+ θ′(C0 ∪ . . . ∪ Cn)

=
∞

lim
n=0

θ′([[a0, b0) ∩A\C0] ∪ . . . ∪ [[an, bn) ∩ A\Cn])

+ lim
n→∞

θ′(C0 ∪ . . . ∪ Cn)

= ε+ lim
n→∞

θ′(C0 ∪ . . . ∪ Cn),

as desired.

The following is an elementary lemma concerning the topology of the reals.

Lemma 18.98. Suppose that U is a bounded open set.
(i) There is a collection A of pairwise disjoint open intervals such that U =

⋃
A .

(ii) There exist a countable subset C of R and a collection B of pairwise disjoint open
intervals with rational endpoints such that U = C ∪

⋃
B and C ∩

⋃
B = ∅.

Proof. (i): For x, y ∈ R, define x ≡ y iff one of the following conditions holds: (1)
x = y; (2) x < y and [x, y] ⊆ U ; (3) y < x and [y, x] ⊆ U . Clearly ≡ is an equivalence
relation on R. If x < z < y and x ≡ y, then obviously x ≡ z. Thus each equivalence class
is convex. If C is an equivalence class with more than one element, then it must be an open
interval (a, b), since if for example the left endpoint a is in C then some real to the left
of a must be in C, contradiction. It follows now that the collection A of all equivalence
classes with more than one element is as desired in (i).

(ii): First note that the set A of (i) must be countable. Now take any (a, b) ∈ A ,
a < b. Let c0 < c1 < · · · < cm < · · · be rational numbers in (a, b) which converge to
b, and c0 = d0 > d1 > · · · > dm > · · · rational numbers which converge to a. Then let
Lab2i = (ci, ci+1) and Lab2i+1 = (di+1, di) for all i ∈ ω. Let Dab = {ci : i < ω} ∪ {di : i < ω}.
Define B = {Labi : (a, b) ∈ A , i < ω} and C =

⋃

(a,b)∈A
Dab. Clearly this works for

(ii).

Lemma 18.99. If E is Lebesgue measurable and ε > 0, then there is an m ∈ ω and a
sequence 〈Ii : i < m〉 of open intervals with rational endpoints such that θ′

(
E△

⋃

i<m Ii
)
≤

ε.
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Proof. By Corollary 18.97, let U ⊇ E be open such that θ′(E) ≤ θ′(U) ≤ θ′(E) + ε
2 .

Then choose C and B as above. Let W =
⋃

B. So θ′(W ) =
∑

I∈B
θ′(I). Then choose

m ∈ ω and 〈Ii : i < m〉 elements of B such that
∑

I∈B
θ′(I) −

∑

i<m θ
′(Ii) ≤

ε
2 . Now

θ′(W ) =
∑

I∈B
θ′(I) and θ′(

⋃

i<m Ii) =
∑

i<m θ
′(Ii). Let V =

⋃

i<m Ii. Thus θ′(W ) −
θ′(V ) ≤ ε

2 . Hence V ⊆W ⊆ U , and

θ′(E△V ) ≤ θ′(E△U) + θ′(U△W ) + θ′(W△V )

= θ′(U\E) + θ′(C) + θ′(W\V )

= θ′(U)− θ′(E) + θ′(W )− θ′(V )

≤
ε

2
+
ε

2
= ε.

Lemma 18.100. (i) θ′([a, b)) = b− a if a < b.
(ii) θ′([a, b]) = b− a if a < b.

Proof. (i) holds by Lemma 18.90(ii). Then for a < b, θ′([a, b]) = θ′([a, b)) +θ′({b}) =
ϕ′([a, b)) = b− 1 using Corollary 18.94.

Connections between different measures

Lemma 18.101. If (X,Σ, µ) is a measure space and Y ⊆ X, then

(Y, {A ∩ Y : A ∈ Σ}, µ ↾ {A ∩ Y : A ∈ Σ})

is a measure space.

At this point we have two important measure spaces: (ω2,Σ0, θ) and (R,Σ1, θ
′). We now

define Σ2 = {A ∩ Ω : A ∈ Σ0} and θ2 = θ ↾ {A ∩Ω : A ∈ Σ0}. Thus

Corollary 18.102. (Ω,Σ2, θ2) is a measure space.

Let Σ3 = {A ∩ [0, 1] : A ∈ Σ1} and θ3 = θ′ ↾ {A ∩ [0, 1] : A ∈ Σ1}.

Corollary 18.103. ([0, 1],Σ3, θ3) is a measure space.

If (X,Σ, µ) is a measure space, then A ∈ Σ is an atom iff µ(A) > 0. and for all B ∈ Σ
with B ⊆ A, either B or A\B has measure 0.

Let λ be the usual measure on ω2 and µ Lebesgue measure on [0, 1]. Consider the measure
spaces (ω2,Σ0, λ) and ([0, 1],Σ1, µ). For each x ∈ ω2 let ϕ(x) =

∑∞
i=0(2−i−1xi).

Theorem 18.104. There is a bijection ϕ̃ : ω2 → [0, 1] which is equal to ϕ except at
countably many points, and any such bijection is an isomorphism from (ω2,Σ0, λ) to
([0, 1],Σ1, µ). That is:

(a) ∀X ⊆ ω2[X ∈ Σ0 iff ϕ̃[X ] ∈ Σ1];
(b) ∀X ⊆ [0, 1][X ∈ Σ1 iff ϕ̃−1[X ] ∈ Σ0];
(c) ∀X ∈ Σ0[λ(X) = µ(ϕ̃[X ])];
(d) ∀X ∈ Σ1[µ(X) = λ(ϕ̃−1[X ])].
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Proof. Let H = {x ∈ ω2 : ∃m ∈ ω∀i ≥ m[xi = xm]} and H ′ = {2−nk : n ∈ ω, k ≤
2n}. Then H and H ′ are countable.

(1) ϕ ↾ (ω2\H) is a bijection from ω2\H onto [0, 1]\H ′.

For, first we show that ϕ ↾ (ω2\H) maps into [0, 1]\H ′. Let x ∈ (ω2\H). Thus

(2) ∀m ∈ ω∃i > m[xi 6= xm].

It follows that ϕ(x) 6= 1, for by (2) there is a j such that xj = 0, and then

ϕ(x) =
∞∑

i=0

(2−i−1xi) ≤

j−1
∑

i=0

(2−i−1xi) +
∞∑

i=j+1

2−i−1 =

j−1
∑

i=0

(2−i−1xi) + 2−j−1 < 1.

Suppose that ϕ(x) ∈ H ′. Thus there exist n ∈ ω and k < 2n such that

(3)

∞∑

i=0

(2−i−1xi) = 2−nk.

Since ϕ(x) 6= 1, we can write 2−nk =
∑n−1

i=0 (2−i−1yi) with each yi ∈ 2. Thus by (3) we
have

(4)
∞∑

i=0

(2−i−1xi) =
n−1∑

i=0

(2−i−1yi).

Now we claim that y ⊆ x. For, suppose not, and let j < n be minimum such that xj 6= yj .
Hence by (4) we have

∞∑

i=j

(2−i−1xi) =

n−1∑

i=j

(2−i−1yi).

Case 1. xj = 0 and yj = 1. By (2) choose k > j so that xk = 1 and choose l > k so
that xl = 0. Then

∞∑

i=j

(2−i−1xi) ≤
l−1∑

i=j

(2−i−1xi) +

∞∑

i=l+1

2−i−1 =

l−1∑

i=j

(2−i−1xi) + 2−l−1

<

j−1
∑

i=0

(2−i−1xi) +

∞∑

i=j+1

2−i−1 ≤
n−1∑

i=j

(2−i−1yi),

contradiction.
Case 2. xj = 1 and yj = 0. Then

n−1∑

i=j

(2−i−1yi) ≤
n∑

i=j+1

2−i−1 <

∞∑

i=j+1

2−i−1 = 2−j−1 ≤
∞∑

i=j

(2−i−1xi),
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contradiction.
Thus y ⊆ x. Now by (2) there is a j ≥ n such that xj = 1. Hence

∞∑

i=j

(2−i−1xi) >

n−1∑

i=j

(2−i−1yi),

contradiction.
Thus ϕ(x) /∈ H ′.
To show that ϕ ↾ (ω2\H) maps onto [0, 1]\H ′, let t ∈ [0, 1]\H ′. Since 1 ∈ H ′, we can

write t =
∑∞
i=0(2−i−1xi) with x not eventually 1. We claim that x /∈ H. For, suppose that

x ∈ H. Say m ∈ ω and ∀i > m[xi = xm]. Since x is not eventually 1, we have xm = 0.
Since t /∈ H ′, we have t 6= 0, so x is not the all 0 sequence. Choose n maximum such that
xn 6= 0. Thus t =

∑n
i=0(2−i−1xi). Hence

2n+1t = 2n+12−1x0 + 2n+12−2x1 + · · ·+ x0

= 2nx0 + 2n−1x1 + · · ·+ x0.

Hence with k = 2nx0 + 2n−1x1 + · · · + x0 we have k ≤ 2n+1 and t = 2−n−1k ∈ H ′,
contradiction. So x /∈ H. Clearly ϕ(x) = t.

For ϕ ↾ (ω2\H) one-one, suppose that x, y ∈ (ω2\H) and x 6= y. Let m be minimum
such that xm 6= ym. By symmetry, say xm = 0 and ym = 1. Choose n > m so that xn = 0;
this is possible since x /∈ H. Then

∞∑

i=0

(2−i−1xi) ≤
n−1∑

i=0

(2−i−1xi) +
∞∑

i=n+1

2−i−1 =
n−1∑

i=0

(2−i−1xi) + 2−n <
n−1∑

i=0

(2−i−1yi).

This finishes the proof of (1).
Now H and H ′ are countable and infinite. Hence there is an extension of ϕ ↾ (ω2\H)

to a bijection of ω2 onto [0, 1]. Let ϕ̃ be any bijection of ω2 onto [0, 1] which is equal to
ϕ except for countably many points. Let M be the countable set {x ∈ ω2 : ϕ(x) 6= ϕ̃(x)}
and let N be the countable set ϕ[M ] ∪ ϕ̃[M ].

(5) ∀A ⊆ ω2[ϕ[A]△ϕ̃[A] ⊆ N ].

In fact, if b ∈ ϕ[A]\ϕ̃[A], then there is an x ∈ A such that b = ϕ(x). Since b /∈ ϕ̃[A], we
have ϕ̃(x) 6= b. Hence x ∈ M , so b ∈ ϕ[M ] ⊆ N . Now suppose that b ∈ ϕ̃[A]\ϕ[A]. Say
b = ϕ̃(x) with x ∈ A. Since b /∈ ϕ[A], we have ϕ(x) 6= b. So x ∈M and b ∈ ϕ̃[M ] ⊆ N . So
(5) holds.

(6) If t ∈ [0, 1], then λ(ϕ̃−1[{t}]) = 0 and hence λ(ϕ̃−1[{t}]) = µ({t}).

We have ϕ̃−1[{t}] = {ϕ̃−1(t)}, so λ(ϕ̃−1[{t}]) = 0 by Proposition 18.86. µ({t}) = 0 by
Corollary 18.94.

(7) If n ∈ ω, k < 2n, and E = [2−nk, 2−n(k + 1)], then ϕ̃−1[E] ∈ Σ0 and λ(ϕ̃−1[E]) =
µ(E) = 2−n.
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µ(E) = 2−n by Lemma 18.100. Further,

ϕ−1[E] =

{

x ∈ ω2 : 2−nk ≤
∞∑

i=0

(2−i−1xi) ≤ 2−n(k + 1)

}

.

Let k = 2n−1y0 + 2n−2y1 + · · · + yn−1 with each yi ∈ 2. Then 2−nk = 2−1y0 + 2−2y1 +
· · ·+ 2−nyn−1 =

∑n−1
i=0 (2−i−1yi).

Case 1. yn−1 = 0. Then k + 1 =
∑n−2
i=0 (2n−i−1yi) + 1 and so 2−n(k + 1) =

∑n−2
i=0 (2−i−1yi) + 2−n.

(8) If x ∈ ϕ−1[E] and x is not eventually 1, then ∀i < n[xi = yi].

For, suppose that j < n is minimum such that xi 6= yi. Choose l > k > j with xl = xk = 0.
Subcase 1.1. xj = 0, yj = 1. Then

∞∑

i=0

(2−i−1xi) ≤
l−1∑

i=0

(2−i−1xi) +
∞∑

i=l+1

2−i−1 =
l−1∑

i=0

(2−i−1xi) + 2−l−1

<

j−1
∑

i=0

(2−i−1xi) + 2−j−1 ≤
n−1∑

i=0

(2−i−1yi) = 2−nk.

This contradicts x ∈ ϕ−1[E].
Subcase 1.2. xj = 1, yj = 0. Then

2−n(k + 1) =

n−2∑

i=0

(2−i−1yi) + 2−n <

∞∑

i=0

(2−i−1xi),

contradiction.
Thus (8) holds.

(9) If x ∈ ω2 and ∀i < n[xi = yi], then x ∈ ϕ−1[E].

In fact, assume that x ∈ ω2 and ∀i < n[xi = yi]. Then

2−nk =

n−1∑

i=0

(2−i−1yi) ≤
∞∑

i=0

(2−i−1xi)

≤
n−1∑

i=0

(2−i−1xi) +
∞∑

i=n+1

2−i−1 =
n−2∑

i=0

(2−i−1xi) + 2−n = 2−n(k + 1).

This proves (9).
Case 2. yn−1 = 1 and there is a j < n − 1 such that yj = 0. Take the greatest such

j. Then k + 1 = 2n−1y0 + 2n−2y1 + · · · + 2n−jyj−1 + 2n−j−1, and hence 2−n(k + 1) =
∑j−1
i=0 (2−i−1yi) + 2−j−1. Now suppose that x ∈ ϕ−1[E]. Again we claim that (8) and (9)
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hold. For (8), suppose that x ∈ ϕ−1[E], x is not eventually 1, and l < n is minimum such
that xl 6= yl. Choose t > s > l with xt = xs = 0.

Subcase 2.1. xl = 0, yl = 1. Then

∞∑

i=0

(2−i−1xi) ≤
t−1∑

i=0

(2−i−1xi) +
∞∑

i=t+1

2−i−1 =
t−1∑

i=0

(2−i−1xi) + 2−t−1

<

l−1∑

i=0

(2−i−1xi) + 2−l−1 ≤
n−1∑

i=0

(2−i−1yi) = 2−nk.

This contradicts x ∈ ϕ−1[E].
Subcase 2.2. xl = 1, yl = 0. Then l ≤ j, and

2−n(k + 1) =

j−1
∑

i=0

(2−i−1yi) + 2−j−1 =

l−1∑

i=0

(2−i−1yi) +

j−1
∑

i=l

(2−i−1yi) + 2−j−1

<
l−1∑

i=0

(2−i−1yi) +
∞∑

i=l+1

2−i−1 =
l−1∑

i=0

(2−i−1xi) + 2−i−1 ≤
∞∑

i=0

(2−i−1xi,

contradiction.
Hence (8) holds.
Now for (9), assume that x ∈ ω2 and ∀i < n[xi = yi]. Then

2−nk =

n−1∑

i=0

(2−i−1yi) ≤
∞∑

i=0

(2−i−1xi)

≤

j−1
∑

i=0

(2−i−1xi) +

∞∑

i=j+1

2−i−1 =

j−1
∑

i=0

(2−i−1yi) + 2−j−1 = 2−n(k + 1).

So (9) holds. This finishes Case 2.
Case 3. ∀i < n[yi = 1]. Then k + 1 = 2n and 2−nk = 1. To check (8), suppose that

x ∈ ϕ−1[E], x is not eventually 1, and j is minimum such that xj 6= yj . Take s > t > j
with xs = xt = 0. Then xj = 0, and

∞∑

i=0

(2−i−1xi) ≤
s−1∑

i=0

(2−i−1xi) +
∞∑

i=s+1

2−i−1 =
s−1∑

i=0

(2−i−1xi) + 2−s−1 <
n−1∑

i=0

(2−i−1yi),

contradiction. Thus (8) holds.
For (9), assume that x ∈ ω2 and ∀i < n[xi = yi]. Clearly x ∈ ϕ−1[E].
So (8) and (9) hold in all cases.
Now let S = {x ∈ ω2 : x is eventually 1}. So S is countable. By (8) we have

ϕ−1[E]\S ⊆ {x ∈ ω2 : x ↾ n = y ↾ n}, and by (9) we have {x ∈ ω2 : x ↾ n = y ↾ n} ⊆
ϕ−1[E]. Let T = ϕ−1[E]\{x ∈ ω2 : x ↾ n = y ↾ n}. Now {x ∈ ω2 : x ↾ n = y ↾ n} ∈ Σ0
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and λ({x ∈ ω2 : x ↾ n = y ↾ n}) = 2−n by Proposition 18.85. Note that T ⊆ S, so T is
countable. Since ϕ−1[E] = {x ∈ ω2 : x ↾ n = y ↾ n} ∪ T , it follows that ϕ−1[E] ∈ Σ0 and
λ(ϕ−1[E]) = 2−n. Since ϕ−1[E] = (ϕ−1[E] ∩M) ∪ (ϕ−1[E]\M) and M is countable, it
follows that (ϕ−1[E]\M) ∈ Σ0 and λ(ϕ−1[E]\M) = 2−n. Clearly ϕ̃−1[E]\M = ϕ−1[E]\M ,
so (ϕ̃−1[E]\M) ∈ Σ0 and λ(ϕ̃−1[E]\M) = 2−n. Hence ϕ̃−1[E] ∈ Σ0 and λ(ϕ̃−1[E]) = 2−n.
This proves (7).

(10) If n ∈ ω and k < l ≤ 2n, and E = [2−nk, 2−nl], then E ∈ Σ0, and λ(ϕ̃−1[E]) =
2−n(l − k) = µ(E).

This is true by (7) since E =
⋃

k≤i<l[2
−ni, 2−n(i+ 1)]\{2−ni : 0 < i < l}.

(11) Suppose that 0 ≤ t < u ≤ 1 and E = [t, u). Then ϕ̃−1[E]) ∈ Σ0, and λ(ϕ̃−1[E]) =
u− t = µ(E).

In fact, for each n ∈ ω let kn = ⌊2nt⌋ and ln = ⌊2nu⌋. Then kn ≤ 2nt < kn + 1 and
ln ≤ 2nu < ln + 1; hence 2−nkn ≤ t < 2−nkn + 2−n and 2−nln ≤ u < 2−nln + 2−n. It
follows that

⋂

n∈ω[2−nkn, 2
−n(ln + 1)] = [t, u]. Hence by (10), ϕ̃−1[E] = ϕ̃−1[[t, u]] =

⋂

n∈ω ϕ̃
−1[[2−nkn, 2

−n(ln + 1)]] ∈ Σ0. Also, if m < n then [2−nkn, 2
−n(ln + 1)] ⊆

[2−mkm, 2
−m(lm + 1)]], hence ϕ̃−1[[2−nkn, 2

−n(ln + 1)]] ⊆ ϕ̃−1[[2−mkm, 2
−m(lm + 1)]]].

Hence by Proposition 18.76(iv) we have λ(ϕ̃−1[E]) = u− t. Clearly µ(E) = u− t.

Now for each X ⊆ ω2 define

λ∗(X) = inf{λ(E) : X ⊆ E ∈ Σ0}.

(12) For every X ⊆ ω2 there is an E ∈ Σ0 such that X ⊆ E and λ∗(X) = λ(E).

In fact, suppose that X ⊆ ω2. For each n ∈ ω choose En ∈ Σ0 such that X ⊆ En and

λ(En) ≤ λ∗(X) + 1
2n . Then E

def
=
⋂

n∈ω En ∈ Σ0, X ⊆ E, and

λ∗(X) ≤ λ(E) ≤ inf
n∈ω

λ(En) ≤ λ∗(X),

proving (12).

(13) If E ∈ Σ1, then λ∗(ϕ̃−1[E]) ≤ µ(E) and there is a V ∈ Σ0 such that ϕ̃−1[E] ⊆ V and
λ(V ) ≤ µ(E).

To prove (13), assume that E ∈ Σ1. By the basic definition of Lebesgue measure,

µ(E\{1}) = inf

{
∑

n∈ω

µ(In) : 〈In : n ∈ ω〉 is a sequence of half-open

subintervals of [0, 1] such that E ⊆
⋃

n∈ω

In

}

Hence for every ε > 0 there is a system 〈In : n ∈ ω〉 of half-open subintervals of [0, 1] such
that E ⊆

⋃

n∈ω In and
∑

n∈ω µ(In) ≤ µ(E\{1}) + ε. Hence

ϕ̃−1[E] ⊆ {ϕ̃−1[{1}] ∪
⋃

n∈ω

ϕ̃−1[In],
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and hence

λ∗(ϕ̃−1[E]) ≤ λ

(
⋃

n∈ω

ϕ̃−1[In]

)

≤
∑

n∈ω

λ(ϕ̃−1[In]) =
∑

n∈ω

µ(In) ≤ µ(E) + ε.

Since ε > 0 is arbitrary, it follows that λ∗(ϕ̃−1[E]) ≤ µ(E). By (12) there is a V ∈ Σ0

such that ϕ̃−1[E] ⊆ V and λ∗(ϕ̃−1[E]) = λ(V ). So (13) holds.

(14) If E ∈ Σ1, then ϕ̃−1[E] ∈ Σ0 and λ(ϕ̃−1[E]) = µ(E).

For, by symmetry with (13) there is a V ′ ∈ Σ0 such that ϕ̃−1[[0, 1]\E] ⊆ V ′ and λ(V ′) ≤
µ([0, 1]\E). Then ω2\ϕ̃−1[E] = ϕ̃−1[[0, 1]\E] ⊆ V ′ and ϕ̃−1[E] ⊆ V , so V ∪V ′ = ω2. Now

λ(V ) + λ(V ′) ≤ µ(E) + µ([0, 1]\E) = 1 ≤ λ(V ∪ V ′) ≤ λ(V ) + λ(V ′).

So λ(V ) + λ(V ′) = λ(V ∪ V ′). Hence

λ(V ) + λ(V ′) = λ(V \V ′) + λ(V ∩ V ′) + λ(V ′\V ) + λ(V ∩ V ′)

= λ(V ∪ V ′) + λ(V ∩ V ′) = λ(V ) + λ(V ′) + λ(V ∩ V ′).

It follows that λ(V ∩ V ′) = 0. In particular, V ∩ V ′ ∩ ϕ̃−1[E] ∈ Σ0. Now ϕ̃−1[[0, 1]\E] =
ϕ̃−1[[0, 1]]\ϕ̃−1[E] = (ω2\ϕ̃−1[E]) ⊆ V ′, so (ω2\V ′) ⊆ ϕ̃−1[E]. Also, ϕ̃−1[E] ⊆ V . Hence
ϕ̃−1[E] = (ω2\V ′) ∪ (V ′ ∩ ϕ̃−1[E] = (ω2)\V ′) ∪ (V ′ ∩ V ∩ ϕ̃−1[E]) ∈ Σ0.

Now

λ(ϕ̃−1[E]) ≤ λ(V ) ≤ µ(E) and 1− λ(ϕ̃−1[E]) ≤ λ(V ′) ≤ 1− µ(E),

so λ(ϕ̃−1[E]) = µ(E). Thus (14) holds.

(15) If n ∈ ω, ε ∈ n+12, t =
∑n
i=0(2−i−1εi), and C = {x ∈ ω2 : x ↾ (n + 1) = ε}, then

ϕ[C] = [t, t+ 2−n−1].

For, first let x ∈ C. Then

t =
n∑

i=0

(2−i−1εi) ≤
∞∑

i=0

(2−i−1xi) ≤
n∑

i=0

(2−i−1εi) +
∞∑

i=n+1

2−i−1 = t+ 2−n−1.

Thus ϕ(x) ∈ [t, t+ 2−n−1].
Second, suppose that u ∈ [t, t+ 2−n−1].
Case 1. εn = 0. Let u =

∑∞
i=0(2−i−1xi), with x not eventually 1.

(16) x ↾ (n+ 1) = ε.

For, suppose that j is minimum such that xj 6= εj . Choose s > t > j such that xs = xt = 0.
Subcase 2.1. xj = 0 and εj = 1. Then

u =

∞∑

i=0

(2−i−1xi) ≤
s−1∑

i=0

(2−i−1xi) +

∞∑

i=s+1

2−i−1 <

n∑

i=0

(2−i−1εi) = t,
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contradiction.
Subcase 2.2. xj = 1 and εj = 0. Then

t+ 2n−1 <
∞∑

i=0

(2−i−1xi) = u,

contradiction.
Thus (16) holds, as desired in Case 1.
Case 2. ε is the all 1 sequence, and u = t+ 2−n−1. Then u = 1. Let x = 〈1 : i ∈ ω〉.

Then
∑∞
i=0(2−i−1xi) = 1. Again (16) holds.

Case 3. ε is the all 1 sequence, and u < t + 2−n−1. Let u =
∑∞
i=0(2−i−1xi), with x

not eventually 1. We claim that (16) holds again. Otherwise there is a j ≤ n such that
xj = 0. Then u =

∑∞
i=0(2−i−1xi) <

∑n
i=0 2−i−1 = t, contradiction.

Case 4. εn = 1, ε not the all 1 sequence, u < t + 2−n−1. Let u =
∑∞
i=0(2−i−1xi),

with x not eventually 1. We claim that (16) holds. Otherwise let j be minimum such that
xj 6= εj .

Subcase 4.1. xj = 0 and εj = 1. Then

u =
∞∑

i=0

(2−i−1xi) <
n∑

i=0

(2−i−1εi) = t,

contradiction.
Subcase 4.2. xj = 1 and εj = 0. Then

t+ 2−n−1 =

n∑

i=0

(2−i−1εi) + 2−n−1

=

j−1
∑

i=0

(2−i−1εi) +
n∑

i=j+1

(2−i−1εi) + 2n−1

≤

j−1
∑

i=0

(2−i−1εi) +

n∑

i=j+1

2−i−1 + 2n−1

=

j−1
∑

i=0

(2−i−1εi) + 2j−1

≤
∞∑

i=0

(2−i−1xi) = u,

contradiction.
Case 5. εn = 1, ε not the all 1 sequence, u = t+ 2−n−1. Let x = ε⌢〈1 : i ∈ ω〉. Then

with j maximum such that εj = 0 we have

u = t+ 2−n−1 =

j−1
∑

i=0

(2−i−1εi) + 2−j−1 =
∞∑

i=0

(2−i−1xi).
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This finishes the proof of (15).

(17) If n ∈ ω, ε ∈ n+12, t =
∑n
i=0(2−i−1εi), and C = {x ∈ ω2 : x ↾ (n + 1) = ε}, then

µ(ϕ[C]) = λ(C) = 2−n−1.

This is clear from (15).

(18) If n ∈ ω, ε ∈ n+12, t =
∑n
i=0(2−i−1εi), and C = {x ∈ ω2 : x ↾ (n + 1) = ε}, then

µ(ϕ̃[C]) = λ(C) = 2−n−1.

Recall that M is countable, andN = ϕ[M ]∪ϕ̃[M ] is countable. Clearly ϕ[C]\N = ϕ̃[C]\N .
Hence

λ(C) = µ(ϕ[C]) = µ(ϕ[C] ∩N) + µ(ϕ[C]\N)

= µ(ϕ[C]\N) = µ(ϕ̃[C]\N)

= µ(ϕ̃[C]\N) + µ(ϕ̃[C] ∩N) = µ(ϕ̃[C]).

(19) If F ∈ [ω]<ω, h ∈ F 2, and C = {x ∈ ω2 : h ⊆ x}, then µ(ϕ̃[C]) = λ(C).

In fact, choose m ∈ ω such that F ⊆ m. Then

C =
⋃

{{x ∈ ω2 : k ⊆ x} : k ∈ m2 and h ⊆ k}.

For each k ∈ m2 such that h ⊆ k let Dk = {x ∈ ω2 : k ⊆ x}. Note that Dk ∩ Dl = ∅
when k 6= l. Let I = {k ∈ m2 : h ⊆ k} Note that |{k ∈ m2 : h ⊆ k}| = 2m−|F |. Now
λ(C) = 2−|F | by Proposition 18.85 and by (18),

µ(ϕ̃[C]) = µ

(
⋃

k∈I

ϕ̃[Dk]

)

=
∑

k∈I

2−m = 2−m2m−|F | = 2−|F |.

So (19) holds.

Now for each X ⊆ [0, 1] define

µ∗(X) = inf{µ(E) : X ⊆ E ∈ Σ1}.

(20) For every X ⊆ [0, 1] there is an E ∈ Σ1 such that X ⊆ E and µ∗(X) = µ(E).

In fact, suppose that X ⊆ [0, 1]. For each n ∈ ω choose En ∈ Σ1 such that X ⊆ En and

µ(E) ≤ µ∗(X) + 1
2n . Then E

def
=
⋂

n∈ω En ∈ Σ1, X ⊆ E, and

µ∗(X) ≤ λ(E) ≤ inf
n∈ω

µ(En) ≤ µ∗(X),

proving (20).

(21) If E ∈ Σ0, then µ∗(ϕ̃[E]) ≤ λ(E) and there is a V ∈ Σ1 such that ϕ̃[E] ⊆ V and
µ(V ) ≤ λ(E).
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To prove (21), assume that E ∈ Σ0. By the basic definition of measure on ω2,

λ(E) = inf

{
∑

n∈ω

θ0(Ufn) : E ⊆
⋃

n∈ω

Ufn

}

.

(For θ0 see before Proposition 18.29.) Hence for every ε > 0 there is a system 〈fn : n ∈ ω〉
such that E ⊆

⋃

n∈ω Ufn and
∑

n∈ω λ(Ufn) ≤ λ(E) + ε. Hence

ϕ̃[E] ⊆
⋃

n∈ω

ϕ̃[Ufn ],

and hence, using (19),

µ∗(ϕ̃[E]) ≤ µ

(
⋃

n∈ω

ϕ̃[Ufn ]

)

≤
∑

n∈ω

µ(ϕ̃[Ufn ]) =
∑

n∈ω

λ(Ufn) ≤ λ(E) + ε.

Since ε > 0 is arbitrary, it follows that µ∗(ϕ̃[E]) ≤ λ(E). By (20) there is a V ∈ Σ1 such
that ϕ̃[E] ⊆ V and µ∗(ϕ̃[E]) = µ(V ). So (21) holds.

(22) If E ∈ Σ0, then ϕ̃[E] ∈ Σ1 and µ(ϕ̃[E]) = λ(E).

For, by symmetry with (21) there is a V ′ ∈ Σ1 such that ϕ̃[ω2\E] ⊆ V ′ and µ(V ′) ≤
λ(ω2\E). Then V ∪ V ′ = [0, 1] and

µ(V ) + µ(V ′) ≤ λ(E) + λ(ω2\E) = 1 ≤ µ(V ∪ V ′) ≤ µ(V ) + µ(V ′).

So µ(V ) + µ(V ′) = µ(V ∪ V ′). Hence

µ(V ) + µ(V ′) = µ(V \V ′) + µ(V ∩ V ′) + µ(V ′\V ) + µ(V ∩ V ′)

= µ(V ∪ V ′) + µ(V ∩ V ′) = µ(V ) + µ(V ′) + µ(V ∩ V ′).

It follows that µ(V ∩ V ′) = 0. In particular, V ∩ V ′ ∩ ϕ̃[E] ∈ Σ1. Now ϕ̃[ω2\E] =
ϕ̃[ω2]\ϕ̃[E] = [0, 1]\ϕ̃[E] ⊆ V ′, so [0, 1]\V ′ ⊆ ϕ̃[E]. Hence ϕ̃[E] = ([0, 1]\V ′)∪(V ′∩ϕ̃[E]) =
[0, 1]\V ′) ∪ (V ′ ∩ V ∩ ϕ̃[E]) ∈ Σ1.

Now

µ(ϕ̃[E]) ≤ µ(V ) ≤ µ(E) and 1− µ(ϕ̃[E]) ≤ µ(V ′) ≤ 1− µ(E),

so µ(ϕ̃[E]) = µ(E). Thus (22) holds.
Now (14) gives (d) of Theorem 18.104 and ⇒ of (b). (22) gives (c) and ⇒ in (a). For

⇐ of (a), suppose that X ⊆ ω2 and ϕ̃[X ] ∈ Σ1. By ⇒ of (b), X = ϕ̃−1[ϕ̃[X ] ∈ Σ0. For ⇐
of (b), suppose that X ⊆ [0, 1] and ϕ̃−1[X ] ∈ Σ0. Then by (a), X = ϕ̃[ϕ̃−1[X ]] ∈ Σ0 ∈ Σ1.

Lemma 18.105. If E ⊆P(Σ0), then ϕ̃ [
⋃
E] =

⋃

A∈E ϕ̃[A].
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Proposition 18.106. add(nullω2) = add(null[0,1]).

Proof. First let κ = add(nullω2), and let E ∈ [nullω2]κ with
⋃
E /∈ nullω2. For

each A ∈ E let A′ = ϕ̃[A], and let E′ = {A′ : A ∈ E}. Then by Theorem 18.104(c),
E′ ⊆P(null[0,1]). Suppose that

⋃
E′ ∈ null[0,1]. By Theorem 18.104(d),

⋃

E =
⋃

A∈E

ϕ̃−1[ϕ̃[A]] =
⋃

B∈E′

ϕ̃−1[B] = ϕ̃−1
[⋃

E′
]

∈ nullω2,

contradiction.
Second let κ = add(null[0,1]), and let E ∈ [null[0,1]]

κ with
⋃
E /∈ null[0,1]. For each

A ∈ E let A′ = ϕ̃−1[A]. Thus A′ ∈ nullω2 by Theorem 18.104(d). Continue as in the first
case.

Proposition 18.107. cov(nullω2) = cov(null[0,1]).

Proof. First let κ = cov(nullω2), and let E ∈ [nullω2]κ with ω2 =
⋃
E.

[0, 1] = ϕ̃[ω2] = ϕ̃
[⋃

E
]

=
⋃

A∈E

ϕ̃[A],

and each ϕ̃[A] ∈ null[0,1].
The other direction is similar.

Proposition 18.108. non(nullω2) = non(null[0,1]).

Proof. First let κ = non(nullω2), and let X ∈ [ω2]κ such that X /∈ nullω2. If
ϕ̃[X ] ∈ null[0,1], this is a contradiction.

The other direction is similar.

Proposition 18.109. cof(nullω2) = cof(null[0,1]).

Proof. First let κ = non(nullω2), and let X ∈ [ω2]κ such that ∀A ∈ nullω2∃B ∈
X [A ⊆ B]. Let X ′ = {ϕ̃[C] : C ∈ X}. Take any A ∈ null[0,1]. Then ϕ̃−1[A] ∈ nullω2, so
there is a B ∈ X such that ϕ̃−1[A] ⊆ B. Then ϕ̃[ϕ̃−1[A]] = A ⊆ ϕ̃[B].

The other direction is similar.

Let A = {X ∩ Θ : X ⊆ ω2 is measurable}. Then A is a σ-field of subsets of Θ. For any
X measurable in ω2 the set X ∩Θ is also measurable.

Proposition 18.110. add(nullω2) = add(nullΘ).

Proof. First suppose that E ∈ [nullω2]κ,
⋃
E /∈ nullω2, and |E| = add(nullω2). Let

E′ = {X ∩Θ : X ∈ E}. Then E′ ⊆ nullΘ. If
⋃
E′ ∈ nullΘ, then

⋃
E ⊆

⋃
E′ ∪N ∈ nullω2,

contradiction, where N = {x ∈ ω2 : {i ∈ ω : x(i) = 1} is finite}.
Second suppose that E ∈ [nullΘ]κ,

⋃
E /∈ nullΘ, and |E| = add(nullΘ). Then E ⊆

nullω2 and
⋃
E /∈ nullω2.
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Proposition 18.111. cov(nullω2) = cov(nullΘ).

Proof. First suppose that E ∈ [nullω2]κ, ω2 =
⋃
E, and |E| = cov(nullω2). Let

E′ = {X ∩Θ : X ∈ E}. Then
⋃
E′ = Θ and E′ ⊆ nullΘ.

Second suppose that E ∈ [nullΘ]κ, Θ =
⋃
E, and |E| = cov(nullΘ). Then E ⊆ nullω2

and ω2 =
⋃
E ∪N , with N as above.

Proposition 18.112. non(nullω2) = non(nullΘ).

Proof. First let X ∈ [ω2]κ such that X /∈ nullω2 and κ = non(nullω2). Then
X ∩Θ ⊆ Θ and X ∩Θ /∈ nullΘ, as otherwise X ⊆ (X ∩Θ)∪N ∈ nullω2, with N as above.

Second let X ∈ [Θ]κ such that X /∈ nullΘ and κ = non(nullΘ). Then X /∈ nullω2.

Proposition 18.113. cof(nullω2) = cof(nullΘ).

Proof. First suppose that X ∈ [nullω2]κ, ∀A ∈ nullω2∃B ∈ X [A ⊆ B], and κ =
cof(nullω2). Let Y = {B ∩ Θ : B ∈ X}. Thus Y ⊆ nullΘ. Suppose that A ∈ nullΘ. Then
A ∈ nullω2, so there is a B ∈ X such that A ⊆ B. Hence A ⊆ B ∩Θ ∈ Y .

Second suppose that X ∈ [nullΘ]κ, ∀A ∈ nullΘ∃B ∈ X [A ⊆ B], and κ = cof(nullΘ).
Let Y = {B ∪ N : B ∈ X}, with N as above. So Y ⊆ nullω2. Suppose that A ∈ nullω2.
Then A ∩Θ ∈ nullΘ, so there is a B ∈ X such that A ∩Θ ⊆ B, so A ⊆ B ∪N ∈ Y .

There is a bijection f from Θ onto [ω]ω. So the measure on Θ can be carried over to a
measure on [ω]ω.
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19. The Cichoń diagram

To express this diagram we need to introduce two of the continuum cardinals considered
more completely later.

We define f ≤ g iff f, g ∈ ωω and f(m) ≤ g(m) for all m ∈ ω.
We define f ≤∗ g iff f, g ∈ ωω and ∃m∀n ≥ m[f(n) ≤ g(n)].
A family D ⊆ ωω is almost dominating iff ∀f ∈ ωω∃g ∈ D [f ≤∗ g]. Let d be the

smallest size of a almost dominating family; this is the dominating number.
A family B ⊆ ωω is almost unbounded iff there is no f ∈ ωω such that ∀g ∈ B[g ≤∗ f ].

Let b be the smallest size of an almost unbounded family.
We prove that the relations expressed in the following diagram hold; this diagram will

be expanded later.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2ω

add(null)

add(meag)

cov(meag)

non(null)

cof(null)

cof(meag)

non(meag)

cov(null)

ω1

b

d

Proposition 19.1. ω1 ≤ add(null).

Proposition 19.2. add(null) ≤ cov(null).
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Proof. By Lemma 18.9.

Proposition 19.3. add(meag) ≤ cov(meag).

Proof. By Lemma 18.9.

Let Inc = {i ∈ ωω : i is strictly increasing and i0 = 0}. For any i ∈ Inc we define for any
n ∈ ω Iin = [in, in+1). A chopped real is a pair (x, i) such that x ∈ ω2 and i ∈ Inc. A
function y ∈ ω2 matches a chopped real (x, i) iff x ↾ Iin = y ↾ Iin for infinitely many n ∈ ω.

Theorem 19.4. For any chopped real (x, i) the set {y ∈ ω2 : y does not match (x, i)} is a
meager subset of ω2.

Proof. Let (x, i) be a chopped real. Then

(1) {y ∈ ω2 : y matches (x, i)} =
⋂

k

⋃

n≥k

{y ∈ ω2 : x ↾ Iin = y ↾ Iin}.

Now each set {y ∈ ω2 : x ↾ Iin = y ↾ Iin} is open in ω2, since it is equal to Ux↾Iin
. Hence for

any k ∈ ω the set
⋃

n≥k{y ∈
ω2 : x ↾ Iin = y ↾ Iin} is open. It is also dense; for suppose

that z ⊆ ω×2 is a finite function. Choose n ≥ k such that Iin∩dmn(z) = ∅, and let y ∈ ω2
extend z and x ↾ Iin. Then y ∈ Uz ∩

⋃

n≥k{y ∈
ω2 : x ↾ Iin = y ↾ Iin}.

Hence (1) says that {y ∈ ω2 : y matches (x, i)} is a countable intersection of dense
open sets. Hence its complement is a countable union of nowhere dense sets, i.e., it is
meager.

Let Cov(meag) = (ω2,meag,∈)). This is a relational triple; see after Proposition 18.20 for
the definition.

Proposition 19.5. ||Cov(meag)|| = cov(meag) in ω2.

Proof. ||Cov(meag)|| = min{|Y | : Y ⊆ meag and ∀x ∈ ω2∃y ∈ Y [x ∈ y]} =
cov(meag).

Let Cov(null) = (ω2, null,∈)).

Proposition 19.6. ||Cov(null)|| = cov(null) in ω2.

Proof. ||Cov(null)|| = min{|Y | : Y ⊆ null and ∀x ∈ ω2∃y ∈ Y [x ∈ y]} = cov(null).

Proposition 19.7. Define i ∈ ωω recursively by i0 = 0 and in+1 = in+n+1. Thus i ∈ Inc.
Define fRg iff f, g ∈ ω2 and g matches the chopped real (f, i). Let R = (ω2, ω2, R). Thus
R is a relational triple. Let ψ0 be the identity on ω2 and let ψ1(g) = ω2\{f : fRg}. Then
(ψ0, ψ1) is a morphism from R⊥ to Cov(meag).

Proof. Recall that

R⊥ = (ω2, ω2, {(g, f) : g, f ∈ ω2 and (f, g) /∈ R})

= (ω2, ω2, {(g, f) : g, f ∈ ω2 and g does not match(f, i)}) and

Cov(meag) = (ω2,meag,∈).
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Thus the first two conditions for a morphism hold, using Theorem 19.4. Now suppose that
f, g ∈ ω2 and (ψ0(g), f) ∈ {(g, f) : g, f ∈ ω2 and g does not match(f, i)}. Thus g = ψ0(g)
does not match (f, i). Hence f ∈ ψ1(g).

Proposition 19.8. (Continuing Proposition 19.7) (i) For any g ∈ ω2, {f : fRg} has
measure zero.

(ii) Let ϕ0 be the identity on ω2 and ϕ1(g) = {f : fRg} for any g ∈ ω2. Then (ϕ0, ϕ1)
is a morphism from R to Cov(null).

Proof. (i): Note that |Iin = |[in, in + n + 1)| = n + 1. If g ∈ ω2 and n ∈ ω, then
{f ∈ ω2 : f agrees with g on In} has measure 1/2n+1. Hence for any g ∈ ω2, {f ∈ ω2 : fRg}
has measure 0; see the proof of Theorem 19.4.

(ii): the first two conditons are clear, using (i). Now suppose that f, g ∈ ω2 and
ϕ0(f)Rg. Thus fRg, so f ∈ ϕ1(g).

Proposition 19.9. Suppose that A, B and C are relational triples, (ϕ0, ϕ1) is a morphism
from A to B, and (ψ0, ψ1) is a morphism from B to C. Then (ϕ0 ◦ ψ0, ψ1 ◦ ϕ1) is a
morphism from A to C.

Proof. Since ϕ0 : B0 → A0 and ψ0 : C0 → B0, it follows that ϕ0 ◦ ψ0 : C0 → A0.
Since ϕ1 : A1 → B1 and ψ1 : B1 → C1, it follows that ψ1 ◦ ϕ1 : A1 → C1. Now suppose
that a ∈ A1, c ∈ C0, and ϕ0(ψ0(c))Aa. Then ψ0(c)Bϕ1(a) and hence cCψ1(ϕ1(a)).

Proposition 19.10. ||Cov⊥(meag)|| = non(meag).

Proof. We have Cov⊥(meag) = (meag, ω2, 6∋). Hence ||Cov⊥(meag)|| = min{|Y | :
Y ⊆ ω2 and ∀X ∈ meag∃x ∈ Y [x /∈ X ]} = non(meag).

Proposition 19.11. cov(null) ≤ non(meag).

Proof. Let ϕ0, ϕ1, ψ0, ψ1 be as above. Then by propositions 18.18 and 19.7, (ψ1, ψ0)
is a morphism from Cov⊥(meag) to R. Now (ϕ0, ϕ1) is a morphism from R to Cov(null).
Hence by Proposition 19.9, (ψ1◦ϕ0, ϕ1◦ψ0) is a morphism from Cov⊥(meag) to Cov(null).
Hence by Propositions 18.19, 19.6, and 19.10, cov(null) = ||Cov(null)|| ≤ ||Cov⊥(meag)|| =
non(meag).

Proposition 19.12. ||Cov⊥(null)|| = non(null).

Proof. We have Cov⊥(null) = (null, ω2, 6∋). Hence ||Cov⊥(null)|| = min{|Y | : Y ⊆ ω2
and ∀X ∈ null∃x ∈ Y [x /∈ X ]} = non(null).

Proposition 19.13. cov(meag) ≤ non(null).

Proof. Let ϕ0, ϕ1, ψ0, ψ1 be as above. Then by propositions 18.18 and 19.7,
(ψ1, ψ0) is a morphism from Cov⊥(null) to R. Now (ϕ0, ϕ1) is a morphism from R to
Cov(meag). Hence by Proposition 19.9, (ϕ1 ◦ ψ0, ψ1 ◦ ϕ0) is a morphism from Cov⊥(null)
to Cov(meag). Hence by Propositions 18.19, 19.5, and 19.12, cov(meag) = ||Cov(meag)|| ≤
||Cov⊥(null)|| = non(null).
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Theorem 19.14. cf(b) = b ≤ cf(d) ≤ d.

Proof. Suppose that cf(b) < b. Let X be almost unbounded with |X | = b. Then we
can write X =

⋃

α<cf(b) Yα with |Yα| < b for all α < cf(b). Choose a bound gα for Yα for

each α < cf(b), and then by the above argument choose a bound h for {gα : α < cf(b)}.
Then h is a bound for X , contradiction. Thus cf(b) = b.

To prove that b ≤ cf(d), let D be a almost dominating family of size d, and write
D =

⋃

α<cf(d)Eα, with each Eα of size less than d. Since then Eα is not almost dominating,

there is an fα ∈ ωω such that for all g ∈ Eα we have fα 6≤∗ g. Suppose that cf(d) < b,
and accordingly let h ∈ ωω be such that fα ≤∗ h for all α < cf(d). Choose k ∈ D such
that h ≤∗ k. Say k ∈ Eα. But fα ≤∗ h ≤∗ k, contradiction.

For each i ∈ Inc we associate funci ∈ ωω as follows. Let x ∈ ω choose n so that in ≤ x <
in+1. Let funci(x) = in+2 − 1.

With each g ∈ ωω we associate νg ∈ Inc as follows; νg(n) is defined by recursion on
n. Let νg0 = 0. If νgn has been defined, let νgn+1 be minimum such that νgn < νgn+1 and
∀x ≤ νgn[g(x) < νgn+1].

Given i, j ∈ Inc, we say that i almost dominates j iff ∃m∀n ≥ m∃k[[jk, jk+1) ⊆
[in, in+1)].

Proposition 19.15. If i ∈ Inc, g ∈ ωω, and i almost dominates νg, then g ≤∗ funci.

Proof. By definition, choose m so that for all n ≥ m there is a k such that [νgk , ν
g
k+1) ⊆

[in, in+1). Take any x ≥ im; we claim that g(x) ≤ funci(x). For, take n such that
x ∈ [in, in+1). Then in+1 > x ≥ im, so n + 1 > m. Hence there ia a k such that
[νgk , ν

g
k+1) ⊆ [in+1, in+2). Now x < in+1 ≤ ν

g
k , so g(x) ≤ νgk+1 − 1 ≤ in+2 − 1 = funci(x).

Proposition 19.16. If i ∈ Inc, g ∈ ωω, and funci ≤∗ g, then νg almost dominates i.

Proof. Assume the hypotheses, and choose m so that ∀n ≥ m[funci(n) ≤ g(n)]. We
claim that ∀n ≥ m∃k[[ik+1, ik+2) ⊆ [νgn, ν

g
n+1) (as desired). For, take any n ≥ m. Choose

k such that νgn ∈ [ik, ik+1). Take any x ∈ [ik+1, ik+2). Then m ≤ n ≤ νgn, so

νgn < ik+1 ≤ x ≤ ik+2 − 1 = funci(νgn) ≤ g(νgn) < νgn+1.

Proposition 19.17. b = min{|X | : X ⊆ Inc and ¬∃i ∈ Inc∀j ∈ X [i almost dominates
j]}.

Proof. First suppose that X ⊆ ωω is almost unbounded, with |X | = b. Let Y =
{νg : g ∈ X}. Thus |Y | ≤ b. Suppose that i ∈ Inc almost dominates each νg for g ∈ X .
Then by Proposition 19.15, g ≤∗ funci for each g ∈ X , contradiction. Thus Y is one of
the sets on the right, and hence rhs ≤ b.

Second, suppose that Y ⊆ Inc is such that ¬∃i ∈ Inc∀j ∈ Y [i almost dominates j,
with |Y | minimum. Let X = {funci : i ∈ Y }. Suppose that f ∈ ωω and funci ≤∗ f for all
i ∈ X . Then by Proposition 19.16, νf almost dominates each i ∈ X , contradiction. Hence
X is unbouned, and so b ≤ |X | ≤ |Y |.
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Lemma 19.18. X ⊆ ω2 is nowhere dense iff for every finite function z ⊆ ω × 2 there is
a finite function w ⊆ ω × 2 such that z ⊆ w and Uw ∩X = ∅.

Proof. Suppose that X is nowhere dense and z ⊆ ω × 2 is a finite function. Then
Uz\X 6= ∅. Take any f ∈ Uz\X. Then there is a finite function t ⊆ ω×2 such that f ∈ Ut
and Ut ∩X = ∅. Now z ∪ t ⊆ f , so z ∪ t is a function. Let w = z ∪ t. Then w is as desired.

Conversely, suppose that for every finite function z ⊆ ω × 2 there is a finite function
w ⊆ ω × 2 such that z ⊆ w and Uw ∩X = ∅. Let z ⊆ ω × 2 be a finite function. Choose
w as indicated. Let f ∈ Uw. Then f ∈ Uz\X, as desired.

Proposition 19.19. If M ⊆ ω2 is meager, then there is a chopped real (x, i) such that
M ⊆ {y ∈ ω2 : y does not match (x, i)}.

Proof. Say M =
⋃

n∈ω Fn with each Fn nowhere dense. Since the union of two
nowhere dense sets is nowhere dense, we may assume that F0 ⊆ F1 ⊆ · · ·. We now define
i ∈ Inc and a sequence of functions 〈zn : n ∈ ω〉, each zn ∈

[in,in+1)2. Let i0 = 0. Let
t ⊆ ω × 2 be a finite function such that Ut ∩ F0 = ∅. Wlog there is an i1 > 0 such that
t ∈ [0,i1)2. Let z0 = t. Now suppose that n > 0, and in and zn−1 have been defined.
Let m = in. Let 〈ui : i < 2m〉 enumerate m2. We now define an increasing sequence
〈jk : k < 2m〉 of members of ω and functions 〈wk : k < 2m〉, each wk ∈ [jk,jk+1)2. Let
j0 = m. Suppose that j0 < · · · < jk and w0, . . . , wk−1 have been defined, with k < 2m− 1,
such that

⋃

l<k wl ⊆ ω × 2 is a finite function. Now uk ∪
⋃

l<k wl ⊆ ω × 2 is a function,
so by Lemma 19.18 there is a finite function t ⊆ ω × 2 such that uk ∪

⋃

l<k wl ⊆ t and
Ut ∩ Fn = ∅. Increasing t if necessary, we may assume that there is a jk+1 > jk such that
t ∈ [0,jk+1)2. Let wk = t ↾ [jk, jk+1).

Let in+1 = j2m−1 and zn =
⋃

k<2m wk. This completes the construction of i and
〈zn : n ∈ ω〉. Let x =

⋃

n∈ω zn.
Thus (x, i) is a chopped real. We claim that no member of M matches (x, i). For,

let y ∈ M ; say y ∈ Fk with k > 0. We claim that x ↾ [in, in+1) 6= y ↾ [in, in+1) for all
n > k. Let m = in and uk = y ↾ m. In the construction we get jk+1 ∈ [in, in+1) and
t ∈ [0,jk+1)2 with uk ⊆ t and Ut ∩ Fn = ∅. Since y ∈ Fn and x ↾ [in, jk+1) ⊆ t, it follows
that x ↾ [in, jk+1) 6= y ↾ [in, jk+1).

Proposition 19.20. If (x, i) and (y, j) are chopped reals and {z ∈ ω2 : z matches (x, i)} ⊆
{z ∈ ω2 : z matches (y, j)}, then there is an m ∈ ω such that for all n ≥ m there is a
k ∈ ω such that [jk, jk+1) ⊆ [in, in+1) and x ↾ [jk, jk+1) = y ↾ [jk, jk+1).

Proof. Assume that (x, i) and (y, j) are chopped reals and {z ∈ ω2 : z matches
(x, i)} ⊆ {z ∈ ω2 : z matches (y, j)}, but suppose that for every m ∈ ω there is an n ≥ m
such that for all k ∈ ω, if [jk, jk+1) ⊆ [in, in+1) then x ↾ [jk, jk+1) 6= y ↾ [jk, jk+1). Then
there is an infinite I ⊆ ω such that for all n ∈ I and all k ∈ ω, if [jk, jk+1) ⊆ [in, in+1) then
x ↾ [jk, jk+1) 6= y ↾ [jk, jk+1). Let 〈n(s) : s ∈ ω〉 be the strictly increasing enumeration of
I. Let K = {n(2s) : s ∈ ω}, and let L =

⋃

s∈ω[in(2s), in(2s)+1). Let z ↾ L = x ↾ L while
z(t) = 1 − y(t) for all t ∈ ω\L. Thus z matches (x, i), so by hypothesis z matches (y, j).

Thus U
def
= {t : z ↾ [jt, jt+1) = y ↾ [jt, jj+1)} is infinite. If z ↾ [jt, jt+1) = y ↾ [jt, jj+1)

then by the definition of z, also z ↾ [jt, jt+1) = x ↾ [jt, jj+1). Now if t ∈ U , then
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[jt, jt+1) ⊆ L. Since the components of L are not contiguous, it follows that for all t ∈ U
there is an s such that [jt, jt+1) ⊆ [in(2s), in(2s)+1). Hence by supposition, for all t ∈ U
we have x ↾ [jt, jt+1) 6= y ↾ [jt, jt+1). But x ↾ [jt, jt+1) = z ↾ [jt, jt+1) = y ↾ [jt, jt+1),
contradiction.

Theorem 19.21. add(meag) ≤ b.

Proof. By Proposition 19.17, let X ⊆ Inc be of size b such that there is no i ∈ Inc
which almost dominates each j ∈ X . Take any x ∈ ω2 and let

Y = {{y ∈ ω2 : y does not match (x, i)} : i ∈ X}.

Let Z =
⋃
Y . We claim that Z is not meager. Since |Y | ≤ |X | = b, this will prove the

theorem. In fact, suppose that Z is meager. By Proposition 19.19, let (y, j) be a chopped
real such that Z ⊆ {z ∈ ω2 : z does not match (y, j)}. Thus for all i ∈ X we have
{z ∈ ω2 : z matches (y, j)} ⊆ {z ∈ ω2 : z matches (x, i)}. Hence by Proposition 19.20 we
get

∀i ∈ X∃m ∈ ω∀n ≥ m∃k ∈ ω[[ik, ik+1) ⊆ [jn, jn+1)].

But then j almost dominates each i ∈ X , contradicting Proposition 19.17.

We consider ωω as a topological space: the ω-power of the discrete space ω. Recall the
definition of a base for this topology. For F a finite subset of ω and G ∈ FP(ω), define

OF,G = {f ∈ ωω : ∀n ∈ F [f(n) ∈ G(n)]}.

Proposition 19.22. {OF,G : F ∈ [ω]ω, G ∈ FP(ω)} is a base for a topology on ωω.

Proof. Suppose that f ∈ OF,G ∩ O(F ′, G′). Let F ′′ = F ∩ F ′, dmn(G′′) = F ∩ F ′,
and G′′(n) = G(n) ∩G′(n) for all n ∈ F ∩ F ′. Clearly f ∈ OF ′′,G′′ ⊆ OF,G ∩O(F ′, G′).

For any f ∈ ωω, f ∈ O{0},{(0,{f(0)})}.

Proposition 19.23. ωω is Hausdorff.

Proof. Let f, g be distinct members of ωω. Say f(n) 6= g(n). Then

f ∈ O{n},{(n,{f(n)})}, g ∈ O{n},{(n,{g(n)})}, O{n},{(n,{f(n)})} ∩O{n},{(n,{g(n)})} = ∅.

Proposition 19.24. Let C ⊆ ωω. Then the following are equivalent:
(i) C is compact.
(ii) C is closed, and there is an F ∈

∏

m∈ω[ω]<ω such that C ⊆
∏

m∈ω Fm.
(iii) C is closed, and there is a g ∈ ωω such that C ⊆ {f ∈ ωω : f ≤ g}.

Proof. (i)⇒(ii): C is closed, as a compact subset of a Hausdorff space. Now for each
m ∈ ω let Fm = {f(m) : f ∈ C}. Thus C ⊆

∏

m∈ω Fm. Suppose that there is an m ∈ ω
with Fm infinite. Then

C ⊆
⋃

n∈Fm

O{m},{(m,{n})}

293



with no finite subcover, contradiction.
(ii)⇒(iii): With F as in (ii), choose g(m) > Fm for all m ∈ ω.
(iii)⇒(i): Suppose that C is covered by a family F of open sets. Then

∏

m∈ω

[0, g(m)] ⊆ (ωω\C) ∪
⋃

F ,

so there is a finite subset F ′ ⊆ F such that

∏

m∈ω

[0, g(m)] ⊆ (ωω\C) ∪
⋃

F
′.

Hence C ⊆
⋃

F ′, as desired.

Let Kσ be the least σ-ideal of subsets of ωω containing all the compact sets.

Proposition 19.25. For any g ∈ ωω we have {f ∈ ωω : f ≤∗ g} ∈ Kσ.

Proof. Let I = {(m, s) : m ∈ ω and s ∈ mω}. So I is countable. Now

{f ∈ ωω : f ≤∗ g} ⊆
⋃

(m,s)∈I

{f ∈ ωω : f ≤ s ∪ (g ↾ (ω\m)}.

Now note that for any h ∈ ωω the set {f ∈ ωω : f ≤ h} is closed. In fact, if f is not
in this set, then there is an n ∈ ω such that f(n) > h(n), and hence f ∈ O{n},{(n,f(n))}

with O{n},{(n,f(n))} ∩{f ∈
ωω : f ≤ h} = ∅. Now the proposition follows from Proposition

19.24.

Proposition 19.26. For any F ⊆ ωω the following are equivalent:
(i) F ∈ Kσ.
(ii) F is covered by a countable union of compact subsets.
(iii) There is a g ∈ ωω such that F ⊆ {f ∈ ωω : f ≤∗ g}.

Proof. (i)⇒(ii): Let I = {X ⊆ ωω : X is covered by a countable union of compact
subsets of ωω}. Clearly I is a σ-ideal containing the compact sets. So Kσ ⊆ I.

(ii)⇒(iii): Assume (ii). By Proposition 19.24 we can write F ⊆
⋃

g∈M{f : f ≤ g} for
some countable M ⊆ ωω. Now M is bounded under ≤∗ since ω1 ≤ b, so there is an h ∈ ωω
such that g ≤∗ h for all g ∈M . Thus F ⊆ {f ∈ ωω : f ≤∗ h}.

(iii)⇒(i): by Proposition 19.25.

Proposition 19.27. non(Kσ) = b.

Proof. First suppose that X ⊆ ωω such that X /∈ Kσ, with |X | = non(Kσ). Suppose
that f ≤∗ g for all f ∈ X . Then X ⊆ {f ∈ ωω : f ≤∗ g}, so X ∈ Kσ by Proposition 19.26,
contradiction. It follows that b ≤ non(Kσ).

Second suppose that X ⊆ ωω is almost unbounded, with |X | = b. Then X /∈ Kσ by
Proposition 19.26. So non(Kσ) ≤ b.
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Proposition 19.28. Kσ ⊆ meag.

Proof. For any g ∈ ωω the set {f ∈ ωω : f ≤ g} is nowhere dense. In fact, given
g ∈ ωω and a basic open set UF,G, take any n ∈ (ω\F ) and let F ′ = F ∪ {n} and
G′ = G ∪ {(n, {g(n) + 1})}. Thus UF,G ⊆ UF ′,G′ and UF ′,G′ ∩ {f ∈ ωω : f ≤ g} = ∅. So
{f ∈ ωω : f ≤ g} is nowhere dense. Then by Proposition 19.24, every compact subset of
ωω is nowhere dense. Hence by Proposition 19.26, Kσ ⊆ meag.

Proposition 19.29. b ≤ non(meag).

Proof. By Proposition 19.25, b = non(Kσ). By Proposition 19.26, clearly non(Kσ) ≤
non(meag).

Proposition 19.30. d = min{|P | : P ⊆ Inc and ∀i ∈ Inc∃j ∈ P [j almost dominates i]}.

Proof. First suppose that P ⊆ Inc and ∀i ∈ Inc∃j ∈ P [j almost dominates i], with
|P | minimum. Then {funcj : j ∈ P} is a dominating subset of ωω. In fact, let g ∈ ωω.
Choose j ∈ P which almost dominates νg. By Proposition 19.15, g ≤∗ funcj . This shows
that ≤ holds in the proposition.

Second suppose that D ⊆ ωω is an almost dominating set, with |D| = d. We claim
that {νg : g ∈ D} is a set P as in the proposition. In fact, let i ∈ Inc. Choose g ∈ D such
that funci ≤∗ g. Then by Proposition 19.16, νg almost dominates i. This proves ≥ in the
proposition.

Proposition 19.31. cov(Kσ) = d.

Proof. First suppose that E ⊆ Kσ,
⋃
E = ωω, and |E| = cov(Kσ). For each F ∈ E

choose gF ∈ ωω such that F ⊆ {f ∈ ωω : f ≤∗ gF }, using Proposition 19.26. We claim
that {gF : F ∈ E} is almost dominating. For, let f ∈ ωω. Choose F ∈ E such that f ∈ F .
Then f ≤∗ gF , as desired. This shows that d ≤ cov(Kσ).

Second, suppose that D ⊆ ωω is dominating. For each g ∈ D let Fg = {f ∈ ωω :
f ≤∗ g}. Then Fg ∈ Kσ by Proposition 19.25. For any f ∈ ωω there is a g ∈ D such that
f ≤∗ g. Then f ∈ Fg. Thus

⋃

g∈D Fg = ωω. This shows that cov(Kσ) ≤ d.

Proposition 19.32. cov(meag) ≤ d.

Proof. By Proposition 19.28, Kσ ⊆ meag. Hence by Proposition 19.31, cov(meag) ≤
cov(Kσ) = d.

Proposition 19.33. For any proper ideal I, non(I) ≤ cof(I).

Proof. Let κ = cof(I), and let X ∈ [I]κ be as in the definition of cof(I). For each
B ∈ X choose xB ∈ A\B. Then |{xB : B ∈ X}| ≤ κ. Suppose that {xB : B ∈ X} ∈ I.
Choose C ∈ X such that {xB : B ∈ X} ⊆ C. Then xC ∈ C, contradiction.

Proposition 19.34. d ≤ cof(meag).

Proof. Let A be a family of meager sets such that for any meager set M there is an
N ∈ A such that M ⊆ N , with |A | = cof(meag). By Proposition 19.19, for each N ∈ A
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there is a chopped real (xN , i
N ) such that N ⊆ {y ∈ ω2 : y does not match (xn, i

N )}. We
claim that {iN : N ∈ A } almost dominates every j ∈ Inc; by Proposition 19.30 this will
prove our proposition. To prove the claim, suppose that j ∈ Inc. Fix y ∈ ω2. Then (y, j)
is a chopped real, and so by Theorem 19.4 {z ∈ ω2 : z does not match (y, j)} is meager.
say {z ∈ ω2 : z does not match (y, j)} ⊆ N ∈ A . Hence {z ∈ ω2 : z does not match
(y, j)} ⊆ {z ∈ ω2 : z not match (xn, i

N )}. By Proposition 19.20, iN almost dominates
j.

If P and Q are partial orders, a function f : P → Q is a Tukey function iff ∀X ⊆ Q[X
bounded in Q imples that f−1[X ] is bounded in P ].

Proposition 19.35. f : P → Q is a Tukey function iff for any B ∈ Q there is an A ∈ P
such that

∀C ∈ P [f(C) ≤ B → C ≤ A]

Proof. ⇒: Assume that f : P → Q is a Tukey function and B ∈ Q. Let X = {Z ∈
Q : Z ≤ B}. Thus X is bounded. Hence f−1[X ] is bounded, say by A ∈ P . Now suppose
that C ∈ P and f(C) ≤ B. Thus C ∈ f−1[X ], so C ≤ A.
⇐: Assume the indicated condition, and suppose that X ⊆ Q is bounded by B.

Choose A ∈ P such that ∀C ∈ P [f(C) ≤ B → C ≤ A]. Thus f−1[X ] is bounded by
A.

For each B ∈ Q we select one f∗(B) satisfying the condition for A in Proposition 19.35.

meag is the poset of meager subsets of ω2 with inclusion, and null is the poset of null
subsets of ω2 with inclusion.

Proposition 19.36. If f : meag→ null is a Tukey function, then add(null) ≤ add(meag).

Proof. Suppose that X ⊆ meag and |X | < add(null); we show that
⋃
X is meager;

hence the proposition follows. We have B
def
=
⋃

A∈X f(A) ∈ null. If A ∈ X , then f(A) ⊆ B,
so A ⊆ f∗(B). Thus

⋃
X ⊆ f∗(B), and so

⋃
X is meager.

Proposition 19.37. If f : meag→ null is a Tukey function, then cof(meag) ≤ cof(null).

Proof. Suppose that X ⊆ null is cofinal in null. Then, we claim, {f∗(B) : B ∈ X} is
cofinal in meag. For, suppose that C ∈ meag. Choose B ∈ X such that f(C) ⊆ B. Then
C ⊆ f∗(B).

Lemma 19.38. For each n ∈ ω let Bn = {x ∈ ω2 : x(n) = 1}. Then for any finite
nonempty I ⊆ ω we have

µ

(
⋂

n∈I

Bn

)

=
∏

n∈I

µ(Bn) =
1

2|I|
.

Lemma 19.39. For each a ∈ (0, 1) there is a k ∈ ωω such that

∏

m∈ω

(

1−
1

2km

)

= a.
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Note that ∃s∀t ≥ s
[
1− 1

2t > a
]
. Let k0 be minimum such that 1− 1

2k0
> a. Suppose that

ki has been defined for all i ≤ m so that

∏

i≤m

(

1−
1

2ki

)

> a.

Then

∃s∀t > s





(

1−
1

2t

)
∏

i≤m

(

1−
1

2ki

)

> a



 .

Let km+1 be minimum such that

(

1−
1

2km+1

)
∏

i≤m

(

1−
1

2ki

)

> a.

Now we claim that for all m ∈ ω,

(∗)
∏

i≤m

(

1−
1

2ki

)

− a ≤
1

2km
.

For m = 0 we clearly have k0 > 0. Then a ≥ 1 − 1
2k0−1 = 1 − 1

2k0
− 1

2k0
and hence

1 − 1
2k0
− a ≤ 1

2k0
. Now assume that (∗) holds for m. Clearly km+1 > 0. Hence, with

P =
∏

i≤m

(
1− 1

2ki

)
,

(

1−
1

2km+1−1

)

P ≤ a;

(

1−
2

2km+1

)

P ≤ a;

(

1−
1

2km+1

)

P −
1

2km+1
P ≤ a

(

1−
1

2km+1

)

P − a ≤
1

2km+1
P ≤

1

2km+1
.

Thus (∗) holds. Now there is no n such that km ≤ n for all m. Otherwise,

a <
∏

i≤m

(

1−
1

2ki

)

≤

(

1−
1

2n

)m+1

for all m, and so a = 0, contradiction.
Now (∗) implies that

∏

m∈ω

(

1−
1

2km

)

= a.
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A system 〈An : m ∈ ω〉 of measurable subsets of ω2 is µ-independent iff

∀I ∈ [ω]<ω

[

µ

(
⋂

n∈I

An

)

=
∏

n∈I

µ(An)

]

Proposition 19.40. Suppose that 〈Am : m ∈ ω〉 is a system of measurable µ-independent
subsets of ω2. Then for any finite I ⊆ ω and any ε ∈ I2 we have

µ

(
⋂

i∈I

A
ε(i)
i

)

=
∏

i∈I

µ(A
ε(i)
i ),

where X1 = X and X0 = ω2\X.

Proof. We prove this by induction on |I|, starting with |I| = 1, where this is obvious.
Now suppose true for |I| = m. We do the case |I| = m + 1 by induction on the number
n of i ∈ I such that ε(i) = n. The case n = 0 is clear. Now assume true for n, where
n < m+ 1. Take any i ∈ I such that ε(i) = 0. Then

µ




⋂

j∈I

A
ε(j)
j



+ µ






⋂

j∈I
j 6=i

A
ε(j)
j ∩Ai




 = µ






⋂

j∈I
j 6=i

A
ε(j)
j




 .

By the induction hypothesis

µ






⋂

j∈I
j 6=i

A
ε(j)
j ∩ Ai




 =

∏

j∈I
j 6=i

µ(A
ε(j)
j )µ(Ai)

and

µ






⋂

j∈I
j 6=i

A
ε(j)
j




 =

∏

j∈I
j 6=i

µ(A
ε(j)
j ).

Hence

µ




⋂

j∈I

A
ε(j)
j



 =
∏

j∈I
j 6=i

µ(A
ε(j)
j )−

∏

j∈I
j 6=i

µ(A
ε(j)
j )µ(Ai)

=
∏

j∈I
j 6=i

µ(A
ε(j)
j )(1− µ(Ai)),

finishing the inductive proof.
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Theorem 19.41. If a ∈ ω(0, 1), then there exists a system 〈An : n ∈ ω〉 of µ-independent
open subsets of ω2 such that ∀n ∈ ω[µ(An) = an].

Proof. By Lemma 19.39 let 〈knm : m,n ∈ ω〉 be a system of natural numbers such
that

∀n ∈ ω

[
∏

m∈ω

(

1−
1

2k
n
m

)

= 1− an

]

.

Note that for any n ∈ ω,

(∗)
∑

m∈ω

1

2k
n
m

= an.

In fact, for anym ∈ ω
[

1− an ≤ 1− 1
2k
n
m

]

, and so ∀m ∈ ω
[

1
2k
n
m
≤ an

]

. Thus an is an upper

bound for
{

1
2k
n
m

: m ∈ ω
}

. Now suppose that x is any upper bound for
{

1
2k
n
m

: m ∈ ω
}

.

Then 1− x is a lower bound for
{

1− 1
2k
n
m

: m ∈ ω
}

, hence 1− x ≤ 1− an and so an ≤ x.

This proves (∗).
Now let 〈Inm : n,m ∈ ω〉 be a system of pairwise disjoint set such that |Inm| = knm for

all m,n ∈ ω. For each n ∈ ω let

An = ω2\
⋂

m∈ω



ω2\
⋂

j∈Inm

Bj



 ,

where Bn is as in Lemma 19.38. Note that each Bn is clopen. Hence also for any m,n ∈ ω

the set
⋂

j∈Inm
Bj is clopen, and so is ω2\

⋂

j∈Inm
Bj . Hence

⋂

m∈ω

(
ω2\

⋂

j∈Inm
Bj

)

is closed,

and so An is open. Now for any n ∈ ω,

An =






x ∈ ω2 : x /∈

⋂

m∈ω



ω2\
⋂

j∈Inm

Bj











= {x ∈ ω2 : ∃m ∈ ω



x ∈
⋂

j∈Inm

Bj





= {x ∈ ω2 : ∃m ∈ ω∀j ∈ Inm[x ∈ Bj ]}

= {x ∈ ω2 : ∃m ∈ ω∀j ∈ Inm[x(j) = 1]}.

Now for any m,n ∈ ω let Cmn = {x ∈ ω2 : ∀j ∈ Inm[x(j) = 1]}. Then µ(Cmn) = 1
2k
n
m

. An

is the union of the pairwise disjoint sets Cmn, so µ(An) =
∑

m∈ω
1

2k
n
m

= an by (∗). Finally,

〈An : n ∈ ω〉 is a µ-independent system, since the Cmn are pairwise disjoint.

If H ∈ ω\1ω is an increasing function with nonzero entries such that
∑

m∈ω\1
1

H(m)
< ∞,

then we define

CH =






S ∈ ω\1([ω\1]<ω) :

∑

m∈ω\1

|S(m)|

H(m)
<∞






.
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With H(n) = n2 for all positive n, H is an increasing function with nonzero entries such
that

∑

m∈ω\1
1

H(m)
< ∞; this is a p-series. See Heinbockel Calculus 1, example 4-9 on

page 291. For this H we write C in place of CH .
If S1, S2 ∈ C, we define S1 ≤ S2 iff ∃m∀n ≥ m[S1(n) ⊆ S2(n)]. Clearly this is a

partial order of C.

Lemma 19.42. If G ⊆ ω2 is a null set, then there is a closed K ⊆ ω2 such that K∩G = ∅,
µ(K) > 0, and for every open U ⊆ ω2, if K ∩ U 6= ∅ then µ(K ∩ U) > 0.

Proof. By Theorem 18.78 and Proposition 18.87, there is an open set U ⊇ G such
that µ(U) ≤ 1

2 . Let K ′ = ω2\U , and

K = K ′\
⋃

{K ′ ∩ Uf : K ′ ∩ Uf 6= ∅ and µ(K ′ ∩ Uf ) = 0}.

Note that there are only countably many sets Uf . Hence µ(K) = µ(K ′) ≥ 1
2 . If K∩Uf 6= ∅,

then also K ′∩Uf 6= ∅. If µ(K∩Uf ) = 0, then also µ(K ′∩Uf ) = 0 and so K ∩K ′∩Uf = ∅,
contradiction. If V is any open set and K ∩ V 6= ∅, then there is an f with Uf ⊆ V such
that K ∩ Uf 6= ∅. Hence µ(K ∩ V ) ≥ µ(K ∩ Uv) > 0.

Lemma 19.43. ∀x ∈ [−1, 0][1 + x ≤ ex].

Proof. Let f(x) = ex−x−1 for all x ∈ [−1, 0]. Then f ′(x) = ex−1 and f ′′(x) = ex.
So f(x) has a minimum 0 at x = 0.

Lemma 19.44. If −1 < an < 0 for all n ∈ ω\1 and
∏

n∈ω\1(1 + an) exists and is greater

than 0, then
∑

n∈ω\1 an exists and is greater than −∞.

Proof. For each n ∈ ω\1 let Sn =
∑n
r=1 ar and Pn =

∏n
r=1(1 + ar). S is strictly

decreasing, so
∑

n∈ω\1 an exists but is possibly −∞. By Lemma 19.43,

0 < Pn ≤
n∏

r=1

ear = e
∑

n

r=1
ar .

If
∑

n∈ω\1 an = −∞, then
∏

n∈ω\1(1 + an) = 0, contradiction.

Lemma 19.45. If 〈Sn : n ∈ ω〉 is a sequence of members of C, then there is a T ∈ C such
that {i ∈ ω\1 : Sn(i) 6⊆ T (i)} is finite, for all n.

Proof. We begin with the following elementary fact.

(1) If 〈aik : i ∈ ω, k ≤ n〉 is a system of positive real numbers, where n ∈ ω\1, and if
∑

i∈ω aik <∞ for every k ≤ n, then
∑

i∈ω

∑

k≤n aik ≤
∑

k≤n

∑

i∈ω aik.

It follows that for any k ∈ ω\1,

∑

j∈ω\1

∑

i≤k

|Si(j)|

j2
<∞.
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Hence

(∗) ∀k ∈ ω\1∃n




∑

n<j

∑

i≤k

|Si(j)|

j2
< 2−k



 .

Now we define 〈nk : k ∈ ω〉 by recursion. Let n0 = 0. If nk has been defined, by (∗) let
nk+1 > nk be such that

∑

nk+1<j

∑

i≤k+1

|Si(j)|

j2
< 2−k−1.

Now for any y ∈ ω\1 choose k so that nk < j ≤ nk+1 and define T (j) =
⋃

i≤k Si(j). Then

∑

j∈ω\1

|T (j)|

j2
=
∑

k∈ω

∑

nk<j≤nk+1

|T (j)|

j2

≤
∑

k∈ω

∑

nk<j≤nk+1

∑

i≤k

|Si(j)|

j2

≤
∑

k∈ω

2−k.

Thus T ∈ C. Clearly {j ∈ ω\1 : Si(j) 6⊆ T (j)} is finite, for all i.

Lemma 19.46. Suppose that K ⊆ ω2 is nonempty and closed, and 〈Vn : n ∈ ω〉 is a
decreasing sequence of open sets such that K ∩

⋂

n∈ω Vn = ∅. Then there is an open set U
and a k ∈ ω such that K ∩ U 6= ∅ and ∀n ≥ k[K ∩ U ∩ Vn = ∅].

Proof. Assume the hypotheses. Then K =
⋃

n∈ω(K\Vn), so by the Baire category
theorem there is a k ∈ ω and an open U such that ∅ 6= K∩U ⊆ K\Vk. Since 〈K\Vs : s ∈ ω〉
is increasing, it follows that ∀n ≥ k[K ∩ U ⊆ K\Vn].

Theorem 19.47. There is a Tukey function ϕ2 : C → null.

Proof. By Theorem 19.41 let 〈Gij : i, j ∈ ω\1〉 be a system of µ-independent open
subset of ω2 such that µ(Gij) = i−2 for all i, j ∈ ω\1. For each S ∈ C define

ϕ2(S) = GS
def
=

⋂

n∈ω\1

⋃

m>n

⋃

k∈S(m)

Gmk.

We show that ϕ2(S) ∈ null; for any n > 0,

µ(ϕ2(S)) = µ




⋂

n∈ω\1

⋃

m>n

⋃

k∈S(m)

Gmk
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≤ µ




⋃

m>n

⋃

k∈S(m)

Gmk





≤
∑

m>n

µ




⋃

k∈S(m)

Gmk





=
∑

m>n

|S(m)|

m2
,

and the last sum approaches 0 as n→∞.
Now we will construct a function ϕ∗

2 which will be an explicit function showing that
ϕ2 is a Tukey function. Let H ∈ null. By Lemma 19.42 let KH ⊆ ω2 be a closed set
such that KH ∩ H = ∅, µ(KH) > 0 and for every open U ⊆ ω2, if KH ∩ U 6= ∅ then
µ(KH ∩ U) > 0.

Let 〈Un : n ∈ ω〉 be an enumeration of all the basic open subsets of ω2 which intersect
KH . For all n ∈ ω and i ∈ ω\1 let

AHni = {j ∈ ω\1 : KH ∩ Un ∩Gij = ∅}.

Now for all n ∈ ω and i, j ∈ ω\1, if j ∈ AHni then KH ∩ Un ⊆ ω2\Gij . Hence if F is
a finite subset of AHni, then KH ∩ Un ⊆

⋂

j∈F (ω2\Gij), and hence 0 < µ(KH ∩ Un) ≤

µ(
⋂

j∈F (ω2\Gij)) = (1− 1
i2 )|F |, using Proposition 19.40. Since

(
1− 1

i2

)s
→ 0 as s → ∞,

it follows that AHni is finite. Now

∏

j∈AH
ni

(

1−
1

i2

)

=

(

1−
1

i2

)|AHni|

;

∏

i≤m+1

(

1−
1

i2

)|AHni|

=

(

1−
1

(m+ 1)2

)|AHni| ∏

i≤m

(

1−
1

i2

)|AHni|

≤
∏

i≤m

(

1−
1

i2

)|AHni|

It follows that
∏

i∈ω

(
1− 1

i2

)|AHni| exists. Now we have

∏

i∈ω

(

1−
1

i2

)|AGni|

=
∏

i∈ω

∏

j∈AG
ni

(

1−
1

i2

)

=
∏

i∈ω

∏

j∈AG
ni

µ(ω2\Gij) ≥ µ(KH ∩ Un) > 0,

Applying Lemma 19.44 with an = − 1
n2 for all n > 0, it follows that

∞∑

i=1

−
|AGni|

i2
exists and is > −∞,
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so
∞∑

i=1

|AGni|

i2
exists and is <∞,

Hence 〈AGni : i ∈ ω〉 ∈ C for all n.
We now define, for any H ∈ null, ϕ∗

2(H) is some element of C such that

∀n ∈ ω\1∃k ∈ ω∀i ≥ k[AHni ⊆ (ϕ∗
2(H))n];

this exists by Lemma 19.45. (Replace Sn there by 〈AHni : i ∈ ω〉.)
Now to show that ϕ2 : C → null is a Tukey function, with associated map ϕ∗

2, suppose
that X ⊆ null and ∀A ∈ X [A ⊆ H]. with H ∈ null. We want to show that ϕ−1

2 [X ]
is bounded by ϕ∗

2(H). That is, we want to show that for all S ∈ C, if ϕ2(S) ∈ X then
S ⊆ ϕ∗

2(H). Now by the definition of ϕ2 we have

ϕ2(S) = GS =
⋂

n∈ω\1

⋃

m>n

⋃

k∈S(m)

Gmk ⊆ H.

Now KH ∩H = ∅, so

KH ∩
⋂

n∈ω\1

⋃

m>n

⋃

k∈S(m)

Gmk = ∅.

Now note that if n < n′ ∈ ω then

⋃

m>n′

⋃

k∈S(m)

Gmk ⊆
⋃

m>n

⋃

k∈S(m)

Gmk.

Hence by Lemma 19.46 there exist an open set U and a t ∈ ω such that U ∩KH 6= ∅ and
for all s ≥ t,

U ∩KH ∩
⋃

m>s

⋃

k∈S(m)

Gmk = ∅.

We may assume that U is a basic open set Un; see the beginning of the construction
of ϕ∗

2. Now for all m > t, Un ∩ KH ∩
⋃

u∈S(m)Gmu = ∅. So S(m) ⊆ AHnm. Also,

there is a v such that ∀m > v[AHnm ⊆ (ϕ∗
2(H))m]. Hence for all m > max(t, v) we have

S(m) ⊆ AHnm ⊆ (ϕ∗
2(H))m. So S ≤ ϕ∗

2(H), as desired.

Lemma 19.48. If U ⊆ ω2 is a nonempty open set and n ∈ ω, then there is a countable
family A of open subsets of U such that:

(i) Every dense open subset of ω2 contains a member of A .
(ii) The intersection of any n elements of A is nonempty.

Proof. Let 〈Vm : m ∈ ω〉 enumerate all nonempty clopen subsets of U . For each
k ∈ ω let

Ak =

{

m > k : ∀I ⊆ k + 1

[
⋂

i∈I

Vi 6= ∅ → Vm ∩
⋂

i∈I

Vi 6= ∅

]}

.
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Define

A =







⋃

i≤n

Vmi : m0 ∈ ω and ∀i ≤ n[mi+1 ∈ Ami ]






.

Now to prove (i), let W be a dense open subset of ω2.

(1) ∀k ∈ ω[Ak ∩ {m ∈ ω : Vm ⊆ W} 6= ∅].

In fact, let k ∈ ω. Now for each I ⊆ k+1 such that
⋂

i∈I Vi 6= ∅ choose a nonempty clopen
CI ⊆ ((

⋂

i∈I Vi) ∩W ). Then

T
def
=
⋃
{

CI : I ⊆ k + 1 and
⋂

i∈I

Vi 6= ∅

}

is a nonempty clopen subset of U . Let Vl be any nonempty clopen subset of T with k < l.
Note that Vl ⊆ U ∩W . Thus l ∈ Ak ∩ {m ∈ ω : Vm ⊆W} 6= ∅]. This proves (1).

Now we define 〈mi : i ≤ n〉 by recursion. By (1), let m0 be such that m0 ∈ A0 and
Vm0

⊆ W . Having defined mi, by (1) let mi+1 be such that mi < mi+1 and mi+1 ∈ Ami
and Vmi+1

⊆W . Then
⋃

i≤n Vmi ⊆ W and
⋃

i≤n Vmi ∈ A . This proves (i).

To prove (ii), suppose that W1, . . . ,Wn ∈ A . Say Wj =
⋃

i≤n Vmj
i

with mj
0 ∈ ω

and ∀i ≤ n[mj
i+1 ∈ Amj

i
]. Let s0 = min{mj

0 : 1 ≤ j ≤ n}. If si has been defined, with

0 ≤ i < n, if for all j = 1, . . . , n we have mj
k = sk for some k ≤ i, the construction

stops. Otherwise there is a j ∈ {1, . . . , n} such that ∀k ≤ i[mj
k 6= sk], and we let si+1 =

min{mj
i+1 : 1 ≤ j ≤ n and mj

k 6= sk for all k ≤ i}. So this constructs s0, . . . , sl with l ≤ n.

Now for each t ≤ l let Ct = {j : ∀u < t[mj
u 6= su]}. Thus st = min{mj

t : j ∈ Ct}.

(2) If t+ 1 ≤ l, then st < st+1.

For, let st+1 = m
j(1)
t+1 , with j(1) ∈ Ct+1, and st = m

j(0)
t with j(0) ∈ Ct. Now Ct+1 ⊆ Ct,

so j(1) ∈ Ct. Hence st = m
j(0)
t ≤ mj(1)

t < m
j(1)
t+1 = st+1.

Now for each t ∈ {0, . . . , l} choose j(t) ∈ Ct such that m
j(t)
t = st.

(3) For all t ∈ 0, . . . , l we have V
m
j(0)
0

∩ . . . ∩ V
m
j(t)
t

6= ∅.

We prove this by induction. It is clear for t = 0. Assume it for t, with t+ 1 ≤ l. Then by
(2) we get V

m
j(0)
0

∩ . . . ∩ V
m
j(t+1)
t+1

6= ∅.

Now if l = n, then (3) gives (ii). If l < n, then for all v with l < v ≤ n there is a k ≤ l

such that mv
k = sk = m

j(k)
k , and (ii) again follows.

Theorem 19.49. There are functions ϕ1 : meag → C and ϕ∗
1 : C → meag such that for

any F ∈ meag and any S ∈ C,

ϕ1(F ) ≤ S implies that F ⊆ ϕ∗
1(S).
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Proof. Let 〈Un : n ∈ ω〉 enumerate all the nonempty clopen subsets of ω2. For each
n ∈ ω let 〈V nm : m,n ∈ ω〉 be obtained from Lemma 19.48 using Un for U and n2 for n.

Suppose that F is a meager set. Say F =
⋃

n∈ω F
′
n, each F ′

n nowhere dense, and

F ′
n ⊆ F ′

m for n < m. We define ϕ1(F )
def
= SF as follows. SF is a function with domain ω,

and for each n ∈ ω,

SF (n) = {min{k ∈ ω : F
′
n ∩ V

n
k = ∅}}.

Note that since each set ω2\F
′
n is dense open, this definition makes sense. Clearly SF ∈ C.

Now for each S ∈ C let

ϕ∗
1(S)

def
= FS = ω2\

⋂

n∈ω

⋃

m>n

⋂

i∈S(m)

V mi .

Now |S(m)| ≤ m2 for all m ∈ ω, so by Lemma 19.48, ∅ 6=
⋂

i∈S(m) V
m
i ⊆ Um. We claim

that each set
⋃

m>n

⋂

i∈S(m) V
m
i is dense, hence open dense. For, if W is any open set,

then there is a Um with m > n such that Um ⊆W . Hence

W ∩
⋃

m>n

⋂

i∈S(m)

V mi ≥ Um ∩
⋂

i∈S(m)

V mi =
⋂

i∈S(m)

V mi 6= ∅.

It follows that FS is meager.
Now suppose that ϕ1(F ) ≤ S. Choose n so that for all m > n SF (m) ⊆ S(m). For

each m > n let km be such that SF (m) = {km} and km is minimum such that F ′
m∩V

m
km

=
∅. Now for any m > n we have

⋂

i∈S(m) V
m
i ⊆ V mkm , and so

⋂

i∈S(m) V
m
i ∩ F

′
m = ∅.

Hence also
⋂

i∈S(m) V
m
i ∩ F

′
n = ∅. It follows that

⋃

m>n

⋂

i∈S(m) V
m
i ∩ F

′
n = ∅. Hence

⋂

n∈ω

⋃

m>n

⋂

i∈S(m) V
m
i ∩ F = ∅. So F ⊆ FS = ϕ∗

1(S).

Theorem 19.50. ϕ2 ◦ ϕ1 : meag→ null is a Tukey function.

Proof. Suppose that C ∈ meag, B ∈ null, and ϕ2(ϕ1(C) ⊆ B. Then

ϕ1(C) ≤ ϕ∗
2(B) by Theorem 19.47 and its proof

C ⊆ ϕ∗
1(ϕ∗

2(B)). by Theorem 19.49

Corollary 19.51. add(null) ≤ add(meag).

Proof. By Proposition 19.36 and Theorem 19.50.

Corollary 19.52. cof(meag) ≤ cof(null).

Proof. By Proposition 19.37 and Theorem 19.50.

Lemma 19.53. There are 2ω Borel sets.

Proof. Every open set is the union of a family of open intervals with rational end-
points, so there are at most 2ω open sets. There are exactly 2ω, since one can take the set
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{(m,m + 1
2 ) : m ∈ Z} and form all open sets which are unions of subsets of it. Now the

Borel sets can be obtained as follows:

B0 = {X : X open};

B2α+1 = B2α ∪ {R\a : a ∈ Bα};

B2α+2 = B2α+1 ∪

{
⋃

n∈ω

an : a ∈ ωB2α+1

}

.

Now the collection of Borel sets is
⋃

α<ω1
Bα. By induction, |Bα| = 2ω for all α < ω1.

Lemma 19.54. Every null set is contained in a Borel null set.

Proof. Let C be a null set. Then there is an open set Un such that C ⊆ Un and
µ(Un) ≤ 2−n. Then C ⊂

⋂

n∈ω Un and µ(
⋂

n∈ω Un) = 0.

Theorem 19.55. cof(null) ≤ 2ω.
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20. Continuum cardinals

We consider several cardinal numbers involving the continuum; most of them are similar
to b and d introduced in Chapter 19. First some definitions.

For a, b ∈ [ω]ω we write a ⊆∗ b iff a\b is finite.

A set S ⊆ [ω]ω is splitting iff ∀a ∈ [ω]ω∃s ∈ S[a ∩ s and a\s are infinite].

A tower is a system 〈aξ : ξ < α〉 of members of [ω]ω such that:
(i) aξ ⊆∗ aη if ξ < η.
(ii) aη\aξ is infinite if ξ < η.
(iii) α is a limit ordinal.
(iv) If b ∈ [ω]ω and aξ ⊆∗ b for all ξ < α, then ω\b is finite.

X ⊆ [ω]ω is weakly dense iff ∀a ∈ [ω]ω∃x ∈ X [x ⊆∗ a or x ∩ a is finite].

X ⊆ [ω]ω is ideal independent iff ∀x ∈ X∀F ∈ [X\{x}]<ω
[

x 6⊆∗
⋃

y∈F y
]

.

A free sequence is a sequence 〈aξ : ξ < α〉 of members of [ω]ω such that for all F,G ∈ [α]<ω

with F < G we have
⋂

ξ∈F aξ ∩
⋂

ξ∈G(ω\aξ) is infinite. Here we write F < G to mean that
ξ < η for all ξ ∈ F and η ∈ G. We allow F = ∅ or G = ∅. A free sequence is maximal iff
there is no b ∈ [ω]ω such that 〈aξ : ξ < α〉⌢〈b〉 is a free sequence, where 〈aξ : ξ < α〉⌢〈b〉
is the result of adjoining b at the end of the sequence 〈aξ : ξ < α〉.

A nonprincipal ultrafilter on P(ω) is a subset D of P(ω) such that:
(i) ω ∈ D.
(ii) If x ∈ D and x ⊆ y ⊆ ω, then y ∈ D.
(iii) If x, y ∈ D then x ∩ y ∈ D.
(iv) For all x ⊆ ω, x ∈ D or (ω\x) ∈ D.
(v) Every member of D is infinite.

A set X ⊆ [ω]ω generates a nonprincipal ultrafilter D iff X ⊆ D and for all x ∈ D there
is a finite F ⊆ X such that

⋂
F ⊆ x.

Sets a, b ∈ [ω]ω are almost disjoint iff a∩ b is finite. A MAD family is a set X ⊆ [ω]ω such
that ∀x, y ∈ X [x 6= y → x ∩ y is finite], and for all a ⊆ ω, if ∀x ∈ X [x ⊆∗ a] then ω\a is
finite.

A MAD family X refines a MAD family Y iff ∀x ∈ X∃y ∈ Y [x ⊆∗ y].

A set X ⊆ [ω]ω is independent iff

∀F,G ∈ [X ]<ω

[

F ∩G = ∅ →
⋂

a∈F

a ∩
⋂

a∈G

(ω\a) is infinite

]

Now we can define the cardinals to be studied in this chapter.

s = min{|X | : X is splitting};

t = min{|α| : there is a tower of length α}
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h = min{|X | : X is a set of MAD families with no common refinement}

r = min{|X | : X is weakly dense}

a = min{|X | : X is an infinite MAD family}

f = min{|α| : there is a maximal free sequence of length α}

smm = min{|X | : X is infinite and maximal ideal independent}

i = min{|X | : X is maximal independent};

u = min{|X | : X generates a nonprincipal ultrafilter}.

•

•

•

•

•

•

•
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•
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2ω

add(null)

add(meag)

cov(meag)

non(null)

cof(null)

cof(meag)

non(meag)

cov(null)

ω1

b

d

• t

• s

• r

We will prove the indicated relationships in these two diagrams.

Recall the definition of Inc from page 270. If i ∈ Inc then we let ϕ(i) =
⋃

n∈ω[i2n, i2n+1).
If X ∈ [ω]ω define a member ψ(X) = iX of Inc as follows:

iX0 = 0;

iXn+1 = least j > iXn such that [iXn , j) ∩X 6= ∅.

Lemma 20.1. If X ∈ [ω]ω and i almost dominates ψ(X), then ϕ(i) splits X.

Proof. Choose m such that ∀n ≥ m∃k[[iXk , i
X
k+1) ⊆ [in, in+1)]; hence ∀n ≥ m[X ∩

[in, in+1) 6= ∅]. So the lemma follows.

Theorem 20.2. s ≤ d.

Proof. Let D be an almost dominating family of members of Inc, with |D| = d; see
Proposition 19.30. Then {ϕ(i) : i ∈ D} is a splitting family by Lemma 20.1.
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Proposition 20.3. b ≤ r.

Proof. Let R ⊆ [ω]ω be ∗-dense with |R| = r. We claim that no i ∈ Inc almost
dominates each member of {ψ(X) : X ∈ R}. In fact, otherwise by Lemma 20.1, ϕ(i) splits
each member of R, contradiction. So the proposition follows by Proposition 19.17.

If F is a family of sets, a pseudo-intersection of F is an infinite set A such that A ⊆∗ B
for all B ∈ F .

A set D ⊆ [ω]ω is open iff ∀X, Y ∈ [ω]ω[X ⊆∗ Y ∈ D → X ∈ D ]. D is dense iff
∀Y ∈ [ω]ω∃X ∈ D [X ⊆ Y ]. Obviously [ω]ω itself is dense open. We say that D is ∗-dense
iff ∀Y ∈ [ω]ω∃X ∈ D [X ⊆∗ Y ].

Proposition 20.4. If D is ∗-dense, then D is infinite.

Proof. Suppose not; say D is ∗-dense and finite. For each set X ⊆ ω let X1 = X and
X0 = ω\X . Then ω =

⋃

ε∈D2

⋂

X∈D
Xε(X), so there is an ε ∈ D2 such that

⋂

X∈D
Xε(X)

is infinite. Take an infinite Y ⊆
⋂

X∈D
Xε(X) with (

⋂

X∈D
Xε(X))\Y infinite. Choose

Z ∈ D such that Z ⊆∗ Y , Then Z\Zε(Z) ⊆ Z\Y , so ε(Z) = 1. (Otherwise Z ⊆ Z\Y
with Z infinite and Z\Y finite, contradiction.) But then

⋂

X∈D
Xε(X))\Y ⊆ Z\Y with

⋂

X∈D
Xε(X))\Y infinite and Z\Y finite, contradiction.

Proposition 20.5. If D is ∗-dense, then there is a D ′ such that D ⊆ D ′ ⊆ [ω]ω, |D | =
|D ′|, and D ′ is dense.

Proof. Let D ′ = {X ∈ [ω]ω : there is a finite F ⊆ ω such that X ∪ F ∈ D}. Then
|D | = |D ′| by Proposition 20.4. Clearly D ⊆ D ′. D ′ is dense, since if Y ∈ [ω]ω, choose
X ∈ D such that X ⊆∗ Y . Then X = (X ∩ Y )∪ (X\Y ), so X ∩ Y ⊆ Y and X\Y is finite,
so X ∩ Y ∈ D ′.

Proposition 20.6. For every X ∈ [ω]ω there is a ∗-dense open family D such that X /∈ D.

Proof. Let X = Y ∪ Z with Y, Z ∈ [ω]ω and Y ∩ Z = ∅. Define

D = {W ∈ [ω]ω : W ⊆∗ Y or W ⊆∗ Z or W ∩X is finite}.

Clearly D is as desired.

Lemma 20.7. If X ⊆ [ω]ω and ∀x, y ∈ X [x 6= y → |x ∩ y| < ω], then the following are
equivalent:

(i) X is a MAD family.
(ii) ∀a ∈ [ω]ω∃x ∈ X [|a ∩ x| = ω].

Proof. (i)⇒(ii): Assume that X is a MAD family and a ∈ [ω]ω. If ∀x ∈ X [|a∩x| < ω],
then ∀x ∈ X [x ⊆∗ (ω\a)], so a = ω\(ω\a) is finite, contradiction.

(ii)⇒(i): Assume (ii), and suppose that a ⊆ ω and ω\a is infinite. Choose x ∈ X such
that x ∩ (ω\a) is infinite. Thus x 6⊆∗ a.

Proposition 20.8. h = min{|A | : A is a family of open ∗-dense sets and
⋂

A = ∅.
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Proof. Let h′ = min{|A | : A is a family of open ∗-dense sets and
⋂

A = ∅}.
h′ ≤ h: Suppose that P is a family of MAD families such that |P| = h and P does

not have a common refinement. Let Q be maximal subject to the following conditions:
(i) Q is a family of members of [ω]ω;
(ii) ∀a, b ∈ Q[a 6= b→ |a ∩ b| < ω].
(iii) ∀a ∈ Q∀P ∈P∃b ∈ P [a ⊆∗ b].

Then Q is not a MAD family, as otherwise it would refine P. Thus there is an a ⊆ ω

such that ∀x ∈ Q[x ⊆∗ a] but X
def
= ω\a is infinite. Then x ∩X is finite for all x ∈ Q. Let

f : ω → X be a bijection. For each P ∈P let

DP = {Y ∈ [ω]ω : ∃Z ∈ [ω]ω[Z ∈ P and [f [Y ] ⊆∗ Z]]}.

We claim that DP is ∗-dense open. It is clearly open. Now suppose that W ∈ [ω]ω.
Since f [W ] is infinite, there is a Z ∈ [ω]ω such that Z ∈ P and f [W ] ∩ Z is infinite. Let
Y = W ∩ f−1[Z]. Then Y ∈ [ω]ω and f [Y ] ⊆∗ Z. So Y ∈ DP . So the claim is established.

Now suppose that
⋂

P∈P
DP 6= ∅; we will get a contradiction, and this will prove

h ≤ h′. Take Y ∈
⋂

P∈P
DP . For any P ∈ P we have Y ∈ DP , and so we can choose

Z ∈ [ω]ω such that Z ∈ P and f [Y ] ⊆∗ Z. Then f [Y ] ⊆∗ X and Q ∪ {f [Y ]} satisfies the
conditions defining Q, contradiction.

h ≤ h′: Suppose that A is a family of open ∗-dense sets with empty intersection, with
|A | = h′. Let κ = |A |. If D ∈ A , let PD be a maximal subset [ω]ω satisfying the following
conditions:

(i) ∀a, b ∈ PD [a 6= b→ |a ∩ b| < ω].
(ii) PD ⊆ D .

Now PD is a MAD family. For suppose that a ∈ [ω]ω and ∀x ∈ PD [|a∩x| < ω]. Choose X ∈
D such that X ⊆∗ a. Then PD ∪ {X} satisfies the conditions defining PD , contradiction.
Suppose that Q is a common refinement of {DP : P ∈ A }; we will get a contradiction,
which will finish the proof. Take any X ∈ Q. If D ∈ A , then there is a Y ∈ PD such
that X ⊆∗ Y . By the definition of PD , we have Y ∈ D , hence X ∈ D since D is open. So
X ∈

⋂
A , contradiction.

Proposition 20.9. t ≤ h.

Proof. Suppose that A is a family of ∗-dense open sets with |A | < t; we want to
find a member of

⋂
A . Write A = {Dα : α < κ} with κ < t. We now define a sequence

〈Tα : α ≤ κ} by recursion. Let T0 = ω. If Tα ∈ [ω]ω has been chosen, let Tα+1 ∈ Dα

be a ∗-subset of Tα; this is possible because Dα is ∗-dense. For α ≤ κ limit, let Tα be
a pseudo-intersection of {Tβ : β < α}; this is possible because α < t. This finishes the
construction.

By openness we have Tκ ∈
⋂

A .

Theorem 20.10. ω1 ≤ t.

Proof. It suffices to take any sequence 〈xn : n ∈ ω〉 of elements of [ω]ω such that
∀m,n ∈ ω[m < n → xn ⊆∗ xm] and find a pseudo-intersection of {xn : n ∈ ω}. Now
⋂

m≤n xm is infinite for each n, since xn+1\
⋂

m≤n xm =
⋃

m≤n(xn+1\xm) is finite. For
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each n ∈ ω choose kn ∈
⋂

m≤n xm\{km : m < n}. Then y
def
= {kn : n ∈ ω} is infinite, and

for each n, y\xn ⊆ {km : m < n}.

Let n ∈ ω\1, k ∈ ω\2, f : [ω]n → k, and H ⊆ ω. Then H is homogeneous for f iff f ↾ [H]n

is constant; it is almost homogeneous for f iff there is a finite set F ⊆ H such that H\F is
homogeneous for f . Note that if H is homogeneous for F , then it is almost homogeneous
for F .

Proposition 20.11. If n ∈ ω\1 and k ∈ ω\2, then there is no H ∈ [ω]ω such that H is
almost homogeneous for all f ∈ [ω]nk.

Proof. Suppose that such an H exists. Let H = {m0, m1, . . .} with m0 < m1 < · · ·.
Define f : [ω]n → k by setting, for each Y ∈ [ω]n,

f(Y ) =

{
0 if Y /∈ [H]n,
0 if Y ∈ [H]n and min(Y ) has the form m2i for some i,
1 otherwise.

Clearly H is not almost homogeneous for f , contradiction.

For the next results we need Ramsey’s theorem. So we prove it here. Further results along
this line will be given later. These are results concerning the partition calculus; see also
the Dushnik-Miller theorem, Theorem 12.58. The basic definition is as follows:

• Suppose that ρ is a nonzero cardinal number, 〈λα : α < ρ〉 is a sequence of cardinals,
and σ, κ are cardinals. We also assume that 1 ≤ σ ≤ λα ≤ κ for all α < ρ. Then we write

κ→ (〈λα : α < ρ〉)σ

provided that the following holds:

For every f : [κ]σ → ρ there exist α < ρ and Γ ∈ [κ]λα such that f [[Γ]σ]] ⊆ {α}.

In this case we say that Γ is homogeneous for f . This generalizes the notion above. The
following colorful terminology is standard. We imagine that α is a color for each α < ρ,
and we color all of the σ-element subsets of κ. To say that Γ is homogeneous for f is to
say that all of the σ-element subsets of Γ get the same color. Usually we will take σ and ρ
to be a positive integers. If ρ = 2, we have only two colors, which are conventionally taken
to be red (for 0) and blue (for 1). If σ = 2 we are dealing with ordinary graphs.

Note that if ρ = 1 then we are using only one color, and so the arrow relation obviously
holds by taking Γ = κ. If κ is infinite and σ = 1 and ρ is a positive integer, then the relation
holds no matter what σ is, since

κ =
⋃

i<ρ

{α < κ : f({α}) = i},

and so there is some i < ρ such that |{α < κ : f({α}) = i}| = κ ≥ λi, as desired.
The general infinite Ramsey theorem is as follows.
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Theorem 20.12. (Ramsey) If n and r are positive integers, then

ω → (ω, . . . , ω
︸ ︷︷ ︸

r times

)n.

Proof. We proceed by induction on n. The case n = 1 is trivial, as observed above.
So assume that the theorem holds for n ≥ 1, and now suppose that f : [ω]n+1 → r. For
each m ∈ ω define gm : [ω\{m}]n → r by:

gm(X) = f(X ∪ {m}).

Then by the inductive hypothesis, for each m ∈ ω and each infinite S ⊆ ω there is an
infinite HS

m ⊆ S\{m} such that gm is constant on [HS
m]n. We now construct by recursion

two sequences 〈Si : i ∈ ω〉 and 〈mi : i ∈ ω〉. Each mi will be in ω, and we will have
S0 ⊇ S1 ⊇ · · ·. Let S0 = ω and m0 = 0. Suppose that Si and mi have been defined, with
Si an infinite subset of ω. We define

Si+1 = HSi
mi

and

mi+1 = the least element of Si+1 greater than mi.

Clearly S0 ⊇ S1 ⊇ · · · and m0 < m1 < · · ·. Moreover, mi ∈ Si for all i ∈ ω.

(1) For each i ∈ ω, the function gmi is constant on [{mj : j > i}]n.

In fact, {mj : j > i} ⊆ Si+1 by the above, and so (1) is clear by the definition.
Let pi < r be the constant value of gmi ↾ [{mj : j > i}]n, for each i ∈ ω. Hence

ω =
⋃

j<r

{i ∈ ω : pi = j};

so there is a j < r such that K
def
= {i ∈ ω : pi = j} is infinite. Let L = {mi : i ∈ K}. We

claim that f [[L]n+1] ⊆ {j}, completing the inductive proof. For, take any X ∈ [L]n+1; say
X = {mi0 , . . . , min} with i0 < · · · < in. Then

f(X) = gmi0 ({mi1 , . . . , min}) = pi0 = j.

As a digression, we also prove the finite version of Ramsey’s theorem:

Theorem 20.13. (Ramsey) Suppose that n, r, l0, . . . , lr−1 are positive integers, with n ≤ li
for each i < r. Then there is a k ≥ li for each i < r and k ≥ n such that

k → (l0, . . . , lr−1)n.

Proof. Assume the hypothesis, but suppose that the conclusion fails. Thus for every
k such that k ≥ li for each i < r with k ≥ n also, we have k 6→ (l0, . . . , lr−1)n, which means
that there is a function fk : [k]n → r such that for each i < r, there is no set S ∈ [k]li
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such that fk[[S]n] ⊆ {i}. We use these functions to define a certain g : [ω]n → r which
will contradict the infinite version of Ramsey’s theorem. Let M = {k ∈ ω : k ≥ li for each
i < r and k ≥ n}.

To define g, we define functions hi : [i]n → r by recursion. h0 has to be the empty

function. Now suppose that we have defined hi so that Si
def
= {s ∈ M : fs ↾ [i]n = hi} is

infinite. This is obviously true for i = 0. Then

Si =
⋃

s:[i+1]n→r

{k ∈ Si : fk ↾ [i+ 1]n = s},

and so there is a hi+1 : [i + 1]n → r such that Si+1
def
= {k ∈ Si : fk ↾ [i + 1]n = hi+1} is

infinite, finishing the construction.
Clearly hi ⊆ hi+1 for all i ∈ ω. Hence g =

⋃

i∈ω hi is a function mapping [ω]n into
r. By the infinite version of Ramsey’s theorem choose v < r and Y ∈ [ω]ω such that
g[[Y ]n] ⊆ {v}. Take any Z ∈ [Y ]lv . Choose i so that Z ⊆ i, and choose k ∈ Si. Then for
any X ∈ [Z]n we have

fk(X) = hi(X) = g(X) = v,

so Z is homogeneous for fk, contradiction.

Proposition 20.14. If n ∈ ω\1, k ∈ ω\2, and F ⊆ [ω]nk is finite, then there is a H ∈ [ω]ω

which is homogeneous for each f ∈ F .

Proof. Let F = {f0, . . . , fm}. We define infinite sets K0, . . .Km+1 ⊆ ω by recursion.
Let K0 = ω. If i ≤ m and Ki has been defined, then fi+1 ↾ [Ki]

n : [Ki]
n → k, and so by

Ramsey’s theorem there is a Ki+1 ∈ [Ki]
ω such that Ki+1 is homogeneous for fi+1 ↾ [Ki]

n,
hence also for f . Clearly Km+1 is as desired in the proposition.

We now define, for every positive integer n,

parn = min{|F | : F ⊆ [ω]n2 : ¬∃X ∈ [ω]ω∀f ∈ F [X is almost homogeneous for f}.

By Proposition 20.11 this definition makes sense. Also, by Proposition 20.14, ω ≤ parn
for every positive integer n.

Proposition 20.15. s = par1.

Proof. First suppose that F satisfies the condition in the definiton of par1, with |F | =
par1. For each f ∈ F let Pf = {m ∈ ω : f(m) = 1}, and let M = {Pf : f ∈ F}. We claim
that M is a splitting family; this will prove s ≤ par1. So, suppose that Y ∈ [ω]ω. Choose
f ∈ F such that Y is not almost homogeneous for f . Then Y ∩Pf is infinite, as otherwise,
since f has the constant value 0 on Y \Pf , Y \Pf would an infinite set homogeneous for f .
Similarly Y \Pf is infinite.

Second, suppose that S is a splitting family. Let F be the collection of all characteristic
functions of members of S. So if we show that F satisfies the conditions in the definition
of par1, this will prove that s ≥ par1. Suppose that Y ∈ [ω]ω, and choose M ∈ S which
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splits Y . Let f be the characteristic function of M . If N is any finite subset of Y , then
(Y \N) ∩M and (Y \N)\M are both infinite, and so f is not constant on Y \N .

Proposition 20.16. Suppose that 2 ≤ k ∈ ω and n is a positive integer. Then

parn = min{|F | : F ⊆ [ω]nk : ¬∃X ∈ [ω]ω∀f ∈ F [X is almost homogeneous for f ]}

Proof. If F is as in the definition of parn, clearly F works as in the right side. So
≥ holds. Now suppose that F is as in the right side. For each f ∈ F and i < k define
gfi : [ω]n → 2 by setting, for any x ∈ [ω]n,

gfi(x) =
{

0 if f(x) = i,
1 otherwise.

Now G
def
= {gfi : f ∈ F, i < k} has the same size as F by Proposition 20.14, so it suffices,

in order to prove ≤, to show that G satisfies the condition in the definition of parn. So
suppose that X ∈ [ω]ω and X is almost homogeneous for each gfi. We claim that X is
almost homogeneous for each f ∈ F (contradiction). For, take any f ∈ F . For each i < k
let Mi be a finite subset of X such that gfi is constant on [X\Mi]

n. We claim that f is
constant on

[
X\

⋃

i<kMi

]
, as desired. For, take any two x, y ∈ X\

⋃

i<kMi. Say f(x) = i.
Then since x, y ∈ X\Mi, we get gfi(y) = gfi(x) = 0, and hence f(y) = i, as desired.

Example 20.17. If n is a positive integer and k ∈ ω\2, then there is a countable F ⊆ [ω]nk
such that there is no M ∈ [ω]ω such that M is homogeneous for each f ∈ F .

Proof. Let [ω]n = {aα : α < ω}, with aα 6= aβ if α 6= β. For each α < ω we define
gα : [ω]n → k by setting, for each x ∈ [ω]n,

gα(x) =
{

1 if x = aα,
0 otherwise.

Let F = {gα : α < ω}. Suppose that M ∈ [ω]ω. Choose α < ω so that aα ∈ [M ]n, and
choose x ∈ [M ]n with x 6= aα. Then gα(aα) = 1 and gα(x) = 0, so M is not homogeneous
for gα.

Lemma 20.18. If m ≤ n, then parn ≤ parm.

Proof. Assume that m ≤ n. Choose F with |F | minimum such that F ⊆ [ω]m2 and
there is no X ∈ [ω]ω such that ∀f ∈ F [X is almost homogeneous for f}. For each f ∈ F
define gf ∈ [ω]n2 as follows. Let x = {a0, . . . , an−1} ∈ [ω]n, with a0 < · · · < an−1. We
define gf (x) = f({x0, . . . , xm−1}). We claim that there is no X ∈ [ω]ω such that ∀f ∈ F [X
is almost homogeneous for gf}; this will prove the lemma. Suppose that there is such an
X . We claim that X is almost homogeneous for each f ∈ F . (Contradiction). For, let
G ∈ [X ]<ω be such that X\G is homogeneous for gf . Say gf ↾ [X\G]n has constant value
ε. Then for all a0 < · · · < am−1 in ω, choose am . . . , an−1 so that am−1 < am < · · · < an−1.
Then f({a0, . . . , am−1}) = gf ({a0, . . . , an−1} = ε, as desired.
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Corollary 20.19. parn ≤ s for every positive integer n.

Theorem 20.20. ω < s.

Proof. First suppose that {F0, . . . , Fn−1} is splitting, with n ∈ ω. For each ε ∈ n2

let Gε =
⋂

i<n F
ε(i)
i , where F 1

i = Fi and F 0
i = (ω\Fi). Then ω =

⋃

ε∈n2Gε, so there is an
ε ∈ n2 such that Gε is infinite. Now Gε is not split by {F0, . . . , Fn−1}, contradiction.

Suppose that {Yi : i < ω} is a splitting family. It is clear how to construct by recursion

an ε ∈ ω2 such that
⋂

j<i Y
ε(j)
j is infinite for every i < ω. Now construct 〈mi : i < ω by

letting mi ∈
⋂

j<i Y
ε(j)
j \{mj : j < i} for every i < ω. Clearly Z

def
= {mi : i < ω} is not

split by any Yi.

Theorem 20.21. For every integer n ≥ 2, parn = min(b, s).

Proof. By Corollary 20.19, parn ≤ s. Next we show that parn ≤ b. By Lemma
20.18 it suffices to take the case n = 2. Let B be an almost unbounded subset of ωω with
|B| = b. We may assume that each member of B is strictly increasing. For each g ∈ B
define fg : [ω]2 → 2 by setting for any {x, y} ∈ [ω]2 with x < y,

fg({x, y}) =
{

1 if g(x) < y,
0 otherwise.

We claim that there is no set H ∈ [ω]ω which is almost homogeneous for all fg’s; this will
prove parn ≤ b. Suppose that there is such an H.

(1) If K ⊆ ω and fg[[K]2] ⊆ {0}, then K is finite.

For, assume that K 6= ∅, and let x be its first element. If z ∈ K\{x}, then fg({x, z}) = 0,
and hence z ≤ g(x). So (1) holds.

Now we define h, k : ω → ω as follows. For any x ∈ ω, h(x) and k(x) are the first and
second elements of H which are greater than x. Now take any g ∈ B; we will show that
g <∗ k (contradiction). Let F be a finite subset of H such that fg ↾ [H\F ]2 is constant. By
(1), this constant value is 1. Thus if x > F , we have h(x), k(x) ∈ H\F and h(x) < k(x), so
fg({h(x), k(x)}) = 1, and hence g(h(x)) < k(x). So g(x) < g(h(x)) < k(x). Thus g <∗ k,
as desired.

So we have shown ≤ in the theorem.
For ≥, we prove the following statement by induction on n:

(2) If n is a positive integer, 〈fξ : ξ < κ〉 is a system of members of [ω]n2, and κ < min(s, b),
then there is a set almost homogeneous for all of the fξ’s.

This holds for n = 1 by Proposition 20.15. Now suppose that n > 1 and we know the result
for n− 1. Suppose that 〈fξ : ξ < κ〉 is a sequence of members of [ω]n2 with κ < min(b, s).
We want to find a set almost homogeneous for all of them. Let c : ω → [ω]n−1 be a
bijection. For each ξ < κ and p ∈ ω let

fξ,p(m) =
{
fξ(c(p) ∪ {m}) if m /∈ c(p),
0 otherwise.
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Thus {fξ,p : ξ < κ, p ∈ ω} is a family of less than s functions mapping ω into 2 (using
Theorem 20.20). Hence by Proposition 20.15 there is an infinite set A almost homogeneous
for all of them. So for each ξ < κ and p ∈ ω we can choose gξ(p) ∈ ω and jξ(p) ∈ 2 such
that fξ,p(x) = jξ(p) for all x ∈ A such that x ≥ gξ(p). Write A = {mi : i < ω}, m
strictly increasing. For each a ∈ [ω]n−1 let cξ(a) = jξ(c

−1({mi : i ∈ a})). By the inductive
hypothesis, let M be an infinite set almost homogeneous for each jξ. Choose bξ and kξ
such that cξ takes on the constant value kξ on [M\bξ]n−1. Let B = {mi : i ∈M}.

(3) If a ∈ [B\mbξ ]
n−1 then jξ(c

−1(a)) = kξ.

In fact, write a = {mi : i ∈ s}. Then s ⊆ M , and mi ≥ mbξ and hence i ≥ bξ, for each
i ∈ s. So s ∈ [M\bξ]

n−1, so kξ = cξ(s) = jξ(c
−1({mi : i ∈ s})) = jξ(c

−1(a)). So (3) holds.
Since κ < b, choose h such that gξ ≤∗ h for all ξ < κ. Choose aξ so that gξ(p) ≤ h(p)

for all p ≥ aξ.
Now we define x0 < x1 < · · · in B by recursion. Suppose that xs has been defined for

all s < t. Choose xt ∈ B so that xs < xt for all s < t, and also h(p) < xt for all p such that
c(p) ∈ [{x0, . . . , xt−1}]n−1. Let H = {xi : i < ω}. We claim that H is almost homogeneous
for each fξ. Let ξ < κ. Choose t such that t > c(p) for each p < aξ, and also t ≥ mbξ .
Suppose that a ∈ [H\t]n. Let m be the largest element of a, and let p = c−1(a\{m}).
Then c(p) consists of members of H which are ≥ t, so aξ ≤ p, as otherwise t > c(p),
contradiction. Thus gξ(p) ≤ h(p) < m. Also note that a\{m} ∈ [B\mbξ ]

n−1. So

fξ(a) = fξ,p(m) = jξ(p) = jξ(c
−1(a\{m})) = kξ.

Proposition 20.22. h ≤ b, s.

Proof. By Proposition 20.21 it suffices to show that h ≤ par2. So, suppose that

F ⊆ [ω]22 and |F | < h; we want to find X ∈ [ω]ω which is almost homogeneous for all
f ∈ F . For each f ∈ F let Df = {X ∈ [ω]ω : X is almost homogeneous for f}. We claim
that each Df is ∗-dense open. For openness, suppose that X ⊆∗ Y ∈ Df . Choose G,H
finite such that f ↾ [Y \G]2 is constant and X\Y = H. Then f ↾ [X\(G∪H)]2 ⊆ f ↾ [Y \G]2

is constant; so X ∈ Df . For denseness, take any Y ∈ [ω]ω. Then f ↾ [Y ]2 : [Y ]2 → 2, so by
Ramsey’s theorem there is an infinite X ⊆ Y such that f ↾ [X ]2 is constant; so X ∈ Df ,
as desired.

By Proposition 20.8, take H ∈
⋂

f∈F Df . Clearly H is almost homogeneous for all
f ∈ F , as desired.

Proposition 20.23. b ≤ a.

Proof. Suppose that A is an infinite MAD family, with |A | = a. Let 〈Cn : n ∈ ω〉
be a one-one enumeration of some of the members of A . We define

D0 = C0 ∪

(

ω\
⋃

n∈ω

Cn

)

;

Dn+1 = Cn+1\
⋃

m≤n

Cm.
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Clearly 〈Dn : n ∈ ω〉 is a partition of ω into infinite subsets. For each n ∈ ω, let
fn : Dn → ω be a bijection. Let A ′ = A \{Cn : n ∈ ω}. Then

(1) A
′′ def

= A
′ ∪ {Dn : n ∈ ω} is a MAD family

In fact, A ′′ is clearly an almost disjoint family. If Y ⊆ ω is infinite, choose E ∈ A such
that Y ∩ E is infinite, using Lemma 20.7. If E = Cn for some n, then also Y ∩ Dn is
infinite, since Y ∩Dn = Y ∩Cn\

⋃

p<n Cp = Y ∩Cn\
⋃

p<n(Cn ∩ Cp) and
⋃

p<n(Cn ∩ Cp)
is finite. If E ∈ A ′, then also E ∈ A ′′. So (1) holds.

For each A ∈ A ′ and each n ∈ ω the set A∩Dn is finite. Define gA : ω → ω by letting
gA(n) be the least natural number such that ∀m ∈ A∩Dn[fn(m) < gA(n)], for any n ∈ ω.
We claim

(2) {gA : A ∈ A
′} is almost unbounded

This will complete the proof
To show (2), suppose that gA ≤∗ h for all A ∈ A ′. Define X = {f−1

n (h(n)) : n ∈ ω}.
Thus

(3) ∀n ∈ ω[|Dn ∩X | = 1]

In fact, f−1
n (h(n)) ∈ Dn∩X . If m ∈ Dn∩X , then there is a p ∈ ω such that m = f−1

p (h(p)),
so m ∈ Dp, hence p = n and so m = f−1

n (h(n). This proves (3).
It follows from (3) that X is infinite. Now take any A ∈ A ′; we show that X ∩ A

is finite. Since also A ∩Dn is finite for all n ∈ ω, this will contradict (1), and hence will
complete the proof.

Choose p ∈ ω so that gA(n) ≤ h(n) for all n ≥ p. Then, we claim,

(4) A ∩X ⊆
⋃

n<p

(A ∩Dn).

(Hence A ∩X is finite, as desired.) To prove (4), suppose that m ∈ A ∩X . Choose n ∈ ω
so that m = f−1

n (h(n)). Then m ∈ A ∩Dn, so fn(m) < gA(n). But fn(m) = h(n), so it
follows that n < p.

Proposition 20.24. r ≤ i.

Proof. Let I ⊆ [ω]ω be maximal independent, with size i. Let

R =

{
∏

i∈F

a
ε(i)
i : F ∈ [I]<ω and ε ∈ F 2

}

,

where b1 = b and b0 = (ω\b). By maximality, R satisfies the conditions defining r.

Lemma 20.25. Suppose that 〈Cn : n ∈ ω〉 is a sequence of infinite subsets of ω such that
Cn ⊆∗ Cm if m < n. Suppose that A is a family of size less than d of infinite subsets
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of ω, each of which has infinite intersection with each Cn. Then {Cn : n ∈ ω} has a
pseudo-intersection B that has infinite intersection with each member of A .

Proof. Let C′
n =

⋂

m≤n Cm for all n ∈ ω. If A ∈ A , then

A ∩ C′
n = (A ∩ Cn)\

⋃

m<n

(Cn\Cm),

so A ∩ C′
n is still infinite. So it suffices to work with the C′

n’s rather than the Cn’s.
For each h ∈ ωω let Bh =

⋃

n∈ω(C′
n ∩ h(n)). Then Bh\C′

n ⊆
⋃

m<n h(m). In fact, if
x ∈ Bh\C′

n, say x ∈ C′
p ∩ h(p). Since x /∈ C′

n, we have p < n. Thus x ∈
⋃

m<n h(m). It
follows that Bh ⊆∗ C′

n. Hence it suffices to find h ∈ ωω so that Bh has infinite intersection
with each member of A .

For each A ∈ A and each n ∈ ω, let fA(n) be the n-th element of the infinite set
A ∩ C′

n (starting the numbering at 0). Since |A | < d, the set {fA : A ∈ A } is not almost
dominating, and so we can choose h ∈ ωω such that h 6≤∗ fA for all A ∈ A . Thus for each
A ∈ A , the set {n ∈ ω : h(n) > fA(n)} is infinite, so that h(n) ∩ A ∩ C′

n has at least n
elements for infinitely many n, and so Bh ∩ A is infinite, as desired.

Proposition 20.26. d ≤ i.

Proof. Suppose that I ⊆ [ω]ω is independent and |I | < d; we show that it is not
maximal.

Let 〈Dn : n ∈ ω〉 be a one-one enumeration of some of the elements of I , and let
I ′ = I \{Dn : n ∈ ω}. For each ε ∈ ω2 and each n ∈ ω define

Cεn =
⋂

k<n

D
ε(k)
k .

Let

A =

{
⋂

X∈F

X ∩
⋂

X∈G

(ω\X) : F,G are finite disjoint subsets of I

}

.

We apply Lemma 20.25 to 〈Cεn : n ∈ ω〉 and A to get a pseudo-intersection Bε of {Cεn :
n ∈ ω} which has infinite intersection with each element of A . Thus

(1) Bε ⊆∗
⋂

k<nD
ε(k)
k for all n ∈ ω.

(2) Bε has infinite intersection with each element of A .

(3) Bε ∩Bδ is finite for distinct ε, δ ∈ ω2.

This is clear from (1).

(4) There are countable disjoint Q,Q′ ⊆ ω2 such that for every p ∈ <ω2 there are f ∈ Q
and g ∈ Q′ such that p ⊆ f and p ⊆ g.

In fact, enumerate <ω2 as 〈pn : n ∈ ω}. Now we define functions fn, gn ∈ ω2 by induction
as follows: they are distinct elements of the set

{h ∈ ω2 : pn ⊆ h}\{fm, gm : m < n}.
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Then we let Q = {fn : n ∈ ω} and Q′ = {gn : n ∈ ω}. Clearly (4) holds.

(5) There exists 〈Eε : ε ∈ Q ∪Q′〉 such that the Eε’s are pairwise disjoint, Eε ⊆ Bε, and
Bε\Eε is finite.

To prove this, enumerate Q ∪ Q′ as 〈εn : n ∈ ω〉 without repetitions, and let Eεn =
Bεn\

⋃

m<nB
εm for all m; clearly (5) then holds.

Now we define
Z =

⋃

ε∈Q

Eε, and Z ′ =
⋃

ε∈Q′

Eε.

(6) Z has infinite intersection with each set
(⋂

X∈F X
)
∩
(⋂

X∈G(ω\X)
)

with F,G finite
disjoint subsets of I .

In fact, take such F,G. Let F ′ = F ∩ I ′ and G′ = G ∩I ′. Choose n ∈ ω such that for
all k ∈ ω, if Dk ∈ F ∪G then k < n. Define p ∈ n2 by setting, for each k < n,

p(k) =
{

1 if Dk ∈ F ,
0 otherwise.

Choose ε ∈ Q such that p ⊆ ε. Then

(
⋂

X∈F

X

)

∩

(
⋂

X∈G

(ω\X)

)

=

(
⋂

X∈F ′

X

)

∩

(
⋂

X∈G′

(ω\X)

)

∩

(
⋂

Dk∈F∪G

D
ε(k)
k

)

⊇

(
⋂

X∈F ′

X

)

∩

(
⋂

X∈G′

(ω\X)

)

∩

(
⋂

k<n

D
ε(k)
k

)

⊇∗

(
⋂

X∈F ′

X

)

∩

(
⋂

X∈G′

(ω\X)

)

∩Bε.

⊇∗

(
⋂

X∈F ′

X

)

∩

(
⋂

X∈G′

(ω\X)

)

∩Eε.

The last intersection is infinite, and is a subset of Z since ε ∈ Q, as desired; (6) holds.
Similarly,

(7) Z ′ has infinite intersection with each set
⋂

X∈F X ∩
⋂

X∈G(ω\X), with F,G finite
disjoint subsets of I .

Since ω\Z ⊇ Z ′, this finishes the proof.

Proposition 20.27. r ≤ u.

Proof. Let X filter-generate a nonprincipal ultrafilter U . We may assume that X is
closed under ∩. For any a ⊆ ω, either a ∈ U or (ω\a) ∈ U ; so there is a b ∈ X such that
b ⊆ a or b ⊆ (ω\a).

Proposition 20.28. r ≤ smm.
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Proof. Suppose that X ⊆ [ω]ω is maximal ideal independent. Let

Y = X ∪
{

ω\
⋃

F : F ∈ [X ]<ω
}

∪
{

b\
⋃

F : b /∈ F, F ∪ {b} ∈ [X ]<ω
}

.

If F ∪{b} ∈ [X ]<ω and b /∈ F , then b\
⋃
F is infinite by ideal independence. If F ∈ [X ]<ω,

then there is a b ∈ X\F since X is infinite. So ω\
⋃
F ⊇ (b\

⋃
F ), so ω\

⋃
F is infinite.

Thus all members of Y are infinite. We claim that Y is weakly dense in A. For, suppose
that a ∈ A\X . Then X ∪ {a} is no longer ideal independent, so we have two cases.

Case 1. a ⊆∗
⋃
F for some F ∈ [X ]<ω. Then ω\

⋃
F ⊆∗ (ω\a), as desired.

Case 2. There exist a finite subset F of X and a b ∈ X\F such that b ⊆∗ a ∪
⋃
F .

Then b\
⋃
F ⊆∗ a, as desired.

Proposition 20.29. Suppose that X is maximal ideal independent, f : X → [ω]ω, and
x△f(x) is finite for all x ∈ X. Then

(i) ∀F ∈ [X ]<ω[(
⋃
F )△

(⋃

x∈F f(x)
)

is finite].
(ii) f [X ] is ideal independent.
(iii) f [X ] is maximal ideal independent.

Proof. (i): Suppose that F ∈ [X ]<ω. Then

(⋃

F
)

△

(
⋃

x∈F

f(x)

)

=

(
(⋃

F
)

\

(
⋃

x∈F

f(x)

))

∪

((
⋃

x∈F

f(x)

)

\(
(⋃

F
)
)

=




⋃

x∈F



x\
⋃

y∈F

f(y)







 ∪
⋃

x∈F



f(x)\
⋃

y∈F

y





⊆

(
⋃

x∈F

(x\f(x))

)

∪
⋃

x∈F

(f(x)\x),

and the last set here is obviously finite.
(ii): Suppose that y ∈ f [X ], F ∈ [f [X ]\{y}]<ω, and y ⊆∗

⋃
F . Say y = f(x) and

z = f(uz) for each z ∈ F , with each x, uz ∈ X . Clearly x 6= uz for all z ∈ F . Hence
x\
⋃

z∈F uz is infinite. Now x\
⋃

z∈F uz ⊆ (x\
⋃
F ) ∪ (

⋃
F\
⋃

z∈F uz), and
⋃
F\
⋃

z∈F uz
is finite by (i). Hence x\

⋃
F is infinite. Also, x\

⋃
F ⊆ (y\

⋃
F )∪(x\y), and x\y is finite,

so y\
⋃
F is infinite.

(iii): Suppose that y ∈ [ω]ω\f [X ]; we want to show that f [X ]∪{y} is ideal dependent.
Case 1. y△x is finite for some x ∈ X . Then y\f(x) ⊆ (y\x) ∪ (x\f(x)), so y\f(x) is

finite, and consequently y ⊆∗ f(x), as desired.
Case 2. y△x is infinite for all x ∈ X . In particular, y /∈ X .

Subcase 2.1. y ⊆∗
⋃
F for some F ∈ [X ]<ω. Then y\

⋃

x∈F f(x) ⊆ (y\
⋃
F ) ∪

(
⋃
F\
⋃

x∈F f(x)). Now y\
⋃
F is finite by the case assumption, and

⋃
F\
⋃

x∈F f(x) is
finite by (i), so y\

⋃

x∈F f(x) is finite, hence y ⊆∗
⋃

x∈F f(x), as desired.
Subcase 2.2. There exist x ∈ X and F ∈ [X\{x}]<ω such that x ⊆∗ y∪

⋃
F . Thus

(1) (x\
⋃
F )\y is finite.
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Now if f(x) ∈ f [F ], say f(x) = f(z) with z ∈ F . Then x\z ⊆ (x\f(x)) ∪ (f(z)\z), so x\z
is finite. So x ⊆∗ z, contradiction. Thus f(x) /∈ f [F ]. Now

(

x\
⋃

z∈F

f(z)

)

\y ⊆
((

x\
⋃

F
)

\y
)

∪

(
(⋃

F
)

\
⋃

z∈F

f(z)

)

By (1) and (i) it follows that (x\
⋃

z∈F f(z))\y is finite. Now

(f(x)\
⋃

z∈F

f(z))\y ⊆ ((x\
⋃

z∈F

f(z))\y) ∪ (f(x)\x),

which is finite. Thus f(x) ⊆∗ y ∪
⋃

z∈F f(z), as desired.

Theorem 20.30. d ≤ smm.

Proof. Suppose, in order to get a contradiction, that smm < d. Let X ⊆ [ω]ω be
maximal ideal independent with ω ≤ |X | < d. Let 〈Ai : i ∈ ω〉 be a sequence of distinct
elements of X . Define A′

i = Ai ∪ {i}. Let

X ′ = (X\{Ai : i ∈ ω}) ∪ {A′
i : i ∈ ω}

By Proposition 20.29, X ′ is maximal ideal independent. Define Ci = A′
i\
⋃

j<iA
′
j for

each i ∈ ω. Then each Ci is infinite, by the ideal independence of X ′. Also note that
⋃

j<n Cj =
⋃

j<nA
′
j , by induction on n. Hence

⋃

j∈ω Cj =
⋃

j∈ω A
′
j = ω.

(1) If F ∈ [X ′]<ω, B ∈ X ′\(F ∪ {A′
i : i ∈ ω}), and n ∈ ω, then there is a j ≥ n such that

Cj ∩ (B\
⋃
F ) 6= ∅.

In fact, otherwise we have
(
⋃

j≥n Cj

)

∩ (B\
⋃
F ) = ∅, hence B ⊆ (

⋃
F ) ∪

⋃

j<n Cj =

(
⋃
F ) ∪

⋃

j<nA
′
j , contradicting the ideal independence of X ′.

By (1) we have

(2) If F ∈ [X ′]<ω, B ∈ X ′\(F ∪ {A′
i : i ∈ ω}), and n ∈ ω, then there exist k and j ≥ n

such that (Cj ∩B ∩ k)\
⋃
F 6= ∅.

Now we define for F ∈ [X ′]<ω, B ∈ X ′\(F ∪ {A′
i : i ∈ ω}) and n ∈ ω

ϕFB(n) = min{k ∈ ω : ∃j ≥ n[(Cj ∩B ∩ k)\
⋃

F 6= ∅]}.

The number of pairs (F,B) as above is less than d, so the set of all such functions ϕFB is
not dominating. Hence there is a function h0 ∈ ωω not dominated by any of them. We
may assume that h0 is strictly increasing. For each n ∈ ω let Dn = Cn\h0(n).

(3) If F ∈ [X ′]<ω and n ∈ ω, then there is a j ≥ n such that Dj\
⋃
F 6= ∅.

In fact, otherwise we have
(
⋃

j≥nDj

)

\
⋃
F = ∅, i.e.,

(
⋃

j≥n(Cj\h0(j))
)

\
⋃
F = ∅. Hence

(
⋃

j≥n(Cj\h0(j))
)

⊆
⋃
F . Choose j ≥ n so that A′

j /∈ F . Then Cj\h0(j) ⊆
⋃
F , i.e.,
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(A′
j\
⋃

k<j A
′
k)\h0(j) ⊆

⋃
F . Hence A′

j ⊆
∗
⋃

k<j A
′
k ∪

⋃
F , contradicting ideal indepen-

dence.
From (3) we obtain

(4) If F ∈ [X ′]<ω and n ∈ ω, then there exist k and j ≥ n such that (Dj ∩ k)\
⋃
F 6= ∅.

Now for F ∈ [X ′]<ω and n ∈ ω let

ϕ′
F (n) = min{k : ∃j ≥ n[(Dj ∩ k)\

⋃

F 6= ∅]}.

Again, there are fewer than d of these functions ϕ′
F , so there is a function k ∈ ωω not

dominated by any of them. For any n ∈ ω let

h1(n) = max{h1(n− 1) + 1, k(n) + 1,min(Cn\h0(n)) + 1},

with h1(n− 1) + 1 omitted if n = 0.
Now let

Y =
⋃

n∈ω

[Dn ∩ h1(n)].

Note that for all n ∈ ω, Dn ∩ h1(n) 6= ∅, since min(Dn) = min(Cn\h0(n)) < h1(n). Hence
Y is infinite. We claim that Y /∈ X ′ and X ′ ∪ {Y } is ideal independent. (Contradiction.)

(5) ∀F ∈ [X ′]<ω[Y 6⊆∗
⋃
F ]; in particular, Y /∈ X ′.

In fact, let n ∈ ω; we will find j ≥ n such that (Dj ∩ h1(j))\
⋃
F 6= ∅. We have k 6≤∗

ϕ′
F , so choose m ≥ n so that ϕ′

F (m) < k(m). By the definition of ϕ′
F (m), there is a

j ≥ m such that Dj ∩ ϕ′
F (m)\

⋃
F 6= ∅. We have ϕ′

F (m) < k(m) < h1(m) ≤ h1(j), so
Dj ∩ h1(j)\

⋃
F 6= ∅. This proves (5).

(6) For all F ∈ [X ′]<ω and all n ∈ ω with A′
n /∈ F we have A′

n 6⊆
∗ Y ∪

⋃
F .

In fact, assume otherwise. Now for m > n we have An ∩Cm = ∅, and hence An ∩Dm = ∅.
Hence An ⊆

∗
⋃

m≤n[Dn ∩ h1(n)] ∪
⋃
F . Since

⋃

m≤n[Dn ∩ h1(n)] is finite, it follows that
An ⊆∗

⋃
F , contradiction. So (6) holds.

(7) If F ∈ [X ′]<ω and B ∈ X ′\(F ∪ {A′
n : n ∈ ω}), then B 6⊆∗ Y ∪

⋃
F .

To prove (7) we first prove

(8) If F ∈ [X ′]<ω and B ∈ X ′\(F ∪ {A′
n : n ∈ ω}), then for all n ∈ ω there is a j ≥ n such

that (Cj ∩B ∩ h0(j))\
⋃
F 6= ∅.

To prove (8), since h0 is not dominated by ϕFB, choose m ≥ n such that ϕFB(m) < h0(m).
Then by definition of ϕFB there is a j ≥ m such that Cj ∩ B ∩ ϕFB(m)\

⋃
F 6= ∅. So

Cj ∩B ∩ h0(m)\
⋃
F 6= ∅, hence Cj ∩B ∩ h0(j)\

⋃
F 6= ∅. This proves (8)

Now for (7), note that Cj ∩h0(j)∩Y = ∅. Thus (Cj ∩B∩h0(j))\
⋃
F ⊆ B\(Y ∪

⋃
F ).

Since for all n ∈ ω there is a j ≥ n with this property, (7) follows.

Proposition 20.31. ω ≤ f.
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Proof. We need to show that any free sequence 〈aξ : ξ < n〉 with n a positive integer
is not maximal. For each i ≤ n let

ci =




⋂

ξ<i

aξ



 ∩




⋂

i≤ξ<n

(ω\aζ)





These sets are pairwise disjoint and infinite. Let b be such that |ci ∩ b| = ω = |ci\b| for all
i ≤ n. Clearly 〈aξ : ξ < n〉⌢〈b〉 is a free sequence.

Theorem 20.32. r ≤ f.

Proof. Suppose that 〈aξ : ξ < α〉 is a maximal free sequence with |α| = f. By
Proposition 20.31, α is infinite. We claim that







⋂

ξ∈F

aξ ∩
⋂

ξ∈G

(ω\aξ) : F,G ∈ [α]<ω, F < G







is weakly dense. To see this, let b ∈ [ω]ω. If b = aξ for some ξ < α, the conclusion is clear.
Otherwise 〈aξ : ξ < α〉⌢〈b〉 is not a free sequence. Define aα = b. Then there exist finite
F,G ⊆ α + 1 such that F < G and

⋂

ξ∈F aξ ∩
⋂

ξ∈G(ω\aξ) is finite.
Case 1. G = ∅. Then clearly α ∈ F . Since b is infinite, F 6= {α}. So

⋂

ξ∈F\{α} aξ ∩ b
is finite, as desired.

Case 2. G 6= ∅. Clearly then α is the greatest element of G, and so
⋂

ξ∈F aξ ∩⋂

ξ∈G\{α}(ω\aξ) ⊆∗ b.

Theorem 20.33. a, f, u, smm, i ≤ c.

Proof. a, u, smm, i are all defined as the minimum of |X | for some X ⊆ [ω]ω, so they
are all at most |[ω]ω| = c. A free sequence is a one-one sequence of members of [ω]ω, so
the sequence has length of size at most c.

This finishes checking the first diagram at the beginning of this chapter.

Lemma 20.34. Suppose that λ < t and 〈Tα : α < λ〉 is a sequence of dense subsets of Q

such that ∀α, β < λ[α < β → Tβ ⊆∗ Tα]. Then there is a dense X ⊆ Q which is almost
contained in every Tα.

Proof. Let h : Q→ ω be a bijection. For each interval I with rational endpoints the
sequence 〈h[Tα ∩ I] : α < λ〉 consists of infinite subsets of ω and it is almost decreasing;
hence it has an infinite pseudo-intersection YI . Let 〈yIn : n ∈ ω〉 be a one-one enumeration
of YI . Now for each α < λ we have YI ⊆∗ h[Tα ∩ I], so we can let fα(I) be greater than
each member of {n ∈ ω : yIn /∈ h[Tα ∩ I]}. Let M be the set of all rational intervals, and
let k : ω →M be a bijection. Then each fα ◦ k maps ω into ω. Since λ < t ≤ b, let g ∈ ωω
be such that fα ◦ k ≤∗ g for all α < λ. Let

X =
⋃

I∈M

{yIn : n > g(k−1(I))}.
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Now h−1[X ] is dense in Q. For, given I ∈M , we have YI\X ⊆ {yIn : n ≤ g(k−1(I))}, and
so YI ⊆∗ X . Hence YI ∩ X is infinite. Now YI ⊆∗ h[I], so there is an n ∈ X ∩ h[I], so
h−1(n) ∈ I, as desired.

Finally, let α < λ. Choose m such that ∀n ≥ m[fα(k(n)) ≤ g(n)]. Then ∀I ∈

M [g(k−1(I)) < fα(I) → k−1(I) < m]. So Z
def
= {I ∈ M : g(k−1(I) < fα(I)} is finite. We

claim that
X\Tα ⊆ {h

−1(yIn) : I ∈ Z and g(k−1(I)) < n};

hence X\Tα is finite. For, suppose that I ∈ M , g(k−1(I)) < n, and h−1(yIn) /∈ Tα;
thus h−1(yIn) is a typical member of X\Tα. Then yIn /∈ h[Tα], hence n < fα(I), so
g(k−1(I)) < fα(I) and so I ∈ Z.

Lemma 20.35.

add(meager) = min{|X | : X is a collection of open dense subsets of R

and
⋂
X does not contain a countable intersection of open dense subsets of R}.

Proof. Let X be a collection of meager sets such that
⋃
X is not meager, and

|X | = add(meager). Then |X | ≥ ω1 by the Cichón diagram. For each x ∈ X let Bx be
a countable set of nowhere dense sets such that x =

⋃
Bx. For each x ∈ X and y ∈ Bx

the set R\y is open dense. Let Y = {R\y : x ∈ X, y ∈ Bx}. Then |Y | = |X | and each
member of Y is open dense. Suppose that

⋂
C ⊆

⋂
Y , with C a countable set of open

dense subsets of R. Then
⋃

X =
⋃

x∈X

⋃

Bx =
⋃

{y : ∃x ∈ X [y ∈ Bx]}

⊆
⋃

{y : ∃x ∈ X [y ∈ Bx]} = R\
⋂

Y ⊆ R\
⋂

C =
⋃

c∈C

(R\c).

Thus
⋃
X is meager, contradiction.

Conversely, suppose that X is a collection of open dense subsets of R and
⋂
X does

not contain a countable intersection of open dense subsets of R. Let Y = {R\x : x ∈ X}.
Then Y is a set of nowhere dense subsets of R. Suppose that

⋃
Y is meager. Then there

is a countable set Z of nowhere dense subsets of R such that
⋃
Y ⊆

⋃
Z. Now each set

R\z for z ∈ Z is open dense. We have

⋂

z∈Z

(R\z) ⊆
⋂

z∈Z

(R\z) ⊆
⋂

y∈Y

(R\y) =
⋂

X,

contradiction.

Theorem 20.36. t ≤ add(meag).

Proof. By Lemma 20.35 it suffices to take any κ < t, assume that 〈Gα : α < κ〉
is a family of open dense subsets of R, and show that

⋂

α<κGα contains a countable
intersection of open dense subsets of R.

325



First we construct an almost descending sequence 〈Tα : α ≤ κ〉 of dense subsets
of Q. Let T0 = Q. At limit stages, apply Lemma 20.34. At successor stages define
Tα+1 = Tα ∩Gα. Clearly Tα+1 is dense in Q since both Tα and Gα are, and Gα is open.

Note that Tκ ⊆∗ Gα for each α < κ.
Let h : Q→ ω be a bijection.
For each t ∈ Tκ and α < κ, let fα(t) be some n ∈ ω\1 such that (t− 1

n
, t+ 1

n
) ⊆ Gα

if t ∈ Gα, and fα(t) = 0 otherwise. Now Tκ is countable and κ < t ≤ b, so there is a
g : ω → ω such that fα ◦ h−1 ≤∗ g for all α < κ.

Now for each finite F ⊆ Tκ let

UF =
⋃

t∈Tκ\F

(

t−
1

g(h(t)) + 1
, t+

1

g(h(t)) + 1

)

.

Obviously UF is open. Clearly Tκ\F ⊆ UF , so UF is dense in Q. Furthermore,

⋂

F∈[Tκ]<ω

UF ⊆
⋂

α<κ

Gα.

For, let α < κ. Then

F
def
= (Tκ\Gα) ∪ {t ∈ Q : g(h(t)) < fα(t)}

is finite, since fα(t) = f(h−1(h(t)). For any t ∈ Tκ\F we have fα(t) ≤ g(h(t)) and t ∈ Gα,
and so (

t−
1

g(h(t)) + 1
, t+

1

g(h(t)) + 1

)

⊆

(

t−
1

fα(t)
, t+

1

fα(t)

)

⊆ Gα.

Lemma 20.37. If A ∈ [ω]ω, let UA = {X ∈ [ω]ω : A ∩ X is finite, or A\X is finite}.
Then UA is meager.

Proof. For each F ∈ [ω]<ω let VF = {X ∈ [ω]ω : A ∩ X = F}. Then VF is closed.
For, suppose that X ∈ [ω]ω and X /∈ VF . Thus A ∩X 6= F .

Case 1. There is an x ∈ A ∩X\F . Then X ∈ {Y ∈ [ω]ω : x ∈ Y } and {Y ∈ [ω]ω :
x ∈ Y } is open and disjoint from VF .

Case 2. There is an x ∈ F\(A ∩X).
Subcase 2.1. x ∈ F\A. Then VF = ∅.
Subcase 2.2. F ⊆ A and x ∈ F\X . Then X ∈ {Y ∈ [ω]ω : x /∈ Y }, and

{Y ∈ [ω]ω : x /∈ Y } is open and disjoint from VF .

Now let UHG be any open set with UHG ∩ [ω]ω 6= ∅. Choose X ∈ [ω]ω with H ⊆ X ,
G ∩ X = ∅, and A ∩ X\F 6= ∅. This shows that UHG ∩ [ω]ω\VF 6= ∅. So VF is nowhere
dense.

Also WF
def
= {X ∈ [ω]ω : A\X = F} is closed and nowhere dense. In fact, suppose

that X ∈ [ω]ω and X /∈WF . Thus A\X 6= F .
Case 1. There is an x ∈ (A\X)\F . Then X ∈ {Y ∈ [ω]ω : x /∈ Y } and {Y ∈ [ω]ω :

x /∈ Y } is open and disjoint from WF .
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Case 2. There is an x ∈ F\(A\X). Thus x ∈ F , and either x /∈ A, or x ∈ A ∩X .
Subcase 2.1. x /∈ A. Then WF = ∅.
Subcase 2.2. F ⊆ A and x ∈ A ∩ X . Then X ∈ {Y ∈ [ω]ω : x ∈ Y }, and

{Y ∈ [ω]ω : x ∈ Y } is open and disjoint from WF .

Now let UHG be any open set with UHG ∩ [ω]ω 6= ∅. Choose X ∈ [ω]ω so that H ⊆ X ,
G ∩X = ∅, and (A\X)\F 6= ∅. So WF is nowhere dense.

Now
UA =

⋃

F∈[ω]<ω

VF ∪
⋃

F∈[ω]<ω

WF ,

so UA is meager.

Let R = (P(ω), [ω]ω, R), where R = {(A,B) : A ⊆ ω and B ∈ [ω]ω, and (A ∩ B is finite
or B\A is finite)}.

Proposition 20.38. ||R|| = r.

Proof.

||R|| = min{|X | : X ⊆ [ω]ω and ∀A ∈P(ω)∃B ∈ X [A ∩B is finite or B\A is finite]} = r.

Proposition 20.39. ||R⊥|| = s.

Proof. R⊥ = ([ω]ω,P(ω), S), where S = {(B,A) : B ∈ [ω]ω, A ∈P(ω), and A ∩B
is infinite and B\A is infinite}. Hence

||R⊥|| = min{|X | : X ⊆P(ω) and ∀B ∈ [ω]ω∃A ⊆ ω

[A ∩B is infinite and B\A is infinite]} = s

Let Cov′(meag) = ([ω]ω,meag,∈).

Proposition 20.40. ||Cov′(meag)|| = cov(meager[ω]ω).

Proof. See the proof of Proposition 19.5

Proposition 20.41. For any B ∈ [ω]ω let f(B) = B. For any A ∈ [ω]ω let g(A) = UA
from Lemma 20.37. Then (f, g) is a morphism from R to Cov′(meag).

Proof. Recall that R = (P(ω), [ω]ω, R), where R = {(A,B) : A ⊆ ω and B ∈ [ω]ω,
and (A∩B is finite or B\A is finite)}, and Cov′(meag) = ([ω]ω,meag,∈). Thus by Lemma
20.37 the functions f and g are of the correct form. Now suppose that A ∈ [ω]ω, B ∈ [ω]ω,
and (f(A), B) ∈ R. Thus A ∩ B is finite or B\A is finite. Thus A ∈ CB = g(B), as
desired.

Proposition 20.42. cov(meager[ω]ω) ≤ r.

Proof. By Proposition 18.22, Proposition 20.38, and Proposition 20.40.
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Proposition 20.43. s ≤ non(meager[ω]ω).

Proof. By Proposition 18.21, Proposition 19.10, and Proposition 20.39.

Lemma 20.44. If A ∈ [ω]ω, let UA = {X ∈ [ω]ω : A ∩ X is finite, or A\X is finite}.
Then UA is null.

Proof. Let A ∈ [ω]ω. For F ⊆ A, F finite, and G ⊆ A\F , G finite, let fFG be the
function with domain F ∪G such that

fFG(m) =
{

1 if m ∈ F ,
0 if m ∈ G.

Let BFG = {X ∈ [ω]ω : fFG ⊆ χX}. Then BFG is measurable, and µ(BFG) = 2−|F∪G|.

Hence DF
def
=
⋂
{BFG : G ∈ [A\F ]<ω} is a null set.

(1) DF = {X ∈ [ω]ω : A ∩X = F}.

In fact, let X ∈ DF . Since X ⊆ BF∅, we have fF∅ ⊆ χX , and so F ⊆ X . Hence F ⊆ A∩X .
Now suppose that m ∈ A ∩X\F . Then {m} ⊆ A\F , so fF{m} ⊆ χX , since X ⊆ BF{m}.
Hence m /∈ X , contradiction. Thus ⊆ holds in (1).

Now suppose that X ∈ [ω]ω and A ∩X = F . Suppose that G ∈ [A\F ]<ω. If m ∈ F ,
then m ∈ X , and so fFG(m) = χX (m). If m ∈ G, then m ∈ A\F and so m /∈ X and
hence again fFG(m) = 0 = χX(m). Thus fFG ⊆ χX and so X ∈ BFG. This proves (1).

Now suppose that F ∈ [A]<ω and G ∈ [A\F ]<ω. Define gFG with domain F ∪G by

gFG(m) =
{

0 if m ∈ F ,
1 if m ∈ G.

Let EFG = {X ∈ [ω]ω : gFG ⊆ χX}. Then EFG is measurable, and µ(EFG) = 2−|F∪G|.

Hence HF
def
=
⋂
{EFG : G ∈ [A\F ]<ω} is a null set.

(2) HF = {X ∈ [ω]ω : A\X = F}.

For, let X ∈ HF . Since X ⊆ EF∅, we have gF∅ ⊆ χX , and hence F ∩ X = ∅. So
F ⊆ A\X . Suppose that m ∈ (A\X)\F . Then {m} ⊆ A\F , so gF{m} ⊆ χX . Hence
m ∈ X , contradiction. Thus A\X = F . This proves ⊆ in (2).

Now suppose that X ∈ [ω]ω and A\X = F . Suppose that G ∈ [A\F ]<ω. If m ∈ F ,
then gFG(m) = 0 = χX(m). If m ∈ G, then m ∈ X , and gFG(m) = 1 = χX(m). Thus
gFG ⊆ ξX and so X ∈ EFG. This proves (2).

Now
UA =

⋃

{DF : F ∈ [ω]<ω} ∪
⋃

{HF : F ∈ [ω]<ω},

so UA is a null set.

Proposition 20.45. For any B ∈ [ω]ω let f(B) = B. For any A ∈ [ω]ω let g(A) = UA
from Lemma 20.37. Then (f, g) is a morphism from R to Cov(null).

Proof. Recall that R = (P(ω), [ω]ω, R), where R = {(A,B) : A ⊆ ω and B ∈ [ω]ω,
and (A ∩ B is finite or B\A is finite)}, and Cov(null) = ([ω]ω, null,∈). Thus by Lemma
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20.44 the functions f and g are of the correct form. Now suppose that A ∈ [ω]ω, B ∈ [ω]ω,
and (f(A), B) ∈ R. Thus A ∩ B is finite or B\A is finite. Thus A ∈ UB = g(B), as
desired.

Proposition 20.46. cov(null[ω]ω) ≤ r.

Proof. By Proposition 18.22, Proposition 19.6, and Proposition 20.38.

Proposition 20.47. s ≤ non(null[ω]ω).

Proof. By Proposition 18.22, Proposition 19.12, and Proposition 20.39.

We give some additional results about these functions.

Proposition 20.48. If I is an ideal on a set A, then add(I) is regular.

Proof. Suppose that add(I) = λ is singular. Let 〈κξ : ξ < cf(λ)〉 be strictly increasing
with supremum λ. Let 〈aξ : ξ < λ〉 be members of I such that

⋃

ξ<λ aξ /∈ I. For each
η < cf(λ) we have

⋃

ξ<κη
aξ ∈ I, and so

⋃

ξ<λ

aξ =
⋃

η<cf(λ)

⋃

ξ<κη

aξ ∈ I,

contradiction.

A family of sets E has the finite intersection property, FIP, iff
⋂
F 6= ∅ for all finite F ⊆ E ;

it has the strong finite intersection property, SFIP, iff
⋂
F is infinite for all finite F ⊆ E

Proposition 20.49. Let Zn = {x ∈ ω : n|x}, E = {Zn : n ∈ ω}.
(i) E has SFIP.
(ii)

⋂
E = ∅.

(iii) K
def
= {n! : n ∈ ω} is a pseudo-intersection of E .

(iv) L
def
= {7n! : n ∈ ω} is a pseudo-intersection of E .

(v) M
def
= {n!/7 : n ∈ ω} is a pseudo-intersection of E .

Proof. (i): If F is a finite subset of ω, let X = {x ∈ ω : n|x for all n ∈ F}. Then X
is infinite and X ⊆ Zn for all n ∈ F .

(ii): obvious.
(iii): For any n ∈ ω, K\Zn ⊆ {m! : m < n}.
(iv): For any n ∈ ω, L\Zn ⊆ {7m! : m < n}.
(v) For any n ∈ ω, M\Zn ⊆ {m!/7 : m ≤ 7, n}.

Theorem 20.50. If ω ≤ κ < t, then 2κ = 2ω.

Proof. By recursion we define tη ∈ [ω]ω for every η ∈ <t2. Let t∅ = ω. If tη has been
defined, let tη0 and tη1 be disjoint infinite subsets of tη. If η has limit length α < t and tη↾β

has been defined for all β < α, in such a way that β < γ < α implies that tη↾γ ⊆∗ tη↾β , let
tη be an infinite set ⊆∗ each tη↾β for β < α; this is possible because α < t. Now 〈tη : η has
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length κ〉 is a system of infinite almost disjoint subsets of ω, and the desired conclusion
follows.

Proposition 20.51. t ≤ cf(2ω).

Proof. If κ < t, then κ < cf(2κ) = cf(2ω) by Theorem 20.50; hence cf(2ω) < t is
impossible.

We define

p = min{|F | : F ⊆ [ω]ω, F has SFIP, but has no pseudo-intersection}.

This is well defined, since a tower is such a family F .

Proposition 20.52. ω1 ≤ p ≤ t.

Proof. Obviously p ≤ t. Now suppose that F = {Am : m ∈ ω} has SFIP; we show
that it has a pseudo-intersection, thus proving the first inequality in the proposition. For

each n ∈ ω choose kn ∈
⋂

m≤nAm\{km : m < n}. Then y
def
= {kn : n ∈ ω} is infinite, and

for each n, y\An ⊆ {km : m < n}.

Actually p = t, as we will prove later.

Proposition 20.53. Suppose that A ,C ⊆ [ω]ω, |A |+ |C | < p, and ∀F ∈ [C ]<ω and all
A ∈ A , the set

⋂
F ∩A is infinite. Then C has a pseudo-intersection X such that X ∩A

is infinite for all A ∈ A .

Proof. Define

H1 = {[C]<ω : C ∈ C },

H2 = {{F ∈ [ω\n]<ω : F ∩ A 6= ∅} : A ∈ A , n ∈ ω}.

Note that H1,H2 ⊆P([ω]<ω).

(1) H1 ∪H2 has the strong finite intersection property.

To prove this, suppose that F is a finite subset of C and G is a finite set of pairs (A, n)
such that A ∈ A and n ∈ ω; we want to show that

(∗)
⋂

C∈F

[C]<ω ∩
⋂

(A,n)∈G

{F ∈ [ω\n]<ω : F ∩A 6= ∅}

is infinite. Choose m > n for each n such that (A, n) ∈ G for some A. Note that if
(A, n) ∈ G for some n, then A ∈ A , and so by hypothesis the set

⋂
F ∩ A is infinite;

choose pA ∈ (
⋂

F ∩A)\m. Then if F is any finite subset of ω\m such that pA ∈ F for all
A for which (A, n) ∈ G for some n, it follows that F is in the set (∗).

Thus (1) holds. Note that |H1| + |H2| < p. Now |[ω]<ω| = ω, so we can apply the
definition of p to P([ω]<ω)/fin rather than P(ω)/fin. It follows that there is an I ⊆ [ω]<ω

which is a pseudo-intersection of H1 ∪H2.
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Since I is infinite, clearly also
⋃

I is infinite.

(2)
⋃

I is a pseudo-intersection of C .

For, suppose that C ∈ C . Now I ⊆∗ [C]<ω. Choose K ∈ [[ω]<ω]<ω such that I \K ⊆
[C]<ω. Let n ∈ ω be greater than each member of

⋃
K . We claim that

⋃
I \n ⊆ C. For,

suppose that m ∈
⋃

I \n. Choose I ∈ I such that m ∈ I. Since m ≥ n, we have I /∈ K .
So I ∈ [C]<ω, and hence m ∈ C, as desired. This proves (2).

Finally, suppose that A ∈ A . Take any n < ω; we show that
⋃

I ∩A has a member
≥ n; this will finish the proof. Now I ⊆∗ {F ∈ [ω\n]<ω : F ∩ A 6= ∅}, so we can find a
finite G ⊆ [ω]<ω such that I \G ⊆ {F ∈ [ω\n]<ω : F ∩A 6= ∅}. Take any F ∈ I \G . Then
F ∈ [ω\n]<ω and F ∩ A 6= ∅, so

⋃
I ∩A has a member ≥ n.

Proposition 20.54. p is regular.

Proof. Suppose not. Let A ⊆ [ω]ω with |A | = p, A closed under finite intersections,
and write A =

⋃

α<cf(p) Bα, where |B0| = ω, Bα ⊆ Bβ for α < β < cf(p), and |Bα| < p

for each α < cf(p). Moreover, let each Bα be closed under finite intersection.

(1) Suppose that C ⊆ [ω]ω, |C | < p, and ∀F ∈ [C ]<ω and all Y ∈ A , the set
⋂
F ∩ Y is

infinite. Then C has a pseudo-intersection X such that X ∩ Y is infinite for all Y ∈ A .

To prove (1), note that for any α < cf(p), the set C ∪ Bα has the SFIP and size less
than p, so it has a pseudo-intersection Zα. Now we apply Proposition 20.51 to C and
{Zα : α < cf(p)}: we get a pseudo-intersection X of C such that X ∩ Zα is infinite for all
α < cf(p). For any Y ∈ A , choose α < cf(p) with Y ∈ Bα. Then Zα\Y is finite, hence
X ∩ Zα\Y is finite, hence X ∩ Y is infinite, as desired.

Now we are going to define by recursion 〈Cα : α ≤ cf(p)〉 so that the following
conditions hold:

(2) Cα ∈ [ω]ω.

(3) Cα is a pseudo-intersection of Aα.

(4) If β < α, then Cα\Cβ is finite.

(5) ∀Y ∈ A (Cα ∩ Y is infinite).

As soon as we have done this, a contradiction is reached because Ccf(p) is a pseudo-
intersection of A by (3) and (4).

So, suppose that Cα has been defined for all α < γ so that (2)–(5) hold, where
γ ≤ cf(p). We want to apply (1) with C replaced by {Cα : α < γ} ∪ Aγ . To check the
hypotheses, suppose that F ∈ [γ]<ω, G ∈ [Aγ ]<ω, and Y ∈ A ; we want to show that
⋂

α∈F Cα ∩
⋂
G ∩ Y is infinite. Wlog F 6= ∅ 6= G. Let β be the largest element of F .

Since A is closed under ∩, we have
⋂
G ∩ Y ∈ A . By (5), Cβ ∩

⋂
G ∩ Y is infinite.

Now
⋃

α∈F\{β}(Cβ\Cα) = Cβ\
⋂

α∈F\{β}Cα is finite, so
⋂

α∈F Cα ∩
⋂
G∩ Y is infinite, as

desired.
So we apply (1) and get Cγ such that Cγ is a pseudo-intersection of {Cα : α < γ}∪Aγ

and Cγ∩Y is infinite for all Y ∈ A . So (2)–(5) hold, and the construction is complete.
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21. Linear orders

In this chapter we prove some results about linear orders which form a useful background
in much of set theory. Among these facts are: any two denumerable densely ordered sets
are isomorphic, the existence of ηα sets, the existence of completions, a discussion of Suslin
lines, and a proof of a very useful theorem of Hausdorff.

A linear order (A,<) is densely ordered iff |A| > 1, and for any a < b in A there is a
c ∈ A such that a < c < b. A subset X of a linearly ordered set L is dense in L iff for any
two elements a < b in L there is an x ∈ X such that a < x < b. Note that if X is dense in
L and L has at least two elements, then L itself is dense.

Theorem 21.1. If L is a dense linear order, then L is the disjoint union of two dense
subsets.

Proof. Let 〈aα : α < κ〉 be a well-order of L, with κ = |L|. We put each aα in A
or B by recursion, as follows. Suppose that we have already done this for all β < α. Let
C = {aβ : β < α and aβ < aα}, and let D = {aβ : β < α and aβ > aα}. We take two
possibilities.

Case 1. C has a largest element aβ , D has a smallest element aγ , and aβ, aγ ∈ A.
Then we put aα in B.

Case 2. Otherwise, we put aα in A.
Now we want to see that this works. So, suppose that elements aξ < aη of L are given.

Let aβ < aγ be the elements of L with smallest indices which are in the interval (aξ, aη).
If one of these is in A and the other in B, this gives elements of A and B in (aξ, aη). So,
suppose that they are both in A, or both in B. Let aν be the member of L with smallest
index that is in (aβ, aγ). Thus aξ < aβ < aν < aγ < aη, so by the minimality of β and γ
we have β, γ < ν. Thus β < ν and aβ < aν .

(1) aβ is the largest element of {aρ : ρ < ν, aρ < aν}.

In fact, aβ is in this set, as just observed. If aβ < aρ, ρ < ν, and aρ < aν , then also
aρ < aγ since aν < aγ , so the definition of ν is contradicted. Hence (1) holds.

(2) aγ is the smallest element of {aρ : ρ < ν, aρ > aν}.

In fact, γ < ν as observed just before (1), and aγ > aν by the definition of aν . If aρ < aγ,
ρ < ν, and aρ > aν , then also aρ > aβ since aν > aβ, so the definition of ν is contradicted.
Hence (2) holds.

So by construction, if aβ, aγ ∈ A then aν ∈ B, while if aβ , aγ ∈ B, then aν ∈ A. So
again we have found elements of both A and B which are in (aξ, aη).

The proof of the following result uses the important back-and-forth argument.

Theorem 21.2. Any two denumerable densely ordered sets without first and last elements
are order-isomorphic.

Proof. Let (A,<) and (B,≺) be denumerable densely ordered sets without first and
last elements. Write A = {ai : i ∈ ω} and B = {bi : i ∈ ω}. We now define by recursion
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sequences 〈ci : i ∈ ω〉 of elements of A and 〈di : i ∈ ω〉 of elements of B. Let c0 = a0 and
d0 = b0.

Now suppose that c2m and d2m have been defined so that the following condition hold:

(*) For all i, j ≤ 2m, ci < cj iff di < dj .

(Note that then a similar equivalence holds for = and for >.) We let c2m+1 = am+1. Now
we consider several cases.

Case 1. am+1 = ci for some i ≤ 2m. Take the least such i, and let d2m+1 = di.
Case 2. am+1 < ci for all i ≤ 2m. Let d2m+1 be any element of B less than each di,

i ≤ 2m.
Case 3. ci < am+1 for all i ≤ 2m. Let d2m+1 be any element of B greater than each

di, i ≤ 2m.
Case 4. Case 1 fails, and there exist i, j ≤ 2m such that ci < am+1 < cj . Let d2m+1

be any element b of B such that di < b < dj whenever ci < am+1 < cj ; such an element b
exists by (*).

This finishes the definition of d2m+1. d2m+2 and c2m+2 are defined similarly. Namely,
we let d2m+2 = bm+1 and then define c2m+2 similarly to the above, with a, b interchanged
and c, d interchanged.

Note that each ai appears in the sequence of ci’s, namely c0 = a0 and c2i+1 = ai+1,
and similarly each bi appears in the sequence of di’s. Hence it is clear that {(ci, di) : i ∈ ω}
is the desired order-isomorphism.

Proposition 21.3. If L is countable and M is dense with no first or last element, then L
can be isomorphically embedded in M .

Proof. Wlog L 6= ∅. Let 〈ai : i ∈ ω〉 be such that L = {ai : i ∈ ω}. L could be finite,
so there could be repetitions in the sequence 〈ai : i ∈ ω〉. Now for each m ∈ ω we define
gm : {ai : i < m} → M by recursion. Let g0 = ∅. If gm has been defined, and it is an
isomorphic embedding, let gm ⊆ gm+1; we consider several cases for am.

Case 1. am = ai for some i < m. Let gm+1 = gm.
Case 2. ai < am for all i < m. Let gm+1(am) be some element of M greater than

each g(ai) for i < m.
Case 3. ai > am for all i < m. Let gm+1(am) be some element of M less than each

g(ai) for i < m.
Case 4. ai < am for some i < m and aj > am for some j < m. Let A = {i < m : ai <

am} and B = {j < m : aj > am}. Thus ∀i ∈ A∀j ∈ B[ai < aj], so ∀i ∈ A∀j ∈ B[gm(ai) <
gm(aj)]. Let gm+1(am) be an element of M such that ∀i ∈ A∀j ∈ B[gm(ai) < gm+1(am) <
gm(aj)].

Theorem 21.4. If L is an infinite linear order, then there is a subset M of L which is
order isomorphic to (ω,<), or to (ω,>).

Proof. Suppose that L does not have a subset order isomorphic to (ω,>). We claim
then that L is well-ordered, and therefore is isomorphic to an infinite ordinal and hence
has a subset isomorphic to (ω,<). To prove this claim, suppose it is not true. So L has
some nonempty subset P with no least element. We now define a sequence 〈ai : i ∈ ω〉 of
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elements of P by recursion. Let a0 be any element of P . If ai ∈ P has been defined, then
it is not the least element of P and so there is an ai+1 ∈ P with ai+1 < ai. This finishes
the construction. Thus we have essentially produced a subset of L order isomorphic to
(ω,>), contradiction.

It would be natural to conjecture that Theorem 21.4 generalizes in the following way: for
any infinite cardinal κ and any linear order L of size κ, there is a subset M of L order
isomorphic to (κ,<) or to (κ,>). This is clearly false, as the real numbers under their
usual order form a counterexample. (Given a set of real numbers order isomorphic to
2ω, one could choose rationals between successive members of the set, and produce 2ω

rationals, contradiction.) We want to give an example that works for many cardinals. The
construction we use is very important for later purposes too.

The following definitions apply to any infinite ordinal γ.

• If f and g are distinct elements of γ2, we define

χ(f, g) = min{α < γ : f(α) 6= g(α)}.

• Let f < g iff f and g are distinct elements of γ2 and f(χ(f, g)) < g(χ(f, g)). (Thus
f(χ(f, g)) = 0 and g(χ(f, g)) = 1.) Clearly (γ2, <) is a linear order; this is called the
lexicographic order.

We also need some general set-theoretic notation. If A is any set and κ any cardinal, then

[A]κ = {X ⊆ A : |X | = κ};

[A]<κ = {X ⊆ A : |X | < κ};

[A]≤κ = {X ⊆ A : |X | ≤ κ}.

Theorem 21.5. For any infinite cardinal κ, the linear order κ2 does not contain a subset
order isomorphic to κ+ or to (κ+, >).

Proof. The two assertions are proved in a very similar way, so we give details only for
the first assertion. In fact, we assume that 〈fα : α < κ+〉 is a strictly increasing sequence
of members of κ2, and try to get a contradiction. The contradiction will follow rather
easily from the following statement:

(1) If γ ≤ κ, Γ ∈ [κ+]κ
+

, and fα ↾ γ < fβ ↾ γ for any α, β ∈ Γ such that α < β, then there

exist δ < γ and ∆ ∈ [Γ]κ
+

such that fα ↾ δ < fβ ↾ δ for any α, β ∈ ∆ such that α < β.

To prove this, assume the hypothesis. For each α ∈ Γ let f ′
α = fα ↾ γ. Clearly Γ does not

have a largest element. For each α ∈ Γ let α′ be the least member of Γ which is greater
than α. Then

Γ =
⋃

ξ<γ

{α ∈ Γ : χ(f ′
α, f

′
α′) = ξ}.

Since |Γ| = κ+, it follows that there are δ < γ and ∆ ∈ [Γ]κ
+

such that χ(f ′
α, f

′
α′) = δ for

all α ∈ ∆. We claim now that f ′
α ↾ δ < f ′

β ↾ δ for any two α, β ∈ ∆ such that α < β, as
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desired in (1). For, take any such α, β. Suppose that f ′
α ↾ δ = f ′

β ↾ δ. (Note that we must
have f ′

α ↾ δ ≤ f ′
β ↾ δ.) Now from χ(f ′

α, f
′
α′) = δ we get f ′

α′(δ) = 1, and from χ(f ′
β , f

′
β′) = δ

we get f ′
β(δ) = 0. Now f ′

α′ ↾ δ = f ′
α ↾ δ = f ′

β ↾ δ, so we get f ′
β < f ′

α′ ≤ f ′
β , contradiction.

This proves (1).
Clearly from (1) we can construct an infinite decreasing sequence κ > γ1 > γ2 > · · ·

of ordinals, contradiction.

Now we give some more definitions, leading to a kind of generalization of Theorem 21.2.

• If (L,<) is a linear order and A,B ⊆ L, we write A < B iff ∀x ∈ A∀y ∈ B[x < y]. If
A = {a} here, we write a < B; similarly for A < b.

• Intervals in linear orders are defined in the usual way. For example, [a, b) = {c : a ≤ c <
b}.

• An ηα-set is a linear order (L,<) such that if A,B ⊆ L, A < B, and |A|, |B| < ℵα, then
there is a c ∈ L such that A < c < B. Taking A = ∅ and B = {a} for some a ∈ L, we
see that ηα-sets do not have first elements; similarly they do not have last elements. Note
that an η0-set is just a densely ordered set without first or last elements.

• For any ordinal α, we define

Hα = {f ∈ ℵα2 : there is a ξ < ℵα such that f(ξ) = 1 and f(η) = 0 for all η ∈ (ξ,ℵα)}.

We take the order on Hα induced by that on ℵα2: f < g in Hα iff f < g as members of
ℵα2.

Theorem 21.6. Let α be an ordinal, and let cf(ℵα) = ℵγ. Then the following conditions
hold:

(i) Hα is an ηγ-set.
(ii) cf(Hα, <) = ℵγ.
(iii) cf(Hα, >) = ℵγ.
(iv) |H0| = ℵ0, and for α > 0, |Hα| =

∑

β<α 2ℵβ .

Proof. For each f ∈ Hα let ζf < ℵα be such that f(ζf) = 1 and f(η) = 0 for all
η ∈ (ζf ,ℵα).

For (i), suppose that A,B ⊆ Hα with A < B and |A|, |B| < ℵγ . Obviously we may
assume that one of A,B is nonempty. Then there are three possibilities:

Case 1. A 6= ∅ 6= B. Let

ξ = sup{ζf : f ∈ A};

ρ = max(ξ + 1, sup{ζf : f ∈ B}).

Thus ξ, ρ < ℵα since |A|, |B| < ℵγ = cf(ℵα). We now define g ∈ ℵα2 by setting, for each
η < ℵα,

g(η) =







1 if η ≤ ξ and ∃f ∈ A(f ↾ η = g ↾ η and f(η) = 1);
0 if η ≤ ξ and there is no such f ;
0 if ξ < η ≤ ρ;
1 if η = ρ+ 1;
0 if ρ+ 1 < η < ℵα.
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Clearly g ∈ Hα. We claim that A < g < B. Note that g /∈ A ∪B since g(ρ+ 1) = 1 while
f(ρ+ 1) = 0 for any f ∈ A ∪B.

To prove the claim first suppose that f ∈ A. Assume that g < f ; we will get a
contradiction. Let η = χ(g, f). Then g(η) = 0 and f(η) = 1. It follows that η ≤ ξ and
g ↾ η = f ↾ η, contradicting the definition of g(η).

Second, suppose that f ∈ B. Assume that f < g; we will get a contradiction. Let
η = χ(f, g). Thus f(η) = 0 and g(η) = 1. We claim that η = ρ + 1. For, otherwise since
g(η) = 1 we must have η ≤ ξ, and then there is an h ∈ A such that h ↾ η = g ↾ η and
h(η) = 1. So f ↾ η = g ↾ η = h ↾ η, f(η) = 0, and h(η) = 1, so f < h. But f ∈ B and
h ∈ A, contradiction. This proves our claim that η = ρ+ 1.

Now clearly ζf ≤ ρ. Since

g ↾ (ρ+ 1) = g ↾ η = f ↾ η = f ↾ (ρ+ 1),

it follows that g(ζf) = 1. So from ζf ≤ ρ we infer that ζf ≤ ξ. Thus since g(ζf) = 1, it
follows that there is a k ∈ A such that k ↾ ζf = g ↾ ζf and k(ζf ) = 1. But now we have
k ↾ (ζf + 1) = g ↾ (ζf + 1) = f ↾ (ζf + 1) and f(σ) = 0 for all σ ∈ (ζf ,ℵα). Hence f ≤ k,
which contradicts f ∈ B and k ∈ A.

This finishes the proof of (i) in Case 1.
Case 2. A = ∅ 6= B. Let

ρ = sup{ζf : f ∈ B}.

Define g ∈ Hα by setting, for each ξ < ℵα,

g(ξ) =

{
0 if ξ ≤ ρ,
1 if ξ = ρ+ 1,
0 if ρ+ 1 < ξ.

Clearly g < B, as desired.
Case 3. A 6= ∅ = B. Let ξ be as in Case 1. Define g ∈ Hα by setting, for each η < ℵα,

g(η) =

{
1 if η ≤ ξ + 1,
0 if ξ + 1 < η.

Clearly A < g, as desired.
This finishes the proof of (i).
For (ii), let 〈δξ : ξ < ℵγ〉 be a strictly increasing sequence of ordinals with supremum

ℵα. For each ξ < ℵγ define fξ ∈ Hα by setting, for each η < ℵα,

fξ(η) =

{
1 if η ≤ δξ,
0 if δξ < η.

Clearly 〈fξ : ξ < ℵγ〉 is a strictly increasing sequence of members of Hα and {fξ : ξ < ℵγ}
is cofinal in Hα. So (ii) holds.

For (iii), take 〈δξ : ξ < ℵγ〉 as in the proof of (ii). For each ξ < αγ define fξ ∈ Hα by
setting, for each η < ℵα,

fξ(η) =







0 if η < δξ,
1 if η = δξ,
0 if δξ < η.
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Clearly 〈fξ : ξ < ℵγ is a strictly decreasing sequence of members of Hα and {fξ : ξ < ℵγ}
is cofinal in (Hα, >). So (iii) holds.

Finally, for (iv), for each δ < ℵα let

Lδ = {f ∈ Hα : f(δ) = 1 and f(ε) = 0 for all ε ∈ (δ,ℵα)}.

Clearly these sets are pairwise disjoint, and their union is Hα. For α = 0,

|Hα| =
∑

δ<ω

|Lδ| =
∑

δ<ω

2|δ| = ℵ0.

For α > 0,

|Hα| =
∑

δ<ℵα

|Lδ|

=
∑

δ<ω

|Lδ|+
∑

ω≤δ<ℵα

|Lδ|

= ℵ0 +
∑

ω≤δ<ℵα

2|δ|

= ℵ0 +
∑

β<α

(
2ℵβ · |{δ < ℵα : |δ| = ℵβ}|

)

= ℵ0 +
∑

β<α

(
2ℵβ · ℵβ+1

)

=
∑

β<ℵα

2ℵβ .

Corollary 21.7. If ℵα is regular, then
(i) Hα is an ηα-set.
(ii) cf(Hα, <) = ℵα.
(iii) cf(Hα, >) = ℵα.
(iv) |H0| = ℵ0, and for α > 0, |Hα| =

∑

β<α 2ℵβ .

Corollary 21.8. For each regular cardinal ℵα there is an ηα-set.

Corollary 21.9. For each ordinal α there is an ηα+1-set of size 2ℵα .

Corollary 21.10. (GCH) For each regular cardinal ℵα there is an ηα-set of size ℵα.

One of the most useful facts about ηα-sets is their universality, expressed in the following
theorem.

Theorem 21.11. Suppose that ℵα is regular. If K is an ηα-set, then any linearly ordered
set of size ≤ ℵα can be isomorphically embedded in K.

337



Proof. Let L be a linearly ordered set of size at most ℵα, and write L = {aξ : ξ < ℵα}.
We define a sequence 〈fξ : ξ < ℵα〉 of functions by recursion. Suppose that fη has been
defined for all η < ξ so that it is a strictly increasing function mapping a subset of L of
size less than ℵα into K, and such that fρ ⊆ fη whenever ρ < η < ξ. Let g =

⋃

η<ξ fη.
Then g is still a strictly increasing function mapping a subset of L of size less than ℵα into
K. If aξ ∈ dmn(g), we set fξ = g. Suppose that aξ /∈ dmn(g). Let

A = {g(b) : b ∈ dmn(g) and b < aξ};

B = {g(b) : b ∈ dmn(g) and aξ < b}.

Then A < B, and |A|, |B| < ℵα. So by the ηα-property, there is an element c of K such
that A < c < B. We let fξ = g ∪ {(aξ, c)} for such an element c. (AC is used.)

This finishes the construction, and clearly
⋃

ξ<ℵα
fξ is as desired.

Given a linearly ordered set L, a subset X of L, and an element a of L, we call a an upper
bound for X iff x ≤ a for all x ∈ X . Thus every element of L is an upper bound of the
empty set. We say that a is a least upper bound for X iff a is an upper bound for X and
is ≤ any upper bound for X . Clearly a least upper bound for X is unique if it exists. If
a is the least upper bound of the empty set, then a is the smallest element of L. We use
lub or sub to abbreviate least upper bound. Also “supremum” is synonymous with “least
upper bound”.

Similarly one defines lower bound and greatest lower bound. Any element is a lower
bound of the empty set, and if a is the greatest lower bound of the empty set, then a is the
largest element of L. We use glb or inf to abbreviate greatest lower bound. “infimum” is
synonymous with “greatest lower bound”.

A linear order L is complete iff every subset of L has a greatest lower bound and a
least upper bound.

Proposition 21.12. For any linear order L the following conditions are equivalent:
(i) L is complete.
(ii) Every subset of L has a least upper bound.
(iii) Every subset of L has a greatest lower bound.

Proof. (i)⇒(ii): obvious. (ii)⇒(iii): Assume that every subset of L has a least upper
bound, and let X ⊆ L; we want to show that X has a greatest lower bound. Let Y be the
set of all lower bounds of X . Then let a be a least upper bound for Y . Take any x ∈ X .
Then ∀y ∈ Y [y ≤ x], so a ≤ x since a is the lub of Y . This shows that a is a lower bound
for X . Suppose that y is any lower bound for X . Then y ∈ Y , and hence y ≤ a since a is
an upper bound for Y .

(iii)⇒(i) is treated similarly.

Let (L,<) be a linear order. We say that a linear order (M,≺) is a completion of L iff the
following conditions hold:

(C1) L ⊆M , and for any a, b ∈ L, a < b iff a ≺ b.

(C2) M is complete.
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(C3) Every element of M is the lub of a set of elements of L.

(C4) If a ∈ L is the lub in L of a subset X of L, then a is the lub of X in M .

Theorem 21.13. Any linear order has a completion.

Proof. Let (L,<) be a linear order. We let M ′ be the collection of all X ⊆ L such
that the following conditions hold:

(1) For all a, b ∈ L, if a < b ∈ X then a ∈ X .

(2) If X has a lub a in L, then a ∈ X .

We consider the structure (M ′,⊂). It is clearly a partial order; we claim that it is a linear
order. (Up to isomorphism it is the completion that we are after.) Suppose that X, Y ∈M ′

and X 6= Y ; we want to show that X ⊂ Y or Y ⊂ X . By symmetry take a ∈ X\Y . Then
we claim that Y ⊆ X (hence Y ⊂ X). For, take any b ∈ Y . If a < b, then a ∈ Y by (1),
contradiction. Hence b ≤ a, and so b ∈ X by (1), as desired. This proves the claim.

Next we claim that (M ′,⊂) is complete. For, suppose that X ⊆ M ′. Then
⋃

X

satisfies (1). In fact, suppose that c < d ∈
⋃

X . Choose X ∈ X such that d ∈ X . Then
c ∈ X by (1) for X , and so c ∈

⋃
X . Now we consider two cases.

Case 1.
⋃

X does not have a lub in L. Then
⋃

X ∈M ′, and it is clearly the lub of
X .

Case 2.
⋃

X has a lub in L; say a is its lub. Then

(3)
⋃

X ∪ {a} = (−∞, a].

In fact, ⊆ is clear. Suppose that b < a. Then b is not an upper bound for
⋃

X , so we can
choose c ∈

⋃
X such that b < c. Then b ∈

⋃
X since

⋃
X satisfies (1). This proves (3).

Clearly (−∞, a] ∈M ′. We claim that it is the lub of X . Clearly it is an upper bound.
Now suppose that Z is any upper bound. Then

⋃
X ⊆ Z. If a /∈ Z, then

⋃
X = Z,

contradicting (2) for Z. So a ∈ Z and hence (−∞, a] ⊆ Z.
Hence we have shown that (M ′,⊂) is complete.
Now for each a ∈ L let f(a) = {b ∈ L : b ≤ a}. Clearly f(a) ∈M ′.

(4) For any a, b ∈ L we have a < b iff f(a) ⊂ f(b).

For, suppose that a, b ∈ L. If a < b, clearly f(a) ⊆ f(b), and even f(a) ⊂ f(b) since
b ∈ f(b)\f(a). The other implication in (4) follows easily from this implication by assuming
that b ≤ a.

(5) Every element of M ′ is a lub of elements of f [L].

For, suppose that X ∈M ′, and let X = {f(a) : a ∈ X}; we claim that X is the lub of X .
Clearly f(a) ⊆ X for all a ∈ X , so X is an upper bound of X . Suppose that Y ∈ M ′ is
any upper bound for X . If a ∈ X , then a ∈ f(a) ⊆ Y , so a ∈ Y . Thus X ⊆ Y , as desired.
So (5) holds.

(6) If a ∈ L is the lub in L of X ⊆ L, then f(a) is the lub in M ′ of f [X ].

For, assume that a ∈ L is the lub in L of X ⊆ L. If x ∈ X , then x ≤ a, so f(x) ⊆ f(a).
Thus f(a) is an upper bound for f [X ] in M ′. Now suppose that Y ∈ M ′ and Y is an
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upper bound for f [X ]. If b ∈ L and b < a, then since a is the lub of X , there is a d ∈ X
such that b < d ≤ a. So f(d) ⊆ Y , and hence d ∈ Y . Since b < d, we also have b ∈ Y .
This shows that f(a)\{a} ⊆ Y . If a ∈ X , then f(a) ∈ f [X ] and so f(a) ⊆ Y , as desired.
Assume that a /∈ X . Since a is the lub of X in L, there is no largest member of L which
is less than a. Now suppose that a /∈ Y . If u ∈ Y , then u < a, as otherwise a ≤ u and so
a ∈ Y , contradiction. It follows that Y = {u ∈ L : u < a}. Clearly then a is the lub of Y .
This contradicts (2). It follows that a ∈ Y . Hence f(a) ⊆ Y . So (6) holds.

Thus M ′ is as desired, up to isomorphism.
Finally, we need to take care of the “up to isomorphism” business. Non-rigorously,

we just identify a with f(a) for each a ∈ L. This is the way things are done in similar
contexts in mathematics. Rigorously we proceed as follows; and a similar method can be
used in other contexts. Let A be a set disjoint from L such that |A| = |M ′\f [L]|. For
example, we could take A = {(L,X) : X ∈ M ′\f [L]}; this set is clearly of the same size
as M ′\f [L], and it is disjoint from L by the foundation axiom. Let g be a bijection from
A onto M ′\f [L]. Now let N = L ∪ A, and define h : N →M ′ by setting, for any x ∈ N ,

h(x) =

{
f(x) if x ∈ L,
g(x) if x ∈ A.

Thus h is a bijection from N to M ′, and it extends f . We now define x ≪ y iff x, y ∈ N
and h(x) ⊂ h(y). We claim that (N,≪) really is a completion of L. (Not just up to
isomorphism.) We check the conditions for this. Obviously L ⊆ N . Suppose that a, b ∈ L.
Then a < b iff f(a) ⊂ f(b) iff h(a) ⊂ h(b) iff a ≪ b. Now h is obviously an order-
isomorphism from (N ⊂) onto (M ′ ⊂), so N is complete. Now take any element a of N .
Then by (5), h(a) is the lub of a set f [X ] with X ⊆ L. By the isomorphism property, a is
the lub of X . Finally, suppose that a ∈ L is the lub of X ⊆ L. Then by (6), f(a) is the
lub of f [X ] in M ′, i.e., h(a) is the lub of h[X ] in M ′. By the isomorphism property, a is
the lub of X in N .

Theorem 21.14. If L is a linear order and M,N are completions of L, then there is an
isomorphism f of M onto N such that f ↾ L is the identity.

Proof. It suffices to show that if P is a completion of L and M ′, f, g, h,N are as in
the proof of Theorem 21.13, then there is an isomorphism g from P onto N such that g ↾ L
is the identity.

For any x ∈ P let g′(x) = {a ∈ L : a ≤P x}. We claim that g′(x) ∈ M ′. Clearly
condition (1) holds. Now suppose that g′(x) has a lub b in L. By (C4) for P , b is the lub
of g′(x) in P . But obviously x is the lub of g′(x) in P , so b = x ∈ g′(x). So (2) holds for
g′(x), and hence g′(x) ∈M ′.

Now we let g(x) = h−1(g′(x)) for any x ∈ P . If x ∈ L, then g′(x) = f(x) = h(x), and
hence g(x) = x.

If x <P y, clearly g′(x) ⊆ g′(y), and hence g(x) ≤N g(y). By (C3) for P and y, there
is an a ∈ L such that x <P a ≤P y. So a ∈ g′(y)\g′(x). Hence g′(x) ⊂ g′(y) and so
g(x) <N g(y). Thus ∀x, y ∈ P [x <P y → g(x) <N g(y)]. Hence x 6<P y iff y ≤P x iff
g(y) ≤N g(x) iff g(x) 6<N g(y). So ∀x, y ∈ P [x <P y ↔ g(x) <N g(y)].
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It remains only to show that g is a surjection. Let x ∈ N . Set y = supPh(x). If
a ∈ h(x), then a ≤P y and so a ∈ g′(y). Thus h(x) ⊆ g′(y). Now suppose that a ∈ g′(y).
So a ≤P y. If a <P y, then there is a z ∈ h(y) such that a <P z ≤P y. It follows that
a ∈ h(y). If a = y, then a ∈ h(x) by (2). So g′(y) ⊆ h(y), showing that g′(y) = h(x).
Hence g(y) = h−1(g′(y)) = x.

Corollary 21.15. Suppose that L is a dense linear order, and M is a linear order. Then
the following conditions are equivalent:

(i) M is a completion of L.
(ii) (a) L ⊆M

(b) M is complete.
(c) For any a, b ∈ L, a <L b iff a <M b.
(d) For any x, y ∈M , if x <M y then there is an a ∈ L such that x <M a <M y.

Proof. (i)⇒(ii): Assume that M is a completion of L. then (a)–(c) are clear. Suppose
that x, y ∈M and x <M y. By (C3), choose b ∈ L such that x <M b ≤M y. If x ∈ L, then
choose a ∈ L such that x <L a <L b; so x <M a <M y, as desired. Assume that x /∈ L.
Then by (C4), b is not the lub in L of {u ∈ L : u <M x}, so there is some a ∈ L such
that a <L b and a is an upper bound of {u ∈ L : u <M x}. Since by (C3) x is the lub of
{u ∈ L : u <M x}, it follows that x <M a <M b ≤M y, as desired.

(ii)⇒(i): Assume (ii). Then (C1) and (C2) are clear. For (C3), let x ∈ M , and let
X = {a ∈ L : a < x}. Then x is an upper bound for X , and (ii)(d) clearly implies that
it is the lub of X . For (C4), suppose that a ∈ L is the lub in L of a set X of elements of
L. Suppose that x ∈ M is an upper bound for X and x < a. Then by (ii)(d) there is an
element b ∈ L such that x < b < a. Then there is an element c ∈ X such that b < c ≤ a.
It follows that c ≤ x, contradiction.

Note from this corollary that the completion of a dense linear order is also dense.

We now take up a special topic, Suslin lines.

• A subset U of a linear order L is open iff U is a union of open intervals (a, b) or (−∞, a)
or (a,∞). Here (−∞, a) = {b ∈ L : b < a} and (a,∞) = {b ∈ L : a < b}. L itself is also
counted as open. (If L has at least two elements, this follows from the other parts of this
definition.) Note that if L has a largest element a, then (a,∞) = ∅; similarly for smallest
elements.

• An antichain in a linear order L is a collection of pairwise disjoint nonempty open sets.

• A linear order L has the countable chain condition, abbreviated ccc, iff every antichain
in L is countable.

• A subset D of a linear order L is topologically dense in L iff D ∩ U 6= ∅ for every
nonempty open subset U of L. Then dense in the sense at the beginning of the chapter
implies topologically dense. In fact, if D is dense in the original sense and U is a nonempty
open set, take some non-empty open interval (a, b) contained in U . There is a d ∈ D with
a < d < b, so D∩U 6= ∅. If ∅ 6= (a,∞) ⊆ U for some a, choose b ∈ (a,∞), and then choose
d ∈ D such that a < d < b. Then again D ∩ U 6= ∅. Similarly if (−∞, a) ⊆ U for some a.
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Conversely, if L itself is dense, then topological denseness implies dense in the order
sense; this is clear. On the other hand, take for example the ordered set ω; ω itself is
topologically dense in ω, but ω is not dense in ω in the order sense.

• A linear order L is separable iff there is a countable subset C of L which is topologically
dense in L. Note that if L is separable and (a, b) is a nonempty open interval of L, then
(a, b), with the order induced by L (x < y for x, y ∈ (a, b) iff x < y in L) is separable.
In fact, if C is countable and topologically dense in L clearly C ∩ (a, b) is countable and
topologically dense in (a, b). Similarly, [a, b] is separable, taking (C ∩ [a, b]) ∪ {a, b}. This
remark will be used shortly.

• A Suslin line is a linear ordered set (S,<) satisfying the following conditions:
(i) S has ccc.
(ii) S is not separable.

• Suslin’s Hypothesis () is the statement that there do not exist Suslin lines.

Later in these notes we will prove that MA+¬CH implies SH. Here MA is Martin’s axiom,
which we will define and discuss later. The consistency of MA + ¬CH requires iterated
forcing, and will be proven much later in these notes. Also later in these notes we will
prove that ♦ implies ¬SH, and still later we will prove that ♦ is consistent with ZFC,
namely it follows from V = L. Both ♦ and L are defined later.

For now we want to connect our notion of Suslin line with more familiar mathematics,
and with the original conjecture of Suslin. The following is a theorem of elementary set
theory.

Theorem 21.16. For any linear order (L,≺) the following conditions are equivalent:
(i) (L,≺) is isomorphic to (R, <).
(ii) The following conditions hold:

(a) L has no first or last elements.
(b) L is dense.
(c) Every nonempty subset of L which is bounded above has a least upper bound.
(d) L is separable.

Proof. (i)⇒(ii): standard facts about real numbers.
(ii)⇒(i): By (d), let C be a countable subset of L such that (a, b) ∩ C 6= ∅ whenever

a < b in L. Clearly C is infinite, is dense, and has no first or last element. By Theorem
21.2, let f be an isomorphism from (C,<) onto (Q, <). We now apply the procedure used
at the end of the proof of 21.13. Let P be a set disjoint from Q such that |L\C| = |P |,
and let R = Q ∪ P . Let g be a bijection from L\C onto P , and define h = f ∪ g. Define
x ≺ y iff x, y ∈ R and h−1(x) <L h

−1(y). This makes R into a linearly ordered set with
h an isomorphism from L onto R. Now we adjoin first and last elements aR, bR to R and
similarly aR, bR for R; call the resulting linearly ordered sets R′ and R′. Then R′ and
R′ are both completions of Q according to Corollary 21.15. Hence (i) holds by Theorem
21.14.

Originally, Suslin made the conjecture that separability in Theorem 21.16 can be replaced
by the condition that every family of pairwise disjoint open intervals is countable. The
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following theorem shows that this conjecture and our statement of Suslin’s hypothesis are
equivalent.

Theorem 21.17. The following conditions are equivalent:
(i) There is a Suslin line.
(ii) There is a linearly ordered set (L,<) satisfying the following conditions:

(a) L has no first or last elements.
(b) L is dense.
(c) Every nonempty subset of L which is bounded above has a least upper bound.
(d) No nonempty open subset of L is separable.
(e) L is ccc.

Proof. Obviously (ii) implies (i). Now suppose that (i) holds, and let S be a Suslin
line. We obtain (ii) in two steps: first taking care of denseness, and then taking the
completion to finish up.

We define a relation ∼ on S as follows: for any a, b ∈ S,

a ∼ b iff a = b,

or a < b and [a, b] is separable,

or b < a and [b, a] is separable.

Clearly ∼ is an equivalence relation on S. Let L be the collection of all equivalence classes
under ∼.

(1) If I ∈ L, then I is convex, i.e., if a < c < b with a, b ∈ I, then also c ∈ I.

For, [a, b] is separable, so [a, c] is separable too, and hence a ∼ c; so c ∈ I.

(2) If I ∈ L, then I is separable.

For, this is clear if I has only one or two elements. Suppose that I has at least three
elements. Then there exist a, b ∈ I with a < b and (a, b) 6= ∅. Let M be a maximal
pairwise disjoint set of such intervals. Then M is countable. Say M = {(xn, yn) : n ∈ ω}.
Since xn ∼ yn, the interval [xn, yn] is separable, so we can let Dn be a countable dense
subset of it. We claim that the following countable set E is dense in I:

E =
⋃

n∈ω

Dn ∪ {e : e is the largest element of I}

∪ {a : a is the smallest element of I}.

Thus e and a are added only if they exist. To show that E is dense in I, first suppose
that a, b ∈ I, a < b, and (a, b) 6= ∅. Then by the maximality of M , there is an n ∈ ω such
that (a, b) ∩ (xn, yn) 6= ∅. Choose c ∈ (a, b) ∩ (xn, yn). Then max(a, xn) < c < min(b, yn),
so there is a d ∈ Dn ∩ (max(a, xn),min(b, yn)) ⊆ (a, b), as desired. Second, suppose that
a ∈ I and (a,∞) 6= ∅; here (a,∞) = {x ∈ I : a < x}. We want to find d ∈ E with a < d. If
I has a largest element e, then e is as desired. Otherwise, there are b, c ∈ I with a < b < c,
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and then an element of (a, c)∩E, already shown to exist, is as desired. Similarly one deals
with −∞. Thus we have proved (2).

Now we define a relation < on L by setting I < J iff I 6= J and a < b for some a ∈ I
and b ∈ J . By (1) this is equivalent to saying that I < J iff I 6= J and a < b for all a ∈ I
and b ∈ J . In fact, suppose that a ∈ I and b ∈ J and a < b, and also c ∈ I and d ∈ J ,
while d ≤ c. If d ≤ a, then d ≤ a < b with d, b ∈ J implies that a ∈ J , contradiction.
Hence a < d. Since also d ≤ c this gives d ∈ I, contradiction.

Clearly < makes L into a simply ordered set. Except for not being complete in the
sense of (c), L is close to the linear order we want.

To see that L is dense, suppose that I < J but (I, J) = ∅. Take any a ∈ I and b ∈ J .
Then (a, b) ⊆ I ∪ J , and I ∪ J is separable by (2), so a ∼ b, contradiction.

For (d), by a remark in the definition of separable it suffices to show that no open
interval (I, J) is separable. Suppose to the contrary that (I, J) is separable. Let A be a
countable dense subset of (I, J). Also, let B = {K ∈ L : I < K < J and |K| > 2}. Any
two distinct members of B are disjoint, and hence by ccc B is countable. In fact, each
K ∈ B has the form (a, b), [a, b), (a, b], or [a, b]. since |K| > 2, and in each case the open
interval (a, b) is nonempty. So ccc applies.

Define C = A ∪B∪{I, J}. By (2), each member of C is separable, so for each K ∈ C

we can let DK be a countable dense subset of K. Let E =
⋃

K∈C
DK . So E is a countable

set. Fix a ∈ I and b ∈ J . We claim that E ∩ (a, b) is dense in (a, b). (Hence a ∼ b and so
I = J , contradiction.) For, suppose that a ≤ c < d ≤ b with (c, d) 6= ∅.

Case 1. [c]∼ = [d]∼ = I. Then DI ∩ (c, d) 6= ∅, so E ∩ (c, d) 6= ∅, as desired.
Case 2. [c]∼ = [d]∼ = J . Similarly.
Case 3. I < [c]∼ = [d]∼ < J . Then [c]∼ ∈ B ⊆ C , so the desired result follows again.
Case 4. [c]∼ < [d]∼. Choose K ∈ A such that [c]∼ < K < [d]∼. Hence c < e < d for

any e ∈ DK , as desired.

Thus we have obtained a contradiction, which proves that (I, J) is not separable.
Next, we claim that L has ccc. In fact, suppose that A is an uncountable family of

pairwise disjoint open intervals. Let B be the collection of all endpoints of members of
A , and for each I ∈ B choose aI ∈ I. Then

{(aI , aJ) : (I, J) ∈ A }

is an uncountable collection of pairwise disjoint nonempty open intervals in S, contradic-
tion. In fact, given (I, J) ∈ A , choose K with I < K < J . then aK ∈ (aI , aJ). So
(aI , aJ) 6= ∅. Suppose that (I, J), (I ′, J ′) are distinct members of A . Wlog J ≤ I ′. Then
aJ ≤ aI′ , and it follows that (aI , aJ) ∩ (aI′ , aJ ′) = ∅.

This finishes the first part of the proof. We have verified that L satisfies (b), (d), and
(e). Now let M be the completion of L, and let N be M without its first and last elements.
We claim that N finally satisfies all of the conditions in (ii). Clearly N is dense, it has no
first or last elements, and every nonempty subset of it bounded above has a least upper
bound. Next, suppose that a < b in N and C is a countable subset of (a, b) which is dense
in (a, b). Choose c, d ∈ L such that a < c < d < b. For any u, v ∈ C with c < u < v < d
choose euv ∈ L such that u < euv < v; such an element exists by Corollary 21.15. We
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claim that {euv : u, v ∈ C, u < v} is dense in (c, d) in L, which is a contradiction. For,
given x, y such that c < x < y < d in L, by the definition of denseness we can find u, v ∈ C
such that x < u < v < y; and then x < euv < y, as desired.

It remains only to prove that N has ccc. Suppose that A is an uncountable collection
of nonempty open intervals of N . By Corollary 21.15, for each (a, b) ∈ A we can find
c, d ∈ L such that a < c < d < b. So this gives an uncountable collection of nonempty
open intervals in L, contradiction.

In the next part of this chapter we prove a very useful theorem on characters of points and
gaps in linearly ordered sets due to Hausdorff.

For any cardinal κ, the order type which is the reverse of κ is denoted by κ∗. Reg
is the class of all regular cardinals. We define regular so that every regular cardinal is
infinite. If κ < λ are cardinals, then [κ, λ]reg is the collection of all regular cardinals in
the interval [κ, λ]; similarly for half-open and open intervals.

Let R ⊆ Reg×Reg. We define

χleft(R) = the least cardinal greater than each member of dmn(R);

χright(R) = the least cardinal greater than each member of rng(R).

Let L be a linear order, and let x ∈ L. If x is the first element of L, then its left character
is 0. If x has an immediate predecessor, then its left character is 1. Finally, suppose that
x is not the first element of L and does not have an immediate predecessor. Then the left
character of x is the smallest cardinal κ such that there is a strictly increasing sequence
of elements of L with supremum x. This cardinal κ is then regular. Similarly, if x is the
last element of L, then its right character is 0. If x has an immediate successor, then its
right character is 1. Finally, suppose that x is not the last element of L and it does not
have an immediate successor. Then the right character of x is the smallest cardinal λ such
that there is a strictly decreasing sequence of elements of L with infimum x. The character
of x is the pair (κ, λ) where κ is the left character and λ∗ is the right character. The
point-character set of L is the collection of all characters of points of L; we denote it by
Pchar(L). Note that Pchar(L) 6= ∅.

A gap of L is an ordered pair (M,N) such that M 6= ∅ 6= N , L = M ∪N , M has no
largest element, N has no smallest element, and ∀x ∈ M∀y ∈ N(x < y). The definitions
of left and right characters of a gap are similar to the above definitions for points; but
they are always infinite regular cardinals. Again, the character of (M,N) is the pair (κ, λ)
where κ is the left character and λ∗ is the right character. The gap-character set of L is
the collection of all characters of gaps of L; we denote it by Gchar(L). We say that L
is Dedekind complete iff every nonempty subset of L which is bounded above has a least
upper bound. For L dense this is equivalent to saying that Gchar(L) = ∅.

The full character set of L is the pair (Pchar(L),Gchar(L)).
If L does not have a first element, then the coinitiality of L is the least cardinal κ

such that there is a strictly decreasing sequence 〈aα : α < κ〉 of elements of L such that
∀x ∈ L∃α < κ[aα < x]; we denote this cardinal by ci(L). Similarly for the right end, if L
does not have a greatest element then we define the cofinality of L, denoted by .
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L is irreducible iff it has no first or last elements, and the full character set of (x, y)
is the same as the full character set of L for any two elements x, y ∈ L with x < y.

Now a complete character system is a set R ⊆ Reg×Reg with the following properties:

(C1) dmn(R) = [ω, χleft(R))reg.

(C2) rng(R) = [ω, χright(R))reg.

(C3) There is a κ such that (κ, κ) ∈ R.

Note these conditions do not mention orderings.

Proposition 21.18. If L is an irreducible infinite Dedekind complete dense linear order,
then Pchar(L) is a complete character system. Moreover, ci(L) ≤ χright(Pchar(L)) and
cf(L) ≤ χleft(Pchar(L)).

Proof. Let R = Pchar(L). (C1): the inclusion ⊆ is obvious. Now suppose that
κ ∈ [ω, χleft(R))reg. Then there is a point x of L with character (µ, ν) such that κ ≤ µ.
Let 〈aξ : ξ < µ〉 be a strictly increasing sequence of elements of L with supremum x. Let
y = supξ<κ aξ. Clearly y has left character κ, as desired.

(C2): symmetric to (C1).
(C3): By a straightforward transfinite construction one gets (for some ordinal α) a

strictly increasing sequence 〈xξ : ξ < α〉 and a strictly decreasing sequence 〈yξ : ξ < α〉 such
that xξ < yη for all ξ, η < α, and such that there is exactly one point z with xξ < z < yη
for all ξ, η < α. Then α is a limit ordinal, and z has character (cf(α), cf(α)), as desired.

Finally, suppose that cf(L) > χleft(R). Then by the argument for (C1), L has a point
with left character χleft(R), contradiction. A similar argument works for ci.

We shall use the sum construction for linear orders. If 〈Li : i ∈ I〉 is a system of linear
orders, and I itself is an ordered set, then by

∑

i∈I Li we mean the set

{(i, a) : i ∈ I, a ∈ Li}

ordered lexicographically.
The following lemma is probably well-known.

Lemma 21.19. If 〈Li : i ∈ I〉 is a system of complete linear orders, and I is a complete
linear order, then

∑

i∈I Li is also complete.

Proof. Suppose that C is a nonempty subset of
∑

i∈I Li. Let i0 = sup{i ∈ I : (i, a) ∈
C for some a ∈ Li}. We consider two cases.

Case 1. There is an a ∈ Li0 such that (i0, a) ∈ C. Then we let a0 = sup{a ∈ Li0 :
(i0, a) ∈ C}. Clearly (i0, a0) is the supremum of C.

Case 2. There is no a ∈ Li0 such that (i0, a) ∈ C. Then the supremum of C is (i0, a),
where a is the first element of Li0 .

Another construction we shall use is the infinite product. Suppose that I is a well-ordered
set and 〈Li : i ∈ I〉 is a system of linear orders. Then we make

∏

i∈I Li into a linear order
by defining, for f, g ∈

∏

i∈I Li,

f < g iff f 6= g and f(i) < g(i),
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where i = f.d.(f, g), and f.d.(f, g) is the first i ∈ I such that f(i) 6= g(i).
Given such an infinite product, and given a strictly increasing sequence x = 〈xα : α <

λ〉 of members of it, with λ a limit ordinal, we call x of argument type if the following two
conditions hold:

(A1) 〈f.d.(xα, xα+1) : α < λ〉 is strictly increasing

(A2) For each α < λ, the sequence 〈f.d.(xα, xβ) : α < β < κ〉 is a constant sequence.

On the other hand, x is of basis type iff there is an i ∈ I such that f.d.(xα, xβ) = i for all
distinct α, β < κ.

Lemma 21.20. Let 〈Mi : i ∈ I〉 be a system of ordered sets, with I well-ordered. If
x < y < z in

∏

i∈IMi, then f.d.(x, z) = min{f.d.(x, y), f.d.(y, z)}.

Proof. Let i = min{f.d.(x, y), f.d.(y, z)}.
Case 1. i = f.d.(x, y) = f.d.(y, z). Then x ↾ i = y ↾ i = z ↾ i and x(i) < y(i) < z(i), so

f.d.(x, z) = i.
Case 2. i = f.d.(x, y) < f.d.(y, z). Then x ↾ i = y ↾ i = z ↾ i and x(i) < y(i) = z(i), so

f.d.(x, z) = i.
Case 3. i = f.d.(y, z) < f.d.(x, y). Then x ↾ i = y ↾ i = z ↾ i and x(i) = y(i) < z(i), so

f.d.(x, z) = i.

The following is Satz XIV in Hausdorff [1908].

Theorem 21.21. Let 〈Mi : i ∈ I〉 be a system of ordered sets, with I well-ordered. Suppose
that κ is regular and 〈xα : α < κ〉 is a strictly increasing sequence of elements of

∏

i∈IMi.
Then this sequence has a subsequence of length κ which is either of argument type or of
basis type.

Proof. First we claim

(1) For every α < κ there is a β > α and an i ∈ I such that f.d.(xα, xγ) = i for all γ ≥ β.

This is true because, by Lemma 21.20, if α < β < γ < κ, then f.d.(xα, xβ) ≥ f.d.(xα, xγ);
hence

f.d.(xα, xα+1) ≥ f.d.(xα, xα+2) ≥ · · · ≥ f.d.(xα, xα+β) ≥ · · ·

for all β < κ; so this sequence of elements of I has a minimum, and (1) holds.
Now for each α < κ, let ϕ(α) be the least β > α so that an i as in (1) exists, and let

i(α) be such an i. Thus

(2) For each α < κ we have α < ϕ(α), and for all γ ≥ ϕ(α) we have f.d.(xα, xγ) = i(α).

Now we define a function α ∈ κκ by setting

α(0) = 0;

α(ξ + 1) = ϕ(α(ξ));

α(η) = sup
ξ<η

α(ξ) for η limit
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Then we clearly have

(3) α is a strictly increasing function, and f.d.(xα(ξ), xα(η)) = i(α(ξ)) for all ξ, η < κ with
ξ < η.

Moreover,

(4) If ξ < η < θ < κ, then i(α(ξ)) = f.d.(xα(ξ), xα(θ)) ≤ f.d.(xα(η), xα(θ)) = i(α(η)).

In fact, this is clear by Lemma 21.20.
Now we consider two cases.
Case 1. ∀ξ < κ∃η < κ[ξ < η and i(α(ξ)) < i(α(η))]. Then there is a strictly increasing

β ∈ κκ such that for all ξ, η ∈ κ, if ξ < η then i(α(β(ξ))) < i(α(β(η))). Hence for ξ < η < κ
we have

f.d.(xα(β(ξ)), xα(β(ξ+1))) = i(α(β(ξ))) < i(α(β(η))) = f.d.(xα(β(η)), xα(β(η+1)));

moreover, if ξ < η < κ, then f.d.(xα(β(ξ)), xα(β(η))) = i(α(β(ξ))); so 〈xα(β(ξ)) : ξ < κ〉 is of
argument type.

Case 2. ∃ξ < κ∀η < κ[ξ < η implies that i(α(ξ)) = i(α(η))]. Hence 〈xα(ξ+η) : η < κ〉
is of basis type.

A variant of the product construction will be useful. Let κ be an infinite regular cardinal.
A κ-system is a pair (T,M) with the following properties:

(V1) For each α < κ and each x ∈ Tα, Mxα is a linear order.

(V2) T0 = {∅}.

(V3) For each α < κ we have

Tα+1 = {f : dmn(f) = α+ 1, (f ↾ α) ∈ Tα, f(α) ∈M(f↾α)α}

(V4) If β ≤ κ is a limit ordinal ≤ κ, then Tβ = {f : dmn(f) = β and ∀α < β[f ↾ α ∈ Tα]}.

We define a relation < on Tκ by setting, for any x, y ∈ Tκ, x < y iff x 6= y, and x(ξ) < y(ξ),
where ξ = f.d.(x, y). Here the second < relation is that of M(x↾ξ)ξ .

Lemma 21.22. Under the above assumptions, < is a linear order on Tκ.

Proof. Clearly < is irreflexive, and ∀x, y ∈ Tκ[x < y or x = y or y < x]. For
transitivity, suppose that x < y < z. Let ξ =f.d.(x, y), η =f.d.(y, z), and θ =f.d.(x, z).

Case 1. ξ < η. Then ξ = θ and x(θ) = x(ξ) < y(ξ) = z(ξ), so x < z.

• • •
x y z

Case 2. ξ = η. Then ξ = θ and x(θ) = x(ξ) < y(ξ) = y(η) < z(η) = z(θ).
Case 3. η < ξ. Then θ = η and x(θ) = y(θ) = y(η) < z(η) = z(θ).
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• • •
x y z

The idea is that this is a variable product: not all functions in a cartesian product are
allowed. If x ∈ Tκ, then for each α < κ the value x(α) lies in an ordered set M(x↾α)α which
depends on x ↾ α. Thus the linear order has a tree-like property.

Theorem 21.23. Assume the above notation. For each γ < κ let M ′
γ = {(x, y) : x ∈

Tγ , y ∈ Mxγ}. Let M ′
γ have the lexicographic ordering. Then there is an isomorphism of

Tκ into
∏

γ<κM
′
γ.

Namely, for each x ∈ Tκ define f(x) by (f(x))γ = (x ↾ γ, x(γ)) for any γ < κ.
Then f is the indicated isomorphism. Moreover, for all x, y ∈ Tκ we have f.d.(x, y) =
f.d.(f(x), f(y)).

Proof. Clearly f maps Tκ into
∏

γ<κM
′
γ . Suppose that x, y ∈ Tκ and x < y.

Choose α minimum such that x(α) 6= y(α); so x(α) < y(α). Hence (x ↾ α, x(α)) < (x ↾
α, y(α)) = (y ↾ α, y(α)). If β < α, then (x ↾ β, x(β)) = (y ↾ β, y(β)). Hence f(x) < f(y)
and f.d.(x, y) = f.d.(f(x), f(y)). On the other hand, suppose that f(x) < f(y). Let
α = f.d.(f(x), f(y)). If β < α, then (f(x))β = (f(y))β, i.e., (x ↾ β, x(β)) = (y ↾ β, y(β)).
Hence x ↾ α = y ↾ α. Since (f(x))α < (f(y))α, we have (x ↾ α, x(α)) < (y ↾ α, y(α)).
Hence x(α) < y(α). It follows that x < y.

Theorem 21.24. If (T,M) is a κ-system on a regular cardinal κ and each linear order
Mxα is complete, then Tκ is complete.

Proof. It suffices to take any regular cardinal ν, suppose that x = 〈xθ : θ < ν〉 is a
strictly increasing sequence in Tκ, and show that it has a supremum. By Theorems 21.21
and 21.23 let 〈f(xθ(ξ)) : ξ < ν〉 be a subsequence of 〈f(xθ) : θ < ν〉 which is of basis type
or argument type.

Case 1. 〈f(xθ(ξ)) : ξ < ν〉 is of basis type. Say γ < κ and f.d.(f(xθ(ξ)), f(xθ(η))) = γ
for all distinct ξ, η < ν. Thus by Theorem 21.23, f.d.(xθ(ξ), xθ(η)) = γ for all distinct
ξ, η < ν. Let a = sup{xθ(ξ)(γ) : ξ < ν}. Now define y ∈ Tκ by setting

y ↾ γ = xθ(0) ↾ γ;

y(γ) = (y ↾ γ) ∪ {(γ, a)};

y(δ + 1) = (y ↾ δ) ∪ {(δ, b)} with b the least element of M(y↾δ)δ) for γ ≤ δ;

y(ψ) =
⋃

δ<ψ

(y ↾ δ) for ψ limit > γ.

Clearly y is an upper bound for 〈xθ : θ < ν〉. Now suppose that z ∈ Tκ is any upper
bound. If ξ < ν, ϕ < γ, and xθ(ξ)(ϕ) 6= z(ϕ), let ρ = f.d.(xθ(ξ), z). Then ρ < γ and
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xθ(ξ)(ρ) < z(ρ). Clearly then f.d.(xθ(η), z) = ρ for all η < ν, and y < z. Thus we may
assume that xθ(ξ)(ϕ) = z(ϕ) for all ξ < ν and ϕ < γ. It follows that a ≤ z(γ). If a < z(γ),
clearly y < z. Suppose that a = z(γ). Then again clearly y ≤ z. So y is the least upper
bound for 〈xθ : θ < ν〉.

Case 2. 〈f(xθ(ξ)) : ξ < ν〉 is of argument type. By (A1), 〈f.d.(xθ(ξ), xθ(ξ+1) : ξ < ν〉
is strictly increasing. Thus ν ≤ κ. Let β = sup{f.d.(xθ(ξ), xθ(ξ+1)) : ξ < ν}. Thus β ≤ κ.
Let yξ = xθ(ξ) ↾ f.d.(xθ(ξ), xθ(ξ+1)) for each ξ < ν. Hence yξ ∈ Tf.d.(xθ(ξ),xθ(ξ+1)). Now

(1) yξ ⊆ yη if ξ < η < ν.

In fact, suppose that this is not true; say that ξ < η < ν but yξ 6⊆ yη. So there is an α <
f.d.(xθ(ξ), xθ(ξ+1)) such that yξ(α) 6= yη(α). Thus xθ(ξ)(α) 6= xθ(η)(α); so f.d.(xθ(ξ)xθ(η)) ≤
α < f.d.(xθ(ξ), xθ(ξ+1)), contradicting (A2).

From (1), clearly

(2) yξ ⊂ yη if ξ < η < ν.

Now consider the function z
def
=
⋃

ξ<ν yξ. We consider two cases.
Case 1. ν = κ. Then z ∈ Tκ and β = κ. We claim that z is the supremum of x

in this case. If ξ < ν, let α = f.d.(xθ(ξ), xθ(ξ+1)). Then z ↾ α = yξ = xθ(ξ) ↾ α. Now
α = f.d.(xθ(ξ), xθ(ξ+1)) < f.d.(xθ(ξ+1), xθ(ξ+2)) by (A1) in the definition of argument type.
So x(θ(ξ)(α) < xθ(ξ+1)(α) = yξ+1(α) ≤ z(α). Thus xθ(ξ) < z. Now suppose that w < z.
Let ξ = f.d.(w, z). Since β = κ, choose η < ν such that ξ < f.d.(xθ(η), xθ(η+1)). Then
w ↾ ξ = z ↾ ξ = yη ↾ ξ, and w(ξ) < z(ξ) = yη(ξ). So w < yη, as desired.

Case 2. ν < κ. Then also β < κ. Also, z ∈ Tβ . We define an extension v ∈ Tκ
of z by recursion. Let w0 = z. If wα has been defined as a member of Tβ+α, with
β + α < κ, let a(α) be the least member of Mwαα, and set wα+1 = wα ∪ {(α, a(α))}. So
wα+1 ∈ Tβ+α+1. If γ is limit and wα has been defined as a member of Tβ+α for all α < γ,
and if β + γ < κ, let wγ =

⋃

α<γ wα. Finally, let v =
⋃

α<κwα. So v ∈ Tκ and it is an
extension of z. We claim that it is the l.u.b. of 〈xα : α < ν〉. First suppose that ξ < ν.
Then xθ(ξ) ↾ f.d.(xθ(ξ), xθ(ξ+1)) = yξ = z ↾ f.d.(xθ(ξ), xθ(ξ+1)), and

xθ(ξ)(f.d.(xθ(ξ), xθ(ξ+1))) < xθ(ξ+1)(f.d.(xθ(ξ), xθ(ξ+1)))

= yξ+1(f.d.(xθ(ξ), xθ(ξ+1)))

= z(f.d.(xθ(ξ), xθ(ξ+1))).

Thus xθ(ξ) < v. Now suppose that t < v. Then α
def
= f.d.(t, v) is less than β by construction,

so t ↾ α = z ↾ α and t(α) < z(α). By the definition of z this gives a ξ < ν such that
t ↾ α = xθ(ξ) ↾ α and t(α) < xθ(ξ)(α). So t < xθ(ξ), as desired.

Our main theorem is as follows; it is Satz XVII of Hausdorff [1908].

Theorem 21.25. Suppose that R is a complete character system, and κ, λ are regular
cardinals with κ ≤ χright(R) and λ ≤ χleft(R), and χleft(R) and χright(R) are succes-
sor cardinals. Then there is an irreducible Dedekind complete dense order L such that
Pchar(L) = R, with ci(L) = λ and cf(L) = κ.
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Proof. We may assume that χleft(R) ≥ χright(R); otherwise we replace R by

R−1 def
= {(κ, λ) : (λ, κ) ∈ R}, and replace the final order by its reverse. Let R be or-

dered lexicographically. Note by hypothesis that R has a largest element. We define some
important orders which are components of the final order L. Let α and β be regular
cardinals. Now we define

ϕαβ = α+ 1 + β∗;

Φ =
∑

(α,β)∈R

ϕαβ ;

µ(α, β) = 1 + α∗ + Φ + β + 1.

The symmetry of this definition will enable us to shorten several proofs below. Since we are
using the standard notation for sums of order types, and some order types are repeated,
it is good to have an exact notation for the indicated orders. m, f, l are new elements
standing for “middle”, “first”, and “last” respectively. We suppose that with each ordinal
ξ we associate a new element ξ′, used in forming things like β∗. Thus more precisely,

ϕαβ = α ∪ {m} ∪ {ξ′ : ξ < β};

the ordering here is: α has its natural order; for ξ, η < β, we define ξ′ < η′ iff η < ξ; ξ < m
for each ξ < α; m < ξ′ for each ξ < β; and transitivity gives the rest.

Φ = {((α, β), a) : (α, β) ∈ R, a ∈ ϕαβ} with lexicographic order;

µ(α, β) = {f} ∪ {ξ′ : ξ < α} ∪Φ ∪ β ∪ {l};

the ordering should be obvious on the basis of the above remarks. We implicitly assume
the distinctness of the various objects making up µ(α, β).

(1) µ(α, β) is a complete linear order, for any regular cardinals α, β.

This is clear on the basis of Lemma 21.19.

(2) If (α, β) ∈ R, (α, β) 6= (ω, ω), and a is the smallest element of ϕαβ , then the right
character of ((α, β), a) is 1, and the left character is:

(a) 1, if β is a successor cardinal;
(b) β if β is a (regular) limit cardinal > ω;
(c) 1, if β = ω and α is a successor cardinal;
(d) α if β = ω and α is a (regular) limit cardinal > ω.

We prove this by cases:
(2)(a): Say β = γ+. Then (α, β) is the lexicographic successor of (α, γ), and the left

character of ((α, β), a) is 1, since ((α, γ), 0′) is the immediate predecessor of ((α, β), a).
(2)(b): 〈((α, γ), 0) : γ < β〉 is strictly increasing with supremum ((α, β), a).
(2)(c): Say α = γ+. Let χright(R) = δ+. Then ((γ, δ), 0′) is the immediate predecessor

of ((α, ω), a).
(2)(d): 〈((γ, ω), 0′) : γ < α〉 is strictly increasing with supremum ((α, ω), a)
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(3) If a is the smallest element of ϕωω, then the character of ((ω, ω), a) in µ(α, β) is (1, 1).

(4) Let χleft(R) = δ+ and χright(R) = ε+. If (α, β) ∈ R, (α, β) 6= (δ, ε), and a is the largest
element of ϕαβ, then the left character of ((α, β), a) is 1, and the right character is:

(a) 1, if β < ε;
(b) 1, if β = ε;

We prove this by cases:
(4)(a): ((α, β+), 0) is the immediate successor of ((α, β), a).
(4)(b): ((α+, ω), 0) is the immediate successor of ((α, β), a).

(5) If a is the greatest element of ϕδε, then the character of ((δ, ε), a) in µ(α, β) is (1, 1).

(6) If α < χright(R) is regular and β < χleft(R) is regular, then:
(a) the right character of the left end point of µ(α, β) is α;
(b) the left character of the right end point of µ(α, β) is β;
(c) if a ∈ µ(α, β) is not an end point, and its character is (γ, δ∗), then γ < χleft(R)

and δ < χright(R).

In fact, (a) and (b) are clear. Now suppose that a ∈ µ(α, β) is not an end point. If a is
in the α∗ portion but not equal to 0′, or it is in the β portion but is not the first element
of β, the conclusion of (c) is clear. The character of 0′ is (1, 1). The character of the first
element of β is (1, 1) since R has a largest element. If a is within some ϕαβ but is not the
first or last element of ϕαβ , then the conclusion of (c) holds by (2) and (4). If a is the first
or last element of ϕαβ then the conclusion of (2) holds by (3) and (5).

Let p be a new element, not appearing in any of the above orders. Let σ be the least
regular cardinal such that (σ, σ) ∈ R; it exists by condition (C3) in the definition of a
complete character system. For each regular α < χleft(R), let ξα be the least cardinal such
that (α, ξα) ∈ R; it exists by (C1) in the definition of complete character set. Similarly,
for each regular α ∈ χright(R) let ηα be the least cardinal such that (ηα, α) ∈ R.

Now we define by recursion a σ-system (T,M). Let T0 = {∅} and M∅0 = µ(λ, κ). Now
except for M∅0, Mxα will have the form {p} or µ(ρ, σ) with ρ < χleft(R) and σ < χright(R).

Suppose that γ ≤ σ is a limit ordinal. We let Tγ be the set of all x with domain γ
such that x ↾ α ∈ Tα for all α < γ. Now suppose that γ < σ, still with γ a limit ordinal.
Now if x ∈ Tγ and |M(x↾α)α| > 1 for all α < γ, we set

Mxγ = µ(ξcf(γ), ηcf(γ)).

On the other hand, if |M(x↾α)α| = 1 for some α < γ, we set Mxγ = {p}.
Now suppose that γ = β + 1. Then we set

Tγ = {x⌢〈b〉 : x ∈ Tβ and b ∈Mxβ}.

Now we define Mxγ for each x ∈ Tγ .

(7) If x(β) = p, then Mxγ = {p}.

(8) If x(β) is an endpoint of M(x↾β)β or has no immediate neighbors, then Mxγ = {p}.
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(9) If x(β) has a right neighbor but no left neighbor, and the left character of x(β) in
M(x↾β)β is α, then Mxγ = µ(ξα, σ). Note that α < χleft(R).

(10) If x(β) has a left neighbor but no right neighbor, and the right character of x(β) in
M(x↾β)β is α, then Mxγ = µ(σ, ηα). Note that α < χright(R).

(11) If x(β) has both a left and a right neighbor, then Mxγ = µ(σ, σ).

This finishes the definition of (T,M). The linear order Tσ is close to the order we are after.
Note the following two facts:

(12) If x ∈ Tσ, α < β < σ, and x(α) = p, then x(β) = p.

In fact, we prove by induction on β ∈ [α, σ) that x(β) = p. This is given for β = α.
Now assume that β ∈ [α, σ) and x(β) = p. By the above definition with γ = β + 2,
x(β + 1) ∈ M(x↾(β+1))(β+1). By (7), M(x↾(β+1))(β+1) = {p}. Hence x(β + 1) = p. Assume
that β ∈ [α, σ), β is limit, and x(γ) = p for all γ ∈ [α, β). By definition we then have
M(x↾β)β = {p}. Then by the above definition with γ = β + 1, x(β) = p. So (12) holds.

(13) If x ∈ Tσ and α < σ, then either M(x↾α)α = {p} or M(x↾α)α = µ(θ, ϕ) for some θ, ϕ;
except for M∅0 we have θ < χleft(R) and ϕ < χright(R).

From Theorem 21.24 we know that Tσ is complete. Now we find the characters of the
elements of Tσ.

(14) The smallest element of Tσ has character (0, λ∗).

To prove this, note that the smallest element of Tσ is x
def
= 〈f, p, p, . . .〉, where f is the first

element of M∅0 = µ(λ, κ). For each α < λ let yα = 〈(α + 1)′, f, p, p, . . .〉. Note here that
(α = 1)′ has both a left and a right neighbor, so M〈(α+1)′〉1 = µ(σ, σ) by (11). f here is the
first element of µ(σ, σ). By (8), M〈(α+1)′,f〉2 = {p}. Thus yα is an element of Tσ. Clearly
x < yα for each α < λ, and yβ < yα if α < β < λ. Now suppose that x < w. Hence
w(0) 6= f . If w(0) is not in the λ∗ part, clearly yα < w for every α < λ. If w(0) = β′ for
some β < λ, then yβ+1 < w. This proves (14).

(15) The largest element of Tσ has character (κ, 0).

In fact, the largest element of Tσ is x
def
= 〈l, p, p, . . .〉, where l is thee last element of

M∅0 = µ(λ, κ). For each α < κ let yα = 〈α + 1, l, p, p, . . .〉. We see that yα ∈ Tσ as in
the proof of (14). Clearly yα < x for each α < κ. Now suppose that w < x. Clearly then
w(0) < l. If w(0) is not in the κ part, clearly w < yα for all α < κ. If w(0) = α < κ, then
w < yα. This proves (15).

Let a be the first element of Tσ, and b the last element.

(16) If a < x < b and |Mx↾α| > 1 for every α < σ, then x has character (σ, σ).

For, first we show that x has left character σ. For each α < σ let

yα = (x ↾ α)⌢〈f, p, p, . . .〉.
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Clearly yα < x for all α < σ, and 〈yα : α < σ〉 is strictly increasing. Now suppose that
z ∈ Tσ and z < x. Let α = f.d.(z, x). Then clearly z < yα+1, as desired.

Now for right character σ, for each α < σ let

zα = (x ↾ α)⌢〈l, p, p, . . .〉.

Clearly x < zα for all α < σ, and 〈zα : α < σ〉 is strictly decreasing. Now suppose that
w ∈ Tσ and x < w. Let α = f.d.(w, x). Then clearly zα+1 < w, as desired. Thus (16)
holds.

Now suppose that a < x < b and x(α) = p for some α < σ, and let α be minimum with
this property. Then by construction, α is a successor ordinal γ+1, and x(γ) is an endpoint
of M(x↾γ)γ or is an element of M(x↾γ)γ with no neighbor.

Case 1. x(γ) is an element of M(x↾γ)γ with no neighbor. Then by definition, there is
a (ρ, ξ) ∈ R such that x(γ) = ((ρ, ξ), m), i.e., x(γ) is the middle element of ϕρξ. We claim
that x has character (ρ, ξ∗). To see this, for each α < ρ let

yα = (x ↾ γ)⌢〈((ρ, ξ), α+ 1), f, p, p, . . .〉.

Then yα < x, the sequence 〈yα : α < ρ〉 is strictly increasing, and x is its supremum. So
the left character of x is ρ, and similarly the right character of x is ξ.

Case 2. x(γ) is the endpoint f of M(x↾γ)γ . We now consider three subcases.
Subcase 2.1. γ = 0. This would imply that x = a, contradiction.
Subcase 2.2. γ is a limit ordinal. Then cf(γ) < σ. So by construction, M(x↾γ)γ

is µ(ξcf(γ), ηcf(γ)). For each δ < γ let yδ = (x ↾ δ)⌢〈f, p, p, . . .〉. Clearly 〈yδ : δ < γ〉 is
strictly increasing with limit x. Hence x has character (cf(γ), ξcf(γ)) ∈ R.

Subcase 2.3. γ = β + 1 for some β. Then

x = (x ↾ β)⌢〈x(β), f, p, p, . . .〉.

Clearly then one of (9)–(11) holds for x(β).
Subsubcase 2.3.1. (9) holds for x(β). So x(β) has a right neighbor, but no

left neighbor. Say the left character of x(β) is α. Then by (9), M(x↾γ)γ is µ(ξα, σ). We
claim that x has character (α, ξα). To see this, let 〈αθ : θ < α〉 be strictly increasing with
supremum x(β). Then for each θ < α let yθ be any element of N such that x ↾ β = yθ ↾ β
and yθ(β) = αθ. So clearly yθ < x and 〈yθ : θ < α〉 is strictly increasing. Now suppose
that z ∈ N and z < x. If f.d.(z, x) < β, then z < y0. Suppose that f.d.(z, x) = β. Then
z(β) < x(β), so z(β) < αθ for some θ < α, and hence z < yθ. Clearly by the form of x,
one of these possibilities for z must hold. Hence the left character of x is α. Clearly its
right character is ξα.

Subsubcase 2.3.2. (10) holds for x(β). So x(β) has a left neighbor ε, but no
right neighbor. Hence ε has a right neighbor, and hence (9) or (11) holds for (x ↾ β)⌢〈ε〉
in place of x and β in place of γ. Hence M(x↾β)⌢〈ε〉,β+1 is µ(ξα, σ) for some α, or µ(σ, σ).
Now

(17) y
def
= (x ↾ β)⌢〈ε, l, p, p, . . .〉 is the immediate predecessor of x.
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In fact, clearly y < x. Suppose that z < x. Clearly f.d.(z, x) ≤ β. If f.d.(z, x) < β,
obviously z < y. If f.d.(z, x) = β, then z(β) ≤ ε. If z(β) < ε, then z < y. If z(β) = ε, then
z(γ) ≤ l, and so z ≤ y. So (17) holds.

Clearly the left character of y is σ. Now Mx↾γ,γ is µ(σ, ηα) for some α, and so it is
clear that the right character of x is also σ.

Subsubcase 2.3.3. (11) holds for x(β). So x(β) has a left neighbor ε and a right
neighbor ρ. Then y as above is the immediate predecessor of x, and it has left character
σ. Since M(x↾γ)γ is µ(σ, σ), it is clear that the right character of x is σ.

Case 3. x(γ) is the endpoint l of M(x↾γ)γ . We now consider three subcases.
Subcase 3.1. γ = 0. This would imply that x = b, contradiction.
Subcase 3.2. γ is a limit ordinal. Then cf(γ) < σ. So by construction, M(x↾γ)γ is

µ(ξcf(γ), ηcf(γ)). Clearly the left character of x is ηcf(γ). Now for each δ < γ let yδ = (x ↾
δ)⌢〈l, p, p, . . .〉. Thus x < yδ and 〈yδ : δ < γ is strictly decreasing. Suppose that x < z.
Then there is a δ < γ such that x ↾ δ = z ↾ δ and x(δ) < z(δ). Then yδ+1 < z. This shows
that the right character of x is cf(γ). So the character of x is (ηcf(γ), cf(γ)).

Subcase 3.3. γ = β + 1 for some β. Then

x = (x ↾ β)⌢〈x(β), l, p, p, . . .〉.

Clearly then one of (9)–(11) holds for x(β).
Subsubcase 3.3.1. (9) holds for x(β). So x(β) has a right neighbor, but no left

neighbor. M(x↾γ)γ is µ(ξα, σ) for some α, so the left character of x is σ. Let ε be the right
neighbor of x(β), and set y = (x ↾ β)⌢〈ε, f, p, p, . . .〉. Then y is the right neighbor of x. y
has a left neighbor, so one of (10),(11) holds, and hence the right character of y is σ.

Subsubcase 3.3.2. (10) holds for x(β). So x(β) has a left neighbor ε, but no
right neighbor. Let the right character of x(β) be α, and let 〈δξ : ξ < α〉 be strictly
decreasing with limit x(β). For each ξ < α let

yξ = (x ↾ β)⌢〈δξ, l, p, p, . . .〉.

It is clear that 〈yξ : ξ < α〉 is strictly decreasing with limit x. So the right character of x
is α. Now xx↾γ,γ is µ(σ, ηα), so the left character of x is ηα. Thus x has character (ηα, α).

Subsubcase 3.3.3. (11) holds for x(β). So x(β) has a right neighbor ρ. Moreover,
Mx↾γ,γ is µ(σ, σ), so the left character of x is σ. Now let

y = (x ↾ β)⌢〈ρ, f, p, p, . . .〉.

Then y is the right neighbor of x. Since ρ has a left neighbor, (10) or (11) holds for
(x ↾ β)〈ρ〉. Hence M(x↾β)⌢〈ρ〉,γ is µ(σ, ηα) for some α, or it is µ(σ, σ). Hence the right
character of y is σ.

Summarizing our investigation of characters of elements of Tσ, we have:

(18) If a < x < b, then one of the following holds:
(a) x has no neighbors, and its character is in R.
(b) x has an immediate predecessor y, and the characters of x, y are (1, σ) and

(σ, 1) respectively.
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(c) x has an immediate successor y, and the characters of x, y are (σ, 1) and (1, σ)
respectively.

Now we show that if x < y in Lσ and y is not the immediate successor of x, then for
every (ξ, η) ∈ R there is a z ∈ (x, y) with character (ξ, η). Let α be minimum such that
x(α) 6= y(α). Then x(α) 6= p, as otherwise Mx↾α,α = {p} and so also y(α) = p. Now we
consider two cases.

Case I. y(α) is not the immediate successor of x(α). Choose z with x(α) < z < y(α).
Say M(x↾α)⌢〈z〉 = µ(τ, ρ). In the Φ portion of µ(τ, ρ) take the middle element ((ξ, η), m)
of ϕ(ξ, η). Let

w = (x ↾ α)⌢〈z〉⌢〈((ξ, η), m)〉, p, p, . . .〉.

Then x < w < y and w has character (ξ, η).
Case II. y(α) is the immediate successor of x(α). Then

x ≤ (x ↾ α)⌢〈x(α)〉⌢〈l, p, p, . . .〉

< (x ↾ α)⌢〈y(α)〉⌢〈f, p, p, . . .〉

≤ y.

Since y is not the immediate successor of x, one of the ≤s here is really <.
Case IIa. x < (x ↾ α)⌢〈x(α)〉⌢〈l, p, p, . . .〉. Then α + 1 is the first argument

where these two sequences differ. Let M(x↾(α+1)),α+1 = µ(τ, ρ). Then x(α + 1) is not
the immediate predecessor of l, and so the argument in Case I gives an element w with
character (ξ, η) such that

x < w < (x ↾ α)⌢〈x(α)〉⌢〈l, p, p, . . .〉 ≤ y.

Case IIb. (x ↾ α)⌢〈y(α)〉⌢〈f, p, p, . . .〉y. This is similar to Case IIa.

Now let L be obtained from Tσ by deleting the second element of any pair (x, y) of elements
of Tσ such that y is the immediate successor of x. Clearly L is as desired in the theorem.

Theorem 21.26. Suppose that R is a complete character system and κ and λ are regular
cardinals with κ ≤ χright(R) and λ ≤ χleft(R), and χright(R) and χleft(R) are successor
cardinals. Also suppose that R = R0 ∪R1 with R0 6= ∅. Then there is an irreducible dense
linear order M such that Pchar(M) = R0, Gchar(M) = R1, ci(M) = λ, and cf(M) = κ.

Proof. Let L be given by Theorem 21.25. For each (α, β) ∈ R let Mαβ = {x ∈ L :
the character of x is (α, β)}. Note that Mαβ is dense in L. For each (α, β) ∈ R0∩R1 write
Mαβ = Pαβ ∪Qαβ with Pαβ ∩Qαβ = ∅ and both dense in Mαβ. Now we define

N =
⋃

(α,β)∈R0∩R1

Pαβ ∪
⋃

(α,β)∈R0\R1

Mαβ.

We claim that N is as desired. Take any x < y in N . If z ∈ (x, y) ∩N , then z ∈Mαβ for
some (α, β) ∈ R0, and so z has character (α, β). If (α, β) ∈ R0∩R1, take any z ∈ Pαβ such
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that x < z < y. Then z ∈ N and it has character (α, β). Similarly, there is an element
of (x, y) ∩ N whose character is a given member of R0\R1. Thus Pchar(N) = R0. The
elements of L that are omitted in N are all the members of

⋃

(α,β)∈R0∩R1

Qαβ ∪
⋃

(α,β)∈R1\R0

Mαβ .

It follows that Gchar(N) = R1.

We now give some further results on ccc.
A topological space is ccc iff every family of pairwise disjoint open sets is countable.

Lemma 21.27. (III.2.2) Every separable space is ccc.

Proof. Suppose that A is an uncountable family of pairwise disjoint open sets, while
D is a countable dense set. For each U ∈ A choose dU ∈ D ∩ U . Then 〈dU : U ∈ A 〉 is
injective, contradiction.

Proposition 21.28. (III.2.3) Every ccc metric space is separable.

Proof. For x in the space and ε > 0 let B(x, ε) = {y : ρ(x, y) < ε}. For each positive
integer n, let Yn be a maximal pairwise disjoint set of elements of the form B(x, 1

n ). Let
D have at least one element in common with each member of

⋃

n≥1 Yn, with D countable.

We claim that D is dense. For, let B(x, 1
n ) be given. Then there is a B(y, 1

3n ) ∈ Y3n such
that B(x, 1

3n )∩B(y, 1
3n ) 6= ∅. Choose w ∈ B(x, 1

3n )∩B(y, 1
3n ) and z ∈ D∩B(y, 1

3n ). Then

d(x, z) ≤ d(x, w) + d(w, y) + d(y, z) <
1

3n
+

1

3n
+

1

3n
=

1

n
,

and so z ∈ B(x, 1
n ), as desired.

To proceed we need an important theorem from infinite combinatorics. A collection A of
sets forms a ∆-system iff there is a set r (called the root or kernel of the ∆-system) such
that A ∩B = r for any two distinct A,B ∈ A . This is illustrated as follows:
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· · ·

The existence theorem for ∆-systems that is most often used is as follows.

Theorem 21.29. (III.2.6) ∆-system theorem) If κ is an uncountable regular cardinal and
A is a collection of finite sets with |A | ≥ κ, then there is a B ∈ [A ]κ such that B is a
∆-system.

Proof. First we prove the following special case of the theorem.

(∗) If A is a collection of finite sets each of size m ∈ ω, with |A | = κ, then there is a
B ∈ [A ]κ such that B is a ∆-system.

We prove this by induction on m. The hypothesis implies that m > 0. If m = 1, then
each member of A is a singleton, and so A is a collection of pairwise disjoint sets; hence
it is a ∆-system with root ∅. Now assume that (∗) holds for m, and suppose that A is a
collection of finite sets each of size m + 1, with |A | = κ, and with m > 0. We consider
two cases.

Case 1. There is an element x such that C
def
= {A ∈ A : x ∈ A} has size κ. Let

D = {A\{x} : A ∈ C }. Then D is a collection of finite sets each of size m, and |D | = κ.
Hence by the inductive assumption there is an E ∈ [D ]κ which is a ∆-system, say with
kernel r. Then {A ∪ {x} : A ∈ E} ∈ [A ]κ and it is a ∆-system with kernel r ∪ {x}.

Case 2. Case 1 does not hold. Let 〈Aα : α < κ〉 be a one-one enumeration of A .
Then from the assumption that Case 1 does not hold we get:

(∗∗) For every x, the set {α < κ : x ∈ Aα} has size less than κ.

We now define a sequence 〈α(β) : β < κ〉 of ordinals less than κ by recursion. Suppose

that α(β) has been defined for all β < γ, where γ < κ. Then Γ
def
=
⋃

β<γ Aα(β) has size
less than κ, and so by (∗∗), so does the set

⋃

x∈Γ

{δ < κ : x ∈ Aδ}.
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Thus we can choose α(γ) < κ such that for all x ∈ Γ we have x /∈ Aα(γ). This implies
that Aα(γ) ∩ Aα(β) = ∅ for all β < γ. Thus we have produced a pairwise disjoint system
〈Aα(β) : β < κ〉, as desired. (The root is ∅ again.)

This finishes the inductive proof of (∗)
Now the theorem itself is proved as follows. Let A ′ be a subset of A of size κ. Then

A
′ =

⋃

m∈ω

{A ∈ A
′ : |A| = m}.

Hence there is an m ∈ ω such that {A ∈ A ′ : |A| = m} has size κ. So (∗) applies to give
the desired conclusion.

Proposition 21.30. (III.2.7) If κ is singular, then there is a family A of κ two-element
subsets of κ such that no B ∈ [A ]κ forms a ∆-system.

Proof. Suppose that κ is uncountable and singular. Let 〈λξ : ξ < cf(κ)〉 be a strictly
increasing continuous sequence of cardinals with supremum κ. Let A = {{λξ, α} : ξ <
cf(κ), λξ < α < λξ+1}. Clearly |A | = κ. Suppose that B ∈ [A ]κ is a ∆-system, say with
kernel G. If G = ∅, then for each ξ < cf(κ), B has at most one member in [λξ, λξ+1), and
so |B| ≤ cf(κ) < κ, contradiction. Let α ∈ G. Say λξ ≤ α < λξ+1. Now B has some
member F not in [λξ, λξ+1), as otherwise |B| ≤ λξ+1. Then G 6⊆ F , contradiction.

Theorem 21.31. (III.2.8) If
∏

i∈I Xi is not ccc, then there is a finite F ⊆ I such that
∏

i∈F Xi is not ccc.

Proof. Suppose that 〈V α : α < ω1〉 is a system of pairwise disjoint open sets in
∏

i∈I Xi. We may assume that each V α is basic open; say V α =
∏

i∈I U
α
i where there is

a finite Fα ⊆ I such that ∀i ∈ I\Fα[Uαi = Xi]. By the ∆-system lemma, let Γ ∈ [ω1]ω1

and G be such that Fα ∩ F β = G for all distinct α, β ∈ Γ. For distinct α, β ∈ Γ we have

V α ∩ V β = ∅, and hence
(∏

i∈G U
α
i

)
∩
(
∏

i∈G U
β
i

)

= ∅.

Theorem 21.32. A finite product of separable spaces is separable.

Proof. Let
∏

i∈F Xi be given with F finite and each Xi separable. Say Di ⊆ Xi, Di
dense, Di countable. Suppose that U ⊆

∏

i∈F Xi is open. Wlog U has the form
∏

i∈F Vi,

each Vi open in Xi. For each i ∈ F choose xi ∈ Di∩Vi. Then x ∈
(∏

i∈F Di
)
∩
(∏

i∈F Vi
)
.

Corollary 21.33. (III.2.10) A product of separable spaces is ccc.

Proof. By Lemma 21.27 and Theorems 21.31, 21.32.

Lemma 21.34. (III.2.11) Let Xi be Hausdorff with at least two points, for each i ∈ I,
with |I| > c. Then

∏

i∈I Xi is not separable.

Proof. Suppose that xn ∈
∏

i∈I Xi for all n ∈ ω; we show that {xn : n ∈ ω} is not
dense. For each i ∈ I choose disjoint open Ui, Vi ⊆ Xi. For each n ∈ ω and i ∈ I define

gn(i) =
{

1 if xn(i) ∈ Vi,
0 otherwise.
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For each i ∈ I we have 〈gn(i) : n ∈ ω〉 ∈ ω2, while |I| > c, so there are distinct j, k ∈ I such
that 〈gn(j) : n ∈ ω〉 = 〈gn(k) : n ∈ ω〉. Let W = {y ∈

∏

i∈I Xi : y(j) ∈ Uj and y(k) ∈ Vk}.
Then W is open. If xn ∈ W , then gn(k) = 1 and gn(j) = 0, contradiction.

Theorem 21.35. (III.2.12) F ⊆ ωω is an independent family iff for all m ∈ ω, all
j1, . . . , jm ∈ ω, and all distinct f1, . . . , fm ∈ F ,

|{c ∈ ω : f1(c) = j1 ∧ . . . ∧ fm(c) = jm}| = ω.

There is an independent family F of size 2ω.

Proof. Let E = {(s, p) : s ∈ [ω]<ω, p : P(s) → ω}. For each A ⊆ ω define
fA(s, p) = p(A ∩ s). Suppose that j1, . . . , jm ∈ ω are given, and A1, . . . , Am ⊆ ω are
distinct. For distinct i, k ∈ {1, . . . , m} choose aik ∈ Ai△Ak. Suppose that s ∈ [ω]<ω

and {aik : i, k ∈ {1, . . . , m}, i 6= k} ⊆ s. Note that Ai ∩ s 6= Ak ∩ s for i 6= k. Define
p : P(s)→ ω by setting

p(X) =
{
ji if X = Ai ∩ s,
0 otherwise

If i ∈ 1, . . . , m, then fAi(s, p) = p(Ai ∩ s) = ji.
Let F be a bijection from ω onto E. For each A ⊆ ω let gA = fA ◦ F . We claim

that {gA : A ⊆ ω} is independent. For, let j1, . . . , jm ∈ ω and let A1, . . . , Am ⊆ ω be
distinct. Let 〈(sk, pk) : k ∈ ω〉 be distinct members of E such that fAi((sk, pk)) = ji for
each i = 1, . . . , m. Then for each k ∈ ω and i = 1, . . . , m we have

gAi(F
−1(sk, pk)) = fAi(sk, pk) = ji,

as desired.

Theorem 21.36. (III.2.13) If Xi is a separable space for each i ∈ I, and |I| ≤ 2ω, then
∏

i∈I Xi is separable.

Proof. Let 〈fi : i ∈ I〉 be an independent family of functions, each fi ∈ ωω. For each
i ∈ I let {dij : j ∈ ω} be dense in Xi. For any e ∈ ω and i ∈ I let xe(i) = difi(e). We claim

that {xe : e ∈ ω} is dense in
∏

i∈I Xi. Let U be basic open in
∏

i∈I Xi. Say F ∈ [I]<ω

and ∅ 6= U =
∏

i∈I Vi with Vi = Xi for all i ∈ I\F and Vi open in Xi for all i ∈ F . Say
diji ∈ Vi for all i ∈ F . Choose e ∈ ω such that fi(e) = ji for all i ∈ F . Then for any i ∈ F

we have xe(i) = difi(e) = diji ∈ Vi. So xe ∈ U .

Theorem 21.37. (III.2.17) If X is a dense linear order without endpoints which is sepa-
rable and connected in the order topology, then X is isomorphic to R.

Proof. By Theorem 21.16 it suffices to show that every nonempty subset Y of X
bounded above has a least upper bound. Suppose not. Let Z = {z ∈ X : z < x for some
x ∈ Y }, and let W = {x ∈ X : z < x for all z ∈ Y }. Then Z and W are disjoint clopen
sets with union X , contradicting connectedness.

Lemma 21.38. (III.2.18) If X is a Suslin line, then X ×X is not ccc.
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Proof. We will choose aα, bα, cα ∈ X for α < ω1 so that

(1) aα < bα < cα.
(2) (aα, bα) 6= ∅ 6= (bα, cα).
(3) ∀ξ < α[bξ /∈ (aα, cα).

After doing this, the open sets (aα, bα)× (bα, cα) ⊆ X ×X are nonempty by (2); they are
pairwise disjoint since if ξ < α then by (3) either bξ ≤ aα and so (aξ, bξ)∩ (aα, bα) = ∅, or
cα ≤ bξ and so (bα, cα) ∩ (bξ, cξ) = ∅.

To do the construction, first let I be the set of all isolated points. Then I is countable.
We construct aα, bα, cα ∈ X by recursion. Suppose that they have been constructed for
all ξ < α, where α < ω1. Choose aα < cα so that (aα, cα) 6= ∅ and (aα, cα)∩ (I ∪ {bξ : ξ <
α}) = ∅. This is possible because the countable set I∪{bξ : ξ < α} is not dense in X . Then
(aα, cα)∩ I = ∅, so (aα, cα) is infinite. Choose bα ∈ (aα, cα). Then (aα, bα) 6= ∅ 6= (bα, cα).

Proposition 21.39. (III.2.19) If X is a Suslin line, then the completion of X is a compact
Suslin line.

Proof. Let Y be the completion of X ; see the definition following Proposition 21.12.
First we show that Y has ccc. Clearly it suffices to show that if (a, b) is a nonempty interval
in Y , then there exist c, d ∈ X with a ≤ c < d ≤ b and (c, d) 6= ∅ in X .

Case 1. b /∈ X . Then by (C3) there are c, e, d ∈ X such that a < c < e < d < b, as
desired.

Case 2. b ∈ X but a /∈ X . Say a < e < b. By the argument in Case 1 we may assume
that e ∈ X . If there are no members of X in (a, e), then e is the least upper bound of
{x ∈ X : x < a} in X , so by (C4) it is the least upper bound of this set in Y , contradiction.
Thus there is a d ∈ X such that a < d < e, as desired.

Thus ccc holds in Y .
Next we claim:

(∗) If y ∈ Y \X then there is a strictly increasing sequence 〈xyn : n ∈ ω〉 of elements of X
such that supn∈ω x

y
n = y.

This is clear by (C3) and ccc.
Now suppose that D ⊆ Y is countable and dense. Let

D′ = (D ∩X) ∪
⋃

y∈D\X

{xyn : n ∈ ω}.

Thus D′ is countable. We claim that it is dense in X . (Contradiction) For suppose that
a, b ∈ X , a < b, (a, b) ∩X 6= ∅. Choose d ∈ D such that a < d < b. If d ∈ X , then d ∈ D′.
If d /∈ X , choose n so that a < xdn < d. so a < xdn < b and xdn ∈ D

′, as desired.
Thus Y is not separable.
To show that Y is compact, let U be an open cover of Y by open intervals. Then

there is an open interval in U with −∞ as a member; this interval must have the form
[−∞, a). Let

y0 = sup{y ∈ Y : [−∞, y] ⊆
⋃

F for some F ∈ [U ]<ω}.
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Now there is a member of U with y0 as a member. This is only possible if y0 = ∞ and
[−∞,∞] ⊆

⋃
F for some F ∈ [U ]<ω.

Proposition 21.40. (III.2.20) A space X has ccc iff there is no family 〈Uα : α < ω1〉
such that ∀α, β[α < β < ω1 → [Uα ⊆ Uβ and Uβ\Uα 6= ∅]].

Proof. ⇒: Suppose that there is a family of the sort indicated. We claim that
(Uα+1\Uα) ∩ (Uβ+1\Uβ) = ∅ for α < β. For,

(Uα+1\Uα) ∩ (Uβ+1\Uβ) = Uα+1\Uβ ⊆ Uα+1\Uβ = ∅

⇐: Suppose that 〈Uα : α < ω1〉 are pairwise disjoint nonempty open sets. Let Vα =
⋃

β≤α Uβ for each α < ω1. Thus Vα ⊆ Vβ for α < β. For α < β we have Vβ\Vα 6= ∅. For,

assume otherwise. Thus Vβ ⊆ Vα. Hence Uβ ⊆ Vα, so

∅ 6= Uβ ∩ Vα = Uβ ∩
⋃

γ≤α

Uγ = ∅,

contradiction.

Proposition 21.41. (III.2.20) There is a family 〈Uα : α < ω1 of open sets in ω12 such
that ∀α, β[α < β → Uα ⊂ Uβ ].

Proof. For each α < ω1 let Uα = {f ∈ ω12 : f(ξ) = 1 for some ξ < α}. Then
Uα ⊆ Uβ when α < β. Also, for α < β let f equal 0 below α and 1 for α and above. Then
f ∈ Uβ\Uα.

Proposition 21.42. (III.2.22) We say that κ is a caliber for a space X iff for ev-
ery system 〈Uα : α < κ〉 of nonempty open subsets of X there is a B ∈ [κ]κ such that
⋂

α∈B Uα 6= ∅.
Suppose that 〈Xi : i ∈ I〉 is a system of separable spaces. Then ω1 is a caliber for

∏

i∈I Xi.

Proof. Let Y =
∏

i∈I Xi. Let 〈Uα : α < ω1〉 be a system of nonempty open sets in
Y . We may assume that each Uα is basic open; say Uα =

∏

i∈I Y
α
i with Y αi = Xi for all

i /∈ Fα, Fα ⊆ I finite, and Y αi nonempty open for all α and i. Let 〈Fα : α ∈ M〉 be a
∆-system with kernel G, |M | = ω1. Now

∏

i∈GXi is separable by Theorem 21.36, so let
D ⊆

∏

i∈GXi be countable and dense. For each α ∈M choose dα ∈ D ∩
∏

i∈G Y
α
i . Then

choose e ∈ D such that N
def
= {α ∈ M : dα = e} has size ω1. Fix y ∈

∏

i∈I Xi. For each
α ∈ N and i ∈ I let x(α, i) ∈ Y αi . We now define f ∈

∏

i∈I Xi. Let f ↾ G = e. and define
for i ∈ I\G

fi =

{
x(α, i) if i ∈ Fα\G,
yi if i /∈

⋃

α∈N Fα.

Since (Fα\G) ∩ (Fβ\G) = ∅ for α 6= β, this definition is unambiguous. We claim that
f ∈

⋂

α∈N Uα. For, let α ∈ N . If i ∈ G, then fi = ei = dαi ∈ Y αi . If i ∈ Fα\G, then
fi = x(α, i) ∈ Y αi . If i /∈ Fα, then yi ∈ Xi = Y αi . This proves the claim.
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Proposition 21.43. (III.2.23) Let X be the set of all x ∈ ω12 such that x(α) = 0 for all
but finitely many α. Then X is ccc, but ω1 is not a caliber for X.

Proof. Suppose that 〈Uα ∩ X : α < ω1〉 is a system of nonempty pairwise disjoint
open sets, each Uα open in ω12. Wlog for each α < ω1 U

α = {f ∈ ω12 : kα ⊆ f}, where
kα is a finite function ⊆ ω1 × 2. Let M ∈ [ω1]ω1 and G be such that 〈dmn(kα) : α ∈ M〉
is a ∆-system with kernel G. Then M =

⋃

g∈G2{α ∈ M : kα ↾ G = f}. So there exist an

N ∈ [M ]ω1 and g ∈ G2 such that ∀α ∈ N [kα ↾ G = g]. Take any two distinct α, β ∈ N .
For any i < ω1 let

f(i) =







g(i) if i ∈ G,
kα(i) if i ∈ dmn(kα)\G,
kβ(i) if i ∈ dmn(kβ)\G,
0 otherwise.

Then f ∈ Uα ∩ Uβ ∩X , contradiction.
For the caliber, for each α < ω1 let Uα = {f ∈ ω12 : f(α) = 1}. Then Uα ∩ X is

nonempty and open, but there is no M ∈ [ω1]ω1 such that
⋂

α∈M (Uα ∩X) 6= ∅.

Proposition 21.44. Theorem 21.2 does not extend to ω1. In fact, consider ω1 × Q and
ω∗

1 ×Q, both with the lexicographic order, where ω∗
1 is ω1 under the reverse order (α <∗ β

iff β < α). These two orders are dense with no endpoints, both of size ω1, but are not
isomorphic.

Clearly each of these linear orders is dense with no first or last element. In fact, concerning
the first linear order, suppose that (ξ, r) < (η, s). If ξ < η, then (ξ, r) < (ξ, r+ 1) < (η, s).
If ξ = η, then r < s, and so

(ξ, r) <

(

ξ,
r + s

2

)

< (ξ, s).

Thus ω1 ×Q is dense. It does not have a first or last element, since if (ξ, r) is given, then
(0, r − 1) < (ξ, r) < (ξ, r+ 1). The other order is treated similarly.

We claim that these two linear orders are not isomorphic. Suppose to the contrary
that f is an isomorphism of ω1 ×Q onto ω∗

1 ×Q. For all ξ < ω1 let f(ξ, 0) = (α(ξ), q(ξ)).
Now if ξ < η < ω1, then α(ξ) ≥ α(η). Hence

(1) There is a ρ < ω1 such that for all ξ ∈ [ρ, ω1) we have α(ξ) = α(ρ).

In fact, suppose not. Thus for every ρ < ω1 there is a ξ ∈ (ρ, ω1) such that α(ξ) < α(ρ).
Define 〈ρn : n ∈ ω〉 by recursion as follows. Let ρ0 = 0. If ρn has been defined, choose
ρn+1 > ρn such that α(ρn+1) < α(ρn). Then 〈α(ρn) : n ∈ ω〉 is a strictly decreasing
sequence of ordinals, contradiction.

Thus (1) holds. Now 〈q(ξ) : ρ ≤ ξ < ω1〉 is a strictly increasing sequence of rationals,
contradicting the fact that |Q| = ω.

Proposition 21.45. For any infinite cardinal κ, the set κ2 under the lexicographic order
is complete.
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Proof. Let A ⊆ κ2; we want to find a lub for A. We define f ∈ κ2 by recursion, as
follows: for any α < κ,

f(α) =
{

1 if there is a g ∈ A such that g ↾ α = f ↾ α and g(α) = 1,
0 otherwise.

Suppose that g ∈ A and f < g. Then f ↾ χ(f, g) = g ↾ χ(f, g), f(χ(f, g)) = 0, and
g(χ(f, g)) = 1. This contradicts the definition of f . (We are using χ(f, g) in the same way
as for Hα.) Thus g ≤ f for all g ∈ A.

Suppose that h is an upper bound for A and h < f . Thus h ↾ χ(h, f) = f ↾ χ(h, f),
h(χ(h, f)) = 0, and f(χ(h, f)) = 1. By the definition of f , there is a g ∈ A such that
χ(g, f) = χ(h, f) and g(χ(g, f) = 1. But then χ(g, h) = χ(h, f) too, and it follows that
h < g. This contradicts h being an upper bound for A.

Thus f is the desired lub of A.

Proposition 21.46. Suppose that κ and λ are cardinals, with ω ≤ λ ≤ κ. Let µ be
minimum such that κ < λµ. Take the lexicographic order on µλ, as for Hα. Then this
gives a dense linear order of size λµ with a dense subset of size κ.

Proof. Note that obviously µ ≤ κ. Clearly µλ is a linear order. Let

D = {f ∈ µλ : there is a ξ < µ such that f(ξ) = 1 and f(η) = 0 for all η ∈ (ξ, µ)}.

Clearly |D| ≤ κ. We can show that µλ is dense, and D is dense in it, by finding an element
of D between any two elements f < g of µλ. For brevity let α = χ(f, g). Now define h by:

h(β) =







f(β) if β ≤ α;
f(α+ 1) + 1 if β = α+ 1;
1 if β = α+ 2;
0 if β ∈ (α+ 2, µ).

Clearly h is as desired.
If |D| < κ, we can simply add κ elements to it to satisfy the requirement that |D| = κ.

Proposition 21.47. P(ω) under ⊆ contains a chain of size 2ω.

Proof. Let f : ω → Q be a bijection. For each real number r, let ar = f−1[{s ∈
Q : s < r}]. Clearly r < t implies that ar ⊆ at; and in fact ar ⊂ at since there is a
rational number u such that r < u < t, and so f−1(u) ∈ at\ar. Now a is an isomorphic
embedding.

A subset S of a linear order L is weakly dense iff for all a, b ∈ L, if a < b then there is an
s ∈ S such that a ≤ s ≤ b.

Proposition 21.48. For any linear order L the following are equivalent:
(i) L has a countable subset weakly dense in it.
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(ii) L can be isomorphically embedded in R.

Proof. (i)⇒(ii): Assume that D ⊆ L is countable and weakly dense in L. Let
P = {(L, a, b, q) : a, b ∈ L, a < b, and there is no c such that a < c < b, and q ∈ Q}. Note
that L ∩ P = ∅. We order L ∪ P as follows: for c, d ∈ L ∪ P , c < d iff one of the following
holds

(1) c, d ∈ L and c <L d.
(2) c ∈ L, d = (L, a, b, q) ∈ P , and c ≤ a.
(3) c = (L, a, b, q) ∈ P , d ∈ L, and b ≤ c.
(4) c = (L, a, b, q) ∈ P , d = (L, a′, b′, q′) ∈ P , and b ≤ a′.
(5) c = (L, a, b, q) ∈ P , d = (L, a, b, r) ∈ P , and q <Q r.

Clearly L∪ P is dense, D ∪ P is countable, and D ∪ P is dense in L ∪ P . We may assume
that D contains the endpoints of L, if any. Moreover, L ⊆ L ∪ P as ordered sets. Hence
it suffices to find an embedding of L ∪ P into R.

By Proposition 21.4 let g be a strictly increasing map from D ∪ P into the set of
rationals in (0, 1). Now we define f : L ∪ P → R: for any a ∈ L ∪ P ,

f(a) =

{
g(a) if a ∈ D ∪ P ,
sup{g(b) : b ∈ D ∪ P, b < a} otherwise.

We check that f is order-preserving: suppose that a, c ∈ L ∪ P and a < c.
Case 1. a, c ∈ D ∪ P . Then f(a) = g(a) < g(c) = f(c).
Case 2. a ∈ D∪P , c /∈ D∪P . Then f(a) = g(a) < sup{g(b) : b ∈ D∪P, b < c} = f(c).
Case 3. a /∈ D∪P , c ∈ D∪P . Then f(a) = sup{g(b) : b ∈ D∪P, b < a} < g(c) = f(c).
Case 4. a /∈ D ∪ P , c /∈ D ∪ P . Choose d ∈ D ∪ P with a < d < c. Then

f(a) = sup{g(b) : b ∈ D ∪ P, b < a} < g(d) < sup{g(b) : b ∈ D ∪ P, b < c} = f(c).
(ii)⇒(i): Assume that f is an order-isomorphism from L into R. For rationals r < s

such that (r, s)∩ rng(f) 6= ∅, choose xrs ∈ (r, s)∩ rng(f) and choose drs such that f(drs =
xrs. Let M = {(a, b) : a, b ∈ L, a < b, and there is no c ∈ L such that a < c < b}. Then
M is countable, since {(f(a), f(b)) : (a, b) ∈ M} is a collection of pairiwise disjoint open
intervals in R. Let

D = {drs : r, s ∈ Q and (r, s) ∩ rng(f) 6= ∅} ∪ {a : (a, b) ∈M}.

Then D is countable. Suppose that a, b ∈ L and a < b. If there is a c such that a < c < b,
then there exist rationals r, s such that r < s and (r, s) ⊆ (f(a), f(b)). f(c) ∈ (r, s), and
so drs ∈ (a, b). If there is no such c, then a ∈ D by definition.

Proposition 21.49. The following conditions are equivalent for any cardinals κ, λ such
that ω ≤ κ ≤ λ:

(i) There is a linear order of size λ with a weakly dense subset of size κ.
(ii) P(κ) has a chain of size λ.

⇒: Clearly we may assume that κ < λ. Assume that L is a linear order with a weakly
dense subset D of size κ. Let f be a bijection from D to κ. For each r ∈ L\D let
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ar = f [{d ∈ D : d < r}]. thus ar ∈ P(κ), and ar ⊆ as if r, s ∈ L\D with r < s. Also,
by the weak denseness of D, there is a d ∈ D such that r ≤ d ≤ s. Since r, s ∈ L\D, we
have r < d < s, and so d ∈ as\ar. Thus r < s implies that ar ⊂ as. The other implication
follows from this one. Note that |L\D| = λ.

⇐: Again we may assume that κ < λ. Let L be a chain in P(κ) of size λ. For each
α < κ let

xα =
⋃

{a : a ∈ L, α /∈ a}.

(1) If α, β < κ, then xα ⊆ xβ or xβ ⊆ xα.

For, suppose that γ ∈ xα\xβ and δ ∈ xβ\xα. Say γ ∈ a ∈ L with α /∈ a and δ ∈ b ∈ L
with β /∈ b. Say by symmetry a ⊆ b. Since β /∈ b, it follows that β /∈ a. Since γ ∈ a, we
have γ ∈ xβ, contradiction.

(2) If α ∈ κ and a ∈ L, then a ⊆ xα or xα ⊆ a.

For, suppose that α ∈ κ and a ∈ L. If α /∈ a, then a ⊆ xα. Suppose that α ∈ a. If
α /∈ b ∈ L, we then must have b ⊂ a, since a and b are comparable. Thus xα ⊆ a in this
case. So (2) holds.

By (1) and (2), the set M
def
= L∪{xα : α ∈ κ} is a chain. Its size is clearly λ. We claim

that {xα : α < κ} is weakly dense in it, which will finish the proof (expanding {xα : α < κ}
to a set of size κ if necessary). For, suppose that a, b ∈ L and a ⊂ b. Choose α ∈ b\a.
Then clearly a ⊆ xα. Also, xα ⊆ b by the proof of (2).

Proposition 21.50. Suppose that Li is a linear order with at least two elements, for each
i ∈ ω. Let

∏

i∈ω Li have the lexicographic order. Then it is not a well-order.

Proof. For each i ∈ ω let ai < bi be elements of Li. For each j ∈ ω define f j by
setting, for each i ∈ ω,

f j(i) =

{
ai if i ≤ j or j + 1 < i;
bi if i = j + 1.

Then f0 > f1 > · · ·.

Proposition 21.51. Let 〈Li : i ∈ I〉 be a system of linear orders, with I itself an ordered
set. Then if each Li is dense without first or last elements, then also

∑

i∈I Li is dense
without first or last elements.

Suppose that (i, a) < (j, b). If i < j, let c be an element of Li such that a < c. Then
(i, a) < (i, c) < (j, b). If i = j, let c be an element of Li such that a < c < b. Then
(i, a) < (i, c) < (i, b). Thus

∑

i∈I Li is dense. Given (i, a), choose c, d ∈ Li with c < a < d.
Then (i, c) < (i, a) < (i, d). Thus

∑

i∈I Li is does not have a first or last element.

Proposition 21.52. Let κ be any infinite cardinal number. Let L0 be a linear order
similar to ω∗ + ω + 1; specifically, let it consist of a copy of Z followed by one element a
greater than every integer, and let L1 be a linear order similar to ω∗ +ω+2; say it consists
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of a copy of Z followed by two elements a < b greater than every integer. For any f ∈ κ2
let

Mf =
∑

α<κ

Lf(α).

If f, g ∈ κ2 then Mf and Mg are not isomorphic.
Conclusion: there are exactly 2κ linear orders of size κ up to isomorphism.

Proof. Let f, g ∈ κ2. We assume that Mf is isomorphic to Mg and show that f = g.
Let F be an isomorphism of Mf onto Mg. Clearly

(1) For all x ∈Mf ∪Mg the following conditions are equivalent:
(a) x does not have an immediate predecessor.
(b) x = (ξ, a) for some ξ < κ.

Now for any x ∈ Mf , x has an immediate predecessor iff F (x) has an immediate prede-
cessor, as is easily seen. We claim then that F (ξ, a) = (ξ, a) for all ξ < κ. We prove this
by transfinite induction. Suppose that F (η, a) = (η, a) for all η < ξ. Now F (ξ, a) does
not have an immediate predecessor, so by (1) it has the form (ρ, a) for some ρ. We cannot
have ρ < ξ, since this would contradict F being one-one, by the supposition. If ξ < ρ, then
we would have F−1(ξ, a) < F−1(ρ, a) = (ξ, a); hence F−1(ξ, a) = (σ, a) for some σ < ξ;
but F (σ, a) = (σ, a) by the inductive hypothesis. contradiction. Thus F (ξ, a) = (ξ, a),
finishing the inductive proof.

Next we claim

(2) For any x ∈Mf the following conditions are equivalent:
(a) x does not have an immediate predecessor, but it has an immediate successor y

which in turn does not have an immediate successor.
(b) x = (ξ, a) for some ξ such that f(ξ) = 1.

This is obvious, and a similar condition for Mg holds.
Now the property given in (2)(a) is preserved under isomorphisms, so by the above,

for any ξ < κ,

f(ξ) = 1 iff (ξ, a) satisfies (2)(a)

iff F (ξ, a) satisfies (2)(a)

iff g(ξ) = 1.

Thus f = g, as desired.
The required conclusion in the proposition is clear.

Proposition 21.53. Let κ be an uncountable cardinal. Let L0 be a linear order similar to
η+ 1 + η ·ω∗

1 ; specifically consisting of a copy of the rational numbers in the interval (0, 1]
followed by Q×ω1, where Q×ω1 is ordered as follows: (r, α) < (s, β) iff α > β, or α = β
and r < s. Let L1 be a linear order similar to η · ω1 + 1 + η · ω∗

1 ; specifically, we take L1

to be the set

{(q, α, 0) : q ∈ Q, α < ω1} ∪ {(0, 0, 1)} ∪ {(q, α, 2) : q ∈ Q, α < ω1},
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with the following ordering:

(q, α, 0) < (r, β, 0) iff α < β, or α = β and q < r;

(q, α, 0) < (0, 0, 1) < (r, β, 2) for all relevant q, r, α, β;

(q, α, 2) < (r, β, 2) iff α > β, or α = β and q < r.

For each f ∈ κ2 let

Mf =
∑

α<κ

Lf(α).

Then each Mf is a dense linear order without first or last elements, and if f, g ∈ κ2 and
f 6= g, then Mf and Mg are not isomorphic.

Conclusion: for κ uncountable there are exactly 2κ dense linear orders without first
or last elements, of size κ, up to isomorphism.

Proof. For L0, if q is an element in the initial (0, 1] part, then q − 1 < q; so L0 has
no least element. If (q, α) is an element in the second part, then (q, α) < (q + 1, α); so
L0 has no greatest element. For denseness, suppose that x < y in L0. If both are in the
first part, clearly there is a z such that x < z < y. Suppose that x is in the first part and
y = (q, α) is in the second part. Then x < (q − 1, α) < y. Finally, suppose that x = (r, β)
and y = (s, γ) are both in the second part. If β > γ, then x < (r + 1, β) < y. If β = γ,
then r < s and the desired element is clear.

For L1, given any element (q, α, 0) in the first part, we have (q − 1, α, 0) < (q, α, 0),
so L1 does not have a least element. If (q, α, 2) is any element in the third part, then
(q, α, 2) < (q + 1, α, 2), so L2 does not have a greatest element. To prove denseness,
suppose that x < y in L1. We can consider several cases.

Case 1. x = (q, α, 0), y = (r, β, 0), and α < β. Then x < (q + 1, α, 0) < y.
Case 2. x = (q, α, 0), y = (r, α, 0). Then q < r; so with q < t < r we have

x < (t, α, 0) < y.
Case 3. x = (q, α, 0), y = (0, 0, 1). Then x < (q + 1, α, 0) < y.
Case 4. x = (q, α, 0), y = (r, β, 2). Then x < (0, 0, 1) < y.
Case 5. x = (0, 0, 1), y = (q, α, 2). Then x < (q − 1, α, 2) < y.
Case 6. x = (q, α, 2), y = (r, β, 2), and α > β. Then x < (q + 1, α, 2) < y.
Case 7. x = (q, α, 2), y = (r, α, 2). Thus q < r. Then with q < t < r we have

x < (t, α, 2) < y.

Thus L1 is dense.
Before beginning the main part of the proposition, we note the following facts.

(1) Each q in the first part of L0, except for the final 1, has character (ω, ω).

(2) The final 1 has character (ω, ω1). A strictly decreasing sequence with limit 1 is

〈(0, α) : α < ω1〉.

(3) Every element in the second part of L0 has character (ω, ω).

(4) Every element in the first part of L1 has character (ω, ω).
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(5) (0, 0, 1) has character (ω1, ω1).

In fact, a strictly increasing sequence with limit (0, 0, 1) is

〈(0, α, 0) : α < ω1〉.

A strictly decreasing sequence with limit (0, 0, 1) is

〈(0, α, 2) : α < ω1〉.

(6) Every element in the third part of L1 has character (ω, ω).

Now we suppose that f ∈ κ2. We give some properties of Mf :

(7) The character of an element (x, ξ) of Mf is equal to the character of x in Lf(ξ).

This is true because Lf(ξ) is a convex set in Mf , i.e., if u < v < w with u, w ∈ Lf(ξ), then
v ∈ Lf(ξ). Also, the fact that Lf(ξ)) does not have a least or greatest element is needed to
see (7).

(8) For each ξ < κ there is a unique element of Mf of the form (ξ, xξ) which has character
(ω, ω1) if f(ξ) = 0 and has character (ω1, ω1) if f(ξ) = 1; all other elements of the form
(ξ, y) have character (ω, ω).

Now we can treat the main part of the proposition. Suppose that f, g ∈ κ2 and Mf is
isomorphic to Mg; say F is an isomorphism. The sequence

〈F (xξ, ξ) : ξ < κ〉,

with xξ given in (8), is an increasing sequence of elements of Mg such that all other elements
of Mg have character (ω, ω). In Mg there is only one sequence of order type κ consisting
of elements which do not have character (ω, ω), by (8) for Mg. Hence F (xξ, ξ) = (yξ, ξ),
where yξ is defined for Mg like xξ was for Mf in (8). But xξ and yξ then have the same
characters, and so f(ξ) = g(ξ). Thus f = g.

The final statement of the proposition is clear.

λ is the order type of R. ζ is the order type of Z.

Theorem 21.54. If A is isomorphic to an initial segment of B and B is isomorphic to a
terminal segement of A, then A ∼= B.

Proof. Let f be an isomorphism of A onto an initial segment of B, say with B =
f [A] + E, and let g be an isomorphism of B onto a terminal segment of A, say with
A = F + g[B]. Then B = f [F ] + f [g[B]] + E. Let h = f ◦ g. Thus B = f [F ] + h[B] + E.
Hence

(1) hn[B] = hn[f [F ]] + hn+1[B] + hn[E].

(2) B = f [F ] + h[f [F ]] + h2[f [F ]] + · · ·+G for some G.
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Let α = o.t.(A), β = o.t.(B), σ = o.t.(F ), τ = o.t.(G). Then α = σ+ β and β = σ · ω+ τ ,
so α = β.

Theorem 21.55. There are exactly continuum many countable order types of linear or-
ders.

Proof. For each n ∈ ω and each X ⊆ ω let An(X) be the order type of η+2 if n ∈ X ,
and the order type of of η + 3 if n /∈ X . Then let L(X) =

∑

n∈ω An(X). We claim that
L is one-one. Suppose not. So there are distinct X, Y ⊆ ω such that L(X) = L(Y ). Let
n ∈ X△Y be minimum. Say n ∈ X\Y . Let f be an isomorphism of L(X) onto L(Y ).

(1) ∀m < n[f [
∑

p<mAp(X)] =
∑

p<mAp(Y )].

We prove this by induction. Suppose that m < n and f [Ap(X)] = Ap(Y ) for all p < m.
Then f [Am(X)] must equal A(Y ). Thus (1) holds. Then f [An] must equal the η + 2
portion of AY ; so the last element of η+3 is outside of the range of f , contradiction.

Theorem 21.56. Every countable linear order is isomorphic to a suborder of Q.

Proof. Let L be any countable linear order. We may assume that L is infinite. Say
L = {ai : i < ω}, We define (bi, ci) : i < ω} by recursion. Let b0 = a0 and let c0 be any
rational number. Now suppose that bi and ci have been defined for all i < j so that

(1) ∀i < j[bi ∈ L and ci ∈ Q].

(2) ∀i, k < j[bi < bk iff ci < ck].

(3) 〈bi : i < j〉 is one-one and 〈ci : i < j〉 is one-one.

Then we let bj = ak with k minimum such that ak /∈ {bl : l < j}. To define cj we consider
several cases. Suppose that bs(0) < · · · < bs(j−1) with each s(l) < j.

Case 1. bj < bs(0). Let cj < cs(0),
Case 2. bs(j−1) < bj . Let cj be such that cs(j−1) < cj .
Case 3, ∃k[0 < k < j − 1 and bs(k) < bj < cb(k+1). Let cj be such that cs(k) < cj <

cs(k+1).

In fact, suppose that i < ω and ∀j < ω[ai 6= bj ]. Let k be the least such i. For each
s < k choose ts such that as = bts . Let w be greater than each ts. Then bw = ak,
contradiction.

Lemma 21.57. If L and M are non-isomorphic countable subsets of R, then R\L and
R\M are dense and non-isomorphic.

Proof. To show that R\L is dense, suppose that a, b ∈ R\L and a < b. Since (a, b)
is uncountable, there is a c such that a < c < b. Thus R\L is dense. Similarly, R\M is
dense.

Now suppose that f : R\L→ R\M is an isomorphism. For each a ∈ L let ↓ a = {x ∈
R\L : x < a}.

(1) If a, b ∈ R and a < b, then (a, b) ∩ (R\L) is uncountable.
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(2) If a, b ∈ R and a < b, then ↓ a ⊂ ↓ b.

Now ↓ a is bounded by a. Hence f [↓ a] is bounded.

(3) The least upper bound of f [↓ a] is in M .

In fact, ↓ a does not have a lub in R\L, so f [R\L] does not have a lub in R\M . Hence (3)
holds.

Define g : L → M by g(a) = lub(f [↓ a]). Clear a < b implies that g(a) < g(b). If
b ∈M , choose a ∈ L such that f(a) = b. If x < a, then f(x) ∈ f [↓ a], and so f(x) ≤ g(a).
Thus g is an isomorphism of L onto M , contradicion.

Corollary 21.58. There are exactly continuum many isomorphism types of dense linear
orders of subsets of R.

Proposition 21.59. If L is a doubly transitive linear order, then L is dense.

Proof. Assume not. Then there are elements a, b ∈ L such that b is the immediate
successor of a. Since L is transitive, let f be an automorphism of L such that f(a) = b.
Then let c = f(b). Since ¬∃d[a < d < b], it follows that ¬∃d[f(a) < d < f(b)], i.e.,
¬∃d[b < d < c]. Suppose that g is an automorphism of L such that g(a) = a and g(b) = c.
Then ¬∃d[a < d < b] but a = g(a) < b < g(b), contradiction.

Theorem 21.60. The following are equivalent:
(i) L is doubly transitive;
(ii) ∀k ≥ 2[L is k-tuply transitive];
(iii) ∃k ≥ 2[L is k-tuply transitive].

Proof. (i)⇒(ii): Assume (i) and assume that a0 < a1 < · · ·ak−1 and b0 < b1 <
· · · bk−1 with k ≥ 2, By double transitivity let f0, . . . , fk−2 be such that f0(a0) = b0,
f0(a1) = b1, . . . . . ., fk−2(ak−2) = bk−2, fk−2(ak−1) = bk−1. Then define g : L→ L by

g(x) =







f0(x) if x < a1;
f1(x) if a1 ≤ x < a2;
·
·
·
fk−3(x) if ak−3 ≤ x < ak−2;
fk−2(x) if ak−2 ≤ x.

Clearly g is as desired.
(ii)⇒(iii): clear.
(iii)⇒(i): clear.

Proposition 21.61. If, (I,≤) is scattered and ∀i ∈ I[Li is scattered] then
∑

i∈I Li is
scattered.

Proof. Assume that (I,≤) is scattered and ∀i ∈ I[Li is scattered. Suppose that
D ⊆

∑

i∈I Li is dense. For each i ∈ I let Di = D ∩Ai. Since Di is an interval of D, Di is
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dense. But it is also an interval of Ai, so Di ≤ 1. Let I0 = {i ∈ I : Di = 1}. Then I0 is
isomorphic to D and is a subordering of I. Since I is scattered, |D| = 1. Hence

∑

i∈I Li
is scattered.

Corollary 21.62. If L and M are scattered, then so are L+M and L ·M .

Proposition 21.63. The following are equivalent:
(i) L is complete;
(ii) There do not exist nonempty X, Y ⊆ L such that L = X ∪ Y , X < Y , X has no

greatest element, Y has no least element and there is no a such that X < a < Y ;
(iii) Every non empty convex subset of L has one of the following forms:

(a) L;
(b) (a, b);
(c) (a, b];
(d) [a, b);
(e) [a, b];
(f) (−∞, b);
(g) (−∞, b];
(h) (a,∞);
(i) [a,∞).

Proof. (i)⇒(ii): Assume (i) but suppose that X, Y are as in (ii). Since X <
∑
X <

Y , this is a contradiction.
(ii)⇒(iii): Assume (ii). Let X be a nonempty convex subset of L.
Case 1. X has a smallest element a and a largest element b. Suppose that there are

∅ 6= Y, Z ⊆ X with X = Y ∪ Z and Y < Z. Let Y ′ = Y ∪ (−∞, a) and Z ′ = Z ∪ (b,∞).
By (ii), there is a c such that Y ′ < c < Z ′. Since X is convex, it follows that c ∈ X . Hence
X = [a, b]. Thus (e) holds.

Case 2. X has a smallest element a, does not have a largest element, and there is a
y with X < y. Similarly to Case 1, {y : X < y} has a smallest element b, and X = [a, b).
So (d) holds.

Case 3. X has a smallest element a, does not have a largest element, and there is no
y with X < y. Then X = [a,∞) and (i) holds

Case 4. X has no smallest element, has a largest element b, and there is an x < X .
By (ii), {x : x < X} has a largest element a. Then by an argument similar to that in Case
1, we have X = (a, b]. So (c) holds.

Case 5. X has no smallest element, has a largest element b, and there is no x < X .
Then by an argument similar to that in Case 1, we have X = (−∞, b]. So (g) holds.

Case 6. X has no smallest element and no largest element, and there exist x, y with
x < X < y. Then {x : x < X} has a largest element a and {y : X < y} has a smallest
element b. Then X = (a, b), and (b) holds.

Case 7. X has no smallest element and no largest element, there exists x < X , but
there is no y such that X < y. Then {x : x < X} has a largest element a, so X = (a,∞).

Case 8. X has no smallest element and no largest element, there is no x < X , but
there is a y such that X < y. Then {y : X < y} has a smallest b, and X = (−∞, b).
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Case 9. There is no x < X , and there is no y with X < y. Then X = L.
(iii)⇒(i): Assume (iii), and suppose that X ⊆ L, X nonempty, X bounded above by

b. Let X ′ = {x ∈ L : ∃y ∈ X [x ≤ y]}. Clearly X ′ is convex. Clearly in each of the cases
(a)-(i) a lub of X ′ exists and this is a lub of X .

If L is a linear order and L′ is a partition of L consisting of non-empty convex sets, define
≪ on L′ by

I1 ≪ I2 iff ∀x ∈ I1∀y ∈ I2[x < y].

Then (I ′,≪) is a condensation of I.
A homomorphism from a linear order L to a linear order M is a mapping f : L→M

such that ∀a, b ∈ L[a < b→ f(a) ≤ f(b)].
If L is a linear order, then we define ∀x ∈ L[cLF (x) = {y ∈ L : x < y and [x, y] is finite,

or y < x and [y, x] is finite}], Clearly each cL(x) is nonempty and convex.

Proposition 21.64. {cLF (x) : x ∈ L} is a partition of L.

We denote the partition {cLF (x) : x ∈ L} by LF .

Theorem 21.65. If L is a countably infinite linear ordering, then there is an order-
preserving map of L onto a proper subset of L.

Proof. Case 1. There is an x ∈ L such that cLF (x) has order type ω. We may assume
that x is the smallest element of cLF (x). We define

f(y) =

{

y if y /∈ cLF (x);
the immediate successor of x otherwise.

Clearly f is as desired.
Case 2. There is an x ∈ L such that cLF (x) has order type ω∗. This is similar to Case

1.
Case 3. There is an x ∈ L such that cLF (x) has order type ω∗ + ω. Write cLF (x) =

{xi : i ∈ ω∗ + ω} with · · ·x−2 < x−1 < x0 < x1 · · ·. Define

f(y) =







y if y /∈ cLF (x);
x−i if y = x−i;
xi+1 if y = xi.

Again it is clear that f works.
Case 4. ∀x ∈ L[cLF (x) is finite].

(1) (L′,≪) is dense.

For, suppose that LLF (x) ≪ LLF (y) and there is no z such that LLF (x) ≪ LLF (z) ≪ LLF (y).
Then x < y and [x, y] is finite, or y < x and [y, x] is finite. Hence LLF (x) = LLF (y),
contradiction.

Now clearly there is no x such that LLF (x) = L. Now let L′′ have exactly one element
in each LLF (x). Then L′′ has order type η. Take any y ∈ L′′. Then L′′\{y} has order type
η. There is an isomorphism of L onto L′′\{y}, as desired.
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We let cLW (x) = {y : x ≤ y and [x, y] is well-ordered, or y < x and [y, x] is well-ordered}.
Clearly each cLW (x) is convex, and {cLW (x) : x ∈ L} is a partition of L.

Proposition 21.66. If L∗ is not well-ordered but ∀x ∈ L∗[{y : x ≤ y} is well-ordered],
then there exist well-orderings L0, L1, . . . such that

L∗ = · · ·+ L3 + L2 + L1 + L0.

Proof. Assume the hypothesis. Say · · · < x3 < x2 < x1 < x0.

(1) ∀x ∈ L∗∃i ∈ ω[xi ≤ x]

For, otherwise there is an x ∈ L∗ such that ∀i ∈ ω[x < xi] and so {y : x ≤ y} is not
well-ordered, contradiction.

Hence it follows that

L∗ = · · · [xn+1, xn] + · · · [x1, x0] + [x0,∞),

as desired.

Proposition 21.67. If L0, L1, . . . are well-orderings and

L∗ = · · ·+ L3 + L2 + L1 + L0,

then for every x ∈ L∗[{y : x ≤ y} is a well-ordering].

Theorem 21.68. Suppose that L is a countable linear ordering, and for every f : L→ L,
if ∀x, y ∈ L[x < y → f(x) < f(y)], then ∀x ∈ L[x ≤ f(x)]. Then L is a well-ordering.

Proof. Assume the hypotheses.

(1) There is no L′ ⊆ L which is a dense ordering.

In fact, assume otherwise. Take x < y in L′ with x < y. By the proof of Theorem 3,
there is an isomorphic embedding f : L → L′ such that f(y) = x. Since x < y, we have
f(y) < y, contradicting the hypothesis. Thus (1) holds.

(2) ∀x ∈ L[cW (x) is well-ordered].

For, suppose that x ∈ L and cW (x) is not well-ordered. Then by Proposition 13 there are
well-orderings L0, L1, . . . such that

cW (x) = · · ·+ L3 + L2 + L1 + L0.

For each i < ω let αi be the order type of Li; so αi is an ordinal. For each i ∈ ω let
Ai = {j ≥ i : αi ≤ αj}.

If Ai is finite, then there is a j(i) such that ∀j > j(i)[j /∈ Ai] hence ∀j > j(i)[αj < αi].

(3) ∃i0∀i ≥ i0[Ai is infinite].
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In fact, otherwise there is a strictly increasing sequence i0, i1, . . . such that ∀k ∈ ω[Aik
is finite and j(k) < ik+1, i.e. ∀k ∈ ω∀j > j(k)[αj < αik ] and ik+1 > j(k)]. Thus
αi0 > αi1 > αi2 · · ·, contradiction. So (3) holds.

Thus for all i ≥ i0 there are infinitely many j ≥ i such that αi ≤ αj . We now define
k : {i ∈ ω : i ≥ i0} → {i ∈ ω : i ≥ i0} by

k(i) =

{
least j > i0[αj ≥ αi0 ] if i = i0;
least j > k(n)[αj ≥ αn+1] if i = n+ 1 with n ≥ i0

.

Now we define f : L→ L by

f(y) =







y if y /∈ cW (x);
y if y ∈ Li0−1 + Li0−2 + · · ·+ L0;
the γ-th member of Lk(n) if i0 ≤ n and γ < αn

and y is the γ-th member of Ln.

Clearly y < z → f(y) < f(z). Now k(i0) > i0 and αk(i0) ≥ αi0 . Hence k(k(i0) + 1) > k(i0)
and αk(k(i0)+1) ≥ αk(i0)+1. If y is the 0-th member of Li0 , then f(y) is the 0-th member
of Lk(i0). Thus f(y) < y, contradiction. This proves (2).

(4) If cW (x)≪ cW (y), then there is a z such that cW (x)≪ cW (z)≪ cW (y).

In fact, suppose not. Suppose that x ≤ u ≤ y. If u ∈ cW (x) then [x, u] is well-ordered,
hence u ∈ cW (x). If u ∈ cW (y), then [u, y] is well-ordered, hence u ∈ cW (y). So (4) holds.

By (4), choosing one element from each cW (x) we get a dense order L ⊆ L. This
contradicts (1). It follows that L is a well-order.

aEL0 b iff a, b ∈ L and a = b;

aELα+1b iff ([a]αE
L
α [b]α and ([a]α, [b]α)ELα is finite)

or ([b]αE
L
α [a]α and ([b]α, [a]α)ELα is finite)

aELλ b iff ∃α < λ[aELαb] for λ limit.

Proposition 21.69. For L countable there is an α < ω1 such that ELα = ELα+1.

Proof. Clearly ∀α, β < ω1[α < β → ELα ⊆ ELβ ] and ∀α < ω1[ELα ⊆ L × L]. The
proposition follows.

For L a countable linear order, λ(L) is the least ordinal α < ω1 such that ELα = ELα+1.

Proposition 21.70. If L is a countable scattered linear order, then |ELλ(L)| = 1.

Proof. Let α = λ(L), and suppose that |ELα | > 1. Suppose that aEαb with a 6= b.
Then aELα+1b; say [a]αE

L
α [b]α with ([a]α, [b]α)ELα finite. Thus ELα is dense, contradiction.

Proposition 21.71. If M ⊆ L is convex, then ∀a, b ∈M∀α < ω1[aEMα b↔ aELα b].
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Proof. Induction on α.

Proposition 21.72. If M is an equivalence class of ELα , then λ(M) ≤ α.

Proof. Assume that M is an equivalence class of ELα . Then M is convex, so Propo-
sition 21.71 applies, and it follows that |M | = 1. Hence λ(M) ≤ α.

Now let L be the intersection of all K such that each countable well-ordering is in K,
K is closed under isomorphisms and sums over countable well-orderings and inverse well
orderings, and ∀L ∈ K∀A[{x ∈ L : x ∈ A} ∈ K],

Proposition 21.73. Let L be a linear ordering, and define

E = {(a, b) ∈ L× L :a = b or (a < b and (a, b) is finite)

or (b < a and (b, a) is finite)}

Then E is an equivalence relation on L, and if L is a single equivalence class under EL,
then L ∈ L .

Proof. Case 1. L does not have a first element. Then we can write

L = · · · ∪ [an+1, an) ∪ [an, an−1) ∪ · · · ∪ [a1, a0)

or
L = · · · ∪ [an+1, an) ∪ [an, an−1) ∪ · · · ∪ [a1, a0) ∪ [a0, a−1) ∪ . . .

with each [ai+1, ai) finite. Clearly L ∈ L .
Case 2. L has a first element. Then we can write

L = [a0, a1) ∪ [a1, a2) ∪ · · ·

with each [ai, ai+1) finite. Clearly L ∈ L .

Proposition 21.74. L is closed under lexicographic sums with index set in L .

Proof. Let BL consist of all finite linear orders along with all countable well-orders
and inverses of countable well-orders. Define Lα for α < ω1 by recursion:

L
0 = BL;

L
α+1 =

{

L : L =
∑

a∈J

Ia : Ia ∈ L
α, J ∈ BL

}

∪ {L : ∃M ∈ L
α : L ∼= M};

L
λ =

⋃

α<λ

L
α for λ limit.

Now we show by induction on α that L is closed under lexicographic products with index
set in L α+1; clearly this will prove the proposition. This is obvious for α = 0. Now
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suppose that Ma ∈ L for all a ∈ L, with L ∈ L α+1. Say L =
∑

b∈L′ Lb with each Lb in
L α and L′ ∈ BL. For each b ∈ L′ let Ib = {(b, x) : x ∈ Lb}. Then Ib is a convex subset
of L which is isomorphic to Lb. Hence Ib ∈ L α.

Now for each b ∈ L′ let Nb =
∑

a∈Ib
Ma. Then Nb ∈ L by the inductive hypothesis.

Clearly
∑

a∈LMa is isomorphic to
∑

b∈L′ Nb, so
∑

a∈LMa ∈ L .

The following is a theorem of Hausdorff; we follow a paper of Abraham, Bonnet, Cummings,
Džamonja, Thompson.

Theorem 21.75. For any countable ordered set L the following are equivalent:
(i) L is scattered.
(ii) L ∈ L .
(iii) |Eλ(L)| = 1.

Proof. Clearly (ii) implies (i), and (i) implies (iii) by Proposition 21.70. Now we
prove by induction on λ(L) that (iii) implies (ii). If λ(L) = 0, then |L| = 1 and so L ∈ L .
Next, suppose that λ(L) = α + 1. If M is an equivalence class of ELα , then λ(M) = 1 by
Proposition 21.72, so M ∈ L by the inductive hypothesis. Since Eα is a single equivalence
class under ELα+1, we have Eα ∈ L . Then by Proposition 21.74, L ∈ L .

Now we take the case λ(L) limit. Let λ = λ(L). Fix a ∈ L, and for each γ < ω1 let
Aγ be the ELγ -class of a. Note that Aγ is convex, Aγ increases with γ, and L =

⋃

γ<ω1
Aγ .

By Proposition 21.72, λ(Aγ) ≤ γ, so by the inductive hypothesis, Aγ ∈ L . We now define

Lγ = {b < a : b ∈ Aγ+1\Aγ};

Rγ = {b > a : b ∈ Aγ+1\Aγ}.

Then by definition of L , Lγ , Rγ ∈ L . Now if γ < δ < ω1. then Lδ < Lγ < {a} <
Rγ < Rδ. Hence L is the lexicographic sum with index ω∗

1 + 1 + ω1 of members of L , so
L ∈ L .

Proposition 21.76. Let L be a linear order. Then there exist ordinals γ and δ such that
L is the sum of points and bounded intervals indexed by γ∗ + δ.

Proof. Let L be a linear order.
Case 1. L does not have a first or last element. Let γ be the coinitiality of L and δ

the cofinality of L. Say that a ∈ γL is strictly decreasing and coinitial in L, and b ∈ δL
is strictly increasing and cofinal in L with a0 < b0 and (a0, b0) 6= ∅, and define, for ξ < γ
and η < δ,

cξ = (aξ+1, aξ]

dη = [bη, bη+1).

Then L is the sum of the cs and {(a0, b0)} and ds.
Case 2. L has a first, but no last, element. This is similar to Case 1, with γ = 0.
Case 3. L has a last, but no first, element. This is similar to Case 1, with δ = 0.
Case 4. L has a first and last element. We can take γ = 0 and δ = 1.
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22. Trees

In this chapter we study infinite trees. The main things we look at are König’s tree
theorem, Aronszajn trees, Suslin trees, and Kurepa trees.

A tree is a partially ordered set (T,<) such that for each t ∈ T , the set {s ∈ T : s < t}
is well-ordered by the relation <. Thus every ordinal is a tree, but that is not so interesting
in the present context. We introduce some standard terminology concerning trees.

• (t↓) = {s ∈ T : s < t}; (t↑) = {s ∈ T : t < s}.

• For each t ∈ T , the order type of {s ∈ T : s < t} is called the height of t, and is denoted
by ht(t, T ) or simply ht(t) if T is understood.

• A root of a tree T is an element of T of height 0, i.e., it is an element of T with no
elements of T below it. Frequently we will assume that there is only one root.

• For each ordinal α, the α-th level of T , denoted by ,Levα(T ) is the set of all elements of
T of height α.

• The height of T itself is the least ordinal greater than the height of each element of T ; it
is denoted by ht(T ).

• A chain in T is a subset of T linearly ordered by <.

• A branch of T is a maximal chain of T .

• For each α ≤ ht(T ) let Tα =
⋃

β<α Levβ(T ).

Note that chains and branches of T are actually well-ordered, and so we may talk about
their lengths.

Some further terminology concerning trees will be introduced later. A typical tree is
<ω2, which is by definition the set of all finite sequences of 0s and 1s, with ⊂ as the partial
order. More generally, one can consider <α2 for any ordinal α.

Theorem 22.1. (König) Every tree of height ω in which every level is finite has an infinite
branch.

Proof. Let T be a tree of height ω in which every level is finite. We define a sequence
〈tm : m ∈ ω〉 of elements of T by recursion. Clearly T =

⋃

r a root{s ∈ T : r ≤ s}, and
the index set is finite, so we can choose a root t0 such that {s ∈ T : t0 ≤ s} is infinite.
Suppose now that we have defined an element tm of height m such that {s ∈ T : tm ≤ s}
is infinite. Let S = {u ∈ T : tm < u and u has height ht(tm) + 1}. Clearly

{s ∈ T : tm ≤ s} = {tm} ∪
⋃

u∈S

{s ∈ T : u ≤ s}

and the index set of the big union is finite, so we can choose tm+1 of height ht(tm) + 1
such that {s ∈ T : tm+1 ≤ s} is infinite.

This finishes the construction. Clearly {tm : m ∈ ω} is an infinite branch of T .

In attempting to generalize König’s theorem, one is naturally led to Aronszajn trees and
Suslin trees. For the following definitions, let κ be any infinite cardinal.
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• A tree (T,<) is a κ-tree iff it has height κ and every level has size less than κ.

• A κ-Aronszajn tree is a κ-tree which has no chain of size κ.

• A subset X of a tree T is an antichain iff any two distinct members ofX are incomparable.
Note that each set Levα(T ) is an antichain. This notion is different from antichains as
introduced in Chapters 21.

• A κ-Suslin tree is a tree of height κ which has no chains or antichains of size κ.

• An Aronszajn tree is an ω1-Aronszajn tree, and a Suslin tree is an ω1-Suslin tree.

It is natural to guess that Aronszajn trees and Suslin trees are the same thing, since the
definition of κ-tree implies that all levels have size less than κ, and a guess is that this
implies that all antichains are of size less than κ. This guess is not right though. Even our
simplest example of a tree, <ω2, forms a counterexample. This tree has all levels finite,
but it has infinite antichains, for example

{〈0〉, 〈1, 0〉, 〈1, 1, 0〉, 〈1, 1, 1, 0〉, . . .}.

In the rest of this chapter we investigate these notions, and state some consistency results,
some of which will be proved later. There is also one difficult natural open problem which
we will formulate.

First we consider Aronszajn trees. Note that Theorem 22.1 can be rephrased as saying
that there does not exist an ω-Aronszajn tree. As far as existence of Aronszajn trees is
concerned, the following theorem takes care of the case of singular κ:

Theorem 22.2. If κ is singular, then there is a κ-Aronszajn tree.

Proof. Let 〈λα : α < cf(κ)〉 be a strictly increasing sequence of infinite cardinals
with supremum κ. Consider the tree which has a single root, and above the root has
disjoint chains which are copies of the λα’s. Clearly this tree is a κ-Aronszajn tree. We
picture this tree on the next page. Very rigorously, we could define T to be the set
{0} ∪ {(α, β) : α < cf(κ) and β < λα}, with the ordering 0 < (α, β) for all α < cf(κ) and
β < λα, and (α, β) < (α′, β′) iff α = α′ and β < β′.

Turning to regular κ, we first prove

Theorem 22.3. There is an Aronszajn tree.

Proof. We start with the tree

T = {s ∈ <ω1ω : s is one-one}.

under ⊂. This tree clearly does not have a chain of size ω1. But all of its infinite levels
are uncountable, so it is not an ω1-Aronszajn tree. We will define a subset of it that is the
desired tree. We define a system 〈Sα : α < ω1〉 of subsets of T by recursion; these will be
the levels in the new tree.

Let S0 = {∅}. Now suppose that α > 0 and Sβ has been constructed for all β < α so
that the following conditions hold for all β < α:
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· · · · · · · · ·

λ0 λ1 λ2 λα λα+1

· · · · · ·

(1β) Sβ ⊆ βω ∩ T .

(2β) ω\rng(s) is infinite, for every s ∈ Sβ .

(3β) For all γ < β, if s ∈ Sγ , then there is a t ∈ Sβ such that s ⊂ t.

(4β) |Sβ | ≤ ω.

(5β) If s ∈ Sβ , t ∈ T , and {γ < β : s(γ) 6= t(γ)} is finite, then t ∈ Sβ .

(6β) If s ∈ Sβ and γ < β, then s ↾ γ ∈ Sγ .

(Vacuously these conditions hold for all β < 0.) If α is a successor ordinal ε+ 1, we simply
take

Sα = {s ∪ {(ε, n)} : s ∈ Sε and n /∈ rng(s)}.

Clearly (1β)–(6β) hold for all β < α+ 1.

Now suppose that α is a limit ordinal less than ω1 and (1β)–(6β) hold for all β < α.
Since α is a countable limit ordinal, it follows that cf(α) = ω. Let 〈δn : n ∈ ω〉 be a strictly
increasing sequence of ordinals with supremum α. Now let U =

⋃

β<α Sβ . Take any s ∈ U ;
we want to define an element ts ∈ αω ∩ T which extends s. Let β = dmn(s).

Choose n minimum such that β ≤ δn. Now we define a sequence 〈ui : i ∈ ω〉 of
members of U ; ui will be a member of Sδn+i

. By (3δn), let u0 be a member of Sδn such
that s ⊆ u0. Having defined a member ui of Sδn+i

, use (3δn+i+1
) to get a member ui+1

of Sδn+i+1
such that ui ⊆ ui+1. This finishes the construction. Let v =

⋃

i∈ω ui. Thus
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s ⊆ v ∈ αω ∩ T . Unfortunately, condition (2) may not hold for v, so this is not quite the
element ts that we are after. We define ts ∈ αω as follows. Let γ < α. Then

ts(γ) =

{
v(δ2n+2i) if γ = δn+i for some i ∈ ω,
v(γ) if γ /∈ {δn+i : i ∈ ω}.

Clearly ts ∈ αω ∩ T . Since v(δ2n+2i+1) /∈ rng(ts) for all i ∈ ω, it follows that ω\rng(ts) is
infinite.

We now define

Sα =
⋃

s∈U

{w ∈ αω ∩ T : {ε < α : w(ε) 6= ts(ε)} is finite}.

Now we want to check that (1α)–(6α) hold. Conditions (1α) and (3α) are very clear.
For (2α), suppose that w ∈ Sα. Then w ∈ αω ∩ T and there is an s ∈ U such that
{ε < α : w(ε) 6= ts(ε)} is finite. Since ω\rng(ts) is infinite, clearly ω\rng(w) is infinite. For
(4α), note that U is countable by the assumption that (4β) holds for every β < α, while
for each s ∈ U the set

{w ∈ αω ∩ T : {ε < α : w(ε) 6= ts(ε)} is finite}

is also countable. So (4α) holds. For (5α), suppose that w ∈ Sα, x ∈ T , and {γ < α :
w(γ) 6= x(γ)} is finite. Choose s ∈ U such that {ε < α : w(ε) 6= ts(ε)} is finite. Then of
course also {ε < α : x(ε) 6= ts(ε)} is finite. So x ∈ Sα, and (5α) holds. Finally, for (6α),
suppose that w ∈ Sα and γ < α; we want to show that w ↾ γ ∈ Sγ . Choose s ∈ U such
that {ε < α : w(ε) 6= ts(ε)} is finite. Assume the notation introduced above when defining
ts. Choose i ∈ ω such that γ ≤ δn+i. Then

{ε < δn+i : w(ε) 6= ui(ε)} = {ε < δn+i : w(ε) 6= v(ε)}

⊆ {ε < δn+i : w(ε) 6= ts(ε)} ∪ {δn+j : j < i},

and the last union is clearly finite. It follows from (5δn+1
) that w ∈ Sγ . So (6α) holds.

This finishes the construction. Clearly
⋃

α<ω1
Sα is the desired Aronszajn tree.

We defer a discussion of possible generalizations of Theorem 22.3 until we discuss the
closely related notion of a Suslin tree.

The proof of Theorem 22.2 gives

Theorem 22.4. If κ is singular, then there is a κ-Suslin tree.

Note also that Theorem 22.1 implies that there are no ω-Suslin trees. There do not
exist ZFC results about existence or non-existence of κ-Suslin trees for κ uncountable and
regular. We limit ourselves at this point to some simple facts about Suslin trees.

Proposition 22.5. If T is a κ-Suslin tree with κ uncountable and regular, then T is a
κ-tree.
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Proposition 22.6. For any infinite cardinal κ, every κ-Suslin tree is a κ-Aronszajn
tree.

This is a good place to notice that the construction of an ω1-Aronszajn tree given in the
proof of Theorem 22.3 does not give an ω1-Suslin tree. In fact, assume the notation of
that proof, and for each n ∈ ω let

An =
⋃

α<ω1

{s ∈ Sα+1 : s(α) = n}.

Clearly An is an antichain in
⋃

α<ω1
Sα, and

⋃

n∈ω An =
⋃

α<ω1
Sα+1. Hence

∣
∣
⋃

n∈ω An
∣
∣ =

ω1. It follows that some An is uncountable, so that
⋃

α<ω1
Sα is not a Suslin tree.

We now introduce some notions that are useful in talking about κ-trees; these conditions
were implicit in part of the proof of Theorem 22.3.

• A well-pruned κ-tree is a κ-tree T with exactly one root such that for all α < β < ht(T )
and for all x ∈ Levα(T ) there is a y ∈ Levβ(T ) such that x < y.

• A normal subtree of a tree (T,<) is a tree (S,≺) satisfying the following conditions:
(i) S ⊆ T .
(ii) For any s1, s2 ∈ S, s1 ≺ s2 iff s1 < s2.
(iii) For any s, t ∈ T , if s < t and t ∈ S, then s ∈ S.

Note that each level of a normal subtree is a subset of the corresponding level of T . Clearly
a normal subtree of height κ of a κ-Aronszajn tree is a κ-Aronszajn tree; similarly for κ-
Suslin trees.

• A tree T is eventually branching iff for all t ∈ T , the set {s ∈ T : t ≤ s} is not a chain.

Clearly a well-pruned κ-Aronszajn tree is eventually branching; similarly for κ-Suslin trees.

Theorem 22.7. If κ is regular, then any κ-tree T has a normal subtree T ′ which is a
well-pruned κ-tree. Moreover, if x ∈ T and |{y ∈ T : x ≤ y}| = κ then we may assume
that x ∈ T ′.

Proof. Let κ be regular, and let T be a κ-tree. We define

S = {t ∈ T : |{s ∈ T : t ≤ s}| = κ}.

Clearly S is a normal subtree of T , although it may contain more than one root of T . Now
we claim

(1) Some root of T is in S.

In fact, Lev0(T ) has size less than κ, and

T =
⋃

s∈Lev0(T )

{t ∈ T : s ≤ t},
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so there is some s ∈ Lev0(T ) such that |{t ∈ T : s ≤ t}| = κ. This element s is in S, as
desired in (1).

We now take an s as indicated. To satisfy the second condition in the Theorem, we
can take s below the element x of that condition.

Now we let S′ = {t ∈ S : s ≤ t}. We claim that S′ is as desired. Clearly it is a normal
subtree of T , and it has exactly one root, namely s. To show that it has height κ and is
well-pruned, it suffices now to prove

(2) If u ∈ S′, α < β < κ, and ht(u, S′) = α, then there is a v ∈ S′ ∩ Levβ(T ) such that
u < v.

In fact,

{t ∈ T : u ≤ t} =
⋃

α≤γ<β

{t ∈ Levγ(T ) : u ≤ t} ∪
⋃

v∈Levβ(T )

u<v

{t ∈ T : v ≤ t},

and the first big union here is the union of fewer than κ sets, each of size less than κ.
Hence there is a v ∈ Levβ(T ) such that u < v and |{t ∈ T : v ≤ t}| = κ. So v ∈ S′ and
u < v, as desired.

Proposition 22.8. Let κ be an uncountable regular cardinal. If T is an eventually branch-
ing κ-tree in which every antichain has size less than κ, then T is a Suslin tree.

Proof. Suppose to the contrary that C is a chain of length κ. We may assume that
C is maximal, so that it has elements of each level less than κ. For each t ∈ T choose
f(t) ∈ T such that t < f(t) /∈ C; this is possible by the eventually branching hypothesis.
Now we define 〈sα : α < κ〉 by recursion, choosing

sα ∈

{

t ∈ C : sup
β<α

ht(f(sβ), T ) < ht(t, T )

}

;

this is possible since κ is regular. Now 〈f(sα) : α < κ〉 is an antichain. In fact, if β < α
and f(sβ) and f(sα) are comparable, then by construction ht(f(sβ), T ) < ht(sα, T ) <
ht(f(sα), T ), and so f(sβ) < f(sα). But then the tree property yields that f(sβ) < sα and
so f(sβ) ∈ C, contradiction.

Thus we have an antichain of size κ, contradiction.

One of the main motivations for the notion of a Suslin tree comes from a correspondence
between linear orders and trees. Under this correspondence, Suslin trees correspond to
Suslin lines, and the existence of Suslin trees is equivalent to the existence of Suslin lines.

First we show how to go from a tree to a line, in a fairly general setting. Suppose that
T is a well-pruned κ-tree, and let ≺ be a linear order of T . Here ≺ may have nothing to do
with the order of the tree. Note that every branch of T has limit ordinal length. For each
branch B of T , let len(B) be its length, and let 〈bB(α) : α < len(B)〉 be an enumeration
of B in increasing order. For distinct branches B1, B2, neither is included in the other,
and so we can let d(B1, B2) be the smallest ordinal α < min(len(B1), len(B2)) such that
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bB1(α) 6= bB2(α). We define the ≺-branch linear order of T , denoted by B(T,≺), to be
the collection of all branches of T , where the order < on B(T,≺) is defined as follows: for
any two distinct branches B1, B2,

B1 < B2 iff bB1(d(B1, B2)) ≺ bB2(d(B1, B2)).

This is a kind of lexicographic ordering of the branches. Clearly this is an irreflexive
relation, and clearly any two branches are comparable. The following lemma gives that it
is transitive.

Lemma 22.9. Assume that B1 < B2 < B3. Then exactly one of the following holds:
(i) d(B1, B3) = d(B1, B2) < d(B2, B3).
(ii) d(B1, B3) = d(B1, B2) = d(B2, B3).
(iii) d(B1, B3) = d(B2, B3) < d(B1, B2).

In any case B1 < B3.

Clearly at most one of (i)–(iii) holds. These three conditions are illustrated as follows:

B1

B2 B3

B1 B2 B3

B1 B2

B3

Case 1. d(B1, B2) < d(B2, B3). Then, we claim, d(B1, B3) = d(B1, B2). In fact, if
α < d(B1, B2), then

bB1(α) = bB2(α) = bB3(α),

while
bB1(d(B1, B2) ≺ bB2(d(B1, B2)) = bB3(d(B1, B2)).

Hence the claim holds, and B1 < B3.
Case 2. d(B1, B2) = d(B2, B3). Then, we claim, d(B1, B3) = d(B1, B2). In fact, if

α < d(B1, B2), then
bB1(α) = bB2(α) = bB3(α),

while
bB1(d(B1, B2) ≺ bB2(d(B1, B2)) ≺ bB3(d(B1, B2)).

This proves the claim, and B1 < B3.
Case 3. d(B1, B2) > d(B2, B3). Then, we claim, d(B1, B3) = d(B2, B3). In fact, if

α < d(B2, B3), then
bB1(α) = bB2(α) = bB3(α),
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while
bB1(d(B2, B3) = bB2(d(B2, B3)) ≺ bB3(d(B2, B3)).

This proves the claim, and B1 < B3.

Thus the construction gives a linear order.

We describe another way of going from a tree to a linear order. Let T be a tree. We define
s ∼ t iff s, t ∈ T and (s↓) = (t↓). Clearly ∼ is an equivalence relation on T .

Proposition 22.10. Let T be a tree, and let X ⊆ T . Then the following are equivalent:
(i) X is a ∼-class.
(ii) One of the following holds:

(a) There is an s ∈ T such that X = {t ∈ T : t is an immediate successor of s}.
(b) X is the set of all roots of T .
(c) There is a limit ordinal α such that all elements of X have height α, and there

is a chain C having elements of each height less than α such that X = {t ∈ T : (t↓) = C}.

For any tree T , a full chain is a chain C such that for some ordinal α < ht(T ), C has
elements of each height less than α, and all elements of C have height less than α. Note
that ∅ is a full chain. If X is a ∼-class and s ∈ X , then s↓ is a full chain, which we denote

by CX . If C is a full chain, then X
def
= {s : s is an immediate successor of C} is either

empty or is an ∼-class. If C is a full chain with an upper bound, then we denote this set
X by ∼C .

If s ∈ T and α < ht(s), then we denote by sα the element of T of height α which is
below s. If s, t ∈ T are incomparable, then f.d.(s, t) is the smallest α < ht(s), ht(t) such
that sα 6= tα. Note that (sf.d.(s,t)↓) = (tf.d.(s,t)↓).

Now for each ∼-class X associate a linear order ≤X of X . We now define a relation
≤∼ on T by setting s ≤∼ t iff

(1) s ≤T t, or
(2) s, t are incomparable, and sf.d.(s,t) ≤X tf.d.(s,t), where X is the ∼-class of (sf.d.(s,t)↓).

Proposition 22.11. ≤∼ is a linear order on T , and ∀s, t ∈ T [s ≤T t implies that s ≤∼ t].

Proof. The second statement is obvious. Clearly ≤∼ is reflexive and antisymmetric.
Now suppose that s ≤∼ t ≤∼ u.

Case 1. s ≤T t ≤T u. Then s ≤T u, so s ≤∼ u.
Case 2. s ≤T t, t and u are incomparable, and s ≤T u. Then s ≤∼ u.
Case 3. s ≤T t, t and u are incomparable, and s and u are incomparable. Say s = tα.

Then f.d.(t, u) ≤ α, for if α < f.d.(t, u), then s = tα = uα ≤ u, contradiction. Now if
β < f.d.(t, u), then β < α, and sβ = tβ = uβ. Also, sf.d.(t,u) = tf.d.(t,u) ≤X uf.d.(t,u),
where X is the ∼-class of (tf.d.(t,u)↓). Thus f.d.(s, u) = f.d.(t, u) and sf.d.(s,u) ≤X uf.d.(t,u),
where X is the ∼-class of (tf.d.(s,u)↓). So s ≤∼ u.

Case 4. s and t are incomparable, and t ≤T u. Clearly then s and u are incomparable.
Say t = uα. Then f.d.(s, t) ≤ α, for if α < f.d.(s, t) then t = uα = sα ≤ s, contradiction.
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Now if β < f.d.(s, t), then β < α, and uβ = tβ = sβ . Also, sf.d.(s,t) ≤X tf.d.(s,t) = uf.d.(s,t),
where X is the ∼-class of (sf.d.(s,t)↓). Thus f.d.(s, u) = f.d.(s, t) and so s ≤∼ u.

Case 5. s and t are incomparable, and t and u are incomparable, and u ≤T s. Say
u = sα. Then f.d.(s, t) ≤ α, for if α < f.d.(s, t), then u = sα = tα ≤ t, contradiction. Now
if β < f.d.(s, t), then uβ = sβ = tβ. Moreover, uf.d.(s,t) = sf.d.(s,t) ≤X tf.d.(s,t), where X
is the ∼-class of (sf.d.(s,t)↓). Hence f.d.(u, t) = f.d.(s, t) and so u ≤∼ t, contradiction.

Case 6. s and t are incomparable, and t and u are incomparable, and s ≤T u. Then
s ≤∼ u.

Case 7. s and t are incomparable, and t and u are incomparable, s and u are incom-
parable, and f.d.(s, t) < f.d.(t, u). If β < f.d.(s, t), then sβ = tβ = uβ and sf.d.(s,t) ≤X
tf.d.(s,t) = uf.d.(s,t), where X is the ∼-class of (sf.d.(s,t)↓). Hence f.d.(s, t) = f.d.(s, u) and
so s ≤∼ u.

Case 8. s and t are incomparable, and t and u are incomparable, s and u are
incomparable, and f.d.(s, t) = f.s.(t, u). If β < f.d.(s, t), then sβ = tβ = uβ and
sf.d.(s,t) ≤X tf.d.(s,t) ≤X uf.d.(s,t), and so f.d.(s, t) = f.d.(s, u) and s ≤∼ u.

Case 9. s and t are incomparable, and t and u are incomparable, s and u are
incomparable, and f.d.(t, u) < f.d.(s, t). If β < f.d.(t, u), then uβ = tβ = sβ and
sf.d.(t,u) = tf.d.(t,u) ≤X uf.d.(t,u). Hence f.d.(s, u) = f.d.(t, u) and s ≤∼ u.

Here are some diagrams illustrating the above proof.
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An Aronszajn line is an ordered set L such that:
(i) ω1 cannot be embedded in L;
(ii) ω∗

1 cannot be embedded in L;
(iii) For any X ∈ [R]ω1 , X cannot be embedded in L.
(iv) |L| = ω1.

Lemma 22.12. If T is an ω1-tree and 〈aξ : ξ < ω1〉 is a sequence of distinct elements
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of T , then for all α < ω1 there is a tα ∈ Levα(T ) such that {ξ < ω1 : tα ≤T aξ} is
uncountable.

Proof. Let α < ω1. Then

ω1 = {ξ < ω1 : ht(aξ) < α} ∪
⋃

t∈Levα(T ).

{ξ < ω1 : t ≤T a
ξ}

The first set here is countable, so there is a t ∈ Levα(T ) such that {ξ < ω1 : t ≤T aξ} is
uncountable, as desired.

Theorem 22.13. If T is an Aronszajn tree, then (T,≤∼) is an Aronszajn line.

Proof. First suppose that 〈aξ : ξ < ω1〉 is <∼-increasing; we want to get a con-
tradiction. Choose tα as in Lemma 22.12, for each α < ω1. Now since T does not have
a chain of length ω1, there exist α < β such that tα 6<T tβ . Choose ξ < η < ρ such
that tα ≤T aξ, tα ≤T aρ, and tβ ≤T aη. Then f.d.(aξ, aη) = f.d.(aρ, aη). In fact, if
γ < f.d.(aξ, aη), then γ < α, since α ≤ γ would imply that tα = aξα = aηα = tβα ≤ tβ,
contradiction. Then aξγ = tαγ = aργ = aηγ . Thus f.d.(aξ, aη) ≤ f.d.(aρ, aη). By symme-

try, f.d.(aξ, aη) = f.d.(aρ, aη). Thus aξ
f.d.(aξ,aη)

∼ aη
f.d.(aξ,aη)

∼ aρ
f.d.(aξ,aη)

. With X the

∼-class of aξ
f.d.(aξ,aη)

, aξ <∼ aη implies that aξ
f.d.(aξ,aη)

<X aη
f.d.(aξ,aη)

, while aη < aρ

implies that aη
f.d.(aξ,aη)

<X aρ
f.d.(aξ,aη)

Now f.d.(aξ, aη) ≤ α, so aξ
f.d.(aξ,aη)

= tαf.d.(aξ,aη) =

aρ
f.d.(aξ,aη)

, so this is a contradiction.

Illustration:

• • •

• •

aξ aρ aη

tα tβ

The case 〈aξ : ξ < ω1〉 <∼-decreasing is similar, but we give the details. Again choose tα

as in Lemma 22.12, for each α < ω1. Now since T does not have a chain of length ω1,
there exist α < β such that tα 6<T tβ . Choose ξ < η < ρ such that tα ≤T aξ, tα ≤T aρ,
and tβ ≤T aη. Then f.d.(aξ, aη) = f.d.(aρ, aη). In fact, if γ < f.d.(aξ, aη), then γ < α,
since α ≤ γ would imply that tα = aξα = aηα = tβα < tβ , contradiction. Then aξγ = tαγ =

aργ = aηγ . Thus f.d.(aξ, aη) ≤ f.d.(aρ, aη). By symmetry, f.d.(aξ, aη) = f.d.(aρ, aη). Thus

aξ
f.d.(aξ,aη)

∼ aη
f.d.(aξ,aη)

∼ aρ
f.d.(aξ,aη)

. With X the ∼-class of aξ
f.d.(aξ,aη)

, aη <∼ aξ implies

that aη
f.d.(aξ,aη)

<X aξ
f.d.(aξ,aη)

, while aρ < aη implies that aρ
f.d.(aξ,aη)

<X aη
f.d.(aξ,aη)

Now

f.d.(aξ, aη) ≤ α, so aξ
f.d.(aξ,aη)

= tαf.d.(aξ,aη) = aρ
f.d.(aξ,aη)

, so this is a contradiction.

Finally, suppose that 〈aξ : ξ < ω1〉 is a sequence of distinct elements of T and f :
{aξ : ξ < ω1} → R is such that aξ <∼ aη implies that f(aξ) < f(aη); we want to get a
contradiction. Again choose tα as in Lemma 22.12, for each α < ω1. Let D be a countable
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subset of ω1 such that {f(aξ) : ξ ∈ D} is dense in rng(f). Let α be such that all elements
aξ for ξ ∈ D have height less than α. Let aξ <∼ aη <∼ aρ be above t. Thus the interval
(aξ, aρ) 6= ∅ in {aµ : µ < ω1}. So there is a µ ∈ D such that aξ <∼ aµ <∼ aρ.

Case 1. aξ <T aρ. Then aµ <T aξ is not possible, as then aµ <∼ aξ <∼ aρ. So
aµ and aξ are incomparable. Also, aµ and aρ are incomparable. If γ < f.d.(aξ, aµ),
then γ < f.d.(aρ, aµ); so f.d.(aξ, aµ) ≤ f.d.(aρ, aµ). The other inequality is also clear,

so f.d.(aξ, aµ) = f.d.(aρ, aµ). Clearly aξ
f.d.(aξ,aµ)

= aρ
f.d.(aξ,aµ)

. Let X be the ∼-class

of aξ
f.d.(aξ,aµ)

. Then aξ <∼ aµ yields aξ
f.d.(aξ,aµ)

<X aµ
f.d.(aξ,aµ)

, and aµ <∼ aρ yields

aµ
f.d.(aξ,aµ)

<X aξ
f.d.(aξ,aµ)

, contradiction.

Case 2. aξ and aρ are incomparable. Now f.d.(aξ, aµ) < α, so if γ < f.d.(aξ, aµ) then
aµγ = tαγ = aργ. Hence f.d.(aξ, aµ) ≤ f.d.(aρ, aµ). The other inequality holds by symmetry,

so f.d.(aξ, aµ) = f.d.(aρ, aµ). Also, aξ
f.d.(aξ,aµ)

= tα
f.d.(aξ,aµ)

= aρ
f.d.(aξ,aµ)

. Let X be the

∼-class of aξ
f.d.(aξ,aµ)

. Then aξ <∼ aµ yields aξ
f.d.(aξ,aµ)

<X aµ
f.d.(aξ,aµ)

, and aµ <∼ aρ

yields aµ
f.d.(aξ,aµ)

<X aξ
f.d.(aξ,aµ)

, contradiction.

Theorem 22.14. If there is a Suslin tree then there is a Suslin line.

Proof. By Theorem 22.7 we may assume that T is well-pruned. Take any linear
order ≺ of T . To show that B(T,≺) is ccc, suppose that A is an uncountable collection
of nonempty pairwise disjoint open intervals in B(T,≺). For each (B,C) ∈ A choose
E(B,C) ∈ (B,C). Remembering that each branch has limit length, we can also select an
ordinal α(B,C) such that

d(B,E(B,C)), d(E(B,C), C) < α(B,C) < len(E(B,C))

We claim that 〈bE(B,C)(α(B,C)) : (B,C) ∈ A 〉 is a system of pairwise incomparable ele-
ments of T , which contradicts the definition of a Suslin tree. In fact, suppose that (B,C)
and (B′, C′) are distinct elements of A and bE(B,C)(α(B,C)) ≤ bE(B′,C′)(α(B′,C′)). It
follows that α(B,C) ≤ α(B′,C′) and

(1) bE(B,C)(β) = bE(B′,C′)(β) for all β ≤ α(B,C).

Hence

(2) If β < d(B,E(B,C)), then β < α(B,C), and so bB(β) = bE(B,C)(β) = bE(B′,C′)(β).

Now recall that d(B,E(B,C)) < α(B,C). Hence

bB(d(B,E(B,C))) ≺ b
E(B,C)(d(B,E(B,C))) = bE(B′,C′)(d(B,E(B,C))),

and so B < E(B′,C′). Similarly, E(B′,C′) < C, as follows:

(3) If β < d(C,E(B,C)), then β < α(B,C), and so bC(β) = bE(B,C)(β) = bE(B′,C′)(β).

Now recall that d(C,E(B,C)) < α(B,C). Hence

bC(d(C,E(B,C))) ≻ b
E(B,C)(d(C,E(B,C))) = bE(B′,C′)(d(C,E(B,C))),
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and so C > E(B′,C′). Hence E(B′,C′) ∈ (B,C). But also E(B′,C′) ∈ (B′, C′), contradiction.
To show that B(T,≺) is not separable, it suffices to show that for each δ < ω1 the

set {B ∈ B(T,≺) : len(B) < δ} is not dense in B(T,≺). Take any x ∈ T of height δ.
Since {y : y > x} has elements of every level greater than δ, it cannot be a chain, as
this would give a chain of size ω1. So there exist incomparable y, z > x. Similarly, there
exist incomparable u, v > y. Let B,C,D be branches containing u, v, z respectively. By
symmetry say B < C. Illustration:

u,B v, C

z,Dy

x

(4) ht(y) < d(B,C)

This holds since y ∈ B ∩ C.

(5) d(B,D) ≤ ht(y) and d(C,D) ≤ ht(y); hence d(B,D) < d(B,C) and d(C,D) < d(B,C).

In fact, y ∈ B\D, so d(B,D) ≤ ht(y) follows. Similarly d(C,D) ≤ ht(y). Now the rest
follows by (4).

(6) d(B,D) = d(C,D).

For, if d(B,D) < d(C,D), then bC(d(B,D)) = bD(d(B,D)) 6= bB(d(B,D)), contradicting
d(B,D) < d(B,C), part of (5). If d(C,D) < d(B,D), then bB(d(C,D)) = bD(d(C,D)) 6=
bC(d(C,D)), contradicting d(C,D) < d(B,C), part of (5).

By (6) we have B,C < D, or D < B,C. Since we are assuming that B < C, it follows
that

(7) B < C < D or D < B < C.

Case 1. B < C < D. Thus (B,D) is a nonempty open interval. Suppose that there is
some branch E with len(E) < δ and B < E < D. Then d(B,E), d(E,D)< δ. By Lemma
22.9 one of the following holds: d(B,D) = d(B,E) < d(E,D); d(B,D) = d(B,E) =
d(E,D); d(B,D) = d(E,D) < d(B,E). Hence d(B,D) < δ. Since x ∈ B ∩D and x has
height δ, this is a contradiction.

Case 2. D < B < C. Thus (D,C) is a nonempty open interval. Suppose that there is
some branch E with len(E) < δ and D < E < C. Then d(D,E), d(E,C) < δ. By Lemma
22.9 one of the following holds: d(D,C) = d(D,E) < d(E,C); d(D,C) = d(D,E) =
d(E,C); d(D,C) = d(E,D) < d(D,E); hence d(D,C) < δ. Since x ∈ C ∩D and x is of
height δ, this is a contradiction.

Another important kind of tree of height ω1 is the Kurepa trees. A tree T is a Kurepa tree
iff T is an ω1-tree which has more than ω1 branches of length ω1. A linear order L is a
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Kurepa line iff |L| > ω1, L has a weakly dense subset of size ω1, and L does not contain
an uncountable subset isomorphic to a set of real numbers.

Theorem 22.15. If T is a Kurepa tree, B′ is the set of all branches of T of length ω1,
and ≺ is a linear order on T , then B′ with the order of B(T,≺) is a Kurepa line.

Proof. Obviously |B′| > ω1. Fix C ∈ B′. For each t ∈ T let Mt = {B ∈ B′ : t ∈ B},
fix E ∈Mt if Mt 6= ∅, and define

Bt =







C if Mt = ∅,
D if D is the smallest element of Mt,
E if Mt 6= ∅ but Mt does not have a smallest element.

Let E = {Bt : t ∈ T}. Thus |E | ≤ ω1. We claim that E is dense in B′. For, suppose that
U, V ∈ B′, U < V , and (U, V ) 6= ∅. Say U < W < V . Then by Lemma 22.9 we have three
possibilities.

Case 1. d(U, V ) = d(U,W ) < d(W,V ). Let t = Wd(U,W ). Then d(U,Bt) = d(U,W ) =
d(U, V ) < d(Bt, V ) and so U < Bt < V .

Case 2. d(U, V ) = d(U,W ) = d(W,V ). Let t = Wd(U,W ). Then d(U,Bt) = d(U,W ) =
d(U, V ) = d(Bt, V ) and so U < Bt < V .

Case 3. d(U, V ) = d(W,V ) < d(U,W ). Let t = Wd(U,W ). Then d(U,Bt) = d(U,W ) =
d(U, V ) < d(U,Bt) and so U < Bt < V .

Now suppose that M is an uncountable subset of B′ and f : M → R is order preserving.
Let N be a countable subset of M such that f [N ] is dense in rng(f). Then N is dense in
M .

(1) ∀B ∈M∃tB ∈ B∀C ∈ N\{B}[tB /∈ C].

In fact, choose α > d(B,C) for all C ∈ N\{B}, and let tB = Bα.

(2) ∃s ∈ T [∀C ∈ N [ht(tC) < ht(s)] and Bs ∩M is infinite].

For, let α = (supC∈N ht(tC)) + 1. Applying Lemma 22.12 to an enumeration of M we get
(2).

Now we take s as in (2). Take C < D < E < F in Bs ∩M . Choose U, V ∈ N with
C < U < E and D < V < F . Since s ∈ C ∩D∩E ∩F , we have ht(s) < d(C,E), d(D,F ).
By Lemma 22.9, d(C,E) ≤ d(C,U). So ht(s) < d(C,U). So s ∈ U . Since tU ∈ U and
ht(tU ) < ht(s) we have tU < s. Similarly s ∈ V , so tU ∈ V , contradiction.

We now go the other direction, from a linear order to a tree. The basic construction
goes as follows. Suppose that L is an infinite linear order. A subset I of L is convex iff
∀a, b ∈ I∀c ∈ L[a < c < b→ c ∈ I]. Let I be the collection of all nonempty convex subsets
of L. We are now going to define a sequence 〈Jα : α < ω1〉 of convex subsets of I. Let
J0 = {L}. Now suppose that 0 < β < ω1 and we have defined Jα for all α < β so that the
following conditions hold:

(4α) The elements of Jα are nonempty and pairwise disjoint.

(5α) If γ < α, I ∈ Jγ , and J ∈ Jα, then either I ∩ J = ∅, or else J ⊆ I.
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Note that (40) and (50) hold. Now suppose that β is a successor ordinal δ + 1. For each
M ∈ Jδ such that |M | ≥ 2 choose nonempty convex IM1 , IM2 ∈ I such that ∀a ∈ IM1 ∀b ∈
IM2 [a, b] and IM1 ∪ I

M
2 ⊆M . Let Jβ =

⋃

M∈Jδ
{IM1 , IM2 }. Clearly (4β) and (5β) hold.

Next, suppose that β is a limit ordinal. Let Jβ consist of some sets P such that there
is an N ∈

∏

α<β Jβ such that ∅ 6= P ⊆
⋂

α<β Nα. This finishes the construction. There is
a least ordinal γ such that Jγ is not defined. We also define TI =

⋃

β<γ Jβ.
This is called the partition construction. Several parts of it can be varied.

Proposition 22.16. If L is a linear ordering and 〈Jβ : α < γ〉 is a partition construction,
then TI is a tree under the relation ⊃, with Levβ(TI) = Jβ for each β < γ; TI has height
γ.

Proof. By induction on β ≤ γ,
(
⋃

α≤β Jα,⊃
)

is a tree whose α-th level is Jα, for

each α ≤ β.

Proposition 22.17. If L is an Aronszajn line, then so is L×Q (ordered lexicographically).

Proof. Suppose that 〈(aξ, qξ) : ξ < ω1〉 is strictly increasing.

(1) ∀ξ < ω1∃η < ω1[aξ < aη].

For, otherwise there is a ξ < ω1 such that ∀η < ω1[aη ≤ aξ]. But then {(aη, qη) : η < ω1}
is countable, contradiction.

By (1) there is a strictly increasing 〈α(ξ) : ξ < ω1〉 such that aα(ξ) < aα(η) for all
ξ < η, contradiction.

Suppose that 〈(aξ, qξ) : ξ < ω1〉 is strictly decreasing.

(2) ∀ξ < ω1∃η < ω1[aξ > aη].

For, otherwise there is a ξ < ω1 such that ∀η < ω1[aξ ≤ aη]. But then {(aη, qη) : η < ω1}
is countable, contradiction.

By (2) there is a strictly increasing 〈α(ξ) : ξ < ω1〉 such that aα(ξ) > aα(η) for all
ξ < η, contradiction.

Suppose that 〈(aξ, qξ) : ξ < ω1〉 is a one-one sequence and f : {(aξ, qξ) : ξ < ω1} → R

is strictly increasing. Define g(aξ) = f(aξ, 0) for all σ < ω1. Then 〈aξ : ξ < ω1〉 is one-one
and g : {aξ : ξ < ω1} → R is strictly increasing, contradiction.

If S is a subset of a linear order L, a convex component of S is a maximal convex subset
of S.

The following theorem is given because of its proof; we already know from Theorem
22.3 that there is an Aronszajn tree.

Theorem 22.18. Let L be a dense Aronszajn line. Then there is an Aronszajn tree.

Proof. First note:

(1) If C is a nonempty convex subset of L, then C has a cofinal and coinitial subset of one
of the following types:

(a) 0, if |C| = 1;
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(b) {0, 1}, if C has both endpoints;
(c) ω, if C has a left endpoint but no right endpoint;
(d) ω∗, if C has a right endpoint but no left endpoint;
(e) ω∗ + ω, if C has no endpoints.

We let S(C) be a cofinal and coinitial subset of C of the indicated type. Note that if J is
a convex component of C\S(C) then there is an x ∈ S(C) such that ∀y ∈ J [x < y] and
{x} ∪ J is connected.

We now define by recursion on β < ω1 objects U (β), L(β), and ≤β . Let U (0) = {L},
L(0) = S(L), and ≤0= {(a, a) : a ∈ S(L)}. Let U (1) be the collection of all convex
components of L\S(L), and L(1) =

⋃

C∈U (1) S(C). Thus L(1) ⊆
⋃

U (1) ⊆ L\L(0), so

L(0) ∩ L(1) = ∅. Now we say that an ordered pair (x, y) is 1-acceptable if x ∈ S(L),
y ∈ L(1), and if J is the member of U (1) such that y ∈ J , then ∀z ∈ J [x < z] and {x}∪J
is convex. Now we define

≤1=≤0 ∪{(z, z) : z ∈ L(1)} ∪ {(x, y) : (x, y) is a 1-acceptable pair}.

Note that if y ∈ L(1) then there is a unique x ∈ L(0) such that x ≤1 y. Namely, there
is a unique J ∈ U (1) such that y ∈ J , and then there is a unique x ∈ L(0) such that
∀z ∈ J [x < z] and {x} ∪ J is connected. So (x, y) is 1-acceptable, and hence x ≤1 y.

Clearly (L(0) ∪ L(1),≤1) is a partial order.
Now suppose that 2 ≤ α < ω1 and the following hold for all β < α:

(2) U (β) is the collection of all convex components of L\
⋃

γ<β L(γ).

(3) L(β) =
⋃

C∈U (β) S(C) ⊆
⋃

U (β) = L\
⋃

γ<β L(γ).

(4) ≤β is a partial order on
⋃

γ≤β L(γ).

(5) ≤γ⊆≤ β for all γ < β.

(6) ≤β=
⋃

γ<β ≤γ ∪{(z, z) : z ∈ L(β)} ∪ {(x, y) : (x, y) is a β-acceptable pair}, where
(x, y) is β-acceptable iff there is a γ < β such that x ∈ L(γ), y ∈ L(β), and if J is the
member of U (γ + 1) containing y, then ∀z ∈ J [x < z] and {x} ∪ J is convex. (Note that
if y ∈ L(β), then by (3) there is a C ∈ U (β) such that y ∈ S(C), hence y ∈ C, and by (2)
C ⊆ L\

⋃

θ<β L(θ) ⊆ L\
⋃

θ≤γ+1 L(θ), so y ∈ L\
⋃

θ≤γ+1 L(θ), and hence by (2) y ∈ J for
some J ∈ U (γ + 1).)

(7) U (β) 6= ∅.

(8) U (β) is countable.

(9) L(β) 6= ∅.

(10) L(β) is countable.

(11) If γ < δ < β, x ∈ L(γ), y ∈ L(δ), z ∈ L(β), x ≤β z and y ≤β z, then x ≤δ y.

(12) If γ < β and y ∈ L(β), then there is an x ∈ L(γ) such that x ≤β y.

Clearly (2)–(12) hold for β = 0 and β = 1. Now we define U (α) to be the collection of
all convex components of L\

⋃

γ<α L(γ). Let L(α) =
⋃

C∈U (α) S(C). Note that L(α) ⊆
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⋃
U (α) = L\

⋃

γ<α L(γ). Hence if δ ≤ α and y ∈ L(α), then y ∈ L\
⋃

γ<α L(γ) ⊆
L\
⋃

γ<δ Lδ, and so y is a member of exactly one C ∈ U (δ). Let ≤α=
⋃

γ<α ≤γ ∪{(z, z) :
z ∈ L(α)} ∪ {(x, y) : (x, y) is an α-acceptable pair}, where (x, y) is α-acceptable iff there
is a γ < α such that x ∈ L(γ), y ∈ L(α), and if J is the member of U (γ + 1) containing
y, then ∀z ∈ J [x < z] and {x} ∪ J is convex. Clearly (2)–(6) hold for α. By (10) for all
β < α it follows that (7) and (9) hold for α. Now suppose that U (α) is uncountable. For
each C ∈ U (α) choose xC ∈ C. Let D =

⋃

β<α L(β) and M = D ∪ {xC : C ∈ U (α)}.
Then D is countable and M is uncountable. We claim that D is weakly dense in M . For,
suppose that a, b ∈ M with a < b. If one of a, b is in D that gives the desired result.
Suppose that a = xC and b = xD. Then (a, b) has some element y ∈ D, as desired. So
D is weakly dense in M . By Proposition 21.48, M can be isomorphically embedded in
R, contradiction. So U (α) is countable, giving (8) for α. Then (10) for α follows. Now
assume the hypothesis of (11) with α in place of β. Then (x, z) and (y, z) are α-acceptable.
Hence there exist J ∈ U (δ + 1) and K ∈ U (γ + 1) such that z ∈ J , ∀w ∈ J [y < w] and
{y} ∪ J is connected, and z ∈ K, ∀w ∈ K[x < w] and {x} ∪ K is connected. Now
J ⊆ L\

⋃

θ≤δ L(θ) ⊆ L\
⋃

θ≤γ L(θ) and z ∈ J ∩K, so J ∪K is connected. Thus {y}∪J ∪K
is connected. Since {y} ∪ J ⊆ L\

⋃

θ≤γ L(θ), it follows that {y} ∪ J ⊆ K. Hence (x, y) is
δ-acceptable, and hence x ≤δ y. So (11) holds. Finally, for (12) assume that γ < α and
y ∈ L(α). Then y ∈ L\

⋃

θ≤γ L(θ), so we can let J be the member of U (γ + 1) such that
y ∈ J . Thus J is a convex component of

L\
⋃

θ≤γ

L(θ) =



L\
⋃

θ<γ

L(θ)



\L(γ)

=




⋃

C∈U (γ)

C



 \
⋃

C∈U (γ)

S(C)

=
⋃

C∈U (γ)

(C\S(C)).

It follows that there is a C ∈ U (γ) such that J is a convex component of C\S(C). Hence
there is an x ∈ S(C) such that ∀w ∈ J [x < w] and {x} ∪ J is connected. So x ∈ L(γ) and
(x, y) is α-acceptable. So x ≤α y. This proves (12).

This completes the recursive construction.
Let T =

⋃

α<ω1
L(α) and ≤T=

⋃

α<ω1
≤α.

(13) ∀γ, α < ω1[γ ≤ α→ ∀C ∈ U (α)∃D ∈ U (γ)[C ⊆ D]]

For, suppose that C ∈ U (α). Then C is a convex subset of L\
⋃

δ<δ L(δ) ⊆ L\
⋃

δ<γ L(δ),
so it is a convex subset of L\

⋃

δ<γ L(δ) and hence is contained in a convex component D
of L\

⋃

δ<γ L(δ); so D ∈ Uγ .

(14) If x ≤α y, x ∈ L(γ), y ∈ L(δ), and x 6= y, then γ < δ ≤ α and x ≤δ y.

We prove this by induction on α. Suppose that it holds for all β < α. If x ≤β y for some
β < α, the inductive hypothesis applies. Otherwise we have y ∈ L(α), hence δ = α, and
γ < α by definition.
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(15) For each α < ω1, ≤α is transitive.

For, suppose that x ≤α y ≤α z. We may assume that x ∈ L(γ), y ∈ L(δ), z ∈ L(α), and
γ < δ < α. Thus (x, y) is δ-acceptable and (y, z) is α-acceptable. Let J be the member of
U (γ+ 1) such that y ∈ J . Then ∀w ∈ J [x < w], and {x}∪J is convex. Also, let K be the
member of U (δ + 1) such that z ∈ K. Then ∀w ∈ K[y < w], and {y} ∪K is convex. By
(7) let D ∈ U (γ + 1) be such that K ⊆ D. Since {y} ∪K is convex, y ∈ (L\

⋃

θ≤γ L(θ)),
and D is a convex component of L\

⋃

θ≤γ L(θ), it follows that y ∈ D. Hence D = J . Thus
J is the member of U (γ + 1) such that z ∈ J , and ∀w ∈ J [x < w], and {x} ∪ J is convex.
So (x, z) is α-acceptable, and so x ≤α z.

(16) For all α < ω1 the system (
⋃

β≤α L(β),≤α) is a tree of height α + 1 such that L(β)
is the set of all elements of height β, for each β ≤ α.

This is easily seen by induction on α.

(17) (T,≤T ) is a tree of height ω1 such that L(β) is the set of all elements of height β, for
each β < ω1.

(18) T does not have a branch of length ω1.

For, suppose that 〈xα : α < ω1〉 is a branch. Then by construction xξ <L xβ if α < β,
contradiction.

Theorem 22.19. If there is a Suslin line, then there is a Suslin tree.

Proof. Assume that there is a Suslin line. Then by Theorem 21.17 we may assume
that we have a linear order L satisfying the following conditions:

(1) L is dense, with no first or last elements.

(2) No nonempty open subset of L is separable.

(3) L is ccc.

(We do not need the other condition given in Theorem 21.17.)
Now we define by recursion elements aα, bα of L, for α < ω1. If these have already

been defined for all β < α, then the set {aβ : β < α} ∪ {bβ : β < α} is countable, and
hence by (2) it is not dense in L. Let (c, d) be an open interval disjoint from this set, and
pick aα, bα so that c < aα < bα < d Thus for any ξ < α one of these conditions holds:

aξ < aα < bα < bξ;
aα < bα < aξ < bξ;
aξ < bξ < aα < bα.

Hence

(1) ∀ξ, α < ω1[ξ < α→ [[aα, bα] ⊆ (aξ, bξ) or [aα, bα] ∩ (aξ, bξ) = ∅].

Now we define a relation ≺ on ω1 as follows: for any ξ, α < ω1,

ξ ≺ α iff ξ < α and [aα, bα] ⊆ (aξ, bξ).
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If ξ ≺ η ≺ α, then ξ < η < α, hence ξ < α, [aη, bη] ⊆ (aξ, bξ), and [aα, bβ] ⊆ (aη, bη),
hence [aα, bβ] ⊆ (aξ, bξ); so ξ ≺ α. Thus ≺ is transitive. Clearly it is irreflexive. So ≺ is a
partial order on ω1.

Now suppose that ξ ≺ α, η ≺ α, and ξ 6= η. We show that ξ ≺ η or η ≺ ξ; hence
(ω1,≺) is a tree. Wlog ξ < η. Now [aα, bα] ⊆ (aξ, bξ) ∩ (aη, bη), so (aξ, bξ) ∩ (aη, bη) 6= ∅,
so by (1) [aη, bη] ⊆ (aξ, bξ). Thus ξ ≺ η, as desired.

Now suppose that 〈α(ξ) < ξ < ω1〉 is ≺-increasing. Thus 〈α(ξ) < ξ < ω1〉 is <-
increasing and ∀ξ, η < ω1[ξ < η → [[aα(η), bα(η)] ⊆ (aα(ξ), bα(ξ)). Then

〈(aα(ξ), bα(ξ))\[aα(ξ+1), bα(ξ+1)] : ξ < ω1〉

is a system of ω1 pairwise disjoint open sets in L, contradiction.
Finally, if 〈α(ξ) : ξ < ω1〉 is a system of pairwise incomparable elements undet ≺,

then by (1), 〈(aα(ξ), bα(ξ)) : σ < ω1〉 is a system of pairwise disjoint open intervals in L,
contradiction.

We mention without proof a result for higher cardinals. Assuming V = L, for each
uncountable regular cardinal κ, there is a κ-Suslin tree iff κ is not weakly compact. It is a
probably difficult open problem to show that it is consistent (relative to ZFC or even ZFC
plus some large cardinals) that for each uncountable cardinal κ there is no κ+-Aronszajn
tree.

Theorem 22.20. If there is a Kurepa line, then there is a Kurepa tree.

Proof. Let L be a Kurepa line, and let 〈aα : α < ω1〉 be an enumeration of a
dense subset of L. We now define the levels L(α) of a tree for α ≤ ω1, by recursion.
Let L(0) = {L}. Suppose that α < ω1 and L(α) has been defined so that the following
conditions hold:

(1) L(α) is a countable set of pairwise disjoint convex subsets of L.

(2) {ξ < ω1 : aξ /∈
⋃
L(α)} is countable.

(3) If C,D ∈ L(α) and C < D, then there is a ξ < ω1 such that aξ /∈
⋃
L(α) and

C < aξ < D.

(4) L\{aξ : aξ /∈
⋃
L(α)} ⊆

⋃
L(α).

(5) aα /∈
⋃
L(α+ 1).

Obviously these hold for α = 0. Now for each C ∈ L(α) we define a set C′:

(6) If aα ∈ C and (−∞, aα)∩C 6= ∅ 6= (aα,∞)∩C, let C′ = {(−∞, aα)∩C, (aα,∞)∩C}.

(7) If aα is the first element of C let C′ = {C\{aα}}.

(8) If aα is the last element of C let C′ = {C\{aα}}.

(9) If aα /∈ C let C′ = {C}.

Now let L(α+ 1) = (
⋃

C∈L(α)C
′)\{∅}. Clearly (1)–(5) hold for α + 1.
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Now suppose that γ ≤ ω1 is limit and L(α) has been defined so that (1)–(5) hold for
all α < γ. For each α < γ let Mα = {aξ : aξ /∈

⋃
L(α)}. Let N =

⋃

α<γMα. Then for any
α < γ we have

L\N ⊆ L\Mα ⊆
⋃

L(α),

and so

(10) L\N ⊆
⋂

α<γ

⋃

L(α) =
⋃

f∈F

⋂

α<γ

f(α),

where F =
∏

α<γ L(α). Let L(γ) =
{⋂

α<γ f(α) : f ∈ F and
⋂

α<γ f(α) 6= ∅
}

. Clearly
L(γ) is a collection of pairwise disjoint convex subsets of L. Clearly (3) holds. For (4),
L\
⋃
L(γ) = L\

⋃

f∈F

⋂

α<γ f(α) ⊆ N by (10). Hence if b ∈ L\
⋃
L(γ) then there is an

α < γ such that b = aξ with aξ /∈
⋃
L(α). So for all C ∈ L(α) we have b /∈ C, and hence

for all f ∈ F b /∈
⋂

β<γ f(β). Hence b = aξ /∈
⋃
L(γ). This proves (4). Now suppose

that λ < ω1. We claim that L(γ) is countable; i.e. (1) holds. In fact, suppose not. If
⋂

α<γ f(α) and
⋂

α<γ g(α) are distinct members of L(γ), then there is an α < γ such that
f(α) 6= g(α). So f(α), g(α) ∈ L(α). Say f(α) < g(α). Then by (3) there is a ξ < ω1

such that aξ /∈ L(α) and f(α) < aξ < g(α). Thus if we choose xf ∈
⋂

β<γ f(β) for each
⋂

β<γ f(β) ∈ L(γ), the set N is dense in N ∪ {xf :
⋂

β<γ f(β) ∈ L(γ)}, contradiction. So
L(γ) is countable. For (2), if aξ /∈

⋃
L(γ) then aξ ∈ N by (10); so (2) holds.

Thus we have a tree of height ω1 + 1. Note that aξ /∈
⋃
L(ω1) for all ξ < ω1, by (5).

Suppose that b, c ∈ L\{aξ : ξ < ω1} and b < c. Then by (4) there are C,D ∈ L(ω1) such
that b ∈ C and c ∈ D. Choose aα with b < aα < c. Then C 6= D. This shows that L(ω1)
has more than ω1 members, and hence our tree restricted to levels less than ω1 has more
than ω1 branches of length ω1.

Proposition 22.21. Let T ⊆ <ωω consist of all finite strictly decreasing sequences. Then
there is no path through T .

Proof. Suppose that P is a path through T . Choose m so that 〈m〉 ∈ P . Then there
are at most m elements of P above 〈m〉, contradiction.

Proposition 22.22. (III.5.11) If T is an ω1-tree and there is an order preserving map
from T into R, then T is an Aronszajn tree.

Theorem 22.23. (III.5.12) There is an Aronszajn tree that has an order preserving map
into Q.

Proof. We first define sets which will be the levels of the tree:

L0 = {0};

L1 = ω\{0};

Ln+1 = {ω · n+ k : k ∈ ω} for 0 < n < ω;

Lα = {ω · α+ k : k ∈ ω} for ω ≤ α < ω1
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Also, for each α < ω1 we take any partition 〈Eξα+1 : ξ ∈ Lα〉 of Lα+1 into infinite sets.
Now the tree is

⋃

α<ω1
Lα, and for each α < ω1, Tα =

⋃

β<α Lα.
Now we define the order < ∩(Tα×Tα) and ϕ ↾ Tα by induction α. Let < ∩(T0×T0) = ∅

and ϕ ↾ T0 = ∅. Let < ∩(T1 × T1) = ∅ and ϕ ↾ T1 = {(0, 0)}. Let < ∩(T2 × T2) = {(0, m) :
m ∈ ω\1} and ϕ ↾ T2 = {(0, 0)} ∪ ψ, where ψ is a bijection from ω\1 onto the rationals in
(0,∞). Now suppose that 1 ≤ α and < ∩(Tα+1 × Tα+1) and ϕ ↾ Tα have been defined so
that the following condition holds:

(1) ∀x ∈ Tα∀q ∈ Q[ϕ(x) < q → ∃y ∈ Lα[x < y ∧ ϕ(y) = q]].

Note that (1) holds vacuously if α = 0, since T0 = ∅. For α = 1, if x ∈ T1 then x ∈ L0, so
x = 0. Then if q ∈ Q and ϕ(x) < q, it follows that ϕ(x) = 0, so q > 0, and the existence
of the desired y follows from the definition of ϕ ↾ T2.

Now for each ξ ∈ Lα we put each member of Eξα+1 directly above ξ. This defines

< ∩(Tα+2 × Tα+2). We extend ϕ to Tα+2 by mapping each set Eξα+1 one-one onto Q ∩
(ϕ(ξ),∞). To check (1) for α + 1, suppose that x ∈ Tα+1 and ϕ(x) < q ∈ Q.

Case 1. x ∈ Lα. Then there is a z ∈ Exα+1 such that x < z and ϕ(z) = q, as desired.
Case 2. x ∈ Tα. Choose r ∈ Q such that ϕ(x) < r < q. Hence by (1) for α, there is a

y ∈ Lα such that x < y and ϕ(y) = r. Then by definition there is a z ∈ Eyα+1 such that
y < z and ϕ(z) = q, as desired.

Now we assume that γ is a countable limit ordinal and < ∩(Tγ × Tγ) and ϕ ↾ Tγ have
been defined. Let {(xk, qk) : k ∈ ω} enumerate all pairs (x, q) such that x ∈ Tγ and
ϕ(x) < q ∈ Q.

(2) For each k ∈ ω there is a path Pk through Tγ such that xk ∈ Pk and sup{ϕ(y) : y ∈
Pk} = qk.

For, let k ∈ ω. Let 〈αn : n ∈ ω〉 be a strictly increasing sequence of ordinals such that
height(xk) < α0 and supn∈ω αn = γ. Let 〈rn : n ∈ ω〉 be a strictly increasing sequence
of rationals such that ϕ(xk) = r0 and supn∈ω rn = qk. Then we define 〈zn : n ∈ ω〉 as
follows. Let z0 = xk. If zn has been defined so that ht(zn) < αn and ϕ(zn) = rn, we apply
(1) to obtain zn < zn+1 ∈ Lαn and ϕ(zn+1) = rn+1. Now let Pk be the path through Tγ
determined by the zns. This proves (2).

Now we put ω ·γ+k directly above Pk, for each k ∈ ω, and set ϕ(ω ·γ+k) = qk.

We define (y↓′) = {x : x ≤ y} and (y↑′) = {x : y ≤ x}.

Proposition 22.24. Let T be a tree. We call U ⊆ T open iff for all t ∈ U of limit height
there is an x < t such that (x↑) ∩ (t↓′) ⊆ U . Then the collection of all open sets forms a
topology on T .

Proof. Clearly ∅ and T are open. Suppose that U1 and U2 are open and t ∈ U1 ∩ U2

is of limit height. Choose x < t such that (x↑) ∩ (t↓′) ⊆ U1, and choose y < t such that
(y↑) ∩ (t↓′) ⊆ U2. Wlog x ≤ y. Then (y↑) ∩ (t↓′) ⊆ U1 ∩ U2, so U1 ∩ U2 is open. Finally,
suppose that A is a collection of open sets and t ∈

⋃
A is of limit height. Say t ∈ U ∈ A .

Choose x < t such that (x↑)∩ (t↓′) ⊆ U . Then (x↑)∩ (t↓′) ⊆
⋃

A . So
⋃

A is open.
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Proposition 22.25. If T is a tree and ϕ : T → R is order preserving, then ϕ is continuous
iff for each limit γ and each t ∈ Levγ(T ), ϕ(t) = supx<t ϕ(x).

Proof. ⇒: Assume that ϕ is continuous and t has limit level. By order preserving,
ϕ(x) < ϕ(t) for all x < t; so supx<t ϕ(x) ≤ ϕ(t). Suppose that supx<t ϕ(x) < ϕ(t), and
let ε = ϕ(t)− supx<t ϕ(x). Now t ∈ ϕ−1[(ϕ(t)− ε, ϕ(t) + ε)], and ϕ−1[(ϕ(t)− ε, ϕ(t) + ε)]
is open, so there exist z, s such that s has limit level, z < s, and t ∈ (z ↑) ∩ (s ↓′) ⊆
ϕ−1[(ϕ(t) − ε, ϕ(t) + ε)]. Now take any y with z < y < t. Then y ∈ (z ↑) ∩ (s ↓′), so
y ∈ ϕ−1[(ϕ(t)− ε, ϕ(t) + ε)]. Thus ϕ(t)− ε < ϕ(y). But ϕ(y) ≤ supx<t ϕ(x) = ϕ(t)− ε,
contradiction.
⇐: Assume the limit condition, and suppose that t ∈ ϕ−1[(u, v)]. If t is not of limit

level, then t ∈ {t} ⊆ ϕ−1[(u, v)], and {t} is open. If t is of limit level, by the limit condition
choose x < t such that u < ϕ(x). Then t ∈ (x↑) ∩ (t↓) ⊆ ϕ−1[(u, v)].

Lemma 22.26. (III.5.14) The function ϕ : T → Q constructed in the proof of Theorem
22.23 is continuous.

An Aronszajn tree T is special iff there are antichains An for n ∈ ω such that T =
⋃

n∈ω An.

Lemma 22.27. (III.5.17) If T is an Aronszajn tree, then the following conditions are
equivalent:

(i) T is special.

(ii) There is an order preserving map ϕ : T → Q.

Proof. (ii)⇒(i): Assume (ii). Then ϕ−1[{q}] is an antichain for every q ∈ Q.

(i)⇒(ii): Assume that T is special; say T =
⋃

n∈ω An, each An an antichain. Let
Bn = An\

⋃

i<n Ai for all n ∈ ω. Then each Bn is an antichain, the Bns are pairwise
disjoint and T =

⋃

n∈ω Bn. We now define ϕ ↾ Bn by recursion on n. For each x ∈ T let
a(x) be the n such that x ∈ Bn. Let ϕ(x) = 0 for all x ∈ B0. Now assume inductively
that n > 0. For each t ∈ Bn we define

pt = max({−1} ∪ {ϕ(x) : x < t and a(x) < n});

qt = min({1} ∪ {ϕ(x) : t < x and a(x) < n}).

Note that pt < qt. We define ϕ(t) = (pt + qt)/2. If x ∈
⋃

m<nBm and x < t, then
ϕ(x) ≤ pt < ϕ(t). If x ∈

⋃

m<nBm and t < x, then ϕ(t) < qt ≤ ϕ(x).

Lemma 22.28. (III.5.18) Suppose that T is an uncountable tree with no uncountable
chains, and E ⊆ [T ]<ω is pairwise disjoint and uncountable. Then there exist a, b ∈ E

such that x and y are incomparable for all x ∈ a and y ∈ b.

Proof. We may assume that |E | = ω1 and there is a positive integer n such that
|a| = n for all a ∈ E . Write E = {aα : α < ω1} without repetitions, and aα = {xαi : i < n}.
The case n = 1 is trivial, since 〈xαi : α < ω1〉 cannot be a chain. Hence assume that n > 1.

Let U be an ultrafilter on ω1 which contains all co-countable sets.
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Suppose the assertion fails. Then for all distinct α, β < ω1 there exist iαβ, jαβ < n

such that xαiαβ and xβjαβ are comparable. For each α < ω1 we have

ω1\{α} =
⋃

i,j<n

{β ∈ ω1\{α} : (iαβ , jαβ) = (i, j)}.

Hence there exist iα, jα < n such that Mα
def
= {β ∈ ω1\{α} : (iαβ , jαβ) = (iα, jα)} ∈ U .

Now 〈(iα, jα) : α < ω1〉 is a function mapping ω1 into n×n, so there exist an uncountable
S and i, j < n such that ∀α ∈ S[iα = i and jα = j]. Take any distinct α, β in S. Then

Mα∩Mβ ∈ U and hence Mα ∩Mβ is uncountable. Now (xαi ↓
′)∪ (xβi ↓

′) is countable, while
for each γ ∈Mα ∩Mβ the element xγj = xγjαγ is comparable with xαiαγ = xαi and similarly

xγj is comparable with xβj . If follows that some xγj is above xαi and xβi , so xαi and xβi are
comparable. Thus 〈xαi : α ∈ S〉 is an uncountable chain, contradiction.

Proposition 22.29. If ϕ : T → Q is order preserving, then ϕ is continuous iff for every
limit t ∈ T and every positive q ∈ Q there is a s ⊏ t such that ϕ(t)− q < ϕ(w) < ϕ(t) for
all w such that s ⊏ w ⊏ t.

Proof. ⇐: Let V be open in Q; we want to show that ϕ−1[V ] is open in T . Take
any limit t ∈ ϕ−1[V ]. Choose a positive q ∈ Q such that ϕ(t) ∈ (ϕ(t)− q, ϕ(t) + q) ⊆ V .
Choose s ⊏ t such that ϕ(t) − q < ϕ(w) < ϕ(t) for all w such that s ⊏ w ⊏ t. Then
(s↑) ∩ (t↓′) ⊆ ϕ−1[(ϕ(t)− q, ϕ(t) + q)] ⊆ ϕ−1[V ].
⇒: Assume that ϕ is continuous, t ∈ T is limit, and q ∈ Q is positive. Then

t ∈ ϕ−1[ϕ(t) − q, ϕ(t) + q)] and ϕ−1[ϕ(t) − q, ϕ(t) + q)] is open. Choose s ⊏ t such that
(s↑) ∩ (t↓′) ⊆ ϕ−1[ϕ(t) − q, ϕ(t) + q)]. Then ϕ(t) − q < ϕ(w) < ϕ(t) for all w such that
s ⊏ w ⊏ t.

Lemma 22.30. (III.5.20) If T is a tree and ϕ is an order preserving map from T into R,
then there is an order preserving continuous map ψ : T → R.

Proof. Define

ψ(t) =

{
ϕ(t) if t does not have limit height,
supx<t ϕ(x) if t has limit height.

A tree T is rooted iff |Lev0(T )| = 1.
T is Hausdorff iff for all limit γ and all x, y ∈ Levγ(T ), if x↓= y↓ then x = y.

Proposition 22.31. T is Hausdorff in the tree topology iff T is Hausdorff in the above
sense.

Proof. ⇐. Let s 6= t be elements of T . If neither is limit, then {s} and {t} are
disjoint open neighborhoods. Suppose, e.g., that s is non-limit but t is limit. Then {s}
and T\{s} are disjoint neighborhoods. Now suppose that both s and t are limit. If they
are comparable, say s ⊏ t. Then for any x < s, (x↑) ∩ (s↓′) and (s↑′) ∩ (t↓′) are disjoint
neighborhoods. Suppose that s and t are not comparable. If they are at different levels,
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clearly disjoint open neighborhoods exist. Suppose that they are at the same level. Then
by assumption (s↓) 6= (t↓). If (s↓)∩(t↓) = ∅, then clearly there are disjoint neighborhoods.
If (s↓)∩(t↓) 6= ∅, then there is a largest x below both, using Hausdorffness. Then (x↑)∩(s↓′)
and (x↑) ∩ (t↓′) are disjoint open neighborhoods.
⇒. Suppose that x and y are both at the same limit level, x 6= y. Let U, V be disjoint

neighborhoods. Choose s ⊏ x with (s↑)∩(x↓′) ⊆ U and choose t ⊏ y with (t↑)∩(y↓′) ⊆ V .
Choose w with s ⊏ w ⊏ x and ht(t) < ht(w). Then w ∈ (x↓). If w ∈ (y↓), then w and t
are comparable; hence t ⊏ w. But then w ∈ (t↑) ∩ (y↓′), so w ∈ U ∩ V , contradiction. It
follows that (x↓) 6= (y↓).

Proposition 22.32. There is a non-Hausdorff Aronszajn tree that has an order preserving
map into the rational numbers.

Proof. We modify the proof of Theorem 22.23. Let s : ω → ω×2 be a bijection. Define
P ′
k,ε = Pk for all k ∈ ω and ε ∈ 2. Define P ′′

l = P ′
s(l) for any l ∈ ω. Put ω · γ + l directly

above P ′′
l for each l ∈ ω. Note that P ′′

s−1(k,0) = P ′
k,0 = Pk and P ′′

s−1(k,1) = P ′
k,1 = Pk.

Proposition 22.33. There is a Hausdorff Aronszajn tree that has an order preserving
map into the rationals.

Proof. We modify the proof of Theorem 22.23. Define k ≡ l iff Pk = Pl. Note that
〈ω + k : k ∈ ω〉 is a pairwise incomparable set in Tγ . Hence there are infinitely many
equivalence classes. Let s : ω → Tγ/ ≡ be a bijection. For each k ∈ ω let P ′

k = Pl where l
is any integer equivalent to k. Put ω · γ + k directly above P ′

k.

If T is a κ-tree, then we define T p = {x ∈ T : |x↑′| = κ}.

Lemma 22.34. (III.5.26) If κ is regular and T is a κ-tree, then:
(i) T p is a normal subtree of T .
(ii) T is well-pruned iff T is rooted and T p = T .
(iii) T p is a κ-tree.
(iv) (T p)p = T p.
(v) For each y ∈ Lev0(T p) the set (y↑′) ∩ T p is a well-pruned κ-tree and is a subtree

of T with y as only root.

Proof. (i) and (ii) are obvious. For (iii), note that for any α < κ we have

T =
⋃

x∈Lev(α)(T )

(x↑′) ∪
⋃

ξ≤α

Lev(α)(T ).

Since T is a κ-tree, there is an x ∈ Levα(T ) such that |(x↑′)| = κ. Hence T p has elements
of each level, and (iii) follows.

For (iv), (T p)p = {x ∈ T p : |(x↑′)| = κ} = T p.
(v) is obvious.

Lemma 22.35. (III.5.27) Let κ be a regular cardinal.
(i) If there is a κ-Aronszajn tree, then there is well-pruned κ-Aronszajn tree.
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(i) If there is a κ-Suslin tree, then there is well-pruned κ-Suslin tree.

Proposition 22.36. Let κ be a regular cardinal.
(i) If there is a κ-Aronszajn tree, then there is well-pruned κ-Aronszajn Hausdorff

tree.
(i) If there is a κ-Suslin tree, then there is well-pruned κ-Suslin Hausdorff tree.

Proof. For each limit ordinal γ < κ, define x ≡γ y iff x, y ∈ Levγ(T ) and (x↓) = (y↓).
This is an equivalence relation on Levγ(T ). We introduce new elements zγt for each
equivalence class t, and set zγt < u for each u ∈ t, with other obvious stipulations.

If κ is regular, we say that T is a κ-Kurepa tree iff T is a κ-tree with at least κ+ branches
of length κ.

Proposition 22.37. For κ = ω or κ strongly inaccessible, the tree 2<κ is a κ-Kurepa
tree.

For any regular κ, a κ-Kurepa family is a set F ⊆ P(κ) such that |F | ≥ κ+ and ∀α <
κ[|{X ∩ α : X ∈ F}| < κ].

Lemma 22.38. (III.5.40) If κ is regular, then there is a κ-Kurepa tree iff there is a
κ-Kurepa family.

Proof. ⇐: suppose that F is a κ-Kurepa family. Let

T =
⋃

α<κ

{χX∩α : X ∈ F},

where χX∩α is the characteristic function of X ∩α within α. Clearly this gives a κ-Kurepa
tree.
⇒: Assume that T is a κ-Kurepa tree. Now |T | = κ, so we may assume that T = κ.

Let F be the set of all branches of length κ in T ; |F | ≥ κ+. For each α < κ fix δ < κ
so that α ⊆ Tδ. Now for each X ∈ F let 〈xXξ : ξ < κ〉 enumerate X in increasing order.

Define f(xXδ ) = {xXβ : β < δ} = X ∩ Tδ. Since {xXδ : X ∈ F} is a subset of Levδ,
which has size less than κ, it follows that {X ∩ Tδ : X ∈ F} has size less than κ. For
each Y ∈ {X ∩ Tδ : X ∈ F} let g(y) = Y ∩ α. Then g maps {X ∩ Tδ : X ∈ F} onto
{X ∩ α : X ∈ F}. Hence |{X ∩ α : X ∈ F}| ≤ |{X ∩ Tδ : X ∈ F}| < κ.

Proposition 22.39. (III.5.41) If κ is regular and there is a κ-Kurepa tree, then there is
one which is Hausdorff and well-pruned.

Proof. Suppose that κ is regular and T is a κ-Kurepa tree. For each limit ordinal
α < κ define s ≡α t iff height(s) = α = height(t) and s↓ = t↓. Let {uα,x : α a limit ordinal
less than κ and x is an ≡α-class} be a system of elements not in T . We define T ′ to be
T together with all such elements. We define < on T ′ by extending the order on T and
setting

s < uα,x iff ∃t ∈ x[s < t];

uα,x < s iff ∃t ∈ x[t ≤ s];

uα,x < uβ,y iff ∃s ∈ x∃t ∈ y[s < t].
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Then T ′ is a tree, with

htm(T ′) = htm(T ) for all m ∈ ω,

htω(T ′) = {uω,x : x an ≡ω-class};

htω+m(T ′) = htω+m−1(T )for all m ∈ ω\1;

htω·α(T ′) = {uω·α,x : x an ≡ω·α-class} for all α > 0;

htω·α+m(T ′) = htω·α+m−1(T ) for all α > 0 and m ∈ ω\1.

Clearly T ′ is a Hausdorff κ-Kurepa tree.
Since |ht0(T ′)| < κ and κ is regular, there is a t ∈ ht0(T ′) with κ+ branches of length

κ through it.
Let T ′′ = {s ∈ T ′ : t ≤ s and there are κ+ branches through t of length κ}. Clearly

T ′′ is a normal subtree of T ′. Let C be the set of all branches through t in T ′ of length κ.
Thus |C| = κ+. Now for any α < κ we have

C =
⋃

s∈htα(T ′)

{b ∈ C : s ∈ b},

and |htα(T ′′)| < κ, so there is an s ∈ htα(T ′) such that |{b ∈ C : s ∈ b}| ≥ κ+. this shows
that T ′′ is well-pruned and of height κ. Clearly T ′′ is a Hausdorff κ-Kurepa tree.

Proposition 22.40. (III.5.42) A tree T is Hausdorff and rooted iff T is isomorphic to a
subtree of some sequence tree B<α.

Proof. ⇐: ∅ is the root. Suppose that β is limit less than α and f ↾ β = f ↾ β. Then
f = g.
⇒: We define ϕ : T → <ht(T )T by recursion on height(t). For the root r of T

let ϕ(r) = ∅. Now suppose that β = γ + 1 < ht(T ) and t ∈ T has height β. We define
ϕ(t) = ϕ(t ↾ γ)⌢〈t〉. For β limit less than height(T ) and t of height β let ϕ(t) =

⋃

s⊏t ϕ(s);
this is unambiguous since T is Hausdorff.

Clearly ϕ is the desired isomorphism.

Proposition 22.41. Every tree is T1 in the tree topology.

Proof. Let t1, t2 be distinct members of T .
Case 1. Neither one is of limit level. Then {t1} and {t2} are disjoint open neighbor-

hoods.
Case 2. t1 is of limit level, but t2 is not. Then {t2} is open containing t2 but not t1,

and there clearly is an open set containing t1 but not t2.
Case 3. t2 is of limit level, but t1 is not. Ok by symmetry.
Case 4. Both have limit level.

Subcase 4.1. The levels are different; say by symmetry t1 ∈ Levα(T ) and t2 ∈
Levβ(T ) with α < β. Choose γ with α < γ < β, and let s < t2 have level γ. Then
(s↑) ∩ (t2↓′) is an open neighborhood of t2 disjoint from any standard open neighborhood
of t1.
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Subcase 4.2. The levels are the same, but (t1↓) 6= (t2↓). Then there is an x < t1
such that x 6< t2. With y < t2 such that level(x) =level(y) we then have disjoint open
neighborhoods (x↑) ∩ (t1↓′) and (y↑) ∩ (t2↓′).

Subcase 4.3. The levels are the same, and (t1↓) = (t2↓). Take any x < t1. Then
(x↑) ∩ (t1↓′) is open containing t1 but not t2, and (x↑) ∩ (t2↓′) is open containing t2 but
not t1.

Proposition 22.42. If T is a Hausdorff tree, then T is regular.

Proof. Suppose x ∈ U , U open. We want to find disjoint open sets U1, U2 such that
x ∈ U1 and T\U ⊆ U2.

Case 1. x is not at a limit level. Let U1 = {x} and U2 = T\{x}.
Case 2. x is at a limit level. Then there is a y < x such that (y↑) ∩ (x↓′) ⊆ U . Note

that if w is at a limit level and w 6≤ x then there is a t < w such that t 6< x. In fact, this
is clear if level(x) <level(w). If level(w) =level(x), then (w↓) 6⊆ (x↓) using Hausdorffness,
and the existence of t follows. If level(w) <level(x), then (w↓) 6⊆ (x↓) since w 6≤ x, again
using Hausdorffness. This proves the existence of such a t in any case. We let tw be such
a t.

If w is limit and y 6< w, then there is an s < w such that y 6< s. In fact, if
level(y) <level(w), then we can take s < w with level(s) = level(y). If level(w) ≤level(y),
any s < w works. An s such that s < w and y 6< s is denoted by sw. Now we set

U1 = (y↑) ∩ (x↓′);

U2 = {z : z non-limit and y 6< z} ∪ {z : z non-limit and z 6≤ x}

∪
⋃

{(tw↑) ∩ (w↓′) : w is limit and w 6≤ x}

∪
⋃

{(sw↑) ∩ (w↓′) : w is limit and y 6< w}.

Thus x ∈ U1. Suppose that z ∈ X\U . Then

z ∈ X\((y↑) ∩ (x↓′)) = {w : y 6< w} ∪ {w : w 6≤ x}.

Clearly then z ∈ U2. Finally, clearly U1 ∩ U2 = ∅.

Proposition 22.43. If T is Hausdorff, then it is zero-dimensional.

Proof. A base for the topology consists of all sets {t} with t not of limit level, and
all sets (y↑) ∩ (x↓′) where x is of limit level and y < x. Clearly each {t}, t not of limit
level, is clopen. We claim that (y↑) ∩ (x↓′) is clopen, where x is of limit level, and y < x.
It suffices to show that its complement

U
def
= {z : y 6< z} ∪ {z : z 6≤ x}

is open. First suppose that y 6< z. If z is not of limit level, then {z} ⊆ (T\U) and {z}
is open. If z is of limit level, take any w < z. Then z ∈ (w ↑) ∩ (z ↓′), and this set is
contained in {u : y 6< u}. Second suppose that z 6≤ x. If z is not of limit level then the
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desired conclusion is clear. Suppose that z is of limit level. Then (z ↓) 6⊆ (x ↓), using
Hausdorffness. So there is y < z such that y 6< x. Hence z ∈ (y↑) ∩ (z↓′), and this set is
contained in T\U .

Proposition 22.44. Assume GCH. If κ is regular then there is a κ+-Aronszajn tree.

Proof. Write κ = ℵα, and consider the set Hα defined on page 315. By Corollary
21.7, Hα is an ηα-set of size κ. Thus

(1) Hα is a linear order, and if A,B ⊆ Hα with |A|, |B| < κ and A < B, then there is a
c ∈ Hα such that A < c < B.

We note also the following properties of Hα:

(2) Hα is dense.

For, suppose that f, g ∈ Hα and f < g. Let β = χ(f, g), and choose γ < κ such that
f(γ) = 1 and ∀δ ∈ (γ, κ)[f(δ) = 0]. Note that f(β) = 0 and g(β) = 1.

Case 1. β < γ. Let h ↾ (γ + 1) = f ↾ (γ + 1), h(γ + 1) = 1, ∀δ ∈ (γ + 1, κ)[h(δ) = 0].
Then f < h < g.

Case 2. γ ≤ β. Then actually γ < β. Let h ↾ (β + 1) = f ↾ (β + 1), h(β + 1) = 1, and
∀δ ∈ (β + 1, κ)[h(δ) = 0]. Then f < h < g.

(3) For all f ∈ Hα the set (f,∞) has size κ.

In fact, say ξ < κ and f(ξ) = 1 while ∀η ∈ (ξ, κ)[f(η) = 0]. Then

κ ≥ |(f,∞)| ≥ |{g ∈ Hα : f ↾ (ξ + 1) = g ↾ (ξ + 1) and

∃η ∈ (ξ + 1, κ)[g(η) = 1 and ∀ρ ∈ (η, κ)[g(ρ) = 0]]}

=
∑

η∈(ξ+1,κ)

|{g ∈ Hα : f ↾ (ξ + 1) = g ↾ (ξ + 1) and

[g(η) = 1 and ∀ρ ∈ (η, κ)[g(ρ) = 0]]}|

=
∑

η∈(ξ+1,κ)

∣
∣(ξ+1,η)2

∣
∣

=

∣
∣
∣
∣
∣
∣

⋃

η∈(ξ+1,κ)

((ξ+1,η)2× {η})

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

⋃

0<ρ<κ

(ρ2× {ρ})

∣
∣
∣
∣
∣

=
∑

0<ρ<κ

2ρ = κ.

We will define the tree T and an order preserving map from T into Hα. First we define
sets which will be the levels of the tree:

Lev0 = {0};
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Lev1 = κ\{0};

Levn+1 = {κ · n+ k : k ∈ κ} for 0 < n < ω;

Levβ = {κ · β + k : k ∈ κ} for ω ≤ β < κ+

Also, for each β < κ+ we take any partition 〈Eξβ+1 : ξ ∈ Levβ〉 of Levβ+1, each Eξβ+1 of
size κ.

Now we define the tree, its order, and the order preserving function ϕ by induction
on the level. We let 0 be the root of the tree, and we define ϕ(0) = 0. Now suppose that
the tree and ϕ have been defined through level β, giving Tβ+1 and ϕ : Tβ+1 → Hα, so that
the following condition holds:

(4) ∀x ∈ Tβ∀q ∈ Hα[height(x) < β ∧ ϕ(x) < q → ∃y ∈ Levβ [x < y ∧ ϕ(y) = q]].

Note that (4) holds vacuously if β = 0. Now we put each member of Eξβ+1 directly above

ξ, for each ξ ∈ Levβ . We extend ϕ to Levβ+1 by mapping each set Eξβ+1 one-one onto
(ϕβ(ξ),∞). This is possible by (3). To check (4) for β+1, suppose that x ∈ Tβ+1, q ∈ Hα,
height(x) < β + 1, and ϕ(x) < q.

Case 1. x ∈ Tβ . Then by (1) choose r ∈ Hα such that ϕ(x) < r < q. Thus
height(x) < β and ϕ(x) < r. Hence by (4) for β, there is a y ∈ Lβ such that x < y and
ϕ(y) = r. Then by definition there is a z ∈ Eyβ+1 such that y < z and ϕ(z) = q, as desired.

Case 2. x ∈ Levβ . Then there is a z ∈ Exβ+1 such that x < z and ϕ(z) = q, as desired.

Now we assume that γ is a limit ordinal < κ+ and Tγ and ϕ have been defined for all β < γ.
Let {(xk, qk) : k ∈ κ} enumerate all pairs (x, q) such that x ∈ Tγ and ϕ(x) < q ∈ Hα.

(5) For each k ∈ κ there is a path Pk through Tγ such that xk ∈ Pk and ∀y ∈ Pk[ϕ(y) < qk].

For, let k ∈ κ. Let 〈βn : n ∈ κ〉 be a strictly increasing sequence of ordinals such that
height(xk) < β0 and supn∈κ βn = γ. Let 〈rn : n ∈ κ〉 be a strictly increasing sequence of
members of Hα with ϕ(xk) = r0 and ∀n ∈ κ[rn < qk], using the ηα property. Then we
define 〈zn : n ∈ κ〉 as follows Let z0 = xk. If zn has been defined so that height(zn) < βn
and ϕ(zn) = rn, we apply (4) to obtain zn < zn+1 ∈ Levβn and ϕ′(zn+1) = rn+1. If m
is limit < κ and zn has been defined for all n < m, we use the ηα property to choose zm
such that zn < zm for all n < m, and set ϕ(zm) = rm. Now let Pk be the path through
Tγ determined by the zns. This proves (5).

Now we put κ ·γ+k directly above Pk, for each k ∈ κ, and set ϕ(κ ·γ+k) = qk.

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·

Proposition 22.45. (III.5.45) Let T be κ-Suslin tree. For x ∈ T and D ⊆ T call D dense
above x iff ∀y ≥ x∃z ≥ y[z ∈ D]. Then for any D ⊆ T there is an α < κ such that for all
x ∈ Levα one of the following conditions holds:

(i) D is dense above x.
(ii) D ∩ (x↑′)) = ∅.

Proof. Fix D ⊆ T . Let A = {A ⊆ T : A is an antichain and ∀x ∈ A[D is dense above
x or D∩ (x↑′) = ∅]}. Then A is nonempty, for suppose that x ∈ T . If D is dense above x,
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then {x} ∈ A . If D is not dense above x, then there is a y ≥ x such that ∀z ≥ y[z /∈ D].
Then {y} ∈ A . Clearly if B ⊆ A is linearly ordered by ⊆, then

⋃
B ∈ A . So by Zorn’s

lemma A has a maximal member A under ⊆. Then |A| < κ, so we can choose α < κ
greater than the height of any member of A. Take any x ∈ htα, and suppose that D is
not dense above x. Then there is a y ≥ x such that ∀z ≥ y[z /∈ D]. Thus D ∩ (y↑′) = ∅.
By the maximality of A it follows that there is a z ∈ A such that z and y are comparable.
Since level(z) < level(x) ≤ level(y), it follows that z ≤ y. Since also x ≤ y, we have that
x and z are comparable. Since level(z) < level(x), we have z ≤ x. Hence D is not dense
above z, so D ∩ (z↑′) = ∅. It follows that D ∩ (x↑′) = ∅, as desired.

Proposition 22.46. (III.5.46) If T is a κ-Suslin tree, then |T\T p| < κ.

Proof. Applying III.5.45 to T p, let α < κ be such that for all x ∈ htα(T ) either T p

is dense above x or T p ∩ (x↑′) = ∅. If x ∈ htα(T ) and T p is dense above x, then for any
y ≥ x there is a z ≥ y such that z ∈ T p, hence |z↑| = κ, so also |y↑′| = κ. So for x ∈ htα(T )
with T p dense above x we have (x↑′) ∩ (T\T p) = ∅. It follows that T\T p is a subset of

(∗) Tα ∪
⋃

{x↑′: x ∈ htα(T ) and T p ∩ (x↑′) = ∅}.

In fact, if y ∈ T\T p and y /∈ Tα, choose x ∈ Tα so that y ∈ x↑′. If T p is dense above x,
then (x↑′)∩ (T\T p) = ∅ by the above, contradicting y in this set. So T p is not dense above
x, and hence by Proposition 22.45 T p ∩ (x↑′) = ∅, proving (∗).

Now |Tα| < κ, and if x ∈ htα(T ) and T p ∩ (x↑′) = ∅, then |x↑′ | < κ, so the second set
in (∗) also has size less than κ. So |T\T p| < κ.

If S and T are κ-trees, we define S ⊚ T = {(s, t) ∈ S × T : height(s) = height(t)}, with
(s, t) ≤ (s′, t′) iff s ≤ s′ and t ≤ t′.

Proposition 22.47. (III.5.47) If S and T are κ-Aronsajn trees, then S⊚T is a κ-Aronsajn
tree.

Proposition 22.48. (III.5.47) If S and T are κ-Kurepa trees, then S ⊚ T is a κ-Kurepa
tree.

Proposition 22.49. (III.5.48) If T is a tree of regular height κ, then T ⊚ T is not a
κ-Suslin tree.

Proof. First we note:

(1) Suppose in T that for i ∈ 2 we have xi < yi, zi and yi 6= zi and

ht(x0) < ht(y0) = ht(z0) < ht(x1) < ht(y1) = ht(z1).

Then (y0, z0) and (y1, z1) are incomparable in T ⊚ T .

In fact, assume the hypotheses, but suppose that (y0, z0) and (y1, z1) are comparable in
T ⊚ T . Since height(y0) < ht(y1), we must have (y0, z0) < (y1, z1). So y0 < y1 and
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z0 < z1. Since x1, y0 < y1 and ht(y0) < ht(x1), it follows that y0 < x1. Also x1, z0 < z1
and ht(z0) < ht(x1), so z0 < x1. Since y0, z0 < x1 and ht(y0) = ht(z0), this contradicts
y0 6= z0.

Now we consider two cases.
Case 1. ∀α < κ∃x, y, z[ht(x) ≥ α, x < y, z and y 6= z, and ht(y) = ht(z)]. Then

∃x, y, z ∈ κT∀α < κ[xα < yα, zα, height(yα) = height(zα), and

yα 6= zα and ∀α, β < κ[α < β → height(yα) < ht(xβ)]].

Then by (1), {(yα, zα) : α < κ} is an antichain in T ⊚ T .
Case 2. ∃α < κ∀x, y, z[ht(x) ≥ α, x < y, z, and ht(y) = ht(z) implies that y = z].

That is, for each x of height ≥ α there do not exist incomparable y, z > x. If |Levα(T )| = κ
then |Levα(T ⊚ T )| = κ and so T ⊚ T is not Suslin. Assume that |Levα(T )| < κ. If there
is a path through T , then there is a path through T ⊚T , and T ⊚T is not Suslin. Assume
that there is no path through T . Then for each element x of height α the tree above x is a
chain of length tx less than κ. Hence T does not have any elements of height greater than
supx∈Lα

(α+ tx), contradiction.

Proposition 22.50. (III.5.49) If (X,<) is a ccc uncountable linearly ordered set, then X
has a dense subset of size ω1.

Proof. Suppose that X does not have a dense subset of size ℵ1. Then clearly it does
not have a dense subset of size ≤ ℵ1. We now define 〈aα : α < ω2〉 and 〈bα : α < ω2〉 by
recursion, so that

(1) aα < bα for all α < ω2.

(2) If α < β < ω2, then aα /∈ [aβ, bβ] and bα /∈ [aβ, bβ].

Suppose these have been constructed for all α < γ so that (1) and (2) hold, where γ < ω2.
Then {aα : α < γ} ∪ {bα : α < γ} ∪ {x : x isolated} is not dense, so there exist c, d with
(c, d) disjoint from this set. Then we take aγ , bγ with c < aγ < bγ < d. Then (1) and (2)
hold.

Now

(3) ∀ξ, α < ω2[ξ < α→ [[aα, bα] ⊆ (aξ, bξ) or [aα, bα] ∩ [aξ, bξ] = ∅]].

In fact, by (1) and (2) we have (aξ < bξ < aα < bα) or (aξ < aα < bα < bξ) or
(aα < bα < aξ < bξ), and (3) follows.

Now we define a relation ≺ on ω2. We say that ξ ≺ α iff ξ < α and [aα, bα] ⊆ (aξ, bξ).
Clearly ≺ is well-founded and transitive. Now suppose that ξ, η ≺ α with ξ 6= η; we show
that ξ ≺ η or η ≺ ξ. We have [aα, bα] ⊆ (aξ, bξ), (aη, bη) and [aα, bα] 6= ∅, so by (3), ξ ≺ η
or η ≺ ξ. Thus ≺ is a tree order.

If 〈cξ : ξ < ω1〉 is a chain in increasing order under ≺, then (acξ , bcξ)\(acξ+1
, bcξ+1

) 6= ∅,
contrading ccc.

Also, if C is an antichain under ≺, then by (3), {[aξ, bξ] : ξ ∈ C} is disjoint, so C is
countable by ccc.
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Hence we have a tree of height at most ω1 in which all levels are countable, so this
contradicts the tree having universe ω2.

Proposition 22.51. (III.5.50) (In ZFC.) There is a densely ordered set (X,<) such that
every separable subspace is nowhere dense and such that there are no strictly increasing or
strictly decreasing sequences of type ω1.

Proof. We take a Hausdorff Aronszajn tree (T,<) in which each element has infinitely
many immediate successors; see Propositions 22.23 and 22.33. Take a dense linear order
≺ with no endpoints on each set of successors of a given member of T . For each t ∈ T and
each α ≤ ht(t) let tα be the unique element at height α which is ≤ t. For incomparable
elements s, t let d(s, t) be the least α such that sα 6= tα. Since T is Hausdorff, d(s, t) is
a successor ordinal. Now we define a relation ≪ on T . s ≪ t iff s < t or (s and t are
incomparable in T and sd(s,t) ≺ td(s,t)). Clearly≪ is irreflexive. To see that it is transitive,
suppose that s≪ t≪ u.

Case 1. s < t < u. Then s < u and so s≪ u.
Case 2. s < t, t and u are incomparable, and td(t,u) ≺ ud(t,u).

Subcase 2.1. ht(s) < d(t, u). Then s < u, hence s≪ u.
Subcase 2.2. d(t, u) ≤ ht(s). Then s and u are incomparable, d(s, u) = d(t, u), and

sd(s,u) = td(t,u) ≺ ud(s,u) and hence s≪ u.

Case 2.2 Case 2.1 Case 3

Case 4.1

Case 4.2

Case 4.3

•

• •

• •

•

• •

•

• • •• • • ••

•
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u
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t
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s t u s t u s t
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Case 3. s and t are incomparable, sd(s,t) ≺ td(s,t), and t < u. Then s and u are
incomparable, d(s, u) = d(s.t), and sd(s,u) = sd(s,t) ≺ td(s,t) = ud(s,u), hence s≪ u.

Case 4. s and t are incomparable, sd(s,t) ≺ td(s,t), t and u are incomparable, and
td(t,u) ≺ ud(t,u).

Subcase 4.1. d(s, t) < d(t, u). Then d(s, u) = d(s, t) and sd(s,u) = sd(s,t) ≺ td(s,t) =
ud(s,u), and hence s≪ u.

Subcase 4.2. d(s, t) = d(t, u). Then d(s, u) = d(s, t) and sd(s,u) ≺ td(s,t) ≺ ud(s,u)

and so s≪ u.
Subcase 4.3. d(t, u) < d(s, t). Then d(s, u) = d(t, u), and sd(s,u) = td(t,u) ≺ ud(s,u)

and so s≪ u.

Now suppose that 〈tα : α < ω1〉 is strictly increasing under ≪.

(1) If β < ω1, v, u both have height β, and {α < ω1 : v ≤ tα} and {α < ω1 : u ≤ tα} are
uncountable, then v = u.

Suppose not. Take any α such that β < α and v ≤ tα. Then take γ such that β < γ,
tα ≪ tγ , and u ≤ tγ . Now since v and u have height β and are different, and v ≤ tα and
u ≤ tγ , it follows that tα and tγ are incomparable, and dtαtγ = dtαu = dvu = dvtγ . Since
tα ≪ tγ we have (tα)d(tα,tγ) = vd(v,u) ≺ ud(v,u) = (tγ)d(tα,tγ). Thus

(2) vd(v,u) ≺ ud(v,u),

Similarly, take any γ′ such that β < γ′ and u ≤ tγ′ . Then take α′ such that β < α′,
tγ′ ≪ tα′ , and v ≤ tα′ . Now since v and u have height β and are different, and v ≤ tα′

and u ≤ tγ′ , it follows that tα′ and tγ′ are incomparable, and dt′αt′γ = dt′αu = dvu = dvt′γ .
Since tγ′ ≪ tα′ we have (tγ′)d(tα′ ,tγ′ )

= ud(v,u) ≺ vd(v,u) = (tα′)d(tα′ ,tγ′ )
, contradicting (2).

So (1) holds.

(3) For any β < ω1 there is a u of height β such that {α < ω1 : u ≤ tα} is uncountable.

In fact,

ω1 = {α < ω1 : tα has height less than β} ∪
⋃

ht(s)=β

{α < ω1 : s ≤ tα}.

Since the first set here is countable and height β is countable, there is an u of height β
such that {α < ω1 : u ≤ tα} is uncountable. Thus (3) holds

By (1) and (3), for each β < ω1 let sβ be the unique element of T of height β such
that {α < ω1 : sβ ≤ tℵ} is uncountable. Suppose that β < γ < ω1. Then

{α < ω1 : sβ ≤ tα} ={α < ω1 : sβ ≤ tα, ht(tα) < γ}

∪
⋃

ht(u)=γ

{α < ω1 : sβ ≤ tα ∧ u ≤ tα}.

Since the first set here is countable and height γ is countable, there is an u of height γ
such that {α < ω1 : sβ ≤ tα ∧ u ≤ tα} is uncountable. Hence also {α < ω1 : u ≤ tα} is
uncountable. Hence by (1), u = sγ. Since sβ , sγ < tα for some α, it follows that sβ < sγ .
Hence So 〈sβ : β < ω1〉 is strictly increasing, contradiction.
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Similarly, there does not exist a strictly decreasing sequence of type ω1 in the ordering
≪.

The ordering ≪ is dense. For suppose that s≪ t.

Case 1. s < t. The set of immediate successors of s is densely ordered by ≺, so we
can choose one, say u, incomparable with t and less in the order ≺ than tht(s)+1. Note
that dut = height(s) + 1. Then there are elements of height ht(s) + 1 between u and td(u,t)
in the order ≺, giving elements in (s, t).

Case 2. s and t are incomparable. There is an element between sd(s,t) and td(s,t) in
the order ≺, giving an element in (s, t).

Now suppose that X ⊆ T is countable. Take any a ≪ b; we will find c, e with
a ≪ c ≪ e ≪ b and (c, e)≪ ∩ X = ∅. This will show that T\X is dense, so that X is
nowhere dense.

Case 1. a < b. Let u be an immediate successor of a such that u ≺ bht(a)+1. Choose
v > u with also ht(x) < ht(v) for all x ∈ X . Let c, e be immediate successors of v with
c ≺ e. Now a < u < v < c, so a < c and hence a ≪ c. Obviously c ≪ e. We have
d(e, b) = ht(a) + 1 and ed(e,b) = u ≺ bht(a)+1 = bd(e,b); so e≪ b. Thus a≪ c≪ e≪ b.

Suppose that x ∈ X and c ≪ x ≪ e. Since ht(x) < height(v) < ht(c), we have
c 6< x. If x < e then x < v < c hence x ≪ c, contradiction. So x and e are incomparable.
Also x and c are incomparable. Clearly d(x, c) = d(x, e) < v. Now c ≪ x implies that
vd(x,c) = cd(x,c) ≺ xd(x,c), and x ≪ e implies that xd(x,c) = xd(x,e) ≺ ed(x,e) = vd(x,c),
contradiction.

Case 2. a and b are incomparable. So ad(a,b) ≺ bd(a,b). Choose u with ad(a,b) ≺ u ≺
bd(a,b). Take v > u such that ht(x) < ht(v) for all x ∈ X . Let c, e be immediate successors
of v with c ≺ e. Clearly a≪ c≪ e≪ b.

Suppose that x ∈ X and c ≪ x ≪ e. Since ht(x) < height(v) < ht(c), we have
c 6< x. If x < e then x < v < c hence x ≪ c, contradiction. So x and e are incomparable.
Also x and c are incomparable. Clearly d(x, c) = d(x, e) < v. Now c ≪ x implies that
vd(x,c) = cd(x,c) ≺ xd(x,c), and x ≪ e implies that xd(x,c) = xd(x,e) ≺ ed(x,e) = vd(x,c),
contradiction.

Proposition 22.52. Let κ be an uncountable regular cardinal, and suppose that there is
a κ-Aronszajn tree. Then there is one which is a normal subtree of <κ2.

Proof. Let T be a κ-Aronszajn tree. We may assume that it is well-pruned. For
s ∈ T and α < ht(s, T ) let sα be the unique element of height α below s. For each α < κ,
let gα be an injection from Levα(T ) into |Levα(T )|2.

We define by recursion sequences 〈µα : α < κ〉 and 〈Fα : α < κ〉. Let µ0 = |Lev0(T )|,
and let F0 = g0. Now suppose that µα, Fα have been defined so that the following
conditions hold:

(1α) µα < κ.

(2α) Fα is a function with domain
⋃

β≤α Levβ(T ).

(3α) for all β, γ < α, if β < γ then µβ ≤ µγ and Fβ ⊆ Fγ .
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(Clearly these conditions hold for α = 0.) Now let µα+1 = µα+ |Levα+1(T )| (ordinal addi-
tion). Let Fα+1 be the extension of Fα such that for every t ∈ Levα(T ), every immediate
successor s of t, and every β < µα+1,

(Fα+1(s))(β) =

{
(Fα(t))(β) if β < µα,
(gα+1(s))(ξ) if β = µα + ξ with ξ < |Levα+1(T )|.

Clearly (1α+1)–(3α+1) hold.
Now suppose that α is a limit ordinal and µβ , Fβ have been defined for all β < α so

that (1β)–(3β) hold. Let ν =
∑

β<α µβ , G =
⋃

β<α Fβ, and set µα = ν + |Levα(T )|. Let
Fα be the extension of G such that for every s ∈ Levα(T ) and every β < µα,

(Fα(s))(β) =

{
(G(sγ))(β) if β < µγ with γ < α,
(gα(s))(ξ) if β = ν + ξ with ξ < |Levα(T )|.

Clearly (1α)–(3α) hold.
Let H =

⋃

α<κ Fα. Clearly

(4) If s ∈ Levα(T ), then H(s) ∈ µα2,

(5) If u < s then H(u) ⊂ H(s).

We prove (5) by induction on the level of s. It is vacuously true for level 0. Now suppose
inductively that s has level α + 1. Say that t is the immediate predecessor of s. Let γ be
the level of u. Then for any β < µγ we have

(H(s))(β) = (Fα+1(s))(β) = (Fα(t))(β) = (H(t))(β) = (H(u))(β).

Finally, suppose inductively that s has limit level α. Then for any β < γ we have

(H(s))(β) = (Fγ(sγ))(β) = (H(u))(β).

Hence (5) holds.

(6) If s, t ∈ T have the same height and s 6= t, then H(s) 6= H(t).

We prove (6) by induction on the common height α of s and t. If α = 0 the conclusion is
clear since g0 is one-one. Suppose inductively that they both have height α + 1. Let s′, t′

be their immediate predecessors. If s′ 6= t′, then H(s′) 6= H(t′), so H(s) 6= H(t) by (5).
Suppose that s′ = t′. Then H(s) 6= H(t) since gα is one-one. Finally, suppose inductively
that α is limit. Then H(s) 6= H(t) since gα is one-one. So (6) holds.

Now let T ′ = {h ∈ <κ2 : h ⊆ H(s) for some s ∈ T}. We claim that T ′ is as desired.
Clearly it is a normal subtree of <κ2. Now consider any α < κ. Choose β minimum such
that α ≤ µβ .

(7) If h ∈ T ′ with dmn(h) = α, then there is an s ∈ T of height β such that h ⊆ H(s).

In fact, choose t ∈ T such that h ⊆ H(t). Then dmn(H(t)) ≥ α ≥ µβ , so t has height ≥ β.
Let s ∈ T of height β with s ≤ t. Then H(s), h ⊆ H(t), so h ⊆ H(s), as desired.
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It follows from (7) that each level of T ′ has size less than κ. From (5) and (7) it
follows that T ′ does not have a chain of size κ.

Proposition 22.53. Let κ be an uncountable regular cardinal, and suppose that there is
a κ-Suslin tree. Show that there is one which is a normal subtree of <κ2.

Proof. We use the same construction as in Proposition 22.52. Thus our new tree T ′

does not have any chain of size κ. Suppose that A is an antichain of size κ. For each a ∈ A
choose sa ∈ T such that a ⊆ H(sa). Since T is a Suslin tree, choose distinct a, b ∈ A such
that sa and sb are comparable. Say sa ≤ sb. Then H(sa) ⊆ H(sb). Since a, b ⊆ H(sb), it
follows that a and b are comparable, contradiction.

Proposition 22.54. A tree T is everywhere branching iff every t ∈ T has at least two
immediate successors. Every everywhere branching tree has at least 2ω branches.

Proof. We define a branch bf for every f ∈ ω2 by defining elements ah for every
h ∈ <ω2 by recursion on dmn(h). Let a∅ be a root of the tree. Suppose that ah has been
defined for every h ∈ n2. For each h ∈ n2, let ah0 and ah1 be two immediate successors of
ah. This finishes the definition of the ah’s. Now let bf be an extension of 〈af↾n : n ∈ ω〉 to
a branch. Clearly this is as desired.

Proposition 22.55. The hypothesis that all levels are finite is necessary in König’s theo-
rem.

Proof. For each n ∈ ω let fn ∈ n+1ω be any function such that fn(0) = n, and let
T be the tree consisting of all g ∈ <ωω such that g ⊆ fn for some n. Then two elements
g, h ∈ T are comparable iff they are both contained in the same fn. If C is a maximal
chain in T , it must be a subset of some fn, and hence is finite.

Proposition 22.56. If κ is singular with cf(κ) = ω, then there is no κ-Aronszajn tree
with all levels finite.

Proof. Let 〈αn : n ∈ ω〉 be a strictly increasing sequence of ordinals with supremum
κ. Suppose that T is a κ-Aronszajn tree with all levels finite. Define

T ′ = {t ∈ T : there is an n ∈ ω such that t has height αn}.

Then T ′, with the order induced by T , is a tree of height ω with all levels finite. Hence
by König’s theorem it has an infinite branch B. Let B′ = {t ∈ T : t ≤ s for some s ∈ T ′.
Then B′ is a branch in T of size κ, contradiction.

Proposition 22.57. If κ is singular and there is a cf(κ)-Aronszajn tree, then there is a
κ-Aronszajn tree with all levels of power less than cf(κ).

Proof. Let T be a cf(κ)-Aronszajn tree. Let 〈µα : α < cf(κ)〉 be a strictly increasing
continuous sequence of cardinals with supremum κ, and with µ0 = 0. We define

T ′ = {(t, β) : there is an α < cf(κ) such that t ∈ Levα(T ) and µα ≤ β < µα+1;

(t, β) < (t′, β′) iff t < t′, or t = t′ and β < β′.
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Clearly this gives a partial order. To show that it is a tree, suppose that (t, β) ∈ T ′. We
define a function f from β into the set of predecessors of (t, β) as follows. Let ht(t) = α.
Suppose that γ < β. then there is a δ such that µδ ≤ γ < µδ+1. Clearly δ ≤ α. We define
f(γ) = (t′, γ), where t′ is the predecessor of t at level δ. Clearly then f(γ) < (t, β). Clearly
also f is order preserving and maps onto the set of all predecessors of (t, β). Thus T ′ is a
tree. For each β < κ, say with µα ≤ β < µβ+1 we have

Levβ(T ′) = {(t, β) : t ∈ Levα(T )}.

Thus each level of T ′ has size less than cf(κ). If B is a branch of size κ, then for each
β < κ it has an element of height at least β, and hence for each α < cf(κ) it has an element
whose first coordinate has height at least α. These first coordinates are linearly ordered.
This contradicts T being a cf(κ)-Aronszajn tree.

Thus T ′ is as desired.

Proposition 22.58. For every infinite cardinal κ there is an eventually branching tree T
of height κ such that for every subset S of T , if S is a tree under the order induced by T
and every element of S has at least two immediate successors, then S has height ω.

The idea is to put a copy of <ω2 on top of longer and longer chains. More precisely, define

T = {(α, ξ, ∅) : α < κ, ξ < α} ∪ {(α, α, f) : α < κ, f ∈ <ω2};

(α, ξ, f) < (β, η, g) iff α = β and either ξ < η, or ξ = η = α and f ⊂ g.

Clearly T is a tree. The height of an element (α, ξ, ∅) is ξ, and the height of an element
(α, α, f) is α+ n, where f ∈ n2. In particular, T has height κ.

Now suppose that S is as indicated in the propositionn, and take any element (α, ξ, f)
of S. (α, ξ, f) is a root of S iff α = ξ and f = ∅. It follows that all the non-root elements
of S have the form (α, α, f), and so in S the height of every element is finite.

Proposition 22.59. If κ is an uncountable regular cardinal and T is a κ-Aronszajn
tree, then T has a subset S such that under the order induced by T , S is a well-pruned
κ-Aronszajn tree in which every element has at least two immediate successors.

By Theorem 18.7, we may assume that T is well-pruned. Now we construct a strictly
increasing sequence 〈αξ : ξ < κ〉 of ordinals less than κ. Let α0 = 0. Suppose that αξ
has been defined. Now T is eventually branching. (See the remark before Theorem 18.7.)
Hence for each t ∈ Levαξ(T ) there is an ordinal βt > αξ such that t has at least two
successors at level βt. Let αξ+1 be any ordinal less than κ such that βt < αξ+1 for all
t ∈ Levαξ(T ). Note by the well-prunedness condition, each t ∈ Levαξ has at least two
successors at level αξ+1. Finally, suppose that η is a limit ordinal less than κ, and αξ has
been constructed for all ξ < η. Let αη = supξ<η αξ.

Let S =
⋃

ξ<κ Levαξ(T ). Clearly S is as desired.
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23. Clubs and stationary sets

Here we introduce the important notions of clubs and stationary sets. A basic result here
is Fodor’s theorem. We also give a combinatorial principle ♦, later proved consistent with
ZFC, and use ♦ to construct a Suslin tree.

A subset Γ of an ordinal is unbounded iff for every β < α there is a γ ∈ Γ such that
β ≤ γ. A subset C of α is closed in α provided that for every limit ordinal β < α, if C ∩ β
is unbounded in β then β ∈ C. Closed and unbounded subsets of α are called clubs of α.

The following simple fact about ordinals will be used below.

Lemma 23.1. If α is an ordinal and Γ ⊆ α, then o.t.(Γ) ≤ α.

Proof. Let β = o.t.(Γ), and let f be the isomorphism of β onto Γ. For all γ < β we
have γ ≤ f(γ) < α, so β ⊆ α and hence β ≤ α.

Note that ∅ is club in 0. If α = β + 1, then {β} is club in α. We are mainly interested in
limit ordinals α. Then an equivalent way of looking at clubs is as follows.

Theorem 23.2. Let α be a limit ordinal.
(i) If C is club in α, then there exist an ordinal β and a normal function f : β → α

such that rng(f) = C.
(ii) If β is an ordinal and f : β → α is a normal function such that rng(f) is unbounded

in α, then rng(f) is club in α.

Proof. (i): Let β be the order type of C, and let f : β → C be the isomorphism of β
onto C. Thus f : β → α, and f is strictly increasing. To show that f is continuous, suppose
that γ < β is a limit ordinal; we want to show that f(γ) =

⋃

δ<γ f(δ). Let ε =
⋃

δ<γ f(δ).
Clearly ε is a limit ordinal. Now C ∩ ε is unbounded in ε. For, suppose that ϕ < ε. Then
there is a δ < γ such that ϕ < f(δ). Since δ + 1 < γ and f(δ) < f(δ + 1), we thus have
f(δ) ∈ C ∩ ε. So, as claimed, C ∩ ε is unbounded in ε. Hence ε ∈ C. Since ε is the lub of
f [γ], it follows that f(γ) = ε, as desired. This proves (i).

(ii): Let C = rng(f). We just need to show that C is closed in α. Suppose that γ < α

is a limit ordinal, and C ∩ γ is unbounded in γ. We are going to show that ψ
def
=
⋃
f−1[γ]

is a limit ordinal less than β and f(ψ) = γ, thereby proving that γ ∈ C.
Choose δ ∈ C such that γ < δ. Say f(ϕ) = δ. Then f−1[γ] ⊆ ϕ, since for every

ordinal ε, if ε ∈ f−1[γ] then f(ε) ∈ γ < δ = f(ϕ) and so ε < ϕ. It follows that also
⋃
f−1[γ] ≤ ϕ < β.

Next,
⋃
f−1[γ] is a limit ordinal. For, if β <

⋃
f−1[γ], choose ε ∈ f−1[γ] such that

β ∈ ε. Thus f(ε) < γ. Since γ is a limit ordinal and C ∩ γ is unbounded in γ, there is
a θ such that f(ε) < f(θ) < γ. Hence ε < θ ∈ f−1[γ], so ε ∈

⋃
f−1[γ]. This shows that

⋃
f−1[γ] is a limit ordinal.

We have f(ψ) =
⋃

β<ψ f(β) by continuity. If β < ψ, choose ε ∈ f−1[γ] such that
β < ε. then f(β) < f(ε) ∈ γ. This shows that f(ψ) ≤ γ.

Finally, suppose that δ < γ. Since C ∩ γ is unbounded in γ, choose θ such that
δ < f(θ) < γ. Then θ ∈ f−1[γ], so δ ∈

⋃
f−1[γ], i.e., δ < ψ. Since ψ is a limit ordinal,

say that δ < ϕ < ψ. Then δ < ϕ ≤ f(ϕ) ≤ f(ψ). This shows that γ ⊆ f(ψ), hence
f(ψ) = γ.
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Corollary 23.3. If κ is a regular cardinal and C ⊆ κ, then the following conditions are
equivalent:

(i) C is club in κ.

(ii) There is a normal function f : κ→ κ such that rng(f) = C.

Proof. (i)⇒(ii): Suppose that C is club in κ. By Theorem 23.2(i) let β be an ordinal
and f : β → κ a normal function with rng(f) = C. Thus β is the order type of C, and so
by Lemma 23.1, β ≤ κ. The regularity of κ together with C being unbounded in κ imply
that β = κ. Thus (ii) holds.

(ii)⇒(i): Suppose that f : κ → κ is a normal function such that rng(f) = C. Then
by Theorem 23.2(i), C is club in κ.

Corollary 23.4. If α is a limit ordinal, then there is club of α with order type cf(α).

Proof. By Theorem 11.48, let f : cf(α) → α be a strictly increasing function with
rng(f) unbounded in α. Define g : cf(α)→ α by recursion, as follows:

g(ξ) =







0 if ξ = 0,
max(f(η), g(η) + 1) if ξ = η + 1 for some η,
supη<ξ g(η) if ξ is a limit ordinal.

Clearly then g is a normal function from cf(α) into α, with rng(g) unbounded in α. By
Theorem 23.2(ii), the existence of the desired set C follows.

If cf(α) = ω, then Corollary 23.4 yields a strictly increasing function f : ω → α with
rng(f) unbounded in α. Then rng(f) is club in α. The condition on limit ordinals in
the definition of club is trivial in this case. Most of our results concern limit ordinals of
uncountable cofinality.

If α is any limit ordinal and β < α, then the interval [β, α) is a club of α. Another
simple fact about clubs is that if C is club in a limit ordinal α of uncountable cofinality, then
the set D of all limit ordinals which are in C is also club in α. (We need α of uncountable
cofinality in order to have D unbounded.) Also, if C is club in α with cf(α) > ω, then
the set E of all limit points of members of C is also club in α. This set E is defined to be
{β < α : β is a limit ordinal and C ∩ β is unbounded in β}; clearly E ⊆ C.

Now we give the first major fact about clubs.

Theorem 23.5. If α is a limit ordinal with cf(α) > ω, then the intersection of fewer than
cf(α) clubs of α is again a club.

Proof. Suppose that β < cf(α) and 〈Cξ : ξ < β〉 is a system of clubs of α. Let
D =

⋂

ξ<β Cξ. First we show that D is closed. To this end, suppose that γ < α is a limit
ordinal, and D ∩ γ is unbounded in γ. Then for each ξ < β, the set Cξ is unbounded in γ,
and hence γ ∈ Cξ since Cξ is closed in α. Therefore γ ∈ D.

To show that D is unbounded in α, take any γ < α; we want to find δ > γ such that
δ ∈ D. We make a simple recursive construction of a sequence 〈εn : n ∈ ω〉 of ordinals
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less than α. Let ε0 = γ. Suppose that εn has been defined. Using the fact that each Cξ is
unbounded in α, for each ξ < β choose θn,ξ ∈ Cξ such that εn < θn,ξ. Then let

εn+1 = sup
ξ<β

θn,ξ;

we have εn+1 < α since β < cf(α). This finishes the recursive construction. Let δ =
supn∈ω εn. Then δ < α since cf(α) > ω. Clearly Cξ ∩ δ is unbounded in δ for each ξ < β,
and hence δ ∈ Cξ. So δ ∈ D, as desired.

Again let α be any limit ordinal, and suppose that 〈Cξ : ξ < α〉 is a system of subsets of
α. We define the diagonal intersection of this system:

△ξ<αCξ = {β ∈ α : ∀ξ < β(β ∈ Cξ)}.

This construction is used often in discussion of clubs, in particular in the definition of
some of the large cardinals.

Theorem 23.6. Suppose that cf(α) > ω. Assume that 〈Cξ : ξ < α〉 is a system of clubs
of α.

(i) If
⋂

ξ<β Cξ is unbounded in α for each β < α, then △ξ<αCξ is club in α.
(ii) If α is regular, then △ξ<αCξ is club in α.

Proof. Clearly (ii) follows from (i) (using Theorem 23.5 to verify the hypothesis of
(i)), so it suffices to prove (i). Assume the hypothesis of (i).

For brevity set D = △ξ<αCξ First we show that D is closed in α. So, assume that β
is a limit ordinal less than α, and D∩β is unbounded in β. To show that β ∈ D, take any
ξ < β; we show that β ∈ Cξ. Let E = {γ ∈ D ∩ β : ξ < γ}. Then E is unbounded in β,
and for each γ ∈ E we have γ ∈ Cξ, by the definition of D. So β ∈ Cξ since Cξ is closed.

Second we show that D is unbounded in α. So, take any β < α. We define a sequence
〈γi : i < ω〉 of ordinals less than α by recursion. Let γ0 = β. If γi has been defined, by
the hypothesis of (i) let γi+1 be a member of

⋂

ξ<γi
Cξ which is greater than γi. Finally,

let δ = supi∈ω γi. So δ < α since cf(α) > ω. We claim that δ ∈ D. To see this, take any
ξ < δ. Choose i ∈ ω such that ξ < γi. Then γj ∈ Cξ for all j ≥ i, and hence Cξ ∩ δ is
unbounded in δ, so δ ∈ Cξ. This argument shows that δ ∈ D.

We give one more general fact about closed and unbounded sets; this one is frequently
useful in showing that specific sets are closed and unbounded.

A finitary partial operation on a set A is a nonempty function whose domain is a
subset of mA for some positive integer m and whose range is a subset of A. We say that a
subset B of A is closed under such an operation iff for every a ∈ (mB) ∩ dmn(f) we have
f(a) ∈ B.

Theorem 23.7. Suppose that κ is an uncountable regular cardinal, X ∈ [κ]<κ, and F is
a collection of finitary partial operations on κ, with |F | < κ. Then {α < κ : X ⊆ α and α
is closed under each f ∈ F} is club in κ.
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Proof. Denote the indicated set by C. To show that it is closed, suppose that α is a
limit ordinal less than κ, and C∩α is unbounded in α. To show that α is closed under any
partial operation f ∈ F , suppose that dmn(f) ⊆ mκ and a ∈ (mα) ∩ dmn(f). For each

i < m choose βi < α such that ai ∈ βi. Since α is a limit ordinal, the ordinal γ
def
=
⋃

i<m βi
is still less than α. Since C ∩α is unbounded in α, choose δ ∈ C∩α such that γ < δ. Then
a ∈ mδ so, since δ ∈ C, we have f(a) ∈ δ ⊆ α. Thus α is closed under f . Hence α ∈ C; so
C is closed in κ.

To show that C is unbounded in κ, take any α < κ. We now define a sequence
〈βn : n ∈ ω〉 by recursion. Let β0 = α. Having defined βi < κ, consider the set

{f(a) : f ∈ F , a ∈ dmn(f), and each aj is in βi}.

This set clearly has fewer than κ members. Hence we can take βi+1 to be some ordinal
less than κ and greater than each member of this set. This finishes the construction.

Let γ =
⋃

i∈ω βi. We claim that γ ∈ C, as desired. For, suppose that f ∈ F , f
has domain ⊆ nκ, and a ∈ (nγ) ∩ dmn(f). Then for each i < n choose mi ∈ ω such
that ai ∈ βmi . Let p be the maximum of all the βi’s. Then a ∈ (nβp) ∩ dmn(f), so by
construction f(a) ∈ βp+1 ⊆ γ.

Let α be a limit ordinal. A subset S of α is stationary iff S intersects every club of
α. There are some obvious but useful facts about this notion. Assume that cf(α) > ω.
Then any club in α is stationary. An intersection of a stationary set with a club is again
stationary. Any superset of a stationary set is again stationary. The union of fewer than
cf(α) nonstationary sets is again nonstationary. Every stationary set is unbounded in α.
The following important fact is not quite so obvious:

Proposition 23.8. If α is a limit ordinal and κ is a regular cardinal less than cf(α), then
the set

S
def
= {β < α : cf(β) = κ}

is stationary in α.

Proof. Let C be club in α. Let f : cf(α)→ α be strictly increasing, continuous, and
with range cofinal in α. We define g : cf(α) → C by recursion. Let g(0) be any member
of C. For β a limit ordinal less than cf(α), let g(β) =

⋃

γ<β g(γ). If β < cf(α) and g(β)
has been defined, let g(β+ 1) be a member of C greater than both g(β) and f(β). Clearly
g is a strictly increasing continuous function mapping cf(α) into C, and the range of g is
cofinal in α. Thus rng(g) is club in α. Now g(κ) ∈ C ∩ S, as desired.

Let S be a set of ordinals. A function f ∈ SOn is regressive iff f(γ) < γ for every
γ ∈ S\{0}. This is a natural notion, and leads to an important fact which is used in many
of the deeper applications of stationary sets.

Theorem 23.9. (Fodor; also called the pressing down lemma) Suppose that α is a
limit ordinal of uncountable cofinality, S is a stationary subset of α, and f : S → α is
regressive. Then there is an β < α such that f−1[β] is stationary in α.

In case α is regular, there is a γ < α such that f−1[{γ}] is stationary.

417



Proof. Assume the hypothesis of the first part of the theorem, but suppose that there
is no β of the type indicated. So for every β < α we can choose a club Cβ in α such that
Cβ ∩ f−1[β] = ∅. Let D be a club in α of order type cf(α). Now for each β < α let τ(β)
be the least member of D greater than β. For each β < α we define

Eβ =
⋂

γ∈D∩(τ(β)+1)

Cγ .

We claim then that for every β < α,

(1) Eβ ∩ f
−1[β] = ∅.

In fact, β < τ(β) ∈ D ∩ (τ(β) + 1), so Eβ ∩ f−1[β] ⊆ Cτ(β) ∩ f
−1[τ(β)] = ∅. So (1) holds.

Now by Theorem 23.5, each set Eβ is club in α. Moreover, clearly Eβ ⊇ Eδ if

β < δ < α. Hence we can apply Theorem 23.6(i) to infer that F
def
= △β<αEβ is club in α.

Hence also the set G of all limit ordinals which are in F is club in α. Choose δ ∈ G ∩ S.
Now f(δ) < δ; since δ is a limit ordinal, choose ξ < δ such that f(δ) < ξ. But δ ∈ G ⊆ F ,
so it follows by the definition of diagonal intersection that δ ∈ Eξ. From (1) we then see
that δ /∈ f−1[ξ]. This contradicts f(δ) < ξ.

For the second part of the theorem, assume that α is regular. Note that, with β as
in the first part, f−1[β] =

⋃

γ<β f
−1[{γ}]. Hence the second part follows from the fact

mentioned above that a union of fewer than α nonstationary sets is nonstationary.

To illustrate the use of Fodor’s theorem we give the following result about Aronszajn trees
which answers a natural question.

Theorem 23.10. Suppose that κ is an uncountable regular cardinal, T is a κ-Aronszajn
tree, and λ is an infinite cardinal less than κ. Further, suppose that x ∈ T and |{y ∈ T :
x < y}| = κ. Then there is an α > ht(x) such that

|{y ∈ Levα(T ) : x < y}| ≥ λ.

Proof. By Theorem 22.7 we may assume that T is well-pruned, and by taking {y ∈
T : x ≤ y} we may assume that x is the root of T . So now we want to find a level α such
that |Levα(T )| ≥ λ. We assume that this is not the case. So |Levα(T )| < λ for all α < κ.

Suppose that λ is singular. Then

κ =
⋃

µ<λ
µ a cardinal

{α < κ : |Levα(T )| < µ+},

so there is a µ < λ such that Γ
def
= {α < κ : |Levα(T )| < µ+} has power κ. Because T is

well-pruned, we have |Levα(T )| ≤ |Levβ(T ) whenever α < β. It follows that |Levα(T )| <
µ+ for all α < κ, since Γ is clearly unbounded in κ. Thus we may assume that λ is regular.

For each s ∈ T and each β < ht(s) let sβ be the unique element of height β less than
s.
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Let ∆ = {α < κ : cf(α) = λ}. So ∆ is stationary in κ. Now we claim

(1) For every α ∈ ∆ and every s ∈ Levα(T ) there is a β < α such that the set {t ∈ T :
sβ ≤ t, β ≤ ht(t) < α} is a chain.

To prove this, suppose not. Thus we can choose α ∈ ∆ and s ∈ Levα(T ) such that

(2) For all β < α there is a γ ∈ [β, α) and a t ∈ Levα(T ) such that sγ < t 6= s and sγ+1 6≤ t.

Now we use (2) to construct by recursion two sequences 〈γξ : ξ < λ〉 and 〈tξ : ξ < λ〉.
Suppose that these have been defined for all ξ < η, where η < λ, so that each γξ < α. Let
δ =

⋃

ξ<η γξ. So δ < α since cf(α) = λ. By (2), choose γη ∈ [δ + 1, α) and tη ∈ Levα(T )
such that sγη < tη 6= s and sγη+1 6≤ tη. Since Levα(T ) has size less than λ, there exist ξ, η
with ξ < η and tξ = tη. Then sγξ+1 ≤ sγη < tη = tξ, contradiction. Hence (1) holds.

(3) For every α ∈ ∆ there is a β < α such that for each s ∈ Levα(T ) the set {t ∈ T : sβ ≤
t, β ≤ ht(t) < α} is a chain.

To prove this, let α ∈ ∆. By (1), for each s ∈ Levα(T ) choose γs < α such tha the set
{t ∈ T : sγs ≤ t, γs ≤ ht(t) < α} is a chain. Let β = supht(s)=α γs. Clearly β is as desired
in (3).

Now for each α ∈ ∆ choose f(α) to be a β as in (3). So f is a regressive function
defined on the stationary set ∆. Hence there is a β < α such that f−1[{β}] is stationary,
and hence of size κ. So T does not branch beyond β, and hence has a branch of size κ
because it is well-pruned, contradiction.

For the next result we need another important construction. Suppose that λ is an infinite
cardinal, f = 〈fρ : ρ < λ+〉 is a family of injections fρ : ρ→ λ, and S is a cofinal subset of
λ+. The (λ, f, S)-Ulam matrix is the function A : λ × λ+ → P(κ) defined for any ξ < λ
and α < λ+ by

Aξα = {ρ ∈ S\(α+ 1) : fρ(α) = ξ}.

Theorem 23.11. (Ulam) Let λ be an infinite cardinal, S is a stationary subset of λ+,
and I a collection of subsets of λ+ having the following properties:

(i) ∅ ∈ I.
(ii) If X ∈ [I]≤λ, then

⋃
X ∈ I.

(iii) If Y ⊆ X ∈ I, then Y ∈ I.
(iv) If α < λ+, then {α} ∈ I.
(v) S /∈ I.

Then there is a system 〈Xα : α < λ+〉 of subsets of S such that Xα ∩Xβ = ∅ for distinct
α, β < λ+, and Xα /∈ I for all α < λ+.

Proof. Let f = 〈fρ : ρ < λ+〉 be a family of injections fρ : ρ → λ, and let A be the

(λ, f, S)-Ulam matrix. If ξ < λ, then for distinct α, β < λ+ we have Aξα ∩ A
ξ
β = ∅, since

the functions fρ are one-one. Moreover, for any α < λ+ we have

S\
⋃

ξ<λ

Aξα ⊆ S ∩ (α+ 1) ∈ I
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by (ii)–(iv). By conditions (ii) and (v) it then follows that for each α < λ+ there is

an h(α) < λ such that A
h(α)
α /∈ I. Thus h : λ+ → λ, so there is a ξ < λ such that

|h−1[{ξ}]| = λ+. Hence {Aξα : α < λ+, h(α) = ξ} is as desired in the theorem.

Theorem 23.12. (i) If λ is an infinite cardinal and S is a stationary subset of λ+, then
we can partition S into λ+-many stationary subsets.

(ii) If κ is weakly inaccessible, then κ can be partitioned into κ many stationary
subsets.

Proof. (i): Let I be the collection of all nonstationary subsets of λ+. The conditions
of Theorem 23.11 are all clear, and so by it we get a system 〈Xα : α < λ+〉 of subsets of S
such that Xα ∩Xβ = ∅ for distinct α, β < λ+, and Xα /∈ I for all α < λ+. We can union
S\
⋃

α<λ+ Xα with X0 to get the desired partition of S.
(ii) For each regular cardinal λ < κ, let Sλ = {α < κ : cf(α) = λ}. Thus Sλ is

stationary by Proposition 23.8. By induction it is clear that if α < κ, then ℵα+1 < κ.
Hence there are κ regular cardinals less than κ. Thus we have κ many pairwise disjoint
stationary subsets of κ, and these can be extended to a partition of κ as in the proof of
(i).

The first part of Theorem 23.12 can actually be extended to weak inaccessibles too, but
the proof is longer.

Next we introduce an important combinatorial principle and show that it implies the
existence of Suslin trees. ♦ is the following statement:

There exists a sequence 〈Aα : α < ω1〉 of sets with the following properties:
(i) Aα ⊆ α for each α < ω1.
(ii) For every subset A of ω1, the set {α < ω1 : A ∩ α = Aα} is stationary in ω1.

A sequence as in ♦ is called a ♦-sequence. Such a sequence in a sense captures all subsets
of ω1 in a sequence of length ω1. Later in these notes we will show that ♦ follows from
V = L.

Theorem 23.13. ♦ ⇒ CH.

Proof. Let 〈Aα : α < ω1〉 be a ♦-sequence. Then for every A ⊆ ω the set {α < ω1 :
A ∩ α = Aα} is stationary in ω1, and hence it has an infinite member; for such a member
α we have A = Aα. So we can let f(A) be the least α < ω1 such that A = Aα, and we
thus define an injection of P(ω) into ω1.

Since ♦ is formulated in terms of subsets of ω1, to construct a Suslin tree using ♦ it is
natural to let the tree be ω1 with some tree-order. The following lemma will be useful in
doing the construction.

Lemma 23.14. Suppose that T = (ω1,≺) is an ω1-tree and A is a maximal antichain in
T . Then

{α < ω1 : (Tα = α and A ∩ α is a maximal antichain in Tα}

is club in ω1.
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Proof. Let C be the indicated set. Suppose that A ⊆ ω1 is a maximal antichain in
T . To see that C is closed in ω1, let α < ω1 be a limit ordinal, and suppose that C ∩ α is
unbounded in α. If β ∈ Tα, then there is a γ < α such that β ∈ Tγ . Choose δ ∈ (C ∩ α)
such that γ < δ. Then β ∈ Tδ = δ, so also β ∈ α. This shows that Tα ⊆ α. Conversely,
suppose that β ∈ α. Choose γ ∈ C ∩ α such that β < γ. Then β ∈ γ = Tγ ⊆ Tα. Thus
Tα = α.

To show that A ∩ α is a maximal antichain in Tα, note first that at least it is an
antichain. Now take any β ∈ Tα; we show that β is comparable under ≺ to some member
of A ∩ α, which will show that A ∩ α is a maximal antichain in Tα. Choose γ < α such
that β ∈ Tγ , and then choose δ ∈ (C ∩ α) such that γ < δ. Thus β ∈ Tδ. Now A ∩ δ is a
maximal antichain in Tδ since δ ∈ C, so β is comparable with some ε ∈ (A∩ δ) ⊆ (A∩α),
as desired.

To show that C is unbounded in κ we will apply Theorem 23.7 to the following three
functions f, g, h : κ→ κ:

f(β) = ht(β, T );

g(β) = sup(Levβ(T ));

h(β) = some member of A comparable with β under ≺ .

By Theorem 23.7, the set D of all α < κ which are closed under each of f, g, h is club in κ.
We now show that D ⊆ C, which will prove that C is unbounded in κ. So, suppose that
α ∈ D. If β ∈ Tα, let γ = ht(β, T ). Then γ < α and β ∈ Levγ(T ), and so β ≤ g(γ) < α.
Thus Tα ⊆ α. Conversely, suppose that β < α. Then f(β) < α, i.e., ht(β, T ) < α,
so β ∈ Tα. Therefore Tα = α. Now suppose that β ∈ Tα; we want to show that β
is comparable with some member of A ∩ α, as this will prove that A ∩ α is a maximal
antichain in Tα. Since β ∈ α by what has already been shown, we have h(β) < α, and so
the element h(β) is as desired.

Another crucial lemma for the construction is as follows.

Lemma 23.15. Let T = (ω1,≺) be an eventually branching ω1-tree and let 〈Aα : α < ω1〉
be a ♦-sequence. Assume that for every limit α < ω1, if Tα = α and Aα is a maximal
antichain in Tα, then for every x ∈ Levα(T ) there is a y ∈ Aα such that y ≺ x.

Then T is a Suslin tree.

Proof. By Proposition 22.8 it suffices to show that every maximal antichain A of T
is countable. By Lemma 23.14, the set

C
def
= {α < ω1 : Tα = α and A ∩ α is a maximal antichain in Tα}

is club in ω1. Now by the definition of the ♦-sequence, the set {α < ω1 : A ∩ α = Aα} is
stationary, so we can choose α ∈ C such that A∩α = Aα. Now if β ∈ T and ht(β, T ) ≥ α,
then there is a γ ∈ Lev(α, T ) such that γ � β, and the hypothesis of the lemma further
yields a δ ∈ Aα such that δ ≺ γ. Since δ ≺ β, it follows that β /∈ A. So we have shown that
for all β ∈ T , if ht(β, T ) ≥ α then β /∈ A. Hence for any β ∈ T , if β ∈ A then β ∈ Tα = α.
So A ⊆ α and hence A = Aα, so that A is countable.
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Theorem 23.16. ♦ implies that there is a Suslin tree.

Proof. Assume ♦, and let 〈Aα : α < ω1〉 be a ♦-sequence. We are going to construct
a Suslin tree of the form (ω1,≺) in which for each α < ω1 the α-th level is the set
{ω · α + m : m ∈ ω}. We will do the construction by completely defining the tree up to
heights α < ω1 by recursion. Thus we define by recursion trees (ω · α,≺α), so that really
we are just defining the partial orders ≺α by recursion.

We let ≺0=≺1= ∅. Now suppose that β > 1 and ≺α has been defined for all α < β
so that the following conditions hold whenever 0 < α < β:

(1) (ω · α,≺α) is a tree, denoted by Tα for brevity.

(2) If γ < α and ξ, η ∈ Tγ , then ξ ≺γ η iff ξ ≺α η.

(3) For each γ < α, Levγ(Tα) = {ω · γ +m : m ∈ ω}.

(4) If γ < δ < α and m ∈ ω, then there is an n ∈ ω such that ω · γ +m ≺α ω · δ + n.

(5) If δ < α, δ is a limit ordinal, ω · δ = δ, and Aδ is a maximal antichain in Tδ, then for
every x ∈ Levδ(Tα) there is a y ∈ Aδ such that y ≺α x.

Note that conditions (1)–(3) just say that the trees constructed have the special form
indicated at the beginning, and are an increasing chain of trees. Condition (4) is to assure
that the final tree is well-pruned. Condition (5) is connected to Lemma 23.15, which will
be applied after the construction to verify that our tree is Suslin. Conditions (1)–(5) imply
that if x ∈ Tα, then it has the form ω · β +m for some β < α, and then x ∈ Levβ(Tα) and
for each γ < β there is a unique element ω · γ + n in Tα such that ω · γ + n ≺α x.

If β is a limit ordinal, let ≺β=
⋃

α<β ≺α. Conditions (1)–(5) are then clear for any
α ≤ β.

Next suppose that β = γ + 2 for some ordinal γ. Then we define

≺β=≺γ+1 ∪ {(ξ, ω · (γ + 1) + 2m) : ξ �γ+1 ω · γ +m, m ∈ ω}

∪ {(ξ, ω · (γ + 1) + 2m+ 1) : ξ �γ+1 ω · γ +m, m ∈ ω}.

Clearly (1)–(5) hold for all α < β.
The most important case is β = γ + 1 for some limit ordinal γ. To treat this case, we

first associate with each x ∈ Tγ a chain B(x) in Tγ , and to do this we define by recursion
a sequence 〈yxn : n ∈ ω〉 of elements of Tγ . To define yx0 we consider two cases.

Case 1. ω · γ = γ and Aγ is a maximal antichain in Tγ . Then x is comparable with
some member z of Aγ , and we let yx0 be some element of Tγ such that x, z ≺γ yx0 .

Case 2. Otherwise, we just let yx0 = x.
Now let 〈ξm : m ∈ ω〉 be a strictly increasing sequence of ordinals less than γ such that
ξ0 = ht(yx0 , Tγ) and supm∈ω ξm = γ. Now if yxi has been defined of height ξi, by (4) let
yxi+1 be an element of height ξi+1 such that yxi ≺γ y

x
i+1. Then we define

B(x) = {z ∈ ω · γ : z ≺γ y
x
i for some i ∈ ω}.

Finally, let 〈x(n) : n ∈ ω〉 be a one-one enumeration of ω · γ, and set

≺β=≺γ ∪{(z, ω · γ + n) : n ∈ ω, z ∈ B(xn)}.
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Clearly (1)–(3) hold with γ in place of α. For (4), suppose that δ < γ and m ∈ ω. Let
z = ω · δ + m. Thus z ∈ ω · γ, and hence there is an n ∈ ω such that z = x(n). Hence
z ∈ B(x(n)) and z ≺β ω · γ + n, as desired.

For (5), suppose that ω · γ = γ, and Aγ is a maximal antichain in Tγ . Suppose that

w ∈ Levγ(Tβ). Choose n so that w = ω ·γ+n. Then there is an s ∈ Aγ such that s < y
x(n)
0 .

So s ∈ B(x(n)) and s ≺β ω · γ + n = w, as desired.

Thus the construction is finished. Now we let ≺=
⋃

α<ω1
≺α. Clearly T

def
= (ω1,≺) is

an ω1-tree. It is eventually branching by (4) and the β = γ + 2 step in the construction.
The hypothesis of Lemma 23.15 holds by the step β = γ + 1, γ limit, in the construction.
Therefore T is a Suslin tree by Lemma 23.15.

We now introduce a generalization of clubs and stationary sets. Suppose that κ is an
uncountable regular cardinal and A is a set such that |A| ≥ κ. Then a subset X of [A]<κ

is closed iff for every system 〈aξ : ξ < α〉 of elements of X , with α < κ and with aξ ⊆ aη
for all ξ < η < α, also the union

⋃

ξ<α aξ is in X . And we say that X is unbounded in

[A]<κ iff for every x ∈ [A]<κ there is a y ∈ X such that x ⊆ y. Club means closed and
unbounded.

Theorem 23.17. Suppose that κ is an uncountable regular cardinal, |A| ≥ κ, and a ∈
[A]<κ. Then {x ∈ [A]<κ : a ⊆ x} is club in [A]<κ.

Proof. Let C be the indicated set. Clearly C is closed. To show that it is unbounded,
suppose that y ∈ [A]<κ. Then y ⊆ a ∪ y ∈ C, as desired.

Theorem 23.18. Suppose that κ is an regular cardinal > ℵ1 and |A| ≥ κ. Then {x ∈
[A]<κ : |x| ≥ ℵ1} is club in [A]<κ.

Proof. Let C be the indicated set. For closure, suppose that 〈aξ : ξ < α〉 is a system
of members of C, with α < κ and aξ ⊆ aη if ξ < η < α. Since each aξ has size at least ℵ1,
so does

⋃

ξ<α aξ, and so
⋃

ξ<α aξ ∈ C. So C is closed. Given x ∈ [A]<κ, let y be a subset

of A of size ℵ1. Then x ⊆ x ∪ y ∈ C. So C is club in [A]<κ.

Theorem 23.19. Suppose that κ is an uncountable regular cardinal and λ is a cardinal >
κ. Then {x ∈ [λ]<κ : x ∩ κ ∈ κ} is club in [λ]<κ.

Proof. Let C be the indicated set. To show that C is closed, suppose that 〈aξ : ξ < α〉
is a system of members of C, with α < κ and aξ ⊆ aη if ξ < η < α. Then aξ ∩ κ is an
ordinal βξ < κ for every ξ < α. Since α < κ and κ is regular, it follows that




⋃

ξ<α

aξ



 ∩ κ =
⋃

ξ<α

(aξ ∩ κ) =
⋃

ξ<α

βξ

is an ordinal less than κ. So
⋃

ξ<α aξ ∈ C. Thus C is closed. To show that it is unbounded,

let y ∈ [λ]<κ. Let x = (y\κ) ∪ (
⋃

(y ∩ κ) + 1). Since κ is regular and |y| < κ, we have
|
⋃

(y ∩ κ)| < κ, and hence |x| < κ. Clearly x ∩ κ =
⋃

(y ∩ κ) + 1 ∈ κ. So y ⊆ x ∈ C, as
desired.
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Theorem 23.20. Suppose that κ is an uncountable regular cardinal and |A| ≥ κ. Then
the intersection of two clubs of [A]<κ is a club.

Proof. Let C and D be club in [A]<κ. Clearly C ∩ D is closed. To show that it
is unbounded, take any x ∈ [A]<κ. We define a sequence 〈yi : i ∈ ω〉 of members of
[A]<κ by recursion. Let y0 = x. Having defined y2i, choose y2i+1 such that y2i+1 ∈ C
and y2i ⊆ y2i+1; and then choose y2i+2 such that y2i+2 ∈ D and y2i+1 ⊆ y2i+2. Then
x ⊆

⋃

i∈ω yi ∈ C ∩D.

Theorem 23.21. Suppose that κ is an uncountable regular cardinal and |A| ≥ κ. Then
the intersection of fewer than κ clubs of [A]<κ is a club.

Proof. Let 〈Cα : α < λ〉 be a system of clubs in κ, with λ < κ. We may assume that
λ is an infinite cardinal. Clearly

⋂

α<λ Cα is closed in [A]<κ. To show that it is unbounded,
suppose that x ∈ [A]<κ. We define a sequence 〈yα : α < λ · ω〉 by recursion, where · is
ordinal multiplication. Let y0 = x. Suppose that yα has been defined for all α < β, with
β < λ · ω, such that if α < γ < β then yα ⊆ yγ ∈ [A]<κ. If β is a successor ordinal
λ · i+ γ + 1 with i ∈ ω and γ < λ, choose yβ ∈ Cγ with yγ ⊆ yβ . If β is a limit ordinal, let
yβ =

⋃

α<β yα; so yβ ∈ [A]<κ by the regularity of κ. Finally, let z =
⋃

α<λ·ω yα. We claim
that x ⊆ z ∈

⋂

α<λ Cα. Clearly x ⊆ z. Take any γ < λ. To show that z ∈ Cγ , it suffices
to prove the following two things:

(1) yλ·i+γ+1 ∈ Cγ for all i ∈ ω.

This is clear by construction.

(2) z =
⋃

i∈ω yλ·i+γ+1.

Since {λ · i+ γ + 1 : i ∈ ω} is cofinal in λ · ω, this is clear too.

If κ is an uncountable regular cardinal, |A| ≥ κ, and 〈Xa : a ∈ A〉 is a system of subsets of
[A]<κ, then the diagonal intersection of this system is the set

△a∈AXa
def
=

{

x ∈ [A]<κ : x ∈
⋂

a∈x

Xa

}

.

Theorem 23.22. Suppose that κ is an uncountable regular cardinal, |A| ≥ κ, and 〈Xa :
a ∈ A〉 is a system of clubs of [A]<κ. Then △a∈AXa is club in [A]<κ.

Proof. For brevity let D = △a∈AXa. To show that D is closed, suppose that
〈xα : α < γ〉 is a system of members of D, with γ < κ, such that xα ⊆ xβ if α < β < γ.

We want to show that b
def
=
⋃

α<γ xα is in D. To do this, by the definition of diagonal
intersection we need to take any a ∈ b and show that b ∈ Xa. Say a ∈ xβ with β < γ. Then
for any δ ∈ [β, γ) we have a ∈ xδ, and hence, since xδ ∈ D, by definition we get xδ ∈ Xa.
Say β + τ = γ. Then 〈xβ+ε : ε < τ〉 is a system of elements of Xa, and xβ+ε ⊆ xβ+ξ if
ε < ξ < τ . So because Xa is closed, we get

b =
⋃

ε<τ

xβ+ε ∈ Xa.
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So D is closed.
To show that D is unbounded, let x ∈ [A]<κ be given. We now define a sequence

〈yi : i ∈ ω〉 by recursion. Let y0 = x. Having defined yi ∈ [A]<κ, by Theorem 23.21 the set
⋂

a∈yi
Xa is club in [A]<κ. Hence we can choose yi+1 in this set such that yi ⊆ yi+1. This

finishes the construction. Now let z =
⋃

i∈ω yi. We claim that x ⊆ z ∈ D, as desired. For,
clearly x ⊆ z. Now suppose that a ∈ z; we want to show that z ∈ Xa. Choose i ∈ ω so
that a ∈ yi. Then for any j ≥ i we have a ∈ yj, and so by construction yj+1 ∈ Xa. Hence
z =

⋃

i≤j yj ∈ Xa, as desired.

Given an uncountable regular cardinal κ and a set A with |A| ≥ κ, we say that a subset
X of [A]<κ is stationary iff it intersects every club of [A]<κ.

Theorem 23.23. Suppose that κ is an uncountable regular cardinal, |A| ≥ κ, S is a
stationary subset of [A]<κ, and f is a function with domain S such that f(x) ∈ x for every
nonempty x ∈ S. Then there exist a stationary subset T of S and an element a ∈ A such
that f(x) = a for all x ∈ T .

Proof. It suffices to show that there is an a ∈ A such that f−1[{a}] is stationary.
Suppose to the contrary that for each a ∈ A there is a club Ca in [A]<κ such that Ca ∩
f−1[{a}] = ∅. By Theorem 23.22 choose x ∈ S ∩ △a∈ACa. Thus x ∈

⋂

a∈x Ca. In
particular, x ∈ Cf(x). So x ∈ Cf(x) ∩ f

−1[{f(x)}], contradiction.

Theorem 23.24. Suppose that λ is regular, κ+ ≤ λ, and S ⊆ [λ]<κ
+

is stationary. Then
S is the disjoint union of λ stationary sets.

Proof. For each nonempty P ∈ [λ]<κ
+

write P = {αPξ : ξ < κ}.

(1) There is an η < κ such that for all β < λ the set {P ∈ S : αPη ≥ β} is stationary.

Otherwise for every η < κ there is a βη < λ such that {P ∈ S : αPη ≥ βη} is non-stationary.

So there is a club Cη such that Cη ∩ {P ∈ S : αPη ≥ βη} = ∅. Let γ = supη<κ βη and
D =

⋂

η<κCη. Note that D is club by Theorem 23.21. For all P ∈ D∩S and η < κ we have

αPη < βη ≤ γ, so P ⊆ γ. Now by Theorem 23.17 the set E
def
= {P ∈ [λ]<κ

+

: γ + 1 ⊆ P} is
club. So E ∩D ∩ S = ∅, contradicting S stationary. So (1) holds.

Take η < κ as in (1). For each P ∈ S let f(P ) = αPη . Now for each β < λ the set

Tβ
def
= {P ∈ S : αPη ≥ β} is stationary. For P ∈ Tβ we have f(P ) ∈ P , so by Theorem

23.23 there is a stationary subset Uβ of Tβ and a δβ < λ such that f(P ) = δβ for all
P ∈ Uβ . Let Vβ = {P ∈ S : f(P ) = δβ}. So Uβ ⊆ Vβ , hence Vβ is stationary. We now
define 〈εξ : ξ < λ〉 by recursion. Suppose defined for all ξ < η. Let β = supξ<η(δεξ + 1),
and set εη = δβ . Clearly Vεξ ∩ Vεη = ∅ for ξ 6= η.

Theorem 23.25. Let κ be an uncountable regular cardinal. Thus κ ⊆ [κ]<κ. Suppose that
C ⊆ [κ]<κ is club. Then C ∩ κ is club in the usual sense.

Proof. To show that C∩κ is closed, suppose that α < κ and C∩κ is unbounded in α
in the usual sense. Let 〈βξ : ξ < cf(α)〉 be a system of elements of C∩κ with supremum α.
Thus α =

⋃

ξ<cf(α) βξ ∈ C since X is closed. This union is also in κ because κ is regular.
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To show that C ∩ κ is unbounded in the usual sense, suppose that α < κ. Since C is

unbounded, choose y0 ∈ C such that α ⊆ y0. Now y0 ∈ [κ]<κ, so β0
def
=
⋃
y0 < κ. Then

choose y1 ∈ C such that β0 ⊆ y1. Continuing, we obtain α ⊆ y0 ⊆ β0 ⊆ y1 ⊆ β1 ⊆ . . ..
The union of this sequence is in C since C is closed, and it is an ordinal < κ since κ is
regular, as desired.

Theorem 23.26. Let κ be an uncountable regular cardinal, and let C ⊆ κ be club in the
old sense. Then {X ∈ [κ]<κ :

⋃
X ∈ C} is club in the new sense.

Proof. Let C′ = {X ∈ [κ]<κ :
⋃
X ∈ C}. Suppose that 〈Xξ : ξ < α〉 is an increasing

sequence of members of C′, with α < κ. Then 〈
⋃
Xξ : ξ < α〉 is an increasing sequence of

members of C, and so
⋃⋃

ξ<αXξ ∈ C. It follows that
⋃

ξ<αXξ ∈ C′.

Suppose that X ∈ [κ]<κ. Then
⋃
X is an ordinal less than κ, and so there is a limit

ordinal α ∈ C such that
⋃
X < α. Hence X ⊆ α =

⋃
α. So α ∈ C′ is as desired.

Theorem 23.27. Let κ be an uncountable regular cardinal, and let S ⊆ [κ]<κ be stationary
in the new sense. Then {

⋃
X : X ∈ S} is stationary in the old sense.

Proof. Let S′ = {
⋃
X : X ∈ S}. Let C be a club in the old sense. With C′ as in the

proof of Theorem 23.26, choose X ∈ S ∩ C′. Then
⋃
X ∈ S′ ∩ C, as desired.

Theorem 23.28. Let κ be an uncountable regular cardinal, and S ⊆ κ be stationary in
the old sense. Then S is stationary as a subset of [κ]<κ.

Proof. Let X ⊆ [κ]<κ be club. Then by Theorem 23.25, X ∩ κ is club in the old
sense. Hence S ∩X ∩ κ 6= ∅.

Proposition 23.29. If γ is a limit ordinal, then there is a family of cf(γ) clubs of γ whose
intersection is empty.

Proof. Let f : cf(γ) → γ be strictly increasing and continuous. For each α < cf(γ)
let Cα = {f(β) : α ≤ β < cf(γ)}. Then each Cα is club in γ, and

⋂

α<cf(γ) Cα = ∅.

Proposition 23.30. If γ is a limit ordinal and cf(γ) = ω, then there are two clubs of γ
whose intersection is empty.

Proof. Let f be as above. Let D0 = {f(2n) : n ∈ ω} and D1 = {f(2n+ 1) : n ∈ ω}.
Then D0 and D1 are club in γ, and D0 ∩D1 = ∅.

For a limit ordinal γ with cf(γ) > ω we define

clubγ = {X ⊆ γ : ∃C[C club and C ⊆ X ]};

nonstatγ = {X ⊆ γ : ∃C[C club and X ∩ C = ∅]}

Note that clubγ is a filter on γ and nonstatγ is an ideal on γ.

Proposition 23.31. If γ is a limit ordinal with cf(γ) > ω, then

add(nonstatγ) = cov(nonstatγ) = non(nonstatγ) = cf(γ).
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Proof. If A ⊆ nonstatγ and |A | < cf(γ), for each A ∈ A let CA be club such
that A ∩ CA = ∅. Then

⋂

A∈A
CA is club, and

⋃
A ∩

⋂

A∈A
= ∅, so

⋃
A ∈ nonstatγ .

With 〈αξ : ξ < cf(γ)〉 strictly increasing with supremum γ, for each ξ < cf(γ) the set
Dξ = [αξ, γ) is club, hence αξ is nonstationary, and

⋃

ξ<cf(γ) αξ = γ /∈ nonstatγ . Therefore

add(nonstatγ) = cf(γ).
If A ⊆ nonstatγ and |A | < cf(γ) then as above

⋃
A ∈ nonstatγ , hence

⋃
A 6= γ. As

above, {αξ : ξ < cf(γ)} ⊆ nonstatγ and
⋃
{αξ : ξ < cf(γ)} = γ. So cov(nonstatγ) = cf(γ).

If X ∈ [γ]δ with δ a cardinal less than cf(γ), then X is bounded below γ and hence is
in nonstatγ . By Corollary 23.4 there is a club ⊆ γ with order type cf(γ); it is stationary.
Hence non(nonstatγ) = cf(γ).

Lemma 23.32. (III.6.7) Suppose that κ is uncountable and regular, and T ⊆ κ is station-
ary. Suppose that f : T → E with |E| < κ. Then there is an e ∈ E such that f−1[{e}] is
stationary.

Proof. Otherwise T =
⋃

e∈E f
−1[{e}] contradicts add(nonstatκ) = κ.

Theorem 23.33. (III.6.10) Let κ be a successor cardinal, and I an ideal on κ such that
add(I) = κ and I contains all singletons. Then there are disjoint Xδ ⊆ κ for δ < κ such
that each Xδ /∈ I.

Proof. If M ∈ [κ]<κ, then M =
⋃

α∈M{α} ∈ I. Thus [κ]<κ ⊆ I. Say κ = λ+. For

each ρ < κ let fρ be an injection of ρ into λ. For ξ < λ and α < κ let Xξ
α = {ρ : α < ρ < κ

and fρ(α) = ξ}. Note:

(1) ∀ξ < λ∀α, β < κ[α 6= β → Xξ
α ∩X

ξ
β = ∅].

(2) ∀α < κ[
⋃

ξ<λX
ξ
α = κ\(α+ 1)].

By (2), for each α < κ choose ξα < λ such that Xξα
α /∈ I. Since κ is regular, there is a

ξ < λ such that A
def
= {α < κ : ξα = ξ} has size κ. Then by (1), 〈Xξ

α : α ∈ A〉 is a system
of pairwise disjoint subsets of κ none of which is in I.

Proposition 23.34. (III.6.13) If κ is regular and uncountable and f : κ → κ, then

D
def
= {β < κ : ∀α < β[f(α) < β]} is a club.

Proof. For each α < κ let Cα = {β < κ : f(α) < β}. Then for any β < κ,
β ∈ △α<κCα iff ∀α < β[β ∈ Cα] iff ∀α < β[f(α) < β] iff β ∈ D. So the result
follows.

Proposition 23.35. If κ is strongly inaccessible, then {α < κ : α = iα} is club in κ.

Proof. By induction, if α < κ then iα < κ. Take f(α) = iα in Lemma 23.34,
obtaining a club D. Let β ∈ D\{0}. Then ∀α < β[iα < β]. Hence β =

⋃

α<β iα = iβ .

427



Proposition 23.36. (III.6.16) Let λ = ωω1
. A set F ⊆ ω1λ is an eventually different

family (edf) iff {α < ω1 : f(α) = g(α)} is countable whenever f, g ∈ F and f 6= g.
Assume ∀α < ω1[2ℵα = ℵα+1].

Then there is an edf F of size 2λ such that ∀f ∈ F∀α < ω1[f(α) < ωα+1].

Proof. For any X ⊆ λ and α < ω1 let fX(α) = X ∩ ωα. For each α < ω1 let
gα : P(ωα) → ωα+1 be a bijection. For each X ⊆ λ let hX : ω1 → λ be defined by
hX(α) = gα(fX(α)). Thus hX(α) < ωα+1 for all α < ω1. We claim that 〈hX : X ⊆ λ〉 is
an eventually different family. For, suppose that X, Y ∈P(λ) and X 6= Y . Say β ∈ X\Y .
Then for any α < ω1 such that β < ωα we have fX(α) = X ∩ωα 6= Y ∩ωα = fY (α); hence
hX(α) 6= hY (α).

Proposition 23.37. (III.6.17) Assume that λ = ωω1
, ∀α < ω1[2ℵα = ℵα+1], F ⊆ ω1λ

is an edf, g : ω1 → λ, ∀α < ω1[g(α) < ωα+1], and ∀f ∈ F [{α < ω1 : f(α) < g(α)} is
stationary].

Then |F | ≤ λ.

Proof. Suppose that |F| > λ. Note that there are fewer than λ stationary subsets of
ω1. For, |{S ⊆ ω1 : S stationary}| ≤ |P(ω1)| = 2ω1 = ω2 < λ. So there is a stationary set
S such that |{f ∈ F : {α < ω1 : f(α) < g(α)} = S}| > λ. Let F ′ = {f ∈ F : {α < ω1 :
f(α) < g(α)} = S}. Let S′ = S\{0}.

For each α < ω1 let hα be an injection of g(α) into ωα. If f ∈ F ′ and α ∈ S′, let
lf (α) = hα(f(α)). Note that α 6= 0 and lf (α) < ωα; so there is an f ′(α) < α such that
|lf (α)| ≤ ωf ′(α). Now f ′ is regressive on the stationary set S′, so it takes a constant value
βf on a stationary subset S′′

f of S′. Now the function f 7→ βf maps F ′, a set of size > λ,

into λ. Hence there exist a set F ′′ ∈ [F ′]≥λ
+

and a γ < λ such that βf = γ for all f ∈ F ′′.
Now there are fewer than λ stationary sets, so there exist a subset F ′′′ of F ′′ of size more
than λ and a stationary set T such that S′′

f = T for all f ∈ F ′′′. Now for all f ∈ F ′′ and

α ∈ T we have |lf (α)| ≤ ωγ and so lf (α) < ωγ+1. So lf ∈ Tωγ+1. Since |Tωγ+1| < λ, it
follows that there are distinct f, g ∈ F ′′ such that lf = lg. Hence f ↾ T = g ↾ T . This
contradicts the edf property.

Proposition 23.38. (III.6.18) If λ = ωω1
and ∀α < ω1[2ℵα = ℵα+1], then 2λ = λ+.

Proof. We follow Baumgartner, Prikry. First we prove

Claim. Suppose that S is a stationary subset of ω1 and f : S → ωω1
is such that f(α) < ωα

for all α ∈ S. Then there exist a stationary T ⊆ S and a γ < ω1 such that f(α) < ωγ for
all α ∈ T .

Proof. Let C be the collection of all limit ordinals less than ω1; so C is club in ω1,
and hence C ∩ S is stationary in ω1. For each α ∈ C ∩ S we have f(α) < ωα, so there
is a β < α such that f(α) < ωβ ; let g(α) be the least such β. So g(α) < α. Thus g is a
regressive function defined on the stationary set S∩C, and so g is constant on a stationary
subset T of S ∩ C.

Proof of Proposition 23.38 Let λ = ωω1
, assume that ∀α < ω1[2ωα = ωα+1], and

suppose that 2λ > λ+. We want to get a contradiction.

428



Let 〈Aαξ : ξ < ωα+1〉 be a listing without repetitions of P(ωα). For each B ⊆ ωω1
and

each α < ω1 let fB(α) be the ξ < ωα+1 such that B ∩ ωα = Aαξ . If B,C ∈ P(ωω1
) with

B 6= C, then there is an α < ω1 such that B ∩ ωα 6= C ∩ ωα, and then fB(β) 6= fC(β) for
all β ≥ α. Thus

(1) For any distinct B,C ⊆ ωω1
, the set {β < ω1 : fB(β) = fC(β)} is bounded.

Define BRC iff B,C ⊆ ωω1
and {α < ω1 : fB(α) < fC(α)} is stationary.

(2) If B,C ⊆ ω1 and B 6= C, then BRC or CRB.

For,

ω1 = {α < ω1 : fB(α) < fC(α)} ∪ {α < ω1 : fB(α) = fC(α)} ∪ {α < ω1 : fC(α) < fB(α)}.

Now if {α < ω1 : fB(α) < fC(α) and {α < ω1 : fC(α) < fB(α)} are both nonstationary,
let C,D be clubs such that C ∩ {α < ω1 : fB(α) < fC(α) = ∅ and D ∩ {α < ω1 : fA(α) <
fB(α) = ∅. Then C ∩D ⊆ {α < ω1 : fB(α) = fC(α)} and hence C ∩D is bounded by (1),
contradiction. Hence (2) follows.

(3) There is a B ⊆ ωω1
such that |{C : CRB}| ≥ λ+.

In fact, let X be a subset of P(ωω1
) of size λ+. We may assume that ∀B ∈ X [|{C :

CRB}| ≤ λ]. Let Y = {C ⊆ ωω1
: ∃B ∈ X [CRB]}. Then |Y | ≤ |X | · λ = λ+. Since

2λ > λ+, choose C ⊆ ωω1
such that C /∈ Y . Then ∀B ∈ X [not(CRB)], so by (1),

∀B ∈ X [BRC]. This proves (3).
We fix B as in (3). Now for each α < ω1 we have fB(α) < ωα+1, so there is a one-one

function gα : fB(α) → ωα. Now suppose that CRB. Then SC
def
= {α < ω1 : fC(α) <

fB(α)} is stationary. For any α ∈ SC we have gα(fC(α)) < ωα. Hence by the claim there
exist a stationary TC ⊆ SC and a γC < ω1 such that gα(fC(α)) < ωγC for all α ∈ TC . The
number of pairs (TC , γC) is at most 2ω1 · ω1 < ωω1

, so by (3) There is a pair (U, δ) such
that the set

V
def
= {C : CRB and TC = U and γC = δ}

has size λ+. Now for each C ∈ V we define a function kC with domain U . For any α ∈ U
let kC(α) = gα(fC(α)). So k maps U into ωδ. The number of functions mapping U into
ωδ is at most ωω1

δ < λ, so there are distinct C,D ∈ V such that kC = kD. Since each gα
is one-one, it follows that fC ↾ U = fD ↾ U . This contradicts (1).

Proposition 23.39. (III.6.19) Suppose that λ is a singular cardinal with cf(λ) > ω, and
{θ < λ : 2θ = θ+} is stationary in λ.

Then 2λ = λ+.

Proof. First we prove:

Claim. Suppose that λ is a singular cardinal with cf(λ) > ω. Let 〈µα : α < cf(λ)〉 be
a strictly increasing continuous sequence of infinite cardinals with supremum λ. Suppose
that S is a stationary subset of cf(λ) and f : S → λ is such that f(α) < µα for all α ∈ S.
Then there exist a stationary T ⊆ S and a γ < cf(λ) such that f(α) < µγ for all α ∈ T .
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Proof. Let C be the collection of all limit ordinals less than cf(λ); so C is club in
cf(λ), and hence C ∩ S is stationary in cf(λ). For each α ∈ C ∩ S we have f(α) < µα,
so there is a β < α such that f(α) < µβ . As in the proof of the claim for the proof of
Proposition 23.38, this gives the desired result.

Proof of Proposition 23.39 Let λ be a singular cardinal with cf(λ) > ω, assume

that S
def
= {θ < λ : θ is a cardinal and 2θ = θ+} is stationary, while 2λ > λ+; we want to

get a contradiction. Let 〈µα : α < cf(λ)〉 be a strictly increasing continuous sequence of

infinite cardinals with supremum λ. Then C
def
= {µα : α < cf(λ)} is club in λ, so S ∩ C is

stationary in λ. Let S′ = {α < cf(λ) : µα ∈ S ∩ C}. Then S′ is stationary in cf(λ), since
if D is club in cf(λ) then {µα : α ∈ D} is club in λ, hence there is an α ∈ D such that
µα ∈ C ∩ S, hence α ∈ S′ ∩ D. For each α ∈ S′ let 〈Aαξ : ξ < µ+

α 〉 be a listing without

repetitions of P(µα). For each B ⊆ λ and each α ∈ S′ let fB(α) be the ξ < µ+
α such that

B ∩µα = Aαξ . If B,C ⊆ λ with B 6= C, then there is an α ∈ S such that B ∩µα 6= C ∩µα,
and then B ∩ µβ 6= C ∩ µβ for all β ≥ α, so that fB(β) 6= fC(β) for all β ∈ S such that
α ≤ β. Thus

(1) For any distinct B,C ⊆ λ the set {α ∈ S′ : fB(α) = fC(α)} is bounded in λ.

Define BRC iff B,C ⊆ λ and {α ∈ S′ : fB(a) < fC(α)} is stationary in cf(λ).

(2) If B,C ⊆ λ and B 6= C, then BRC or CRB.

The proof of (2) is like that of (2) in the proof of Proposition 23.38.

(3) There is a B ⊆ λ such that |{C : CRB}| ≥ λ+.

In fact, let X be a subset of P(λ) of size λ+. We may assume that ∀B ∈ X [|{C : CRB}| ≤
λ]. Let Y = {C ⊆ λ : ∃B ∈ X [CRB]}. Then |Y | ≤ |X | · λ = λ+. Since 2λ > λ+, choose
C ⊆ λ such that C /∈ Y . Then ∀B ∈ X [not(CRB)], so by (1), ∀B ∈ X [BRC]. This proves
(3).

We fix B as in (3). Now for each α < cf(λ) we have fB(α) < µ+
α , so there is a one-one

function gα : fB(α) → µα. Now suppose that CRB. Then SC
def
= {α ∈ S′ : fC(α) <

fB(α)} is stationary. For any α ∈ SC we have gα(fC(α)) < µα. Hence by the claim there
exist a stationary TC ⊆ SC and a γC < cf(λ) such that gα(fC(α)) < µγC for all α ∈ TC .
The number of pairs (TC , γC) is at most 2cf(λ) · cf(λ) < λ, so by (3) There is a pair (U, δ)
such that the set

V
def
= {C : CRB and TC = U and γC = δ}

has size λ+. Now for each C ∈ V we define a function kC with domain U . For any α ∈ U
let kC(α) = gα(fC(α)). So k maps U into µδ. The number of functions mapping U into

µδ is at most µ
cf(λ)
δ < λ, so there are distinct C,D ∈ V such that kC = kD. Since each gα

is one-one, it follows that fC ↾ U = fD ↾ U . This contradicts (1).

Proposition 23.40. (III.6.21) If B, with universe B = ω1, is a structure for a countable

language L , then C
def
= {α ⊆ ω1 : α � B} is a club in ω1.
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Proof. Fix c ∈ B. Let g be a choice function for nonempty subsets of B. For each
formula of L of the form ∃yψ(x, y) let f∃yψ(x,y) be the m-ary function defined as follows,
where m is the length of x. For any a ⊆ B,

f∃yψ(x,y)(a) =
{
g({b ∈ B : B |= ψ(a, b)}) if this set is nonempty,
c otherwise.

Let F consist of all functions f∃yψ(x,y), and let D be the set of all α < ω1 which are closed
under F . So by Proposition 23.7, D is club in ω1. By the Tarski-Vaught Lemma 15.3,
α � B for all nonzero α ∈ D. Clearly the converse holds, so C = D.

Recall from before Proposition 23.31 the definition of clubγ . We also define

clubB = {X ⊆ [B]<κ : ∃C ⊆ [B]<κ[C is club and C ⊆ X}.

Proposition 23.41. For any C ⊆ [ω1]≤ω, C ∈ clubω1 iff (C ∩ ω1) ∈ clubω1
.

Proof. ⇒: Suppose that C is club in [ω1]≤ω, α is a countable limit ordinal, and
C ∩ ω1 ∩ α is unbounded in α. Then there is a strictly increasing sequence 〈γn : n ∈ ω〉
with union α with each γn ∈ C ∩ α. Then because C is club in [ω1]≤ω, α =

⋃

n∈ω γn ∈ C.
Thus C ∩ ω1 is closed in the usual sense. To show that it is unbounded, suppose that
α < ω1. Note that ω1 is club in [ω1]≤ω1 , and so C ∩ ω1 is club in [ω1]≤ω1 . Choose
γ ∈ C ∩ ω1 such that α ⊆ γ. This shows that C ∩ ω1 is unbounded in the usual sense.

Now if X ∈ clubω1 , choose C ⊆ [ω1]≤ω such that C is club and C ⊆ X . Then
(C ∩ ω1) ⊆ (X ∩ ω1, So (X ∩ ω1) ∈ clubω1

.
⇐: Suppose that (X ∩ ω1) ∈ clubω1

. Choose a club C in ω1 such that C ⊆ (X ∩ ω1).
We claim that C is club in [ω1]≤ω. If A ∈ [ω1]≤ω, let α = supA, and choose β ∈ C such
that α < β. Then A ⊆ β. So C is unbounded in [ω1]≤ω. Now suppose that A ∈ ωC and
An ⊆ An+1 for all n ∈ ω. Thus An ≤ An+1 for all n ∈ ω. Hence

⋃

n∈ω An ∈ C, as desired.
Since C ⊆ X , it follows that X ∈ clubω1 .

Proposition 23.42. (III.6.25) Let F be a countable collection of finitary functions on B,
and let C be the set of all A ∈ [B]≤ω such that A is closed under F . Then C is a club
subset of [B]≤ω.

Proof. If X is a countable subset of B, then the closure of X under F is a member of
C containing X . Suppose that A ∈ ωC and ∀n ∈ ω[An ⊆ An+1]. Then

⋃

n∈ω An is closed
under F and hence is in C.

Proposition 23.43. (III.6.26) Let B, with universe B, be a structure for a countable

language L . Then C
def
= {A ∈ [B]≤ω : A � B} is a club subset of [B]≤ω.

Proposition 23.44. (III.6.28) Suppose that κ is an uncountable regular cardinal, X is a
metric space, and h : κ→ X is continuous (with κ having the order topology). Then there
is a ξ < κ such that ∀α ∈ (ξ, κ)[h(α) = h(ξ)].
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Proof. Let S be the set of all limit ordinals less than κ. Fix a positive integer
n. For each ξ ∈ S we have ξ ∈ h−1[B1/n(h(ξ))]. so there is an f(ξ) < ξ such that

∀α ∈ (f(ξ), ξ + 1)[α ∈ h−1[B1/n(h(ξ))]], i.e., ∀α ∈ (f(ξ), ξ + 1)[d(h(α), h(ξ)) < 1
n ]. Then

there is a stationary subset Tn of S and a γn < κ such that ∀ξ ∈ Tn∀α ∈ (γn, ξ +
1)[d(h(α), h(ξ)) < 1

n ]. Since Tn is cofinal in κ, we have ∀α ∈ (γn, κ)[d(h(α), h(ξ)) < 1
n ].

Let ξ =
⋃

n∈ω\{0} γn.

A cardinal κ is weakly Mahlo iff κ is regular limit and the collection of regular limit
cardinals less than κ is stationary in κ. κ is strongly Mahlo iff κ is weakly Mahlo and
strongly inaccessible.

Proposition 23.45. (III.6.30.1) If κ is strongly inaccessible, then κ is strongly Mahlo iff
the set of strongly inaccessible cardinals less than κ is stationary in κ.

Proof. Assume that κ is strongly inaccessible.
⇒: Let C be the set of all strong limit cardinals less than κ. Clearly C is club in κ.

With D the set of all regular limit cardinals less than κ, D is stationary by assumption,
so C ∩D is stationary, and it is the set of all strongly inaccessible cardinals less than κ.
⇐: Let E be the set of all strongly inaccessible cardinals less than κ; so E is stationary

by assumption. It is contained in the set of all regular limit cardinals less than κ, so that
set is stationary too.

Proposition 23.46. (III.6.30.2) Define

E0 = {κ : κ is regular limit};

Eα+1 = {κ ∈ Eα : |κ ∩Eα| = κ};

Eγ =
⋂

α<γ

Eα for γ limit.

Assume that κ is weakly Mahlo. Then κ ∈ Eκ.

Proof. Clearly κ ∈ E0 and κ ∈ E1. Suppose that κ ∈ Eα+1. Thus |κ ∩ Eα| = κ. Let
F consist of κ∩Eα together with every supremum of members of κ∩Eα. Let 〈νξ : ξ < κ〉
enumerate F in increasing order. Let M = {ξ < κ : νξ = ξ}. We claim that M is club in κ.
For closure, suppose that α < κ is a limit ordinal and M ∩ α is unbounded in α. If η < α,
choose ξ ∈ (η, α) with νξ = ξ. Then νη < νξ = ξ < α. Hence να =

⋃

η<α νη ≤ α ≤ να;
so α = να. So α ∈ M . For unbounded, let η < κ. Define ρ0 = η and ρn+1 = νρn + 1
for any n ∈ ω. Let ρω =

⋃

n∈ω ρn. If η < ρω, choose n ∈ ω so that η < ρn. Then
νη < νρn = ρn+1 < ρω. Hence νρω =

⋃

η<ρω
νη ≤ ρω ≤ νρω . So M is unbounded.

Thus M is club in κ. Hence M ′ def
= {α ∈M : α is regular limit} is stationary in κ. If

λ ∈ M ′, then νλ = λ and so |λ ∩ Eα| ≥ |{νη : η < λ}| = λ. Thus ∀λ ∈ M ′[λ ∈ Eα+1]. It
follows that |κ ∩ Eα+1| = κ, so that κ ∈ Eα+2.

By induction, κ ∈ Eα for all α, in particular κ ∈ Eκ.

Let 〈Aα : α < ω1〉 be a sequence of sets, with each Aα a countable subset of P(α). The
sequence is a ♦∗-sequence iff

∀A ⊆ ω1∃C ⊆ ω1[C is club and ∀α ∈ C[A ∩ α ∈ Aα]].
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The sequence is a ♦+-sequence iff

∀A ⊆ ω1∃C ⊆ ω1[C is club and ∀α ∈ C[A ∩ α ∈ Aα and C ∩ α ∈ Aα]].

♦∗ is the statement that a ♦∗-sequence exists, and ♦+ is the statement that a ♦+-sequence
exists.

Theorem 23.47. (III.7.6) ♦+ implies that there is a ω1-Kurepa family F ⊆P(ω1) such
that

(∗) ∀A ∈ [ω1]ω1∃X ∈ [A]ω1 [X ∈ F ].

Proof. For C ⊆ ω1 and ξ, η < ω1, we call ξ, η adjacent in C iff ξ < η, ξ, η ∈ C, and
C ∩ (ξ, η) = ∅. If A,C ⊆ ω1, then thin(A,C) is the set of all ordinals min(A ∩ [ξ, η)) such
that ξ, η are adjacent in C and A ∩ [ξ, η) 6= ∅.

(1) If C is club in ω1 and |A| = ω1, then |thin(A,C)| = ω1.

For, let 〈αξ : ξ < ω1〉 be the strictly increasing enumeration of C. Thus αξ, αξ+1 are
adjacent in C for all ξ < ω1. Now

⋃

ξ<ω1
[αξ, αξ+1) = ω1\α0, since for any γ ∈ ω1\α0 choose

δ ∈ C minimum such that γ < δ; then δ = αξ+1 for some ξ, and hence αξ ≤ γ < αξ+1.
Now (1) follows.

Now let 〈Aα : α < ω1〉 be a ♦+-sequence. For each β < ω1 let

Fβ =






a ∪ thin(A,C) : a ∈ [β]<ω and A,C ∈



{∅} ∪
⋃

α≤β

Aα










.

Note that Fβ is a countable subset of P(β). Let F = {X ⊆ ω1 : ∀β < ω1[X ∩ β ∈ Fβ ]}.
Hence ∀β < ω1[|{X ∩ β : X ∈ F}| ≤ ω].

Now we verify (∗). So, suppose that A ∈ [ω1]ω1 . By the ♦+ property, choose a club
C ⊆ ω1 such that ∀α ∈ C[A ∩ α ∈ Aα and C ∩ α ∈ Aα]. Let X = thin(A,C). By (1),
|X | = ω1. To show that X ∈ F , take any β < ω1; we show that X ∩ β ∈ Fβ . Now

(2) If C ∩ β is finite, then X ∩ β is finite.

In fact, suppose that X ∩β is infinite. For each ρ ∈ X ∩β choose ξρ, ηρ adjacent in C such
that A ∩ [ξρ, ηρ) 6= ∅ and ρ = min(A ∩ [ξρ, ηρ). Then ξρ ≤ ρ < β, and there are infinitely
many pairs (ξρ, ηρ), so C ∩ β is infinite.

So now if C ∩ β is finite, then X ∩ β ∈ Fβ , since thin(∅, ∅) = ∅. Suppose that C ∩ β
is infinite. Now there is at least one limit point of C ∩ (β + 1). For, since C ∩ β is infinite,
say α0 < α1 < · · · are in C ∩ β. Then the supremum of the αis is in C ∩ (β + 1). Let α
be the supremum of all limit points of C ∩ (β + 1). So there exists finitely many ordinals
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γ0 < γ1 < · · · < γn−1 such that C ∩ (β + 1) = (C ∩ α) ∪ {α, γ0, . . . , γn−1}; possibly n = 0.
Hence

X ∩ β = thin(A,C) ∩ β

= {min(A ∩ [ξ, η)) : ξ, η adjacent in C

and A ∩ [ξ, η) 6= ∅ and min(A ∩ [ξ, η)) < β}

= a ∪ {min(A ∩ [ξ, η)) : ξ, η adjacent in (C ∩ α)

and A ∩ [ξ, η) 6= ∅} for some finite a

= a ∪ thin(A ∩ α,C ∩ α).

Since A ∩ α,C ∩ α ∈ Aα, it follows that X ∩ β ∈ Fβ . This proves (∗).
Finally, we show that |F | = ω2. Taking a partition of ω1 into ω1 sets of size ω1, we

see from (∗) that |F ∩ [ω1]ω1 | ≥ ω1. Suppose that |F ∩ [ω1]ω1 | = ω1. Write F ∩ [ω1]ω1 =
{Bξ : ξ < ω1}. By recursion we can define an increasing sequence 〈αξ : ξ < ω1〉 such that
for each ξ < ω1 there is a b ∈ Bξ such that αξ < b < αξ+1. Let A = {αξ : ξ < ω1}. Then
A ∈ [ω1]ω1 , but there is no X ∈ [A]ω1 with X ∈ F , contradicting (∗).

A ♦−-sequence is a sequence 〈Aα : α < ω1〉 such that each Aα is a countable subset of
P(α) and for all A ⊆ ω1 the set {α < ω1 : A∩α ∈ Aα} is stationary. ♦− is the statement
that a ♦−-sequence exists.

Theorem 23.48. (III.7.8) ♦+ → ♦∗ → ♦− ↔ ♦.

Proof. Clearly ♦+ → ♦∗ → ♦− and ♦ → ♦−. To prove that ♦− → ♦, let
〈Aα : α < ω1〉 be a ♦−-sequence.

For A any set of ordinals and n ∈ ω, let ψn(A) = {ξ : ω · ξ + n ∈ A}. Note that if
A ⊆ α, then ψn(A) ⊆ α.

We may assume that each Aα 6= ∅. Write Aα = {Anα : n ∈ ω}. Let Bnα = ψn(Anα).
Thus Bnα ⊆ α. We claim that there is an n ∈ ω such that 〈Bnα : α < ω1〉 is a ♦-sequence.

Suppose that this is not true. For each n ∈ ω let Bn ⊆ ω1 be such that {α < ω1 :
Bn ∩α = Bnα} is non-stationary. Let C ⊆ ω1 be club such that Bn ∩α 6= Bnα for all α ∈ C

and n ∈ ω. Now D
def
= {α < ω1 : ω · α = α} is club. In fact, suppose that γ is limit

and D ∩ γ is unbounded in γ. If α < γ, choose β with α < β < γ and β ∈ D. Then
ω · α < ω · β = β < γ. Hence γ ≤ ω · γ =

⋃

α<γ ω · α ≤ γ. So D is closed. To show that
it is unbounded, take any α < ω1. Let β0 = α and βn+1 = ω · βn. Then set γ =

⋃

n∈ω βn.
Then α < γ ∈ D.

Let C′ = C ∩ D\{0}. Then C′ is club in ω1, and for all α ∈ C′ and all ξ < ω1 and
n ∈ ω, if ξ < α then ω · ξ + n < α.

Define B = {ω ·ξ+n : n ∈ ω and ξ ∈ Bn}. Then ψn(B) = Bn and ψn(B∩α) = Bn∩α
for all n ∈ ω and α ∈ C′. Thus for all n ∈ ω and α ∈ C′, ψn(B ∩ α) = Bn ∩ α 6= Bnα =
ψn(Anα), so B ∩ α 6= Anα. Hence B ∩ α /∈ Aα for all α ∈ C′. This contradicts the definition
of the ♦−-sequence.

Proposition 23.49. (III.7.9.1) Assume ♦. Then there exist sets Aα ⊆ α × α such that
for every A ⊆ ω1 × ω1 the set {α < ω1 : A ∩ (α× α) = Aα} is stationary.
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Proof. Let f : ω1 → ω1 × ω1 be a bijection. Let C = {α < ω1 : f [α] = (α × α)}.
Then C is club in ω1: to prove closure, suppose that γ < ω1 is a limit ordinal and
C ∩ γ is unbounded in γ. Take any β < γ. Choose α ∈ C with β < α < γ. Then
f(β) ∈ f [α] = (α × α) ⊆ (γ × γ). This shows that f [γ] ⊆ (γ × γ). Now take any
(ε, δ) ∈ (γ × γ). Choose α ∈ C so that ε, δ < α < γ. Then f [α] = (α × α), so there is a
ψ < α such that f(ψ) = (ε, δ). This shows that (γ × γ) ⊆ f [γ]. So C is closed.

To prove that C is unbounded, take any α < ω1. Define β0 = α. Choose β2n+1 so
that β2n < β2n+1 and f [β2n] ⊆ (β2n+1 × β2n+1). Then choose β2n+2 > β2n+1 so that
(β2n+1 × β2n+1) ⊆ f [β2n+2]. Let γ =

⋃

n∈ω βn. Then α < γ ∈ C.
Let 〈Aα : α < ω1〉 be a ♦-sequence. For each α < ω1 let A′

α = f [Aα] ∩ (α× α). Take

any A ⊆ ω1 ×ω1. To show that D
def
= {α < ω1 : A∩ (α×α) = A′

α} is stationary it suffices

to show that D ∩C is stationary. Let A′ = f−1[A]. Then E
def
= {α < ω1 : A′ ∩ α = Aα} is

stationary So also C ∩E is stationary. Now note that if α ∈ C, then

A′ ∩ α = Aα iff f−1[A] ∩ f−1[α× α] = f−1[f [Aα]] ∩ f−1[α× α]

iff f−1[A ∩ (α× α)] = f−1[f [Aα] ∩ (α× α)]

iff A ∩ (α× α) = f [Aα] ∩ (α× α)

iff A ∩ (α× α) = A′
α.

Hence

α ∈ C ∩ E iff α ∈ C and A′ ∩ α = Aα

iff α ∈ C and A ∩ (α× α) = A′
α

iff α ∈ C and α ∈ D

iff α ∈ C ∩D.

So C ∩D is stationary.

Proposition 23.50. (III.7.9.2) Assume ♦. Then there exist functions gα : α → α for
each α < ω1 such that for every g : ω1 → ω1 the set {α < ω1 : g ↾ α = gα} is stationary.

Proof. By Proposition 23.49 choose Aα ⊆ α × α for α < ω1 so that for every
A ⊆ ω1×ω1 the set {α < ω1 : A∩ (α×α) = Aα} is stationary. If Aα : α→ α let gα = Aα;
otherwise let gα = ∅. Suppose that g : ω1 → ω1. Let C = {α < ω1 : g ↾ α = g ∩ (α× α)}.
We claim that C is club. Closed: suppose that γ is a limit ordinal and C ∩γ is unbounded
in γ. If β < γ, choose α ∈ C with β < α < γ. Then g ↾ β ⊆ g ↾ α = g∩(α×α) ⊆ g∩(γ×γ).
This shows that g ↾ γ ⊆ g ∩ (γ × γ). Now suppose that (α, β) ∈ g ∩ (γ × γ). Choose δ ∈ C
so that α, β < δ < γ. Then (α, β) ∈ g ∩ (δ × δ) = g ↾ δ ⊆ g ↾ γ. This shows that
g ∩ (γ × γ) ⊆ g ↾ γ. So C is closed.

Unbounded: Let α < ω1. Define β0 = α. Let β2n+1 > β2n be such that g ↾ β2n ⊆
(β2n+1 × β2n+1). Let β2n+2 > β2n+1 be such that g ∩ (β2n+1 × β2n+1) ⊆ g ↾ β2n+2. Let
γ =

⋃

n∈ω βn. Then α < γ ∈ C.

Now D
def
= {α < ω1 : g ∩ (α × α) = Aα} is stationary. Hence so is D ∩ C. For any

α ∈ D ∩ C we have g ↾ α = g ∩ (α× α) = Aα = gα, as desired.
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Proposition 23.51. (III.7.10) Assume ♦. Then there are Suslin trees S, T such that
S ⊚ T is also Suslin.

Proof. Let 〈Aα : α < ω1〉 be a ♦-sequence with each Aα ⊆ α × α; see Proposition
23.49. Define L0 = {0}, L1 = ω\{0}, Ln+1 = {ω · n + k : k ∈ ω} for 0 < n < ω,
Lα = ω · α + k : k ∈ ω} for ω ≤ α < ω1. Thus these sets are pairwise disjoint with union
ω1. S = T is the union of all of these sets, and |Lα| = ω for all α ∈ (0, ω1). Now we define
a relation ≺εα on

⋃

β≤α Lβ by induction on α so that the following conditions hold (ε = 0
for S, ε = 1 for T ):

(1α) If β < γ ≤ α, then ≺εγ is an end extension of ≺εβ .

(2α) ≺εα is a tree order on
⋃

β≤α Lβ with Lβ the set of elements of height β.

(3α) If β < γ ≤ α and x ∈ Lβ, then there is a y ∈ Lγ such that x ≺εγ y.

Let ≺ε0= ∅. Clearly (10)-(30) hold. ≺ε1 extends ≺ε0 by putting each member of L1 above
0. Clearly (11)-(31) hold. Now suppose that ≺εα has been defined so that (1α)-(3α) hold,

with 1 ≤ α < ω1. Let Lα+1 =
⋃

ξ∈Lα
Eξα+1 with the Eξα+1’s pairwise disjoint and infinite.

We extend ≺εα to ≺εα+1 by putting all members of Eξα+1 directly above ξ, for each ξ ∈ Lα.
Clearly (1α+1)-(3α+1) hold.

Now suppose that γ is limit, and ≺εα has been defined for all α < γ so that (1α)-(3α)
hold. Let {xk : k ∈ ω} enumerate all of the elements of

⋃

α<γ(Lα ×Lα). Let 〈αn : n ∈ ω〉
be a strictly increasing sequence of ordinals with supremum γ. For each k ∈ ω, if ω · γ = γ
and Aγ is a maximal antichain in

⋃

α<γ(Lα ×Lα) with respect to ≺0 ⊚ ≺1, then there is

a zk ∈ Aγ such that xk and zk are comparable; in this case, let tk0 be the maximum of xk
and zk. If ω · γ 6= γ, or Aγ is not a maximal antichain in

⋃

α<γ(Lα×Lα), let tk0 = xk. Say

that the height of tk0 in
⋃

α<γ(Lα ×Lα) is less than αm. Then we use (3αn) for m ≤ n to

get elements tk1 , t
k
2 . . . of

⋃

α<γ Lα of heights αm.αm+1, . . . such that tk0 ≺αm tk1 ≺αm+1
· · ·

with respect to ⊚. Finally, we put (ω · γ + k, ω · γ + k) directly above 〈tk0 , t
k
1 , . . .〉.

Let ≺=
⋃

α<ω1
≺α with respect to ⊚. Clearly (S ⊚ T,≺) is an ω1-tree. To show that

it is Suslin, let A be a maximal antichain in S ⊚ T . Let

C =

{

γ < ω1 : ω · γ = γ > 0 and A ∩ (γ × γ) is a maximal antichain in
⋃

α<γ

≺⊚
α

}

.

We claim that C is club in ω1. For closure, suppose that γ is a limit ordinal less than
ω1 and C ∩ γ is unbounded in γ. If α < γ, choose β ∈ C ∩ γ so that α < β. Then
ω · α < ω · β = β < γ. This shows that ω · γ ⊆ γ. The other inclusion holds in general, so
ω · γ = γ. To see that A∩ (γ× γ) is a maximal antichain in

⋃

α<γ ≺
⊚
α , take any member x

of
⋃

α<γ(Lα × Lα). Say x ∈ (Lα × Lα) with α < γ. Choose β ∈ C ∩ γ with α < β. Then

A∩ (β×β) is a maximal antichain in
⋃

δ<β ≺
⊚
δ , so there is a y ∈

⋃

δ<β(Lδ×Lδ) such that
x and y are comparable. Since y ∈

⋃

δ<γ(Lδ × Lδ), this shows that A ∩ γ is a maximal
antichain in y ∈

⋃

δ<γ(Lδ ×Lδ), and finishes the proof that C is closed.
To show that C is unbounded, suppose that α < ω1. Let β0 = α. If βn has been

defined, choose γn0 so that ω · βn < γn0, then choose γn1 > βn0 so that γn0 < ω · γn1.
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Now for each x ∈ (Lβn × Lβn) there is a y ∈ A such that x and y are comparable; say
y ∈ (Lδ(x) × Lδ(x)). Choose βn+1 > γn1 so that δx < βn+1 for all x ∈ (Lβn × Lβn). Let
ε =

⋃

n∈ω βn. We claim that ε ∈ C. For, suppose that α < ω · ε. Choose n so that
α < ω · βn. Then α < γn0 < βn+1 < δ. Thus ω · ε ≤ δ. The converse holds in general.
To show that A ∩ δ is a maximal antichain in

⋃

ε<δ ≺
⊚
ε , take any x ∈

⋃

ε<δ(Lε × Lε).
Say x ∈ (Lβn × Lβn). Then by construction there is a y ∈ (Lβn+1

× Lβn+1
) ∩ A which is

comparable with x. This completes the proof that C is club in ω1.
Now {α ∈ ω1 : A ∩ (α× α) = Aα} ∩C is stationary. Choose α ∈ ω1 with A ∩ α = Aα

and α ∈ C. Then α = ω · α > 0 and Aα = A ∩ (α × α) is a maximal antichain in
⋃

β<α(Lβ ×Lβ). By construction, every element of T of height α or higher is above some
member of Aα. So Aα is a maximal antichain in T , and it follows that A = Aα. So A is
countable.

A family A ⊆ [κ]κ is κ-almost disjoint iff |X ∩ Y | < κ for all distinct X, Y ∈ A .

Proposition 23.52. (III.7.11) There is a ω1-almost disjoint family of size ω2.

Proof. Let D be a nonempty ω1-almost disjoint family of size at most ω1. We claim
that D is not maximal. Write D = {Xα : α < ω1}. We now define aα ∈ ω1 by recursion.
Suppose defined for all β < α. For each β < α the set Xα ∩ Xβ is countable Hence
Xα ∩

⋃

β<αXβ is countable. We choose

aα ∈Xα\







Xα ∩
⋃

β<α

Xβ



 ∪ {xβ : β < α}





= Xα\








⋃

β<α

Xβ



 ∪ {xβ : β < α}





Clearly {xα : α < ω1} has size ω1 and is almost disjoint from each Xβ.

Proposition 23.53. (III.7.11a) Assume CH. Then there is an ω1-almost disjoint family
of size 2ω1.

Proof. Assume CH. Let X = <ω12. Thus by CH, |X | = ω1. For each f ∈ ω12 let
Yf = {f ↾ α : α < ω1}. Thus Yf ⊆ X and Yf ∩ Yg is countable for f 6= g. A bijection from
ω1 onto X transfers this property to ω1 itself.

Proposition 23.54. (III.7.11b) (♦+) The family F satisfying the condition of Theorem
23.47 has size 2ω1.

Proof. ♦+ implies CH by Propositions 23.13 and 23.48. Applying (∗) of Theorem
23.47 to members of the family given in Proposition 23.53 gives pairwise different ω1-almost
disjoint members of F .

Lemma 23.55. (III.7.12) Let θ be an uncountable cardinal, and suppose that M � H(θ).
Then ω ⊆M .
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Proof. We have ∅ ∈ H(θ), so H(θ) |= ∃x∀y[y /∈ x]. Hence M |= ∃x∀y[y /∈ x]. Choose
m ∈ M so that M |= ∀y[y /∈ m]. Hence H(θ) |= ∀y[y /∈ m]. If n ∈ m, then n ∈ H(θ),
contradiction. So m = ∅. Thus ∅ ∈M .

Suppose we have shown that m ∈ M , with m ∈ ω. Now m + 1 ∈ H(θ), so H(θ) |=
∃x∀y[y ∈ x ↔ y ∈ m or y = m]. Hence this holds in M . Choose u ∈ M such that
M |= ∀y[y ∈ u ↔ y ∈ m or y = m]. Then H(θ) |= ∀y[y ∈ u ↔ y ∈ m or y = m]. So
u = m+ 1 ∈M .

Lemma 23.56. (III.7.12a) Let θ be an uncountable cardinal, and suppose that M � H(θ).
Then ω ∈M .

Proof. We have ω ∈ H(θ). Thus

H(θ) |= ∃x[∅ ∈ x and ∀y ∈ x[y ∪ {y} ∈ x] and ∀z[∅ ∈ z and ∀y ∈ z[y ∪ {y} ∈ z]→ x ⊆ z]

Hence there is an a ∈M such that

H(θ) |= ∅ ∈ a and ∀y ∈ a[y ∪ {y} ∈ a] and ∀z[∅ ∈ z and ∀y ∈ z[y ∪ {y} ∈ z]→ a ⊆ z]

It follows that a = ω ∈M .

Lemma 23.57. (III.7.12b) Let θ be an uncountable cardinal, and suppose that M � H(θ).
Then {{a, b} : a, b ∈M} ⊆M .

Proof. Suppose that a, b ∈ M . We have {a, b} ∈ H(θ), so H(θ) |= ∃x∀y[y ∈ x iff
y = a or y = b]. Hence M |= ∃x∀y[y ∈ x iff y = a or y = b]. Choose c ∈ M so that
M |= ∀y[y ∈ c iff y = a or y = b]. Hence H(θ) |= ∀y[y ∈ c iff y = a or y = b]. Hence
c = {a, b}.

Lemma 23.58. (III.7.12c) Let θ be an uncountable cardinal, and suppose that M � H(θ).
Then M ×M ⊆M .

Lemma 23.59. (III.7.12d) Let θ be an uncountable cardinal, and suppose that M � H(θ).
Suppose that R ∈M and M |= [R is a relation]. Then R is a relation.

Proof. Assume the hypotheses. Then also H(θ) |= [R is a relation]. Thus H(θ) |=
∀x ∈ R∃u, v[x = (u, v)]. If x ∈ R, then also x ∈ H(θ), so there are u, v ∈ H(θ) such that
x = (u, v). So R is a relation.

Lemma 23.60. (III.7.12e) Let θ be an uncountable cardinal, and suppose that M � H(θ).
Suppose that R ∈M and M |= [R is a function]. Then R is a function.

Proof. Assume the hypotheses. Then

H(θ) |= [R is a relation and ∀u, v, w[(u, v), (u, w) ∈ R→ v = w]].

Hence by Lemma 23.59, R is a relation. Clearly it is a function.
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Lemma 23.61. (III.7.12f) Let θ be an uncountable cardinal, and suppose that M � H(θ).
If a ∈M and a is countable, then a ⊆M .

Proof. Assume the hypothesis. Wlog a 6= ∅. There is a surjection f from ω onto
a. Then f ∈ H(θ). Thus H(θ) |= ∃f [f is a surjection of ω onto a]. Since ω ∈ M by
Lemma 23.56, it follows that M |= ∃f [f is a surjection of ω onto a]. So, choose g ∈ M
such that M |= [g is a surjection of ω onto a]. If n ∈ ω, then n ∈ M by Lemma 23.56, so
M |= ∃y[(n, y) ∈ g]. Choose b ∈ M such that M |= [(n, b) ∈ g]. Then H(θ) |= [(n, b) ∈ g],
so b ∈ a. Every element of a is obtained as a b in this way, so a ⊆M .

Lemma 23.62. (III.7.12g) If M � H(ω1), then M is transitive.

Proof. If a ∈M , then a is countable, so a ⊆M by Lemma 23.61.

Lemma 23.63. (III.7.12h) Let θ be an uncountable cardinal, and suppose that M � H(θ).
If x ∈M , then x ∪ {x} ∈M .

Proof. Assume the hypotheses. Now H(θ) |= ∃y∀u[u ∈ y[↔ u ∈ x or u = x]. Hence
there is a y ∈M such that M |= ∀u[u ∈ y[↔ u ∈ x or u = x]. Hence H(θ) |= ∀u[u ∈ y[↔
u ∈ x or u = x]. Clearly y = x ∪ {x}.

Lemma 23.64. (III.7.12i) Let θ be an uncountable cardinal, and suppose that M � H(θ),
with M countable. Then M ∩ ω1 is a countable limit ordinal.

Proof. M ∩ω1 is countable since M is countable. If α < β ∈M ∩ω1, then β ⊆M by
Lemma 23.61, so α ∈M ∩ω1. Hence M ∩ω1 is an ordinal. It is a limit ordinal by Lemma
23.63.

Lemma 23.65. (III.7.12j) Let θ be an uncountable cardinal, and suppose that M � H(θ),
with M countable. Suppose that ω1 < θ. Then ω1 ∈M .

Proof. Assume the hypotheses. Then

M(θ) |= ∃x[x is an ordinal and x 6= ∅ and

¬∃f [f : ω → x is a surjection] and

∀y[y is an ordinal and y 6= ∅ and

¬∃f [f : ω → y is a surjection]→ x ∈ y or x = y]]

By M � H(θ) we get x ∈M such that

M(θ) |=x is an ordinal and x 6= ∅ and

¬∃f [f : ω → x is a surjection] and

∀y[y is an ordinal and y 6= ∅ and

¬∃f [f : ω → y is a surjection]→ x ∈ y or x = y]

Clearly x = ω1.
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Lemma 23.66. (III.7.12k) Let θ be an uncountable cardinal, and suppose that M � H(θ),
with M countable. Then ∈ is extensional on M . (See after Lemma 12.29.)

Proof. We have H(θ) |= ∀x, y[∀z(z ∈ x↔ z ∈ y)→ x = y].

Lemma 23.67. (III.7.12l) Let θ be an uncountable cardinal, and suppose that M � H(θ),
with M countable. Let mosAR be the Mostowski isomorphism from M onto a transitive
set T . (See before Lemma 12.29.) Suppose that α ∈ M is an ordinal, with α ⊆ M . Then
mosAR(α) = α.

Proof. See Lemma 12.33.

Lemma 23.68. (III.7.12m) Let θ be an uncountable cardinal, and suppose that M � H(θ),
with M countable. Suppose that ω1 < θ. Let mosAR be the isomorphism from M onto a
transitive T . Then mosAR(α) = α for all α < M ∩ ω1.

Proof. By Lemma 12.33.

Lemma 23.69. (III.7.12n) Let θ be an uncountable cardinal, and suppose that M � H(θ),
with M countable. Suppose that ω1 < θ and ω1 ∈M . Let mosAR be the isomorphism from
M onto a transitive T . Then mosAR(ω1) = M ∩ ω1.

Proof. Assume the hypotheses. Then mosAR(ω1) = {mosAR(α) : α ∈ M and
α < ω1} = {α : α ∈M and α < ω1} = M ∩ ω1.

Lemma 23.70. (III.7.12o) Let θ be an uncountable cardinal, and suppose that M � H(θ),
with M countable. Suppose that ω1 < θ and ω1 ∈M . Let mosAR be the isomorphism from
M onto a transitive T . Then ωT1 = M ∩ ω1.

Theorem 23.71. (III.7.13) Assume V = L. Then ♦ holds.

Proof. We define a ♦-sequence A
def
= 〈Aα : α < ω1〉 as well as a sequence 〈Cα : α <

ω1〉 by recursion. Suppose that Aξ and Cξ have been defined for all ξ < α. If α is a limit
ordinal, define

P (α,A, C) iff A,C ⊆ α and C is club in α and ¬∃ξ ∈ C[A ∩ ξ = Aξ].

With <L the well-order of L, let (Aα, Cα) be the first pair (A,C) such that P (α,A, C). If
there is no such pair, or if α is not a limit ordinal, let Aα = Cα = ∅.

Suppose that 〈Aα : α < ω1〉 is not a ♦-sequence. Then there is an A ⊆ ω1 such that
{α < ω1 : A∩α = Aα} is not stationary, hence there is a club C such that for all α ∈ C we
have A∩α 6= Aα. Thus P (ω1, A, C) holds. So also P (ω1, Aω1

, Cω1
) holds. Fix a countable

M � H(ω2) with ω1 ∈ M . By Theorem 17.32, H(ω2) = L(ω2). Let β = M ∩ ω1. By
Lemma 23.64, β is a countable limit ordinal. Let mosAR be the Mostowski isomorphism
of M onto a transitive set T . Then mosAR(ω1) = β and mosAR(ξ) = ξ for all ξ < β,
by Lemmas 23.68 and 23.69. Moreover, β = ωT1 by Lemma 23.70. Now H(ω2) = L(ω2),
H(ω2) |= ZFC − P by Theorem 14.13, so H(ω2) |= V = L by Lemma 17.29. Hence
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M |= ZFC −P + V = L, so also T |= ZFC −P + V = L. By Lemma 17.29, T = L(γ) for
some countable ordinal γ.

By M � H(ω2) and absoluteness, for each α ∈M we have Aα, Cα ∈M , mosAR(Aα) =
AmosAR(α), and mosAR(Cα) = CmosAR(α). In particular, Aω1

, Cω1
∈M , mosAR(Aω1

) = Aβ,
and mosAR(Cω1

) = Cβ . Now

Aβ = mosAR(Aω1
) = {mosAR(ξ) : ξ ∈ Aω1

∩M} = {ξ : ξ ∈ Aω1
∩ β} = Aω1

∩ β;

Similarly, Cβ = mosAR(Cω1
) = Cω1

∩ β. Now Cω1
is club in ω1 because P (ω1, Aω1

, Cω1
),

so mosAR(Cω1
) is club in mosAR(ω1), so Cβ is club in β. Since Cω1

is closed, it follows
that β ∈ Cω1

. Also, Aω1
∩ β = Aβ. This contradicts P (ω1, Aω1

, Cω1
).

Theorem 23.72. (III.7.14) Assume V = L. Then ♦+ holds.

Proof. First we claim

(1) For each α < ω1 there is a δ such that α < δ < ω1 and L(δ) � L(ω1).

In fact, given α < ω1 let M be such that M is countable, M � L(ω1), and α ∪ {α} ∈ M .
Then M is transitive by Lemma 23.62, since L(ω1) = H(ω1) by Theorem 17.32. Then
there is a countable ordinal δ such that M = L(δ) by Lemma 17.29. Since α+ 1 ∈M , we
have α < δ. So (1) holds.

For each α < ω1 let α∗ be the least δ such that (1) holds. Define Aα = L(α∗)∩P(α).
So Aα is a countable subset of P(α). To see that this gives a ♦+-sequence, let A ⊆ ω1.
Since trcl(A) ⊆ ω1 and L(ω2) = H(ω2), we have A ∈ L(ω2). For each σ < ω1 let MAσ

be the set of all elements of L(ω2) definable in (L(ω2),∈) using parameters in {A} ∪ σ.
By Lemma 17.3, MAσ � L(ω2). Note that MAσ is countable, A ∈ MAσ, and σ ⊆ MAσ.
By Lemma 23.64, MAσ ∩ ω1 is a countable limit ordinal. Clearly MAσ ∩ ω1 ≥ σ. Let
CA = {σ < ω1 : MAσ ∩ ω1 = σ}.

(2) CA is club in ω1.

Closure: suppose that γ < ω1 is a limit ordinal and CA ∩ γ is unbounded in γ. Suppose
that τ ∈ MAγ ∩ ω1. Then τ ∈ MAδ ∩ ω1 for some δ < γ with δ ∈ CA. So MAδ ∩ ω1 = δ.
Hence τ ∈ δ ⊆ γ. This shows that MAγ ∩ ω1 ⊆ γ. Conversely, suppose that τ ∈ γ. Then
there is a δ ∈ CA ∩ γ such that τ < δ. Thus MAδ ∩ ω1 = δ, so τ ∈ MAδ ∩ ω1. Since
MAδ ∩ ω1 ⊆MAγ ∩ ω1, we have τ ∈MAγ ∩ ω1. This proves closure.

Unbounded: suppose that α < ω1. Let β0 = α + 1. Choose β2n+1 > β2n so that
MAβ2n

∩ ω1 ⊆ β2n+1. Let β2n+2 = β2n+1 + 1. Note that β2n+1 < MAβ2n+2
∩ ω1. Let

γ =
⋃

n∈ω βn. Then α < γ ∈ CA. So CA is unbounded.

Now take any α ∈ CA; we want to show that A ∩ α ∈ Aα and CA ∩ α ∈ Aα. Let mos
be the Mostowski isomorphism from MAα onto some transitive set T . By Lemma 17.30,
T = L(γ) for some countable γ. Since α ∈ CA we have MAα ∩ ω1 = α. So by Lemma
23.68 we have mosAR(ω1) = α and by Lemma 23.68 we have mosAR(β) = β for all β < α.
Moreover, α = ωT1 by Lemma 23.70. Now α = ωT1 ∈ T = L(γ), so α < γ. Now there is
a surjection g : ω → α since 0 < α < ω1. Clearly g ∈ H(ω1). Since L(α∗) � L(ω1) and
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α < α∗, it follows that there is a surjection f : ω → α with f ∈ L(α∗). Since α = ω
L(γ)
1 ,

there is no such function in L(γ). It follows that γ < α∗. Now

mosAR(A) = {mosAR(β) : β ∈MAα ∧ β ∈ A}

= {mosAR(β) : β ∈MAα ∧ β ∈ A ∧ β ∈ ω1}

= {β : β ∈MAα ∧ β ∈ ω1 and β ∈ A}

= mosAR(ω1) ∩ A = α ∩A.

Hence A ∩ α = mosAR(A) ∈ L(γ) ⊂ L(α∗), so A ∩ α ∈ Aα.
For each σ < α let H (σ) be the collection of all elements definable in L(γ) with

parameters in {A ∩ α} ∪ σ. We define Ĉ = {σ < α : H (σ) ∩ α = σ}. Clearly Ĉ ∈ L(α∗),
so Ĉ ∈ Aα. So it suffices to show that Ĉ = CA ∩ α. Fix σ < α. We want to show that
H (σ) ∩ α = σ iff MAσ ∩ ω1 = σ.

Assume that H (σ) ∩ α = σ. First suppose that ζ ∈ MAσ ∩ ω1. Thus ζ is definable
in (L(ω2),∈) using parameters from {A} ∪ σ. Now σ < α ∈ CA. Since α ∈ CA, we have
ζ ∈ MAσ ∩ ω1 ⊆ MAα ∩ ω1 = α; so ζ < α. Since MAα � L(ω2), it follows that ζ is
definable in MAα with parameters from {A} ∪ σ. Now mos fixes ζ and all elements of σ,
and mosAR(A) = A ∩ α. Hence ζ is definable in L(γ) using parameters from (A ∩ α) ∪ σ.
Thus ζ ∈H (σ)∩α, so ζ ∈ σ. This shows that MAσ ∩ω1 ⊆ σ. Second suppose that ζ ∈ σ.
So ζ ∈ H (σ) ∩ α. Thus ζ is definable in L(γ) with parameters in {A ∩ α} ∪ σ. Applying
mos−1

AR, ζ is definable in MAα with parameters in {A} ∪ σ. So ζ is definable in MAσ with
parameters in {A} ∪ σ. Hence ζ ∈MAσ ∩ ω1.

Now assume that MAσ ∩ ω1 = σ. First suppose that ζ ∈H (σ) ∩ α. So ζ is definable
in L(γ) with parameters in {A ∩ α} ∪ σ. Applying mos−1

AR, ζ is definable in MAα with
parameters in {A} ∪ σ. Hence ζ ∈ MAσ ∩ ω1. Hence ζ ∈ σ. Second suppose that ζ ∈ σ.
Then ζ ∈MAσ ∩ω1. So ζ is definable in (L(ω2),∈) with parameters in {A}∪σ. As above,
ζ is definable in L(γ) using parameters from (A ∩ α) ∪ σ. So ζ ∈H (σ) ∩ α.

Proposition 23.73. Assume that κ is an uncountable regular cardinal and 〈Aα : α < κ〉
is a sequence of subsets of κ. Let D = △α<κAα. Then:

(i) For all α < κ, the set D\Aα is nonstationary.
(ii) Suppose that E ⊆ κ and for every α < κ, the set E\Aα is nonstationary. Then

E\D is nonstationary.

Proof. (i): For any β < κ,

D\Aβ = {α < κ : ∀γ < α(α ∈ Aγ) and α /∈ Aβ}

⊆ {α < κ : α ≤ β};

Hence D\Aβ is nonstationary.
(ii): For each β < κ let Cβ be club in κ such that (E\Aβ) ∩ Cβ = ∅. Let F be the

diagonal intersection of the Cβ ’s; thus

F = {γ < κ : ∀α < γ(γ ∈ Cα)}.
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Thus F is club. We claim that F ∩ (E\D) = ∅ (as desired). For, suppose that γ ∈
F ∩ (E\D). Since γ /∈ D, there is a β < γ such that γ /∈ Aβ. Since γ ∈ F , we have γ ∈ Cβ .
Since (E\Aβ) ∩ Cβ = ∅, this is a contradiction.

Proposition 23.74. Let κ > ω be regular. Then there is a sequence 〈Sα : α < κ〉 of
stationary subsets of κ such that Sβ ⊆ Sα whenever α < β < κ, and △α<κSα = {0}.

Proof. By Theorem 23.12, let 〈Aα : α < κ〉 be pairwise disjoint stationary subsets of
κ. Then Aα\(α+1) is also stationary. Let Sα =

⋃

β>α(Aβ\(β+1)). Then Sα is stationary
and α < β implies that Sβ ⊆ Sα. Let D be the diagonal intersection of the Sα’s:

D = {γ < κ : ∀α < γ(γ ∈ Sα)}.

Thus 0 ∈ D. Suppose that 0 6= γ ∈ D. Then 0 < γ, so γ ∈ S0. Hence there is a β > 0 such
that γ ∈ Aβ\(β + 1). Hence β < γ. So γ ∈ Sβ . Choose δ > β such that γ ∈ Aδ\(δ + 1).
So γ ∈ Aβ ∩Aδ = ∅, contradiction.

Proposition 23.75. Suppose that κ is uncountable and regular, and for each limit ordinal
α < κ we are given a function fα ∈ ωα. Suppose that S is a stationary subset of κ. Let
n ∈ ω. Then there exist a t ∈ nκ and a stationary S′ ⊆ S such that for all α ∈ S′,
fα ↾ n = t.

Proof. We define by recursion sequences 〈S0, S1, . . . , Sn〉 of stationary subsets of S
and 〈β0, . . . , βn−1〉 of ordinals less than κ. Let S0 = S. Suppose that Si has been defined,
i < n. Let g(α) = fα(i) for all α ∈ Si. Then g is a regressive function, and hence there
exist a stationary subset Si+1 of Si and an ordinal βi such that g(α) = βi for all α ∈ Si+1.
This finishes the construction.

If α ∈ Sn, then for any i < n we have α ∈ Si+1, and hence fα(i) = βi. Hence we can
let t(i) = βi for all i < n, and the property of the proposition holds.

Proposition 23.76. Suppose that cf(κ) > ω, C ⊆ κ is club of order type cf(κ), and
〈cβ : β < cf(κ)〉 is the strictly increasing enumeration of C. Let X ⊆ κ. Then X is
stationary in κ iff {β < cf(κ) : cβ ∈ X} is stationary in cf(κ).

Proof. Assume the hypotheses. Let X ′ = {β < cf(κ) : cβ ∈ X}.
⇒: Assume that X is stationary in κ. We want to show that X ′ is stationary in

cf(κ). Let D′ be club in cf(κ). Define D = {cβ : β ∈ D′}. We claim that D is club in
κ. For closure, suppose that α < κ is a limit ordinal and D ∩ α is unbounded in α. Let
γ =

⋃
{β ∈ D′ : cβ < α}.

(1) γ < cf(κ).

For, since C is unbounded in κ, there is a ξ < cf(κ) such that α < cξ. If ξ < γ, then
there is a β ∈ D′ such that cβ < α and ξ < β. Then cξ < cβ < α, contradiction. Hence
γ ≤ ξ < cf(κ), proving (1).

(2) γ is a limit ordinal, and D′ ∩ γ is unbounded in γ.
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For, suppose that δ < γ. Choose β ∈ D′ such that cβ < α and δ < β. Since D ∩ α is
unbounded in α, choose cε ∈ D ∩ α such that cβ < cε. Since cε ∈ D we have ε ∈ D′ and
so ε ≤ γ. Thus δ < β < ε ≤ γ. Since β ∈ D′, this proves (2).

(3) cγ = α.

For, suppose that δ < cγ . Now clearly cγ =
⋃

β<γ cβ, so there is a β < γ such that
δ < cβ . By the definition of γ, there is a β′ ∈ D′ such that β < β′ and cβ′ < α. Thus
δ < cβ < cβ′ < α, so δ < α. This proves that cγ ≤ α. On the other hand, suppose that
δ < α. Since D ∩ α is unbounded in α, there is a β ∈ D′ such that δ < cβ < α. Thus
β ≤ γ, so δ < cγ . This proves that α ≤ cγ , and finishes the proof of (3).

Now by (2) we have γ ∈ D′, and hence (3) yields α ∈ D, as desired; we have now
proved that D is closed in κ.

To show that D is unbounded in κ, let α < κ be arbitrary. Choose β < cf(κ) such
that α < cβ . Since D′ is unbounded in cf(κ), choose β′ ∈ D′ such that β < β′. Thus
α < cβ < cβ′ ∈ D, as desired.

So we have shown that D is club in κ. Since X is stationary in κ, choose β ∈ D′ such
that cβ ∈ X . thus β ∈ D′ ∩X ′, as desired.
⇐: Assume that X ′ is stationary in cf(κ). Let D be club in κ, and let D′ = {β <

cf(κ) : cβ ∈ D}. We claim that D′ is club in cf(κ). To show that it is closed, suppose
that α < cf(κ) is a limit ordinal and D′ ∩ α is unbounded in α. We claim that D ∩ cα
is unbounded in cα. For, suppose that γ < cα. Then there is a β < α such that γ < cβ .
Choose δ ∈ D′ ∩ α such that β < δ; this is possible since D′ ∩ α is unbounded in α. Thus
γ < cβ < cδ ∈ D ∩ cα, as desired. So D′ is closed in cf(κ). To show that it is unbounded,
suppose that α < cf(κ). Now C ∩D is club in κ, so there is a β such that cα < cβ ∈ D.
So α < β ∈ D′. This shows that D′ is unbounded in cf(κ). Hence D′ is club in cf(κ).

Choose β ∈ D′ ∩X ′. Then cβ ∈ D ∩X , as desired.

Proposition 23.77. Suppose that κ is regular and uncountable, and S ⊆ κ is stationary.
Also, suppose that every α ∈ S is an uncountable regular cardinal. Then

T
def
= {α ∈ S : S ∩ α is non-stationary in α}

is stationary in κ.

Proof. Assume the hypotheses. Let C be club in κ; we want to show that T ∩C 6= ∅.
Let C′ be the set of all limit points of C, i.e., the set of all limit ordinals α ∈ κ such that
C ∩ α is unbounded in α. Clearly C′ ⊆ C, and C′ is club in κ. Since S is stationary in
κ, let α be the least element of S ∩ C′. Clearly C′ ∩ α is closed in α; we claim that it is
also unbounded in α. For, suppose that β < α. Now C ∩ α is unbounded in α, so we can
construct a sequence 〈γi : i < ω〉 of members of C such that β < γ0 < γ1 < · · · < α. Let
δ = supi∈ω γi. Then δ ∈ C′, and δ < α since α is uncountable and regular. So C′ ∩ α is
club in α. Now S∩C′ ∩α = ∅ by the minimality of α, so C′ ∩α is a club in α which shows
that S ∩ α is non-stationary in α. So α ∈ T ∩ C, as desired.

Proposition 23.78. Suppose that κ is uncountable and regular, and κ ≤ |A|. Suppose
that C is a closed subset of [A]<κ and D is a directed subset of C with |D| < κ. (Directed
means that if x, y ∈ D then there is a z ∈ D such that x ∪ y ⊆ z.) Then

⋃
D ∈ C.
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Proof. If D is finite, then
⋃
D ∈ D; so

⋃
D ∈ C. Suppose that |D| = ω; say D =

{xn : n ∈ ω}. For each n ∈ ω choose yn ∈ D so that {xm : m ≤ n} ∪ {ym : m < n} ⊆ yn.
Then

⋃

n∈ω yn ∈ C since C is closed, and
⋃
D =

⋃

n∈ω yn.
Now suppose inductively that κ > |D| > ω. Let |D| = λ and write D = {xα : α < λ}.

For all y, z ∈ D let f(y, z) ∈ D be such that y, z ⊆ f(y, z). We now define 〈Eα : α < κ〉
by recursion. Suppose that Eβ has been defined for all β < α so that Eβ ⊆ D, Eβ is
directed, and |Eβ| ≤ |β| + ω, with α < λ. Let F0 = {xα} ∪

⋃

β<αEβ . So |F0| ≤ |α| + ω.
Let Fn+1 = Fn ∪ {f(x, y) : x, y ∈ Fn}. Then |Fn+1| ≤ |α|+ ω. Let Eα =

⋃

n∈ω Fn. Then
Eα ⊆ D, Eα is directed, and |Eα| ≤ |α|+ ω.

By the inductive hypothesis, yα
def
=
⋃
Eα is in C, and yα ⊆ yβ for α < β. Hence

⋃
D =

⋃

α<λ yα ∈ C.

Proposition 23.79. Let κ be uncountable and regular, and κ ≤ |A|. If f : [A]<ω → [A]<κ

let Cf = {x ∈ [A]<κ : ∀s ∈ [x]<ω[f(s) ⊆ x]}. Then Cf is club in [A]<κ.

Proof. Suppose that xξ ∈ Cf for all ξ < α, with α < κ and xξ ⊆ xη for ξ < η.
Clearly

⋃

ξ<α xξ ∈ Cf if α is a successor ordinal. Suppose that α is a limit ordinal.

Take any s ∈
[
⋃

ξ<α xξ

]<ω

. Then there is a ξ < α such that s ∈ [xξ]
<ω, and hence

f(s) ⊆ xξ ⊆
⋃

η<α xη. Thus Cf is closed.

To show that Cf is unbounded, let y ∈ [A]<κ. Define z0 = y and zn+1 = zn ∪ {f(s) :
s ∈ [zn]<ω}. By induction, zn ∈ [A]<κ for all n ∈ ω. Now

⋃

n∈ω zn ∈ Cf , showing that Cf
is unbounded.

Proposition 23.80. (Continuing Proposition 23.79) Let κ be uncountable and regular,
and κ ≤ |A|. Let D be club in [A]<κ. Then there is an f : [A]<ω → [A]<κ such that
Cf ⊆ D.

Proof. We claim that there is an f : [A]<ω → D such that ∀e ∈ [A]<ω[e ⊆ f(e)] and
∀e1, e2 ∈ [A]<ω[e1 ⊆ e2 → f(e1) ⊆ f(e2)]. We define f by induction on |e|. Let f(∅) be
any member of D. Suppose that f(e) has been defined for all e ∈ [A]<ω such that |e| < m,
and suppose that e ∈ [A]<ω with |e| = m. Let f(e) be a member of D such that e ⊆ f(e)
and f(e\{a}) ⊆ f(e) for all a ∈ e. Clearly f is as desired.

Now we show that Cf ⊆ D. Let x ∈ Cf . Note that {f(e) : e ∈ [x]<ω} is directed and
has union x. Hence x ∈ D by Proposition 23.78.

Proposition 23.81. Let κ be uncountable and regular, κ ≤ |A|, and A ⊆ B. If Y ∈ [A]<κ,
let Y B = {x ∈ [B]<κ : x ∩A ∈ Y }. Then if Y is club in [A]<κ, then Y B is club in [B]<κ.

Proof. Assume the hypotheses. Suppose that α < κ and 〈xξ : ξ < α〉 is a sequence of
members of Y B with xξ ⊆ xη for ξ < η. Then xξ∩A ∈ Y for all ξ < α, and xξ∩A ⊆ xη∩A
for ξ < η. Hence

⋃

ξ<α(xξ ∩A) ∈ Y . So
⋃

ξ<α xξ ∈ Y
B . Thus Y B is closed.

To show that Y B is unbounded, let b ∈ [B]<κ. Then b ∩ A ∈ [A]<κ, so there is a
c ∈ Y such that b ∩ A ⊆ c. Then b ⊆ c ∪ (b\A), and (c ∪ (b\A)) ∩ A = c ∈ Y . So
c ∪ (b\A) ∈ Y B .
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Proposition 23.82. Let κ be uncountable and regular, κ ≤ |A|, and A ⊆ B. If Y ∈ [B]<κ,
let Y ↾ A = {y ∩A : y ∈ Y }. Then if Y is stationary in [B]<κ then Y ↾ A is stationary in
[A]<κ.

Proof. Assume the hypotheses. Suppose that C is club in [A]<κ. Then by Proposition
23.81, CB is club in [B]<κ. Choose y ∈ Y ∩ CB . Then y ∩A ∈ (Y ↾ A) ∩ C.

Proposition 23.83. With κ,A,B as in Proposition 23.81, suppose that f : [B]<ω →
[B]<κ. For each e ∈ [A]<ω define

x0(e) = e;

xn+1(e) = xn(e) ∪ {f(s) : s ∈ [xn(e)]<ω};

w(e) =
⋃

n∈ω

xn(e).

Also, for each y ∈ [A]<κ let v(y) =
⋃
{w(e) : e ∈ [y]<ω}.

Then w(e) ∈ Cf for all e ∈ [A]<ω and v(y) ∈ Cf for all y ∈ [A]<κ.

Proof. If z ∈ [w(e)]<ω, then z ∈ [xn(e)]<ω for some n, and hence f(z) ⊆ xn+1(e) ⊆
w(e). Thus w(e) ∈ Cf . Note that if e1 ⊆ e2 then xn(e1) ⊆ xn(e2) for all n (by induction),
and so w(e1) ⊆ w(e2). Now suppose that z ∈ [v(y)]<ω. Then there is a finite F ⊆ [y]<ω

such that z ⊆
⋃

e∈F w(e). Let e′ =
⋃

e∈F e. Then
⋃

e∈F w(e) ⊆ w(e′). So z ∈ [w(e′)]<ω. It
follows from the first part of this proof that f(z) ⊆ w(e′) ⊆ v(y). Thus v(y) ∈ Cf .

Proposition 23.84. With κ,A,B as in Proposition 23.81, suppose that S is stationary
in [A]<κ. Then SB is stationary in [B]<κ.

Proof. Assume the hypotheses. Suppose that D is club in [B]<κ. By Proposition
23.80 there is an f : [B]<ω → [B]<κ such that Cf ⊆ D. For any e ∈ [A]<ω let g(e) =
w(e) ∩ A. We claim that Cf ↾ A = Cg. Suppose that y ∈ Cf , so that y ∩ A ∈ Cf ↾ A.
To show that y ∩ A ∈ Cg, let e ∈ [y ∩ A]<ω. Then xn(e) ⊆ y by induction on n. Since
xn(e) = e, it is true for n = 0. Suppose that xn(e) ⊆ y. If s ∈ [xn(e)]<ω, then s ∈ [y]<ω, so
f(s) ⊆ y since y ∈ Cf . Hence xn+1(e) ⊆ y. It follows that w(e) ⊆ y, and so g(e) ⊆ y ∩ A.
This shows that y ∩ A ∈ Cg, and proves that Cf ↾ A ⊆ Cg. Now suppose that y ∈ Cg.
Hence ∀e ∈ [y]<ω[g(e) ⊆ y]. We claim that v(y) ∩ A = y. For, if e ∈ [y]<ω, then g(e) ⊆ y,
i.e., w(e) ∩ A ⊆ y. So v(y) ∩ A ⊆ y. If a ∈ y, then a ∈ w({a}) ⊆ v(y); so v(y) ∩ A = y.
This shows that Cg ⊆ Cf ↾ A. Thus Cg = Cf ↾ A.

Choose z ∈ Cg ∩ S. Then z ∈ (Cf ↾ A) ∩ S, so there is a y ∈ Cf such that z = y ∩A.
Thus y ∩ A ∈ S, so y ∈ SB ∩D.
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24. Infinite combinatorics

We have already given several theorems concerning infinite combinatorcs: the Dushnik-
Miller Theorem 12.58, the ∆-system Theorem 21.29, Ramsey’s Theorem 20.12, and The-
orem 21.35 concerning an independent family of functions. We now give some additional
results of this sort.

Two sets A,B are almost disjoint iff |A| = |B| while |A ∩B| < |A|. Of course we are
mainly interested in this notion if A and B are infinite.

Theorem 24.1. There is a family of 2ω pairwise almost disjoint infinite sets of natural
numbers.

Proof. Let X =
⋃

n∈ω
n2. Then |X | = ω, since X is clearly infinite, while

|X | ≤
∑

n∈ω

2n ≤ ω · ω = ω.

Let f be a bijection from ω onto X . Then for each g ∈ ω2 let xg = {g ↾ n : n ∈ ω}.
So xg is an infinite subset of X . If g, h ∈ ω2 and g 6= h, choose n so that g(n) 6= h(n).
Then clearly xg ∩ xh ⊆ {g ↾ i : i ≤ n}, and so this intersection is finite. Thus we have
produced 2ω pairwise almost disjoint infinite subsets of X . That carries over to ω. Namely,
{f−1[xg] : g ∈ ω2} is a family of 2ω pairwise almost disjoint infinite subsets of ω, as is
easily checked.

Let X be an infinite set. A collection A of subsets of X is independent iff for any two
finite disjoint subsets B,C of A we have

(
⋂

Y ∈B

Y

)

∩

(
⋂

Z∈C

(X\Z)

)

6= ∅.

Theorem 24.2. (Fichtenholz, Kantorovitch, Hausdorff) For any infinite cardinal κ there
is an independent family A of subsets of κ such that each member of A has size κ and
|A | = 2κ; moreover, each of the above intersections has size κ.

Proof. Let F be the family of all finite subsets of κ; thus |F | = κ. Let Φ be the set
of all finite subsets of F ; thus also |Φ| = κ. It suffices now to work with F × Φ rather
than κ itself.

For each Γ ⊆ κ let

bΓ = {(∆, ϕ) ∈ F ×Φ : ∆ ∩ Γ ∈ ϕ}.

Note that each bΓ has size κ; for example, (∅, {∅, {α}}) ∈ bΓ for every α < κ. So to finish
the proof it suffices to take any two finite disjoint subsets H and K of P(κ) and show
that

(∗)

(
⋂

A∈H

bA

)

∩

(
⋂

B∈K

((F × Φ)\bB)

)

447



has size κ. For distinct A,B ∈ H ∪ K pick αAB ∈ A△B, and let ∆ = {αAB : A,B ∈
H∪K, A 6= B}. Now it suffices to show that if β ∈ κ\∆ and ϕ = {∆∩A : A ∈ H}∪{{β}},
then (∆, ϕ) is a member of (∗). If A ∈ H, then ∆ ∩ A ∈ ϕ, and so (∆, ϕ) ∈ bA. Now
suppose, to get a contradiction, that B ∈ K and (∆, ϕ) ∈ bB. Then ∆ ∩ B ∈ ϕ. Since
β /∈ ∆, it follows that there is an A ∈ H such that ∆ ∩B = ∆∩A. Since A 6= B, we have
αAB ∈ A△B and αAB ∈ ∆, contradiction.

We now give a generalization of the ∆-system theorem.

Theorem 24.3. Suppose that κ and λ are cardinals, ω ≤ κ < λ, λ is regular, and for all
α < λ, |[α]<κ| < λ. Suppose that A is a collection of sets, with each A ∈ A of size less
than κ, and with |A | ≥ λ. Then there is a B ∈ [A ]λ which is a ∆-system.

Proof.

(1) There is a regular cardinal µ such that κ ≤ µ < λ.

In fact, if κ is regular, we may take µ = κ. If κ is singular, then κ+ ≤ |[κ]<κ| < λ, so we
may take µ = κ+.

We take µ as in (1). Let S = {α < λ : α is a limit ordinal and cf(α) = µ}. Then S is
a stationary subset of λ.

Let A0 be a subset of A of size λ. Now
∣
∣
⋃

A∈A0
A
∣
∣ ≤ λ since κ < λ. Let a be an

injection of
⋃

A∈A0
A into λ, and let A be a bijection of λ onto A0. Set bα = a[Aα] for

each α < λ. Now if α ∈ S, then |bα ∩ α| ≤ |bα| = |Aα| < κ ≤ µ = cf(α), so there is an
ordinal g(α) such that sup(bα ∩ α) < g(α) < α. Thus g is a regressive function on S. By
Fodor’s theorem, there exist a stationary S′ ⊆ S and a β < λ such that g[S′] = {β}. For
each α ∈ S′ let F (α) = bα ∩ α. Thus F (α) ∈ [β]<κ, and |[β]<κ| < λ, so there exist an
S′′ ∈ [S′]λ and a B ∈ [β]<κ such that bα ∩ α = B for all α ∈ S′′.

Now we define 〈αξ : ξ < λ〉 by recursion. For any ξ < λ, αξ is a member of S′′ such
that

(2) αη < αξ for all η < ξ, and

(3) δ < αξ for all δ ∈
⋃

η<ξ bαη .

Since
∣
∣
∣
⋃

η<ξ bαη

∣
∣
∣ < λ, this is possible by the regularity of λ.

Now let A1 = A[{αξ : ξ < λ}] and r = a−1[B]. We claim that C ∩D = r for distinct
C,D ∈ A1. For, write C = Aαξ and D = Aαη . Without loss of generality, η < ξ. Suppose
that x ∈ r. Thus a(x) ∈ B ⊆ bαξ , so by the definition of bαξ we have x ∈ Aαξ = C.
Similarly x ∈ D. Conversely, suppose that x ∈ C ∩ D. Thus x ∈ Aαξ ∩ Aαη , and hence
a(x) ∈ bαξ ∩ bαη . By the definition of αξ, since a(x) ∈ bαη we have a(x) < αξ. So
a(x) ∈ bαξ ∩ αξ = B, and hence x ∈ r.

Clearly |A1| = λ.

Another form of this theorem is as follows. An indexed ∆-system is a system 〈Ai : i ∈ I〉
of sets such that there is a set r (the root) such that Ai ∩ Aj = r for all distinct i, j ∈ I.
Some, or even all, the Ai’s can be equal.

448



Theorem 24.4. Suppose that κ and λ are cardinals, ω ≤ κ < λ, λ is regular, and for all
α < λ, |[α]<κ| < λ. Suppose that 〈Ai : i ∈ I〉 is a system of sets, with each Ai of size less
than κ, and with |I| ≥ λ. Then there is a J ∈ [I]λ such that 〈Ai : i ∈ J〉 is an indexed
∆-system.

Proof. Define i ≡ j iff i, j ∈ I and Ai = Aj. If some equivalence class has λ or more
elements, a subset J of that class of size λ is as desired. If every equivalence class has fewer
than λ elements, then there are at least λ equivalence classes. Let A have exactly one
element in common with λ equivalence classes. We apply Theorem 24.3 to get a subset B

of A of size λ which is a ∆-system, say with kernel r. Say B = {Ai : i ∈ J} with J ∈ [I]λ

and Ai 6= Aj for i 6= j. Then 〈Ai : i ∈ J〉 is an indexed ∆-system with root r.

Now we turn to the possibility of generalizing Ramsey’s theorem; see the definitions on
page 311. According to the following theorem, the most obvious generalization of Ramsey’s
theorem does not hold.

Theorem 24.5. For any infinite cardinal κ we have 2κ 6→ (κ+, κ+)2.

Proof. We consider κ2 under the lexicographic order; see the beginning of Chapter
21. Let 〈fα : α < 2κ〉 be a one-one enumeration of κ2. Define F : 2κ → 2 by setting, for
any α < β < κ,

F ({α, β}) =

{
0 if fα < fβ ,
1 if fβ < fα.

If 2κ → (κ+, κ+)2 holds, then there is a set Γ ∈ [2κ]κ
+

which is homogeneous for F .
If F ({α, β}) = 0 for all distinct α < β in Γ, then 〈fα : α ∈ Γ〉 is a strictly increasing
sequence of length o.t.(Γ), contradicting Theorem 21.5. A similar contradiction is reached
if F ({α, β}) = 1 for all distinct α < β in Γ.

Corollary 24.6. κ+ 6→ (κ+, κ+)2 for every infinite cardinal κ.

Proof. Given F : [κ+]2 → 2, extend F in any way to a function G : [2κ]2 → 2.
A homogeneous set for F yields a homogeneous set for G. So our corollary follows from
Theorem 24.5.

To formulate another generalization of Ramsey’s theorem it is convenient to introduce a
notation for a special form of the arrow notation. We write

κ→ (λ)νµ iff

κ→ (〈λ : α < µ〉)ν

In direct terms, then, κ→ (λ)νµ means that for every f : [κ]ν → µ there is a Γ ∈ [κ]λ such
that |f [Γ]| = 1.

The following cardinal notation is also needed for our next result: for any infinite
cardinal κ we define

2κ0 = κ;

2κn+1 = 2(2κn) for all n ∈ ω.
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Theorem 24.7. (Erdös-Rado) For every infinite cardinal κ and every positive integer n,
(2κn−1)+ → (κ+)nκ.

Proof. Induction on n. For n = 1 we want to show that κ+ → (κ+)1κ, and this is
obvious. Now assume the statement for n ≥ 1, and suppose that f : [(2κn)+]n+1 → κ. For
each α ∈ (2κn)+ define Fα : [(2κn)+\{α}]n → κ by setting Fα(x) = f(x ∪ {α}).

(1) There is an A ∈ [(2κn)+]2
κ
n such that for all C ∈ [A]2

κ
n−1 and all u ∈ (2κn)+\C there is a

v ∈ A\C such that Fu ↾ [C]n = Fv ↾ [C]n.

To prove this, we define a sequence 〈Aα : α < (2κn−1)+〉 of subsets of (2κn)+, each of size
2κn. Let A0 = 2κn, and for α limit let Aα =

⋃

β<αAβ. Now suppose that Aα has been

defined, and C ∈ [Aα]2
κ
n−1 . Define u ≡ v iff u, v ∈ (2κn)+\C and Fu ↾ [C]n = Fv ↾ [C]n.

Now |[C]nκ| = 2κn, so there are at most 2κn equivalence classes. Let KC have exactly one
element in common with each equivalence class. Let Aα+1 = Aα ∪ {KC : C ∈ [Aα]2

κ
n−1}.

Since (2κn)2
κ
n−1 = 2κn, we still have |Aα+1| = 2κn. This finishes the construction. Clearly

A
def
=
⋃

α≤(2κ
n−1

)+ Aα is as desired in (1).

Take A as in (1), and fix a ∈ (2κn)+\A. We now define a sequence 〈xα : α < (2κn−1)+〉

of elements of A. Given C
def
= {xβ : β < α}, by (1) let xα ∈ A\C be such that Fxα ↾

[C]n = Fa ↾ [C]n. This defines our sequence. Let X = {xα : α < (2κn−1)+}.
Now define G : [X ]n → κ by G(x) = Fa(x). Suppose that α0 < · · · < αn < (2κn−1)+.

Then

f({xα0
, . . . , xαn}) = Fxαn ({xα0

, . . . , xαn−1
})

= Fa({xα0
, . . . , xαn−1

})

= G({xα0
, . . . , xαn−1

}).

Now by the inductive hypothesis there is an H ∈ [X ]κ
+

such that G is constant on [H]n.
By the above, f is constant on [H]n+1.

Corollary 24.8. (2κ)+ → (κ+)2κ for any infinite cardinal κ.

Theorem 24.9. For any infinite cardinal κ we have 2κ 6→ (3)2κ.

Proof. Define F : [κ2]2 → κ by setting F ({f, g}) = χ(f, g) for any two distinct
f, g ∈ κ2. If {f, g, h} is homogeneous for F with f, g, h distinct, let α = χ(f, g). Then
f(α), g(α), h(α) are distinct members of 2, contradiction.

Corollary 24.10. For any infinite cardinal κ we have 2κ 6→ (κ+)2κ.

Our final result in the partition calculus indicates that infinite exponents are in general
hopeless.

Theorem 24.11. ω 6→ (ω, ω)ω.
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Proof. Let < well-order [ω]ω. We define for any X ∈ [ω]ω

F (X) =
{

0 if Y < X for some Y ∈ [X ]ω,
1 otherwise.

Suppose that H ∈ [ω]ω is homogeneous for F . Let X be the <-least element of [H]ω. Thus
F (X) = 1. So we must have F (Y ) = 1 for all Y ∈ [H]ω. Write H = {mi : i ∈ ω} without
repetitions. For each k ∈ ω let

Ik = {m0, m2, . . . , m2k} ∪ {m2i+1 : i ∈ ω}.

Thus these are infinite subsets of H. Choose k0 so that Ik0 is minimum among all of the
Ik’s. Then Ik0 ⊂ Ik0+1 and Ik0 < Ik0+1, so F (Ik0+1) = 0, contradiction.

The following theorem of Comfort and Negrepontis is similar to Theorem 21.35.

Theorem 24.12. Suppose that λ = λ<κ. Then there is a system 〈fα : α < 2λ〉 of members
of λλ such that

∀M ∈
[
2λ
]<κ
∀g ∈ Mλ∃β < λ∀α ∈M [fα(β) = g(α)].

Proof. Let

F =
{

(F,G, s) : F ∈ [λ]<κ, G ∈ [P(F )]<κ, and s ∈ Gλ
}
.

Now if F ∈ [λ]<κ, say |F | = µ, then

∣
∣[P(F )]<κ

∣
∣ ≤ (2µ)<κ| ≤ (λµ)<κ ≤ λ<κ = λ,

and if G ∈ [P(F )]<κ then |Gλ| ≤ λ<κ = λ. It follows that |F | = λ. Let h be a bijection
from λ onto F , and let k be a bijection from 2λ onto P(λ). Now for each α < 2λ we
define fα ∈ λλ by setting, for each β < λ, with h(β) = (F,G, s),

fα(β) =
{
s(k(α) ∩ F ) if k(α) ∩ F ∈ G,
0 otherwise.

Now to prove that 〈fα : α < 2λ〉 is as desired, suppose that M ∈ [2λ]<κ and g ∈ Mλ. For
distinct members α, β of M choose γ(α, β) ∈ k(α)△k(β). Then let

F = {γ(α, β) : α, β ∈M,α 6= β} and G = {k(α) ∩ F : α ∈M}.

Moreover, define s : G→ λ by setting s(k(α)∩ F ) = g(α) for any α ∈M . This is possible
since k(α) ∩ F ) 6= k(β) ∩ F ) for distinct α, β ∈M . Finally, let β = h−1(F,G, s). Then for
any α ∈M we have

fα(β) = s(k(α) ∩ F ) = g(α).

Proposition 24.13. Suppose that κω > κ. Then there is a family A of subsets of κ, each
of size ω, with |A | = κ+ and the intersection of any two members of A is finite.
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Proof. Let K = <ωκ. Thus |K| = κ. Let F be a bijection from K to κ. For each
f ∈ ωκ let

Xf = F [{f ↾ m : m ∈ ω}].

Clearly each Xf has size ω. If f, g ∈ ωκ and f 6= g, choose p ∈ ω such that f(p) 6= g(p).
Then

Xf ∩Xg = F [{f ↾ m : m ∈ ω}] ∩ F [{g ↾ m : m ∈ ω}]

= F [{f ↾ m : m ∈ ω} ∩ {g ↾ m : m ∈ ω}]

⊆ F [{f ↾ m : m ≤ p}]

and hence Xf ∩Xg is finite. Since κω ≥ κ+, the desired result follows.

Proposition 24.14. Suppose that κ is any infinite cardinal, and λ is minimum such that
κλ > κ. Then there is a family A of subsets of κ, each of size λ, with the intersection of
any two members of A being of size less than λ, and with |A | = λ+.

Proof. Let K = <λκ. Thus |K| = κ. Let F be a bijection from K to κ. For each
f ∈ λκ let

Xf = F [{f ↾ m : m ∈ λ}].

Clearly each Xf has size λ. If f, g ∈ λκ and f 6= g, choose p ∈ λ such that f(p) 6= g(p).
Then

Xf ∩Xg = F [{f ↾ m : m ∈ λ}] ∩ F [{g ↾ m : m ∈ λ}]

= F [{f ↾ m : m ∈ λ} ∩ {g ↾ m : m ∈ λ}]

⊆ F [{f ↾ m : m ≤ p}]

and hence Xf ∩Xg has size less than λ. Since κλ > κ, the desired result follows.

The following proposition generalizes Theorem 24.1.

Proposition 24.15. Suppose that κ is uncountable and regular. Then there is a family
A of subsets of κ, each of size κ with the intersection of any two members of A of size
less than κ, and with |A | = κ+.

Proof. First of all, recall that κ can be partitioned into κ sets, each of size κ. Namely,
if f : κ × κ → κ is a bijection, let Xα = f [{(α, β) : β < κ}]; then clearly 〈Xα : α < κ〉 is
as claimed.

Thus we can apply Zorn’s lemma to get a maximal collection A ⊆ [κ]κ such that the
members of A are pairwise almost disjoint, and |A | ≥ κ.

Hence we just have to get a contradiction from the assumption that |A | = κ. Making
this assumption, let 〈Yα : α < κ〉 be a one-one enumeration of A . Note that for any α < κ,

Yα\
⋃

β<α

Yβ = Yα\
⋃

β<α

(Yα ∩ Yβ)
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has size κ. This enables us to define by recursion a sequence 〈zα : α < κ〉 like this: having
defined zβ for all β < α, choose

zα ∈ Yα\



{zβ : β < α} ∪
⋃

β<α

Yβ



 .

Then Z
def
= {zα : α < κ} is a set of size κ, and for any α < κ,

Z ∩ Yα ⊆ {zβ : β ≤ α},

so that |Z ∩ Yα| < κ. This contradicts the maximality of A .

Proposition 24.16. If F is an uncountable family of finite functions each with range ⊆
ω, then there are distinct f, g ∈ F such that f ∪ g is a function.

Proof. We apply Theorem 24.4 to the indexed system 〈dmn(f) : f ∈ F 〉 and get an
uncountable subset G of F such that 〈dmn(f) : f ∈ G 〉 is an indexed ∆-system; say that
dmn(f) ∩ dmn(g) = D for all distinct f, g ∈ G . Then

G =
⋃

h∈Dω

{f ∈ G : f ↾ D = h};

since the index set Dω is countable and G is uncountable, there exist an h ∈ Dω for which
there are two distinct f, g ∈ G such that f ↾ D = g ↾ D = h. Then f∪g is a function.

Proposition 24.17. (Double ∆-system theorem) Suppose that κ is a singular cardinal with
cf(κ) > ω. Let 〈λα : α < cf(κ)〉 be a strictly increasing sequence of successor cardinals with
supremum κ, with cf(κ) < λ0, and such that for each α < cf(κ) we have (

∑

β<α λβ)+ ≤ λα.

Suppose that 〈Aξ : ξ < κ〉 is a system of finite sets. Then there exist a set Γ ∈ [cf(κ)]cf(κ),
a sequence 〈Ξα : α ∈ Γ〉 of subsets of κ, a sequence 〈Fα : α ∈ Γ〉 of finite sets, and a finite
set G, such that the following conditions hold:

(i) 〈Ξα : α ∈ Γ〉 is a pairwise disjoint system, and |Ξα| = λα for every α ∈ Γ.
(ii) 〈Aξ : ξ ∈ Ξα〉 is a ∆-system with root Fα for every α ∈ Γ.
(iii) 〈Fα : α ∈ Γ〉 is a ∆-system with root G.
(iv) If ξ ∈ Ξα, η ∈ Ξβ , and α 6= β, then Aξ ∩ Aη = G.

Proof. Let κ =
⋃

α<cf(κ) Ξ′
α where the Ξ′

α’s are pairwise disjoint, with |Ξ′
α| = λα

for every α < cf(κ). For each α < cf(κ) let Ξ′′
α ∈ [Ξ′

α]λα be such that 〈Aη : η ∈ Ξ′′
α〉 is a

∆-system, say with root Fα. Choose Γ ∈ [cf(κ)]cf(κ) such that 〈Fα : α ∈ Γ〉 is a ∆-system,
say with root G. For each α ∈ Γ let

Bα =
⋃







⋃

ξ∈Ξ′′
β

Aξ : β ∈ Γ, β < α






.
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We claim

(1) |Bα| < λα.

In fact,

|Bα| ≤
∑

β<α
β∈Γ

∣
∣
∣
∣
∣
∣

⋃

ξ∈Ξ′′
β

Aξ

∣
∣
∣
∣
∣
∣

≤
∑

β<α
β∈Γ

λβ < λα.

So (1) holds. Now for any α ∈ Γ,

Ξ′′
α =

⋃

J∈[Bα]<ω

{ξ ∈ Ξ′′
α : Aξ ∩Bα = J},

so by (1) there is a Cα ∈ [Bα]<ω such that Ξ′′′
α

def
= {ξ ∈ Ξ′′

α : Aξ ∩ Bα = Cα} has size λα.
Note that Cα ⊆ Fα, since for distinct ξ, η ∈ Ξ′′′

α we have Cα = Aξ ∩ Aη ∩Bα ⊆ Fα. Next
note that 〈Aξ\Fα : ξ ∈ Ξ′′′

α 〉 is a system of pairwise disjoint sets; hence for each β ∈ Γ, the
set {ξ ∈ Ξ′′′

α : (Aξ\Fα) ∩ Fβ 6= 0} is finite. Since |Γ| = cf(κ) < λα, it follows that the set

Ξα
def
= Ξ′′′

α \{ξ ∈ Ξ′′
α : (Aξ\Fα) ∩ Fβ 6= ∅ for some β ∈ Γ}.

has size λα.
Now we can verify the conditions of the proposition. Conditions (i)–(iii) are clear.

Now suppose that ξ ∈ Ξα, η ∈ Ξβ , and α 6= β. Say β < α. Suppose that γ ∈ Aξ ∩ Aη\G;
we want to get a contradiction. Since Fα ∩ Fβ = G, we have two possibilities.

Case 1. γ /∈ Fα. But γ ∈ Aξ ∩Bα = Cα ⊆ Fα, contradiction.
Case 2. γ ∈ Fα\Fβ. Thus γ ∈ (Aη\Fβ)∩Fα, contradicting the definition of Ξβ .

Proposition 24.18. Suppose that F is a collection of countable functions, each with
range ⊆ 2ω, and with |F | = (2ω)+. Then there are distinct f, g ∈ F such that f ∪ g is a
function.

Proof. Let κ = ω1, λ = (2ω)+, and apply Theorem 24.4 with 〈Ai : i ∈ I〉 replaced by
〈dmn(f) : f ∈ F 〉. We get J ∈ [F ]λ such that 〈dmn(f) : f ∈ J〉 is an indexed ∆-system,
say with root r. Now

J =
⋃

h:r→2ω

{f ∈ J : f ↾ r = h},

and |r(2ω)| = 2ω, so there is an h : r → 2ω such that K
def
= {f ∈ J : f ↾ r = h} has size

(2ω)+. For any two f, g ∈ K, the set f ∪ g is a function.

Proposition 24.19. For any infinite cardinal κ, any linear order of size at least (2κ)+

has a subset of order type κ+ or one similar to (κ+, >).

Proof. Let L be a linear order of size (2κ)+, and let ≺ be a well-order of L. Define
f : [L]2 → 2 by setting, for any {a, b} ∈ [L]2, say with a < b,

f({a, b}) =
{

0 if a ≺ b,
1 if b ≺ a.
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By the Erdös-Rado theorem let A ∈ [L]κ
+

such that A is homogeneous for f . If f takes
the value 0 on [A]2, then A is well-ordered under <, and since its size is κ+, it has a subset
of order type κ+. Similarly if f takes the value 1 on [A]2.

Proposition 24.20. For any infinite cardinal κ, any tree of size at least (2κ)+ has a
branch or an antichain of size at least κ+.

Proof. Suppose that T is a tree of size at least (2κ)+. Let S be a subset of T of size
(2κ)+. Define f : [S]2 → 2 by setting, for distinct s, t ∈ S,

f({s, t}) =
{

1 if s and t are comparable,
0 otherwise.

By the Erdös-Rado theorem, let X ⊆ S be homogeneous for f of size κ+. So if f has
constant value 1 on [X ]2, then X is a chain of size κ+, hence extends to a branch of size at
least κ+, while if f has constant value 0 on [X ]2, then X is an antichain of size κ+.

Proposition 24.21. Any uncountable tree either has an uncountable branch or an infinite
antichain.

Proof. Suppose that T is an uncountable tree. Let S ∈ [T ]ℵ1 . We define f : [S]2 → 2
by setting, for any distinct s, t ∈ S,

f({s, t}) =
{

1 if s and t are comparable,
0 otherwise.

Then the desired conclusion follows from the Dushnik-Miller theorem.

Proposition 24.22. Suppose that m is a positive integer. Then any infinite set X of
positive integers contains an infinite subset Y such that one of the following conditions
holds:

(i) The members of Y are pairwise relatively prime.
(ii) There is a prime p < m such that for any two a, b ∈ Y , p divides a− b.
(iii) If a, b are distinct members of Y , then a, b are not relatively prime, but the

smallest prime divisor of a− b is at least equal to m.

Proof. Let p0, . . . , pi−1 list all of the primes < m, in order. Thus i = 0 if m = 1.
Define f : [X ]2 → i+ 2 by setting, for any distinct x, y ∈ X ,

f({x, y}) =

{
i if x and y are relatively prime,
j if j < i and pj is the smallest prime dividing x− y,
i+ 1 otherwise.

Applying Ramsey’s theorem in the form

ω → (ω, . . . , ω
︸ ︷︷ ︸

i+1 times

)2,
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we get an infinite homogeneous subset Y of X . If f [[Y ]2] = {i}, then any two members
of Y are relatively prime. If f [[Y ]2] = {j} with j < i, then pj divides x − y for any two
members x, y of Y . If f [[Y ]2] = {i + 1}, then for any two members x, y of Y , the least
prime dividing x− y is at least as big as m.

Proposition 24.23. Suppose that X is an infinite set, and (X,<) and (X,≺) are two
well-orderings of X. Then there is an infinite subset Y of X such that for all y, z ∈ Y ,
y < z iff y ≺ z.

Proof. Define f : [X ]2 → 2 by setting, for any distinct x, y ∈ X , say with x < y,

f({x, y}) =
{

1 if x ≺ y
0 otherwise.

By Ramsey’s theorem, let Y be an infinite subset of X which is homogeneous for f . If
f [[Y ]2 = {0}, then x < y implies x ≻ y for all distinct x, y ∈ Y . Now since Y is infinite
and < is a well-order of Y , the order type of Y under < is an infinite ordinal. Hence there
is a system 〈yn : n ∈ ω〉 of elements of Y such that y0 < y1 < · · ·. Hence y0 ≻ y1 ≻ · · ·,
contradicting the fact that ≺ is a well-order.

Hence f [[Y ]2 = 1. This means that for any distinct x, y ∈ Y we have x < y iff x ≺ y,
as desired.

Proposition 24.24. Let S be an infinite set of points in the plane. Then S has an infinite
subset T such that all members of T are on the same line, or else no three distinct points
of T are collinear.

Proof. Define f : [S]3 → 2 by

f({s, t, u}) =
{

1 if s, t, u are on a line,
0 otherwise.

Let T be an infinite subset of S homogeneous for f . If f [[T ]2] = {1}, then all points of T
are on a line. If f [[T ]2] = {0}, then no three points of T are on a line.

Proposition 24.25. We consider the following variation of the arrow relation. For
cardinals κ, λ, µ, ν, we define

κ→ [λ]µν

to mean that for every function f : [κ]µ → ν there exist an α < ν and a Γ ∈ [κ]λ such
that f [[Γ]µ] ⊆ ν\{α}. In coloring terminology, we color the µ-element subsets of κ with ν
colors, and then there is a set which is anti-homogeneous for f , in the sense that there is
a color α and a subset of size λ all of whose µ-element subsets do not get the color α.

Then for any infinite cardinal κ,

κ 6→ [κ]κ2κ .
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Proof.

(1) There is an enumeration 〈Xα : α < 2κ〉 of [κ]κ in which every member of [κ]κ is
repeated 2κ times.

In fact, let f : 2κ → [κ]κ be a surjection and let g : 2κ × 2κ → 2κ be a bijection. For each
α < 2κ let Xα = f(1st(g−1(α))). Then for all α, β < 2κ,

Xg(α,β) = f(1st(g−1(g(α, β)))) = f(1st(α, β)) = f(α),

and (1) follows.

(2) |[κ]κ| = 2κ.

To prove (2), let f : κ× κ→ κ be a bijection. For each g ∈ κ2 let

Zg =
⋃

α<κ,

g(α)=1

f [κ× {α}].

Then |Zg| = κ provided that g is not identically 0, and Zg 6= Zh if g 6= h. (If g(α) 6= h(α),
say g(α) = 1 and h(α) = 0; then f [κ × α] ⊆ Zg but f [κ × {α}] ∩ Zh = ∅.) Thus
2κ ≤ |[κ]κ|+ 1 ≤ 2κ + 1 with cardinal addition, and so (2) follows.

(3) There is a one-one 〈Yα : α < 2κ〉 such that Yα ∈ [Xα]κ for all α < 2κ.

We construct Yα by recursion. If Yβ has been constructed for all β < α, where α < 2κ,
choose Yα ∈ [Xα]κ\{Yβ : β < α}; this is possible by (2). So (3) holds.

Now we define f : [κ]κ → 2κ so that for all α < 2κ one has

f(Yα) = o.t.({β < α : Xβ = Xα}).

This defines f on {Yα : α < 2κ}, and it can be extended to all of [κ]κ in any fashion.
Now we show that f is the desired counterexample. For, suppose that β < 2κ, Γ ∈ [κ]κ,

and f [[Γ]κ] ⊆ 2κ\{β}. Choose α < 2κ such that Xα = Γ and {γ < α : Xγ = Γ} has order
type β. Then Yα ∈ [Γ]κ and f(Yα) = β, contradiction.

We prove Hindman’s theorem, following Graham, Rothschild, Spencer. A semigroup is an
algebraic structure (A, ·) where · is associative. A topological semigroup is a semigroup
(A, ·) together with a Hausdorff topology on A under which · is continuous.

Theorem 24.26. Let E be a semigroup with a topology which is compact. Define Rb(a) =
a · b for all a, b ∈ E. Assume that ∀b ∈ E[Rb is continuous]. Then there is an e ∈ E such
that e2 = e.

Proof. Let A be the set of all subsemigroups of E which are compact under the
relativized topology. If C ⊆ A is a chain, then

⋂
C ∈ A . Note that compact subspaces

are closed, and hence
⋂

C 6= ∅. By Zorn’s lemma there is a minimal element A of A . Fix
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e ∈ A. Then Ae is a subsemigroup, since a1ea1e = (a1ea2)e ∈ Ae for a1, a2 ∈ A. Now
Re is a continuous mapping of A onto Ae, so Ae is compact. Now Ae ⊆ A, so Ae = A
by minimality. Let B = {f ∈ A : fe = e}. Since Ae = A, B 6= ∅. B is a subsemigroup,
since if f1, f2 ∈ B then f1f2e = f1e = e. Now B is closed in A, and hence is compact.
For, suppose that f ∈ A\B. Then f ∈ R

−1
f [A\{e}] ⊆ A\B. Hence A = B by minimality.

Since e ∈ B it follows that e2 = e.

For brevity let ω′ = ω\{0}. If S ⊆ ω′, let Σ(S) be the set of all finite sums of members of
S.

Theorem 24.27. (Hindman) If m ∈ ω and f : ω′ → m, then there exist an i < m and an
infinite S ⊆ ω′ such that f(x) = i for all x ∈ Σ(S).

Proof. ω′

2 is a compact Hausdorff space under the product topology. This transfers
to a compact Hausdorff topology on P(ω′). Namely, let χA be the characteristic function
of A ⊆ ω′. Then χ is a bijection from P(ω′) onto ω′

2, and we call U ⊆ P(ω′) open iff
χ[U ] is open. A basic open set in P(ω′) has the form UFG, where F and G are finite
disjoint subsets of P(ω′) and UFG = {X ⊆P(ω′) : F ⊆ X and X ∩G = ∅}.

Let U be the set of all ultrafilters on ω′.

(1) U is a closed subset of P(ω′).

In fact, suppose that X ⊆P(ω′) and X /∈ U .
Case 1. ω′ /∈ X . Let G = {ω′}. Then X ∈ U∅G and U∅G ∩U = ∅.
Case 2. a ∈ X , a ⊆ b, b /∈ X . Then X ∈ U{a}{b} and U{a}{b} ∩U = ∅.
Case 3. a, b ∈ X but a ∩ b /∈ X . Then X ∈ U{a,b}{a∩b} and U{a,b}{a∩b} ∩U = ∅.
Case 4. a, ω′\a /∈ X . Then X ∈ U∅{a,ω′\a} and U∅{a,ω′\a} ∩U = ∅.

Thus (1) holds.
Now for F,G ∈ U we define

F +G = {A ⊆ ω′ : {n : {m : m+ n ∈ A} ∈ G} ∈ F}.

(2) F +G is an ultrafilter.

In fact, for any n, {m : m + n ∈ ω′} = ω′ ∈ G, and hence ω′ ∈ F + G. Now for any n,
{m : m+ n ∈ ∅} = ∅ /∈ G, so {n : {m : m+ n ∈ ∅} ∈ G} = ∅ /∈ F . So ∅ /∈ F +G. Suppose
that A ∈ F +G and A ⊆ B. Then H = {n : {m : m+n ∈ A} ∈ G} ∈ F , and for n ∈ H we
have {m : m+n ∈ A} ∈ G, hence {m : m+n ∈ B} ∈ G, so H ⊆ {n : {m : m+n ∈ B} ∈ G}
and so B ∈ F +G. Now suppose that A,A′ ∈ F +G. Then

F ∋{n : {m : m+ n ∈ A} ∈ G} ∩ {n : {m : m+ n ∈ A′} ∈ G} =

{n : {m : m+ n ∈ A ∩A′} ∈ G},

so A ∩ A′ ∈ F + G. Now suppose that A ⊆ ω′ and A /∈ F + G. Then {n : {m : m + n ∈
A} ∈ G} /∈ F}, so ω′\{n : {m : m + n ∈ A} ∈ G} ∈ F . Now ω′\{n : {m : m + n ∈ A} =
{n : {m : m+ n ∈ ω′\A}}. Hence ω′\A ∈ F +G.
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(3) + is associative.

For, if A ⊆ ω′ let An = {m : m+ n ∈ A}. Then

F + (G+H) = {A ⊆ ω′ : {n : {m : m+ n ∈ A} ∈ G+H} ∈ F}

= {A ⊆ ω′ : {n : An ∈ G+H} ∈ F}

= {A ⊆ ω′ : {n : {p : {m : m+ p ∈ An} ∈ H} ∈ G} ∈ F}

= {A ⊆ ω′ : {n : {p : {m : m+ p+ n ∈ A} ∈ H} ∈ G} ∈ F}

Also, let B = {n : {m : m+ n ∈ A} ∈ H}. Then

(F +G) +H = {A ⊆ ω′ : {n : {m : m+ n ∈ A} ∈ H} ∈ F +G}

= {A ⊆ ω′ : B ∈ F +G}

= {A ⊆ ω′ : {n : {p : p+ n ∈ B} ∈ G} ∈ F}

= {A ⊆ ω′ : {n : {p : {m+ p+ q ∈ A} ∈ H} ∈ G} ∈ F},

which is the same as the above. So (3) holds.

(4) For each ultrafilter G define RG : U → U by RG(F ) = F+G. Then RG is continuous.

Let S = {H ∈ U : A ∈ H,A ⊆ ω′} ∪ {H ∈ U : A /∈ H,A ⊆ ω′}. S is a subbase for the
topology on U , and it suffices to show that if B ∈ S and F ∈ R

−1
G [B] then there is an

open set V such that F ∈ V ⊆ R
−1
G [B].

Case 1. B = {H ∈ U : A ∈ H}. Thus A ∈ F+G, so {n : {m : m+n ∈ A} ∈ G} ∈ F}.
Then F ∈ {H ∈ U : {n : {m : m+n ∈ A} ∈ G} ∈ H}, and if K ∈ {n : {m : m+n ∈ A} ∈
G} ∈ H then K +G ∈ B, as desired.

Case 2. B = {H ∈ U : A /∈ H}. Thus A /∈ F+G, so {n : {m : m+n ∈ A} ∈ G} /∈ F}.
Then F ∈ {H ∈ U : {n : {m : m+n ∈ A} ∈ G} /∈ H}, and if K ∈ {n : {m : m+n ∈ A} ∈
G} /∈ H then K +G ∈ B, as desired.

So (4) holds.
Now by Theorem 24.26 there is an ultrafilter F such that F + F = F .

(5) For each i ∈ ω′ let Ki = {A ⊆ ω′ : i ∈ A}. Then Ki is a principal ultrafilter, and
Ki +Ki = K2i 6= Ki.

In fact,

Ki +Ki = {A ⊆ ω′ : {n : {m : m+ n ∈ A} ∈ Ki} ∈ Ki}

= {A ⊆ ω′ : {n : i+ n ∈ A} ∈ Ki}

= {A ⊆ ω′ : 2i ∈ A} = K2i.

So (5) holds.
Hence F is nonprincipal.
Now suppose that f : ω′ → m. Then ω′ =

⋃

i<m f
−1[{i}], so there is an i < m such

that A0
def
= f−1[{i}] ∈ F . For each B ⊆ ω′ and n ∈ ω′ let B − n = {m : n +m ∈ B} and

B∗ = {n : B − n ∈ F}.
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(6) If B ∈ F , then B∗ ∈ F and so B ∩B∗ ∈ F .

In fact, if B ∈ F , then B ∈ F + F , so {n : {m : m + n ∈ B} ∈ F} ∈ F}, hence
{n : B − n ∈ F} ∈ F , hence B∗ ∈ F .

Now if An ∈ F has been defined, pick an+1 ∈ An ∩ A∗
n. Since an+1 ∈ A∗

n, we have
An − an+1 ∈ F Let An+1 = (An ∩ (An − an+1))\{an+1}. So An+1 ∈ F .

(7) an+1 + An+1 ⊆ An.

In fact, if m ∈ An+1, then m ∈ An − an+1, so an+1 +m ∈ An.
Now let S = {an : n ∈ ω′}. We claim that x ∈ A0, hence f(x) = i, for all x ∈ Σ(S).

Take any x ∈ Σ(S). Say x = ai0 + · · ·+aim with 0 < i0 < . . . < im. We prove that x ∈ A0

by induction on m. It is clear for m = 0, since each ai ∈ A0 because A0 ⊇ A1 ⊇ · · ·.
Assume it for m and suppose that x = ai0 + · · ·+ aim+1

. Then ai0 + · · ·+ aim ∈ A0 and
aim+1

∈ A1, so x ∈ A0 by (7).

We prove van der Waerden’s theorem, following Mauro de Nasso. A set A ⊆ ω′ is thick
iff ∀m ∈ ω∃a ∈ ω′[[a, a+ m] ⊆ A]. Recall that for any A ⊆ ω′ and n ∈ ω, A − n = {m :
m+ n ∈ A} = {p− n : p ∈ A, p > n}.

Proposition 24.28. A is thick iff for every finite set F ⊆ ω′ there is an x ∈ ω′ such that
F + x ⊆ A.

Proof. ⇒: Assume that A is thick and F ∈ [ω′]<ω. Say F = {b0, . . . , bm−1} with
b0 < · · · < bm−1. Choose a ∈ ω′ such that [a, a + bm−1] ⊆ A. Then F + a = {b0 +
a, . . . , bm−1 + a} ⊆ [a, a+ bm−1] ⊆ A.
⇐: Assume the indicated condition, and suppose that m ∈ ω. Now [1, m] is a finite

subset of ω′, so there is an x ∈ ω′ such that [1, m] +x ⊆ A. Thus [x+ 1, x+m] ⊆ A.

Proposition 24.29. A is thick iff for every finite set F ⊆ ω′ there is an x ∈ A such that
F + x ⊆ A.

Proof. ⇒: Assume that A is thick, and F = {b0, . . . , bm−1} ⊆ ω′ with b0 < · · · <
bm−1. Apply the condition in Proposition 24.28 to [1, bm−1 + 1]; this gives x ∈ ω′ such
that 1 +x, . . . , bm−1 + 1 +x] ⊆ A. Then 1 +x ∈ A and {b0 + 1 +x, . . . , bm−1 + 1 +x} ⊆ A.
⇐: see the proof of Proposition 24.28.

Proposition 24.30. A is thick iff ∀n0, . . . , nk−1 ∈ ω[
⋂

i<k(A− ni) 6= ∅].

Proof. ⇒: Assume that A is thick, and n0, . . . , nk−1 ∈ ω. Say n0 < · · · < nk−1. Note
that A−0 = A. Hence we may assume that 0 < n0. Choose m so that {n0 +m, . . . , nk−1 +
m} ⊆ A. Then m ∈

⋂

i<k(A− ni).
⇐: clear by reversing the above argument.

A is syndetic iff ∃k ∈ ω′∀l[l, l + k − 1] ∩A 6= ∅].

Corollary 24.31. A is thick, then so is A− n.
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Proposition 24.32. A is syndetic iff there are n0, . . . , nk−1 ∈ ω such that ω′ =
⋃

i<k(A−
ni).

Proof. ⇒: Assume that A is syndetic. Choose k ∈ ω′ such that ∀l[l, l+k−1]∩A 6= ∅].
Let n0 = 0, n1 = 1, . . . , nk−1 = k − 1. Suppose that s ∈ ω′. Now [s, s + k − 1] ∩ A 6= ∅.
Choose i < k with s+ i ∈ A. Then s ∈ (A− ni).
⇐: Assume the indicated condition. Assume that n0 < · · · < nk−1. Given l, choose

i < k such that l ∈ (A− ni). Then ni + l ∈ A. So [l, l+ nk−1 + 1− 1] ∩A 6= ∅.

Proposition 24.33. A is syndetic iff A ∩B 6= ∅ for every thick B.

Proof. ⇒: Assume that A is syndetic and B is thick. By Proposition 24.32 let
n0, . . . , nk−1 ∈ ω be such that ω′ =

⋃

i<k(A − ni). By Proposition 24.32 choose b ∈
⋂

i<k(B − ni). Choose i < k such that b+ ni ∈ A. Also b+ ni ∈ B.
⇐: Suppose that A is not syndetic. By Proposition 24.32, for every finite subset F of

ω′ we have ω′ 6=
⋃

x∈F (A− x). Then

(1) For every finite subset F of ω′ we have
⋂

x∈F ((ω′\A)− x) 6= ∅.

In fact, for F a finite subset of ω′ choose y /∈
⋃

x∈F (A− x). Thus ∀x ∈ F [x+ y ∈ (ω′\A)],
and hence y ∈ ((ω′\A)− x). So (1) holds.

By (1) and Proposition 24.32, ω′\A is thick. This proves ⇐.

Proposition 24.34. A is syndetic iff ω′\A is not thick.

Proof. ⇒: by Proposition 24.33. ⇐: see the proof of Proposition 24.33, second
part.

A is piecewise syndetic iff there exist a thick B and a syndetic C such that A = B ∩ C.

Proposition 24.35. The following are equivalent:
(i) A is piecewise syndetic.
(ii) There is a finite F ⊆ ω′ such that for every finite G ⊆ ω′ there is an s ∈ ω′ such

that for every t ∈ G there is an x ∈ F such that s+ t+ x ∈ A.
(iii) There is a finite F ⊆ ω such that

⋃

x∈F (A− x) is thick.

Proof. (i)⇒(ii): Choose k ∈ ω′ such that ∀l[[l, l+k−1]∩C 6= ∅], and let F = [0, k−1].
Suppose that G ⊆ ω′ is finite. Let H = {t+i : t ∈ G, i < k}. So H is finite. By Proposition
24.28 choose s ∈ ω′ such that H + s ⊆ B. Suppose that t ∈ G. Then t ∈ G, so t+ s ∈ B.
Choose x ∈ F such that t+ s+ x ∈ C. Now t+ x ∈ H, so t+ x+ s ∈ B. So s+ t+ x ∈ A.

(ii)⇒(iii): Assume (ii), and choose F as indicated. We claim that
⋃

x∈F (A − x) is
thick. To prove this we use Proposition 24.28. Suppose that G is a finite subset of ω′.
Choose s as in the indicated condition. Then we claim that G + s ⊆

⋃

x∈F (A − x). For,
take any t ∈ G. By the indicated condition there is an x ∈ F such that s + t+ x ∈ A, as
desired.

(iii)⇒(i): Assume (iii). Let F ′ = F ∪ {0}. Then
⋃

x∈F ′(A − x) is thick, and A ⊆
⋃

x∈F ′(A − x). We claim that A ∪ (ω′\B) is syndetic; its intersection with B is A, as
desired. Suppose that A ∪ (ω′\B) is not syndetic. Say F = {0, . . . , k}. There is an l such
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that [l, l + k + 1] ∩ (A ∪ (ω′\B)) = ∅. So [l, l + k] ∩ A = ∅ and [l, l + k] ⊆ B. Since l /∈ A,
there is an m ∈ F ′ with m 6= 0 such that l ∈ A −m. So l + m ∈ A. But l + m ≤ l + k,
contradiction.

Corollary 24.36. If A is piecewise syndetic, then so is A− n.

Lemma 24.37. Suppose that S ⊆ P(ω′) is closed upwards. Let T = {T ⊆ ω′ : ∀S ∈
S [T ∩ S 6= ∅]}. Let A = {S ∩ T : S ∈ S , T ∈ T }.

Suppose that A ∈ A and A = B ∪ C with B ∩ C = ∅. Then B ∈ A or C ∈ A .

Proof. Say A = S ∩ T with S ∈ S and T ∈ T . Let S̃ = B ∪ (S\A).

(1) B = S̃ ∩ T .

In fact, S̃ ∩ T = (B ∩ T ) ∪ ((S ∩ T )\A) = B ∩ T = B since B ⊆ A ⊆ T .
So if S̃ ∈ S we have B ∈ A , as desired.
Suppose that S̃ /∈ S . Let T̃ = ω′\S̃.

(2) T̃ ∈ T .

In fact, if U ∈ S and U ∩ T̃ = ∅, then U ⊆ S̃ and so S̃ ∈ S , contradiction.

(3) C = T̃ ∩ S.

For, T̃ ∩ S = S\S̃ = S\(B ∪ (S\A)) = (S\B) ∩ (S ∩ A) = A ⊆ B = C.

Theorem 24.38. If A is piecewise syndetic and A = B ∪ C with B ∩ C = ∅, then B is
piecewise syndetic or C is piecewise syndetic.

Proof. Let S be the collection of all thick subsets of P(ω′) and T be the collection
of all syndetic subsets of P(ω′). By Proposition 24.32, the hypotheses of Lemma 24.37
hold.

A set C ⊆P(ω′) is translation invariant iff ∀A ∈ C [(A− 1) ∈ C ].

Proposition 24.39. If C is a collection of translation invariant set algebras (A,∪, ω′\)
on ω′, then

⋂
C is a translation invariant set algebra on ω′.

A filter F on a translation invariant set algebra A on ω′ is translation invariant iff ∀A ∈
F [(A− 1) ∈ F ]. TIF abbreviates translation invariant filter.

Proposition 24.40. A is thick iff A ∈ F for some TIF F .

Proof. ⇒: Assume that A is thick. By Proposition 24.32, A
def
= {A− n : n ∈ ω} has

fip. Let F be the filter generated by A . So

F =

{

B : ∃G ∈ [ω′]<ω

[
⋂

n∈G

(A− n) ⊆ B

]}

.

Suppose that p ∈ ω and B ∈ F . Say G ∈ [ω′]<ω and
⋂

n∈G(A− n) ⊆ B. Let H = G + p.
Suppose that q ∈

⋂

n∈H(A− n). Thus ∀n ∈ H[n+ q ∈ A], so for all n ∈ G[n+ p+ q ∈ A].

462



Hence ∀n ∈ G[p + q ∈ (A − n)], hence p + q ∈
⋂

n∈G(A − n), hence p + q ∈ B, hence
q ∈ (B − p). So we have shown that

⋂

n∈H(A − n) ⊆ (B − p), and so (B − p) ∈ F . Thus
A ∈ F and F is a TIF.
⇐: Suppose that A ∈ F with F a TIF. If G ⊆ ω is finite, then for all n ∈ G, A−n ∈ F .

Hence
⋂

n∈G(A− n) ∈ F , and so it is nonempty. By Proposition 24.32, A is thick.

Proposition 24.41. Every TIF is a subset of a maximal TIF.

Proof. Zorn’s lemma.

Proposition 24.42. If F ⊆P(ω′) and n ∈ ω, then (
⋂
F )− n =

⋂

A∈F (A− n).

Proof.

∀m ∈ ω′

[

m ∈
((⋂

F
)

− n
)

iff n+m ∈
⋂

F

iff ∀A ∈ F [n+m ∈ A]

iff ∀A ∈ F [m ∈ A− n]

iff m ∈
⋂

A∈F

(A− n)

]

.

Proposition 24.43. Suppose that F ⊆ P(ω′). Let F = {(Y, n) : Y ∈ F, n ∈ ω}. Then
the TIF generated by F is






X : ∃G ∈ [F ]<ω




⋂

(Y,n)∈G

(Y − n) ⊆ X










.

Proof. Let K be the indicated set. Note that F ⊆ K, since if Y ∈ F then we can
take G = {(y, 0)}. Clearly K is closed upwards and is also closed under ∩. Now suppose
that G is as indicated, and m ∈ ω. Then by Proposition 24.42,




⋂

(Y,n)∈G

(Y − n)



−m =
⋂

(Y,n)∈G

((Y − n)−m) =
⋂

(Y,n)∈G

(Y − (m+ n))

=
⋂

(Y,n)∈G′

(Y − n),

where G′ = {(Y, n+m) : (Y, n) ∈ G}. It follows that K is closed under −.

Proposition 24.44. Let B be a translation invariant field of subsets of ω′, let M be a
maximal TIF, and let U be an ultrafilter extending M . Then every B ∈ U is piecewise
syndetic.

Proof. First we claim
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(1) ∀B ∈ U∃F ∈ [ω′]<ω[
⋃

x∈F (B − x) ∈M ].

In fact, let Λ = {(ω′\B) − n : n ∈ ω}. Then M ∪ Λ does not have fip. For, sup-
pose that it has fip. Then the translation invariant filter M ′ generated by it is proper.
Otherwise, by Proposition 24.43 we get a finite subset F of ω and a Y ∈ M such
that Y ∩

⋂

n∈F ((ω′\B) − n) = ∅, contradiction. But ω′\B ∈ M ′ while ω′\B /∈ M ,
as otherwise ω′\B ∈ U , contradiction. So M ⊂ M ′, contradicion. So, this proves
that M ∪ Λ does not have fip. Hence there exist Y ∈ M and a finite F ⊆ ω′

such that Y ∩
⋂

n∈F ((ω′\B) − n)) = ∅. Thus Y ⊆
⋃

n∈F (ω′\((ω′\B) − n)). Now
ω′\((ω′\B) − n) = {m : m + n /∈ (ω′\B) = {m : m + n ∈ B} = {m : m ∈ (B − n)},
so
⋃

n∈F (B − n) ∈M . So (1) holds.
Now for any B ∈ U we take F as in (1). By Proposition 24.40,

⋃

x∈F (B− x) is thick.
By Proposition 24.35, B is piecewise syndetic.

Proposition 24.45. Let B be a translation invariant field of subsets of ω′, let M be a
maximal TIF, and let U be an ultrafilter extending M . Then for every B ∈ U , the set
BU = {n ∈ ω : (B − n) ∈ U} is syndetic.

Proof. By (1) in the proof of Proposition 24.40, there is an F ∈ [ω′]<ω such that
⋃

x∈F (B − x) ∈M . Now the proposition follows by Proposition 24.32 from

(1) ω′ =
⋃

x∈F (BU − x)

For, by translation invariance of M , for every m ∈ ω we have (
⋂

x∈F (B − x)) − m =
⋂

x∈F (B − x −m) ∈ M ∈ U , so there is an x ∈ F such that (B − x −m) ∈ U , so that
m ∈ (BU − x). This proves (1).

Lemma 24.46. Let A be a translation invariant field of subset of ω′, let M be a maximal
TIF contained in A, and let U be an ultrafilter on A extending M . Suppose that B ⊆ ω′,
l ∈ ω and B − l ∈ U . Then for every k ∈ ω′, BU − l contains an arithmetic progression of
length k.

Proof. Induction on k. For k = 1, we just need to show that BU − l is nonempty.
Now ∀n ∈ ω[n ∈ (BU − l) iff n+ l ∈ BU iff B− l− n ∈ U iff n ∈ (B − l)U . Since (B − l)U
is syndetic by Proposition 24.45, it follows that BU − l is syndetic, and hence is nonempty.

Now we assume that BU − l contains an arithmetic progression of length k; we want
to show that it contains one of length k + 1. Let l0 = l. Since BU − l0 is syndetic, by
Proposition 24.31 there is a finite F ⊆ ω such that ω′ =

⋃

x∈F (BU − l0 − x). We may
assume that 0 ∈ F . Thus

(1) ∀n ∈ ω′∃x ∈ F [l0 + x+ n ∈ BU ].

Now by the inductive hypothesis choose l1 ∈ ω and y1 ∈ ω′ such that

(2) l1 + iy1 ∈ (BU − l) for i = 1, . . . , k.

(If k = 1 take l1 = 0 and y1 any member of BU − l.) Let x0 = 0. Thus

(3) For all i = 1, . . . , k, l0 + l1 + x0 + iy1 ∈ BU .
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By (1) choose x1 ∈ F so that l0 + l1 + x1 ∈ BU . Thus

(4) B − (l0 + l1 + x0 + iy1) ∈ U for all i = 1, . . . , k and

(5) B − (l0 + l1 + x1) ∈ U .

Case 1. x1 = 0. Then

(6) l1 + iy1 ∈ (BU − l) for i = 0, . . . , k is an arithmetic progression of length k + 1.

Case 2. x1 6= 0.
We now define sequences B1, B2, . . . and x1, x2, . . . ∈ F and l0, l1, . . . so that for each
s = 1, 2, . . . we have

Bs = (B − xs) ∩
k⋂

i=1

(B − xs−1 − iys) ∩
k⋂

i=1

(B − xs−2 − i(ys−1 + ys))

∩ . . . ∩
k⋂

i=1

(B − x0 − i(y1 + y2 + · · ·+ ys)) (∗)

and

(∗∗) (Bs − (l0 + · · ·+ ls)) ∈ U.

Let

B1 = (B − x1) ∩
k⋂

i=1

(B − x0 − iy1).

So (∗) and (∗∗) hold for s = 1. Assume that they hold for s. Then

Bs − (l0 + · · ·+ ls) = (B − (l0 + · · ·+ ls + xs)∩
k⋂

i=1

(B − (l0 + · · ·+ ls + xs−1 + iys)

∩ . . . ∩
k⋂

i=1

(B − (x0 + i(y1 + · · ·+ ys) + l0 + · · ·+ ls)

By the inductive hypothesis there are ls+1 ∈ ω and ys+1 ∈ ω′ such that

(7) ls+1 + iys+1 ∈ (Bs)U − (l0 + · · ·+ ls) for i = 1, . . . , k. Thus

(8) (l0 + · · ·+ ls+1 + iys+1) ∈ (Bs)U for i = 1, . . . , k.

Hence

(9) l0 + · · ·+ ls+1 + xs−t + i(ys−t+1 + · · ·+ ys+1) ∈ BU for i = 1, . . . , k and 0 ≤ t ≤ s.

By (1) choose xs+1 ∈ F so that l0 + · · ·+ ls+1 + xs+1 ∈ BU .
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Subcase 2.1. xs+1 = x0. Then x0 + l0 + · · ·+ ls+1 + i(y1 + · · ·+ ys) is a (k+ 1)-ary
arithmetic progression in BU − l for i = 0, . . . , k.

Subcase 2.2. xs+1 = xj for some j = 1, . . . , s. Then we have l0 + l1 + · · ·+ ls+1 +
xj + i(yj + · · ·+ ys+1) ∈ BU for i = 0, . . . , k.

it Subcase 2.3. xs+1 6= xj for all j ≤ s. Then the construction continues.

Since F is finite, the construction eventually stops.

Theorem 24.47. Suppose that A is a piecewise syndetic set. Then for every k ∈ ω′,
{x ∈ A : ∃y ∈ ω′∀i = 1, . . . , k[x+ iy ∈ A]} is piecewise syndetic.

Proof. Let B be the translation invariant field of subsets of ω′ generated by {A−n :

n ∈ ω}. By Proposition 29.12 there is a finite subset F of ω such that T
def
=
⋃

n∈F (A− n)

is thick. By Proposition 24.32, G
def
= {T −m : m ∈ ω} has fip and so it is contained in a

maximal TIF M on B. Let U be an ultrafilter on B with M ⊆ U . Now T ∈ G ⊆M ⊆ U ,
so there is an n ∈ F such that (A− n) ∈ U . By Lemma 24.46, AU − n has an arithmetic
progression of every length k ∈ ω. Now for each k ∈ ω choose x and y so that x + iy ∈

(AU − n) for all i = 1, . . . , k. Thus C
def
=
⋂k
i=1(A− (n+ x+ iy)) ∈ U .

(1) C ⊆ {z : ∃y ∈ ω′∀i = 1, . . . , k[z + iy ∈ A]} − n− x.

In fact,

{z : ∃y ∈ ω′∀i = 1, . . . , k[z + iy ∈ A]} − n− x

= {m : m+ n+ x ∈ {z : ∃y ∈ ω′∀i = 1, . . . , k[z + iy ∈ A]}

= {m : ∃y ∈ ω′∀i = 1, . . . , k[m+ n+ x+ iy ∈ A]}

and
C = {m : ∀i = 1, . . . , k[m+ n+ x+ iy ∈ A},

so (1) holds.
Now by Proposition 24.32 and Corollary 24.35 the theorem follows.

Theorem 24.48. If ω′ = C1 ∪ . . . ∪ Cn is a partition of ω′, then there is an i such that
for every k ∈ ω′, {x ∈ Ci : ∃y ∈ ω′ : ∀i = 1, . . . , k[x+ iy ∈ Ci]} is piecewise syndetic.

Proof. Clearly, for example by Proposition 24.33, ω′ is piecewise syndetic. By Theo-
rem 29.15 there is an i such that Ci is piecewise syndetic. Now apply Theorem 24.45.

Theorem 24.49. (van der Waerden) If ω′ = C1 ∪ . . .∪Cn is a partition of ω′, then there
is an i such that for every k ∈ ω′, Ci has an arithmetic progression of length k.

We prove the Hales-Jewitt theorem, following the proof in the book of Stasys Jukna, which
is based on a sketch of Alon Nilli, which in turn is a simplified version of Shelah’s proof.

For t a positive integer let [t] = {1, . . . , t}. With t, n, r positive integers, we are going
to consider colorings of n[t] with r colors, i.e., functions f : n[t] → r. A (t, n)-root is a
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member of n([t] ∪ {∗}) taking the value ∗ at least once. For τ a (t, n)-root and i < t, we
denote by τ(i) the result of replacing all ∗ in τ by i. A subset L ⊆ n[t] is a line iff there is
a (t, n)-root τ such that L = {τ(1), . . . , τ(t)}. For example, the following is a line in 3[4],
given by the root (∗, 1, ∗):

(1, 1, 1)
(2, 1, 2)
(3, 1, 3)
(4, 1, 4)
(5, 1, 5)

Theorem 24.50. (Hales-Jewitt) For all positive integers t and r there is a positive integer

n
def
= HJ(r, t) such every coloring of n[t] with r colors has a monochromatic line.

Proof. We go by induction on t. For t = 1 the only line is {(1, 1, . . . , 1)} and the
desired conclusion is obvious: HJ(r, 1) = 1.

Now suppose the result is true for t− 1 ≥ 1. Let

n = HJ(r, t− 1);

Ni = rt
n+
∑

i−1

j=1
Nj

for i = 1, . . . , n;

N = N1 + · · ·+Nn.

We suppose that χ : N [t] → r. If τ = τ1 . . . τn is a sequence of n roots, with each τi of
length Ni, and a ∈ n[t], we define

τ(a) = τ1(a1) . . . τn(an).

Thus τ(a) ∈ N [t].
Two members a, b ∈ n[t] are neighbors iff they differ at exactly one place, where one

of them has value 1 and the other has value 2.

(1) There is a sequence τ = τ1 . . . τn of roots, with each τi of length Ni, such that χ(τ(a)) =
χ(τ(b)) for any two neighbors a, b.

We define τi by downward induction on i. First we take the case i = n. Let Ln−1 =
N1 + · · ·+Nn−1. For k = 0, . . . , Nn let Wk be the following member of Nn [t]:

Wk = 1 . . .1
︸ ︷︷ ︸

k

2 . . . 2
︸ ︷︷ ︸

Nn−k

For each k = 0, . . . , Nn we define a coloring χk : Ln−1 [t]→ r by

χk(x1, . . . , xLn−1
) = χ(x1, . . . , xLn−1

Wk).

Now the number of colorings of Ln−1 [t] is

rt
Ln−1

< Nn,
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and we have Nn + 1 colorings. So there exist s < k ≤ Nn such that χs = χk. We then
define

τn = 1 . . .1
︸ ︷︷ ︸

s

∗ . . .∗
︸ ︷︷ ︸

k−s

2 . . . 2
︸ ︷︷ ︸

Nn−k

The inductive step from τi+1 to τi is similar. Let Li−1 = N1+· · ·+Ni−1. For k = 0, . . . , Ni
let Wk be the following member of Ni [t]:

Wk = 1 . . .1
︸ ︷︷ ︸

k

2 . . . 2
︸ ︷︷ ︸

Ni−k

For each k = 0, . . . , Ni we define a coloring χk : Li−1+n−i[t]→ r by

χk(x1, . . . , xLi−1
, yi+1, . . . , yn) = χ(x1, . . . , xLi−1

Wk, τi+1(yi+1), . . . , τn(yn)).

Now the number of colorings of Li−1+n−i[t] is

rt
Ln−1+n−i

≤ Ni,

and we have Ni + 1 colorings. So there exist s < k ≤ Nn such that χs = χk. We then
define

τi = 1 . . .1
︸ ︷︷ ︸

s

∗ . . .∗
︸ ︷︷ ︸

k−s

2 . . .2
︸ ︷︷ ︸

Ni−k

Now to check that this works, suppose that a and b are neighbors in the i-th place. Say
ai = 1 and bi = 2.

Case 1. i = n. Thus

a = a0, . . . , an−2, 1;

b = a0, . . . , an−2, 2

Then

τ(a) = τ1(a0) . . . τn−1(an−2)τn(1);

τ(b) = τ1(a0) . . . τn−1(an−2)τn(2).

Now
τn(1) = 1 . . .1

︸ ︷︷ ︸

k

2 . . . 2
︸ ︷︷ ︸

Nn−k

= Wk and τn(2) = 1 . . .1
︸ ︷︷ ︸

s

2 . . .2
︸ ︷︷ ︸

Nn−s

= Ws.

Hence

χ(τ(a)) = χ(τ1(a0) . . . τn−1(an−2)τn(1)) = χ(τ1(a0) . . . τn−1(an−2)Wk)

= χk(τ1(a0) . . . τn−1(an−2)) = χs(τ1(a0) . . . τn−1(an−2))

= χ(τ1(a0) . . . τn−1(an−2)Ws) = χ(τ(b)).
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Case 2. i < n. Similar to Case 1.

Now to prove the theorem, let τ be as in (1). Define χ′ : n{2, . . . , t} → r by defining
χ′(a) = χ(τ(a)) for any a ∈ n{2, . . . , t}. By the inductive hypothesis there is a root
ν ∈ n({2, . . . , t} ∪ {∗}) such that {ν(2), . . . , ν(t)} is monochromatic under χ′. Now the

string ρ
def
= τ1(ν0) · · · τn(νn−1) has length N and it is a root since ν is. We claim that

M
def
= {ρ(1), . . . , ρ(t)}

is a monochromatic line under χ. Note that for any i = 1, . . . , t, ρ(i) = τ(ν(i)). Now
χ′(ν(2)) = · · · = χ′(ν(t)); hence χ(τ(ν(2))) = · · · = χ(τ(ν(t))). We claim that also
χ(τ(ν(1))) = χ(τ(ν(2))). Clearly there are members σ1, . . . , σs of n[t] such that ν(1) = σ1,
ν(2) = σs, and successive members of σ1, . . . , σs are neighbors. Hence by (1), χ(τ(ν(1))) =
χ(τ(ν(2))).

Next we treat the Halpern-Läuchli theorem, using their original proof. We deal with trees
of height ω, finitely branching, with a unique root, and with no maximal nodes. A vector
tree is a sequence of such trees. A set S of nodes is (h, k)-dense iff there is a node x of
height h such that S dominates the nodes of height h + k which are above x. k-dense
means (0, k)-dense, and ∞-dense means k-dense for all k.

Proposition 24.51. S is k-dense iff S dominates the nodes of height k.

Proposition 24.52. S is ∞-dense iff S dominates all nodes of T .

We define T ↑ t = {s : t ≤ s}. For each n ∈ ω, n(T ) = {T ↑ x : |x| = n}. For B ⊆ T ,
n(T,B) = {(T ↑ t) ∩ B : |t| = n}. If T = (T1, . . . , Td) is a system of trees, then an

(h, k)-matrix for T is a product
∏d
i=1Ai with each Ai (h, k)-dense in Ti. A k-matrix is a

(0, k)-matrix.

Theorem 24.53. (Halpern-Läuchli) Let T = (T1, . . . , Td) be a system of trees, each finitely

branching, with a single root, and of height ω. Suppose that Q ⊆
∏d
i=1 Ti. Then one of

the following conditions holds:
(i) For all k ∈ ω there is a k-matrix contained in Q.
(ii) There is an h ∈ ω such that for each k there is an (h, k)-matrix contained in

(
∏d
i=1 Ti)\Q.

Proof. We first introduce a certain algebra of symbols. Atomic symbols are

∃Ai, ∀xi, ∀ai, ∃xi for each positive integer i.

For each positive integer d we define

Ld = {σ : σ is a function with domain {1, . . . , 2d}, and for each i ∈ {1, . . . , d} exactly one
of the following holds:

(i) Each of ∃Ai and ∀xi occurs exactly once in σ, with ∃Ai before ∀xi.
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(ii) Each of ∀ai and ∃xi occurs exactly once in σ, with ∀ai before ∃xi.

Examples:

L1 = {〈∃A1, ∀x1〉, 〈∀a1∃x1〉}.
L2 = {〈∃A1, ∀x1, ∃A2, ∀x2〉, 〈∃A1, ∃A2, ∀x1, ∀x2〉, . . .}.

Now we define a relation ⊢d on Ld. α, β stand for Ai, ai, xi and U and V are strings of
atomic symbols which are in Ld.

Rules 1.
U∃α∃βV ⊢d U∃β∃αV .
U∀α∀βV ⊢d U∀β∀αV .
U∃α∀βV ⊢d U∀β∃αV , if U∀β∃αV ∈ Ld.

Rules 2.
U∀ai∃xiV ⊢d U∃Ai∀xiV for all i = 1, . . . , d.
U∃Ai∀xiV ⊢d U∀ai∃xiV for all i = 1, . . . , d.

To state rules 3, we first define, if 〈Vi : r ≤ i ≤ k〉 is a sequence of strings of atomis
symbols, then (Vi)

k
r is the concatenation Vr · · ·Vk.

Rules 3.
If σ is a permutation of {1, . . . , d}, then
(∀aσ(i))

r
1(∃Aσ(i))

d
r+1V ⊢d (∃Aσ(i))

d
r+1(∀aσ(i))

r
1V for r = 1 . . . d− 1.

Example

d = 4, r = 2, V = ∃x3∀x1∀x4∃x2, σ =

(
1 2 3 4
2 3 1 4

)

gives
∀a2∀a3∃A1∃A4∃x3∀x1∀x4∃x2 ⊢d ∃A1∃A4∀a2∀a3∃x3∀x1∀x4∃x2.

|=d is the transitive closure of ⊢d.

(1) ∀ad(∃Ai)
d−1
1 (∀xi)

d−1
1 ∃xd |=d ∃Ad(∀ai)

d−1
1 (∃xi)

d−1
1 ∀xd.

Proof of (1): Let σ(1) = d and σ(i+ 1) = i for i = 2, . . . , d− 1. Then an instance of rules
3 is

(∀aσ(i))
1
1(∃Aσ(i))

d
2(∀xi)

d−1
1 ∃xd |=d (∃Aα(i))

d
2(∀aσ(i))

1
1(∀xi)

d−1
1 ∃xd,

or

(1a) ∀ad(∃Ai)
d−1
1 (∀xi)

d
1∃xd |=d (∃Ai)

d−1
1 ∀ad(∀xi)

d−1
1 ∃xd

By Rules 1,

(1b) (∃Ai)
d−1
1 ∀ad(∀xi)

d−1
1 ∃xd |=d (∃Ai)

d−1
1 (∀xi)

d−1
1 ∀ad∃xd

Also,

(1c) (∃Ai)
d−1
1 (∀xi)

d−1
1 ∀ad∃xd |=d (∃Ai∀xi)

d−1
1 ∀ad∃xd
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By rules 2,

(1d) (∃Ai∀xi)
d−1
1 ∀ad∃xd |=d (∀ai∃xi)

d−1
1 ∃Ad∀xd

By rules 1,

(1e) (∀ai∃xi)
d−1
1 ∃Ad∀xd |=d (∀ai)

d−1
1 ∃Ad(∃xi)

d−1
1 ∀xd

Now with σ the identity and r = d− 1, rules 3 give

(1f) (∀ai)
d−1
1 ∃Ad(∃xi)

d−1
1 ∀xd |=d ∃Ad(∀ai)

d−1
1 (∃xi)

d−1
1 ∀xd

Now (1a)–(1f) give (1).

(2) Suppose that UV ∈ Ld, U has length d, no atoms of the forms ∀xi, ∃xi occur in U ,
and Ū is any rearrangement of U . Then UV |=d ŪV .

In fact, assume the hypotheses. So only ∃Ai and ∀ai occur in U . If no ∀ai occurs, or no
∃Ai occurs, the conclusion is clear by rules 1. So suppose some ∀ai occurs and some ∃Ai
occurs. By rules 1 we have

UV |=d (∀aσ(i))
r
1(∃Aσ(i))

d
r+1V

By rules 3,
(∀aσ(i))

r
1(∃Aσ(i))

d
r+1V |=d (∃Aσ(i))

d
r+1(∀aσ(i))

r
1V

Then by rules 1,
(∀aσ(i))

r
1(∃Aσ(i))

d
r+1V |=d ŪV.

Thus (2) holds.

(3) If W |=d−1 W̄ , then ∀adW∃xd |=d ∀adW̄∃xd.

For, assume that W |=d−1 W̄ . Say

W = S0 ⊢d−1 S1 ⊢d−1 S2 · · · ⊢d−1 Sn = W̄ .

We claim that

∀adW∃xd = ∀adS0∃xd ⊢d ∀adS1∃xd · · · ⊢d ∀adSn∃xd = ∀adW̄∃xd.

Consider the step from Si to Si+1. If rules (1) or rules (2) are used in going from Si to
Si+1, clearly the same rules go from ∀adSi∃xd to ∀adSi+1∃xd. Suppose that rules (3) are
used. Say Si is (aσ(i))

r
1(∃Aσ(i))

d−1
r+1V and Si+1 is (∃Aσ(i))

d−1
r+1(∀aσ(i))

r
1V . Then ∀adSi∃xd

is ∀ad(aσ(i))
r
1(∃Aσ(i))

d−1
r+1V ∃xd and ∀adSi+1∃xd is ∀ad(∃Aσ(i))

d−1
r+1(∀aσ(i))

r
1V ∃xd. Hence

∀adSi∃xd |=d ∀adSi+1∃xd by (2). Hence (3) holds.

(4) (∀ai)d1(∃xi)d1 |=d (∃Ai)d1(∀xi)d1.
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In fact, we prove this by induction on d. For d = 1 the assertion is that ∀a1∃x1 |=d ∃A1∀x1,
which is an instance of rules 2. Now assume (4) for d− 1 ≥ 1. Then rules 1 give

(4a) (∀ai)
d
1(∃xi)

d
1 |=d ∀ad(∀ai)

d−1
1 (∃xi)

d−1
1 ∃xd

By the inductive hypothesis and (3) we have

(4b) ∀ad(∀ai)
d−1
1 (∃xi)

d−1
1 ∃xd |=d ∀ad(∃Ai)

d−1
1 ∀xi)

d−1
1 ∃xd

By (1) we have

(4c) ∀ad(∃Ai)
d−1
1 (∀xi)

d−1
1 ∃xd |=d ∃Ad(∀ai)

d−1
1 (∃xi)

d−1
1 ∀xd

By the inductive hypothesis and (3) we have

(4d) ∃Ad(∀ai)
d−1
1 (∃xi)

d−1
1 ∀xd |=d ∃Ad(∃Ai)

d−1
1 (∀xi)

d−1
1 ∀xd

Now by rules (1) we get

(4e) ∃Ad(∃Ai)
d−1
1 (∀xi)

d−1
1 ∀xd |=d (∃Ai)

d
1(∀xi)

d
1

Now (4a)–(4e) give (4).

Now suppose that T = 〈Ti : 1 ≤ i ≤ d〉 is a vector tree and Q ⊆
∏d
i=1 Ti. We define a

(d+1)-sorted language L . The sorts are S1, . . . , Sd+1. Additional constants are as follows.
A d-ary function symbol Seq acting on d-tuples from S1 × · · ·Sd with values in Sd+1.
For each i = 1, . . . , d, a binary relation symbol <i acting on Si.
x1, . . . , xd are variables ranging over S1, . . . , Sd respectively.
B1, . . . , Bd are constants for subsets of S1, . . . , Sd respectively.
A1, . . . , Ad are variables ranging over subsets of S1, . . . , Sd respectively.
vik for i = 1, . . . , d and k ∈ ω are variables ranging over Si,
a1, . . . , ad are variables ranging over subsets of S1, . . . , Sd respectively.
Q, a constant for a subset of Sd+1

A structure for this language assigns Ti to Si for i = 1, . . . , d, the product
∏d
i=1 Ti to Sd+1,

and subsets Bi of T1 for i = 1, . . . , d, with Q assigned to Q.

Now with each sequence n = (n1, . . . , nd) of positive integers and each sequence W of
atomic symbols we associate a formula ϕ = ϕWn. This is done by induction on the length
of W

If W is empty, we let ϕWn be the formula Seq(x1, . . . , xd) ∈ Q.
If W = ∃AiW ′, then we let ϕWn be the formula ∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in

Si ∧ ϕW ′n]. Here “Ai is ni-dense in Si” is the formula

∀t ∈ Si[|t| = ni → ∃s ∈ Ai[t ≤i s]].

We use the variables vik to express this.
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If W = ∀xiW
′, then we let ϕWn be the formula ∀xi[xi ∈ Ai → ϕW ′n].

If W = ∀aiW ′, then we let ϕWn be the formula ∀ai[ai ∈ ni(Ti, Bi) → ϕW ′n] Here
ai ∈ ni(Ti, Bi) is the formula

∃t ∈ Si[|t| = ni ∧ ∀s[s ∈ ai ↔ [t ≤ s ∧ s ∈ Bi]]].

If W = ∃xiW
′, then we let ϕWn be the formula ∃xi[xi ∈ ai ∧ ϕW ′n].

(5) If W ∈ Ld and n = (n1, . . . , nd) with each ni > 0, then ϕWn is a sentence, where each
Bi is considered as an individual constant.

In fact, for each i = 1, . . . , d, either ∃xi or ∀xi is an entry in W . Since ∃Ai comes before
∀xi if either occurs, Ai is not free in ϕWn. Since ∀ai comes before ∃xi if either occurs, ai
is not free in ϕWn. So (5) holds.

Now we let ψ(W,n, p) be the statement “∀B1 ⊆ S1 · · · ∀Bd ⊆ Sd[∀i = 1, . . . , d[Bi is p-dense
in Si → ϕWn]]”

Example: W is ∃Ai∀a2∃x2∀x1. Then ψ(W,n, p) is

∀B1 ⊆ S1 · · · ∀Bd ⊆ Sd[∀i = 1, . . . , d[Bi is p-dense in Si → ϕWn]];

We expand ϕWn:
∃A1[A1 ⊆ B1 ∧ A1 is ni-dense in Si ∧ ϕW ′n]

with W ′ = ∀a2∃x2∀x1. Expanding further,

∃A1[A1 ⊆ B1 ∧A1 is n1-dense in S1 ∧ ∀a2[a2 ∈ ni(Si, Bi)→ ϕW ′′n]]

with W ′′ = ∃x2∀x1. Another expansion gives

∃A1[A1 ⊆ B1 ∧A1 is n1-dense in S1 ∧ ∀a2[a2 ∈ ni(Si, Bi)→

∃x2[x2 ∈ a2 ∧ ϕW ′′′n]]]

with W ′′′ = ∀x1. A further expansion:

∃A1[A1 ⊆ B1 ∧A1 is n1-dense in S1 ∧ ∀a2[a2 ∈ ni(Si, Bi)→

∃x2[x2 ∈ a2 ∧ ∀x1[x1 ∈ A1ϕW ivn]]]]

with W iv empty. A final expansion, gives ψ(W,n, p) as follows:

∀B1 ⊆ S1 · · · ∀Bd ⊆ Sd[∀i = 1, . . . , d[Bi is p-dense in Si →

∃A1[A1 ⊆ B1 ∧ A1 is n1-dense in S1 ∧ ∀a2[a2 ∈ ni(Si, Bi)→

∃x2[x2 ∈ a2] ∧ ∀x1[x1 ∈ A1 ∧ Seq(x1, x2) ∈ Q]]]]]

(6) Suppose that W,W ′, ρ are sequences of atomic symbols. Suppose that under every
assignment of values to the variables, ϕWn implies ϕW ′n. Then ϕρWn under any assignment
implies ϕρW ′n under that assignment.
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We prove this by induction on ρ. If ρ is empty, it is obvious. The induction step is clear
upon looking at what ϕρWn is.

Case 1. ρ = ∃Aiρ′. Then ϕρWn is

∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ϕρ′Wn]

Case 2. ρ = ∀xiρ′. Then ϕρWn is

∀xi[xi ∈ Ai → ϕρ′Wn].

Case 3. ρ = ∀aiρ
′. Then ϕρWn is

∀ai[ai ∈ ni(Si, Bi)→ ϕρ′Wn]

Case 4. ρ = ∃xiρ′. Then ϕρWn is

∃xi[xi ∈ ai ∧ ϕρ′Wn]

This proves (6).
Now we note that ∀n∃pψ(W,n, p) has the form

(7) ∀n∃p[∀B1 ⊆ T1 · · · ∀Bd ⊆ Td[∀i = 1, . . . , d[Bi is p-dense in Ti → ϕWn]]].

(8) If W |=d W and ∀n∃pψ(W,n, p), then ∀n∃pψ(W,n, p).

To prove (8), note by (7) that it suffices to prove

(8′) If W |=d W then for all n, ϕWn implies that ϕWn.

Case 1. W = U∃Ai∃AjV and W = U∃Aj∃AiV . Then for some ρ, ϕWn is

ρ∃Ai ⊆ Bi[Ai is ni-dense in Ti ∧ ϕ∃AjV n];

expanding the portion involving Aj , this gives for ϕWn

ρ∃Ai ⊆ Bi[Ai is ni-dense in Ti ∧ ∃Aj ⊆ Bj [Aj is nj-dense in Tj ∧ ϕV n]].

For purely logical reasons this is equivalent to

ρ∃Ai∃Aj [Ai ⊆ Bi ∧Aj ⊆ Bj ∧ Ai is ni-dense in Ti ∧ Aj is nj-dense in Tj ∧ ϕV n].

Clearly ϕWn is equivalent to the same thing.

Case 2. W = U∃Ai∃xjV and W = U∃xj∃AiV . Then for some ρ, ϕWn is

ρ∃Ai ⊆ Bi[Ai is ni-dense in Ti ∧ ϕ∃xjV n];

expanding the portion involving xj , this gives for ϕWn

ρ∃Ai ⊆ Bi[Ai is ni-dense in Ti ∧ ∃xj [xj ∈ aj ∧ ϕV n]].
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For purely logical reasons this is equivalent to

ρ∃Ai∃xj [Ai ⊆ Bi ∧ xj ∈ aj ∧ [Ai is ni-dense in Ti] ∧ ϕV n

Clearly ϕWn is equivalent to the same thing.

Case 3. W = U∃xi∃xjV and W = U∃xj∃xiV . Then for some ρ, ϕWn is

ρ∃xi[xi ∈ ai ∧ ϕ∃xjV ];

expanding the portion involving xj , this gives for ϕWn

ρ∃xi[xi ∈ ai ∧ ∃xj [xj ∈ aj ∧ ϕV n]].

For purely logical reasons this is equivalent to

ρ∃xi∃xj [xi ∈ ai ∧ xj ∈ aj ∧ ϕV n]

Clearly ϕWn is equivalent to the same thing.

Case 4. W = U∃Ai∀xjV and W = U∀xj∃AiV . Then for some ρ, ϕWn is

ρ∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ϕ∀xjV n];

expanding the portion involving xj , this gives for ϕWn

ρ∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ∀xj [xj ∈ Aj → ϕV n]].

For purely logical reasons this is equivalent to

(8′a) ρ∃Ai∀xj [Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ [xj ∈ Aj → ϕV n]].

Now ϕWn is

ρ∀xj [xj ∈ Aj → ∃Ai[Ai ⊆ Bi ∧ is ni-dense in Si ∧ ϕV n]]

For purely logical reasons this is equivalent to

ρ∀xj∃Ai[xj ∈ Aj → Ai ⊆ Bi ∧ is ni-dense in Si ∧ ϕV n]

Now using (6) the desired conclusion follows.
Case 5. W = U∃Ai∀ajV and W = U∀aj∃AiV . Then for some ρ, ϕWn is

ρ∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ϕ∀ajV n];

expanding the portion involving aj , this gives for ϕWn

ρ∃Ai[Ai ⊆ Bi ∧Ai is ni-dense in Si ∧ ∀aj [aj ∈ nj(Sj, bj)→ ϕV n]]
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For purely logical reasons this is equivalent to

ρ∃Ai∀aj [Ai ⊆ Bi ∧Ai is ni-dense in Si ∧ [aj ∈ nj(Sj, bj)→ ϕV n]]

Now ϕWn is

ρ∀aj[aj ∈ nj(Sj , bj)→ ∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ϕV n]]

For purely logical reasons this is equivalent to

ρ∀aj∃Ai[aj ∈ nj(Sj, bj)→ [Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ [ϕV n]]

Again, using (6) the desired conclusion follows.
Case 6. W = U∃xi∀xjV and W = U∀xj∃xiV . Then for some ρ, ϕWn is

ρ∃xi[xi ∈ ai ∧ ∀xj [xj ∈ aj ∧ ϕV n]]

This is equivalent to
ρ∃xi∀xj [xi ∈ ai ∧ xj ∈ aj ∧ ϕV n]

Clearly the desired conclusion follows.
Case 7. W = U∃xi∀ajV . Then for some ρ, ϕWn is

ρ∃xi[xi ∈ ai ∧ ∀aj [aj ∈ nj(Tj , Bj)→ ϕV n]];

this is equivalent to

ρ∃xi∀aj [xi ∈ ai ∧ [aj ∈ nj(Tj , Bj)→ ϕV n]].

Now ϕWn is
ρ∀aj[aj ∈ nj(Tj , Bj)→ ∃xi[xi ∈ ai ∧ ϕV n]],

which is equivalent to

ρ∀aj∃xi[aj ∈ nj(Tj , Bj)→ xi ∈ ai ∧ ϕV n].

The desired conclusion is clear.

This takes care of rules 1. Before getting to rules 2, we note:

(9) The following are equivalent:
(9a) Ai ⊆ Bi and Ai is ni-dense in Ti.
(9b) Ai ⊆ Bi and ∀ai ∈ ni(Ti, Bi)[ai ∩Ai 6= ∅].

(9a)⇒(9b): Assume that (9a) holds, and ai ∈ ni(Ti, Bi). Say ai = (Ti ↑ t) ∩ Bi with
|t| = ni. By (9a) there is a u ∈ Ai with t ≤ u. so u ∈ ai ∩Ai.

(9b)⇒(9a): Assume (9b), and suppose that t ∈ Ti with |t| = ni. Let ai = (T ↑ t)∩Bi.
By (9b) choose u ∈ ai ∩ Ai. Then t ≤ u, proving (9a).
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Case 8. 1 ≤ i ≤ d, W = U∀ai∃xiV , and W = U∃Ai∀xiV . Then for some ρ, ϕWn is

ρ∀ai[ai ∈ ni(Ti, Bi)→ ∃xi[xi ∈ ai ∧ ϕV n]],

which is equivalent to

(9c) ρ∀ai∃xi[ai ∈ ni(Ti, Bi)→ [xi ∈ ai ∧ ϕV n]].

On the other hand, ϕWn is

ρ∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Ti ∧ ∀xi[xi ∈ Ai → ϕVm]],

which is equivalent to

ρ∃Ai∀xi[Ai ⊆ Bi ∧ Ai is ni-dense in Ti ∧ [xi ∈ Ai → ϕVm]].

Now assume (9c). For each ai ∈ ni(Ti, Bi) choose xi(ai) ∈ ai. Let Ai = {xi(ai) : ai ∈
nI(Ti, Bi)}. Note that ∀ai ∈ ni(Ti, Bi)[ai ⊆ Bi]. Hence Ai ⊆ Bi. Hence by (9), Ai is
ni-dense in Ti. This is as desired in Case 8.

Case 9. 1 ≤ i ≤ d, W = U∃Ai∀xiV , and W = U∀ai∃xiV . Then for some ρ, ϕWn is

ρ∃Ai[Ai ⊆ Bi and Ai is ni-dense in Ti and ∀xi[xi ∈ Ai → ϕV n]],

which is equivalent to

(9d) ρ∃Ai∀xi[Ai ⊆ Bi and Ai is ni-dense in Ti and [xi ∈ Ai → ϕV n]],

On the other hand, ϕWn is

ρ∀ai[ai ∈ ni(Ti, Bi)→ ∃xi[xi ∈ ai ∧ ϕV n]],

which is equivalent to

ρ∀ai∃xi[ai ∈ ni(Ti, Bi)→ [xi ∈ ai ∧ ϕV n]].

Assume (9d), let Ai be as indicated, and suppose that ai ∈ ni(Ti, Bi). By (9), choose
xi ∈ ai ∩Ai, as desired.

This takes care of rules 2. Now for rules 3, suppose that σ is a permutation of {1, . . . , d}.
Let W = (∀aσ(i))

r
1(∃Aσ(i))

d
r+1V and W = (∃Aσ(i))

d
r+1(∀aσ(i))

r
1V with r ∈ {1 . . . d − 1}.

Now for simplicity we assume that σ is the identity. Note that V is a string of length d
whose entries are ∀xi for r + 1 ≤ i ≤ d and ∃xj for 1 ≤ j ≤ r; moreover, only Ai for
i = r + 1, . . . , d and ai for i = 1 . . . , r are free. If V is such a string, a is an assignment
of values to the ai’s, Ar+1, . . . , Ad an assignment of values to the Ai’s, then the assertion
ϕV n[a, Ar+1, . . . , Ad] has the natural meaning.
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(10) If V is such a string, a assigns values to the ai for i = 1, . . . , r, Ar+1, . . . , Ad an
assignment of values to the Ai’s, A

′
r+1 ⊆ Ar+1, . . .A

′
d ⊆ Ad, and ϕV n[a, Ar+1, . . . , Ad],

then ϕV n[a, A′
r+1, . . . , A

′
d].

We prove (10) by induction on the length of V . It is trivial for the empty string. Now
suppose that the string is ∀xiV . Then ϕ∀xiV n[a, Ar+1, . . . , Ad] is

∀xi[xi ∈ Ai → ϕV n[a, Ar+1, . . . , Ad]],

so
∀xi[xi ∈ A

′
i → ϕV n[a, A′

r+1, . . . , A
′
d]],

If the string is ∃xiV , then ϕ∃xiV n[a, Ar+1, . . . , Ad] is

∃xi[xi ∈ ai ∧ ϕV n[a, Ar+1, . . . , Ad]],

and the conclusion is obvious. So (10) holds
Now for rules 3 we prove (8) directly rather than using (8′). So, suppose that

∀n∃pψ(W,n, p). Let F be such that ∀nψ(W,n, F (n)). Thus

(11) ∀n[∀B1 ⊆ T1 · · · ∀Bd ⊆ Td[∀i = 1, . . . , d[Bi is F (n)-dense in Ti → ϕWn]]].

Since p′-density implies p-density for p < p′, we may assume that for all n and all i =
1, . . . , d, F (n) > ni.

Now fix a sequence n = (n1, . . . , nd) of positive integers. We want to find p such that
ψ(W,n, p). Define G by induction, as follows.

G(0) = max{ni : r < i ≤ d};

G(j + 1) = F (k), where ki =

{
ni if 1 ≤ i ≤ r,
G(j) if r < i ≤ d.

Now for each i = 1, . . . , r let zi be the number of elements of Ti of height ni, and let
m =

∏r
i=1 zi. For each j ≤ m let pj = G(m− j).

(12) If j < m, then pj+1 ≤ pj .

For,

pj = G(m− j) = G(m− j − 1 + 1) = F (kj), where kji =

{
ni if 1 ≤ i ≤ r,
G(m− j − 1) if r < i ≤ d

=

{
ni if 1 ≤ i ≤ r,
pj+1 if r < i ≤ d

Since pj+1 is an entry of kj , (12) holds.
It follows that

(13) If a set is pj-dense in Ti, then it is also pj+1-dense in Ti.
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We claim that ψ(W,n, p0). Now ψ(W,n, p0) is

∀B1 ⊆ T1 · · · ∀Bd ⊆ Td[∀i = 1, . . . , d[Bi is p0-dense in Ti → ϕWn
]].

So, assume that B1 ⊆ T1 · · · ∀Bd ⊆ Td and ∀i = 1, . . . , d[Bi is p0-dense in Ti].

(14) If a1 ∈ n1(T1, B1) ∧ . . . ∧ ar ∈ nr(Tr, Br), 0 ≤ j < m, Ar+1 ⊆ Br+1, . . . , Ad ⊆
Bd, and Ar+1, . . . , Ad are pj -dense in Tr+1, . . . , Td respectively, then there exist A′

r+1 ⊆
Ar+1,. . .,A′

d ⊆ Ad which are pj+1-dense such that ϕV kj [~a, A
′
r+1, . . . , A

′
d].

By (11), ϕWkj [Ar+1, . . . , Ad], and hence by the form of W , there are A′
r+1 ⊆ Ar+1,. . .,A′

d ⊆

Ad such that A′
r+1, . . . , A

′
d are kjr+1-,. . . , kjd-dense and ϕV kj [~a, A

′
r+1, . . . , A

′
d]. Now kjr+1 =

· · · = kjd = pj+1, as desired.
Now clearly |

∏r
i=1 ni(Ti, Bi)| ≤ |

∏r
i=1 zi| = m.

(15) For any J ⊆
∏r
i=1 ni(Ti, Bi) with |J | = j ≤ m, there are Ar+1 ⊆ Br+1, . . ., Ad ⊆ Bd

such that each Ai is pj-dense in Ti, and for every a ∈ J , ϕV n[a, Ar+1, . . . , Ad].

We prove this by induction on j. It is obvious for j = 0. Now assume that b /∈ J
and J ∪ {b} ⊆

∏r
i=1 ni(Ti, Bi) and the assertion is true for J . So j < m and there are

Ar+1 ⊆ Br+1, . . ., Ad ⊆ Bd such that each Ai is pj-dense in Ti, and for every a ∈ J ,
ϕV n[a, Ar+1, . . . , Ad]. Now by (14) there exist A′

r+1 ⊆ Ar+1, . . ., A′
d ⊆ Ad such that

A′
r+1, . . . , A

′
d are pj+1-dense in Tr+1, . . . , Td respectively, and ϕV kj [b, A

′
r+1, . . . , A

′
d]. By

(10), ϕV n[c, A′
r+1, . . . , A

′
d] for all c ∈ J ∪ {b}. This proves (15).

This completes the proof of (8)

Now the proof of the theorem goes as follows. Let W0 = (∀ai)d1(∃xi)d1, W1 = (∃Ai)d1(∀xi)d1.
By (4), W0 |=d W1. By (8), ∀n∃pψ(W0, n, p) implies ∀n∃pψ(W1, n, p).

Case 1. ∀n∃pψ(W0, n, p). Hence ∀n∃pψ(W1, n, p). For any k ∈ ω let n be constantly k.
Then choose p so that ψ(W1,n, p). Then there exist Ai for i = 1, . . . , d such that Ai ⊆ BI
for all i = 1, . . . , d, Ai is ni-dense in Ti for all i = 1, . . . , d, and for all i = 1, . . . , d, ∀xi ∈ Ai,
ϕV n[A1, . . . , Ad, x1, . . . , xd]. Then ∀i = 1, . . . , d[Ai is k-dense in Ti and (x1, . . . , xd) ∈ Q.
Thus (i) in the theorem holds.

Case 2. There is an n such that for all p, ¬ψ(W0, n, p). Thus for every p there are
B1, . . . , Bd which are p-dense in their respective trees, and ai ∈ ni(Ti, Bi) for i = 1, . . . d

such that
∏d
i=1 ai ⊆

∏d
i=1 Ti\Q. Let h = max{ni : 1 ≤ i ≤ d}. For any k, take p = h+ k.

Then a1, . . . , ad is an (m, k)-matrix contained in
∏d
i=1 Ti\Q.

We now treat gaps in [ω]ω. For a, b ∈ [ω]ω we define a ⊆∗ b iff a\b is finite. It is convenient
to use Boolean algebra terminology. The set [ω]<ω is an ideal in P(ω), and the quotient
P(ω)/[ω]<ω is a BA which we use. The equivalence class of X ⊆ ω under [ω]<ω is denoted
by [X ]. Note that [a] ≤ [b] iff a ⊆∗ b.

Proposition 24.54. If A ,B are nonempty countable subsets of [ω]ω and a ⊆∗ b whenever
a ∈ A and b ∈ B, then there is a c ∈ [ω]ω such that a ⊆∗ c ⊆∗ b whenever a ∈ A and
b ∈ B.
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Proof. Write A = {an : n ∈ ω} and B = {bn : n ∈ ω}. Let

c =
⋃

n∈ω








⋃

m≤n

am



 ∩
⋂

m≤n

bm



 .

Now suppose that p ∈ ω. Then

ap\c =
⋂

n∈ω



ap ∩




⋂

m≤n

(ω\am) ∪
⋃

m≤n

(ω\bm)









=
⋂

n<p



ap ∩




⋂

m≤n

(ω\am) ∪
⋃

m≤n

(ω\bm)









∩
⋂

n≥p



ap ∩




⋂

m≤n

(ω\am) ∪
⋃

m≤n

(ω\bm)









⊆
⋂

n<p



ap ∩




⋂

m≤n

(ω\am) ∪
⋃

m≤n

(ω\bm)









∩
⋂

n≥p



ap ∩
⋃

m≤n

(ω\bm)





⊆ ap ∩
⋃

m≤p

(ω\bm),

and this last set is finite.
Furthermore,

c\bp =
⋃

n<p








⋃

m≤n

am



 ∩
⋂

m≤n

bm ∩ (ω\bp)





⊆

(
⋃

m<p

am

)

\bp,

and this last set is finite.
The set c is infinite, as otherwise a0 = (a0 ∩ c) ∪ (a0\c) would be finite.

Proposition 24.55. If A is an infinite countable collection of almost disjoint members
of [ω]ω, then A , then A is not maximal.

Proof. Say A = {an : n ∈ ω}. Note that an ∩
⋃

m<n am is finite, for any n ∈ ω. Let
xn ∈ (an\

⋃

m<n am)\{xm : m < n}. Then {xn : n ∈ ω} ∈ [ω]ω and an ∩ {xn : n ∈ ω} is
finite, for each n ∈ ω.
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Proposition 24.56. Suppose that A is a nonempty countable family of members of [ω]ω,
and ∀a, b ∈ A [a ⊆∗ b or b ⊆∗ a]. Also suppose that ∀a ∈ A [a ⊂∗ d], where d ∈ [ω]ω. Then
there is a c ∈ [ω]ω such that ∀a ∈ A [a ⊆∗ c ⊂∗ d].

Proof. If ∃a ∈ A ∀b ∈ A [b ⊆∗ a], then the conclusion is obvious. So suppose that
no such a exists. Then there is a sequence 〈an : n ∈ ω〉 of elements of A such that
an ⊂∗ am for n < m, and the sequence is cofinal in A in the ⊆∗-sense. In fact, let
〈a′n : n ∈ ω〉 be a list of all of the elements of A . Let a0 = a′0. If an has been defined,
then by hypothesis an ⊆∗ a′n or a′n ⊆

∗ an; choose an+1 ∈ A such that an, a
′
n ⊂

∗ an+1.
Let C = {a0} ∪ {am+1\am : m ∈ ω} ∪ {ω\d}. Then C is an almost disjoint family, except
that possibly ω\d is finite. By Proposition 24.53, let e ⊆ ω be infinite and almost disjoint
from each member of C . Let c = d\e. Then for any n ∈ ω,

an+1\c = (an+1\d) ∪ (an+1 ∩ e)

⊆ (an+1\d) ∪




⋃

i≤n

(ai+1\ai) ∪ a0



 ∩ e,

and the last set is finite. Thus an+1 ⊆∗ c, hence b ⊆∗ c for all b ∈ A .
Since c ⊆ d, we have c ⊆∗ d. Also, d\c = d ∩ e, and this is infinite since e\d is finite.

Thus c ⊂∗ d
Note that c is infinite, since a ⊆∗ c for all a ∈ A .

Proposition 24.57. If a, b ∈ [ω]ω and a ⊂∗ b, then there is a c ∈ [ω]ω such that
a ⊂∗ c ⊂∗ b.

Proof. Write b\a = d ∪ e with d, e infinite and disjoint. Let c = a ∪ d.

Proposition 24.58. Suppose that A and B are nonempty countable subsets of [ω]ω,
∀x, y ∈ A [x ⊆∗ y or y ⊆∗ x], ∀x, y ∈ B[x ⊆∗ y or y ⊆∗ x], and ∀x ∈ A ∀y ∈ B[a ⊂∗ b].
Then there is a c ∈ [ω]ω such that a ⊂∗ c ⊂∗ b for all a ∈ A and b ∈ B.

Proof. By Proposition 24.52 choose d ⊆ ω such that ∀a ∈ A ∀b ∈ B[a ⊆∗ d ⊆∗ b].
Thus either ∀a ∈ A [a ⊂∗ d] or ∀b ∈ B[d ⊂∗ b].

Case 1. ∀a ∈ A [a ⊂∗ d]. By Proposition 24.54 choose e ⊆ ω such that ∀a ∈ A [a ⊆∗

e ⊂∗ d]. By Proposition 24.55 choose c ∈ [ω]ω such that e ⊂∗ c ⊂∗ d.
Case 2. ∀b ∈ B[d ⊂∗ b]. Then ∀b ∈ B[(ω\b) ⊂∗ (ω\d)]. By Proposition 24.54 choose

e ⊆ ω such that ∀b ∈ B[(ω\b) ⊆∗ e ⊂∗ (ω\d)]. By Proposition 24.55 choose c ⊆ ω such
that e ⊂∗ c ⊂∗ (ω\d). Then ∀a ∈ A ∀b ∈ B[a ⊂∗ (ω\c) ⊂∗ b].

Now we need some more terminology. Let A ⊆ [ω]ω, b ∈ [ω]ω, and ∀a ∈ A [a ⊂∗ b]. We
say that b is near to A iff for all m ∈ ω the set {a ∈ A : a\b ⊆ m} is finite.

Proposition 24.60. Suppose that am ∈ [ω]ω for all m ∈ ω, am ⊂∗ an whenever m <
n ∈ ω, b ∈ [ω]ω, and am ⊂∗ b for all m ∈ ω. Then there is a c ∈ [ω]ω such that
∀m ∈ ω[am ⊂∗ c ⊂∗ b] and c is near to {an : n ∈ ω}.
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Proof. By Proposition 24.55 choose d ⊆ ω such that ∀m ∈ ω[an ⊂
∗ d ⊂∗ b]. Now

for each m ∈ ω,
⋃

i≤m(ai\am) is finite, and am+1\
⋃

i≤m ai = (am+1\am)\
⋃

i≤m(ai\am),
so am+1\

⋃

i≤m ai is infinite. Choose em ⊆ am+1\
⋃

i≤m ai such that |em| = m. Let
c = d\

⋃

m∈ω em. Thus c ⊆∗ d ⊂∗ b.
If n ∈ ω, then

an\c = (an\d) ∪
⋃

m∈ω

(an ∩ em) = (an\d) ∪
⋃

m<n

(an ∩ em),

and this last set is finite. Hence an ⊆
∗ c. Since n is arbitrary, it follows that an ⊂

∗ c for
all n ∈ ω.

Also for any m ∈ ω we have am+1\c ⊇ am+1 ∩ em = em, and so |am+1\c| ≥ m.
So if p ∈ ω then |ap+1\c| ≥ p and so {am : am\c ⊆ n} ⊆ {a0, . . . , an}. So c is near to
{am : m ∈ ω}.

Proposition 24.61. Suppose that A ⊆ [ω]ω, ∀x, y ∈ A [x ⊂∗ y or y ⊂∗ x], b ∈ [ω]ω,
∀x ∈ A [x ⊂∗ b], and ∀a ∈ A [b is near to {d ∈ A : d ⊂∗ a}].

Then there is a c ∈ [ω]ω such that ∀a ∈ A [a ⊂∗ c ⊂∗ b] and c is near to A .

Proof. We consider several cases.
Case 1. ∃a ∈ A ∀d ∈ A [d ⊆∗ a]. By Proposition 24.55, choose c such that a ⊂∗ c ⊂∗ b.

Choose n ∈ ω such that c\b ⊆ n. Then for any m ∈ ω and any d ∈ A , if d\c ⊆ m then
d\b ⊆ (d\c) ∪ (c\b) ⊆ max(m,n). Hence

{d ∈ A : d\c ⊆ m} ⊆ {a} ∪ {d ∈ A : d ⊂∗ a and d\b ⊆ max(m,n)},

and the later set is finite, since b is near to {d ∈ A : d ⊂∗ a}. Thus c is as desired.
Case 2. ∀a ∈ A ∃d ∈ A [a ⊂∗ d] and b is near to A . By Proposition 24.55 choose c so

that ∀a ∈ A [a ⊂∗ c ⊂∗ b]. Choose n ∈ ω such that c\b ⊆ n. Then for any m ∈ ω and any
d ∈ A , if d\c ⊆ m then d\b ⊆ (d\c) ∪ (c\b) ⊆ max(m,n). Hence

{d ∈ A : d\c ⊆ m} ⊆ {a} ∪ {d ∈ A : d\b ⊆ max(m,n)},

and the later set is finite, since b is near to A . Thus c is as desired.
Case 3. ∀a ∈ A ∃d ∈ A [a ⊂∗ d] and b is not near to A . For each m ∈ ω let

Bm = {a ∈ A : a\b ⊆ m}. Since b is not near to A , choose m so that Bm is infinite.
Note that p < q → Bp ⊆ Bq. Hence Bn is infinite for every n ≥ m. Now we claim

(1) ∀n ≥ m∀a ∈ A ∃d ∈ Bn[a ⊆∗ d].

In fact, otherwise we get n ≥ m and a ∈ A such that ∀d ∈ Bn[d ⊂∗ a]. Now b is near to
{d ∈ A : d ⊂∗ a} by a hypothesis of the lemma, so {d ∈ A : d ⊂∗ a and d\b ⊆ n} is finite.
But Bn ⊆ {d ∈ A : d ⊂∗ a and d\b ⊆ n}, contradiction. So (1) holds.

Next we claim

(2) ∀n ≥ m∀d ∈ Bn[{e ∈ Bn : e ⊂∗ d} is finite].
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In fact, suppose that n ≥ m, d ∈ Bn and {e ∈ Bn : e ⊂∗ d} is infinite. Since b is
near to {a ∈ A : a ⊂∗ d}, the set {a ∈ A : a ⊂∗ d and a\b ⊆ n} is finite. But
{e ∈ Bn : e ⊂∗ d} ⊆ {a ∈ A : a ⊂∗ d and a\b ⊆ n}, contradiction. So (2) holds.

From (2) it follows that Bn has order type ω under ⊂∗, for each n ≥ m. Now clearly
A =

⋃

p∈ω Bp, so A is countable.
Now by Proposition 24.59, choose cm such that ∀d ∈ Bm[d ⊂∗ cm ⊂∗ b] and cm is

near to Bm. By (1), a ⊂∗ cm for each a ∈ A . Now suppose that n ≥ m and cn has been
defined so that a ⊂∗ cn for each a ∈ A . Again by Proposition 24.57 choose cn+1 such that
∀d ∈ Bn+1[d ⊂∗ cn+1 ⊂∗ cn] and cn+1 is near to Bn+1. Thus we have

∀a ∈ A [a ⊂∗ · · · ⊂∗ cn+1 ⊂
∗ cn ⊂

∗ · · · ⊂∗ cm ⊂
∗ b].

By Proposition 24.55, choose d so that ∀a ∈ A ∀n ≥ m[a ⊂∗ d ⊂∗ cn]. We claim that d is
near to A , completing the proof. For, let n ∈ ω. Let p = max(m,n), and choose q ≥ p
such that d\cp ⊆ q. Then

{a ∈ A : a\d ⊆ n} ⊆ {a ∈ A : a\d ⊆ p}

= {a ∈ Bp : a\d ⊆ p}

⊆ {a ∈ Bp : a\cp ⊆ q},

where the last inclusion holds since a\cp = (a\d)∪ (d\cp). The last set is finite since cp is
near to Bp, as desired.

Proposition 24.62. (The Hausdorff gap) There exist sequences 〈aα : α < ω1〉 and
〈bα : α < ω1〉 of members of [ω]ω such that ∀α, β < ω1[α < β → aα ⊂∗ aβ and bβ ⊂∗ bα],
∀α, β < ω1[aα ⊂

∗ bβ], and there does not exist a c ⊆ ω such that ∀α < ω1[aα ⊂
∗ c and

c ⊂∗ bα].

Proof. We construct by recursion aα, bα ⊆ ω for α < ω1 so that aα ⊂∗ bα, α < β →
aα ⊂∗ aβ and bβ ⊂∗ bα, and for all α < ω1, bβ is near to {aα : α < β}.

Let a0 = ∅, b0 = ω. Suppose that aα and bα have been constructed for all α < β
so that aα ⊂∗ bα, α < γ < β → aα ⊂∗ aγ and bγ ⊂∗ bβ, and α < β → bα is near to
{aγ : γ < α}. By Proposition 24.55 choose c such that ∀α < β[aα ⊂∗ c ⊂∗ bα]. Suppose
that α < β. We claim that c is near to {aγ : γ < α}. In fact, suppose that m ∈ ω. Choose
n ≥ m such that c\bα ⊆ n. Now for any γ < α we have aγ\bα ⊆ (aγ\c) ∪ (c\bα), so

{aγ : γ < α and aγ\c ⊆ m} ⊆ {aγ : γ < α and aγ\bα ⊆ n},

and the latter set is finite since bα is near to {aγ : γ < α}. Thus indeed c is near to
{aγ : γ < α}. Now by Proposition 24.58 there is a bβ such that ∀α < β[aα ⊂

∗ bβ ⊂
∗ c] and

bβ is near to {aa : α < β}. By Proposition 24.55 choose aβ so that ∀α < β[aα ⊂∗ aβ ⊂∗ bβ ].
This finishes the construction.

Now suppose that d ⊆ ω and ∀α < ω1[aα ⊂∗ d ⊂∗ bα]. Now ω1 =
⋃

m∈ω{α < ω1 :
aα\d ⊆ m}, so we can choose m ∈ ω such that |{α < ω1 : aα\d ⊆ m}| = ω1. Hence
there is an α < ω1 such that {β < α : aβ\d ⊆ m} is infinite. Choose p ≥ m such that
d\bα ⊆ p. Now aβ\bα ⊆ (aβ\d) ∪ (d\bα), so {β < α : aβ\d ⊆ m} ⊆ {β < α : aβ\bα ⊆ p},
contradicting bα near to {aβ : β < α}.
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25. Martin’s axiom

Martin’s axiom is not an axiom of ZFC, but it can be added to those axioms. It has many
important consequences. Actually, the continuum hypothesis implies Martin’s axiom, so
it is of most interest when combined with the negation of the continuum hypothesis. The
consistency of MA +¬CH involves iterated forcing, and is prove much later in these notes.

• A forcing poset is a triple (P,≤, 1) such that ≤ is reflexive on P and transitive, and
∀p ∈ P [p ≤ 1].

• If P is a forcing poset, a subset D of P is dense iff ∀p ∈ P∃q ∈ D[q ≤ p].

• If P is a forcing poset, a subset G of P is a filter iff 1 ∈ G, ∀p, q ∈ P [p ∈ G and p ≤ q
imply that q ∈ G], and ∀p, q ∈ G∃r ∈ G[r ≤ p, q].

• If P is a forcing poset, elements p, q ∈ P are compatible iff there is an r ∈ P such that
r ≤ p, q. p ⊥ q abbreviates that p and q are incompatible.

• An antichain in a forcing poset P is a collection of pairwise incompatible elements of P .
Note that this notion is apparently different from the notion of an antichain in a linear
order (Page 340) and an antichain in a tree (Page 370).

• P has the countable chain condition, ccc, iff every subset of pairwise incompatible ele-
ments is countable

• For any infinite cardinal κ, the notation MA(κ) abbreviates the statement that for any
ccc forcing poset P and any family D of dense sets in P, with |D | ≤ κ, there is a filter G
on P such that G ∩D 6= ∅ for every D ∈ D .

• Martin’s axiom, abbreviated MA, is the statement that MA(κ) holds for every infinite
κ < 2ω.

Clearly if κ < λ and MA(λ), then also MA(κ).

Theorem 25.1. MA(ω) holds.

Proof. Let P be a ccc forcing poset and D a countable collection of dense sets in P.
If D is empty, we can fix any p ∈ P and let G = {q ∈ P : p ≤ q}. Then G is a filter on P,
which is all that is required in this case.

Now suppose that D is nonempty, and let 〈Dn : n ∈ ω〉 enumerate all the members of
D ; repetitions are needed if D is finite. We now define a sequence 〈pn : n ∈ ω〉 of elements
of P by recursion. Let p0 be any element of P . If pn has been defined, by the denseness of
Dn let pn+1 be such that pn+1 ≤ pn and pn+1 ∈ Dn. This finishes the construction. Let
G = {q ∈ P : pn ≤ q for some n ∈ ω}. Clearly G is as desired.

Note that ccc was not used in this proof.

Corollary 25.2. CH implies MA.

Theorem 25.3. (III.3.13) MA(2ω) does not hold.
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Proof. Suppose that it does hold. Let

P = {f : f is a finite function with dmn(f) ⊆ ω and rng(f) ⊆ 2};

f ≤ g iff f, g ∈ P and f ⊇ g;

P = (P,≤).

Then P has ccc, since P itself is countable. Now for each n ∈ ω let

Dn = {f ∈ P : n ∈ dmn(f)}.

Each such set is dense in P. For, if g ∈ P , either g is already in Dn, or n /∈ dmn(g), and
then g ∪ {(n, 0)} is in Dn and it is ≤ g.

For each h ∈ ω2 let

Eh = {f ∈ P : there is an n ∈ dmn(f) such that f(n) 6= h(n)}.

Again, each such set Eh is dense in P. For, let f ∈ P . If f 6⊆ h, then already f ∈ Eh,
so suppose that f ⊆ h. Take any n ∈ ω\dmn(f), and let g = f ∪ {(n, 1− h(n))}. Then
g ∈ Eh and g ≤ f , as desired.

So, by MA(2ω) let G be a filter on P which intersects each of the sets Dn and Eh. Let
k =

⋃
G.

(*) k : ω → ω.

In fact, k is obviously a relation. Suppose that (m, ε), (m, δ) ∈ k. Choose f, g ∈ G such
that (m, ε) ∈ f and (m, δ) ∈ g. Then choose s ∈ G such that s ≤ f, g. So f, g ⊆ s, and s
is a function. It follows that ε = δ. Thus k is a function.

If n ∈ ω, choose f ∈ G ∩Dn. So n ∈ dmn(f), and so n ∈ dmn(k). So we have proved
(∗).

Now take any f ∈ G ∩ Ek. Choose n ∈ dmn(f) such that f(n) 6= k(n). But f ⊆ k,
contradiction.

There is one more fact concerning the definition of MA which should be mentioned.
Namely, for κ > ω the assumption of ccc is essential in the statement of MA(κ). (Re-
call our comment above that ccc is not needed in order to prove that MA(ω) holds.) To
see this, define

P = {f : f is a finite function, dmn(f) ⊆ ω, and rng(f) ⊆ ω1};

f ≤ g iff f, g ∈ P and f ⊇ g;

P = (P,≤).

This example is similar to two of the forcing posets above. Note that P does not have ccc,
since for example {{(0, α)} : α < ω1} is an uncountable antichain. Defining Dn as in the
proof of Theorem 25.3, we clearly get dense subsets of P. Also, for each α < ω1 let

Fα = {f ∈ P : α ∈ rng(f)}.

485



Then Fα is dense in P. For, suppose that g ∈ P . If α ∈ rng(g), then g itself is in Fα, so
suppose that α /∈ rng(g). Choose n ∈ ω\dmn(g). Let f = g ∪ {(n, α)}. Then f ∈ Fα and
f ≤ g, as desired. Now if MA(ω1) holds without the assumption of ccc, then we can apply
it to our present forcing poset. Suppose that G is a filter on P which intersects each of

these sets Dn and Fα. As in the proof of Theorem 25.3, k
def
=
⋃
G is a function mapping

ω into ω1. For any α < ω1 choose f ∈ G ∩ Fα. Thus α ∈ rng(f), and so α ∈ rng(k). Thus
k has range ω1. This is impossible.

Now we proceed beyond the discussion of the definition of MA in order to give several
typical applications of it. First we consider again almost disjoint sets of natural numbers.
Our result here will be used to derive some important implications of MA for cardinal
arithmetic. We proved in Theorem 24.1 that there is a family of size 2ω of almost disjoint
sets of natural numbers. Considering this further, we may ask what the size of maximal
almost disjoint families can be; and we may consider the least such size. This is one
of many min-max questions concerning the natural numbers which have been considered
recently. There are many consistency results saying that numbers of this sort can be less
than 2ω; in particular, it is consistent that there is a maximal family of almost disjoint
subsets of ω which has size less than 2ω. MA, however, implies that this size, and most of
the similarly defined min-max functions, is 2ω.

Let A ⊆P(ω). The almost disjoint partial order for A is defined as follows:

PA = {(s, F ) : s ∈ [ω]<ω and F ∈ [A ]<ω};

(s′, F ′) ≤ (s, F ) iff s ⊆ s′, F ⊆ F ′, and x ∩ s′ ⊆ s for all x ∈ F ;

PA = (PA ,≤).

We give some useful properties of this construction.

Lemma 25.4. Let A ⊆P(ω).
(i) PA is a forcing poset.
(ii) Let (s, F ), (s′, F ′) ∈ PA . Then the following conditions are equivalent:

(a) (s, F ) and (s′, F ′) are compatible.
(b) ∀x ∈ F (x ∩ s′ ⊆ s) and ∀x ∈ F ′(x ∩ s ⊆ s′).
(c) (s ∪ s′, F ∪ F ′) ≤ (s, F ), (s′, F ′).

(iii) Suppose that x ∈ A , and let Dx = {(s, F ) ∈ PA : x ∈ F}. Then Dx is dense in
PA .

(iv) PA has ccc.

Proof. (i): Clearly ≤ is reflexive on PA and it is antisymmetric, i.e. (s, F ) ≤
(s′, F ′) ≤ (s, F ) implies that (s, F ) = (s′, F ′). Now suppose that (s′′, F ′′) ≤ (s′, F ′) ≤
(s, F ). Thus s ⊆ s′ ⊆ s′′, so s ⊆ s′′. Similarly, F ⊆ F ′′. Now take any x ∈ F . Then
x ∈ F ′, so x ∩ s′′ ⊆ s′ because (s′′, F ′′) ≤ (s′, F ′). Hence x ∩ s′′ ⊆ x ∩ s′. And x ∩ s′ ⊆ s
because (s′, F ′) ≤ (s, F ). So x ∩ s′′ ⊆ s, as desired.

(ii): For (a)⇒(b), assume (a). Choose (s′′, F ′′) ≤ (s, F ), (s′, F ′). Now take any x ∈ F .
Then x ∩ s′ ⊆ x ∩ s′′ since s′ ⊆ s′′, and x ∩ s′′ ⊆ s since (s′′, F ′′) ≤ (s, F ); so x ∩ s′ ⊆ s′′.
The other part of (b) follows by symmetry.
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(b)⇒(c): By symmetry it suffices to show that (s ∪ s′, F ∪ F ′) ≤ (s, F ), and for this
we only need to check the last condition in the definition of ≤. So, suppose that x ∈ F .
Then x ∩ (s ∪ s′) = (x ∩ s) ∪ (x ∩ s′) ⊆ s by (b).

(c)⇒(a): Obvious.
(iii): For any (s, F ) ∈ PA , clearly (s, F ∪ {x}) ≤ (s, F ).
(iv) Suppose that 〈(sξ, Fξ) : ξ < ω1〉 is a pairwise incompatible system of elements of

PA . Clearly then sξ 6= sη for distinct ξ, η < ω1, contradiction.

Theorem 25.5. Let κ be an infinite cardinal, and assume MA(κ). Suppose that A ,B ⊆
P(ω), and |A |, |B| ≤ κ. Also assume that

(i) For all y ∈ B and all F ∈ [A ]<ω we have |y\
⋃
F | = ω.

Then there is a d ⊆ ω such that |d ∩ x| < ω for all x ∈ A and |d ∩ y| = ω for all y ∈ B.

Proof. For each y ∈ B and each n ∈ ω let

Eyn = {(s, F ) ∈ PA : s ∩ y 6⊆ n}.

We claim that each such set is dense. For, suppose that (s, F ) ∈ PA . Then by assumption,
|y\
⋃
F | = ω, so we can pick m ∈ y\

⋃
F such that m > n. Then (s ∪ {m}, F ) ≤ (s, F ),

since for each z ∈ F we have z ∩ (s ∪ {m}) ⊆ s because m /∈ z. Also, m ∈ y\n, so
(s ∪ {m}, F ) ∈ Eyn. This proves our claim.

There are clearly at most κ sets Eyn; and also there are at most κ sets Dx with x ∈ A ,
with Dx as in Lemma 25.4(iii). Hence by MA(κ) we can let G be a filter on PA intersecting
all of these dense sets. Let d =

⋃

(s,F )∈G s.

(1) For all x ∈ A , the set d ∩ x is finite.

For, by the denseness of Dx, choose (s, F ) ∈ G∩Dx. Thus x ∈ F . We claim that d∩x ⊆ s.
To prove this, suppose that n ∈ d∩x. Choose (s′, F ′) ∈ G such that n ∈ s′. Now (s, F ) and
(s′, F ′) are compatible. By Lemma 25.4(ii), ∀y ∈ F (y ∩ s′ ⊆ s); in particular, x ∩ s′ ⊆ s.
Since n ∈ x ∩ s′, we get n ∈ s. This proves our claim, and so (1) holds.

The proof will be finished by proving

(2) For all y ∈ B, the set d ∩ y is infinite.

To prove (2), given n ∈ ω choose (s, F ) ∈ Eyn ∩ G. Thus s ∩ y 6⊆ n, so we can choose
m ∈ s ∩ y\n. Hence m ∈ d ∩ y\n, proving (2).

Corollary 25.6. Let κ be an infinite cardinal and assume MA(κ). Suppose that A ⊆
P(ω) is an almost disjoint set of infinite subsets of ω of size κ. Then A is not maximal.

Proof. If F is a finite subset of A , then we can choose a ∈ A \F ; then a ∩
⋃
F =

⋂

b∈F (a∩ b) is finite. Thus ω\
⋃
F is infinite. Hence we can apply Theorem 25.5 to A and

B
def
= {ω} to obtain the desired result.

Corollary 25.7. Assuming MA, every maximal almost disjoint set of infinite sets of
natural numbers has size 2ω.
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Lemma 25.8. Suppose that B ⊆ P(ω) is an almost disjoint family of infinite sets, and
|B| = κ, where ω ≤ κ < 2ω. Also suppose that A ⊆ B. Assume MA(κ).

Then there is a d ⊆ ω such that |d ∩ x| < ω for all x ∈ A and |d ∩ x| = ω for all
x ∈ B\A .

Proof. We apply 25.5 with B\A in place of B. If y ∈ B\A and F ∈ [A ]<ω, then
y ∪ F ⊆ B, and hence y ∩ z is finite for all y ∈ F . Hence also y ∩

⋃
F is finite. Since y

itself is infinite, it follows that y\
⋃
F is infinite.

Thus the hypotheses of 25.5 hold, and it then gives the desired result.

We now come to two of the most striking consequences of Martin’s axiom.

Theorem 25.9. If κ is an infinite cardinal and MA(κ) holds, then 2κ = 2ω.

Proof. By Theorem 24.1 let B be an almost disjoint family of infinite subsets of ω
such that |B| = κ. For each d ⊆ ω let F (d) = {b ∈ B : |b∩d| < ω}. We claim that F maps
P(ω) onto P(B); from this it follows that 2κ ≤ 2ω, hence 2κ = 2ω. To prove the claim,
suppose that A ⊆ B. A suitable d with F (d) = A is then given by Lemma 25.8.

Corollary 25.10. MA implies that 2ω is regular.

Proof. Assume MA, and suppose that ω ≤ κ < 2ω. Then 2κ = 2ω by Theorem 25.9,
and so cf(2ω) = cf(2κ) > κ by Corollary 11.55.

Another important application of Martin’s axiom is to the existence of Suslin trees; in fact,
Martin’s axiom arose out of the proof of this theorem:

Theorem 25.11. MA(ω1) implies that there are no Suslin trees.

Proof. Suppose that (T,≤) is a Suslin tree. By Theorem 22.7 we may assume that
T is well-pruned. We are going to apply MA(ω1) to the forcing poset (T,≥), i.e., to T
turned upside down. Because T has no uncountable antichains in the tree sense, (T,≥)
has no uncountable antichains in the incompatibility sense. Now for each α < ω1 let

Dα = {t ∈ T : ht(t, T ) > α}.

Then each Dα is dense in (T,≥). For, suppose that s ∈ T . By well-prunedness, choose
t ∈ T such that s < t and ht(t, T ) > α. Thus t ∈ Dα and t > s, as desired.

Now we let G be a filter on (T,≥) which intersects each Dα. Any two elements of
G are compatible in (T,≥), so they are comparable in (T,≤). Since G ∩ Dα 6= ∅ for all
α < ω1, G has a member of T of height greater than α, for each α < ω1. Hence G is an
uncountable chain, contradiction.

Our next application of Martin’s axiom involves Lebesgue measure.

Theorem 25.12. Suppose that κ is an infinite cardinal and MA(κ) holds. If 〈Mα : α < κ〉
is a system of subsets of R each of Lebesgue measure 0, then also

⋃

α<κMα has Lebesgue
measure 0.
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Proof. Let ε > 0. We are going to find an open set U such that
⋃

α<κMα ⊆ U and
µ(U) ≤ ε; this will prove our result. Let

P = {p ⊆ R : p is open and µ(p) < ε}.

The ordering, as usual, is ⊇.

(1) Elements p, q ∈ P are compatible iff µ(p ∪ q) < ε.

In fact, the direction ⇐ is clear, while if p and q are compatible, then there is an r ∈ P

with r ⊇ p, q, hence p ∪ q ⊆ r and µ(r) < ε, hence µ(p ∪ q) < ε.
Next we check that P has ccc. Suppose that 〈pα : α < ω1〉 is a system of pairwise

incompatible elements of P. Now

ω1 =
⋃

n∈ω

{

α < ω1 : µ(pα) ≤ ε−
1

n+ 1

}

,

so there exist an uncountable Γ ⊆ ω1 and a positive integer m such that µ(pα) ≤ ε − 1
m

for all α ∈ Γ. Let C be the collection of all finite unions of open intervals with rational
coefficients. Note that C is countable. By Lemma 18.99 for each α ∈ Γ let Cα be a member
of C such that µ(pα△Cα) ≤ 1

3m
. Now take any two distinct members α, β ∈ Γ. Then

ε ≤ µ(pα ∪ pβ) = µ(pα ∩ pβ) + µ(pα△pβ) ≤ ε−
1

m
+ µ(pα△pβ),

and hence µ(pα△pβ) ≥ 1
m . Thus, using Lemma 18.95,

1

m
≤ µ(pα△pβ) ≤ µ(pα△Cα) + µ(Cα△Cβ) + µ(Cβ△pβ) ≤

1

3m
+ µ(Cα△Cβ) +

1

3m
;

Hence µ(Cα△Cβ) ≥ 1
3m . It follows that Cα 6= Cβ . But this means that 〈Cα : α ∈ Γ〉 is a

one-one system of members of C , contradiction. So P has ccc.
Now for each α < κ let

Dα = {p ∈ P : Mα ⊆ p}.

To show that Dα is dense, take any p ∈ P. Thus µ(p) < ε. By Lemma 18.97(i), let U be
an open set such that Mα ⊆ U and µ(U) < ε − µ(p). Then µ(p ∪ U) ≤ µ(p) + µ(U) < ε;
so p ∪ U ∈ Dα and p ∪ U ⊃ p, as desired.

Now let G be a filter on P which intersects each Dα. Set V =
⋃
G. So V is an open

set. For each α < κ, choose pα ∈ G ∩Dα. Then Mα ⊆ pα ⊆ V . It remains only to show
that µ(V ) ≤ ε. Let B be the set of all open intervals with rational endpoints. We claim
that V =

⋃
(G ∩B). In fact, ⊇ is clear, so suppose that x ∈ V . Then x ∈ p for some

p ∈ G, hence there is a U ∈ B such that x ∈ U ⊆ p, since p is open. Then U ∈ G since G
is a filter and the forcing poset is ⊇. So we found a U ∈ G ∩B such that x ∈ U ; hence
x ∈

⋃
(G∩B). This proves our claim. Now if F is a finite subset of G, then

⋃
F ∈ G since

G is a filter. In particular,
⋃
F ∈ P, so its measure is less than ε. Now G∩B is countable;
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let 〈pi : i ∈ ω〉 enumerate it. Define qi = pi\
⋃

j<i pj for all i ∈ ω. Then by induction one
sees that

⋃

i<m pi =
⋃

i<m qi, and hence
⋃

(G ∩B) =
⋃

i<ω qi. So

µ(V ) = µ
(⋃

(G ∩B)
)

= µ

(
⋃

i<ω

qi

)

=
∑

i<ω

µ(qi) = lim
m→∞

∑

i<m

µ(qi) = lim
m→∞

µ

(
⋃

i<m

qi

)

= lim
m→∞

µ

(
⋃

i<m

pi

)

≤ ε.

Proposition 25.13. Assume MA(κ). Suppose that X is a compact Hausdorff space, and
any pairwise disjoint collection of open sets in X is countable. Suppose that Uα is dense
open in X for each α < κ. Then

⋂

α<κ Uα 6= ∅.

Proof. Let P consist of all nonempty open subsets of X , with ⊆ as the order. Note
that for U, V ∈ P , U is compatible with V iff U ∩ V 6= ∅. Hence ccc holds for P . For each
α < κ let Dα = {p ∈ P : p ⊆ Uα}. We claim that Dα is dense in the sense of P . For,
suppose that p ∈ P . Since Uα is (topologically) dense, we have p ∩ Uα 6= ∅. By regularity
of the space there is a nonempty open set q such that q ⊆ p∩Uα. Thus q ∈ Dα and q ⊆ p,
as desired.

So, we apply MA(κ) and obtain a filter G intersecting each Dα. Because G is a filter, it
has the fip as a collection of open sets. Hence by compactness,

⋂

p∈G p 6= ∅. For any α < κ
there is a p ∈ G ∩Dα, and hence p ⊆ Uα. This implies that

⋂

p∈G p ⊆
⋂

α<κ Uα.

Proposition 25.14. (III.3.35) A forcing poset P is said to have ω1 as a pre-caliber iff
for every system 〈pα : α < ω1〉 of elements of P there is an X ∈ [ω1]ω1 such that for every
finite subset F of X there is a q ∈ P such that q ≤ pα for all α ∈ F .

Then MA(ω1) implies that every ccc forcing poset P has ω1 as a pre-caliber.

Proof. Let 〈pα : α < ω1〉 be a system of elements of P ; we want to come up with a
set X as indicated. For each α < ω1 let

Wα = {q ∈ P : ∃β > α(q and pα are compatible)}.

Clearly if α < β < ω1 then Wβ ⊆Wα. Now we claim

(1) ∃α∀β ∈ (α, ω1)[Wα = Wβ ].

In fact, otherwise we get a strictly increasing sequence 〈αξ : ξ < ω1〉 of ordinals such that
Wαξ+1

⊂ Wαξ for all ξ < ω1. Choose qξ ∈ Wαξ\Wαξ+1
for all ξ < ω1. Then there is an

ordinal βξ such that αξ < βξ ≤ αξ+1 and qξ and pβξ are compatible; say rξ ≤ qξ, pβξ . We
claim that rξ and rη are incompatible for ξ < η < ω1 (contradicting ccc for P ). For, if
s ≤ rξ, rη, then qξ and pβη are compatible, and hence qξ ∈Wαξ+1

, contradiction. Thus (1)
holds.

We are going to apply MA(ω1) to Wα. The dense sets are as follows. For each
β ∈ (α, ω1), let

Dβ = {q ∈Wα : ∃γ ∈ (β, ω1)[q ≤ pγ ]}.
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To prove density, suppose that r ∈Wα. Then, since Wα = Wβ it follows that r and pγ are
compatible for some γ > β, as desired.

So, let G be a filter on Wα intersecting each set Dβ . It follows that there exist a
strictly increasing sequence 〈βξ : ξ < ω1〉 and a sequence 〈qξ : ξ < ω1〉 such that qξ ≤ pβξ
with qξ ∈ G for all ξ < ω1. Clearly then {pβξ : ξ < ω1} has the desired property.

Proposition 25.15. Call a topological space X ccc iff every collection of pairwise disjoint
open sets in X is countable. Then

∏

i∈I Xi is ccc iff ∀F ∈ [I]<ω[
∏

i∈F Xi is ccc].

Proof. ⇒: Suppose that
∏

i∈I Xi is ccc and F ∈ [I]<ω. Also suppose that A is a
pairwise disjoint collection of open sets in

∏

i∈F Xi. Then

A
′ def

=

{{

x ∈
∏

i∈I

Xi : 〈xi : i ∈ T 〉 ∈ U

}

: U ∈ A

}

is a collection of pairwise disjoint open sets in
∏

i∈I Xi, and hence A ′ is countable. Clearly
this implies that A is countable.
⇐: See Theorem 21.31.

Proposition 25.16. Assuming MA(ω1), any product of ccc spaces is ccc.

Proof. By Proposition 25.15 it suffices to show that any product of two ccc spaces
X, Y is ccc. Suppose that A is an uncountable collection of pairwise disjoint open subsets
of X × Y ; we want to get a contradiction. We may assume that each member of A has
the form U × V , with U open in X and V open in Y . Let 〈Uα × Vα : α < ω1〉 be a
one-one enumeration of a subset of A . Let P be the poset consisting of all nonempty
open subsets of X , ordered by ⊆. Thus by Proposition 25.14, P has ω1 as a pre-caliber.
Hence let M ∈ [ω1]ω1 be such that for every finite subset F of M there is a V ∈ P such
that V ⊆ Uα for all α ∈ F . Take any distinct α, β ∈ M . Then Uα ∩ Uβ 6= ∅, while
(Uα × Vα) ∩ (Uβ × Vβ) = ∅, so Vα ∩ Vβ = ∅. This contradicts ccc for Y .

Proposition 25.17. Assume MA(ω1). Suppose that P and Q are ccc posets. Define ≤
on P ×Q by setting (a, b) ≤ (c, d) iff a ≤ c and b ≤ d. Then < is a ccc forcing poset on
P ×Q.

Proof. Suppose that 〈(pα, qα) : α < ω1〉 is a system of elements of P × Q; we want
to find distinct α, β < ω1 such that (pα, qα) and (pβ, qβ) are compatible. By Proposition
25.14, let Γ ∈ [ω1]ω1 be such that for every finite subset F of Γ there is an r ∈ P such that
r ≤ pα for all α ∈ F . Since Q has ccc, there exist distinct α, β ∈ Γ such that qα and qβ are
compatible. Also, pα and pβ are compatible. So (pα, qα) and (pβ , qβ) are compatible.

Proposition 25.18. We define <∗ on ωω by setting f <∗ g iff f, g ∈ ωω and ∃n∀m >
n(f(m) < g(m). Suppose that MA(κ) holds and F ∈ [ωω]κ. Then there is a g ∈ ωω such
that f <∗ g for all f ∈ F .

Proof. Let P = {(p, F ) : p ∈ Fn(ω, ω, ω), F ∈ [ωω]<ω} with (p, F ) ≤ (q, G) iff q ⊆ p,
G ⊆ F , and ∀f ∈ G∀n ∈ dmn(p)\dmn(q)[f(n) < p(n)]. Now ≤ is clearly reflexive and
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antisymmetric. Suppose that (p, F ) ≤ (q, G) ≤ (r,H). So H ⊆ G ⊆ F , hence H ⊆ F , and
r ⊆ q ⊆ p, hence r ⊆ p. Now suppose that f ∈ H and n ∈ dmn(p)\dmn(r). If n ∈ dmn(q),
then f(n) < q(n) = p(n) since (q, G) ≤ (r,H). If n /∈ dmn(q) then f(n) < p(n) since
(p, F ) ≤ (q, G). So ≤ is transitive.

P is ccc: assume that X is an uncountable subset of P. There are only countably many
finite functions from ω to ω, so there are distinct (p, F ), (p,G) ∈ P. Then (p, F ∪ G) ≤
(p, F ), (p,G). So X is not an incompatible set.

For each h ∈ F let Dh = {(p, F ) ∈ P : h ∈ F}. Then Dh is dense, since for any
(p, F ) ∈P we have (p, F ∪ {h}) ≤ (p, F ).

For each n ∈ ω let En = {(p, F ) : n ∈ dmn(p)}. Then En is dense. For, suppose that
(p, F ) ∈ P and n /∈ dmn(p). Choose m ∈ ω greater than each member of {f(n) : f ∈ F}.
Then clearly (p ∪ {(n,m)}, F ) ≤ (p, F ).

t G be a filter on P intersecting each Dh and En. Let g =
⋃

(p,F )∈F p. Then g is a

function since G is a filter. Moreover, g ∈ ωω since G ∩ En 6= ∅ for all n. Now let f ∈ F .
Choose (p, F ) ∈ G ∩Df . Thus p ∈ F . We claim that if m is greater than each member of
dmn(p) then g(m) > f(m) (as desired).

Since m ∈ dmn(g), choose (q,H) ∈ G such that m ∈ dmn(q). Choose (r,K) ∈ G
with (r,K) ≤ (p, F ), (q,H). Then m ∈ dmn(q) ⊆ dmn(r), so m ∈ dmn(r). Hence
m ∈ dmn(r)\dmn(p), and (r,K) ≤ (p, F ), so g(m) = r(m) > f(m).

Proposition 25.19. Let B ⊆ [ω]ω be almost disjoint of size κ, with ω ≤ κ < 2ω. Let
A ⊆ B with A countable. Assume MA(κ). Then there is a d ⊆ ω such that |d ∩ x| < ω
for all x ∈ A , and |x\d| < ω for all x ∈ B\A .

Proof. Let 〈ai : i ∈ ω〉 enumerate A . Then let

P = {(s, F,m) : s ∈ [ω]<ω, F ∈ [B\A ]<ω, and m ∈ ω};

(s′, F ′, m′) ≤ (s, F,m) iff s ⊆ s′, F ⊆ F ′, m ≤ m′, and

∀x ∈ F

[(

x\
⋃

i∈m

ai

)

∩ s′ ⊆ s

]

.

Clearly ≤ is reflexive and antisymmetric. Now suppose that (s′′, F ′′, m′′) ≤ (s′, F ′, m′) ≤
(s, F,m). Clearly s ⊆ s′′, F ⊆ F ′′, and m ≤ m′′. Now suppose that x ∈ F . Then
(x\

⋃

i∈m ai)∩ s
′′ ⊆ s′, hence (x\

⋃

i∈m ai)∩ s
′′ ⊆ (x\

⋃

i∈m ai)∩ s
′ ⊆ s. So ≤ is transitive.

P is ccc: assume that X is an uncountable subset of P. Now [ω]<ω is countable, so there
are distinct (s, F,m), (s, F ′, m′) ∈ X . Then (s, F∪F ′),max(m,m′)) ≤ (s, F,m), (s, F ′, m′),
as desired.

For each x ∈ B\A let Dx = {(s, F,m) ∈ P : x ∈ F}. Then Dx is dense, since clearly
(s, F ∪ {x}, m) ≤ (s, F,m) for any (s, F,m) ∈ P.

Let D = {(s, F,m, i, n) : (s, F,m) ∈ P, i < m, and n ∈ ai\s}. Clearly |D | = κ. For
each (s, F,m, i, n) ∈ D let

E(s,F,m,i,n) = {(s′, F ′, m′) ∈ P : (s, F,m) and (s′, F ′, m′) are incompatible

or (s′, F ′, m′) ≤ (s, F,m) and n ∈ s′}.
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Now E(s,F,m,i,n) is dense for each (s, F,m, i, n) ∈ D . For, suppose that (s′, F ′, m′) is
given. We may assume that (s, F,m) and (s′, F ′, m′) are compatible; say (s′′, F ′′, m′′) ≤
(s, F,m), (s′, F ′, m′). We may assume that n /∈ s′′. We claim that (s′′ ∪ {n}, F ′′, m′′) ≤
(s′′, F ′′, m′′) (as desired). This is true since for any x ∈ F ′′ we have n /∈ (x\

⋃

j∈m′′ aj), by
virtue of n ∈ ai and i ∈ m ≤ m′′.

Next, for any i < ω let Hi = {(s, F,m) ∈ P : i < m}. Then Hi is dense, since
(s, F, i+ 1) ≤ (s, F,m) for any m ≤ i.

Now let G be a filter on P intersecting all of these dense sets. Let d =
⋃

(s,F,m)∈G s.

Take any x ∈ B\A , and choose (s, F,m) ∈ G ∩ Dx; so x ∈ F . We claim that x ∩ d ⊆
⋃

i∈m(x∩ai)∪s, so that x∩d is finite. For, suppose that n ∈ x∩d. choose (s′, F ′, m′) ∈ G
such that n ∈ s′. Take (s′′, F ′′, m′′) ∈ G with (s′′, F ′′, m′′) ≤ (s, F,m), (s′, F ′, m′). Then
n ∈ s′′. Since (x\

⋃

i∈m ai) ∩ s
′′ ⊆ s and n ∈ x ∩ s′′, it follows that n ∈

⋃

i∈m ai ∪ s, as
desired.

Next, take any i < ω. Choose (s, F,m) ∈ G∩Hi. Thus i < m. We claim that ai\s ⊆ d,
so that a\d is finite. To prove this, take any n ∈ ai\s. Then (s, F,m, i, n) ∈ D , so we
can choose (s′, F ′, m′) ∈ G∩E(s,F,m,i,n). Since (s, F,m) and (x′, F ′, m′) are compatible as
elements of G, it follows that (s′, F ′, m′) ≤ (s, F,m) and n ∈ s′. Thus n ∈ d, as desired.
This proves the claim.

Proposition 25.20. The condition that A is countable is needed in Proposition 25.19.
In fact, there exist A ,B such that B is an almost disjoint family of infinite subsets of ω,
A ⊆ B, |A | = |B\A | = ω1, and there does not exist a d ⊆ ω such that |x\d| < ω for all
x ∈ A , and |x ∩ d| < ω for all x ∈ B\A .

Proof. We claim that there are A = {aα : α < ω1} and B\A = {bα : α < ω1} such
that the elements are infinite and pairwise almost disjoint, and also aα ∩ bα = ∅, while for
α 6= β we have aα ∩ bβ 6= ∅.

First assume that the claim holds. Suppose that we have constructed 〈aα : α < ω1〉
and 〈bα : α < ω1〉, so that they are infinite and pairwise almost disjoint, with the additional
indicated property. Suppose that d exists as indicated. Wlog ∀α < ω1(aα\d = F and
bα ∩ d = G). Choose m ∈ a0 ∩ b1. If m ∈ d, then m ∈ b1 ∩ d = G ⊆ b0, so m ∈ a0 ∩ b0,
contradiction. If m /∈ d, then m ∈ a0\d = F ⊆ a1, so m ∈ a1 ∩ b1, contradiction.

Now we prove ths claim. Let 〈ci : i < ω〉 be a system of pairwise disjoint infinite
subsets of ω. Let 〈ci,j : j < ω〉 be a one-one enumeration of ci. Then we define for each
m ∈ ω

am = c2m ∪ {c2n+1,0 : n < m};

bm = c2m+1 ∪ {c2n,0 : n < m}.

Clearly this defines infinite pairwise almost disjoint subsets of ω, am∩bm = ∅ for all m ∈ ω,
and for n < m we have c2n,0 ∈ an ∩ bm and c2n+1,0 ∈ am ∩ bn.

Now suppose that aβ and bβ have been defined for all β < α, with ω ≤ α < ω1. Let
f be a function from ω onto α. By recursion, choose

xm ∈ bf(m)\

(
⋃

n<m

bf(n) ∪
⋃

n<m

af(n) ∪ {xn : n < m} ∪ {yn : n < m}

)

;
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ym ∈ af(m)\

(
⋃

n<m

bf(n) ∪
⋃

n<m

af(n) ∪ {xn : n ≤ m} ∪ {yn : n < m}

)

.

Let aα = {xm : m ∈ ω} and bα = {ym : m ∈ ω}. Then aα ∩ bα = ∅ and

xm ∈ aα ∩ bf(m) ⊆ {x0, . . . , xm};

ym ∈ bα ∩ af(m) ⊆ {y0, . . . , ym};

aα ∩ af(m) ⊆ {x0, . . . , xm};

bα ∩ bf(m) ⊆ {y0, . . . , ym}.

Hence the construction is complete.

Proposition 25.21. Suppose that A is a family of infinite subsets of ω such that
⋂
F is

infinite for every finite subset F of A . Suppose that |A | ≤ κ. Assuming MA(κ), Then
there is an infinite X ⊆ ω such that X\A is finite for every A ∈ A .

Proof. Let A ′ = {X ⊆ ω : ω\X ∈ A }, and let B = {ω}. Clearly the hypothesis
of Theorem 25.5 holds for A ′ and B. Hence by Theorem 25.5 there is a d ⊆ ω such that
|d ∩X | < ω for all X ∈ A ′ and |d| = |d ∩ ω| = ω. Clearly d is as desired.

Proposition 25.22. MA(κ) is equivalent to MA(κ) restricted to ccc forcing posets of
cardinality ≤ κ.

Proof. We assume the indicated special form of MA(κ), and assume given a ccc
poset P and a family D of at most κ dense sets in P ; we want to find a filter on P
intersecting each member of D . We introduce some operations on P . For each D ∈ D

define fD : P → P by setting, for each p ∈ P , fD(p) to be some element of D which is ≤
p. Also we define g : P × P → P by setting, for all p, q ∈ P ,

g(p, q) =

{
p if p and q are incompatible,
r with r ≤ p, q if there is such an r.

Here, as in the definition of fD, we are implicitly using the axiom of choice; for g, we
choose any r of the indicated form.

We may assume that D 6= ∅. Choose D ∈ D , and choose s ∈ D. Now let Q be the
intersection of all subsets of P which have s as a member and are closed under all of the
operations fD and g. We take the order on Q to be the order induced from P .

(1) |Q| ≤ κ.

To prove this, we give an alternative definition of Q. Define

R0 = {s};

Rn+1 = Rn ∪ {g(a, b) : a, b ∈ Rn} ∪ {fD(a) : D ∈ D and a ∈ Rn}.

Clearly
⋃

n∈ω Rn = Q. By induction, |Rn| ≤ κ for all n ∈ ω, and hence |Q| ≤ κ, as desired
in (1).

494



We also need to check that Q is ccc. Suppose that X is a collection of pairwise
incompatible elements of Q. Then these elements are also incompatible in P , since x, y ∈ X
with x, y compatible in P implies that g(x, y) ≤ x, y and g(x, y) ∈ Q, so that x, y are
compatible in Q. It follows that X is countable. So Q is ccc.

Now if D ∈ D , then D ∩Q is dense in Q. In fact, take any q ∈ Q. Then fD(q) ∈ Q
and fD(q) ≤ q, as desired.

Now we can apply our special case of MA(κ) to Q and {D ∩Q : D ∈ D}; we obtain a
filter G on Q such that G ∩D ∩Q 6= ∅ for all D ∈ D . Let

G′ = {p ∈ P : q ≤ p for some q ∈ G}.

We claim that G′ is the desired filter on P intersecting each D ∈ D .

Clearly if p ∈ G′ and p ≤ r, then r ∈ G′.

Suppose that p1, p2 ∈ G
′. Choose q1, q2 ∈ G such that qi ≤ p1 for each i = 1, 2. Then

there is an r ∈ G such that r ≤ q1, q2. Then r ∈ G′ and r ≤ p1, p2. So G′ is a filter on P .

Now take any D ∈ D . Then as proved above, D ∩ Q is dense in Q. It follows that
G ∩D ∩Q 6= ∅; say q ∈ G ∩D ∩Q. Then q ∈ G′ ∩D, as desired.

Proposition 25.23. Define x ⊂∗ y iff x, y ⊆ ω, x\y is finite, and y\x is infinite.
Assume MA(κ), and suppose that (L, ⊳) is a linear ordering of size at most κ. Then there
is a system 〈ax : x ∈ L〉 of infinite subsets of ω such that for all x, y ∈ L, x⊳y iff ax ⊂∗ ay.

Proof. First note that it is enough to do the construction so that ∀x, y ∈ L[x ⊳ y →
ax ⊂∗ ay]. In fact, knowing this, if ax ⊂∗ ay, then we must have x ⊳ y, as otherwise y ⊳ x
or y = x, and hence ay ⊂

∗ ax or ay = ax, both of which are ruled out by ax ⊂
∗ ay.

Let P consist of all triples p = (Sp, kp, σp) such that Sp ∈ [L]<ω, kp ∈ ω, and
σp : Sp × kp → 2. We define q ≤ p iff Sp ⊆ Sq, kp ≤ kq, σp ⊆ σq, and ∀x, y ∈ Sp∀n[x ⊳ y
and n ∈ kq\kp → σq(x, n) ≤ σq(y, n)]. Clearly ≤ is reflexive and antisymmetric. Now
suppose that p ≤ q ≤ r. Clearly then Sp ⊆ Sr, kp ≤ kr, and σp ⊆ σr. Now suppose that
x, y ∈ Sp, x ⊳ y, and n ∈ kr\kp. If n ∈ kq, then σr(x, n) = σq(x, n) ≤ σq(y, n) = σr(y, n).
If n /∈ kq, then σr(x, n) ≤ σr(y, n). So ≤ is transitive.

Now we show that P has ccc. Suppose that A is an uncountable subset of P . By the
indexed ∆-system theorem, Theorem 24.4, there is an uncountable subset B of A such that
〈Sp : p ∈ B〉 is an indexed ∆-system. Say M ∈ [L]<ω with Sp ∩ Sq = M for any distinct
(p, n), (q,m) ∈ B. Next, there exist an uncountable C ⊆ B and an l ∈ ω such that kp = l
for all p ∈ C . Then there is an uncountable D ⊆ C such that σp ↾ (M × l) = σq ↾ (M × l)
for all p, q ∈ D . Now we claim that any p, q ∈ D are compatible. For, define r as follows:
Sr = Sp ∪ Sq; kr = l; for any (x, i) ∈ Sr × l let

σr(x, i) =

{
σp(x, i) if (x, i) ∈ Sp × l,
σq(x, i) otherwise.

Thus Sp ⊆ Sr, kp = l = kr, and σp ⊆ σr. The final condition is clear, so r ≤ p. Similarly
r ≤ q. Thus P has ccc.
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Now after defining certain dense sets we are going to take a filter G with respect to
them and then define

ax = {n ∈ ω : ∃p ∈ G[x ∈ Sp, n < kp, and σp(x, n) = 1]}

for each x ∈ L.
To show that for a given x ∈ L the set ax is infinite, we consider for each i ∈ ω the

set
Eix

def
= {p ∈ P : x ∈ Sp and ∃j ∈ [i, kp)[σp(x, j) = 1]}.

To show that this set is dense, let q ∈ P . Let Sp = Sq ∪ {x}, kp = max(i+ 1, kq), and for
any (y, j) ∈ Sp × kp let

σp(y, j) =







σq(y, j) if (y, j) ∈ Sq × kq,
1 if y ∈ Sr and j ∈ kp\kq,
1 if y = x /∈ Sq.

Thus Sq ⊆ Sp, kq ≤ kp, and σq ⊆ σp. Suppose that y, z ∈ Sq, y ⊳ z, and n ∈ kp\kq. Then
σr(y, n) = 1 = σr(z, n). So r ≤ q. Clearly r ∈ Eix.

If Eix ∈ G for each i ∈ ω and each x ∈ L, then ax is infinite for each x ∈ L.
Next, for each x ∈ L let Dx = {p ∈ P : x ∈ Sp}. Clearly Dx is dense in P . Now

suppose that Dx ∈ G for each x ∈ L. Suppose that x, y ∈ L and x⊳y. Let p ∈ Dx∩Dy∩G.
We claim that ax\ay ⊆ kp. For, suppose that n ∈ ax\ay. Choose q ∈ G such that x ∈ Sq,
n < kq, and σq(x, n) = 1. Choose r ∈ G with r ≤ p, q. Now n < kq, so n < kr. If kp ≤ n
then r ≤ p implies that σr(y, n) = 1, hence n ∈ ay, contradiction. So n < kp. This shows
that ax ⊆∗ ay.

Next, for any x, y ∈ L such that x ⊳ y and any i ∈ ω let

Fixy = {p ∈ P : x, y ∈ Sp and ∃n ∈ [i, kp)[σp(x, n) = 0 and σp(y, n) = 1]}.

To show that this set is dense, let q ∈ P . Using the sets Dx and Dy let r ≤ q with x, y ∈ Sr.
Take n ≥ i such that (x, n), (y, n) /∈ Sr. Now define Sp = Sr, kp = max(kr, n + 1), and
define σp as follows. For any (z, i) ∈ Sp × kp let

σp(z, i) =

{
σr(z, i) if i < kr,
0 if z ⊳ x or z = x, and i = n,
1 otherwise.

Then Sq ⊆ Sr = Sp, kq ≤ kr ≤ kp, and σq ⊆ σr ⊆ σp. Now suppose that u, v ∈ L, u ⊳ v,
and i ∈ kp\kq. If i < kr, then σp(u, i) = σr(u, i) ≤ σr(v, i) = σp(v, i). If kr ≤ i and
σp(v, i) = 0, then i = n and v ⊳ x or v = x, hence also u ⊳ x, and so σp(u, i) = 0. Hence
p ≤ q. Clearly p ∈ Fixy. So Fixy is dense.

Now if G is a filter containing all these sets, we claim that for x ⊳ y the set ay\ax is
infinite. For, let i ∈ ω and choose p ∈ Fixy ∩G. Choose n ∈ [i, kp) such that σp(x, n) = 0
while σp(y, n) = 1. Then n ∈ ay. Suppose that n ∈ ax. Choose q ∈ G such that x ∈ Sq,
n < kq, and σq(x, n) = 1. Choose r ∈ G with r ≤ p, q. Then because r ≤ p, we have
σr(x, n) = 0. But because r ≤ q we have σr(x, n) = 1, contradiction.
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Proposition 25.24. If A ,B are nonempty countable subsets of [ω]ω and a ⊆∗ b whenever
a ∈ A and b ∈ B, then there is a c ∈ [ω]ω such that a ⊆∗ c ⊆∗ b whenever a ∈ A and
b ∈ B.

Proof. Write A = {an : n ∈ ω} and B = {bn : n ∈ ω}. Let

c =
⋃

n∈ω








⋃

m≤n

am



 ∩
⋂

m≤n

bm



 .

Now suppose that p ∈ ω. Then

ap\c =
⋂

n∈ω



ap ∩




⋂

m≤n

(ω\am) ∪
⋃

m≤n

(ω\bm)









=
⋂

n<p



ap ∩




⋂

m≤n

(ω\am) ∪
⋃

m≤n

(ω\bm)









∩
⋂

n≥p



ap ∩




⋂

m≤n

(ω\am) ∪
⋃

m≤n

(ω\bm)









=
⋂

n<p



ap ∩




⋂

m≤n

(ω\am) ∪
⋃

m≤n

(ω\bm)









∩
⋂

n≥p



ap ∩
⋃

m≤n

(ω\bm)





⊆ ap ∩
⋃

m≤p

(ω\bm),

and this last set is finite.
Furthermore,

c\bp =
⋃

n<p








⋃

m≤n

am



 ∩
⋂

m≤n

bm ∩ (ω\bp)





⊆

(
⋃

m<p

am

)

\bp,

and this last set is finite.
The set c is infinite, as otherwise a0 = (a0 ∩ c) ∪ (a0\c) would be finite.

Proposition 25.25. Suppose that A is a nonempty countable family of members of [ω]ω,
and ∀a, b ∈ A [a ⊆∗ b or b ⊆∗ a]. Also suppose that ∀a ∈ A [a ⊂∗ d], where d ∈ [ω]ω. Then
there is a c ∈ [ω]ω such that ∀a ∈ A [a ⊆∗ c ⊂∗ d].
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Proof. If ∃a ∈ A ∀b ∈ A [b ⊆∗ a], then the conclusion is obvious. So suppose that no
such a exists. Then there is a sequence 〈an : n ∈ ω〉 of elements of A such that an ⊂∗ am
for n < m, and the sequence is cofinal in A in the ⊆∗-sense. Let C = {a0} ∪ {am+1\am :
m ∈ ω} ∪ {ω\d}. Then C is an almost disjoint family, except that possibly ω\d is finite.
By Corollary 25.6, let e ⊆ ω be infinite and almost disjoint from each member of C . Let
c = d\e. Then for any n ∈ ω,

an+1\c = (an+1\d) ∪ (an+1 ∩ e)

⊆ (an+1\d) ∪




⋃

i≤n

(ai+1\ai) ∪ a0



 ∩ e,

and the last set is finite. Thus an+1 ⊆∗ c, hence b ⊆∗ c for all b ∈ A .
Since c ⊆ d, we have c ⊆∗ d. Also, d\c = d ∩ e, and this is infinite since e\d is finite.

Thus c ⊂∗ d

Note that c is infinite, since a ⊆∗ c for all a ∈ A .

Proposition 25.26. If a, b ∈ [ω]ω and a ⊂∗ b, then there is a c ∈ [ω]ω such that
a ⊂∗ c ⊂∗ b.

Proof. Write b\a = d ∪ e with d, e infinite and disjoint. Let c = a ∪ d.

Proposition 25.27. Suppose that A and B are nonempty countable subsets of [ω]ω,
∀x, y ∈ A [x ⊆∗ y or y ⊆∗ x], ∀x, y ∈ B[x ⊆∗ y or y ⊆∗ x], and ∀x ∈ A ∀y ∈ B[a ⊂∗ b].
Then there is a c ∈ [ω]ω such that a ⊂∗ c ⊂∗ b for all a ∈ A and b ∈ B.

Proof. By Proposition 25.24 choose d ⊆ ω such that ∀a ∈ A ∀b ∈ B[a ⊆∗ d ⊆∗ b].
Thus either ∀a ∈ A [a ⊂∗ d] or ∀b ∈ B[d ⊂∗ b].

Case 1. ∀a ∈ A [a ⊂∗ d]. By Proposition 25.25 choose e ⊆ ω such that ∀a ∈ A [a ⊆∗

e ⊂∗ d]. By Proposition 25.26 choose c ∈ [ω]ω such that e ⊂∗ c ⊂∗ d.

Case 2. ∀b ∈ εB[d ⊂∗ b]. Then ∀b ∈ B[(ω\b) ⊂∗ (ω\d)]. By Proposition 25.25 choose
e ⊆ ω such that ∀b ∈ B[(ω\b) ⊆∗ e ⊂∗ (ω\d)]. By Proposition 25.26 choose c ⊆ ω such
that e ⊂∗ c ⊂∗ (ω\d). Then ∀a ∈ A ∀b ∈ B[a ⊂∗ (ω\c) ⊂∗ b].

Now we need some more terminology. Let A ⊆ [ω]ω, b ∈ [ω]ω, and ∀a ∈ A [a ⊂∗ b]. We
say that b is near to A iff for all m ∈ ω the set {a ∈ A : a\b ⊆ m} is finite.

Proposition 25.28. Suppose that am ∈ [ω]ω for all m ∈ ω, am ⊂∗ an whenever m <
n ∈ ω, b ∈ [ω]ω, and am ⊂∗ b for all m ∈ ω. Then there is a c ∈ [ω]ω such that
∀m ∈ ω[am ⊂∗ c ⊂∗ b] and c is near to {an : n ∈ ω}.

Proof. By Proposition 25.27 choose d ⊆ ω such that ∀m ∈ ω[an ⊂∗ d ⊂∗ b]. Now
for each m ∈ ω,

⋃

i<m(ai\am) is finite, and am+1\
⋃

i≤m ai = (am+1\am)\
⋃

i<m(ai\am),
so am+1\

⋃

i≤m ai is infinite. Choose em ⊆ am+1\
⋃

i≤m ai such that |em| = m. Let
c = d\

⋃

m∈ω em. Thus c ⊆∗ d ⊂∗ b.
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If n ∈ ω, then

an\c = (an\d) ∪
⋃

m∈ω

(an ∩ em) = (an\d) ∪
⋃

m<n

(an ∩ em),

and this last set is finite. Hence an ⊆
∗ c. Since n is arbitrary, it follows that an ⊂

∗ c for
all n ∈ ω.

Also for any m ∈ ω we have am+1\c ⊇ am+1 ∩ em = em, and so |am+1\c| ≥ m. It
follows that for any n ∈ ω, {am : am\c ⊆ n} ⊆ {a0, . . . , an}. So c is near to {am : m ∈ ω}.

Proposition 25.29. Suppose that A ⊆ [ω]ω, ∀x, y ∈ A [x ⊂∗ y or y ⊂∗ x], b ∈ [ω]ω,
∀x ∈ A [x ⊂∗ b], and ∀a ∈ A [b is near to {d ∈ A : d ⊂∗ a}].

Then there is a c ∈ [ω]ω such that ∀a ∈ A [a ⊂∗ c ⊂∗ b] and c is near to A .

Proof. We consider several cases.
Case 1. ∃a ∈ A ∀d ∈ A [d ⊆∗ a]. By Proposition 25.26, choose c such that a ⊂∗ c ⊂∗ b.

Choose n ∈ ω such that c\b ⊆ n. Then for any m ∈ ω and any d ∈ A , if d\c ⊆ m then
d\b ⊆ (d\c) ∪ (c\b) ⊆ max(m,n). Hence

{d ∈ A : d\c ⊆ m} ⊆ {a} ∪ {d ∈ A : d ⊂∗ a and d\b ⊆ max(m,n)},

and the later set is finite, since b is near to {d ∈ A : d ⊂∗ a}. Thus c is as desired.
Case 2. ∀a ∈ A ∃d ∈ A [a ⊂∗ d] and b is near to A . By Proposition 25.27, choose c

so that ∀a ∈ A [a ⊂∗ c ⊂∗ b]. Choose n ∈ ω such that c\b ⊆ n. Then for any m ∈ ω and
any d ∈ A , if d\c ⊆ m then d\b ⊆ (d\c) ∪ (c\b) ⊆ max(m,n). Hence

{d ∈ A : d\c ⊆ m} ⊆ {a} ∪ {d ∈ A : d\b ⊆ max(m,n)},

and the later set is finite, since b is near to A . Thus c is as desired.
Case 3. ∀a ∈ A ∃d ∈ A [a ⊂∗ d] and b is not near to A . For each m ∈ ω let

Bm = {a ∈ A : a\b ⊆ m}. Since b is not near to A , choose m so that Bm is infinite.
Note that p < q → Bp ⊆ Bq. Hence Bn is infinite for every n ≥ m. Now we claim

(1) ∀n ≥ m∀a ∈ A ∃d ∈ Bn[a ⊆∗ d].

In fact, otherwise we get n ≥ m and a ∈ A such that ∀d ∈ Bn[d ⊂∗ a]. Now b is near to
{d ∈ A : d ⊂∗ a} by a hypothesis of the lemma, so {d ∈ A : d ⊂∗ a and d\b ⊆ n} is finite.
But Bn ⊆ {d ∈ A : d ⊂∗ a and d\b ⊆ n}, contradiction. So (1) holds.

Next we claim

(2) ∀n ≥ m∀d ∈ Bn[{e ∈ Bn : e ⊂∗ d} is finite].

In fact, suppose that n ≥ m, d ∈ Bn and {e ∈ Bn : e ⊂∗ d} is infinite. Since b is
near to {a ∈ A : a ⊂∗ d}, the set {a ∈ A : a ⊂∗ d and a\b ⊆ n} is finite. But
{e ∈ Bn : e ⊂∗ d} ⊆ {a ∈ A : a ⊂∗ d and a\b ⊆ n}, contradiction. So (2) holds.
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From (2) it follows that Bn has order type ω under ⊂∗, for each n ≥ m. Now clearly
A =

⋃

p∈ω Bp, so A is countable.
Now by Proposition 25.28, choose cm such that ∀d ∈ Bm[d ⊂∗ cm ⊂∗ b] and cm is

near to Bm. By (1), a ⊂∗ cm for each a ∈ A . Now suppose that n ≥ m and cn has been
defined so that a ⊂∗ cn for each a ∈ A . Again by Proposition 25.28 choose cn+1 such that
∀d ∈ Bn+1[d ⊂∗ cn+1 ⊂∗ cn] and cn+1 is near to Bn+1. Thus we have

∀a ∈ A [a ⊂∗ · · · ⊂∗ cn+1 ⊂
∗ cn ⊂

∗ · · · ⊂∗ cm ⊂
∗ b].

By Proposition 25.27, choose d so that ∀a ∈ A ∀n ≥ m[a ⊂∗ d ⊂∗ cn]. We claim that d is
near to A , completing the proof. For, let n ∈ ω. Let p = max(m,n), and choose q ≥ p
such that d\cp ⊆ q. Then

{a ∈ A : a\d ⊆ n} ⊆ {a ∈ A : a\d ⊆ p}

= {a ∈ Bp : a\d ⊆ p}

⊆ {a ∈ Bp : a\cp ⊆ q},

where the last inclusion holds since a\cp = (a\d)∪ (d\cp). The last set is finite since cp is
near to Bp, as desired.

Proposition 25.30. (The Hausdorff gap) There exist sequences 〈aα : α < ω1〉 and
〈bα : α < ω1〉 of members of [ω]ω such that ∀α, β < ω1[α < β → aα ⊂∗ aβ and bβ ⊂∗ bα],
∀α, β < ω1[aα ⊂∗ bβ], and there does not exist a c ⊆ ω such that ∀α < ω1[aα ⊂∗ c and
c ⊂∗ bα].

Proof. We construct by recursion aα, bα ⊆ ω for α < ω1 so that aα ⊂∗ bα, α < β →
aα ⊂∗ aβ and bβ ⊂∗ bα, and for all α < ω1, bβ is near to {aα : α < β}.

Let a0 = ∅, b0 = ω. Suppose that aα and bα have been constructed for all α < β
so that aα ⊂∗ bα, α < γ < β → aα ⊂∗ aγ and bγ ⊂∗ bβ, and α < β → bα is near to
{aγ : γ < α}. By Proposition 25.27 choose c such that ∀α < β[aα ⊂∗ c ⊂∗ bα]. Suppose
that α < β. We claim that c is near to {aγ : γ < α}. In fact, suppose that m ∈ ω. Choose
n ≥ m such that c\bα ⊆ n. Now for any γ < α we have aγ\bα ⊆ (aγ\c) ∪ (c\bα), so

{aγ : γ < α and aγ\c ⊆ m} ⊆ {aγ : γ < α and aγ\bα ⊆ n},

and the latter set is finite since bα is near to {aγ : γ < α}. Thus indeed c is near to {aγ :
γ < α}. Now by Proposition E25.29 there is a bβ such that ∀α < β[aα ⊂∗ bβ ⊂∗ c] and bβ
is near to {aa : α < β}. By Proposition E25.27 choose aβ so that ∀α < β[aα ⊂∗ aβ ⊂∗ bβ ].
This finishes the construction.

Now suppose that d ⊆ ω and ∀α < ω1[aα ⊂∗ d ⊂∗ bα]. Now ω1 =
⋃

m∈ω{α < ω1 :
aα\d ⊆ m}, so we can choose m ∈ ω such that |{α < ω1 : aα\d ⊆ m}| = ω1. Hence
there is an α < ω1 such that {β < α : aβ\d ⊆ m} is infinite. Choose p ≥ m such that
d\bα ⊆ p. Now aβ\bα ⊆ (aβ\d) ∪ (d\bα), so {β < α : aβ\d ⊆ m} ⊆ {β < α : aβ\bα ⊆ p},
contradicting bα near to {aβ : β < α}.

m is the least cardinal κ such that ¬MA(κ). An atom in a forcing poset P is an element
r ∈ P such that there do not exist p, q ≤ r such that p ⊥ q.
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Proposition 25.31. (III.3.20) If P has an atom, then MAP (κ) holds for all infinite κ.

Proof. Let r ∈ P be an atom. Let G = {p ∈ P : p and r are compatible}. Then G is
a filter. For, clearly 1 ∈ G. If p ∈ G and p ≤ q, clearly q ∈ G. Suppose that p, q ∈ G. Say
s ≤ p, r and t ≤ q, r. Then s, t ≤ r, so s, t are compatible. Say u ≤ s, t. So also u ≤ r. So
u ≤ p, q and u ∈ G. So G is a filter.

If D is a dense set, choose q ∈ D such that q ≤ p. Then q ∈ D ∩G.

Proposition 25.32. (III.3.20) If P is atomless, then MAP(κ) is false for κ = 2|P|.

Proof. Assume the contrary, and let G be a filter on P which meets each dense subset
of P. Now P\G is dense. For, if p ∈ P, then there are q, r ≤ p such that q ⊥ r. At least
one of q, r is not in G. So, P\G is dense. Hence G ∩ (P\G) 6= ∅, contradiction.

Lemma 25.33. (III.3.21) If P is atomless and r ∈ P, then there is an infinite antichain
of elements ≤ r.

Proof. We define 〈pn : n ∈ ω〉 and 〈qn : n ∈ ω〉 by recursion. Let p0, q0 be such that
p0, q0 ≤ r and p0 ⊥ q0. If pn and qn have been defined, choose pn+1, qn+1 ≤ qn such that
pn+1 ⊥ qn+1. Then {pn : n ∈ ω} is an infinite antichain of elements ≤ r.

This construction can be visualized as follows:

•

•

•

•

•

•

•

•

•

•

r

p0

p1

p2

p3

p4

q0

q1

q2

q3

Theorem 25.34. (III.3.22) m ≤ p.

Proof. Let κ be an infinite cardinal such that κ < m; we show that κ < p. Thus we
are assuming that MA(κ) holds. Let E ⊆ [ω]ω have SFIP, with |E | = κ. We want to find
a pseudo-intersection of E . Let

P = {(sp,Wp) : sp ∈ [ω]<ω and Wp ∈ [E ]<ω}.
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We define q ≤ p iff the following hold:

(1) sp ⊆ sq.
(2) Wp ⊆Wq .
(3) ∀Z ∈Wp[(sq\sp) ⊆ Z].

This is a forcing order. For transitivity, suppose that r ≤ q ≤ p. Clearly (1) and (2) for r
and p hold. Now suppose that Z ∈Wp. Then Z ∈Wq, and (sr\sp) = (sr\sq)∪(sq\sp) ⊆ Z.

If sp = sq, then p and q are compatible, since (sp,Wp ∪Wq) extends both of them.
Since [ω]<ω is countable, it follows that P has ccc.

Now for each n ∈ ω let Dn = {p ∈ P : |sp| ≥ n}. Then Dn is dense, for if p ∈ P, then
⋂
Wp is infinite, so we can choose t ⊆

⋂
Wp with |t| = n, and then (sp ∪ t,Wp) ∈ Dn and

(sp ∪ t,Wp) ≤ p.
For any Z ∈ E let EZ = {p ∈ P : Z ∈ Wp}. Then EZ is dense, since if p ∈ P, then

(sp,Wp ∪ {Z}) ∈ EZ and (sp,Wp ∪ {Z}) ≤ p.
Let G be a filter intersecting all of these dense sets. Let KG =

⋃

p∈G sp. Then G
intersecting all sets Dn for n ∈ ω implies that KG is infinite.

Given Z ∈ E , choose p ∈ G ∩ EZ . Suppose that m ∈ KG\Z. Say m ∈ sq with q ∈ G.
Choose r ∈ G such that r ≤ p, q. Then m ∈ sr since r ≤ q. If m /∈ sp, then m ∈ Z since
r ≤ p. Thus KG ⊆ Z ⊆ sp and hence KG\Z is finite.

A subset C of a forcing order P is centered iff for every finite subset F of C there is a p ∈ P

such that ∀q ∈ F [p ≤ q].
P is σ-centered iff there is a countable C ⊆P(P) such that P =

⋃
C and each member

of C is centered.

Lemma 25.35. (III.3.24) Every σ-centered forcing order P has ccc.

Lemma 25.36. (III.3.25) If G is a filter and F is a finite subset of G, then there is a
p ∈ G such that ∀q ∈ F [p ≤ q].

In particular, every filter is centered.

Lemma 25.37. (III.3.26) The forcing order defined in the proof of Lemma 25.34 is σ-
centered.

Proof. For each t ∈ <ωω let Ct = {p ∈ P : sp = t}. Clearly Ct is centered, and
P =

⋃

t∈<ωω Ct.

Proposition 25.38. (III.3.27) If X is a compact Hausdorff space, then the following
conditions are equivalent:

(i) X is separable.
(ii) The collection OX of nonempty open subsets of X is σ-centered.
(iii) OX is a countable union of filters.

Proof. (i)⇒(ii): Suppose that X is separable; say D is a countable dense subset.
For each d ∈ D let Od = {U : U open, d ∈ U}. Clearly OX =

⋃

d∈D Od. Thus OX is
σ-centered.
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(ii)⇒(iii): Suppose that OX is σ-centered; say OX =
⋃

n∈ω On with each On centered.
For each n ∈ ω let

Fn = {U ∈ OX : ∃m ∈ ω∃V1, . . . , Vm ∈ On[V1 ∩ . . . ∩ Vm ⊆ U ]}.

Clearly Fn is closed upwards and has X as a member. Suppose U,W ∈ Fn. Say
V1, . . . , Vm ∈ On with V1 ∩ . . . ∩ Vm ⊆ U and Y1, . . . , Yn ∈ On with Y1 ∩ . . . ∩ Yn ⊆ W .
Then V1 ∩ . . . ∩ Vm ∩ Y1 ∩ . . . ∩ Yn ⊆ U ∩W ,so U ∩W ∈ Fn. Thus Fn is a filter. Since
On ⊆ Fn, we have OX =

⋃

n∈ω Fn.
(iii)⇒(i): Suppose that OX =

⋃

n∈ω Fn each Fn a filter. For each n choose dn ∈
⋂

U∈Fn
U ; this is possible by compactness. We claim that D

def
= {dn : n ∈ ω} is dense. For,

let U be a nonempty open set. Let V be a nonempty open set such that V ⊆ U . This
is possible since X is compact, hence regular. Choose n ∈ ω such that V ∈ Fn. Then
dn ∈

⋂

Y ∈Fn
Y ⊆ V ⊆ U , as desired.

For X a topological space, OX is the forcing poset of open subsets of X under inclusion.

Proposition 25.39. For X = κ2 with κ > 2ω, OX is ccc but not σ-centered.

Proof. By Lemma 21.34 κ2 is not separable; applying Lemma 25.38, OX is not σ-
centered. By Corollary 21.33, OX is ccc.

Theorem 25.40. (III.3.28) m ≤ add(null).

Proof. This is just a reformulation of Theorem 25.12.

Proposition 25.41. If P is σ-centered, then P has ω1 as a pre-caliber.

Proposition 25.42. (III.3.32) If 2 ≤ |J | ≤ ω, then Fn(I, J, ω) has ω1 as a pre-caliber.

Proof. Suppose that 〈pα : α < ω1〉 is a system of elements of Fn(I, J, ω). Let
〈dmn(fα) : α ∈M〉 be a ∆-system with kernel N , |M | = ω1. Then

M =
⋃

g∈NJ

{α ∈M : fα ↾ N = g},

so there is a g ∈ NJ such that M ′ def
= {α ∈ M : fα ↾ N = g} has size ω1. Clearly

〈pα : α ∈M ′〉 is centered.

Proposition 25.43. (III.3.32) If 2 ≤ |J | ≤ ω, then Fn(I, J, ω) is σ-centered iff |I| ≤ 2ω.

Proof. Suppose that Fn(I, J, ω) is σ-centered: Fn(I, J, ω) =
⋃

n∈ωKn, with each Kn

centered; but suppose also that |I| > 2ω. For each n ∈ ω let fn ∈ IJ be such that
⋃
Kn ⊆

fn; this is possible since Kn is centered. Then for each i ∈ I we have 〈fn(i) : n ∈ ω〉 ∈ ωJ
so, since |I| > 2ω, there are distinct j, k ∈ I such that 〈fn(j) : n ∈ ω〉 = 〈fn(k) : n ∈ ω〉.
Let h = {(j, 0), (k, 1)}. Choose n so that h ∈ Kn. Then fn(j) = 0 6= 1 = fn(k),
contradiction.
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Now suppose that |I| ≤ 2ω. Wlog J ⊆ ω. Fix j ∈ J . Let 〈fi : i ∈ I〉 be a system of
independent functions; see Theorem 21.35. For each e ∈ ω define xe ∈ IJ by setting

xe(i) =

{

fi(e) if fi(e) ∈ J ,
j otherwise.

Let Ke = {h ∈ Fn(I, J, ω) : h ⊆ xe}. Clearly each Ke is centered. We claim that
Fn(I, J, ω) =

⋃

e∈ωKe. For, suppose that h ∈ Fn(I, J, ω). Choose e ∈ ω so that fi(e) =
h(i) for each i ∈ dmn(h). Then xe(i) = fi(e) = h(i) for each i ∈ dmn(h), so h ⊆ xe and
hence h ∈ Ke.

If 〈Pi : i ∈ I〉 is a system of forcing posets, then
∏

i∈I Pi is their product, with x ≤ y iff
∀i ∈ I[xi ≤ yi].

Lemma 25.44. (III.3.37) If X and Y are topological spaces, then X × Y is ccc iff the
forcing poset {O : O open and nonempty in X}× {O : O open and nonempty in Y } is ccc.

Proof. ⇒: If 〈(Uα, Vα) : α < ω1〉 is pairwise disjoint in {O : O open and nonempty
in X} × {O : O open and nonempty in Y }, then 〈Uα × Vα : α < ω1〉 is pairwise disjoint in
X × Y .
⇐: If 〈Wα : α < ω1〉 is a system of pairwise disjoint open sets in X × Y , for each

α < ω1 there is a nonempty Uα × Vα ⊆ Wα; then 〈(Uα, Vα) : α < ω1〉 is pairwise disjoint
in {O : O open and nonempty in X} × {O : O open and nonempty in Y }.

Proposition 25.45. (III.3.38) If there are ccc spaces X, Y such that X × Y is not ccc,
then there is a ccc space Z such that Z × Z is not ccc. If there are ccc forcing posets P,Q
such that P×Q is not ccc, then there is a ccc forcing poset R such that R×R is not ccc.

Proof. First suppose that X and Y are ccc but X × Y is not ccc. Let Z = (X ×
{0}) ∪ (Y × {1}). Let

M = {(U × {0}) : U nonempty, open in X} ∪ {(V × {1}) : V nonempty, open in Y }

Clearly M is a base for a topology on Z.
Z is ccc, for suppose that A is an uncountable set of pairwise disjoint nonempty open

subsets of Z. Wlog each member of A is in M . So there are uncountably many of the
first kind, or of the second kind, contradicting X ccc or Y ccc.

Z × Z is not ccc. For, let 〈Wα : α < ω1〉 be a system of nonempty pairwise disjoint
open subsets of X × Y . We may assume that Wα = Uα × Vα with Uα open in X and Vα
open in Y . Then 〈(Uα × {0}) × (Vα × {1}) : α < ω1 is a system of nonempty pairwise
disjoint elements of Z × Z.

Second, suppose that P and Q are ccc posets such that P × Q is not ccc. Let R =
(P× {0}) ∪ (Q× {1}), with

≤R= {((p, 0), (p′, 0)) : p ≤ p′} ∪ {((q, 1), (q′, 1)) : q ≤ q′}.

If 〈rα : α < ω1〉 is a system of pairwise incompatible members of R, then we get a
contradiction depending on whether there are countably many of type 1 or of type 2.
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Say 〈(pα, qα) : α < ω1〉 is a system of pairwise incompatable elements. Then clearly
〈((pα, 0), (qα, 1)) : α < ω1〉 is a system of pairwise incompatible elements of R× R.

Proposition 25.46. (III.3.39) Let Pi be a forcing poset for all i ∈ I, and suppose that
pi, qi ∈ Pi with pi ⊥ qi. Then

∏

i∈I Pi has an antichain of size 2|I|.

Proof. Clearly
∏

i∈I{pi, qi} is pairwise incompatible.

∏fin
i∈I Pi is the set of all p ∈

∏

i∈I Pi such that {i ∈ I : pi 6= 11i} is finite.

Theorem 25.47. (III.3.41) Let Pi be a forcing poset for each i ∈ I. Suppose that
∏fin
i∈I Pi

is not ccc. Then there is a finite F ⊆ I such that
∏fin
i∈F Pi is not ccc.

Proof. Suppose that 〈pα : α < ω1〉 is pairwise incompatible. For each q ∈
∏fin
i∈I Pi

let supp(q) = {i ∈ I : qi 6= 11i}. Let 〈supp(pα) : α ∈ M〉 be a ∆-system with kernel D,
M uncountable. Then 〈pα ↾ D : α ∈ M〉 is pairwise incompatible. For, if α, β ∈ M with

α 6= β, then there exists i ∈ I such that pαi and pβi are incompatible. Clearly i ∈ D.

Lemma 25.48. (III.3.42) If P is ccc and ω1 is a pre-caliber for Q, then P×Q has ccc.

Proof. Suppose that 〈(pα, qα) : α < ω1〉 is an antichain. Fix an uncountable B ⊆ ω1

such that {qα : α ∈ B} is centered. If α, β are distinct members of B, then pα ⊥ pβ ,
contradiction.

Proposition 25.49. If 〈Xi : i ∈ I〉 is a system of topological spaces, then
∏

i∈I Xi has

ccc iff
∏fin
i∈I OXi has ccc.

Proof. Suppose that
∏

i∈I Xi does not have ccc. Then there is a pairwise disjoint
system 〈Uα : α < ω1〉 of nonempty open basic open sets. Say Fα ⊆ I is a finite set with
Uα = {f ∈

∏

i∈I Xi : f ↾ Fα ∈ Wα} where Wα =
∏

i∈Fα
Viα, each Viα open in Xi. Let

〈Fα : α ∈M〉 be a ∆-system with kernel G, M uncountable. Then 〈〈Viα : i ∈ G〉 : α ∈M〉

is an antichain in
∏

i∈G OXi , and so
∏fin
i∈I OXi does not have ccc.

If
∏fin
i∈I OXi does not have ccc, clearly

∏

i∈I Xi does not have ccc.

Theorem 25.50. (III.3.43) Assume MA(ω1). If Pi is ccc for each i ∈ I, then
∏fin
i∈I Pi is

ccc.

Proof. Assume MA(ω1) and Pi is ccc for each i ∈ I. By Lemma 25.14, each Pi has
ω1 as a pre-caliber. Hence by Lemma 25.48, each finite product of the Pi is ccc. So by
Theorem 25.47,

∏fin
i∈I Pi is ccc.

Theorem 25.51. (III.3.43) Assume MA(ω1). If Xi is a ccc space for each i ∈ I, then
∏

i∈I Xi is ccc.

Proof. Assume MA(ω1) and suppose that Xi is a ccc space for each i ∈ I. Then

each OI is a ccc poset. By Theorem 25.50,
∏fin
i∈I Oi is ccc. Hence by Proposition 25.49,

∏

i∈I Xi is ccc.
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Proposition 25.52. (III.3.45) (i) If X is a compact Hausdorff space, then X has ω1 as a
caliber iff OX has ω1 as a pre-caliber.

(ii) MA(ω1) implies that every ccc compact Hausdorff space has ω1 as a caliber.
(iii) Under ¬SH, there is a compact Hausdorff space without ω1 as a caliber.

Proof. (i): ⇒: obvious. ⇐: Suppose that Uα : α < ω1〉 is a system of nonempty
open sets. For each α let Vα be nonempty, open, with Vα ⊆ Uα. Choose an uncountable
M such that 〈Vα : α ∈M〉 is centered. Then ∅ 6=

⋂

α∈M Vα ⊆
⋂

α∈M Uα.
(ii): Assuming MA(ω1), if X is ccc compact Hausdorff, then by Lemma 25.14, OX

has ω1 as a pre-caliber, hence by the above has ω1 as a caliber.
(iii): Under ¬SH, a Suslin line gives a ccc X with X × X not ccc. By Proposition

21.39 we may assume that X is compact. By Lemma 25.48, X does not have ω1 as a
pre-caliber.

Lemma 25.53. (III.3.46) Every ccc poset of size less than m is a countable union of filters
and hence is σ-centered.

Proof. Assume that |P| = κ, P is ccc, and MA(κ). The conclusion is obvious if κ = ω,
so suppose that κ > ω. Let Q = ωPfin. Then Q is ccc by Theorem 25.50. Let πi be the
natural mapping of Q onto P, given by πi(p) = pi. Note that if G is a filter on Q, then
πi[G] is a filter on P. In fact, if p ∈ G and πi(p) ≤ q, let r ↾ (ω\{i}) = p ↾ (ω\{i}) and
ri = q. Then p ≤ r, so r ∈ G, hence q ∈ πi[G]. If p, q ∈ G, choose r ∈ G with r ≤ p, q;

then ri ≤ pi, qi. If r ∈ P, then Dr
def
= {q ∈ Q : ∃i[qi = r]} is dense in Q. For, let s ∈ Q.

Choose i /∈ supp(s) and let t be like s except that ti = r. Let G intersect each Dr. Then
⋃

i∈ω πi[G] = P.

We write Q ≤ P for the usual notion of substructure. For q, q′ ∈ Q we write q 6⊥P q
′ for

∃r ∈ P[r ≤ q, q′].

Proposition 25.54. (III.3.48) The poset Q = {{(α, 0)} : α < ω1} ∪ {∅} is not ccc, but is
a subposet of Fn(ω1, 2, ω), which is ccc.

We write Q ⊆ctr P iff Q ⊆ P and for every finite F ⊆ Q[∃p ∈ P∀q ∈ F [p ≤ q] → ∃p ∈
Q∀q ∈ F [p ≤ q].

Proposition 25.55. If I ⊆ L, then Fn(I, J, λ) ⊆ctr Fn(L, J, λ).

Proof. Clearly Fn(I, J, λ) ⊆ Fn(L, J, λ). Now suppose that F ∈ [Fn(I, J, λ)]<ω,
p ∈ Fn(L, J, λ), and ∀q ∈ F [p ≤ q]. Then

⋃
F ⊆ p,

⋃
F ∈ Fn(I, J, λ), and ∀q ∈ F [

⋃
F ≤

q].

Lemma 25.56. (III.3.50) If Q ⊆ctr P, then:
(i) If P is ccc, then Q is ccc.
(ii) If P is σ-centered, then Q is σ-centered.
(iii) If P has κ as a pre-caliber, then Q has κ as a pre-caliber.

Proof. (i): Given q ∈ ω1Q, there exist distinct α, β < ω1 such that qα and qβ are
compatible in P, hence in Q.
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(ii): Assume that P is σ-centered; say P =
⋃

n∈ω An, each An centered in P. Then
Q =

⋃

n∈ω(An ∩Q), and each An ∩Q is centered in P, hence also in Q.
(iii): Given q ∈ κQ, choose A ∈ [κ]κ such that 〈qα : α ∈ A〉 is centered in P, hence in

Q.

Lemma 25.57. (III.3.51) If κ is an infinite cardinal and MAP(κ) is false, then there is a
Q ⊆ctr P such that |Q| ≤ κ and MAQ(κ) is false.

Proof. Fix dense sets Dα in P for α < κ such that there is no filter intersecting
each Dα. Consider the structure (P,≤, 11, Dα)α<κ. By the downward Löwenheim-Skolem
theorem let (Q,≤, 11, D′

α)α<κ be an elementary substructure of (P,≤, 11, Dα)α<κ such that
|Q| ≤ κ. Then D′

α is dense in Q for each α < κ. For any finite F ⊆ Q, if ∃p ∈ P∀q ∈
F [p ≤ q], then ∃p ∈ Q∀q ∈ F [p ≤ q]. Thus Q ⊆ctr P.

Suppose that MAQ(κ) holds. Let G be a filter on Q which intersects each D′
α. Let

G+ = {p ∈ P : ∃q ∈ G[q ≤ p]}. Clearly G+ is a filter on P, and it intersects each Dα,
contradiction.

For the next result, recall that s↓′= {x : x ≤ s}.

Proposition 25.58. For any forcing poset P the set {U ⊆ P : ∀s ∈ U [s ↓′⊆ U ]} is a
topology on P.

The topology given in this proposition is called the poset topology on P.

Proposition 25.59. D ⊆ P is dense in the topological sense iff it is dense in the poset
sense.

Proof. ⇒: Suppose that D ⊆ P is dense in the topological sense, and p ∈ P. Choose
s ∈ D ∩ (p↓′). So s ≤ p.
⇐: Suppose that D ⊆ P is dense in the poset sense, and U is a nonempty open set.

Say p ∈ U . Choose q ∈ D such that q ≤ p. Since (p↓′) ⊆ U , we have q ∈ U . Thus
D ∩ U 6= ∅.

Proposition 25.60. P has ccc in the topological sense iff it has ccc in the poset sense.

Proof. ⇒: Suppose that P has ccc in the topological sense, and 〈pα : α < ω1〉 is
pairwise incompatible. Then 〈pα↓′: α < ω1〉 is a pairwise disjoint system of open sets.
⇐: reverse this argument.

For any S ⊆ P let S↓′=
⋃

p∈S(p↓′). This is the smallest open set containing S.

Lemma 25.61. (III.3.55) If G is a filter on P and S ⊆ P , then S∩G = ∅ iff (S↓′)∩G = ∅.

L ⊆ P is linked iff any two elements of L are compatible.
A forcing poset P is said to have property K iff for every system 〈pα : α < ω1〉 of

elements of P there is an X ∈ [ω1]ω1 which is linked.
For E ⊆ P and p ∈ P, p ⊥ E means ∀q ∈ E[p ⊥ q]. E is predense iff ¬∃p[p ⊥ E].
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Proposition 25.62. E is predense iff ∀p∃q ∈ E[p and q are compatible].

Lemma 25.63. (III.3.59) E is predense iff E↓′ is dense iff E↓′ is open dense.

Proof. Suppose that E is predense. Given p, choose q ∈ E such that p and q are
compatible. Say r ≤ p, q. Then r ∈ E↓′ and r ≤ p. So E↓′ is dense. Other implications
trivial.

Theorem 25.64. (III.3.60) Let κ be an infinite cardinal, P a forcing poset, and Eα ⊆ P

for all α < κ. Let χ be the statement that if each Eα has property ϕ then there is an F ⊆ P

with property ψ such that ∀α < κ[F ∩Eα 6= ∅].
Here ϕ is any of the following:
1. dense set
2. dense open set
3. maximal antichain
4. predense set

ψ is one of
a. filter
b. linked family

This gives 8 possibilities for χ, and the assertion of this theorem is that they are all equiv-
alent.

Proof. (A) (xa)⇒(xb). For, Assume (xa). If Eα ⊆ P for all α < κ and all of them
have the property x, then there is an F ⊆ P with property a such that F ∩ Eα 6= ∅ for all
α. Then F has property b. So (xb) holds.

(B) (4y)⇒(3y). For, assume (4y). If Eα ⊆ P for all α < κ and all of them have the
property 3; then all of them have property 4, and the desired conclusion follows.

(C) (3y)⇒(1y). For, assume (3y). Assume that Eα ⊆ P for all α < κ and all of them
have the property 1. For each α < κ let E′

α be maximal such that E′
α ⊆ Eα and E′

α is an
antichain. Then E′

α is actually a maximal antichain. So E′
α has property 3. The desired

conclusion follows.
(D) (1y)⇒(2y). This is clear since 2 implies 1.
(E) (2a)⇒(4a). Assume (2a), and suppose that Eα ⊆ P for all α < κ and all of them

are predense. Hence each Eα↓′ is dense open by Lemma 25.63. Hence there is a filter
F ⊆ P such that F ∩ Eα↓′ 6= ∅ for all α. By Lemma 25.61, F ∩Eα 6= ∅ for all α.

(F) (1a), (2a), (3a), (4a) are all equivalent. This is true by (B)–(E).
(G) (2b)⇒(2a). Assume (2b), and suppose that Eα ⊆ P for all α < κ and all of

them are dense open. We will get a filter which meets each of them. For each α let
Aα ⊆ Eα be maximal among antichains contained in Eα. So Aα is a maximal antichain.
Let F0 = {Aα↓′: α < κ}. Suppose that Fn has been defined and consists of dense open
sets. For each pair (B,C) of elements of Fn the set B ∩ C is dense open, and we can find
a maximal antichain DBC ⊆ B ∩ C. Let Fn+1 = Fn ∪ {DBC↓′: B,C ∈ Fn}. Finally, let
G =

⋃

n∈ω Fn. Thus for every pair B,C of elements of G there is a maximal antichain
D ⊆ B ∩C such that D↓′∈ G. By (2b), let L be linked such that L∩B 6= ∅ for all B ∈ G.
Each element B of G has the form AB↓′ for some maximal antichain AB. For each B ∈ G
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choose qB ∈ L ∩B, and then choose pB ∈ AB such that qB ≤ pB . Since {qB : B ∈ G} is a
pairwise compatible set, so is {pB : B ∈ G}.

(1) For any B,C ∈ G there is a D ∈ G such that pD ≤ pB , pC .

In fact, write B = B′↓′ with B′ a maximal antichain, and C = C′↓′ with C′ a maximal

antichain. Let E be a maximal antichain such that E ⊆ B∩C and D
def
= E↓′∈ G. Suppose

that pD 6≤ pB. Now pD ∈ E ⊆ B = B′↓′, so there is an r ∈ B′ such that pD ≤ r. But also
pB ∈ B′, so r 6= pB and hence pB and pD are incompatible, contradiction. By symmetry,
(1) follows.

Now let H = {s : pB ≤ s for some B ∈ G. Then H is a filter. It intersects each Eα.

For, B
def
= Aα↓′⊆ Eα, and B ∈ G, so pB ∈ H ∩ Eα. So (G) holds.

Now all are equivalent. For, (1a)–(4a) are equivalent by (F), (4a)⇒(4b) by (A),
(4b)⇒(3b)⇒(1b)⇒(2b) by (B), (C), (D), and (2b)⇒(2a) by (G).

Theorem 25.65. (III.3.61) Let mσ be the least cardinal κ such that MAP(κ) is false for
some σ-centered P. Then mσ = p.

Proof. mσ ≤ p by Lemma 25.37 and Theorem 25.34. To prove that p ≤ mσ , take
any infinite κ < p and fix a σ-centered forcing poset P. We show that MAP(κ) holds. By
Lemma 25.57 we may assume that |P| ≤ κ. Fix dense open Dα ⊆ P for each α < κ. By
Theorem 25.64 it suffices to find a linked L ⊆ P such that ∀α < κ[L ∩Dα 6= ∅].

Let P =
⋃

l∈ω Cl, with each Cl centered. We may assume that 11 ∈ Cl for each l ∈ ω.
By Proposition 25.31 we may assume that P is atomless.

For α < κ and p ∈ P, let

(1) Bα(p) = {l ∈ ω : Dα ∩ Cl ∩ p↓
′ 6= ∅}.

Now we claim that for each m ∈ ω, the set {Bα(p) : p ∈ Cm and α < κ} has SFIP. For,
suppose that 〈pi : i ∈ n〉 is a system of elements of Cm and 〈αi : i < n〉 is a system of
members of κ; we want to show that

⋂

i<nBαi(pi) is infinite. Let E =
⋂

i<nDαi . So E is
dense open. Since Cm is centered, choose q so that q ≤ pi for each i. Then

(2) I
def
= {l ∈ ω : E ∩ Cl ∩ q↓

′ 6= ∅} ⊆
⋂

i<n

Bαi(pi).

In fact, if l ∈ I and i < n, then E ∩ Cl ∩ q↓′⊆ Dαi ∩ Cl ∩ pi↓
′, and so Dαi ∩ Cl ∩ pi↓

′ 6= ∅,
as desired.

Since P is atomless, let 〈aj : j ∈ ω〉 be a system of pairwise incompatible elements
≤ q; see Lemma 25.33. Choose bj ≤ aj with bj ∈ E for every j ∈ ω. Say bj ∈ Clj for
all j ∈ ω. Since the bj’s are pairwise incompatible, the sequence 〈lj : j ∈ ω〉 is one-one.
Clearly each lj is in I. So our claim follows from (2).

Now by the claim, since κ < p, for each m ∈ ω let Zm ∈ [ω]ω be such that Zm ⊆∗ Bα(p)
for all p ∈ Cm and all α < κ.

For each τ ∈ <ωω let Λ(τ) = ∅ if τ = ∅, and otherwise let Λ(τ) = τ(dmn(τ)− 1).
Let T = {τ ∈ <ωω : ∀n < dmn(τ)[τ(n) ∈ ZΛ(τ↾n)]}. Thus ∅ ∈ T . If τ ∈ T and

m ∈ ZΛ(τ), then τ⌢〈m〉 ∈ T .
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For each α < κ fix ∆α : T → P with the following properties:

(3) ∆α(∅) = 11.

(4) If τ⌢〈l〉 ∈ T , then
(a) If l ∈ Bα(∆α(τ)), then ∆α(τ⌢〈l〉) ∈ Dα ∩ Cl ∩∆α(τ)↓′.
(b) If l /∈ Bα(∆α(τ)), then ∆α(τ⌢〈l〉) = 11.

Note that

(5) ∀τ ∈ T [∆α(τ) ∈ CΛ(τ)],

In fact, if τ 6= ∅ and τ(dmn(τ) − 1) ∈ Bα(∆α(τ ↾ (dmn(τ)− 1))), then this follows from
(4)(a). Otherwise it follows since 11 ∈ CΛ(τ).

(6) ∀α∀τ ∈ T [ZΛ(τ) ⊆
∗ Bα(∆α(τ))].

In fact, suppose that α < κ and τ ∈ T . Since ∆α(τ) ∈ CΛ(τ) by (5), it follows that
ZΛ(τ) ⊆

∗ Bα(∆α(τ)), proving (6).

(7) ∀α∀τ ∈ T∀l ∈ ω[τ⌢〈l〉 ∈ T → l ∈ ZΛ(τ)].

This follows from the definition of T .
By (6), for each α < κ there is a function Φα : T → ω such that:

(8) ∀τ ∈ T∀l ∈ ZΛ(τ)[l ≥ Φα(τ)→ l ∈ Bα(∆α(τ))].

Now |T | = ω; let h : ω → T be a bijection. Also, κ < p ≤ b, so there is a Γ : ω → ω such
that Φα ◦ h ≤∗ Γ for all α < κ.

(9) ∀τ ∈ T∀m ∈ ω∃l ≥ m[τ⌢〈l〉 ∈ T ].

In fact, ZΛ(τ) is infinite, so (9) follows.
By (9), there is a function g : ω → ω such that g ↾ n ∈ T for all n ∈ ω and g(n) is the

least l ≥ Γ(h−1(g ↾ n)), n+ 1 such that (g ↾ n)⌢〈l〉 ∈ T .
Since Φα ◦ h ≤∗ Γ, there is a k : κ → ω such that Φα(h(n)) ≤ Γ(n) for all n ≥ kα.

Hence if h−1(g ↾ n) ≥ kα then g(n) ≥ Γ(h−1(g ↾ n)) ≥ Φa(g ↾ n); hence by (8), g(n) ∈
Bα(∆a(g ↾ n)).

Now (g ↾ n)⌢〈g(n)〉 = g ↾ (n+ 1) ∈ T and g(n) ∈ Bα(∆α(g ↾ n)), so by (4)(a) we get

(10) ∆α(g ↾ (n+ 1)) ∈ Dα ∩ Cg(n) ∩∆α(g ↾ n)↓′,

and in particular

(11) ∆α(g ↾ (n+ 1)) ≤ ∆α(g ↾ n).

Let pα = ∆α(g ↾ (kα + 1)). So pα ∈ Dα ∩ Cg(kα) ∩∆α(g ↾ kα)↓′. Let L = {pα : α < κ}.
Hence L ∩ Dα 6= ∅ for all α. To show that L is linked, suppose that α, β < κ. Say

510



kα ≤ kβ . If kα = kβ , then pα, pβ ∈ Cg(kα), hence pα 6⊥ pβ . Suppose that kα < kβ . By (11),
∆α(g ↾ (kβ +1)) ≤ ∆α(g ↾ (kα+1)) = pα. Now ∆α(g ↾ (kβ +1)),∆β(g ↾ (kβ+1)) ∈ Cg(kβ)

by (10), so pα 6⊥ pβ .

Q ⊆c P (Q is a complete subposet of P iff Q ⊆ctr P and if A ⊆ Q is a maximal antichain
of Q then it is also a maximal antichain of P.

Proposition 25.66. (III.3.64) If I ⊆ L, then Fn(I, J, λ) ⊆c Fn(L.J, λ).

Proof. By Proposition 25.55 we have Fn(I, J, λ) ⊆ctr Fn(L.J, λ). Now suppose that
A ⊆ Fn(I, J, λ) is a maximal antichain of Fn(I, J, λ). Take any p ∈ Fn(L, J, λ). Let
q = p ↾ I. By the maximality of A, there is an r ∈ A such that q and r are compatible;
say s ∈ Fn(I, J, λ) and q, r ⊆ s. Then p, r ⊆ s ∪ (p ↾ (L\J)).

If i : Q→ P, then i is a complete embedding iff
(i) i(11Q) = 11P.
(ii) ∀q1, q2 ∈ Q[q1 ≤ q2 → i(q1) ≤ i(q2).
(iii) ∀q1, q2 ∈ Q[q1 ⊥ q2 ↔ i(q1) ⊥ i(q2).
(iv) ∀A ⊆ Q[A a maximal antichain in Q→ i[A] is a maximal antichain in P].

i is a dense embedding iff (i)–(iii) hold together with
(v) i[Q] is a dense subset of P.

Proposition 25.67. If i : Q → P, i is onto, and ∀q1, q2 ∈ Q|[q1 ≤ q2 iff i(q1) ≤ i(q2)],
then (ii), (iii) of the definition of complete embedding hold.

Proof. Clearly (ii) holds, and ⇐ in (iii) holds. Now suppose that i(q1) and i(q2) are
compatible. Say i(q3) ≤ i(q1), i(q2). Then q3 ≤ q1, q2.

Proposition 25.68. If i : Q → P, (i), (v) of the definition of dense embedding hold,
and and ∀q1, q2 ∈ Q|[q1 ≤ q2 iff i(q1) ≤ i(q2)], then (ii), (iii) of the definition of dense
embedding hold.

Proof. (ii) is obvious, and ⇐ of (iii) is clear. Now suppose that i(q1) and i(q2) are
compatible. Say p ≤ i(q1), i(q2). Choose q3 ∈ Q so that i(q3) ≤ p, Then i(q3) ≤ i(q1), i(q2).
Hence q3 ≤ q1, q2.

Lemma 25.69. (III.3.66) Suppose that Q is a subset of P and i : Q→ P is the inclusion
map. Then i is a complete embedding iff Q ⊆c P.

Proof. First assume that i is a complete embedding. To show that Q ≤ctr P, suppose
that q1, . . . , qn ∈ Q have a common extension in P. By Zorn’s lemma, let A be maximal
among subsets of Q satisfying

(∗) A is an antichain and ∀a ∈ A∃j(a ⊥ qj).

Then A is not a maximal antichain in P, since if p ∈ P is a common extension of q1, . . . , qn
and a ∈ A, then a ⊥ p. It follows by (iv) that A is not a maximal antichain in Q. So there
is an r ∈ Q such that r ⊥ a for all a ∈ A. Hence

(∗∗) ∀r′ ∈ Q[r′ ≤ r → ∀j[r′ 6⊥ qj ]].
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In fact, otherwise we get r′ ∈ Q and j such that r′ ≤ r and r′ ⊥ qj , and then r′ ⊥ a for all
a ∈ A, and A ∪ {r′} satisfies (∗), contradicting maximality.

By (∗∗) we can inductively construct p1, . . . , pn ∈ Q such that r ≥ p1 ≥ · · · ≥ pn and
pj ≤ qj for each j. Then pn is a common extension of q1, . . . , qn. Hence Q ≤ctr P.

It follows that Q ⊆c P.
Second, assume that Q ⊆c P. Then only (iii) is problematic. If q1 6⊥Q q2, obviously

q1 6⊥P q2. The other direction follows from Q ⊆ctr P.

Proposition 25.70. Suppose that i : Q → P is a complete embedding, and ∀q1, q2 ∈
Q[q1 ≤ q2 iff i(q1) ≤ i(q2)]. Let R = i[Q], and define i(q1) ≤R i(q2) iff q1 ≤ q2. Then

(i) R is a forcing poset.
(ii) R ⊆c P.

Proof. (i) is clear. Clearly also R is a subposet of P. To show that R ≤ctr P, suppose
that q1, . . . , qn ∈ Q, p ∈ P, and ∀i[p ≤ i(qi)]. Let A be maximal among subsets of Q

satisfying

(∗) A is an antichain and ∀a ∈ A∃j(a ⊥ qj).

Then i[A] is not a maximal antichain in P, since ∀a ∈ A[i(a) ⊥ p]. It follows by (iv) in the
definition of complete embedding that A is not a maximal antichain in Q. So there is an
r ∈ Q such that r ⊥ a for all a ∈ A. Hence

(∗∗) ∀r′ ∈ Q[r′ ≤ r → ∀j[r′ 6⊥ qj ]].

In fact, otherwise we get r′ ∈ Q and j such that r′ ≤ r and r′ ⊥ qj , and then r′ ⊥ a for all
a ∈ A, and A ∪ {r′} satisfies (∗), contradicting maximality.

By (∗∗) we can inductively construct p1, . . . , pn ∈ Q such that r ≥ p1 ≥ · · · ≥ pn and
pj ≤ qj for each j. Then pn is a common extension of q1, . . . , qn. Hence Q ≤ctr P.

Now suppose that A ⊆ Q and i[A] is a maximal antichain in R. Clearly then A is
an antichain in Q. Suppose that q ∈ Q and ∀a ∈ A[q ⊥ a]. Then ∀a ∈ A[i(q) ⊥ i(a)],
contradiction. Hence A is a maximal antichain in Q. It follows from (iv) in the definition of
complete embedding that i[A] is a maximal antichain in P. This proves that R ⊆c P.

Lemma 25.71. (III.3.67) Every dense embedding is a complete embedding.

Proof. Suppose that i : Q → P is a dense embedding. To verify (iv), suppose that
A ⊆ Q is a maximal antichain in Q, but i[A] is not a maximal antichain in P. By (iii), i[A]
is an antichain in P. So there is a p ∈ P such that p ⊥ i(q) for all q ∈ A. By (v) choose
r ∈ Q such that i(r) ≤ p. Then i(r) ⊥ i(q) for all q ∈ A, so by (iii), r ⊥ q for all q ∈ A,
contradiction.

Proposition 25.72. If i : Q → P is a dense embedding and D ⊆ P is dense open,
then i−1[D] is dense in Q. (For the definition of an open subset of a forcing poset, see
Proposition 25.58.)
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Proof. Suppose that q ∈ Q. Choose r ∈ D such that r ≤ i(q). Then choose q′ ∈ Q

such that i(q′) ≤ r. Then i(q′) ∈ D since D is open. Since i(q′) ≤ i(q), it follows that
i(q) and i(q′) are compatible, hence by (iii), q and q′ are compatible. Let s ≤ q, q′. Then
i(s) ≤ r, so i(s) ∈ D since D is open. So s ∈ i−1[D] and s ≤ q.

Lemma 25.73. Let i : Q→ P be a complete embedding, and assume that MAP(κ). Then
MAQ(κ).

Proof. By Theorem 25.64 it suffices to fix a family A of maximal antichains in Q

with |A | ≤ κ and produce a linked set L ⊆ Q such that L ∩ A 6= ∅ for all A ∈ A . Again
by Theorem 25.64 there is a filter G on P such that i[A] ∩ G 6= ∅ for all A ∈ A . Now
i−1[G] is linked, since if q1, q2 ∈ i−1[G] then i(q1), i(q2) ∈ G, hence they are compatible,
so by (iii) also q1 and q2 are compatible. Now if q ∈ A and i(q) ∈ G, then q ∈ i−1[G] ∩ A.
So i−1[G] is a linked set intersecting each A ∈ A .

Lemma 25.74. Let i : Q → P be a dense embedding, and assume that MAQ(κ). Then
MAP(κ).

Proof. By Theorem 25.64 it suffices to fix a family A of dense open sets in P with
|A | ≤ κ and produce a linked set L ⊆ P such that L ∩ A 6= ∅ for all A ∈ A . Now for
each A ∈ A the set i−1[A] is dense in Q, by Proposition 25.72. Again by Theorem 25.64,
let H be a filter on Q such that i−1[A] ∩ H 6= ∅ for all A ∈ A . Now i[H] is linked,
since if q1, q2 ∈ H then i(q1) and i(q2) are compatible by (iii). If q ∈ i−1[A] ∩ H, then
i(q) ∈ A ∩ i[H]. So i[H] is a linked set intersecting each A ∈ A .

Theorem 25.75. If i : Q→ P be a dense embedding and Q has ccc, then P has ccc.

Proof. Assume that Q has ccc. Suppose that 〈pα : α < ω1〉 is an antichain in P. For
each α < ω1 choose qα ∈ Q such that i(qα) ≤ pα. Then for α 6= β we have i(qα) ⊥ i(qβ),
so qα ⊥ qβ , contradiction.

Let T = <ωω =
⋃

m∈ω
mω.

Proposition 25.76. (III.3.69) Let P = Fn(ω, ω, ω). Then T is a dense subposet of P.

Proof. Clearly T is a subposet of P. (i), (ii), and (v) in the definition of dense
embedding (for the inclusion map) are clear. ⇐ in (iii) is clear. Now suppose that t1 ⊥T t2.
Then there is an i ∈ dmn(t1) ∩ dmn(t2 such that t1(i) 6= t2(i). So t1 ⊥P t2.

Proposition 25.77. (III.3.69) Let P = Fn(ω, ω, ω). Then ∀κ[MAT(κ) iff MAP(κ)].

Proof. By Lemmas 25.71, 25.73, 25.74, 25.76.

Proposition 25.78. (III.3.70) MAP(κ) ↔MAQ(κ) if P and Q are countable atomless
forcing posets.

Proof. Let 〈pk : k ∈ ω〉 enumerate P. We define i(t) ∈ P with t ∈ T and dmn(t) = m
by induction on m. Let i(∅) = 11. Suppose that i(t) has been defined for all t having domain
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m, such that 〈i(t) : dmn(t) = m〉 is a maximal antichain. Let 〈tj : j ∈ ω〉 enumerate all
s ∈ T with domain m. Then there is a j ∈ ω such that i(tj) and pm are compatible.
Say r ≤ i(tj), pm. Let X be a maximal antichain in i(tj)↓′ with r as a member, and let

〈qjk : k ∈ ω〉 enumerate X . Then for any k ∈ ω we define i(t⌢j 〈k〉) = qjk. For s 6= j,
let 〈qsk : k ∈ ω〉 enumerate a maximal antichain below i(ts), and for any k ∈ ω define
i(t⌢s 〈k〉) = qsk. We claim that {i(u) : dmn(u) = m + 1} is a maximal antichain. For, if
v ∈ P choose s so that v and i(ts) are compatible; say w ≤ v, i(ts). Then choose k so
that w and qsk are compatible. Then v and i(t⌢s 〈k〉) are compatible. This completes the
inductive construction.

We check that i is a dense embedding of T into P. (i) follows from i(∅) = 11. (ii) holds
since if s has domain m, then for any k we have s⌢〈k〉 ≤ s, and i(s⌢〈k〉) is defined to be
below i(s). Also, this means that i(s⌢〈k〉) ≤ i(s) implies that s⌢〈k〉 ≤ s. Clearly i[T] is
dense in P. So i is a dense embedding of T into P by Proposition 25.68.

Now the assertion of the proposition follows by Lemmas 25.71, 25.73, 25.74.

If Q,P, i satisfy (i)–(iii) in the definition of complete embedding and p ∈ P. a reduction of

p to Q is an element p ∈ Q such that ∀q ∈ Q
[

i(q) ⊥ p→ q ⊥ p
]

.

Lemma 25.79. (III.3.72) If Q,P, i satisfy (i)–(iii) in the definition of complete embedding,
then i is a complete embedding of Q into P iff every element of P has a reduction to Q.

Proof. ⇐: assume that every element of P has a reduction to Q, and A is a maximal
antichain in Q. Given p ∈ P let q be a reduction of p to Q. Then there is an r ∈ A which
is compatible with q. It follows that i(r) is compatible with p. This shows that i[A] is a
maximal antichain in P.
⇒: suppose that i is a complete embedding of Q into P. Thus for every maximal

antichain A in Q the set i[A] is a maximal antichain in P. Take any p ∈ P; we want to
find a reduction of p to Q. An antichain A in Q is nice iff i(q) ⊥ p for all q ∈ A. Thus ∅ is
nice. By Zorn’s lemma let A be a maximal nice antichain. Then i[A]∪ {p} is an antichain
in P, so by i being complete, A is not a maximal antichain in Q. Let r ∈ Q be such that
r ⊥ q for all q ∈ A. We claim that r is a reduction of p to Q. For, suppose that q ∈ Q and
i(q) ⊥ p but q and r are compatible. Say s ≤ q, r. Then s ⊥ t for all t ∈ A, since s ≤ r.
But also i(s) ⊥ p since i(s) ≤ i(q). Hence A ∪ {s} is an antichain properly containing A,
contradiction. This shows that i(q) ⊥ p implies that q ⊥ r.

Proposition 25.80. Suppose that Q ⊆ctr P and for all p ∈ P there is a p′ ∈ Q such that
∀q ∈ Q[q ⊥P p implies that q ⊥Q p′].

Then Q ⊆c P.

Proof. Suppose that A is a maximal antichain in Q, but A is not maximal in P. Say
p ∈ P and p ⊥P q for all q ∈ A. Then by definition, q ⊥Q p′ for all q ∈ A, contradicting
the maximality of A.

Lemma 25.81. (III.3.73) If P = Q × R and i : Q → P is defined by i(q) = (q, 11), then i
is a complete embedding.
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Proof. Clearly (i)–(iii) in the definition of complete embedding hold. For any (q, s) ∈

Q × R let (q,s) = q. Then (q,s) is a reduction of (q, s), for if i(u) ⊥ (q, s), then

(u, 11) ⊥ (q, s), hence u ⊥ q.

Lemma 25.82. If P and Q have ω1 as a pre-caliber, then so does P×Q.

Proof. Suppose that p ∈ κ(P × Q). Let B ∈ [ω1]ω1 be such that 〈p(α)0 : α ∈ B〉 is
centered. Then let C ∈ [B]ω1 be such that 〈p(α)1 : α ∈ C〉 is centered. Then 〈p(α) : α ∈ C〉
is centered.

Proposition 25.83. (III.3.74) Let Q =
∏fin
i∈I Pi. If each Pi has ω1 as a pre-caliber, then

so does Q.

Proof. Suppose that p ∈ κQ. For each α < κ let Fα = {i ∈ I : pa(i) 6= 11}. Thus each
Fα is finite. Let 〈Fα : α ∈ B〉 be a ∆-system, say with kernel G, with B ∈ [ω1]ω1 . Choose
C ∈ [B]ω1 so that 〈pα ↾ G : α ∈ C〉 is centered. Then 〈pα : α ∈ C〉 is centered.

Proposition 25.84. (III.3.74) Let Q =
∏fin
i∈I Pi. If each Pi is σ-centered and |I| ≤ 2ω,

then Q is σ-centered.

Proof. Assume that each Pi is σ-centered; say Pi =
⋃

n∈ωMin with each Min cen-
tered. Let F ⊆ ωω be a collection of independent functions, with |F | = 2ω, and let
f : I → F be an injection; see Theorem 21.35. For each n ∈ ω let Cn = {p ∈ Q :
∀i ∈ I[p(i) ∈ Mifi(n)]}. Then Cn is centered; for suppose that p1, . . . pk ∈ Cn. Let
F = {i ∈ I : pj(i) 6= 11 for some j = 1, . . . , k}. So F is finite. Let q be a member of Q

such that q(i) ≤ p1(i), . . . , pk(i) for each i ∈ F . Then q ≤ p1, . . . pk, showing that Cn is
centered.

To show that Q =
⋃

n∈ω Cn, let q ∈ Q. Let G = {i ∈ I : qi 6= 11}. Say qi ∈Mi,m(i) for
all i ∈ G. Choose n ∈ ω such that fi(n) = m(i) for all i ∈ G. Then q ∈ Cn.

Proposition 25.85. (III.3.74) Let Q =
∏fin
i∈I Pi. If |I| > 2ω and for each i ∈ I there are

pi, qi ∈ Pi such that pi ⊥ qi, then Q is not σ-centered.

Proof. Suppose that Q =
⋃

n∈ωMn with each Mn centered. We define gn : I → 2 by
setting, for any i ∈ I,

gn(i) =
{

1 if there is an x ∈Mn such that xi = pi,
0 otherwise.

Now for each i ∈ I, the sequence 〈gn(i) : n ∈ ω〉 is in ω2. Since |I| > 2ω, there are distinct
i, j ∈ I such that 〈gn(i) : n ∈ ω〉 = 〈gn(j) : n ∈ ω〉. Let x ∈ Q be such that xi = pi and
xj = qj . Say x ∈ Mn. Then gn(i) = 1, and hence gn(j) = 1. So there is a y ∈ Mn such
that yj = pj . Now x, y ∈Mn and xj = qj while yj = pj , contradiction.

Proposition 25.86. (III.3.76) cf(m) > ω.

Proof. Suppose to the contrary that cf(m) = ω. Since m > ω, there is a strictly
increasing sequence 〈κn : n ∈ ω〉 of infinite cardinals with supremum m. We now show

515



that MA(m), contradiction. Let P be a ccc poset and D a family of dense subsets, with
|D | ≤ m. Let 〈Dα : α < m〉 enumerate D . Now we construct a sequence 〈(Qn, D

′
αn)α<κn

by recursion. Choose (Q0, D
′
α0) � (P, Dα)α<κ0

with |Q0| ≤ κ0. If (Qn, D
′
αn)α<κn

has been constructed so that (Qn, D
′
αn)α<κn � (P, Dα)α<κn and |Qn| ≤ κn, choose

(Qn+1, D
′
α,n+1)α<κn+1

� (P, Dα)α<κn+1
so that |Qn+1| ≤ κn+1 and (Qn, D

′
αn)α<κn �

(Qn+1, D
′
α,n+1)α<κn . Let R =

⋃

n∈ω Qn and

D′′
α =

⋃

α<κn
n∈ω

D′
αn.

Now each Qn is σ-centered by Lemma 25.53, and so also R is σ-centered. Now m < p by
our supposition on m, and by Theorem 25.34 and Lemma 20.54. Hence by Theorem 25.65,
Martin’s axiom applies to R, and hence the desired conclusion follows.

Theorem 25.87. (III.3.78) Every linear order of size ≤ ω1 can be isomorhically embedded
in P(ω)/fin.

Proof. We may assume that our linear order has the form (ω1, ⊳). Let A0 be such that
|A0| = ω = |ω\A0|. Now suppose that Aξ has been defined for all ξ < α, where α < ω1,
such that if ξ, η < α and ξ ⊳ η, then Aξ ⊆∗ Aη and Aξ 6=∗ Aη. Furthermore, Aξ and ω\Aξ
are infinite for all ξ < α. Let L = {ξ < α : ξ ⊳ α} and R = {ξ < α : α ⊳ ξ}. Thus Aξ ⊆∗ Aη
and Aξ 6=∗ Aη for ξ ∈ L and η ∈ R. If L is infinite, write {Aξ : ξ ∈ L} = {Cn : n ∈ ω},
and for R infinite write {Aξ : ξ ∈ R} = {Dn : n ∈ ω}.

Case 1. L 6= ∅ 6= M , L does not have a largest element, and R does not have a
smallest element (under ⊳). Let

Aα =
⋃

n∈ω








⋃

m≤n

Cm



 ∩
⋂

m≤n

Dm



 .

Now suppose that p ∈ ω. Then

Cp\Aα =
⋂

n∈ω



Cp ∩




⋂

m≤n

(ω\Cm) ∪
⋃

m≤n

(ω\Dm)









=
⋂

n<p



Cp ∩




⋂

m≤n

(ω\Cm) ∪
⋃

m≤n

(ω\Dm)









∩
⋂

n≥p



Cp ∩




⋂

m≤n

(ω\Cm) ∪
⋃

m≤n

(ω\Dm)









=
⋂

n<p



Cp ∩




⋂

m≤n

(ω\Cm) ∪
⋃

m≤n

(ω\Dm)
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∩
⋂

n≥p



Cp ∩
⋃

m≤n

(ω\Dm)





⊆ Cp ∩
⋃

m≤p

(ω\Dm),

and this last set is finite.
Furthermore,

Aα\Dp =
⋃

n<p








⋃

m≤n

Cm



 ∩
⋂

m≤n

Dm ∩ (ω\Dp)





⊆

(
⋃

m<p

Cm

)

\Dp,

and this last set is finite.
Case 2. L has a largest element ξ under ⊳, and R has a smallest element η under

⊳. Now Aξ ⊆∗ Aη and Aξ 6=∗ Aη. Hence Aη\Aξ is infinite. Write Aη\Aξ = B ∪ C with
B ∩ C = ∅ and B,C infinite. Let Aα = Aξ ∪ C.

Case 3. L has a largest element ξ under ⊳, but R does not have a smallest element
under ⊳.

(1) ∀n ∈ ω[(
⋂

m≤nDm)\Aξ is infinite].

In fact, write Dm = Aη(m) for all m ≤ n, where each η(m) ∈ R. Let i ≤ n be such that
η(i) is ⊳-smallest among all η(m) for m ≤ n. Then Aη(i)\Aη(m) is finite for all m ≤ n.
Hence

⋃

m≤n,m 6=i(Aη(i)\Aη(m) is finite. Now

Aη(i)\Aξ =








⋂

m≤n

Dm



 \Aξ



 ∪









Aη(i)\






⋂

m≤n
m6=i

Aη(m)









 \Aξ






=








⋂

m≤n

Dm



 \Aξ



 ∪











⋃

m≤n
m6=i

(Aη(i)\Aη(m))




 \Aξ




 .

Since the last entry in the union is finite and the left side of the equation is infinite, (1)
follows.

Hence we can define by induction

an ∈
⋂

m≤n

Dm\(Aξ ∪ {am : m < n}).

Let Aα = Aξ ∪ {an : n ∈ ω}. Then obviously Aξ ⊆ Aα, and Aα\Aξ is infinite. If n ∈ ω,
then there is a k ∈ ω such that Aξ\Dn ⊆ k, and Aα\Dn ⊆ k ∪ n.
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Case 4. L does not have a largest element under ⊳, but R has a smallest element η
under ⊳. Then for any n ∈ ω, the set

(2)




⋂

m≤n

(ω\Cm)



 ∩Aη is infinite.

In fact, for each m ≤ n choose ξ(m) ∈ L such that Cm = Aξ(m). Let i ≤ m be such that
ξ(i) is ⊳-largest among the ξ(m)’s. Then

⋃

m≤n, m 6=i(Aξ(m)\Aξ(i)) is finite. Now

Aη ∩
⋂

m≤n

(ω\Cm) = Aη ∩ (ω\Aξ(i)) ∩
⋂

m≤n
m6=i

(ω\Aξ(m))

= Aη ∩ (ω\Aξ(i)) ∩
⋂

m≤n
m6=i

((ω\Aξ(m)) ∪ Aξ(i))

= Aη ∩ (ω\Aξ(i))\
⋃

m≤n, m 6=i

(Aξ(m)\Aξ(i))

Now (2) follows. Hence we can define by induction

an ∈




⋂

m≤n

(ω\Cm)



 ∩ Aη\{am : m < n}.

Let Aα = Aη\{an : n ∈ ω}. Thus clearly Aα ⊆ Aη and Aη\Aα is infinite. Now suppose
that n ∈ ω. Then

Cn\Aα = (Cn\Aη) ∪ (Cn ∩ {am : m ∈ ω}) = (Cn\Aη) ∪ (Cn ∩ {am : m < n},

and the set on the right is finite.
Case 5. L does not have a largest element under ⊳, and R = ∅. For any n ∈ ω the set

(3)
⋂

m≤n

(ω\Dm) is infinite.

In fact, write Dm = Aξ(m) for all m ≤ n, with each ξ(m) ∈ L. Let ξ(i) be ⊳-maximum
among all ξ(m)’s. Then

⋂

m≤n

(ω\Dm) ⊇ (Aξ(i)+1\Aξ(i)) ∩
⋂

m≤n
m6=i

((ω\Aξ(m)) ∪ Aξ(i))

= (Aξ(i)+1\Aξ(i))\
⋃

m≤n
m6=i

(Aξ(m)\Aξ(i));
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since
⋃

m≤n
m6=i

(Aξ(m)\Aξ(i)) is finite, (3) follows.

Using (3), define by induction

an ∈
⋂

m≤n

(ω\Dm)\{am : m < n}.

Let Aα = ω\{a2n : n ∈ ω}. Thus clearly ω\Aα is infinite. Now suppose that n ∈ ω. Then

Dn\Aα = Dn ∩ {a2m : m ∈ ω}) = Dn ∩ {a2m : 2m < n},

and the set on the right is finite.
Case 6. L has a largest element ξ under ⊳, and R = ∅. Let ω\Aξ = C ∪ B with

|C| = |B| = ω and C ∩B = ∅. Then let Aα = Aξ ∪ C.
Case 7. L = ∅ and R has a smallest element η under ⊳. Let Aη = Aα ∪ D with

|Aα| = |D| = ω and Aα ∩D = ∅.
Case 8. L = ∅ and R does not have a smallest element under ⊳. Then

(4) ∀n ∈ ω[
⋂

m≤nDm is infinite].

In fact, write Dm = Aη(m) for all m ≤ n. Let i ≤ n be such that η(i) is ⊳-minimum among
all the ηm’s. Then

⋃

m≤n,m 6=i(Aη(i)\Aη(m)) is finite, and

Aη(i)\
⋃

m≤n,m 6=i

(Aη(i)\Aη(m)) = Aη(i) ∩
⋂

m≤n
m6=i

((ω\Aη(i)) ∪Aη(m)) =
⋂

m≤n

Aη(m),

and (4) follows.
Hence we can define by induction

an ∈
⋂

m≤n

Dm\{am : m < n}.

Let Aα = {a2n : n ∈ ω}. If n ∈ ω, then Aα\Dn ⊆ n.

Proposition 25.88. (III.3.79) κ < p implies that every linear order of size κ can be
embedded in P(ω)/fin.

Proof. Let P be as in the proof of Proposition 25.23. So we are given a linear order
(L,<) with |L| ≤ κ. By Theorem 25.63 it suffices to show that P is σ-centered. Note
that κ < 2ω by Propositions 20.51 and 20.52. Let 〈fij : i ∈ L, j ∈ ω〉 be a system of
independent functions; see Theorem 21.35. For each e ∈ ω define xe ∈

L×ω2 by

xe(u, j) =
{

1 if fuj(e) = 1,
0 otherwise.

Then for e, l ∈ ω let

Kel = {p ∈ P : kp = l and ∀u ∈ Sp∀i < kp[σp(u, i) = xe(u, i)]}.
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Then Kel is centered. For, suppose that p, q ∈ Kel. Define Sr = Sp ∪ Sq, kr = l, and for
u ∈ Sr and i < l let σr(u, i) = xe(u, i). Then if u ∈ Sp and i < l then σr(u, i) = xe(u, i) =
σp(u, i). So σp ⊆ σr. Similarly, σq ⊆ σr. The final condition for r ≤ p and r ≤ q is clear.
So Kel is centered.

We claim that P =
⋃

e,l∈ωKel. For, suppose that p ∈ P. Choose e ∈ ω such that
∀(x, i) ∈ Sp × kp[fxi(e) = σp(x, i)]. Then p ∈ Kekp .

Proposition 25.89. (III.3.80) Assume that An, Bn ∈ [ω]ω for all n ∈ ω and An ∩ Bm is
finite for all m,n ∈ ω. Then there is a C ∈ [ω]ω such that An ⊆∗ C and Bn ∩ C is finite
for all n ∈ ω.

Proof. See the Handbook of Boolean algebras, page 79.

Proposition 25.90. (III.3.81) There are almost disjoint Aα ∈ [ω]ω for α < ω1 such
that whenever X, Y are disjoint uncountable subsets of ω1, there is no C ∈ [ω]ω such that
∀α ∈ X [Aα ⊆∗ C] and ∀β ∈ Y [Aβ ∩ C is finite].

Proof. Let 〈An : n ∈ ω〉 be a partition of ω into infinite subsets. Now suppose that
ω ≤ α < ω1 and Aξ has been defined for all ξ < α so that each Aξ is infinite and Aξ ∩Aη
is finite for ξ 6= η. Write {Aξ : ξ < α} = {Bm : m ∈ ω} without repetitions. Then
for any n the set Bn+1\

⋂

m≤n(ω\Bm) is infinite, since Bn+1 ∩
⋃

m≤nBm is finite. Hence
we can let Fn be a subset of Bn+1\

⋂

m≤n(ω\Bm) of size n. Let Aα =
⋃

n∈ω Fn. Then
Aα ∩Bn ⊆

⋃

m<n Fm, since Bn ∩ Fm = ∅ for m ≥ n. Thus Aα ∩Aξ is finite for all ξ < α.
Clearly Aα is infinite. Also, {m ∈ ω : |Bm ∩ Aα| ≤ n} ⊆ n + 1, since for m > n we have
Bm+1 ∩ Aα ⊇ Fm and Fm has size m > n. It follows that {m ∈ ω : |Bm ∩ Aα| ≤ n} is
finite and hence also {ξ < α : |Aξ ∩ Aα| ≤ n} is finite.

Now suppose that X and Y are disjoint uncountable subsets of ω1 and C ∈ [ω]ω is
such that Aα ⊆∗ C for all α ∈ X and Aβ ∩ C is finite for all β ∈ Y . For each α ∈ X let
nα ∈ ω be such that Aα\C ⊆ nα, and let X ′ ∈ [X ]ω1 and m ∈ ω be such that nα = m
for all α ∈ X ′. For each β ∈ Y let pβ ∈ ω be such that Aβ ∩ C ⊆ pβ , and let Y ′ ∈ [Y ]ω1

and q ∈ ω be such that pβ = q for all β ∈ Y ′. Choose β ∈ Y ′ so that {α ∈ X ′ : α < β} is
infinite. Now if α ∈ X ′ and α < β, then

Aα ∩ Aβ ⊆ (Aα\C) ∪ (C ∩ Aβ) ⊆ m ∪ q,

contradiction.

Proposition 25.91. (III.3.82) Assume that An, Bα ∈ [ω]ω for n ∈ ω and α < κ. and
An ∩ Bα is finite for each α, n. Assume that κ < b. Then there is a C ∈ [ω]ω such that
An ⊆∗ C and Bα ∩ C is finite for each n, α.

Proof. Let A′
n =

⋃

m≤nAm.

Case 1. ∃m∀n ≥ m[A′
n =∗ A′

m]. Clearly C
def
= A′

m is as desired.
Case 2. ∀m∃n ≥ m[A′

n 6=
∗ A′

m]. Define p0 = 0. Having defined p0 < · · · < pm so
that A′

p0
6=∗ A′

p1
6=∗ · · · 6=∗ A′

pm
, choose pm+1 > pm so that A′

pm
6=∗ A′

pm+1
. Note that

A′
p0
⊆ A′

p1
⊆ · · · and A′

pm+1
\A′

pm
is infinite for all m. Also note that A′

pn
∩Bα is finite for

520



all n ∈ ω and α < κ. Then An ⊆ A
′
pn for all n. So it suffices to find C such that A′

pn ⊆
∗ C

for all n ∈ ω and C ∩Bα is finite for all α < κ.
For each α < κ and n ∈ ω let fα(n) be greater than each member of Bα∩(A′

pn+1
\A′

pn
).

Since κ < b, choose g ∈ ωω such that fα ≤∗ g for all α < κ. Now let

C = A′
p0
∪
⋃

n∈ω

((A′
pn+1
\A′

pn
)\g(n)).

By induction, A′
pn ⊆

∗ C for every n ∈ ω. In fact, obviously A′
p0 ⊆ C. Suppose that

A′
pn
⊆∗ C. Then A′

pn+1
= A′

pn
∪ (A′

pn+1
\A′

pn
) ⊆∗ C.

Now suppose that α < κ. Choose m so that fα(n) ≤ g(n) for all n ≥ m. Then

C ∩Bα =(Bα ∩A
′
p0

)

∪
⋃

n<m

((Bα ∩ A
′
pn+1

)\A′
pn

)\g(n)

∪
⋃

m≤n

((Bα ∩ A
′
pn+1
\A′

pn
)\g(n)

Now the first two parts of the right side are finite, and the third is empty, as desired.

Proposition 25.92. (III.3.87) Let P be the set of closed subsets of [0, 1] of positive Lebesgue
measure, under ⊆. Then P is ccc but not σ-centered. Under CH, P does not have ω1 as a
pre-caliber.

Proof. ccc: Suppose that A is a collection of pairwise disjoint closed sets of positive
measure with |A | = ω1. Then there exist a positive integer n and an uncountable subset
B of A such that µ(b) > 1

n for all b ∈ B, contradiction.
not σ-centered: Suppose that 〈Ci : i ∈ ω〉 is a system of centered subsets of P; we want

to find p ∈ P which is not in any Ci. For each i ∈ ω choose ai ∈
⋂
Ci. Then {ai : i ∈ ω}

has measure 0, so p′
def
= [0, 1]\{ai : i ∈ ω} has measure 1. By Corollary 18.96(ii), there is

a closed p ⊆ p′ of positive measure. If p ∈ Ci, then ai ∈
⋂
Ci ⊆ p, contradiction.

not pre-caliber ω1 under CH: Let [0, 1] = {xξ : ξ < ω1}. For each α < ω1 the

set {xξ : ξ < α} is countable, and so has measure 0. Hence p′α
def
= [0, 1]\{xξ : ξ < α}

has measure 1. By Corollary 18.96(ii), there is a closed pα ⊆ p′α of positive measure.
Suppose that M ∈ [ω1]ω1 is such that {pα : α ∈ M} is centered. But ∅ 6=

⋂

α∈M pα = ∅,
contradiction.

Proposition 25.93. (III.3.88) Let µ be a probability measure defined on a σ-algebra A

of subsets of X. Let P = {p ∈ A : µ(p) > 0}, under ⊆. Let E ∈ [P]ω1. Then there is a
linked L ∈ [E]ω1.

Proof. Wlog there is a positive integer n such that ∀p ∈ E[µ(p) ≥ 1
n ]. We now

proceed by induction on n. The case n = 1 is clear: any two elements of E intersect in a
set of positive measure. Now suppose inductively that n > 1.
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Case 1. There is a p ∈ E such that |{q ∈ E : q ⊥ p}| = ω1. Let Y = X\p,
A ′ = {s\p : s ∈ A }, and

µ′(s) =
µ(s)

µ(X\p)

for each s ∈ A ′. Now µ(X\p) + µ(p) = 1, so µ(X\p) = 1− µ(p) ≤ 1− 1
n = n−1

n . Hence
1

µ(X\p) ≥
n
n−1 and so for any q ∈ A ′ we have µ′(q) = µ(q)

µ(X\p) ≥
1

n−1 . Hence the inductive

hypothesis applies to give the desired result.
Case 2. ∀p ∈ E[|{q ∈ E : q ⊥ p}| ≤ ω]. Let M be a maximal linked subset of E.

Suppose that M is countable. For every p ∈ E there is a q ∈M such that p ⊥ q; so

E =
⋃

q∈M

{p ∈ E : p ⊥ q},

so there is a q ∈M such that {p ∈ E : p ⊥ q} is uncountable, contradiction.

Proposition 25.94. In the proof of Theorem 25.12, if C is a centered subset of P, then
µ(
⋃
C) ≤ ε.

Proof. Suppose that µ(
⋃
C) > ε. Now µ(

⋃
C) = supn∈ω µ([−n, n] ∩

⋃
C), so there

is an n ∈ ω such that µ([−n, n] ∩
⋃
C) > ε. By Corollary 18.96(ii), there is a closed

F ⊆ [−n, n] ∩
⋃
C) such that µ(F ) > ε. By compactness of F , there is a finite C′ ⊆ C

such that F ⊆ [−n, n] ∩
⋃
C′. Since C is centered, there is a d ∈ C such that

⋃
C′ ⊆ d.

Hence ε < µ(F ) ≤ µ(d), contradiction.

Proposition 25.95. (III.3.89) For the forcing poset P of Theorem 25.12, P is not σ-
centered.

Proof. Suppose that 〈Ci : i ∈ ω〉 is a system of centered subsets of P. By Proposition
25.94 we have

⋃
Ci 6= R, so choose ai ∈ R\

⋃
Ci. Then {ai : i ∈ ω} has measure 0, so by

Corollary 18.96(i), there is an open set U with µ(U) < ε such that {ai : i ∈ ω} ⊆ U . If
U ∈ Ci, then ai ∈ U ⊆

⋃
Ci, contradiction.

Proposition 25.96. (III.3.90) MAP(2ω) is false if P is ccc and atomless.

Proof. Case 1. |P| ≤ 2ω. Note that there are at most cω = 2ω maximal antichains.
We claim that P\G is dense: let p ∈ P be arbitrary. Since P is atomless, choose q, r ≤ p
such that q ⊥ r. At most one of q, r is in G, as desired. Let X be a maximal antichain
consisting entirely of elements of P\G, and let p ∈ G ∩X ; contradiction.

Case 2. |P| > 2ω. Consider the following functions. f : ωP→ P is defined by

f(a) =
{

an x such that ∀i ∈ ω[ai ⊥ x] if there is such an x,
11 otherwise.

Also, for each integer m ≥ 2 the function gm : mP→ P defined by

gm(a) =
{

an x such that ∀i < m[x ≤ ai] if there is such an x,
11 otherwise.
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We also consider functions h, k : P → P such that for any p ∈ P, h(p), k(p) ≤ p and
h(p) ⊥ k(p). Let A be a subset of P of size ω, and let Q be the closure of A under the
functions f , gm for m ∈ ω, and h, k. Clearly |Q| ≤ 2ω. The functions gm assure that
Q ⊆ctr P. Hence by Proposition 25.56, Q is ccc. The functions h, k assure that C is
atomless. If X ⊆ Q is an antichain which is not maximal in P, then it is also not maximal
in Q, because of the function f . Let G be a filter on P which intersects all maximal
antichains of Q. Now Q\G is dense in Q, as above. Let X be a maximal antichain of Q

consisting entirely of elements of Q\G. and let p ∈ G ∩X ; contradiction.

The Suslin number S(P) of P is the least κ such that |A| < κ for every antichain of P. For
X a topological space, S(X) = S(OX).

Proposition 25.97. (III.3.92) We call p ∈ P S-minimal iff S(p ↓′) = S(q ↓′) for all
q ≤ p. The set of all S-minimal elements of P is dense.

Proof. Note that if q ≤ p then (q↓′) ⊆ (p↓′) and hence S(q↓′) ≤ S(p↓′). Given p ∈ P,
choose q ≤ p so that S(q↓′) is minimal.

Proposition 25.98. (III.3.93) There is no P such that S(P) = ω.

Proof. Assume that S(P) = ω. Thus every antichain in P is finite, but there is no
upper bound on the size of antichains. Let X be a maximal antichain all of whose elements
are S-minimal.

(1) S(p↓′) ≤ 2 for all p ∈ X .

In fact, suppose that p ∈ X and S(p↓′) > 2. Define q∅ = p, and if a ∈ m2 let qa⌢〈0〉

and qa⌢〈1〉 be incompatible elements below qa. Then {q〈1〉, q〈0,1〉, q〈0,0,1〉, . . .} is an infinite
antichain, contradiction.

By (1), p↓′ is a linear order.
Now suppose that Y is any antichain. For each y ∈ Y choose xy ∈ X compatible with

y; say zy ≤ y, xy. If y, y′ ∈ Y and xy = xy′ , then zy and zy′ are comparable, and hence y
and y′ are compatible, so y = y′. It follows that |Y | ≤ |X |. So every maximal antichain
has size at most |X |, contradiction.

Proposition 25.99. (III.3.94) If S(P) is infinite, then S(P) is uncountable and regular.

Proof. By Proposition 25.98, S(P) is uncountable. Suppose that κ
def
= S(P) is

singular. Let 〈λα : α < cf(κ)〉 be a strictly increasing sequence of cardinals with supremum
κ. Let X be a maximal antichain all of whose elements are S-minimal.

Case 1. There is a p ∈ X such that S(p ↓′) = κ. Let 〈qα : α < cf(κ)〉 be an
antichain below p, and for each α < cf(κ) let Xα be an antichain of size λα below qα.
Then

⋃

α<cf(κ)Xα is an antichain of size κ, contradiction.

Case 2. S(p↓′) < κ for all p ∈ X , but supp∈X S(p↓′) = κ. We now define 〈qα : α <

cf(κ)〉 ∈ cf(κ)X by recursion. If qβ has been defined for all β < α, then supβ<α S(qβ↓′) < κ,
and we let qα ∈ X be such that λα ≤ S(qα↓′) and supβ<α S(qβ↓′) < S(qα↓′). Clearly
〈qα : α < cf(κ)〉 is a one-one sequence, hence is an antichain. So we obtain an antichain of
size κ as in Case 1, Contradiction.
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Case 3. S(p↓′) < κ for all p ∈ X , and supp∈X S(p↓′) < κ. Let 〈qα : α < µ+〉 be
an antichain with |X | < µ. For each α < µ+ there is an xα ∈ X such that qα and xα
are compatible; hence there is a yα ≤ xα, qα. It follows that there is a z ∈ X such that
xα = z for all α in a set M of size µ+. For distinct α, β ∈ M the elements yα and yα are
incompatible, since they are ≤ qα, qβ respectively. This contradicts S(z↓′) < µ+.

Proposition 25.100. (III.3.95) If I 6= ∅ and λ is infinite, then S(Fn(I, λ, ω)) = λ+.

Proof. Fix i ∈ I. Then {{(i, α)} : α < λ} is an antichain of size λ; so λ+ ≤
S(Fn(I, λ, ω)). Now suppose that 〈pα : α < λ+〉 is a system of elements of Fn(I, λ, ω).

Then there exist an M ∈ [λ+]λ
+

and G such that 〈dmn(pα) : α ∈M〉 is a ∆-system with

kernel G. Then there exist an N ∈ [M ]λ
+

and g ∈ Gλ such that pα ↾ G = g for all α ∈ N .
Then for any two elements α, β of N we have pα 6⊥ pβ .

Proposition 25.101. (III.3.96) If κ is weakly inaccessible and P =
∏fin
α<κ Fn(ω, α, ω),

then S(P) = κ.

Proof. For any infinite cardinal λ < κ the set

{{p ∈ P : pλ = {(0, β)} and ∀α ∈ (κ\{λ})[pα = ∅]} : β < λ}

is an antichain of size λ. Hence κ ≤ S(P). Now suppose that p ∈ κP. For each α < κ
choose a finite set Fα ⊆ κ such that pα(β) = ∅ for all β ∈ κ\Fα. Let M ∈ [κ]κ and G be
such that 〈Fα : α ∈M〉 is a ∆-system with kernel G. Then

M =
⋃

g∈
∏

α∈G
Fn(ω,α.ω)

{α ∈M : pα ↾ G = g}.

Since |
∏

α∈G Fn(ω, α, ω)| < κ, there exist N ∈ [M ]κ and g ∈
∏

α∈G Fn(ω, α, ω) such that
pα ↾ G = g for all α ∈ N . Then for any α, β ∈ N we have pα 6⊥ pβ.

Theorem 25.102. (III.5.19) Let T be an infinite tree with no uncountable chains and let
κ = |T |. Assume MA(κ). Then there is a continuous order preserving ϕ : T → Q.

Proof. Let P be the set of all p ∈ Fn(T,Q, ω) such that ∀x, y ∈ dmn(p)[x < y →
p(x) < p(y)], ordered by ⊇.

To show that P is ccc, let A ⊆ P be uncountable. For each a ∈ [T ]<ω the set {p ∈ P :
dmn(p) = a} is countable, so there is an uncountable A1 ⊆ A such that 〈dmn(p) : p ∈ A1〉
is one-one. Next, let 〈dmn(p) : p ∈ A2〉 be a ∆-system with kernel B, where A2 ∈ [A1]ω1 .
Since {p ↾ B : p ∈ A2} ⊆ BQ, there exist an uncountable A3 ⊆ A2 and an f ∈ BQ such
that p ↾ B = f for all p ∈ A3. Then 〈dmn(p)\B : p ∈ A3〉 is an uncountable system of
pairwise disjoint finite subsets of T . Hence by Lemma 22.19 there are distinct p, q ∈ A3

such that x and y are incomparable for all x ∈ dmn(p)\B and y ∈ dmn(q)\B. Then
p ∪ q ∈ P, as desired.

For each x ∈ T let Dx = {p ∈ P : x ∈ dmn(p)}. Then Dx is dense in P; for assume
that p ∈ P and x /∈ dmn(p).
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Case 1. x is not comparable with any element of dmn(p). Let q = p∪{(x, 0)}. Clearly
q ∈ Dx and q ≤ p.

Case 2. ∃y ∈ dmn(p)[y < x] but not∃z ∈ dmn(p)[x < z]. Let a be a rational number
greater than p(y) for all y ∈ dmn(p) for which y < x, and set q = p ∪ {(x, a)}. Clearly
q ∈ Dx and q ≤ p.

Case 3. ∃y ∈ dmn(p)[x < y] but not∃z ∈ dmn(p)[z < x]. Let a be a rational number
less than p(y) for all y ∈ dmn(p) for which x < y, and set q = p∪ {(x, a)}. Clearly q ∈ Dx
and q ≤ p.

Case 4. ∃y ∈ dmn(p)[x < y] and ∃z ∈ dmn(p)[z < x]. Let a be a rational number less
than p(y) for all y ∈ dmn(p) for which x < y, and greater than p(z) for all z ∈ dmn(p) for
which z < x, and set q = p ∪ {(x, a)}. Clearly q ∈ Dx and q ≤ p.

Now we define for any n ∈ ω and each t ∈ T of limit level

Etn = {p ∈ P : t ∈ dmn(p) and ∃x ∈ dmn(p) ∩ (t↓)[p(x) ≥ p(t)− 2−n]}.

To show that Etn is dense, suppose that n ∈ ω, t ∈ T is of limit level, and p ∈ P. Using
the fact that Dt is dense, wlog t ∈ dmn(p). Choose x < t such that y < x for all y < t with
y ∈ dmn(p). Note that p(y) < p(t) for all y < t with y ∈ dmn(p). Define q = p ∪ {(x, s)},
where s < p(t) with p(y) < s for all y < t with y ∈ dmn(p), and with s ≥ p(t) − 2−n.
Clearly q ∈ Etn and q ≤ p.

Now let G be a filter intersecting all the sets Dx and Etn. Let ϕ =
⋃
G. Then

ϕ : T → Q and it is increasing because G ∩Dx 6= ∅ for all x ∈ T . ϕ is continuous because
of the sets Ttn, using Lemma 12.20.
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26. Large cardinals

The study, or use, of large cardinals is one of the most active areas of research in set theory
currently. There are many provably different kinds of large cardinals. We describe some
important ones, ranging from (mere) inaccessibles to ones close to inconsistency.

Mahlo cardinals

Mahlo cardinals were mentioned briefly on page 425. As we mentioned in the elementary
part of these notes, one cannot prove in ZFC that uncountable weakly inaccessible cardinals
exist (if ZFC itself is consistent). But now we assume that even the somewhat stronger
inaccessible cardinals exist, and we want to explore, roughly speaking, how many such
there can be. The weakest kind of large cardinals beyond mere inaccessibles are the Mahlo
cardinals, which were briefly discussed in Chapter 23.

We begin with some easy propositions. A strong limit cardinal is an infinite cardinal
κ such that 2λ < κ for all λ < κ.

Proposition 26.1. Assume that uncountable inaccessible cardinals exist, and suppose that
κ is the least such. Then every uncountable strong limit cardinal less than κ is singular.

The inaccessibles are a class of ordinals, hence form a well-ordered class, and they can be
enumerated in a strictly increasing sequence 〈ια : α ∈ O〉. Here O is an ordinal, or On,
the class of all ordinals. The definition of Mahlo cardinal is motivated by the following
simple proposition.

Proposition 26.2. If κ = ια with α < κ, then the set {λ < κ : λ is regular} is a
nonstationary subset of κ.

Proof. Since κ is regular and α < κ, we must have supβ<α ιβ < κ. Let C = {γ :
supβ<α ιβ < γ < κ and γ is a strong limit cardinal}. Then C is club in κ with empty
intersection with the given set.

• κ is Mahlo iff κ is an uncountable inaccessible cardinal and {λ < κ : λ is regular} is
stationary in κ.

• κ is weakly Mahlo iff κ is an uncountable weakly inaccessible cardinal and {λ < κ : λ is
regular} is stationary in κ.

Since the function ι is strictly increasing, we have α ≤ ια for all α. Hence the following is
a corollary of Proposition 26.2

Corollary 26.3. If κ is a Mahlo cardinal, then κ = ικ.

Thus a Mahlo cardinal κ is not only inaccessible, but also has κ inaccessibles below it.

Proposition 26.4. For any uncountable cardinal κ the following conditions are equivalent:
(i) κ is Mahlo.
(ii) {λ < κ : λ is inaccessible} is stationary in κ.
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Proof. (i)⇒(ii): Let S = {λ < κ : λ is regular}, and S′ = {λ < κ : λ is inaccessible}.
Assume that κ is Mahlo. In particular, κ is uncountable and inaccessible. Suppose that
C is club in κ. The set D = {λ < κ : λ is strong limit} is clearly club in κ too. If
λ ∈ S ∩ C ∩D, then λ is inaccessible, as desired.

(ii)⇒(i): obvious.

The following proposition answers a natural question one may ask after seeing Corollary
26.3.

Proposition 26.5. Suppose that κ is minimum such that ιk = κ. Then κ is not Mahlo.

Proof. Suppose to the contrary that κ is Mahlo, and let S = {λ < κ : λ is
inaccessible} For each λ ∈ S, let f(λ) be the α < κ such that λ = ια. Then α = f(λ) < λ
by the minimality of κ. So f is regressive on the stationary set S, and hence there is an
α < κ and a stationary subset S′ of S such that f(λ) = α for all λ ∈ S′. But actually f is
clearly a one-one function, contradiction.

Mahlo cardinals are in a sense larger than “ordinary” inaccessibles. Namely, below every
Mahlo cardinal κ there are κ inaccessibles. But now in principle one could enumerate all
the Mahlo cardinals, and then apply the same idea used in going from regular cardinals to
Mahlo cardinals in order to go from Mahlo cardinals to higher Mahlo cardinals. Thus we
can make the definitions

• κ is hyper-Mahlo iff κ is inaccessible and the set {λ < κ : λ is Mahlo} is stationary in κ.

• κ is hyper-hyper-Mahlo iff κ is inaccessible and the set {λ < κ : λ is hyper-Mahlo} is
stationary in κ.

Of course one can continue in this vein.
Note that if strong inaccessibles exist, then the least such is not Mahlo.

Weakly compact cardinals

• A cardinal κ is weakly compact iff κ > ω and κ → (κ, κ)2. There are several equivalent
definitions of weak compactness. The one which justifies the name “compact” involves
infinitary logic, and it will be discussed later. Right now we consider equivalent conditions
involving trees and linear orderings.

• A cardinal κ has the tree property iff every κ-tree has a chain of size κ.

Equivalently, κ has the tree property iff there is no κ-Aronszajn tree.

• A cardinal κ has the linear order property iff every linear order (L,<) of size κ has a
subset with order type κ or κ∗ under <.

Lemma 26.6. For any regular cardinal κ, the linear order property implies the tree prop-
erty.

Proof. We are going to go from a tree to a linear order in a different way from the
branch method of Chapter 22.
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Assume the linear order property, and let (T,<) be a κ-tree. For each x ∈ T and
each α ≤ ht(x, T ) let xα be the element of height α below x. Thus x0 is the root which
is below x, and xht(x) = x. For each x ∈ T , let T ↾ x = {y ∈ T : y < x}. If x, y are
incomparable elements of T , then let χ(x, y) be the smallest ordinal α ≤ min(ht(x), ht(y))
such that xα 6= yα. Let <′ be a well-order of T . Then we define, for any distinct x, y ∈ T ,

x <′′ y iff x < y, or x and y are incomparable and xχ(x,y) <′ yχ(x,y).

We claim that this gives a linear order of T . To prove transitivity, suppose that x <′′ y <′′

z. Then there are several possibilities. These are illustrated in diagrams below.
Case 1. x < y < z. Then x < z, so x <′′ z.
Case 2. x < y, while y and z are incomparable, with yχ(y,z) <′ zχ(y,z).

Subcase 2.1. ht(x) < χ(y, z). Then x = xht(x) = yht(x) = zht(x) so that x < z,
hence x <′′ z.

Subcase 2.2. χ(y, z) ≤ ht(x). Then x and z are incomparable. In fact, if z < x
then z < y, contradicting the assumption that y and z are incomparable; if x ≤ z, then
yht(x) = x = xht(x) = zht(x), contradiction. Now if α < χ(x, z) then yα = xα = zα; it
follows that χ(x, z) ≤ χ(y, z). If α < χ(y, z) then α ≤ ht(x), and hence xα = yα = zα; this
shows that χ(y, z) ≤ χ(x, z). So χ(y, z) = χ(x, z). Hence xχ(x,z) = yχ(x,z) = yχ(y,z) <′

zχ(y,z) = zχ(x,z), and hence x <′′ z.
Case 3. x and y are incomparable, and y < z. Then x and z are incomparable. Now

if α < χ(x, y), then xα = yα = zα; this shows that χ(x, y) ≤ χ(x, z). Also, xχ(x,y) <′

yχ(x,y) = zχ(x,y), and this implies that χ(x, z) ≤ χ(x, y). So χ(x, y) = χ(x, z). It follows
that xχ(x,z) = xχ(x,y) <′ yχ(x,y) = zχ(x,z), and hence x <′′ z.

Case 4. x and y are incomparable, and also y and z are incomparable. We consider
subcases.

Subcase 4.1. χ(y, z) < χ(x, y). Now if α < χ(y, z), then xα = yα = zα; so
χ(y, z) ≤ χ(x, z). Also, xχ(y,z) = yχ(y,z) <′ zχ(y,z), so that χ(x, z) ≤ χ(y, z). Hence
χ(x, z) = χ(y, z), and xχ(x,z) = yχ(y,z) <′ zχ(y,z), and hence x <′′ z.

Subcase 4.2. χ(y, z) = χ(x, y). Now xχ(x,y) <′ yχ(x,y) = yχ(y,z) <′ zχ(y,z) =
zχ(x,y). It follows that χ(x, z) ≤ χ(x, y). For any α < χ(x, y) we have xα = yα = zα since
χ(y, z) = χ(x, y). So χ(x, y) = χ(x, z). Hence xχ(x,z) = xχ(x,y) <′ yχ(x,y) = yχ(y,z) <′

zχ(y,z) = zχ(x,z), so x <′′ z.
Subcase 4.3. χ(x, y) < χ(y, z). Then xχ(x,y) <′ yχ(x,y) = zχ(x,y), and if α < χ(x, y)

then xα = yα = zα. It follows that x <′′ z

Clearly any two elements of T are comparable under <′′, so we have a linear order. The
following property is also needed.

(*) If t < x, y and x <′′ a <′′ y, then t < a.

In fact, suppose not. If a ≤ t, then a < x, hence a <′′ x, contradiction. So a and t are
incomparable. Then χ(a, t) ≤ ht(t), and hence x <′′ y <′′ a or a <′′ x <′′ y, contradiction.
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Now by the linear order property, (T,<′′) has a subset L of order type κ or κ∗. First
suppose that L is of order type κ. Define

B = {t ∈ T : ∃x ∈ L∀a ∈ L[x ≤′′ a→ t ≤ a]}.

We claim that B is a chain in T of size κ. Suppose that t0, t1 ∈ B with t0 6= t1, and choose
x0, x1 ∈ L correspondingly. Say wlog x0 <

′′ x1. Now t0 ∈ B and x0 ≤′′ x1, so t0 ≤ x1.
And t1 ∈ B and x1 ≤ x1, so t1 ≤ x1. So t0 and t1 are comparable.

Now let α < κ; we show that B has an element of height α. For each t of height α let
Vt = {x ∈ L : t ≤ x}. Then

{x ∈ L : ht(x) ≥ α} =
⋃

ht(t)=α

Vt;

since there are fewer than κ elements of height less than κ, this set has size κ, and so there
is a t such that ht(t) = α and |Vt| = κ. We claim that t ∈ B. To prove this, take any
x ∈ Vt such that t < x. Suppose that a ∈ L and x ≤′′ a. Choose y ∈ Vt with a <′′ y and
t < y. Then t < x, t < y, and x ≤′′ a <′′ y. If x = a, then t ≤ a, as desired. If x <′′ a,
then t < a by (*).

This finishes the case in which L has a subset of order type κ. The case of order type
κ∗ is similar, but we give it. So, suppose that L has order type κ∗. Define

B = {t ∈ T : ∃x ∈ L∀a ∈ L[a ≤′′ x→ t ≤ a]}.
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We claim that B is a chain in T of size κ. Suppose that t0, t1 ∈ B with t0 6= t1, and choose
x0, x1 ∈ L correspondingly. Say wlog x0 <

′′ x1. Now t0 ∈ B and x0 ≤ x0, so t0 ≤ x0. and
t1 ∈ B and x0 ≤′′ x1, so t1 ≤ x0. So t0 and t1 are comparable.

Now let α < κ; we show that B has an element of height α. For each t of height α let
Vt = {x ∈ L : t ≤ x}. Then

{x ∈ L : ht(x) ≥ α} =
⋃

ht(t)=α

Vt;

since there are fewer than κ elements of height less than κ, this set has size κ, and so there
is a t such that ht(t) = α and |Vt| = κ. We claim that t ∈ B. To prove this, take any
x ∈ Vt such that t < x. Suppose that a ∈ L and a ≤′′ x. Choose y ∈ Vt with y <′′ a and
t < y. Then t < x, t < y, and y <′′ a ≤′′ x. If a = x, then t < a, as desired. If a <′′ x,
then t < a by (*).

Theorem 26.7. For any uncountable cardinal κ the following conditions are equivalent:
(i) κ is weakly compact.
(ii) κ is inaccessible, and it has the linear order property.
(iii) κ is inaccessible, and it has the tree property.
(iv) For any cardinal λ such that 1 < λ < κ we have κ→ (κ)2λ.

Proof. (i)⇒(ii): Assume that κ is weakly compact. First we need to show that κ is
inaccessible.

To show that κ is regular, suppose to the contrary that κ =
∑

α<λ µα, where λ < κ
and µα < κ for each α < λ. By the definition of infinite sum of cardinals, it follows that
we can write κ =

⋃

α<λMα, where |Mα| = µα for each α < λ and the Mα’s are pairwise
disjoint. Define f : [κ]2 → 2 by setting, for any distinct α, β < κ,

f({α, β}) =
{

0 if α, β ∈Mξ for some ξ < λ,
1 otherwise.

Let H be homogeneous for f of size κ. First suppose that f [[H]2] = {0}. Fix α0 ∈ H, and
say α0 ∈ Mξ. For any β ∈ H we then have β ∈ Mξ also, by the homogeneity of H. So
H ⊆ Mξ, which is impossible since |Mξ| < κ. Second, suppose that f [[H]2] = {1}. Then
any two distinct members of H lie in distinct Mξ’s. Hence if we define g(α) to be the
ξ < λ such that α ∈ Mξ for each α ∈ H, we get a one-one function from H into λ, which
is impossible since λ < κ.

To show that κ is strong limit, suppose that λ < κ but κ ≤ 2λ. Now by Theorem
24.5 we have 2λ 6→ (λ+, λ+)2. So choose f : [2λ]2 → 2 such that there does not exist an

X ∈ [2λ]λ
+

with f ↾ [X ]2 constant. Define g : [κ]2 → 2 by setting g(A) = f(A) for any

A ∈ [κ]2. Choose Y ∈ [κ]κ such that g ↾ [Y ]2 is constant. Take any Z ∈ [Y ]λ
+

. Then
f ↾ [Z]2 is constant, contradiction.

So, κ is inaccessible. Now let (L,<) be a linear order of size κ. Let ≺ be a well order
of L. Now we define f : [L]2 → 2; suppose that a, b ∈ L with a ≺ b. Then

f({a, b}) =
{

0 if a < b,
1 if b > a.
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Let H be homogeneous for f and of size κ. If f [[H]2] = {0}, then H is well-ordered by <.
If f [[H]2] = {1}, then H is well-ordered by >.

(ii)⇒(iii): By Lemma 26.6.
(iii)⇒(iv): Assume (iii). Suppose that F : [κ]2 → λ, where 1 < λ < κ; we want to

find a homogeneous set for F of size κ. We construct by recursion a sequence 〈tα : α < κ〉
of members of <κκ; these will be the members of a tree T . Let t0 = ∅. Now suppose
that 0 < α < κ and tβ ∈ <κκ has been constructed for all β < α. We now define tα
by recursion; its domain will also be determined by the recursive definition, and for this
purpose it is convenient to actually define an auxiliary function s : κ→ κ+1 by recursion.
If s(η) has been defined for all η < ξ, we define

s(ξ) =







F ({β, α}) where β < α is minimum such that s ↾ ξ = tβ , if there is such a β,

κ if there is no such β.

Now eventually the second condition here must hold, as otherwise 〈s ↾ ξ : ξ < κ〉 would
be a one-one function from κ into {tβ : β < α}, which is impossible. Take the least ξ
such that s(ξ) = κ, and let tα = s ↾ ξ. This finishes the construction of the tα’s. Let
T = {tα : α < κ}, with the partial order ⊆. Clearly this gives a tree.

By construction, if α < κ and ξ < dmn(tα), then tα ↾ ξ ∈ T . Thus the height of an
element tα is dmn(tα).

(2) The sequence 〈tα : α < κ〉 is one-one.

In fact, suppose that β < α and tα = tβ. Say that dmn(tα) = ξ. Then tα = tα ↾ ξ = tβ,
and the construction of tα gives something with domain greater than ξ, contradiction.
Thus (2) holds, and hence |T | = κ.

(3) The set of all elements of T of level ξ < κ has size less than κ.

In fact, let U be this set. Then

|U | ≤
∏

η<ξ

λ = λξ < κ

since κ is inaccessible. So (3) holds, and hence, since |T | = κ, T has height κ and is a
κ-tree.

(4) If tβ ⊂ tα, then β < α and F ({β, α}) = tα(dmn(tβ)).

This is clear from the definition.
Now by the tree property, there is a branch B of size κ. For each ξ < λ let

Hξ = {α < κ : tα ∈ B and t⌢α 〈ξ〉 ∈ B}.

We claim that each Hξ is homogeneous for F . In fact, take any distinct α, β ∈ Hξ. Then
tα, tβ ∈ B. Say tβ ⊂ tα. Then β < α, and by construction tα(dmn(tβ)) = F ({α, β}). So
F ({α, β}) = ξ by the definition of Hξ, as desired. Now

{α < κ : tα ∈ B} =
⋃

ξ<λ

{α < κ : tα ∈ Hξ},
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so since |B| = κ it follows that |Hξ| = κ for some ξ < λ, as desired.
(iv)⇒(i): obvious.

Now we go into the connection of weakly compact cardinals with logic, thereby justifying
the name “weakly compact”.

Let κ and λ be infinite cardinals. The language Lκλ is an extension of ordinary first
order logic as follows. The notion of a model is unchanged. In the logic, we have a sequence
of λ distinct individual variables, and we allow quantification over any one-one sequence
of fewer than λ variables. We also allow conjunctions and disjunctions of fewer than κ
formulas. It should be clear what it means for an assignment of values to the variables to
satisfy a formula in this extended language. We say that an infinite cardinal κ is logically
weakly compact iff the following condition holds:

(*) For any language Lκκ with at most κ basic symbols, if Γ is a set of sentences of the
language and if every subset of Γ of size less than κ has a model, then also Γ has a model.

Notice here the somewhat unnatural restriction that there are at most κ basic symbols.
If we drop this restriction, we obtain the notion of a strongly compact cardinal. These
cardinals are much larger than even the measurable cardinals discussed later. See below
for more about strongly compact cardinals.

Theorem 26.8. An infinite cardinal is logically weakly compact iff it is weakly compact.

Proof. Suppose that κ is logically weakly compact.

(1) κ is regular.

Suppose not; say X ⊆ κ is unbounded but |X | < κ. Take the language with individual
constants cα for α < κ and also one more individual constant d. Consider the following
set Γ of sentences in this language:

{d 6= cα : α < κ} ∪







∨

β∈X

∨

α<β

(d = cα)






.

If ∆ ∈ [Γ]<κ, let A be the set of all α < κ such that d 6= cα is in ∆. So |A| < κ. Take any
α ∈ κ\A, and consider the structure M = (κ, γ, α)γ<κ. There is a β ∈ X with α < β, and
this shows that M is a model of ∆.

Thus every subset of Γ of size less than κ has a model, so Γ has a model; but this is
clearly impossible.

(2) κ is strong limit.

In fact, suppose not; let λ < κ with κ ≤ 2λ. We consider the language with distinct
individual constants cα, d

i
α for all α < κ and i < 2. Let Γ be the following set of sentences

in this language:

{
∧

α<λ

[(cα = d0
α ∨ cα = d1

α) ∧ d0
α 6= d1

α]

}

∪

{
∨

α<λ

(cα 6= df(α)
α ) : f ∈ λ2

}

.
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Suppose that ∆ ∈ [Γ]<κ. We may assume that ∆ has the form
{
∧

α<λ

[(cα = d0
α ∨ cα = d1

α) ∧ d0
α 6= d1

α]

}

∪

{
∨

α<λ

(cα 6= df(α)
α ) : f ∈M

}

,

where M ∈ [λ2]<κ. Fix g ∈ λ2\M . Let d0
α = α, d1

α = α+ 1, and cα = d
g(α)
α , for all α < λ.

Clearly (κ, cα, d
i
α)α<λ,i<2 is a model of ∆.

Thus every subset of Γ of size less than κ has a model, so Γ has a model, say

(M,uα, v
i
α)α<λ,i<2. By the first part of Γ there is a function f ∈ λ2 such that uα = d

f(α)
α

for every α < λ. this contradicts the second part of Γ.
Hence we have shown that κ is inaccessible.
Finally, we prove that the tree property holds. Suppose that (T,≤) is a κ-tree. Let

L be the language with a binary relation symbol ≺, unary relation symbols Pα for each
α < κ, individual constants ct for each t ∈ T , and one more individual constant d. Let Γ
be the following set of sentences:

all Lκκ-sentences holding in the structure M
def
= (T,<,Levα(T ), t)α<κ,t∈T ;

∃x[Pαx ∧ x ≺ d] for each α < κ.

Clearly every subset of Γ of size less than κ has a model. Hence Γ has a model N
def
=

(A,<′, S′
α, at, b)α<κ,t∈T . For each α < κ choose eα ∈ S′

α with eα <
′ b. Now the following

sentence holds in M and hence in N :

∀x



Pαx↔
∨

s∈Levα(T )

(x = cs)



 .

Hence for each α < κ we can choose t(α) ∈ T such that ea = at(α). Now the sentence

∀x, y, z[x < z ∧ y < z → x and y are comparable]

holds in M , and hence in N . Now fix α < β < κ. Now eα, eβ <
′ b, so it follows that eα and

eβ are comparable under ≤′. Hence at(α) and at(β) are comparable under ≤′. It follows
that t(α) and t(β) are comparable under ≤. So t(α) < t(β). Thus we have a branch of
size κ.

Now suppose that κ is weakly compact. Let L be an Lκκ-language with at most κ
symbols, and suppose that Γ is a set of sentences in L such that every subset ∆ of Γ of
size less than κ has a model M∆. We will construct a model of Γ by modifying Henkin’s
proof of the completeness theorem for first-order logic.

First we note that there are at most κ formulas of L. This is easily seen by the
following recursive construction of all formulas:

F0 = all atomic formulas;

Fα+1 = Fα ∪ {¬ϕ : ϕ ∈ Fα} ∪
{∨

Φ : Φ ∈ [Fα]<κ
}

∪ {∃xϕ : ϕ ∈ Fα, x of length < κ};

Fα =
⋃

β<α

Fβ for α limit.
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By induction, |Fα| ≤ κ for all α ≤ κ, and Fκ is the set of all formulas. (One uses that κ is
inaccessible.)

Expand L to L′ by adjoining a set C of new individual constants, with |C| = κ. Let
Θ be the set of all subformulas of the sentences in Γ. Let 〈ϕα : α < κ〉 list all sentences
of L′ which are of the form ∃xψα(x) and are obtained from a member of Θ by replacing
variables by members of C. Here x is a one-one sequence of variables of length less than
κ; say that x has length βα. Now we define a sequence 〈dα : α < κ〉; each dα will be a
sequence of members of C of length less than κ. If dβ has been defined for all β < α, then

⋃

β<α

rng(dβ) ∪ {c ∈ C : c occurs in ϕβ for some β < α}

has size less than κ. We then let dα be a one-one sequence of members of C not in this
set; dα should have length βα. Now for each α ≤ κ let

Ωα = {∃xψβ(x)→ ψβ(dβ) : β < α}.

Note that Ωα ⊆ Ωγ if α < γ ≤ κ. Now we define for each ∆ ∈ [Γ]<κ and each α ≤ κ a
model N∆

α of ∆ ∪ Ωα. Since Ω0 = ∅, we can let N∆
0 = M∆. Having defined N∆

α , since
the range of dα consists of new constants, we can choose denotations of those constants,
expanding N∆

α to N∆
α+1, so that the sentence

∃xψα(x)→ ψα(dα)

holds in N∆
α+1. For α ≤ κ limit we let N∆

α =
⋃

β<αN
∆
β .

It follows that N∆
κ is a model of ∆ ∪Ωκ. So each subset of Γ ∪Ωκ of size less than κ

has a model.
It suffices now to find a model of Γ ∪ Ωκ in the language L′. Let 〈ψα : α < κ〉 be

an enumeration of all sentences obtained from members of Θ by replacing variables by
members of C, each such sentence appearing κ times. Let T consist of all f satisfying the
following conditions:

(3) f is a function with domain α < κ.

(4) ∀β < α[(ψβ ∈ Γ ∪Ωκ → f(β) = ψβ) and ψβ /∈ Γ ∪ Ωκ → f(β) = ¬ψβ)].

(5) rng(f) has a model.

Thus T forms a tree ⊆.

(6) T has an element of height α, for each α < κ.

In fact, ∆
def
= {ψβ : β < α, ψβ ∈ Γ ∪ Ωκ} ∪ {¬ψβ : β < α,¬ψβ ∈ Γ ∪ Ωκ} is a subset of

Γ ∪ Ωκ of size less than κ, so it has a model P . For each β < α let

f(β) =

{
ψβ if P |= ψβ,
¬ψγ if P |= ¬ψβ .
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Clearly f is an element of T with height α. So (6) holds.
Thus T is clearly a κ-tree, so by the tree property we can let B be a branch in T of

size κ. Let Ξ = {f(α) : α < κ, f ∈ B, f has height α + 1}. Clearly Γ ∪ Ωκ ⊆ Ξ and for
every α < κ, ψα ∈ Ξ or ¬ψα ∈ Ξ.

(7) If ϕ, ϕ→ χ ∈ Ξ, then χ ∈ Ξ.

In fact, say ϕ = f(α) and ϕ → χ = f(β). Choose γ > α, β so that ψγ is χ. We may
assume that dmn(f) ≥ γ + 1. Since rng(f) has a model, it follows that f(γ) = χ. So (7)
holds.

Let S be the set of all terms with no variables in them. We define σ ≡ τ iff σ, τ ∈ S
and (σ = τ) ∈ Ξ. Then ≡ is an equivalence relation on S. In fact, let σ ∈ S. Say that
σ = σ is ψα. Since ψα holds in every model, it holds in any model of {f(β) : β ≤ α}, and
hence f(α) = (σ = σ). So (σ = σ) ∈ Ξ and so σ ≡ σ. Symmetry and transitivity follow
by (7).

Let M be the collection of all equivalence classes. Using (7) it is easy to see that the
function and relation symbols can be defined on M so that the following conditions hold:

(8) If F is an m-ary function symbol, then

FM (σ0/ ≡, . . . , σm−1/ ≡) = F (σ0, . . . , σm−1)/ ≡ .

(9) If R is an m-ary relation symbol, then

〈σ0/ ≡, . . . , σm−1/ ≡〉 ∈ R
M iff R(σ0, . . . , σm−1) ∈ Ξ.

Now the final claim is as follows:

(10) If ϕ is a sentence of L′, then M |= ϕ iff ϕ ∈ Ξ.

Clearly this will finish the proof. We prove (10) by induction on ϕ. It is clear for atomic
sentences by (8) and (9). If it holds for ϕ, it clearly holds for ¬ϕ. Now suppose that Q is
a set of sentences of size less than κ, and (10) holds for each member of Q. Suppose that
M |=

∧
Q. Then M |= ϕ for each ϕ ∈ Q, and so Q ⊆ Ξ. Hence there is a ∆ ∈ [κ]<κ such

that Q = f [∆], with f ∈ B. Choose α greater than each member of ∆ such that ψα is the
formula

∧
Q. We may assume that α ∈ dmn(f). Since rng(f) has a model, it follows that

f(α) =
∧
Q. Hence

∧
Q ∈ Ξ.

Conversely, suppose that
∧
Q ∈ Ξ. From (7) it easily follows that ϕ ∈ Ξ for every

ϕ ∈ Q, so by the inductive hypothesis M |= ϕ for each ϕ ∈ Q, so M |=
∧
Q.

Finally, suppose that ϕ is ∃xψ, where (10) holds for shorter formulas. Suppose that
M |= ∃xψ. Then there are members of S such that when they are substituted in ψ for x,
obtaining a sentence ψ′, we have M |= ψ′. Hence by the inductive hypothesis, ψ′ ∈ Ξ. (7)
then yields ∃xψ ∈ Ξ.

Conversely, suppose that ∃xψ ∈ Ξ. Now there is a sequence d of members of C such
that ∃xψ ∈ Ξ → ψ(d) is also in Ξ, and so by (7) we get ψ(d) ∈ Ξ. By the inductive
hypothesis, M |= ψ(d), so M |= ∃xψ ∈ Ξ.

Next we want to show that every weakly compact cardinal is a Mahlo cardinal. To do this
we need two lemmas.
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Lemma 26.9. Let A be a set of infinite cardinals such that for every regular cardinal
κ, the set A ∩ κ is non-stationary in κ. Then there is a one-one regressive function with
domain A.

Proof. We proceed by induction on γ
def
=
⋃
A. Note that γ is a cardinal; it is 0 if

A = ∅. The cases γ = 0 and γ = ω are trivial, since then A = ∅ or A = {ω} respectively.
Next, suppose that γ is a successor cardinal κ+. Then A = A′ ∪ {κ+} for some set A′

of infinite cardinals less than κ+. Then
⋃
A′ < κ+, so by the inductive hypothesis there

is a one-one regressive function f on A′. We can extend f to A by setting f(κ+) = κ, and
so we get a one-one regressive function defined on A.

Suppose that γ is singular. Let 〈µξ : ξ < cf(γ)〉 be a strictly increasing continuous
sequence of infinite cardinals with supremum γ, with cf(γ) < µ0. Note then that for every
cardinal λ < γ, either λ < µ0 or else there is a unique ξ < cf(γ) such that µξ ≤ λ < µξ+1.
For every ξ < cf(γ) we can apply the inductive hypothesis to A ∩ µξ to get a one-one
regressive function gξ with domain A ∩ µξ. We now define f with domain A. In case
cf(γ) = ω we define, for each λ ∈ A,

f(λ) =







g0(λ) + 2 if λ < µ0,
µξ + gξ+1(λ) + 1 if µξ < λ < µξ+1,
µξ if λ = µξ+1,
1 if λ = µ0,
0 if λ = γ ∈ A.

Here the addition is ordinal addition. Clearly f is as desired in this case. If cf(γ) > ω, let
〈νξ : ξ < cf(γ)〉 be a strictly increasing sequence of limit ordinals with supremum cf(γ).
Then we define, for each λ ∈ A,

f(λ) =







g0(λ) + 1 if λ < µ0,
µξ + gξ+1(λ) + 1 if µξ < λ < µξ+1,
νξ if λ = µξ,
0 if λ = γ ∈ A.

Clearly f works in this case too.
Finally, suppose that γ is a regular limit cardinal. By assumption, there is a club C

in γ such that C ∩ γ ∩ A = ∅. We may assume that C ∩ ω = ∅. Let 〈µξ : ξ < γ〉 be the
strictly increasing enumeration of C. Then we define, for each λ ∈ A,

f(λ) =







g0(λ) + 1 if λ < µ0,
µξ + gξ+1(λ) + 1 if µξ < λ < µξ+1,
0 if λ = γ ∈ A.

Clearly f works in this case too.

Lemma 26.10. Suppose that κ is weakly compact, and S is a stationary subset of κ. Then
there is a regular λ < κ such that S ∩ λ is stationary in λ.

Proof. Suppose not. Thus for all regular λ < κ, the set S ∩ λ is non-stationary in
λ. Let C be the collection of all infinite cardinals less than κ. Clearly C is club in κ, so
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S ∩ C is stationary in κ. Clearly still S ∩ C ∩ λ is non-stationary in λ for every regular
λ < κ. So we may assume from the beginning that S is a set of infinite cardinals.

Let 〈λξ : ξ < κ〉 be the strictly increasing enumeration of S. Let

T =






s : ∃ξ < κ



s ∈
∏

η<ξ

λη and s is one-one










.

For every ξ < κ the set S ∩ λξ is non-stationary in every regular cardinal, and hence by
Lemma 26.9 there is a one-one regressive function s with domain S ∩ λξ. Now S ∩ λξ =
{λη : η < ξ}. Hence s ∈ T .

Clearly T forms a tree of height κ under ⊆. Now for any α < κ,

∏

β<α

λβ ≤

(

sup
β<α

λβ

)|α|

< κ.

Hence by the tree property there is a branch B in T of size κ. Thus
⋃
B is a one-one

regressive function with domain S, contradicting Fodor’s theorem.

Theorem 26.11. Every weakly compact cardinal is Mahlo, hyper-Mahlo, hyper-hyper-
Mahlo, etc.

Proof. Let κ be weakly compact. Let S = {λ < κ : λ is regular}. Suppose that C
is club in κ. Then C is stationary in κ, so by Lemma 26.10 there is a regular λ < κ such
that C ∩ λ is stationary in λ; in particular, C ∩ λ is unbounded in λ, so λ ∈ C since C is
closed in κ. Thus we have shown that S ∩ C 6= ∅. So κ is Mahlo.

Let S′ = {λ < κ : λ is a Mahlo cardinal}. Suppose that C is club in κ. Let
S′′ = {λ < κ : λ is regular}. Since κ is Mahlo, S′′ is stationary in κ. Then C ∩ S′′

is stationary in κ, so by Lemma 26.10 there is a regular λ < κ such that C ∩ S′′ ∩ λ is
stationary in λ. Hence λ is Mahlo, and also C ∩ λ is unbounded in λ, so λ ∈ C since C is
closed in κ. Thus we have shown that S′ ∩ C 6= ∅. So κ is hyper-Mahlo.

Let S′′′ = {λ < κ : λ is a hyper-Mahlo cardinal}. Suppose that C is club in κ. Let
Siv = {λ < κ : λ is Mahlo}. Since κ is hyper-Mahlo, Siv is stationary in κ. Then C ∩ Siv

is stationary in κ, so by Lemma 26.10 there is a regular λ < κ such that C ∩ Siv ∩ λ is
stationary in λ. Hence λ is hyper-Mahlo, and also C ∩λ is unbounded in λ, so λ ∈ C since
C is closed in κ. Thus we have shown that S′′′ ∩ C 6= ∅. So κ is hyper-hyper-Mahlo.

Etc.

We now give another equivalent definition of weak compactness. For it we need several
lemmas.

Lemma 26.12. Suppose that R is a well-founded class relation on a class A, and it is
set-like and extensional. Also suppose that B ⊆ A, B is transitive, ∀a, b ∈ A[aRb ∈ B→
a ∈ B], and ∀a, b ∈ B[aRb↔ a ∈ b]. Let G,M be the Mostowski collapse of (A,R). Then
G ↾ B is the identity.
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Proof. Suppose not, and let X = {b ∈ B : G(b) 6= b}. Since we are assuming that X
is a nonempty subclass of A, choose b ∈ X such that y ∈ A and yRb imply that y /∈ X.
Then

G(b) = {G(y) : y ∈ A and yRb}

= {G(y) : y ∈ B and yRb}

= {y : y ∈ B and yRb}

= {y : y ∈ B and y ∈ b}

= {y : y ∈ b}

= b,

contradiction.

Lemma 26.13. Let κ be weakly compact. Then for every U ⊆ Vκ, the structure (Vκ,∈, U)
has a transitive elementary extension (M,∈, U ′) such that κ ∈M .

(This means that Vκ ⊆ M and a sentence holds in the structure (Vκ,∈, U, x)x∈Vκ iff it
holds in (M,∈, U ′, x)x∈Vκ .)

Proof. Let Γ be the set of all Lκκ-sentences true in the structure (Vκ,∈, U, x)x∈Vκ,
together with the sentences

c is an ordinal,

α < c (for all α < κ),

where c is a new individual constant. The language here clearly has κ many symbols. Every
subset of Γ of size less than κ has a model; namely we can take (Vκ,∈, U, x, β)x∈Vκ, choosing
β greater than each α appearing in the sentences of Γ. Hence by weak compactness, Γ has
a model (M,E,W, kx, y)x∈Vκ . This model is well-founded, since the sentence

¬∃v0v1 . . .

[
∧

n∈ω

(vn+1 ∈ vn)

]

holds in (Vκ,∈, U, x)x∈Vκ, and hence in (M,E,W, kx, y)x∈Vκ .
Note that k is an injection of Vκ into M . Let F be a bijection from M\rng(k) onto

{(Vκ, u) : u ∈ M\rng(k)}. Then G
def
= k−1 ∪ F−1 is one-one, mapping M onto some set

N such that Vκ ⊆ N . We define, for x, z ∈ N , xE′z iff G−1(x)EG−1(z). Then G is an

isomorphism from (M,E,W, kx, y)x∈Vκ onto N
def
= (N,E′, G[W ], x, G(y))x∈Vκ. Of course

N is still well-founded. It is also extensional, since the extensionality axiom holds in (Vκ,∈)
and hence in (M,E) and (N,E′). Let H,P be the Mostowski collapse of (N,E′). Thus P
is a transitive set, and

(1) H is an isomorphism from (N,E′) onto (P,∈).

(2) ∀a, b ∈ N [aE′b ∈ Vκ → a ∈ b].
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In fact, suppose that a, b ∈ N and aE′b ∈ Vκ. Let the individual constants used in the
expansion of (Vκ,∈, U) to (Vκ,∈, U, x)a∈Vκ be 〈cx : x ∈ Vκ〉. Then

(Vκ,∈, U, x)a∈Vκ |= ∀z

[

z ∈ kb →
∨

w∈b

(z = kw)

]

,

and hence this sentence holds in (N,E′, G[W ], x, G(y))x∈Vκ as well, and so there is a w ∈ b
such that a = w, i.e., a ∈ b. So (2) holds.

(3) ∀a, b ∈ Vκ[a ∈ b→ aE′b]

In fact, suppose that a, b ∈ Vκ and a ∈ b. Then the sentence ka ∈ kb holds in (Vκ,∈
, U, x)x∈Vκ, so it also holds in (N,E′, G[W ], x, G(y))x∈Vκ, so that aE′b.

We have now verified the hypotheses of Lemma 26.12. It follows that H ↾ Vκ is
the identity. In particular, Vκ ⊆ P . Now take any sentence σ in the language of (Vκ,∈
, U, x)x∈Vκ. Then

(Vκ,∈, U, x)x∈Vκ |= σ iff (M,E,W, kx)x∈Vκ |= σ

iff (N,E′, G[W ], x)x∈Vκ |= σ

iff (P,∈, H[G[W ]], x)x∈Vκ |= σ.

Thus (P,∈, H[G[W ]]) is an elementary extension of (Vκ,∈, U).
Now for α < κ we have

(M,E,W, kx, y)x∈Vκ |= [y is an ordinal and kαEy], hence

(N,E′, G[W ], x, G(y))x∈Vκ |= [G(y) is an ordinal and αE′G(y)], hence

(P,∈, H[G[W ]], x,H(G(y)))x∈Vκ |= [H(G(y)) is an ordinal and α ∈ H(G(y))].

Thus H(G(y)) is an ordinal in P greater than each α < κ, so since P is transitive,
κ ∈ P .

An infinite cardinal κ is first-order describable iff there is a U ⊆ Vκ and a sentence σ in
the language for (Vκ,∈, U) such that (Vκ,∈, U) |= σ, while there is no α < κ such that
(Vα,∈, U ∩ Vα) |= σ.

Theorem 26.14. If κ is infinite but not inaccessible, then it is first-order describable.

Proof. ω is describable by the sentence that says that κ is the first limit ordinal;
absoluteness is used. The subset U is not needed for this. Now suppose that κ is singular.

Let λ = cf(κ), and let f be a function whose domain is some ordinal γ < κ with
rng(f) cofinal in κ. Let U = {(λ, β, f(β)) : β < λ}. Let σ be the sentence expressing the
following:

For every ordinal γ there is an ordinal δ with γ < δ, U is nonempty, and there is an
ordinal µ and a function g with domain µ such that U consists of all triples (µ, β, g(β))
with β < µ.
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Clearly (Vκ,∈, U) |= σ. Suppose that α < κ and (Vα,∈, Vα ∩ U) |= σ. Then α is a limit
ordinal, and there is an ordinal γ < α and a function g with domain γ such that Vα ∩ U
consists of all triples (γ, β, g(β)) with β < γ. (Some absoluteness is used.) Now Vα ∩ U
is nonempty; choose (γ, β, g(β)) in it. Then γ = λ since it is in U . It follows that g = f .
Choose β < λ such that α < f(β). Then (λ, β, f(β)) ∈ U ∩ Vα. Since α < f(β), it follows
that α has rank less than α, contradiction.

Now suppose that λ < κ ≤ 2λ. A contradiction is reached similarly, as follows. Let f
be a function whose domain is P(λ) with range κ. Let U = {(λ,B, f(B)) : B ⊆ λ}. Let
σ be the sentence expressing the following:

For every ordinal γ there is an ordinal δ with γ < δ, U is nonempty, and there is an ordinal
µ and a function g with domain P(µ) such that U consists of all triples (µ,B, g(B)) with
B ⊆ µ.

Clearly (Vκ,∈, U) |= σ. Suppose that α < κ and (Vα,∈, Vα ∩ U) |= σ. Then α is a limit
ordinal, and there is an ordinal γ < α and a function g with domain P(γ) such that
Vα∩U consists of all triples (γ, B, g(B)) with B ⊆ γ. (Some absoluteness is used.) Clearly
γ = λ; otherwise U ∩ Vα would be empty. Note that g = f . Choose B ⊆ λ such that
α = f(B). Then (λ,B, f(B)) ∈ U ∩ Vα. Again this implies that α has rank less than α,
contradiction.

The new equivalent of weak compactness involves second-order logic. We augment first
order logic by adding a new variable S ranging over subsets rather than elements. There
is one new kind of atomic formula: Sv with v a first-order variable. This is interpreted as
saying that v is a member of S.

Now an infinite cardinal κ is Π1
1-indescribable iff for every U ⊆ Vκ and every second-

order sentence σ of the form ∀Sϕ, with no quantifiers on S within ϕ, if (Vκ,∈, U) |= σ,
then there is an α < κ such that (Vα,∈, U ∩ Vα) |= σ. Note that if κ is Π1

1-indescribable
then it is not first-order describable.

Theorem 26.15. An infinite cardinal κ is weakly compact iff it is Π1
1-indescribable.

Proof. First suppose that κ is Π1
1-indescribable. By Theorem 26.14 it is inaccessible.

So it suffices to show that it has the tree property. By the proof of Theorem 26.7(iii)⇒(iv)
it suffices to check the tree property for a tree T ⊆ <κκ. Note that <κκ ⊆ Vκ. Let σ be
the following sentence in the second-order language of (Vκ,∈, T ):

∃S[T is a tree under ⊂, and

S ⊆ T and S is a branch of T of unbounded length].

Thus for each α < κ the sentence σ holds in (Vα,∈, T ∩ Vα). Hence it holds in (Vκ,∈, T ),
as desired.

Now suppose that κ is weakly compact. Let U ⊆ Vκ, and let σ be a Π1
1-sentence

holding in (Vκ,∈, U). By Lemma 26.13, let (M,∈, U ′) be a transitive elementary extension
of (Vκ,∈, U) such that κ ∈M . Say that σ is ∀Sϕ, with ϕ having no quantifiers on S. Now

(1) ∀X ⊆ Vκ[(Vκ,∈, U) |= ϕ(X)].
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Now since κ ∈M and (M,∈) is a model of ZFC, V Mκ exists, and by absoluteness it is equal
to Vκ. Hence by (1) we get

(M,∈, U ′) |= ∀X ⊆ Vκϕ
Vκ(U ′ ∩ Vκ).

Hence
(M,∈, U ′) |= ∃α∀X ⊆ Vαϕ

Vα(U ′ ∩ Vα),

so by the elementary extension property we get

(Vκ,∈, U) |= ∃α∀X ⊆ Vαϕ
Vα(U ′ ∩ Vα).

We choose such an α. Since Vκ∩On = κ, it follows that α < κ. Hence (Vα,∈, U
′∩Vα) |= σ,

as desired.

Assuming that Mahlo cardinals exist, the first such is not weakly compact. This follows
from the theorem that if κ is weakly compact, then the set of Mahlo cardinals below κ is
stationary; see Corollary 17.19 in Jech.

Measurable cardinals

Our third kind of large cardinal is the class of measurable cardinals. Although, as the
name suggests, this notion comes from measure theory, the definition and results we give
are purely set-theoretical. Moreover, similarly to weakly compact cardinals, it is not
obvious from the definition that we are dealing with large cardinals.

The definition is given in terms of the notion of an ultrafilter on a set.

• Let X be a nonempty set. A filter on X is a family F of subsets of X satisfying the
following conditions:

(i) X ∈ F .
(ii) If Y, Z ∈ F , then Y ∩ Z ∈ F .
(iii) If Y ∈ F and Y ⊆ Z ⊆ X , then Z ∈ F .

• A filter F on a set X is proper or nontrivial iff ∅ /∈ F .

• An ultrafilter on a set X is a nontrivial filter F on X such that for every Y ⊆ X , either
Y ∈ F or X\Y ∈ F .

• A family A of subsets of X has the finite intersection property, fip, iff for every finite
subset B of A we have

⋂
B 6= ∅.

• If A is a family of subsets of X , then the filter generated by A is the set

{Y ⊆ X :
⋂

B ⊆ Y for some finite B ⊆ A }.

[Clearly this is a filter on X , and it contains A .]

Proposition 26.16. If x ∈ X, then {Y ⊆ X : x ∈ Y } is an ultrafilter on X.
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An ultrafilter of the kind given in this proposition is called a principal ultrafilter. There
are nonprincipal ultrafilters on any infinite set, as we will see shortly.

Proposition 26.17. Let F be a proper filter on a set X. Then the following are equivalent:
(i) F is an ultrafilter.
(ii) F is maximal in the partially ordered set of all proper filters (under ⊆).

Proof. (i)⇒(ii): Assume (i), and suppose that G is a filter with F ⊂ G . Choose
Y ∈ G \F . Since Y /∈ F , we must have X\Y ∈ F ⊆ G . So Y,X\Y ∈ G , hence
∅ = Y ∩ (X\Y ) ∈ G , and so G is not proper.

(ii)⇒(i): Assume (ii), and suppose that Y ⊆ X , with Y /∈ F ; we want to show that
X\Y ∈ F . Let

G = {Z ⊆ X : Y ∩W ⊆ Z for some W ∈ F}.

Clearly G is a filter on X , and F ⊆ G . Moreover, Y ∈ G \F . It follows that G is not
proper, and so ∅ ∈ G . Thus there is a W ∈ F such that Y ∩W = ∅. Hence W ⊆ X\Y ,
and hence X\Y ∈ F , as desired.

Theorem 26.18. For any infinite set X there is a nonprincipal ultrafilter on X. Moreover,
if A is any collection of subsets of X with fip, then A can be extended to an ultrafilter.

Proof. First we show that the first assertion follows from the second. Let A be the
collection of all cofinite subsets of X—the subsets whose complements are finite. A has
fip, since if B is a finite subset of A , then X\

⋂
B =

⋃

Y ∈B
(X\B) is finite. By the second

assertion, A can be extended to an ultrafilter F . Clearly F is nonprincipal.
To prove the second assertion, let A be a collection of subsets of X with fip, and let

C be the collection of all proper filters on X which contain A . Clearly the filter generated
by A is proper, so C 6= ∅. We consider C as a partially ordered set under inclusion.
Any subset D of C which is a chain has an upper bound in C , namely

⋃
D , as is easily

checked. So by Zorn’s lemma C has a maximal member F . By Proposition 26.16, F is an
ultrafilter.

• Let X be an infinite set, and let κ be an infinite cardinal. An ultrafilter F on X is κ-
complete iff for any A ∈ [F ]<κ we have

⋂
A ∈ F . We also say σ-complete synonomously

with ℵ1-complete.

This notion is clearly a generalization of one of the properties of ultrafilters. In fact, every
ultrafilter is ω-complete, and every principal ultrafilter is κ-complete for every infinite
cardinal κ.

Lemma 26.19. Suppose that X is an infinite set, F is an ultrafilter on X, and κ is the
least infinite cardinal such that there is an A ∈ [F ]κ such that

⋂
A /∈ F . Then there is a

partition P of X such that |P| = κ and X\Y ∈ F for all Y ∈P.

Proof. Let 〈Yα : α < κ〉 enumerate A . Let Z0 = X\Y0, and for α > 0 let Zα =
(
⋂

β<α Yβ)\Yα. Note that Yα ⊆ X\Zα, and so X\Zα ∈ F . Clearly Zα ∩Zβ = ∅ for α 6= β.
Let W =

⋂

α<λ Yα. Clearly W ∩ Zα = ∅ for all α < λ. Let

P = ({Zα : α < κ} ∪ {W})\{∅}.
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So P is a partition of X and X\Z ∈ F for all Z ∈P. Clearly |P| ≤ κ. If |P| < κ, then

∅ =
⋂

Z∈P

(X\Z) ∈ F,

contradiction. So |P| = κ.

Theorem 26.20. Suppose that κ is the least infinite cardinal such that there is a non-
principal σ-complete ultrafilter F on κ. Then F is κ-complete.

Proof. Assume the hypothesis, but suppose that F is not κ-complete. So there is a
A ∈ [F ]<κ such that

⋂
A /∈ F . Hence by Lemma 26.19 there is a partition P of κ such

that |P| < κ and X\P ∈ F for every P ∈P. Let 〈Pα : α < λ〉 be a one-one enumeration
of P, λ an infinite cardinal. We are now going to construct a nonprincipal σ-complete
ultrafilter G on λ, which will contradict the minimality of κ.

Define f : κ → λ by letting f(β) be the unique α < λ such that β ∈ Pα. Then we
define

G = {D ⊆ λ : f−1[D] ∈ F}.

We check the desired conditions for G. ∅ /∈ G, since f−1[∅] = ∅ /∈ F . If D ∈ G and D ⊆ E,
then f−1[D] ∈ F and f−1[D] ⊆ f−1[E], so f−1[E] ∈ F and hence E ∈ G. Similarly, G
is closed under ∩. Given D ⊆ λ, either f−1[D] ∈ F or f−1[λ\D] = κ\f−1[D] ∈ F , hence
D ∈ G or λ\D ∈ G. So G is an ultrafilter on λ. It is nonprincipal, since for any α < λ
we have f−1[{α}] = Pα /∈ F and hence {α} /∈ G. Finally, G is σ-complete, since if D is a
countable subset of G, then

f−1
[⋂

D

]

=
⋂

P∈D

f−1[P ] ∈ F,

and hence
⋂

D ∈ G.

We say that an uncountable cardinal κ is measurable iff there is a κ-complete nonprincipal
ultrafilter on κ.

Theorem 26.21. Every measurable cardinal is weakly compact.

Proof. Let κ be a measurable cardinal, and let U be a nonprincipal κ-complete
ultrafilter on κ.

Since U is nonprincipal, κ\{α} ∈ U for every α < κ. Then κ-completeness implies
that κ\F ∈ U for every F ∈ [κ]<κ.

Now we show that κ is regular. For, suppose it is singular. Then we can write
κ =

⋃

α<λ Γα, where λ < κ and each Γα has size less than κ. So by the previous paragraph,
κ\Γα ∈ U for every α < κ, and hence

∅ =
⋂

α<λ

(κ\Γα) ∈ U,

contradiction.
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Next, κ is strong limit. For, suppose that λ < κ and 2λ ≥ κ. Let S ∈ [λ2]κ. Let
〈fα : α < κ〉 be a one-one enumeration of S. Now for each β < λ, one of the sets
{α < κ : fα(β) = 0} and {α < κ : fα(β) = 1} is in U , so we can let ε(β) ∈ 2 be such that
{α < κ : fα(β) = ε(β)} ∈ U . Then

⋂

β<λ

{α < κ : fα(β) = ε(β)} ∈ U ;

this set clearly has only one element, contradiction.
Thus we now know that κ is inaccessible. Finally, we check the tree property. Let

(T,≺) be a tree of height κ such that every level has size less than κ. Then |T | = κ, and
we may assume that actually T = κ. Let B = {α < κ : {t ∈ T : α � t} ∈ U}. Clearly
any two elements of B are comparable under ≺. Now take any α < κ; we claim that
Levα(T ) ∩B 6= ∅. In fact,

(1) κ = {t ∈ T : ht(t, T ) < α} ∪
⋃

t∈Levα(T )

{s ∈ T : t � s}.

Now by regularity of κ we have |{t ∈ T : ht(t, T ) < α}| < κ, and so the complement of
this set is in U , and then (1) yields

(2)
⋃

t∈Levα(T )

{s ∈ T : t � s} ∈ U.

Now |Levα(T )| < κ, so from (2) our claim easily follows.
Thus B is a branch of size κ, as desired.

Measurable cardinals allow one to define a natural elementary embedding of V into a class
M , as follows.

Let κ be a measurable cardinal, let S be a set with κ ≤ |S|, and let U be a κ-complete
nonprincipal ultrafilter on S. Then Fcn(S) is the class of all functions with domain S. We
define

f =∗ g iff f, g ∈ Fcn(S) and {x ∈ S : f(x) = g(x)} ∈ U ;

f ∈∗ g iff f, g ∈ Fcn(S) and {x ∈ S : f(x) ∈ g(x)} ∈ U.

Clearly =∗ is an equivalence relation on Fcn(S). We denote by [f ] the Scott equivalence
class of f :

[f ] = {g : f =∗ g and ∀h(h =∗ f → rank(g) ≤ rank(h))}.

Then we define UltS to be the collection of all equivalence classes, with ∈UltS= {([f ], [g]) :
f ∈∗ g}. We can write this as ∈UltS= {(x, y) : ∃f, g[x = [f ], y = [g], and f ∈∗ g}.

Proposition 26.22. If f, g ∈ Fcn(S) and f ∈∗ g, then there is an f ′ ∈
∏

s∈S(g(s) ∪ {∅})
such that f =∗ f ′.
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Proof. For each s ∈ S, let

f ′(s) =

{

f(s) if f(s) ∈ g(s),
∅ otherwise.

Clearly f =∗ f ′.

Proposition 26.23. ∈UltS is set-like.

Proof. Let x ∈ UltS . Choose g ∈ Fcn(S) such that x = [g]. We claim

(∗) {y ∈ UltS : y ∈UltS x} =

{

[f ] : f ∈
∏

s∈S

(g(s) ∪ {∅}) and f ∈∗ g

}

.

(Clearly this will prove the proposition.) To prove (∗), first suppose that y ∈ UltS and
y ∈UltS x. Choose f, g′ ∈ Fcn(S) such that x = [g′], y = [f ], and f ∈∗ g′. Then [g] = [g′]
and f ∈∗ g. By Proposition 26.22, choose f ′ ∈

∏

s∈S(g(s) ∪ {∅}) such that f =∗ f ′. Then
f ′ ∈∗ g and y = [f ] = [f ′]. So y is in the right side of (∗).

Second suppose that f ∈
∏

s∈S(g(s)∪{∅}) and f ∈∗ g. Then [f ] ∈ UltS and [f ] ∈UltS

x, as desired.

Theorem 26.24. For any formula ϕ(x1, . . . , xn) of set theory and any f1, . . . , fn ∈ Fcn(S)
we have

UltS |= ϕ([f1], . . . , [fn]) iff {s ∈ S : ϕ(f1(s), . . . , fn(s))} ∈ U

Note that this is a theorem schema in ZFC.

Proof. Induction on ϕ:

[f ] = [g] iff f =∗ g

iff {s ∈ S : f(s) = g(s)} ∈ U ;

[f ] ∈ [g] iff f ∈∗ g

iff {s ∈ S : f(s) ∈ g(s)} ∈ U ;

UltS |= ¬ϕ([f1], . . . , [fn]) iff not(UltS |= ϕ([f1], . . . , [fn]))

iff not({s ∈ S : ϕ(f1(s), . . . , fn(s))} ∈ U

iff {s ∈ S : ϕ(f1(s), . . . , fn(s))} /∈ U

iff {s ∈ S : ¬ϕ(f1(s), . . . , fn(s))} ∈ U.

∨ is treated similarly. Now suppose that UltS |= ∃yϕ([f1], . . . , [fn], y). Choose g ∈ Fcn(S)
such that UltS |= ϕ([f1], . . . , [fn], [g]). Then by the inductive hypothesis, {s ∈ S :
ϕ(f1(s), . . . , fn(s), g(s))} ∈ U . Now

{s ∈ S : ϕ(f1(s), . . . , fn(s), g(s))} ⊆ {s ∈ S : ∃yϕ(f1(s), . . . , fn(s), y)},

so the latter set is in U .
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Conversely, suppose that {s ∈ S : ∃yϕ(f1(s), . . . , fn(s), y)} ∈ U . Then by the axiom of
choice, choose g ∈ Fcn(S) so that {s ∈ S : ϕ(f1(s), . . . , fn(s), g(s))} ∈ U . By the inductive
hypothesis, UltS |= ϕ([f1], . . . , [fn], [g]) and hence UltS |= ∃yϕ([f1], . . . , [fn], y).

Let a be any set. We define cSa , a function with domain S, by cSa (s) = a for all s ∈ S.

Proposition 26.25. ∈UltS is well-founded.

Proof. Suppose that . . . fn+1 ∈
∗ fn . . . ∈

∗ f0. Then ∀n ∈ ω{x ∈ S : fn+1(x) ∈
fn(x)} ∈ U , so

⋂

n∈ω{x ∈ S : fn+1(x) ∈ fn(x)} ∈ U . This set is hence nonempty, and for
any x in it, · · · fn+1(x) ∈ fn(x) . . . ∈ f0(x), contradiction.

Proposition 26.26. (∗∗) ∈UltS is extensional on UltS.

For, suppose that [f ], [g] ∈ UltS and [f ] 6= [g]. Then A
def
= {x ∈ S : f(x) 6= g(x)} ∈ U .

For each x ∈ A choose ax ∈ f(x)△g(x). Then A = {x ∈ S : ax ∈ f(x)\g(x)} ∪ {x ∈ S :
ax ∈ g(x)\f(x). By symmetry say {x ∈ S : ax ∈ f(x)\g(x)} ∈ U . Then [a] ∈UltS [f ] and
[a] /∈UltS [g].

By Lemma 12.32, the Mostowski collapse mos is an isomorphism. It is defined by

π([f ]) = {π([g]) : [g] ∈∗ [f ]}

for any f ∈ Fcn(S). Thus π([g]) ∈ π([f ]) iff [g] ∈∗ [f ] iff g ∈∗ f iff {s ∈ S : g(s) ∈ f(s)} ∈
U . We denote mosAR[UltS] by Ult′S.

jSU is the natural elementary embedding of V into Ult′S , given by jSU (a) = π([cSa ]) for
any set a. That jSU is an elementary embedding of V into Ult′S is expressed as follows:

Proposition 26.27. For any formula ϕ(x1, . . . , xn) of set theory and any a1, . . . , an,

ϕ(a1, . . . , an) iff Ult′S |= ϕ(jSU (a1), . . . , jSU (an)).

Proof.

Ult′S |= ϕ(jSU (a1), . . . , jSU (an)) iff Ult′S |= ϕ(π([cSa1
]), . . . , π([cSan]))

iff UltS |= ϕ([cSa1
), . . . , [cSan ])

iff {s ∈ S : ϕ((cSa1
)(s), . . . , (cSan)(s))} ∈ U

iff {s ∈ S : ϕ(a1, . . . , an)} ∈ U

iff ϕ(a1, . . . , an).

Theorem 26.28. (i)∀α[α is an ordinal→ jSU (α) is an ordinal].
(ii) α < β → jSU (α) < jSU (β).

Proof. (i) holds by Proposition 26.27, taking ϕ to be the formula “α is an ordinal”,
and using absoluteness. (ii) also holds by Proposition 2.27.
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Corollary 26.29. Ult′S is a transitive class model of ZFC containing all ordinals.

Proof. If ϕ is an axiom of ZFC, then {s ∈ S : ϕ} = S ∈ U , so by Theorem 26.24,
UltS |= ϕ. Since mosAR is an isomorphism, Ult′S |= ϕ. Thus Ult′S is a transitive class
model of ZFC. Now by Theorem 26.28, ∀α[α ≤ jSU (α)]. Since Ult′S is transitive, it follows
that every ordinal is in Ult′S .

Theorem 26.30. If γ < κ, then jSU (γ) = γ.

Proof. In fact, suppose that this is true for all α < β, with β < κ, and suppose that
β < jSU (β). Say β = jSU (a). Thus [cSa ] ∈∗ [cSβ ], so {s ∈ S : a ∈ β} ∈ U . Now

{s ∈ S : a ∈ β} =
⋃

α<β

{s ∈ S : a = α},

so by κ-completeness there is an α < β such that {s ∈ S : a = α} ∈ U . Hence [cSa ] = [cSα],
so β = jSU (a) = jSU (α) = α, contradiction.

Theorem 26.31. If U is a κ-complete nonprincipal ideal on κ, then κ < jκU (κ).

Proof. Let d(α) = α for all α < κ. Then for any γ < κ, {α < κ : γ < d(α)} = {α <
κ : γ < α} = κ\(α+1) ∈ U , and so by Theorem 26.24, [cκγ ] ∈Ultκ [d]. Hence jκU (γ) ∈ π([d]).
Therefore, κ ≤ π([d]). Also, {α < κ : d(α) < cκκ(α)} = {α < κ : α < κ} = κ ∈ U , so
[d] ∈Ultκ [cκκ]. Hence π([d]) < jκU (κ). So κ < jκU (κ).

An inner model of ZFC is a transitive proper class model of ZFC containing all ordinals.
Thus L is an inner model.

Theorem 26.32. If M is an inner model of ZFC, then L ⊆M .

Proof. By absoluteness, LM = L ⊆M .

Theorem 26.33. (Dana Scott) If there is a measurable cardinal, then V 6= L.

Proof. Suppose that κ is the least measurable cardinal, and V = L. Now L ⊆ Ult′κ
by Theorem 26.29. Hence V = Ult′κ = L. Since jκU is an elementary embedding, it follows
that jκU (κ) is the least measurable cardinal. Since κ < jκU (κ), this is a contradiction.

Theorem 26.34. The following conditions are equivalent:
(i) There is a measurable cardinal.
(ii) There is a nontrivial elementary embedding of the universe into some transitive

model of ZFC which contains all ordinals.

Proof. (i)⇒(ii): Propositions 26.27 and 26.29.
Now assume (ii); let f be a nontrivial elementary embedding of the universe V into

M , where M is transitive and contains all ordinals.

(1) There is an ordinal α such that f(α) 6= α.
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In fact, suppose not. Then we claim

(2) rank(f(x)) = rank(x) for every set x.

For, let ϕ(x, y) be the formula which defines rank; so

V |= ∀x, y[ϕ(x, y)↔ y is an ordinal and rank(x) = y].

Suppose that x ∈ V . Let rank(x) = α. Then V |= ϕ(x, α), so M |= ϕ(f(x), f(α)), hence
by the “suppose not” above, M |= ϕ(f(x), α). Since f(x), α ∈ V , by elementarity we have
V |= ϕ(f(x), α), so rank(f(x)) = α, as desired in (2).

Now since f is nontrivial, let x be such that f(x) 6= x, and choose such an x of minimal
rank. If y ∈ x, then f(y) = y by the minimality of rank(x), and f(y) ∈ f(x), so y ∈ f(x).
Thus x ⊆ f(x). Since f(x) 6= x, we can thus choose y ∈ f(x)\x. But by (2) we have
rank(f(x)) = rank(x), so rank(y) < rank(x), and hence f(y) = y by the minimality of
rank(x). So f(y) ∈ f(x), hence y ∈ x, contradiction. Hence (1) holds.

Let κ be the least such α.

(3) jκU (x ∪ {x}) = jκU (x) ∪ {jκU (x)}.

This is clear from Proposition 26.27 and absoluteness. The following two facts follow from
(3):

(4) jκU (n) = n for all n ∈ ω.

(5) κ is a limit ordinal.

(6) jκU (ω) = ω.

In fact,

∀x[x = ω ↔ ∀y ∈ x[y ∪ {y} ∈ x] ∧ ∀y ∈ x[∀z[z /∈ y] ∨ ∃z[y = z ∪ {z}]];

hence by Proposition 26.27 and absoluteness,

∀x[x = jκU (ω)↔ ∀y ∈ x[y ∪ {y} ∈ x] ∧ ∀y ∈ x[∀z[z /∈ y] ∨ ∃z[y = z ∪ {z}]].

Hence (6) follows.
Now we define

D = {X ⊆ κ : κ ∈ f(X)}.

Now κ < f(κ), so κ ∈ D. Since f(∅) = ∅, we have ∅ /∈ D. Now ∀y(y ∈ X ∩ Y ↔ y ∈ X
and y ∈ Y ), so by elementarity, ∀y(y ∈ f(X ∪ Y ) ↔ y ∈ f(X) and y ∈ f(Y )). So
f(X ∩ Y ) = f(X) ∩ f(Y ). Also, if X ⊆ Y , then ∀x(x ∈ X → x ∈ Y ), so by elementarity,
∀x(x ∈ f(X) → x ∈ f(Y )). So X ⊆ Y implies that f(X) ⊆ f(Y ). From these facts it
follows that D is a filter. Also, for any X ⊆ κ we have ∀y(y ∈ κ↔ y ∈ X or y ∈ (κ\X)), so
by elementarity ∀y(y ∈ f(κ)↔ y ∈ f(X) or y ∈ f(κ\X)). Hence f(κ) = f(X) ∪ f(κ\X).
Since κ ∈ f(κ), it follows that κ ∈ f(X) or κ ∈ f(κ\X). So D is an ultrafilter.
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To show that D is nonprincipal, suppose that α < κ. Now ∀x(x ∈ {α} ↔ x = α),
so ∀x(x ∈ f({α}) ↔ x = f(α)). Since f(α) = α, it follows that f({α}) = {α}. So
κ /∈ f({α}), and consequently {α} /∈ D.

Next assume that γ < κ and X = 〈Xα : α < γ〉 is a sequence of members of D. Thus
X is a function with domain γ. Let Y =

⋂

α<γ Xα. Now f(X) is a function with domain
f(γ), which is γ.

(7) If α < γ, then (f(X))α = f(Xα).

For, (α,Xα) ∈ X , so (f(α), f(Xα)) ∈ f(X). Since f(α) = α, (7) follows.

(8) f(Y ) =
⋂

α<γ f(Xα).

For, ∀y[y ∈ Y ↔ ∀α < γ(y ∈ Xα)], so ∀y[y ∈ f(Y ) → ∀α < f(γ)(y ∈ (f(X))α)]. By (3)
and the fact that f(γ) = γ it follows that ∀y[y ∈ f(Y ) ↔ ∀α < γ(y ∈ f(Xα))]. Thus (8)
holds.

Hence κ ∈ f(Y ) and so Y ∈ D.
Finally, we show that κ is a cardinal. For suppose it isn’t. Then there is a function

g mapping some ordinal α < κ onto κ. Thus κ\{g(ξ)} ∈ D for every ξ < α, so also
⋂

ξ<α(κ\{g(ξ)}) ∈ D. But
⋂

ξ<α(κ\{g(ξ)}) = ∅, contradiction.

If there are weakly compact cardinals, then the first such is not measurable. This follows
from Theorem 17.10 of Jech.

Strongly compact cardinals

A cardinal κ is strongly compact iff κ is uncountable, and for every λ ≥ κ, every κ-complete
filter on λ can be extended to a κ-complete ultrafilter on λ.

Theorem 26.35. Every strongly compact cardinal is measurable.

We give two equivalent definitions of strongly compact cardinal. One involves a new kind
of ultrafilter.

If κ ≤ λ are infinite cardinals, for each P ∈ [λ]<κ let P̂ = {Q ∈ [λ]<κ : P ⊆ Q}.

Proposition 26.36. If κ ≤ λ are infinite cardinals, then there is a κ-complete proper
filter containing {P̂ : P ∈ [λ]<κ}.

Proof. Let κ ≤ λ be infinite cardinals, and let F ∈ [[λ]<κ]<κ. Then

⋂

P∈F

P̂ =
(⋃

F

)

ˆ 6= ∅,

and the proposition follows.

For infinite cardinals κ ≤ λ, a fine ultrafilter on [λ]<κ is a κ-complete ultrafilter on [λ]<κ

containing {P̂ : P ∈ [λ]<κ}.

Theorem 26.37. For κ an uncountable cardinal the following are equivalent:
(i) For every cardinal λ ≥ κ there is a fine ultrafilter on [λ]<κ.
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(ii) κ is strongly compact.
(iii) For any language Lκω, if Γ is a set of sentences of the language and if every

subset of Γ of size less than κ has a model, then also Γ has a model.

Proof. (ii)⇒(i): clear.
(i)⇒(iii): Assume (i), and suppose that Γ is a set of sentences of Lκω such that every

subset of Γ of size less than κ has a model. We may assume that |Γ| ≥ κ. Let U be a
fine ultrafilter on [Γ]<κ. For each ∆ ∈ [Γ]<κ let A∆ be a model of ∆. As in the proof of
Theorem 26.8, κ is inaccessible.

Now we need a form of  Loś’s theorem on ultraproducts. For f, g ∈
∏

∆∈[Γ]<κ A∆ define

f ≡ g iff {Θ ∈ [Γ]<κ : f(Θ) = g(Θ)} ∈ U .

(1) ≡ is an equivalence relation on
∏

∆∈[Γ]<κ A∆.

For, clearly ≡ is symmetric and is reflexive on
∏

∆∈[Γ]<κ A∆. Now suppose that f ≡ g ≡ h.
Then

{Θ ∈ [Γ]<κ : f(Θ) = g(Θ)} ∩ {Θ ∈ [Γ]<κ : g(Θ) = h(Θ)} ⊆ {Θ ∈ [Γ]<κ : f(Θ) = h(Θ)},

so f ≡ h. Thus (1) holds.
Let B be the collection of all equivalence classes. The equivalence class of f ∈

∏

∆∈[Γ]<κ A∆ is denoted by [f ]. For R an m-ary relation symbol of our language let

RB =

{

x ∈ mB : ∃f ∈ m




∏

∆∈[Γ]<κ

A∆



 [∀i < m[xi = [fi]]∧

{∆ ∈ [Γ]<κ : 〈fi∆ : i < m〉 ∈ RA∆} ∈ U

}

(2) For all f ∈ m(
∏

∆∈[Γ]<κ A∆) we have

[〈[fi] : i < m〉 ∈ RM ↔ {∆ ∈ [Γ]<κ : 〈f0(∆), . . . , fm−1(∆)〉 ∈ RA∆} ∈ U ]

In fact, take any f ∈ m
(
∏

∆∈[Γ]<κ A∆

)

. Then ⇐ is clear. Now assume that 〈[fi] : i <

m〉 ∈ RM. Choose g ∈ m
(
∏

∆∈[Γ]<κ A∆

)

such that ∀i < m[[fi] = [gi]] and {∆ ∈ [Γ]<κ :

〈gi∆ : i < m〉 ∈ RA∆} ∈ U . Then

⋂

i<m

{∆ ∈ [Γ]<κ : gi∆ = fi∆} ∩ {∆ ∈ [Γ]<κ : 〈gi∆ : i < m〉 ∈ RA∆}

⊆ {∆ ∈ [Γ]<κ : 〈fi∆ : i < m〉 ∈ RA∆},

and the left side is in U , so the right side is too, as desired for (2).

(3) If F is an m-ary function symbol of our language, then there is an m-ary function FB

on B such that for any f ∈ m
∏

∆∈[Γ]<κ A∆ we have

FB(〈[fi] : i < m〉) = [〈FA∆(f0(∆), . . . , fm−1(∆)) : ∆ ∈ [Γ]<κ〉].
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In fact, suppose that 〈[fi] : i < m〉 = 〈[gi] : i < m〉. Then
⋂

i<m

{∆ ∈ [Γ]<κ : fi(∆) = gi(∆)} ⊆ {∆ ∈ [Γ]<κ :

〈FA∆(f0(∆), . . . , fm−1(∆)) = 〈FA∆(g0(∆), . . . , gm−1(∆))},

and the left side is in U ; so also the right side is in U , and (3) follows.

(4) If τ is a term involving at most v0, . . . , vm−1, then

τB([f0], . . . , [fm−1]) = [〈τA∆(f0(∆), . . . , fm−1(∆))〉 : ∆ ∈ [Γ]<κ〉].

We prove (4) by induction on τ . For τ = vi we have

vBi ([f0], . . . , [fm−1]) = [fi] = [〈vA∆
i (f0(∆), . . . , fm−1(∆))〉 : ∆ ∈ [Γ]<κ〉].

For τ = F(σ0, . . . , σn−1) we have

τB([f0], . . . , [fm−1]) = FB(σB
0 ([f0], . . . , [fm−1]), . . . , σB

n−1([f0], . . . , [fm−1]))

= FB([〈σA∆
0 (f0(∆), . . . , fm−1(∆)) : ∆ ∈ [Γ]<κ〉], . . . ,

[〈σA∆
n−1(f0(∆), . . . , fm−1(∆)) : ∆ ∈ [Γ]<κ〉])

= [〈τA∆(f0(∆), . . . , fm−1(∆))〉 : ∆ ∈ [Γ]<κ〉].

So (4) holds.
Now we claim:

(5) For any formula ϕ(v0, . . . , vm−1) and any f0, . . . , fm−1 ∈
∏

∆∈[Γ]<κ A∆ we have

B |= ϕ([f0], . . . , [fm−1]) iff {∆ ∈ [Γ]<κ : A∆ |= ϕ(f0(∆), . . . , fm−1(∆))} ∈ U.

We prove this by induction on ϕ.
Case 1. ϕ is σ = τ . Then

B |= (σ = τ)([f0], . . . , [fm−1]) iff σB([f0], . . . , [fm−1]) = τB([f0], . . . , [fm−1])

iff [〈σA∆(f0(δ), . . . , fm−1(∆)) : ∆ ∈ [Γ]<κ〉] = [〈τA∆(f0(∆), . . . , fm−1(∆)) : ∆ ∈ [Γ]<κ〉]

iff {∆ : σA∆(f0(δ), . . . , fm−1(∆)) = τA∆(f0(δ), . . . , fm−1(∆))} ∈ U

iff {∆ : AD |= (σ = τ)(f0(δ), . . . , fm−1(∆))} ∈ U

Case 2. ϕ is R(σ0, . . . , σn−1). Then

B |= R(σ0, . . . , σn−1)([f0], . . . , [fm−1])

iff 〈σB
0 ([f0], . . . , [fm−1]), . . . , σB

n−1([f0], . . . , [fm−1]))〉 ∈ RB

iff 〈[〈σA∆
0 (f0(∆), . . . , fm−1(∆))〉 : ∆ ∈ [Γ]<κ〉], . . . ,

〈σA∆
n−1(f0(∆), . . . , fm−1(∆))〉 : ∆ ∈ [Γ]<κ〉]〉 ∈ RB

iff {∆ : 〈σA∆
0 (f0(∆), . . . , fm−1(∆)), . . . ,

σA∆
n−1(f0(∆), . . . , fm−1(∆))〉 ∈ RA∆} ∈ U

iff {∆ : A∆ |= ϕ(f0(∆), . . . , fm−1(∆))} ∈ U.
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Case 3. ϕ is ¬ψ. Then

B |= ¬ψ([f0], . . . , [fm−1]) iff not(B |= ψ([f0], . . . , [fm−1]))

iff not({∆ : A∆ |= ψ(f0(∆), . . . , fm−1(∆))} ∈ U)

iff {∆ : A∆ |= ¬ψ(f0(∆), . . . , fm−1(∆))} ∈ U)

Case 4. ϕ is
∧

Ψ, with |Ψ| < κ. Then

B |=
(∧

Ψ
)

([f0], . . . , [fm−1]) iff ∀ψ ∈ Ψ
[

B |=
∧

ψ([f0], . . . , [fm−1])
]

iff ∀ψ ∈ Ψ[{∆ : A∆ |= ψ(f0(∆), . . . , fm−1(∆))} ∈ U ]

iff
{

∆ : A∆ |=
(∧

Ψ
)

(f0(∆), . . . , fm−1(∆))
}

∈ U.

Case 5. ϕ is ∃viψ. First suppose that B |= ϕ([f0], . . . , [fm−1]). Choose g so that
B |= ψ([f0], . . . , [fi−1], [g], [fi+1], . . . , [fm−1]). By the inductive hypothesis,

{∆ : A∆ |= ψ(f0(∆), . . . , fi−1(∆), gi(∆), fi+1(∆), . . . , fm−1(∆))} ∈ U.

This set is contained in

{∆ : A∆ |= ϕ(f0(∆), . . . , fm−1(∆))},

which is hence in U , as desired.
Second, suppose that

{∆ : A∆ |= ϕ(f0(∆), . . . , fm−1(∆))} ∈ U

Take g so that

{∆ : A∆ |= ψ(f0(∆), . . . , fi−1(∆), g(∆), fi+1(∆), . . . , fm−1(∆))} ∈ U

Then by the inductive hypothesis, B |= ψ([f0], . . . , [fi−1], [g], [fi+1], . . . , [fm−1]) Hence B |=
ϕ([f0], . . . , [fm−1]). This completes the proof of (5).

By (5), B is a model of Γ.
(iii)⇒(ii): Assume (iii), let λ ≥ κ be a cardinal, and suppose that F is a κ-complete

proper filter on λ. Take the Lκω-language which has a one-place relation symbol RA for
each A ⊆ λ and an individual constant c. Let Σ be the following set of sentences:

(6) Every sentence true in (λ,A)A⊆λ).

(7) Every sentence RAc for A ∈ F .

(8) ¬R∅c.

We claim:

(8) Every subset of Σ of size less than κ has a model.
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(9) RAc ∨Rλ\Ac for each A ⊆ λ.

For, suppose that ∆ is a subset of Σ of size less than κ. Take the structure (λ,A, c)A⊆λ

with c ∈ A for each A such that RAc is a member of ∆. This is possible since F is
κ-complete, and we clearly have a model of ∆.

It follows that Σ has a model B = (B,RB
A, c)A⊆λ. Now we define

U = {A : A ⊆ λ,B |= RAc}.

We claim that U is the required proper κ-complete ultrafilter on λ containing F
∅ /∈ U since (8) is in Γ.
If A ∈ U and A ⊆ B ⊆ λ, then ∀x[RAx → RBx] is in (6) and hence holds in B, so

that B |= RBc, which implies that B ∈ U .
For any A ⊆ λ, A ∈ U or λ\A ∈ U . This holds by (9).
If α < κ and Aξ ∈ U for each ξ < α, then

⋂

α<αAξ ∈ U . This holds since
∀x[
∧

ξ<αRAξx→ RCx] is a member of Σ, where C =
⋂

ξ<αAξ.
F ⊆ U by(7).

A diagram of large cardinals

We define some more large cardinals, and then indicate relationships between them by a
diagram.

All cardinals are assumed to be uncountable.

1. regular limit cardinals.

2. inaccessible.

3. Mahlo.

4. weakly compact.

5. indescribable. The ω-order language is an extension of first order logic in which one
has variables of each type n ∈ ω. For n positive, a variable of type n ranges over Pn(A)
for a given structure A. In addition to first-order atomic formulas, one has formulas P ∈ Q
with P n-th order and Q (n + 1)-order. Quantification is allowed over the higher order
variables.

κ is indescribable iff for all U ⊆ Vκ and every higher order sentence σ, if (Vκ,∈, U) |= σ
then there is an α < κ such that (Vα,∈, U ∩ Vα) |= σ.

6. κ→ (ω)<ω2 . Here in general

κ→ (α)<ωm

means that for every function f :
⋃

n∈ω[κ]n → m there is a subset H ⊆ κ of order type α
such that for each n ∈ ω, f ↾ [H]n is constant.

7. 0♯ exists. This means that there is a non-identity elementary embedding of L into L.
Thus no actual cardinal is referred to. But 0♯ implies the existence of some large cardinals,
and the existence of some large cardinals implies that 0♯ exists.
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8. Jónsson κ is a Jónsson cardinal iff every model of size κ has a proper elementary
substructure of size κ.

9. Rowbottom κ is a Rowbottom cardinal iff for every uncountable λ < κ, every model
of type (κ, λ) has an elementary submodel of type (κ, ω).

10. Ramsey κ→ (κ)<ω2 .

11. measurable

12. strong κ is a strong cardinal iff for every set X there exists a nontrivial elementary
embedding from V to M with κ the first ordinal moved and with κ ∈M.

13. Woodin κ is a Woodin cardinal iff

∀A ⊆ Vκ∀λ < κ∃µ ∈ (λ, κ)∀ν < κ∃j[j is a nontrivial elementary embedding of V

into some set M, with µ the first ordinal moved, such that

j(µ) > ν, Vν ⊆M, A ∩ Vν = j(A) ∩ Vν ]

14. superstrong κ is superstrong iff there is a nontrivial elementary embedding j : V →
M with κ the first ordinal moved, such that Vj(κ) ⊆M.

15. strongly compact κ is strongly compact iff for any Lκκ-language, if Γ is a set of
sentences and every subset of Γ of size less than κ has a model, then Γ itself has a model.

16. supercompact κ is supercompact iff for every A with |A| ≥ κ there is normal measure
on Pκ(A).

17. extendible For an ordinal η, we say that k is η-extendible iff there exist ζ and a
nontrivial elementary embedding j : Vκ+η → Vζ with κ first ordinal moved, with η < j(κ).
κ is extendible iff it is η-extendible for every η > 0.

26. Vopěnka’s principle If C is a proper class of models in a given first-order language,
then there exist two distinct members A,B ∈ C such that A can be elementarily embedded
in B.

19. huge A cardinal κ is huge iff there is a nontrivial elementary embedding j : V →M
with κ the first ordinal moved, such that Mj(κ) ⊆M.

20. I0. There is an ordinal δ and a proper elementary embedding j of L(Vδ+1) into L(Vδ+1)
such that the first ordinal moved is less than δ.

Many even stronger large cardinals are described in S. Cramer [2017].

In the diagram on the next page, a line indicates that (the consistency of the) existence of
the cardinal above implies (the consistency of the) existence of the one below.
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Proposition 26.22. Let κ be an uncountable regular cardinal. We define S < T iff S
and T are stationary subsets of κ and the following two conditions hold:

(1) {α ∈ T : cf(α) ≤ ω} is nonstationary in κ.
(2) {α ∈ T : S ∩ α is nonstationary in α)} is nonstationary in κ.

Then if ω < λ < µ < κ, all these cardinals regular, then Eκλ < Eκµ, where

Eκλ = {α < κ : cf(α) = λ},

and similarly for Eκµ.

Proof. First of all, {α ∈ Eκµ : cf(α) ≤ ω} is empty, so of course it is nonstationary in
κ.

For (2), let C = (µ, κ). We claim that

{α ∈ Eκµ : Eκλ ∩ α is nonstationary in α} ∩ C = ∅;

this will prove (2). In fact, suppose that α is in the indicated intersection. Let D be club
in α such that Eκλ ∩D = ∅. Now α ∈ Eκµ , so cf(α) = µ. Define αξ for all ξ < λ as follows.
Let α0 be the least member of D. If αξ ∈ D has been defined, take any member αξ+1

of D greater than αξ. If ξ is limit less than λ, let αξ =
⋃

η<ξ αη. Then αξ ∈ D because
D is closed. Now let β =

⋃

ξ<λ αξ. Then β ∈ D since D is closed, and cf(β) = λ. So
β ∈ Eκλ ∩D, contradiction.

Proposition 26.23. Continuing Proposition 26.22: Assume that κ is uncountable and
regular. Then the relation < is transitive.

Proof. Suppose that A < B < C. Then by definition

(1) {α ∈ C : cf(α) ≤ ω} is nonstationary in κ.

(2) {α ∈ B : α ∩ A is nonstationary} is nonstationary in κ.

(3) {α ∈ C : α ∩B is nonstationary} is nonstationary in κ.

We want to show

{α ∈ C : α ∩A is nonstationary} is nonstationary.

Our assumptions give us clubs M,N in κ such that

{α ∈ B : α ∩A is nonstationary} ∩M = ∅ and

{α ∈ C : α ∩B is nonstationary} ∩N = ∅.

Let M ′ be the set of all limits of members of M ; so also M ′ is club in κ. Now it suffices
to show that

{α ∈ C : α ∩A is nonstationary} ∩M ′ ∩N = ∅.

So, suppose that α ∈ C ∩M ′ ∩N ; we show that α ∩A is stationary in α. To this end, let
P be club in α, and let P ′ be the set of all of its limit points. Now α ∈ C ∩N , so α ∩B
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is stationary. Since α ∈ M ′, it follows that α ∩M is club in α. So M ∩ P ′ is club in α,
and so we can choose β ∈ α ∩B ∩M ∩ P ′. Now β ∈ B ∩M , so β ∩ A is stationary in β.
Since β ∈ P ′, it follows that P ∩ β is club in β. So β ∩ A ∩ P 6= ∅, hence A ∩ P 6= ∅, as
desired.

Proposition 26.24. If κ is an uncountable regular cardinal and S is a stationary subset
of κ, we define

Tr(S) = {α < κ : cf(α) > ω and S ∩ α is stationary in α}.

Suppose that A,B are stationary subsets of an uncountable regular cardinal κ and A < B.
Then Tr(A) is stationary.

Proof. Assume the conditions of the proposition. Thus by definition, {α ∈ B :
cf(α) ≤ ω} is nonstationary in κ, and also {α ∈ B : A ∩ α is non-stationary in α} is
non-stationary in κ. Hence there is a club C in κ such that C ∩ {α ∈ B : cf(α) ≤ ω} = ∅
and also C ∩ {α ∈ B : A ∩ α is non-stationary in α} = ∅. Thus B ∩ C ⊆ Tr(A), and it
follows that Tr(A) is stationary in κ.

Proposition 26.25. (Real-valued measurable cardinals) We describe a special kind of
measure. A measure on a set S is a function µ : P(S) → [0,∞) satisfying the following
conditions:

(1) µ(∅) = 0 and µ(S) = 1.

(2) If µ({s}) = 0 for all s ∈ S,

(3) If 〈Xi : i ∈ ω〉 is a system of pairwise disjoint subsets of S, then µ(
⋃

i∈ωXi) =
∑

i∈ω µ(Xi). (The Xi’s are not necessarily nonempty.)

Let κ be an infinite cardinal. Then µ is κ-additive iff for every system 〈Xα : α < γ〉
of nonempty pairwise disjoint sets, wich γ < κ, we have

µ

(
⋃

α<γ

Xα

)

=
∑

α<γ

µ(Xα).

Here this sum (where the index set γ might be uncountable), is understood to be

sup
F⊆γ,
F finite

∑

α∈F

µ(Xα).

We say that an uncountable cardinal κ is real-valued measurable iff there is a κ-additive
measure on κ. Then every measurable cardinal is real-valued measurable.

Proof. Suppose that κ is measurable. Thus κ is uncountable, and there is a κ-
complete nonprincipal ultrafilter U on κ. Now for any X ⊆ κ we define

µ(X) =
{

1 if X ∈ U ,
0 otherwise.
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Conditions (1) and (2) in the definition of measure are clear. We can check (3) and κ-
additivity simultaneously, by assuming that 〈Xα : α < β〉 is a system of pairwise disjoint
subsets of κ, with β < κ. If µ(

⋃

α<β Xα) = 0, clearly µ(Xα) = 0 for all α < β, and so

µ

(
⋃

α<γ

Xα

)

=
∑

α<γ

µ(Xα).

Suppose that µ(
⋃

α<β Xα) = 1. Thus
⋃

α<β Xα ∈ U . If Xα /∈ U for all α < β, then
κ\Xα ∈ U for all α < β, and hence by κ-completeness,

κ\




⋃

α<β

Xα



 =
⋂

α<β

(κ\Xα) ∈ U,

contradiction. Hence Xα ∈ U for some α < β. There can be only one such α, since if
γ 6= α and Xγ ∈ U , then ∅ = Xα ∩Xγ ∈ U , contradiction. Hence again

µ

(
⋃

α<γ

Xα

)

=
∑

α<γ

µ(Xα).

Proposition 26.26. Suppose that µ is a measure on a set S. A subset A of S is a µ-atom
iff µ(A) > 0 and for every X ⊆ A, either µ(X) = 0 or µ(X) = µ(A). Then if κ is a
real-valued measurable cardinal, µ is a κ-additive measure on κ, and A ⊆ κ is a µ-atom,
then {X ⊆ A : µ(X) = µ(A)} is a κ-complete nonprincipal ultrafilter on A. It follows that
κ is a measurable cardinal if there exist such µ and A.

Proof. Let F be the indicated set. Obviously A ∈ F . Suppose that X ∈ F and
X ⊆ Y ⊆ A. Then

µ(A) = µ(X ∪ (Y \X)∪ (A\Y )) = µ(X) +µ(Y \X) +µ(A\Y ) = µ(A) +µ(Y \X) +µ(A\Y ),

and so µ(A\Y ) = 0. Hence µ(A) = µ((A\Y ∪ Y ) = µ(A\Y ) + µ(Y ) = µ(Y ). So Y ∈ F .
Now suppose that Y, Z ∈ F . Then

µ(A) = µ(Y ) = µ(Y ∩ Z) + µ(Y \Z) and

µ(A) = µ(Z) = µ(Y ∩ Z) + µ(Z\Y ).

It follows that µ(Y \Z) = µ(Z\Y ). If µ(Y \Z) = µ(A), then also µ(Z\Y ) = µ(A), and
hence

2µ(A) = µ(Y \Z) + µ(Z\Y ) = µ((Y \Z) ∪ (Z\Y )) ≤ µ(A),

contradiction. So µ(Y \Z) = 0, and hence µ(A) = µ(Y ∩ Z). It follows that Y ∩ Z ∈ F .
So, F is a filter.

Clearly ∅ /∈ F , so F is proper.
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If X ⊆ A, then µ(A) = µ(X) + µ(A\X), and hence µ(X) = µ(A) or µ(A\X) = µ(A).
So X ∈ F or A\X ∈ F . Thus F is an ultrafilter.

Finally, for κ-completeness, suppose that A ∈ [F ]<κ Suppose that
⋂

A /∈ F . Then
A\
⋂

A ∈ F . Let 〈Xα : α < λ〉 be an enumeration of A . For each α < λ let Yα =
⋂

β<αXβ\Xα.

(1)
⋃

α<λ

Yα =
⋃

α<λ

(A\Xα)

In fact, ⊆ is clear. Suppose that ξ ∈
⋃

α<λ(A\Xα), and choose α < λ minimum such that
ξ ∈ (A\Xα). Then ξ ∈ Yα. So (1) holds.

Clearly the Yα’s are pairwise disjoint. So from (1) we get

µ(A) = µ
(

A\
⋂

A

)

= µ

(
⋃

α<λ

(A\Xα)

)

= µ

(
⋃

α<λ

Yα

)

=
∑

α<λ

µ(Yα),

and hence there is a α < λ such that µ(Yα) = 1. Hence µ(A\Xα) = µ(A) also, contradic-
tion.

Hence F is κ-complete.
Since all members of F have size κ by κ-completeness and nonprincipality, it follows

that |A| = κ. So κ is a measurable cardinal.

Proposition 26.27. If κ is real-valued measurable then either κ is measurable or κ ≤ 2ω.

Proof. Let µ be a κ-additive measure on κ. By Proposition 26.26, if there is a µ-atom,
then κ is measurable. So, suppose that there do not exist any µ-atoms. We construct a
tree under ⊃ by constructing the levels Lα, as follows. L0 = {κ}. Suppose that Lα has
been constructed, and that it is a nonempty collection of subsets of κ each of positive
measure. For each X ∈ Lα let YX be a subset of X such that 0 < µ(YX) < µ(X); such a
set exists since X is not a µ-atom. Then we define

Lα+1 = {YX , X\YX : X ∈ Lα}.

If α is a limit ordinal and Lβ has been constructed for every β < α, then we define

Lα =

{
⋂

β<α

Zβ : Zβ ∈ Lβ for all β < α and µ




⋂

β<α

Zβ



 > 0

}

,
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except that if Lα = ∅ the construction stops.
Clearly this gives a tree. Let α be the least ordinal such that Lα is not defined. So α

is a limit ordinal.

(1) α ≤ ω1, and in fact, if 〈Zβ : α < γ〉 is a branch of the tree, thus with Zβ ⊂ Zδ if
δ < β < γ, then γ is countable.

In fact, we have µ(Zβ\Zβ+1) > 0 for every β < γ, and the sets Zβ\Zβ+1 are pairwise
disjoint. If γ ≥ ω1, then

γ =
⋃

n∈ω

{

β < γ : µ(Zβ\Zβ+1) >
1

n+ 1

}

,

and hence there would be an n ∈ ω such that
{

β < γ : µ(Zβ\Zβ+1) >
1

n+ 1

}

is uncountable, which is not possible. So (1) holds.
Similarly each level of our tree is countable. It follows that the tree has at most 2ω

branches.
Let B be the collection of all branches in this tree, and for each B ∈ B let WB =

⋂

X∈B X . Let C = {WB : B ∈ B}\{∅}. Now clearly |C | ≤ 2ω, and C consists of measure
0 sets.

(2) κ =
⋃

C .

In fact, if α ∈ κ, then B = {X ∈ T : α ∈ X} is a branch, and so α ∈WB .
From (2) it follows that κ ≤ 2ω, since the measure µ is κ-additive and µ(κ) = 1. In

fact, 2ω < κ would imply by (2) that µ(κ) = 0, contradiction.

Proposition 26.28. Let κ be a regular uncountable cardinal. Then the diagonal intersec-
tion of the system 〈(α+ 1, κ) : α < κ〉 is the set of all limit ordinals less than κ.

Proof. For any β ∈ κ,

β ∈ △α<κ(α+ 1, κ) iff ∀α < β[β ∈ (α+ 1, κ)]

iff ∀α < β[α+ 1 < β]

iff β is a limit ordinal.

Proposition 26.29. Let F be a filter on a regular uncountable cardinal κ. We say that
F is normal iff it is closed under diagonal intersections. Suppose that F is normal, and
(α, κ) ∈ F for every α < κ. Then every club of κ is in F .

Proof. Let C be a club, and let 〈αξ : ξ < κ〉 be the strictly increasing enumeration
of C, and let D be the set of all limit ordinals less than κ. By Proposition 26.28 suffices
to show that

D ∩△ξ<κ(αξ, κ) ⊆ C.
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So, take any β ∈ D ∩△ξ<κ(αξ, κ). Thus β is a limit ordinal, and ∀ξ < β[β ∈ (αξ, κ)], i.e.,
∀ξ < β[αξ < β]. Now ξ ≤ αξ for all ξ, so C ∩ β is unbounded in β. Hence β ∈ C.

Proposition 26.30. Let F be a proper filter on a regular uncountable cardinal κ. Then
the following conditions are equivalent.

(i) F is normal
(ii) For any S0 ⊆ κ, if κ\S0 /∈ F and f is a regressive function defined on S0, then

there is an S ⊆ S0 with κ\S /∈ F and f is constant on S.

Proof. (i)⇒(ii): Assume (i), and suppose that S0 ⊆ κ, κ\S0 /∈ F , and f is a
regressive function on S0. Suppose that the conclusion fails. Then for every γ < κ
we have κ\f−1[{γ}] ∈ F , as otherwise we could take S = f−1[{γ}]. By (i), take β ∈
△γ<κ(κ\f−1[{γ}]). Then ∀γ < β[β ∈ κ\f−1[{γ}]; in particular, β ∈ κ\f−1[{f(β)}],
contradiction.

(ii)⇒(i): Assume (ii), and suppose that 〈aα : α < κ〉 is a system of members of
F . Suppose that △α<κaα /∈ F . Now ∀α ∈ κ\△α<κaα∃β < α[α /∈ aβ ]. This gives us a
regressive function f defined on κ\△α<κaα such that for every α in that set, α /∈ af(α).
Hence by (ii) choose S ⊆ κ\△α<κaα such that f is constant on S, say with value γ, with
κ\S /∈ F . Since aγ ∈ F , we have aγ 6⊆ κ\S. Choose β ∈ aγ ∩ S. Then β /∈ af(β) gives a
contradiction.

Proposition 26.31. A probability measure on a set S is a real-valued function µ with
domain P(S) having the following properties:

(i) µ(∅) = 0 and µ(S) = 1.
(ii) If X ⊆ Y , then µ(X) ≤ µ(Y ).
(iii) µ({a}) = 0 for all a ∈ S.
(iv) If 〈Xn : n ∈ ω〉 is a system of pairwise disjoint sets, then µ(

⋃

n∈ωXn) =
∑

n∈ω µ(Xn). (Some of the sets Xn might be empty.)

There does not exist a probability measure on ω1.

Proof. Suppose that µ is a probability measure on ω1. Let f = 〈fρ : ρ < ω1〉 be a
family of injections fρ : ρ → ω. Define the function A : ω × ω1 → P(ω1) by setting, for
any ξ < ω and α < ω1,

Aξα = {ρ ∈ ω1\(α+ 1) : fρ(α) = ξ}.

Take any α < ω1. Since
⋃

n∈ω A
n
α = ω1\(α+1), Anα∩A

m
α = ∅ for α 6= β, and µ(ω1\(α+1)) =

1, choose n(α) ∈ ω such that ϕ(A
n(α)
α ) > 0. Then there exist M ∈ [ω1]ω1 and m ∈ ω such

that n(α) = m for every α ∈M . Then 〈Amα : α ∈M〉 is a system of pairwise disjoint sets
each of positive measure, contradiction.

Proposition 26.32. If κ is a measurable cardinal, then there is a normal κ-complete
nonprincipal ultrafilter on κ.

Proof. Let D be a κ-complete nonprincipal ultrafilter on κ. Define f ≡ g iff f, g ∈ κκ
and {α < κ : f(α) = g(α)} ∈ D. Then ≡ is an equivalence relation on κκ:
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≡ is reflexive: κ = {α < κ : f(α) = f(α)}, hence f ≡ f .
≡ is symmetric: Assume that f ≡ g. Thus {α < κ : f(α) = g(α)} ∈ D. Hence

{α < κ : g(α) = f(α)} = {α < κ : f(α) = g(α)} ∈ D. Hence g ≡ f .
≡ is transitive: Assume that f ≡ g ≡ h. Thus {α < κ : f(α) = g(α)} ∈ D and

{α < κ : g(α) = h(α)} ∈ D. Hence

{α < κ : f(α) = g(α)} ∩ {α < κ : g(α) = h(α)} ∈ D;

since

{α < κ : f(α) = g(α)} ∩ {α < κ : g(α) = h(α)} ⊆ {α < κ : f(α) = h(α)},

Now define

x ≺ y iff ∃f, g[x = [f ] and y = [g] and {α < κ : f(α) < g(α)} ∈ D].

(1) ∀f, g ∈ κκ[[f ] ≺ [g] iff {α < κ : f(ϕ) < g(α)} ∈ D].

In fact, ⇐ is immediate from the definition. Now suppose that [f ] ≺ [g]. Choose
f ′, g′ ∈ κκ such that [f ] = [f ′], [g] = [g′], and {α < κ : f ′(α) < g′(α)} ∈ D. Then

{α < κ : f(α) = f ′(α)}∩{α < κ : f ′(α) < g′(α)} ∩ {α < κ : g(α) = g′(α)}

⊆ {α < κ : f(α) < g(α)};

the left side is in D, hence also the right side is in D, so {α < κ : f(α) < g(α)} ∈ D. Thus
(1) holds.
≺ is irreflexive: {α < κ : f(α) < f(α)} = ∅ /∈ D, so [f ] 6≺ [f ].
≺ is transitive: Assume that [f ] ≺ [g] ≺ [h]. Then

{α < κ : f(α) < g(α)} ∩ {α < κ : g(α) < h(α)} ⊆ {α < κ : f(α) < h(α)};

the left side is in D, hence also the right side is in D, so [f ] ≺ [h].
≺ is a linear order: Suppose that f, g ∈ κκ are such that [f ] 6= [g] and [f ] 6≺ [g]. Now

κ = {α < κ : f(α) < g(α)} ∪ {α < κ : f(α) = g(α} ∪ {α < κ : g(α) < f(α)};

The first two sets are not in D, so the third one is in D, and hence [g] ≺ [f ].
≺ is a well-order: Suppose not. Then we get a sequence 〈fm : m ∈ ω〉 of members of

κκ such that [fm+1] ≺ [fm] for all m ∈ ω. Thus {α < κ : fm+1(α) < fm(α)} ∈ D for all
m ∈ ω. It follows that

⋂

m∈ω

{α < κ : fm+1(α) < fm(α)} ∈ D;

taking any element α in this intersection, we get . . . fm+1(α) < fm(α) . . ., contradiction.
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Now let k(α) = α for all α < κ. Then for any γ < κ we have

{α < κ : γ < k(α)} = {α < κ : γ < α} = κ\(γ + 1) ∈ D.

It follows that we can take the smallest equivalence class [f ] such that for any γ < κ we
have {α < κ : γ < f(α)} ∈ D. Now we let E = {X ⊆ κ : f−1[X ] ∈ D}. We claim that E
is as desired in the exercise.
∅ /∈ E: This is true since f−1[∅] = ∅ /∈ D.
If X ⊆ Y ⊆ κ and X ∈ E, then Y ∈ E: In fact, assume that X ⊆ Y ⊆ κ and X ∈ E.

Then f−1[X ] ⊆ f−1[Y ] and f−1[X ] ∈ D, so f−1[y] ∈ D, so that Y ∈ E.
If X, Y ∈ E, then X ∩ Y ∈ E: In fact, f−1[X ∩ Y ] = f−1[X ]∩ f−1[y], so this is clear.
If X ⊆ κ, then X ∈ E or (κ\X) ∈ E: For, suppose that X /∈ E. Then f−1[X ] /∈ D,

so f−1[κ\X ] = (κ\f−1[X ]) ∈ D, and hence (κ\X) ∈ E.
E is nonprincipal: for any α < κ we have {β < κ : α < f(β)} ∈ D, and {β < κ : α <

f(β)} ⊆ {β < κ : α 6= f(β)}, so {β < κ : α 6= f(β)} ∈ D, hence {β < κ : α = f(β)} /∈ D,
hence f−1[{α}] /∈ D and so {α} /∈ E.

E is κ-complete: Suppose that 〈Xα : α < β〉 is a system of subsets of κ, with
β < κ and with [Xα] ∈ E for all α < β. Thus f−1[Xα] ∈ D for all α < β. Since

f−1
[
⋂

α<β Xα

]

=
⋂

α<β f
−1[Xα] ∈ D, it follows that

⋂

α<β Xα ∈ E.

E is normal: We apply Proposition 26.30. Suppose that S0 ∈ E and g is regressive on
S0. Note that f−1[S0] ∈ D. Let h = g ◦f . Then for any α ∈ f−1[S0] we have h(α) < f(α),
so that [h] ≺ [f ]. By the definition of f it then follows that there is a γ < κ such that
{α < κ : γ < h(α)} /∈ D. Hence {α < κ : h(α) ≤ γ} ∈ D. Now

{α < κ : h(α) ≤ γ} =
⋃

δ≤γ

{α < κ : h(α) = δ},

and so there is a δ ≤ γ such that {α < κ : h(α) = δ} ∈ D. Now {α < κ : h(α) =
δ} = h−1[{δ}] = f−1[g−1[{δ}], so g−1[{δ}] ∈ E. This checks the condition of Proposition
26.30.
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FORCING

27. Boolean algebras and forcing orders

To introduce the apparatus of generic extensions and forcing in a clear fashion, it is neces-
sary to go into a special set theoretic topic: Boolean algebras and their relation to certain
orders.

A Boolean algebra (BA) is a structure 〈A,+, ·,−, 0, 1〉 with two binary operations +
and ·, a unary operation −, and two distinguished elements 0 and 1 such that the following
axioms hold for all x, y, z ∈ A:

(A) x+ (y + z) = (x+ y) + z; (A′) x · (y · z) = (x · y) · z;
(C) x+ y = y + x; (C′) x · y = y · x;
(L) x+ (x · y) = x; (L′) x · (x+ y) = x;
(D) x · (y + z) = (x · y) + (x · z); (D′) x+ (y · z) = (x+ y) · (x+ z);
(K) x+ (−x) = 1; (K′) x · (−x) = 0.

The main example of a Boolean algebra is a field of sets: a set A of subsets of some set X ,
closed under union, intersection, and complementation with respect to X . The associated
Boolean algebra is 〈A,∪,∩, \, 0, X〉. Here \ is treated as a one-place operation, producing
X\a for any a ∈ A. This example is really all-encompassing—every BA is isomorphic to
one of these. We will not prove this, or use it.

As is usual in algebra, we usually denote a whole algebra 〈A,+, ·,−, 0, 1〉 just by
mentioning its universe A, everything else being implicit.

Some notations used in some treatments of Boolean algebras are: ∨ or ∪ for +; ∧ or
∩ for ·; ′ for −. These notations might be confusing if discussing logic, or elementary set
theory. Our notation might be confusing if discussing ordinary algebra.

Now we give the elementary arithmetic of Boolean algebras. We recommend that the
reader go through them, but then approach any arithmetic statement in the future from
the point of view of seeing if it works in fields of sets; if so, it should be easy to derive from
the axioms.

First we have the duality principle, which we shall not formulate carefully; our partic-
ular uses of it will be clear. Namely, notice that the axioms come in pairs, obtained from
each other by interchanging + and · and 0 and 1. This means that also if we prove some
arithmetic statement, the dual statement, obtained by this interchanging process, is also
valid.

Proposition 27.1. x+ x = x and x · x = x.

Proof.
x+ x = x+ x · (x+ x) by (L′)

= x by (L);

the second statement follows by duality.

Proposition 27.2. x+ y = y iff x · y = x.
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Proof. Assume that x+ y = y. Then, by (L′),

x · y = x · (x+ y) = x.

The converse follows by duality.

In any BA we define x ≤ y iff x + y = y. Note that the dual of x ≤ y is y ≤ x, by 27.2
and commutativity. (The dual of a defined notion is obtained by dualizing the original
notions.)

Proposition 27.3. On any BA, ≤ is reflexive, transitive, and antisymmetric; that is, the
following conditions hold:

(i) x ≤ x;
(ii) If x ≤ y and y ≤ z, then x ≤ z;
(iii) If x ≤ y and y ≤ x, then x = y.

Proof. x ≤ x means x+ x = x, which was proved in 27.1. Assume the hypothesis of
(ii). Then

x+ z = x+ (y + z)

= (x+ y) + z

= y + z

= z,

as desired. Finally, under the hypotheses of (iii),

x = x+ y = y + x = y.

Note that Proposition 27.3 says that ≤ is a partial order on the BA A. There are some
notions concerning partial orders which we need. An element z is an upper bound for a set
Y of elements of X if y ≤ z for all y ∈ Y ; similarly for lower bounds. And z is a least upper
bound for Y if it is an upper bound for Y and is ≤ any other upper bound for Y ; simlarly
for greatest lower bounds. By antisymmetry, in any partial order least upper bounds and
greatest lower bounds are unique if they exist.

Proposition 27.4. x+ y is the least upper bound of {x, y}, and x · y is the greatest lower
bound of {x, y}.

Proof. We have x + (x + y) = (x + x) + y = x + y, and similarly y + (x + y) =
y + (y + x) = (y + y) + x = y + x = x + y; so x + y is an upper bound for {x, y}. If z is
any upper bound for {x, y}, then

(x+ y) + z = (x+ (y + z) = x+ z = z,

as desired. The other part follows by duality(!).

Proposition 27.5. (i) x+ 0 = x and x · 1 = x;
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(ii) x · 0 = x and x+ 1 = 1;
(iii) 0 ≤ x ≤ 1.

Proof. By (K) and Proposition 27.4, 1 is the least upper bound of x and −x; in
particular it is an upper bound, so x ≤ 1. Everything else follows by duality, Proposition
27.2, and the definitions.

Proposition 27.6. For any x and y, y = −x iff x · y = 0 and x+ y = 1.

Proof. ⇒ holds by (K) and (K ′). Now suppose that x · y = 0 and x+ y = 1. Then

y = y · 1 = y · (x+−x) = y · x+ y · −x = 0 + y · −x = y · −x;

−x = −x · 1 = −x · (x+ y) = −x · x+−x · y = 0 +−x · y = −x · y = y.

Proposition 27.7. (i) −− x = x;
(ii) if −x = −y then x = y;
(iii) −0 = 1 and −1 = 0;
(iv) (DeMorgan’s laws) −(x+ y) = −x · −y and −(x · y) = −x+−y.

Proof. If we apply Proposition 27.6 with x and y replaced respectively by −x and x,
we get −− x = x. Next, if −x = −y, then x = −− x = −− y = y. For (iii), by 27.5(iii),
0 · 1 = 0 and 0 + 1 = 1, so by 27.6, −0 = 1. Then −1 = 0 by duality. For the first part of
(iv),

(x+ y) · −x · −y = x · −x · −y + y · −x · −y

= 0 + 0 = 0,

and
(x+ y) +−x · −y = x · (y +−y) + y +−x · −y

= x · y + x · −y + y +−x · −y

= y + x · −y +−x · −y

= y +−y = 1,

so that −(x + y) = −x · −y by Proposition 27.6. Finally, the second part of (iv) follows
by duality.

Proposition 27.8. x ≤ y iff −y ≤ −x.

Proof. Assume that x ≤ y. Then x + y = y, so −x · −y = −y, i.e., −y ≤ −x. For
the converse, use the implication just proved, plus 27.7(i).

Proposition 27.9. If x ≤ x′ and y ≤ y′, then x+ y ≤ x′ + y′ and x · y ≤ x′ · y′.

Proof. Assume the hypothesis. Then

(x+ y) + (x′ + y′) = (x+ x′) + (y + y′) = x′ + y′,

and so x+ y ≤ x′ + y′; the second conclusion follows by duality.
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Proposition 27.10. x ≤ y iff x · −y = 0.

Proof. If x ≤ y, then x = x · y and so x · −y = 0. Conversely, if x · −y = 0, then

x = x · (y +−y) = x · y + x · −y = x · y,

so that x ≤ y.

Elements x, y ∈ A are disjoint if x · y = 0. For any x, y we define

x△y = x · −y + y · −x;

this is the symmetric difference of x and y.

Proposition 27.11. (i) x = y iff x△y = 0;
(ii) x · (y△z) = (x · y)△(x · z);
(iii) x△(y△z) = (x△y)△z.

Proof. For (i), ⇒ is trivial. Now assume that x△y = 0. Then x · −y = 0 = y · −x,
so x ≤ y and y ≤ x, so x = y.

For (ii), we have

x · (y△z) = x · y · −z + x · z · −y

= (x · y) · −(x · z) + (x · z) · −(x · y)

= (x · y)△(x · z),

as desired.
Finally, for (iii),

x△(y△z) = x · −(y · −z +−y · z) + (y · −z +−y · −z) · −x

= x · (−y + z) · (y +−z) +−x · y · −z +−x · −y · z

= x · −y · −z + x · y · z +−x · y · −z +−x · −y · z;

if we apply the same argument to z△(y△x) we get

z△(y△x) = z · −y · −x+ z · y · x+−z · y · −x+−z · −y · x,

which is the same thing. So the obvious symmetry of △ gives the desired result.

One further useful result is that axiom (D′) is redundant:

Proposition 27.12. (D′) is redundant. (Assume all axioms except D′.)

Proof.

(x+ y) · (x+ z) = ((x+ y) · x) + ((x+ y) · z)

= (x · (x+ y)) + (z · (x+ y))

= x+ ((z · x) + (z · y))

= x+ ((x · z) + (y · z))

= (x+ (x · z)) + (y · z)

= x+ (y · z).
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Complete Boolean algebras

If M is a subset of a BA A, we denote by
∑
M its least upper bound (if it exists), and

by
∏
M its greatest lower bound, if it exists. A is complete iff these always exist. Note

that frequently people use
∨
M and

∧
M instead of

∑
M and

∏
M .

Proposition 27.13. Assume that A is a complete BA.
(i) −

∑

i∈I ai =
∏

i∈I −ai.
(ii) −

∏

i∈I ai =
∑

i∈I −ai.

Proof. For (i), let a =
∑

i∈I ai; we show that −a is the greatest lower bound of
{−ai : i ∈ I}. If i ∈ I, then ai ≤ a, and hence −a ≤ −ai; thus −a is a lower bound for the
indicated set. Now suppose that x is any lower bound for this set. Then for any i ∈ I we
have x ≤ −ai, and so ai ≤ −x. So −x is an upper bound for {ai : i ∈ I}, and so a ≤ −x.
Hence x ≤ −a, as desired.

(ii) is proved similarly.

The following (possibly infinite) distributive law is frequently useful. One should be aware
of the fact that more general infinite distributive laws do not hold, in general.

Proposition 27.14. If
∑

i∈I ai exists, then
∑

i∈I(b · ai) exists and

b ·
∑

i∈I

ai =
∑

i∈I

(b · ai).

Proof. Let s =
∑

i∈I ai; we shall show that b · s is the least upper bound of {b · ai :
i ∈ I}. If i ∈ I, then ai ≤ s and so b · ai ≤ b · s; so b · s is an upper bound for the indicated
set. Now suppose that x is any upper bound for this set. Then for any i ∈ I we have
b · ai ≤ x, hence b · ai · −x = 0 and so ai ≤ −(b · −x) = −b + x; so −b + x is an upper
bound for {ai : i ∈ I}. It follows that s ≤ −b + x, and hence s · b ≤ x, as desired.

Forcing orders

A forcing order is a triple P = (P,≤, 1) such that ≤ is a reflexive and transitive relation
on the nonempty set P , and ∀p ∈ P (p ≤ 1). Note that we do not assume that ≤ is
antisymmetric. Partial orders are special cases of forcing orders in which this is assumed
(but we do not assume the existence of 1 in partial orders). Note that we assume that
every forcing order has a largest element. Many set-theorists use “partial order” instead
of “forcing order”.

Frequently we use just P for a forcing order; ≤ and 1 are assumed.
We say that elements p, q ∈ P are compatible iff there is an r ≤ p, q. We write p ⊥ q

to indicate that p and q are incompatible. A set A of elements of P is an antichain iff any
two distinct members of A are incompatible. WARNING: sometimes “antichain” is used
to mean pairwise incomparable, or in the case of Boolean algebras, pairwise disjoint. A
subset Q of P is dense iff for every p ∈ P there is a q ∈ Q such that q ≤ p.

Now we are going to describe how to embed a forcing order into a complete BA.
We take the regular open algebra of a certain topological space. We assume a very little
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bit of topology. To avoid assuming any knowledge of topology we now give a minimalist
introduction to topology.

A topology on a set X is a collection O of subsets of X satisfying the following condi-
tions:

(1) X, ∅ ∈ O .

(2) O is closed under arbitrary unions.

(3) O is closed under finite intersections.

The members of O are said to be open. The interior of a subset Y ⊆ X is the union of all
open sets contained in Y ; we denote it by int(Y ).

Proposition 27.15. (i) int(∅) = ∅.
(ii) int(X) = X.
(iii) int(Y ) ⊆ Y .
(iv) int(Y ∩ Z) = int(Y ) ∩ int(Z).
(v) int(int(Y )) = int(Y ).
(vi) int(Y ) = {x ∈ X : x ∈ U ⊆ Y for some open set U}.

Proof. (i)–(iii), (v), and (vi) are obvious. For (iv), if U is an open set contained in
Y ∩ Z, then it is contained in Y ; so int(Y ∩ Z) ⊆ int(Y ). Similarly for Z, so ⊆ holds. For
⊇, note that the right side is an open set contained in Y ∩ Z. (v) holds since int(Y ) is
open.

A subset C of X is closed iff X\C is open.

Proposition 27.16. (i) ∅ and X are closed.
(ii) The collection of all closed sets is closed under finite unions and intersections of

any nonempty subcollection.

For any Y ⊆ X , the closure of Y , denoted by cl(Y ), is the intersection of all closed sets
containing Y .

Proposition 27.17. (i) cl(Y ) = X\int(X\Y ).
(ii) int(Y ) = X\cl(X\Y ).
(iii) cl(∅) = ∅.
(iv) cl(X) = X.
(v) Y ⊆ cl(Y ).
(vi) cl(Y ∪ Z) = cl(Y ) ∪ cl(Z).
(vii) cl(cl(Y )) = cl(Y ).
(viii) cl(Y ) = {x ∈ X :for every open set U , if x ∈ U then U ∩ Y 6= ∅}.

Proof. (i): int(X\Y ) is an open set contained in X\Y , so Y is a subset of the closed
set X\int(X\Y ). Hence cl(Y ) ⊆ X\int(X\Y ). Also. cl(Y ) is a closed set containing
Y , so X\cl(Y ) is an open set contained in X\Y . Hence X\cl(Y ) ⊆ int(X\Y ). Hence
X\int(X\Y ⊆ cl(Y ). This proves (i).
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(ii): Using (i),

X\cl(X\Y ) = X\(X\int(X\(X\Y ))) = int(Y ).

(iii)–(v): clear.
(vi):

cl(Y ∪ Z) = X\int(X\(Y ∪ Z)) by (i)

= X\int((X\Y ) ∩ (X\Z))

= X\(int(X\Y ) ∩ int(X\Z)) by 27.15(iv)

= [X\int(X\Y )] ∪ [X\int(X\Z)]

= cl(Y ) ∪ cl(Z).

(vii):

cl(cl(Y )) = cl(X\int(X\Y ))

= X\int(X\(X\int(X\Y )))

= X\int(int(X\Y ))

= X\int(X\Y )

= cl(Y ).

(vii): First suppose that x ∈ cl(Y ), and x ∈ U , U open. By (i) and Proposition
27.15(vi) we have U 6⊆ X\Y , i.e., U ∩ Y 6= ∅, as desired. Second, suppose that x /∈ cl(Y ).
Then by (i) and 27.15(vi) there is an open U such that x ∈ U ⊆ X\Y ; so U ∩ Y = ∅, as
desired.

Now we go beyond this minimum amount of topology and work with the notion of a regular
open set, which is not a standard part of topology courses.

We say that Y is regular open iff Y = int(cl(Y )).

Proposition 27.18. (i) If Y is open, then Y ⊆ int(cl(Y )).
(ii) If U and V are regular open, then so is U ∩ V .
(iii) int(cl(Y )) is regular open.
(iv) If U is open, then int(cl(U)) is the smallest regular open set containing U .
(v) If U is open then U ∩ cl(Y ) ⊆ cl(U ∩ Y ).
(vi) If U is open, then U ∩ int(cl(Y )) ⊆ int(cl(U ∩ Y )).
(vii) If U and V are open and U ∩ V = ∅, then int(cl(U)) ∩ V = ∅.
(viii) If U and V are open and U ∩ V = ∅, then int(cl(U)) ∩ int(cl(V )) = ∅.
(ix) For any set M of regular open sets, int(cl(

⋃
M) is the least regular open set

containing each member of M .

Proof. (i): Y ⊆ cl(Y ), and hence Y = int(Y ) ⊆ int(cl(Y )).
(ii): U ∩V is open, and so U ∩V ⊆ int(cl(U ∩V )). For the other inclusion, int(cl(U ∩

V )) ⊆ int(cl(U)) = U , and similarly for V , so the other inclusion holds.
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(iii): int(cl(X)) ⊆ cl(X), so cl(int(cl(X))) ⊆ cl(cl(X)) = cl(X); hence

int(cl(int(cl(X)))) ⊆ int(cl(X));

the other inclusion is clear.
(iv): By (iii), int(cl(U)) is a regular open set containing U . If V is any regular open

set containing U , then int(cl(U)) ⊆ int(cl(V )) = V .
(v):

U ∩ (X\(U ∩ Y )) ⊆ X\Y, hence

U ∩ int(X\(U ∩ Y )) = int(U) ∩ int(X\(U ∩ Y ))

= int(U ∩ (X\(U ∩ Y )))

⊆ int(X\Y ), hence

X\int(X\Y ) ⊆ X\(U ∩ int(X\(U ∩ Y )))

= (X\U) ∪ (X\int(X\(U ∩ Y ))), hence

U ∩ (X\int(X\Y )) ⊆ (X\int(X\(U ∩ Y ))),

and (v) follows.
(vi):

U ∩ int(cl(Y )) = int(U) ∩ int(cl(Y ))

= int(U ∩ cl(Y ))

⊆ int(cl(U ∩ Y )) by (v).

(vii): U ⊆ X\V , hence cl(U) ⊆ cl(X\V ) = X\V , hence cl(U) ∩ V = ∅, and the
conclusion of (vii) follows.

(viii): Apply (vii) twice.
(ix): If U ∈ M , then U ⊆

⋃
M ⊆ int(cl(

⋃
M). Suppose that V is regular open and

U ⊆ V for all U ∈M . Then
⋃
M ⊆ V , and so int(cl(

⋃
M)) ⊆ int(cl(V ) = V .

We let RO(X) be the collection of all regular open sets in X . We define operations on
RO(X) which will make it a Boolean algebra. For any Y, Z ∈ RO(X), let

Y + Z = int(cl(Y ∪ Z));

Y · Z = Y ∩ Z;

−Y = int(X\Y ).

Theorem 27.19. The structure

〈RO(X),+, ·,−, ∅, X〉

is a complete BA. Moreover, the ordering ≤ coincides with ⊆.
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Proof. RO(X) is closed under + by Proposition 27.18(ix), and is closed under · by
Proposition 27.18(ii). Clearly it is closed under −, and ∅, X ∈ RO(X). Now we check
the axioms. The following are completely obvious: (A′), (C′), (C). Now let unexplained
variables range over RO(X). For (A), note by 27.18(i) that U ⊆ U + V ⊆ (U + V ) +W ;
and similarly V ⊆ (U +V ) +W and W ⊆ U +V ⊆ (U +V ) +W . If U, V,W ⊆ Z, then by
27.18(iv), U + V ⊆ Z and hence (U + V ) +W ⊆ Z. Thus (U + V ) +W is the least upper
bound in RO(X) of U, V,W . This is true for all U, V,W . So U + (V +W ) = (V +W ) +U
is also the least upper bound of them; so (A) holds. For (L):

U + U · V = int(cl(U ∪ (U ∩ V ))) = int(cl(U)) = U.

(L′) holds by 27.18(i). For (D), first note that

Y · (Z +W ) = Y ∩ int(cl(Z ∪W ))

⊆ int(cl(Y ∩ (Z ∪W ))) by 27.18(vi)

= int(cl((Y ∩ Z) ∪ (Y ∩W )))

= Y · Z + Y ·W.

On the other hand, (Y ∩ Z) ∪ (Y ∩W ) = Y ∩ (Z ∪W ) ⊆ Y, Z ∪W , and hence easily

Y · Z + Y ·W = int(cl((Y ∩ Z) ∪ (Y ∩W )))

⊆ int(cl(Y ) = Y and

Y · Z + Y ·W = int(cl((Y ∩ Z) ∪ (Y ∩W )))

⊆ int(cl(Z ∪W ) = Z +W ;

so the other inclusion follows, and (D) holds.
(K): For any regular open Y , from Proposition 27.17(ii) we get −Y = int(X\Y ) =

X\cl(X\(X\Y )) = X\cl(Y ). Hence

X = cl(Y ) ∪ (X\cl(Y )) ⊆ cl(Y ) ∪ cl((X\cl(Y )) = cl(Y ∪ (X\cl(Y ))),

and hence X = Y +−Y .
(K′): Clearly ∅ = Y ∩ int(X\Y ) = Y · −Y .
Thus we have now proved that 〈RO(X),+, ·,−, ∅, X〉 is a BA. Since · is the same as ∩,

≤ is the same as ⊆. Hence by Proposition 27.18(ix), 〈RO(X),+, ·,−, ∅, X〉 is a complete
BA.

Now we return to our task of embedding a forcing order into a complete Boolean algebra.
Let P be a given forcing order. For each p ∈ P let P ↓ p = {q : q ≤ p}. Now we define

OP = {X ⊆ P : (P ↓ p) ⊆ X for every p ∈ X}.

We check that this gives a topology on P . Clearly P, ∅ ∈ O . To show that O is closed
under arbitrary unions, suppose that X ⊆ O . Take any p ∈

⋃
X . Choose X ∈ X
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such that p ∈ X . Then (P ↓ p) ⊆ X ⊆
⋃

X , as desired. If X, Y ∈ OP , suppose that
p ∈ X ∩ Y . Then p ∈ X , so (P ↓ p) ⊆ X . Similarly (P ↓ p) ⊆ Y , so (P ↓ p) ⊆ X ∩ Y .
Thus X ∩ Y ∈ OP , finishing the proof that OP is a topology on P .

We denote the complete BA of regular open sets in this topology by RO(P ).
Now for any p ∈ P we define

e(p) = int(cl(P ↓ p)).

Thus e maps P into RO(P ).
This is our desired embedding. Actually it is not really an embedding in general, but

it has several useful properties, and for many forcing orders it really is an embedding.
The useful properties mentioned are as follows. We say that a subset X of P is dense

below p iff for every r ≤ p there is a q ≤ r such that q ∈ X .

Theorem 27.20. Let P be a forcing order. Suppose that p, q ∈ P , F is a finite subset of
P , a, b ∈ RO(P ), and N is a subset of RO(P )

(i) e[P ] is dense in RO(P ), i.e., for any nonzero Y ∈ RO(P ) there is a p ∈ P such
that e(p) ⊆ Y .

(ii) If p ≤ q then e(p) ⊆ e(q).
(iii) p ⊥ q iff e(p) ∩ e(q) = ∅.
(iv) If e(p) ≤ e(q), then p and q are compatible.
(v) The following conditions are equivalent:

(a) e(p) ≤ e(q).
(b) {r : r ≤ p, q} is dense below p.

(vi) The following conditions are equivalent, for F nonempty:
(a) e(p) ≤

∏

q∈F e(q).
(b) {r : r ≤ q for all q ∈ F} is dense below p.

(vii) The following conditions are equivalent:
(a) e(p) ≤ (

∏

q∈F e(q)) ·
∑
N .

(b) {r : r ≤ q for all q ∈ F and e(r) ≤ s for some s ∈ N} is dense below p.
(viii) e(p) ≤ −a iff there is no q ≤ p such that e(q) ≤ a.
(ix) e(p) ≤ −a+ b iff for all q ≤ p, if e(q) ≤ a then e(q) ≤ b.

Proof. (i): Assume the hypothesis. By the definition of the topology and since Y is
nonempty and open, there is a p ∈ P such that P ↓ p ⊆ Y . Hence e(p) = int(cl(P ↓ p)) ⊆
int(cl(Y )) = Y .

(ii): If p ≤ q, then P ↓ p ⊆ P ↓ q, and so e(p) = int(cl(P ↓ p)) ⊆ int(cl(P ↓ q) = e(q)).
(iii): Assume that p ⊥ q. Then (P ↓ p) ∩ (P ↓ q) = ∅, and hence by Proposition

27.18(viii), e(p) ∩ e(q) = ∅.
Conversely, suppose that e(p) ∩ e(q) = ∅. Then (P ↓ p) ∩ (P ↓ q) ⊆ e(p) ∩ e(q) = ∅,

and so p ⊥ q.
(iv): If e(p) ≤ e(q), then e(p) · e(q) = e(p) 6= ∅, so p and q are compatible by (iii).
(v): For (a)⇒(b), suppose that e(p) ≤ e(q) and s ≤ p. Then e(s) ≤ e(p) ≤ e(q), so s

and q are compatible by (iv); say r ≤ s, q. Then r ≤ s ≤ p, hence r ≤ p, q, as desired.
For (b)⇒(a), suppose that e(p) 6≤ e(q). Thus e(p) · −e(q) 6= 0. Hence there is an s

such that e(s) ⊆ e(p) · −e(q). Hence e(s) · e(q) = ∅, so s ⊥ q by (iii). Now e(s) ⊆ e(p), so s
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and p are compatible by (iv); say t ≤ s, p. For any r ≤ t we have r ≤ s, and hence r ⊥ q.
So (b) fails.

(vi): We proceed by induction on |F |. The case |F | = 1 is given by (v). Now assume
the result for F , and suppose that t ∈ P\F . First suppose that e(p) ≤

∏

q∈F e(q) · e(t).
Suppose that s ≤ p. Now e(p) ≤

∏

q∈F e(q), so by the inductive hypothesis there is a
u ≤ s such that u ≤ q for all q ∈ F . Thus e(u) ≤ e(s) ≤ e(p) ≤ e(t), so by (iv), u and t
are compatible. Take any v ≤ u, t. then v ≤ q for any q ∈ F ∪ {t}, as desired.

Second, suppose that (b) holds for F ∪ {t}. In particular, {r : r ≤ q for all q ∈ F}
is dense below p, and so e(p) ≤

∏

q∈F e(q) by the inductive hypothesis. But also clearly
{r : r ≤ t} is dense below p, so e(p) ≤ e(t) too, as desired.

(vii): First assume that e(p) ≤ (
∏

q∈F e(q)) ·
∑
N , and suppose that u ≤ p. By (vi),

there is a v ≤ u such that v ≤ q for each q ∈ F . Now e(v) ≤ e(u) ≤ e(p) ≤
∑
N , so

0 6= e(v) = e(v)·
∑
N =

∑

s∈N (e(v)·e(s)). Hence there is an s ∈ N such that e(v)·e(s) 6= 0.
Hence by (iii), v and s are compatible; say r ≤ v, s. Clearly r is in the set described in (b).

Second, suppose that (b) holds. Clearly then {r : r ≤ q for all q ∈ F} is dense below p,
and so e(p) ≤

∏

q∈F e(q) by (vi). Now suppose that e(p) 6≤
∑
N . Then e(p) · −

∑
N 6= 0,

so there is a q such that e(q) ≤ e(p) ·−
∑
N . By (iv), q and p are compatible; say s ≤ p, q.

Then by (b) choose r ≤ s and t ∈ N such that e(r) ≤ t. Thus e(r) ≤ e(s) · t ≤ e(p) · t ≤
(−
∑
N) ·

∑
N = 0, contradiction.

(viii)⇒: Assume that e(p) ≤ −a. Suppose that q ≤ p and e(q) ≤ a. Then e(q) ≤
−a · a = 0, contradiction.

(viii)⇐: Assume that e(p) 6≤ −a. Then e(p) · a 6= 0, so there is a q such that
e(q) ≤ e(p) · a. By (vii) there is an r ≤ p, q with e(r) ≤ a, as desired.

(ix)⇒: Assume that e(p) ≤ −a+ b, q ≤ p, and e(q) ≤ a. Then e(q) ≤ a · (−a+ b) ≤ b,
as desired.

(ix)⇐: Assume the indicated condition, but suppose that e(p) 6≤ −a + b. Then
e(p) · a · −b 6= 0, so there is a q such that e(q) ≤ e(p) · a · −b. By (vii) with F = {p} and
N = {a · −b} we get q such that q ≤ p and e(q) ≤ a · −b. So q ≤ p and e(q) ≤ a, so by our
condition, e(q) ≤ b. But also e(q) ≤ −b, contradiction.

We now expand on the remarks above concerning when e really is an embedding. Note
that if P is a simple ordering, then the closure of P ↓ p is P itself, and hence P has only
two regular open subsets, namely the empty set and P itself. If the ordering on P is trivial,
meaning that no two elements are comparable, then every subset of P is regular open.

An important condition satisfied by many forcing orders is defined as follows. We say
that P is separative iff it is a partial order (thus is an antisymmetric forcing order), and
for any p, q ∈ P , if p 6≤ q then there is an r ≤ p such that r ⊥ q.

Proposition 27.21. Let P be a forcing order.

(i) cl(P ↓ p) = {q : p and q are compatible}.
(ii) e(p) = {q : for all r ≤ q, r and p are compatible}.
(iii) The following conditions are equivalent:

(a) P is separative.

(b) e is one-one, and for all p, q ∈ P , p ≤ q iff e(p) ≤ e(q).
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Proof. (i) and (ii) are clear. For (iii), (a)⇒(b), assume that P is separative. Take
any p, q ∈ P . If p ≤ q, then e(p) ≤ e(q) by 27.20(ii). Suppose that p 6≤ q. Choose r ≤ p
such that r ⊥ q. Then r ∈ e(p), while r /∈ e(q) by (ii). Thus e(p) 6≤ e(q).

Now suppose that e(p) = e(q). Then p ≤ q ≤ p by what was just shown, so p = q
since P is a partial order.

For (iii), (b)⇒(a), suppose that p ≤ q ≤ p. Then e(p) ⊆ e(q) ⊆ e(p), so e(p) = e(q),
and hence p = q. So P is a partial order. Suppose that p 6≤ q. Then e(p) 6⊆ e(q). Choose
s ∈ e(p)\e(q). Since s /∈ e(q), by (ii) we can choose t ≤ s such that t ⊥ q. Since s ∈ e(p),
it follows that t and p are compatible; choose r ≤ t, p. Clearly r ⊥ q.

Now we prove a theorem which says that the regular open algebra of a forcing order is
unique up to isomorphism.

Theorem 27.22. Let P be a forcing order, A a complete BA, and j a function mapping
P into A\{0} with the following properties:

(i) j[P ] is dense in A, i.e., for any nonzero a ∈ A there is a p ∈ P such that j(p) ⊆ a.
(ii) For all p, q ∈ P , if p ≤ q then j(p) ≤ j(q).
(iii) For any p, q ∈ P , p ⊥ q iff j(p) · j(q) = 0.

Then there is a unique isomorphism f from RO(P ) onto A such that f ◦ e = j. That is, f
is a bijection from RO(P ) onto A, and for any x, y ∈ RO(P ), x ⊆ y iff f(x) ≤ f(y); and
f ◦ e = j.

Note that since the Boolean operations are easily expressible in terms of ≤ (as least upper
bounds, etc.), the condition here implies that f preserves all of the Boolean operations
too; this includes the infinite sums and products.

Proof. Before beginning the proof, we introduce some notation in order to make the
situation more symmetric. Let B0 = RO(P ), B1 = A, k0 = e, and k1 = j. Then for each
m < 2 the following conditions hold:

(1) km[P ] is dense in Bm.

(2) For all p, q ∈ P , if p ≤ q then km(p) ≤ km(q).

(3) For all p, q ∈ P , p ⊥ q iff km(p) · km(q) = 0.

(4) For all p, q ∈ P , if km(p) ≤ km(q), then p and q are compatible.

In fact, (1)–(3) follow from 27.20 and the assumptions of the theorem. Condition (4) for
m = 0, so that km = e, follows from 27.20(iv). For m = 1, so that km = j, it follows easily
from (iii).

Now we begin the proof. For each m < 2 we define, for any x ∈ Bm,

gm(x) =
∑

{k1−m(p) : p ∈ P, km(p) ≤ x}.

The proof of the theorem now consists in checking the following, for each m ∈ 2:

(5) If x, y ∈ Bm and x ≤ y, then gm(x) ≤ gm(y).
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(6) g1−m ◦ gm is the identity on Bm.

(7) g0 ◦ k0 = k1.

In fact, suppose that (5)–(7) have been proved. If x, y ∈ RO(P ), then

x ≤ y implies that g0(x) ≤ g0(y) by (5);

g0(x) ≤ g0(y) implies that x = g1(g0(x)) ≤ g1(g0(y)) = y by (5) and (6).

Also, (6) holding for both m = 0 and m = 1 implies that g0 is a bijection from RO(P )
onto A. Moreover, by (7), g0 ◦ e = g0 ◦ k0 = k1 = j. So g0 is the desired function f of the
theorem.

Now (5) is obvious from the definition. To prove (6), assume that m ∈ 2. We first
prove

(8) For any p ∈ P and any b ∈ Bm, km(p) ≤ b iff k1−m(p) ≤ gm(b).

To prove (8), first suppose that km(p) ≤ b. Then obviously k1−m(p) ≤ gm(b). Second,
suppose that k1−m(p) ≤ gm(b) but km(p) 6≤ b. Thus km(p) · −b 6= 0, so by the denseness
of km[P ] in Bm, choose q ∈ P such that km(q) ≤ km(p) · −b. Then p and q are compatible
by (4), so let r ∈ P be such that r ≤ p, q. Hence

k1−m(r) ≤ k1−m(p) ≤ gm(b) =
∑

{k1−m(s) : s ∈ P, km(s) ≤ b}.

Hence k1−m(r) =
∑
{k1−m(s) ·k1−m(r) : s ∈ P, km(s) ≤ b}, so there is an s ∈ P such that

km(s) ≤ b and k1−m(s) · k1−m(r) 6= 0. Hence s and r are compatible; say t ≤ s, r. Hence
km(t) ≤ km(r) ≤ km(q) ≤ −b, but also km(t) ≤ km(s) ≤ b, contradiction. This proves (8).

Now take any b ∈ Bm. Then

g1−m(gm(b)) =
∑

{km(p) : p ∈ P, k1−m(p) ≤ gm(b)}

=
∑

{km(p) : p ∈ P, km(p) ≤ b}

= b.

Thus (6) holds.
For (7), clearly k1(p) ≤ g0(k0(p)). Now suppose that k0(q) ≤ k0(p) but k1(q) 6≤ k1(p).

Then k1(q) · −k1(p) 6= 0, so there is an r such that k1(r) ≤ k1(q) · −k1(p). Hence q and
r are compatible, but r ⊥ p. Say s ≤ q, r. Then k0(s) ≤ k0(q) ≤ k0(p), so s and p are
compatible. Say t ≤ s, p. Then t ≤ r, p, contradiction. This proves (7).

This proves the existence of f . Now suppose that g is also an isomorphism from
RO(P ) onto A such that g ◦ e = j, but suppose that f 6= g. Then there is an X ∈ RO(P )
such that f(X) 6= g(X). By symmetry, say that f(X) · −g(X) 6= 0. By (ii), choose p ∈ P
such that j(p) ≤ f(X) · −g(X). So f(e(p)) = j(p) ≤ f(X), so e(p) ≤ X , and hence
j(p) = g(e(p)) ≤ g(X). This contradicts j(p) ≤ −g(X).

Proposition 27.23. Let (A,+, ·,−, 0, 1) be a Boolean algebra. Then (A,△, ·, 0, 1) is a
ring with identity in which every element is idempotent. This means that x · x = x for all
x.
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Proof. Obviously △ is commutative, and it is associative by Proposition 13.11(iii).
Clearly x△0 = x for all x. Clearly x△x = 0, so each element x has itself as additive
inverse. Hence (A,△, 0) is an abelian group.

Clearly · is associative. The distributive law holds by Proposition 13.11(ii). Clearly
x · 1 = x for all x, and clearly x · x = x for all x.

Hence (A,△, ·, 0, 1) is a ring with identity in which every element is idempotent.

Proposition 27.24. Let (A,+, ·, 0, 1) be a ring with identity in which every element is
idempotent. Then A is a commutative ring, and (A,⊕, ·,−, 0, 1) is a Boolean algebra,
where for any x, y ∈ A, x⊕ y = x+ y + xy and for any x ∈ A, −x = 1 + x.

Proof. x+y = (x+y)2 = x2 +xy+yx+y2 = x+xy+yx+y, and hence 0 = xy+yx
for any x, y. Setting x = y, we get 0 = x + x, and so x is its own additive inverse. Then
from 0 = xy + yx we see that yx is the additive inverse of xy, hence xy = yx. Thus the
ring is commutative.

To show that (A,⊕, ·,−, 0, 1) is a Boolean algebra, we need to check all of the axioms.

(C): Clear.

(A): For any x, y, z,

x⊕ (y ⊕ z) = x+ (y ⊕ z) + x(y ⊕ z)

= x+ y + z + yz + x(y + z + yz)

= x+ y + z + yz + xy + xz + xyz;

Hence, using (C),

(x⊕ y)⊕ z = z ⊕ (x⊕ y)

= z + x+ y + xy + zy + zxy

= above.

(A′): obvious.

(C′): obvious.

(L):
x⊕ xy = x+ xy + xxy = x+ xy + xy = x.

(L′):
x(x⊕ y) = x(x+ y + xy) = xx+ xy + xxy = x+ xy + xy = x.

(D):

x(y ⊕ z) = x(y + z + yz) = xy + xz + xyz;

xy ⊕ xz = xy + xz + xyxz = xy + xz + xyz.

(D′): See Proposition 13.12.
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(K): x+ (−x) = x+ 1 + x = 1.

(K’): x(1 + x) = x+ xx = x+ x = 0.

Thus we have a BA.

Proposition 27.25. The processes described in Propositions 27.23 and 27.24 are inverses
of one another.

Proof. For each BA (A,+, ·,−, 0, 1) let R(A,+, ·,−, 0, 1) = (A,△, ·, 0, 1) be the
associated ring, and for each ring (A,+, ·, 0, 1) with identity in which every element is
idempotent let B(A,+, ·, 0, 1) = (A,⊕, ·,−, 0, 1) be the associated Boolean algebra. We
want to show that R and B are inverses of each other.

First suppose that (A,+, ·,−, 0, 1) is a BA. Let R((A,+, ·,−, 0, 1)) = (A,△, ·, 0, 1) be
the associated ring, and let B(R((A,+, ·,−, 0, 1)) = (A,⊕, ·,−′, 0, 1) be the BA associated
with that ring; we want to show that + = ⊕ and − = −′. We have

x⊕ y = x△y△(x · y)

= x△(y · −(x · y) + x · y · −y)

= x△(y · −x)

= x · −(y · −x) + y · −x · −x

= x+ y · −x

= x+ y · x+ y · −x

= x+ y.

Also, −′x = 1△x = −x.
Second, suppose that (A,+, ·, 0, 1) is a ring with identity in which every element

is idempotent, let B((A,+, ·, 0, 1)) = (A,+′, ·,−′, 0, 1) be the associated BA, and let
R(B((A,+, ·, 0, 1))) = (A,△′, ·, 0, 1) be the ring associated with it. We want to show
that + = △′. We have

x△′y = (x · −′y) +′ (y · −′x)

= (x · (1 + y)) +′ (y · (1 + x))

= (x+ xy) +′ (y + xy)

= x+ xy + y + xy + (x+ xy)(y + xy)

= x+ y + xy + xy + xy + xxy + xyy + xyxy

= x+ y + xy + xy + xy + xy + xy + xy

= x+ y.

Proposition 27.26. A filter F is an ultrafilter iff F is maximal among the set of all
filters G such that 0 /∈ G.

Proof. ⇒: Assume that F is an ultrafilter. Hence by definition 0 /∈ F . Suppose that
F ⊂ G with G a filter. Choose x ∈ G\F . Since x /∈ F it follows that −x ∈ F , and hence
−x ∈ G. So 0 = x · −x ∈ G. So F is maximal among the set of filters G such that 0 /∈ G.
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⇐: Suppose that F is maximal among the set of filters G such that 0 /∈ G. Suppose
that a ∈ A and a /∈ F . Let G = {x ∈ A : a · y ≤ x for some y ∈ F}. Then G is a filter on
A. In fact, obviously conditions (1) and (2) hold. For (3), suppose that x, z ∈ G. Choose
y, w ∈ F such that x = a · y and z = a ·w. Now y ·w ∈ F , and x · z = a · y ·w. So x · z ∈ G.
Thus, indeed, G is a filter on A. Clearly also F ⊆ G. Clearly a ∈ G (taking y = 1), so
F ⊂ G.

It follows by supposition that 0 ∈ G. Say 0 = a · y, with y ∈ F . then y ≤ −a, so
−a ∈ F . Thus F is an ultrafilter.

Proposition 27.27. For any nonzero a ∈ A there is an ultrafilter F such that a ∈ F .

Proof. Let A = {G : G is a filter in A, a ∈ G, and 0 /∈ G}. We consider A as a
partially ordered set under ⊆. To verify the hypothesis of Zorn’s lemma, suppose that B

is a subset of A linearly ordered by ⊆. Now {x ∈ A : a ≤ x} is clearly a member of A , so
we may assume that B is nonempty. Let H =

⋃
B. Since B is nonempty, it is clear that

a ∈ H. Suppose that x ∈ H and x ≤ y. Choose G ∈ B such that x ∈ G. Then y ∈ G since
G is a filter. So y ∈ H. Suppose that x, y ∈ H. Choose G,G′ ∈ B such that x ∈ G and
y ∈ G′. By symmetry say G ⊆ G′. Then x, y ∈ G′, so x · y ∈ G′, hence x · y ∈ H. Thus we
have shown that H is a filter on A. Clearly 0 /∈ H. So H is a member of A which is an
upper bound for B.

Thus by Zorn’s lemma, A has a maximal member G. By Proposition 27.26, G is as
desired.

Proposition 27.28. (Stone’s representation theorem) Any BA is isomorphic to a field of
sets.

Proof. Let X be the collection of all ultrafilters, and let F,G ∈ X .
F ∈ f(−a) iff −a ∈ F iff a /∈ F , so f(−a) = X\f(a).
Suppose that F ∈ f(a+ b). Then a+ b ∈ F . Suppose that F /∈ f(a). Then a /∈ F , so

−a ∈ F , hence −a · (a+ b) ∈ F . Since −a · (a+ b) ≤ b, also b ∈ F , so F ∈ f(b). This shows
that f(a + b) ⊆ f(a) ∪ f(b). On the other hand, if F ∈ f(a), then a ∈ F ; but a ≤ a + b,
so also a+ b ∈ F ; hence F ∈ f(a+ b). Altogether this shows that f(a+ b) = f(a) ∪ f(b).

Suppose that a 6= b. Then a△b 6= 0, so a△b ∈ F for some ultrafilter F , by Proposition
27.27. Hence F ∈ f(a△b) = [f(a)\f(b)] ∪ [f(b)\f(a)], and so f(a) 6= f(b). So f is one-
one.

Proposition 27.29. Suppose that F is an ultrafilter on a BA A. Let 2 be the two-element
BA. (This is, up to isomorphism, the BA of all subsets of 1.) For any a ∈ A let

f(a) =

{
1 if a ∈ F ,
0 if a /∈ F .

Then f is a homomorphism of A into 2.

Proof. f(a·b) = 1 iff a·b ∈ F iff a, b ∈ F iff f(a)·f(b) = 1. Hence f(a·b) = f(a)·f(b).
f(−a) = 1 iff −a ∈ F iff a /∈ F iff f(a) = 0. Hence f(−a) = −f(a).
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f(a+ b) = f(−(−a · −b)) = −(−f(a) · −f(b)) = f(a) + f(b).
f(0) = f(a · −a) = f(a) · −f(a) = 0.
f(1) = f(a+−a) = f(a) +−f(a) = 1.

Proposition 27.30. Suppose that L is a first-order language and T is a set of sentences
of L . Define ϕ ≡T ψ iff ϕ and ψ are sentences of L and T |= ϕ ↔ ψ. This is an
equivalence relation on the set S of all sentences of L . Let A be the collection of all
equivalence classes under this equivalence relation. Moreover, there are operations +, ·, −
on A such that for any sentences ϕ, ψ,

[ϕ] + [ψ] = [ϕ ∨ ψ];

[ϕ] · [ψ] = [ϕ ∧ ψ];

−[ϕ] = [¬ϕ].

Finally, (A,+, ·,−, [∃v0(¬(v0 = v0))], [∃v0(v0 = v0)]) is a Boolean algebra.

Proof. ≡T is reflexive: T |= ϕ↔ ϕ for any sentence ϕ.
≡T is symmetric: If T |= ϕ↔ ψ, then T |= ψ ↔ ϕ.
≡T is transitive: If T |= ϕ↔ ψ and T |= ψ ↔ χ, then T |= ϕ↔ χ.
+ is well-defined: If T |= ϕ↔ ϕ′ and T |= ψ ↔ ψ′, then T |= (ϕ ∨ ψ)↔ (ϕ′ ∨ ψ′).
· is well-defined: If T |= ϕ↔ ϕ′ and T |= ψ ↔ ψ′, then T |= (ϕ ∧ ψ)↔ (ϕ′ ∧ ψ′).
− is well-defined: If T |= ϕ↔ ϕ′, then T |= ¬ϕ↔ ¬ϕ′.
Finally, we need to check the axioms for BAs:

(A) holds since

[ϕ] + ([ψ] + [χ]) = [ϕ ∨ (ψ ∨ χ)] = [(ϕ ∨ ψ) ∨ χ] = ([ϕ] + [ψ]) + [χ];

(A′) holds since

[ϕ] · ([ψ] · [χ]) = [ϕ ∧ (ψ ∧ χ)] = [(ϕ ∧ ψ) ∧ χ] = ([ϕ] · [ψ]) · [χ];

(C) holds since
[ϕ] + [ψ] = [ϕ ∨ ψ] = [ψ ∨ ϕ] = [ψ] + [ϕ];

(C′) holds since
[ϕ] · [ψ] = [ϕ ∧ ψ] = [ψ ∧ ϕ] = [ψ] · [ϕ];

(L) holds since
[ϕ] + [ϕ] · [ψ]) = [ϕ ∨ (ϕ ∧ ψ)] = [ϕ];

(L′) holds since
[ϕ] · [ϕ] + [ψ]) = [ϕ ∧ (ϕ ∨ ψ)] = [ϕ];

(D) holds since

[ϕ] · ([ψ] + [χ]) = [ϕ ∧ (ψ ∨ χ)] = [(ϕ ∧ ψ) ∨ (ϕ ∧ χ)] = [ϕ] · [ψ] + [ϕ] · [χ];
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for (D′) see Proposition 2.12; (K) holds since

[ϕ] +−[ϕ] = [ϕ ∨ ¬ϕ] = [∃v0(v0 = v0)];

(K′) holds since
[ϕ] · −[ϕ] = [ϕ ∧ ¬ϕ] = [∃v0(¬(v0 = v0))].

Proposition 27.31. Every Boolean algebra is isomorphic to one obtained as in Proposi-
tion 27.30.

Proof. Let A be a Boolean algebra. Let L be the first-order language which has a
unary relation symbol Ra for each a ∈ A. Let T be the following set of sentences of L :

∀x∀y(x = y);

∀x[R−a(x)↔ ¬Ra(x)] for each a ∈ A;

∀x[Ra·b(x)↔ Ra(x) ∧Rb(x)] for all a, b ∈ A;

∀xR1(x).

Consider ≡T . Define f(a) = [∀xRa(x)] for any a ∈ A. To show that f preserves ·, suppose
that a, b ∈ A. Note that

T |= ∀xRa·b(x)↔ ∀xRa(x) ∧ ∀xRb(x);

hence f(a · b) = f(a) · f(b).
To proceed we need the following fact

(1) T |= ∀xϕ↔ ϕ for any variable x and any formula ϕ.

In fact, trivially T |= ∀xϕ → ϕ, and T |= ϕ → ∃xϕ. Since T |= x = y, clearly
T |= ∃xϕ→ ∀xϕ. So (1) holds.

Now to show that f preserves −, suppose that a ∈ A. Then T |= ∀xR−a(x) ↔
∀x¬Ra(x). By (1), T |= ∀x¬Ra(x) ↔ ¬Ra(x) and T |= ¬Ra(x) ↔ ¬∀xRa(x). Putting
these statements together we have T |= ∀xR−a(x) ↔ ¬∀xRa(x), and it follows that f
preserves −.

To show that f is one-one, suppose that a, b ∈ A and a 6= b; say a · −b 6= 0. Let F
be an ultrafilter on A such that a · −b ∈ F . We now define an L -structure A. Let A = 1.
For each a ∈ A, let

RA
a =

{
1 if a ∈ F ,
0 otherwise.

Clearly A is a model of T . Also, A |= Ra·−b(x). It follows that [∀xRa·−b(x)] 6= [∃v0(¬(v0 =
v0))], and so f(a) = [∀xRa(x)] 6= [∀xRb(x)] = f(b), as desired.

It remains only to show that f maps onto.

(2) For any formula ϕ there is an a ∈ A such that T |= ϕ↔ Ra(x).

Condition (2) is easily proved by induction on ϕ, using (1). Hence f is onto.
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Proposition 27.32. Let A be the collection of all subsets X of Y
def
= {r ∈ Q : 0 ≤ r} such

that there exist an m ∈ ω and a, b ∈ m(Y ∪ {∞}) such that a0 < b0 < a1 < b1 < · · · <
am−1 < bm−1 ≤ ∞ and

X = [a0, b0) ∪ [a1, b1) ∪ . . . ∪ [am−1, bm−1).

Note that ∅ ∈ A by taking m = 0, and Y ∈ A since Y = [0,∞).
(i) If X is as above, c, d ∈ Y ∪ {∞} with c < d, c ≤ a0, then X ∪ [c, d) ∈ A, and c is

the first element of X ∪ [c, d).
(ii) If X is as above and c, d ∈ Y ∪ {∞} with c < d, then X ∪ [c, d) ∈ A.
(iii) (A,∪,∩, \, ∅, Y ) is a Boolean algebra.

Proof. (i): Assume the hypothesis. If m = 0 the desired conclusion is clear, so
suppose that m > 0. We consider several cases.

Case 1. bm−1 ≤ d. Then X ∪ [c, d) = [c, d) ∈ A.
Case 2. There is an i < m− 1 such that bi ≤ d < ai+1. Then

X ∪ [c, d) = [c, d) ∪ [ai+1, bi+1) ∪ . . . ∪ [am−1, bm−1) ∈ A.

Case 3. There is an i < m such that ai ≤ d < bi. Then

X ∪ [c, d) = [c, bi) ∪ [ai+1, bi+1) ∪ . . . ∪ [am−1, bm−1) ∈ A.

Case 4. d < a0. Then

X ∪ [c, d) = [c, d) ∪ [a0, b0) ∪ . . . ∪ [am−1, bm−1) ∈ A.

(ii): Again we consider several cases.
Case 1. c ≤ a0. Then X ∪ [c, d) ∈ A by (i).
Case 2. There is an i < m such that ai ≤ c ≤ bi. Let X ′ = [ai, bi)∪ . . .∪ [am−1, bm−1).

Then by (i) applied to X ′ and [ai, d) we get X ′ ∪ [ai, d) ∈ A, and ai is the least element of
X ′ ∪ [ai, d). Clearly

X ∪ [c, d) = [a0, b0) ∪ . . . ∪ [ai−1, bi−1) ∪X ′ ∪ [ai, d) ∈ A.

Case 3. There is an i < m − 1 such that bi < c < ai+1. Then we can apply (i) to
[ai+1, bi+1) ∪ . . . ∪ [am−1, bm−1) and [c, d) to get the desired result as in Case 2.

Case 4. c = bm−1. Then

X ∪ [c, d) = [a0, b0) ∪ . . . ∪ [am−1, d) ∈ A.

Case 5. bm−1 < c. This case is clear.
(iii): From (ii) it is clear that A is closed under ∪. Now suppose that X is given as

above. To show that also Y \X ∈ A, we consider several cases.
Case 1. m = 0. So X = ∅, and Y = [0,∞) ∈ A.
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Case 2. m > 0, 0 < a0, and bm−1 <∞. Then

Y \X = [0, a0) ∪ [b0, a1) ∪ . . . ∪ [bm−2, am−1) ∪ [bm−1,∞) ∈ A.

Case 3. m > 0, a0 = 0, and bm−1 <∞. Then

Y \X = [b0, a− 1) ∪ . . . ∪ [bm−2, am−1) ∪ [bm−1,∞) ∈ A.

Case 4. m > 0, 0 < a0, and bm−1 =∞. Then

Y \X = [0, a0) ∪ [b0, a1) ∪ . . . ∪ [bm−2, am−1) ∈ A.

Case 5. m > 0, 0 = a0, and bm−1 =∞. Then

Y \X = [b0, a1) ∪ . . . ∪ [bm−2, am−1) ∈ A.

Thus (iii) holds.

Proposition 27.33. (Continuing Proposition 27.32) For each n ∈ ω let xn = [n, n + 1),
an interval in Q. Then

∑

n∈ω x2n does not exist in A.

Proof. Suppose that the sum does exist. Let X =
∑

n∈ω x2n, and assume that X is
as in Proposition 27.32.

We claim that bm−1 = ∞. In fact, if bm−1 < ∞, then there is an m ∈ ω such that
bm−1 < 2m; then x2m = [2m, 2m+ 1) is disjoint from X according to the form of X , but
x2m ≤ X by definition, contradiction. So our claim holds.

Now choose m ∈ ω so that am−1 < 2m + 1. Then [2m + 1, 2m + 2) ∩ x2n = ∅ for
all n, hence [2m + 1, 2m + 2) ∩ X = ∅. But [2m + 1, 2m + 2) ⊆ [am−1, bm−1) ⊆ X ,
contradiciton.

Proposition 27.34. Let A be the Boolean algebra of all subsets of some nonempty set X,
under the natural set-theoretic operations. If 〈ai : i ∈ I〉 is a system of elements of A, then

∏

i∈I

(ai +−ai) = 1 =
∑

ε∈I2

∏

i∈I

a
ε(i)
i ,

where for any y, y1 = y and y0 = −y.

Proof. First note that the big products and sums are just the ordinary intersections
and unions. Obviously ai + −ai = ai ∪ (X\ai) = X = 1, giving the first equality. Now
suppose that x ∈ X . We define

ε(i) =
{

1 if x ∈ ai,
0 otherwise.

Clearly then x ∈ aε(i)i for each i ∈ I, and hence x is in the right side of the second equality,
as desired.
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Proposition 27.35. Let M be the set of all finite functions f ⊆ ω × 2. For each f ∈ M
let

Uf = {g ∈ ω2 : f ⊆ g}.

Let A consist of all finite unions of sets Uf .
(i) A is a Boolean algebra under the set-theoretic operations.
(ii) For each i ∈ ω, let xi = U{(i,1)}. Then

ω2 =
∏

i∈ω

(xi +−xi)

while ∑

ε∈ω2

∏

i∈ω

x
ε(i)
i = ∅,

where for any y, y1 = y and y0 = −y.

Proof. (i): Obviously A is closed under ∪. Now suppose that a ∈ A; we want to
show that (ω2)\a ∈ A. Say a =

⋃

f∈N Uf , where N is a finite subset of M . Let

P =






g ∈M : dmn(g) ⊆

⋃

f∈N

dmn(f) and ∀f ∈ N∃i ∈ dmn(g) ∩ dmn(f)[f(i) 6= g(i)]






.

Clearly P is a finite subset of M . We claim that (ω2)\a =
⋃

g∈P Ug. First suppose that
h ∈ (ω2)\a. Let g = h ↾

⋃

f∈N dmn(f). So g ∈M and h ∈ Ug. We claim that g ∈ P . For,
suppose that f ∈ N . Then Uf ⊆ a, so it follows that h /∈ Uf . So we can choose i ∈ dmn(f)
such that f(i) 6= h(i). Clearly i ∈ dmn(g) and f(i) 6= g(i). This shows that g ∈ P , proving
⊆ of our claim.

For ⊇, suppose that g ∈ P and h ∈ Ug. Suppose that h ∈ a. Choose f ∈ N such
that h ∈ Uf , hence f ⊆ h. But g ⊆ H too, so there is an i ∈ dmn(g) ∩ dmn(f) such that
f(i) 6= g(i). But this means that f(i) 6= h(i), contradicting f ⊆ h. We have now shown
(i).

Clearly xi ∪ ((ω2)\xi = ω2 for any i ∈ ω. Hence ω2 =
∏

i∈ω(xi +−xi).

Now suppose that ε ∈ ω2; we want to show that
∏

i∈ω x
ε(i)
i = 0, i.e., that there is no

nonzero element a of A such that a ≤ x
ε(i)
i for all i ∈ ω. suppose that a is such an element.

Then there is a g ∈ M such that Ug ⊆ a. Take any i /∈ dmn(g), and let h ∈ ω2 be any

function such that g ⊆ h and h(i) 6= ε(i). Then h ∈ Ug but h /∈ x
ε(i)
i , contradiction.

Proposition 27.36. Suppose that (P,≤, 1) is a forcing order. Define

p ≡ q iff p, q ∈ P, p ≤ q, and q ≤ p.

Then ≡ is an equivalence relation, and if Q is the collection of all ≡-classes, then there is
a relation � on Q such that for all p, q ∈ P , [p]≡ � [q]≡ iff p ≤ q. Finally, (Q,�) is a
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partial order, i.e., � is reflexive on Q, transitive, and antisymmetric (q1 � q2 � q1 implies
that q1 = q2); moreover, q ≤ [1] for all q ∈ Q.

Proof. Since ≤ is reflexive on P , clearly also ≡ is reflexive on P . Clearly ≡ is
symmetric. Now suppose that p ≡ q ≡ r. Thus p ≤ q, q ≤ p, q ≤ r, and r ≤ q. Then p ≤ r
and r ≤ p, so p ≡ r. So ≡ is an equivalence relation on P .

Let
�= {(a, b) : ∃p, q ∈ P [p ≤ q, a = [p], and b = [q]]}.

Obviously then p ≤ q implies that [p] � [q]. Now suppose that [p] � [q]. Choose p′, q′ ∈ P
such that p′ ≤ q′, [p] = [p′], and [q] = [q′]. Then p ≤ p′ and q′ ≤ q, so p ≤ q.

To show that � is a partial order on Q, first suppose that a ∈ Q. Write a = [p]. Then
p ≤ p, so a � a. Thus � is reflexive on Q. Now suppose that a � b � c. Then there exist
p, q, q′, r such that p ≤ q, a = [p], b = [q], q′ ≤ r, b = [q′], and c = [r]. Then q ≤ q′ since
[q] = [q′]. So p ≤ q ≤ q′ ≤ r, hence p ≤ r. So a = [q] � [r] = c. This shows that � is
transitive. Finally, suppose that a � b � a. Then there exist p, q, q′, r such that p ≤ q,
a = [p], b = [q], q′ ≤ r, b = [q′], and a = [r]. Then q ≤ q′ since [q] = [q′]. Also r ≤ p since
[p] = [r], so q ≤ q′ ≤ r ≤ p, hence q ≤ p. But also p ≤ q, so a = [p] = [q] = b. So � is a
partial order. Clearly a ≤ [1] for all a ∈ Q.

Proposition 27.37. We say that (P,<) is a partial order in the second sense iff < is
transitive and irreflexive. (Irreflexive means that for all p ∈ P , p 6< p.) Then if (P,<) is
a partial order in the second sense and if we define � by p � q iff (p, q ∈ P and p < q or

p = q), then A
def
= (P,�) is a partial order. Furthermore, if (P,≤) is a partial order, and

we define p ≺ q by p ≺ q iff (p, q ∈ P , p ≤ q, and p 6= q), then B
def
= (P,≺) is a partial

order in the second sense.
Also, A and B are inverses of one another.

Proof. Clearly � is reflexive on P . Now suppose that x � y � z. If x = y or y = z,
then x � z by supposition. If x < y < z, then x < z, and so x � z. Thus � is transitive.
Suppose that x � y � x, but x 6= y. Then x < y < x, hence x < x, contradiction. So � is
antisymmetric. Hence (P,�) is a partial order.

Now suppose that (P,≤) is a partial order, and define p ≺ q by p ≺ q iff (p, q ∈ P ,
p ≤ q, and p 6= q). Clearly ≺ is irreflexive. Suppose that p ≺ q ≺ r. Then p ≤ q ≤ r, so
p ≤ r. Suppose that p = r. Then p ≤ q ≤ p, so p = q by antisymmetry, contradiction.
Thus p 6= r, and so p ≺ r. So (P,≺) is a partial order in the second sense.

Next, suppose that (P,<) is a partial order in the second sense, and let A (P,<) =
(P,�). Furthermore, let B(A (P,<)) = (P,<′). Then

p <′ q iff (p � q and p 6= q) iff ((p < q or p = q) and p 6= q) iff p < q.

Thus B(A (P,<)) = (P,<).
Finally, suppose that (P,≤) is a partial order. Let B(P,≤) = (P,≺), and let

A (B(P,≤)) = (P,≤′). Then

p ≤′ q iff (p ≺ q or p = q) iff ((p ≤ q and p 6= q) or p = q) iff p ≤ q.
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Proposition 27.38. If (P,≤, 1) is a forcing order and we define ≺ by p ≺ q iff (p, q ∈ P ,
p ≤ q and q 6≤ p), then (P,≺) is a partial order in the second sense. Moreover, there is an
example where this partial order is not isomorphic to the one derived from (P,≤, 1) by the
procedure of Proposition 27.36.

Proof. ≺ is irreflexive, since x ≺ x would imply that x 6≤ x, a contradiction. For
transitivity, suppose that x ≺ y ≺ z. Then x ≤ y and y ≤ z, so x ≤ z. Also, y 6≤ x and
z 6≤ y. Suppose that z ≤ x. Then y ≤ z ≤ x and hence y ≤ x, contradiction. Hence z 6≤ x,
and so x ≺ z. Thus (P,≺) is a partial order in the second sense.

For the example, let X be any infinite set, and let ≤ be X×X . Fix 1 ∈ X . So (X,≤, 1)
is a quasiorder. The partial order constructed in exercise E13.14 has only one element,
while the partial order of the present exercise has X , an infinite set, as its underlying set.
Note that ≺ is empty.

Proposition 27.39. If (P,�, 1) is a forcing order such that the mapping e from P into
RO(P ) is one-one, then (P,�) is a partial order. There is an example of a forcing order
such that e is not one-one. There is an example of an infinite forcing order Q such that e
is not one-one, while for any p, q ∈ Q, p ≤ q iff e(p) ⊆ e(q).

Proof. Suppose that P is a forcing order such that e is one-one, and p ≤ q ≤ p. Then
P ↓ p = P ↓ q, and hence e(p) = e(q). So p = q. Hence (P,≤) is a partial order.

For an example of a forcing order such that e is not one-one, take any simple ordering
with greatest element; see the remarks preceding Proposition 13.21.

For the final example, take any infinite set Q, and take the forcing order (Q,Q×Q, q)
for any element q ∈ Q. So e is the constant function with value Q. For any p, q ∈ Q we
have p ≤ q and e(p) ⊆ e(q), so these statements are equivalent trivially.

Proposition 27.40. (Continuing Proposition 27.36) Let P = (P,≤, 1) be a forcing order,
and let Q = (Q,�, [1]) be as in Proposition 27.36 Then there is an isomorphism f of
RO(P) onto RO(Q) such that f ◦ eP = eQ ◦π, where π : P → Q is defined by π(p) = [p] for
all p ∈ P .

Proof. We will apply Theorem 27.22. For any p ∈ P let j(p) = eQ(π(p)). Thus
j : P → RO(Q).

Suppose that 0 6= X ∈ RO(Q). By Theorem 27.20(i), choose q ∈ Q such that
eQ(q) ≤ X . Say q = [p]. Then j(p) = eQ(π(p)) ≤ X . So j[P ] is dense in RO(Q).

Suppose that p, q ∈ P and p ≤ q. Then [p] � [q], and so j(p) ≤ j(q) by Theorem
27.20(ii).

Suppose that p, q ∈ P . If p 6⊥ q, choose r ≤ p, q. Then j(r) ≤ j(p), j(q), so j(p)∩j(q) 6=
∅. If j(p) ∩ j(q) 6= ∅, then by Theorem 27.20(iii), π(p) 6⊥ π(q). So there is an r ∈ Q such
that r ≤ π(p), π(q). Say r = π(s). Then s ≤ p, q, so p 6⊥ q.

This verifies the hypotheses of Theorem 27.22, and the desired conclusion follows.

Theorem 27.41. The mapping e defined just before Theorem 27.20 is a dense embedding
of P into RO(P)\{0}.
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Proof. We need to check conditions (i)–(iii) and (v) given just before Proposition
25.67. (i) is clear. (ii), (iii), and (v) are given in Theorem 27.20 (ii), (iii), and (i).

Theorem 27.42. Let A be a Boolean algebra. For each a ∈ A let S(a) = {F ∈ Ult(A) :
a ∈ F}. Then rng(S) forms a base for a topology on Ult(A) under which Ult(A) becomes
a compact zero-dimensional Hausdorff space, with rng(S) the set of all clopen subsets of
Ult(A).

Proof. If F ∈ S(a)∩S(b), then a, b ∈ F , hence a ·b ∈ F , so F ∈ S(a ·b) ⊆ S(a)∩S(b).
For any F ∈ Ult(A), choose a ∈ F ; then F ∈ S(a). Hence rng(f) is a base for a topology
on Ult(A).

To see that Ult(A) is compact, let X ⊆ rng(f) with fip. Say X = {S(a) : a ∈ Y }.
Then Y has the fip in A. Say Y ⊆ F ∈ Ult(A). Then F ∈

⋂
X . This shows that Ult(A)

is compact.
To see that, Ult(A) is Hausdorff, suppose that F,G ∈ Ult(A) with F 6= G. Say

a ∈ F\G. then F ∈ S(a), G ∈ S(−a), and S(a) ∩ S(−a) = ∅. So Ult(A) is Hausdorff.
For each a ∈ A, S(a) = Ult(A)\S(−a); so S(a) is clopen.
Let U ⊆ Ult(A) be clopen. For each F ∈ U choose aF such that F ∈ S(aF ) ⊆ U . Then

U ⊆
⋃

F∈U S(aF ). Hence there is a finite subset V of U such that U ⊆
⋃

F∈V S(aF ) =
S(
∑

F∈V aF ) ⊆ U . So U ∈ rng(f).
Thus Ult(A) has a base consisting of clopen sets, so it is zero-dimensional.

Proposition 27.43. For any topological space X, let clop(X) be the set of all clopen
subsets of X. Then clop(X) is a field of subsets of X.

Theorem 27.44. If A is a BA, then A is isomorphic to clop(Ult(A)).

Proof. The function S defined in the proof of Theorem 27.43 is the desired isomor-
phism.

Theorem 27.45. If X is a compact zero-dimensional Hausdorff space, then X is homeo-
morphic to Ult(clop(X)).

Proof. For each x ∈ X let g(x) be the collection of all clopen subsets U of X such
that x ∈ U . Clearly g(x) is an ultrafilter on clop(X). We claim that g is the desired
homeomorphism.

Suppose that V is a member of the base of Ult(clop(X)) and x ∈ g−1[V ]; we want to
find an open W in X such that x ∈ W ⊆ g−1[V ]. Say V = S(a) with a ∈ clop(X). Since
x ∈ g−1[V ], we have g(x) ∈ S(a), hence a ∈ g(x), hence x ∈ a. We claim that a ⊆ g−1[V ].
For, if y ∈ a then a ∈ g(y), hence g(y) ∈ S(a) = V hence y ∈ g−1[V ]. This shows that g is
continuous.

g maps onto Ult(clop(X)). For, suppose that F ∈ Ult(clop(X)). Then
⋂
F 6= ∅, since

F is a family of nonempty clopen sets closed under binary intersection, and X is compact.
Take any x ∈

⋂
F . If a ∈ F , then x ∈ a, so a ∈ g(x). Thus F ⊆ g(x), so F = g(x).

g is one-one. For, suppose that x, y ∈ X and x 6= y. Let a be clopen with x ∈ a and
y /∈ a. Then a ∈ g(x)\g(y).
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Now the theorem follows.

Lemma 27.46. (III.4.5) For any BA A, MAA\{0}(κ) holds iff Ult(A) is not the union of
≤ κ closed nowhere dense sets.

Proof. ⇒: Let Hα ⊆ Ult(A) be a closed nowhere dense set for each α < κ. We want
to show that

⋃

α<κHα 6= Ult(A). For each α < κ let Dα = {q ∈ clop(Ult(A)) : q∩Hα = ∅}.
Then Dα is dense; for suppose p is a nonempty clopen set. Then p\Hα 6= ∅ because Hα is
nowhere dense, and p\Hα is open since Hα is closed. Now we apply MAclop(ult(A))\{∅}(κ)
to all these dense sets to obtain a filter G on clop(Ult(A)) such that G ∩ Dα 6= ∅ for all
α < κ. Then

⋂
G∩Hα = ∅ for all α < κ, so with F ∈

⋂
G we have F ∈ Ult(A)\

⋃

α<κHα.
⇐: To prove MAA\{0}(κ), let Dα ⊆ A\{0} be dense for all α < κ. For each α < κ

let Uα =
⋃

b∈Dα
S(b). So obviously Uα is open. It is also dense, for take any S(b) with

b 6= 0. Choose c ∈ Dα such that c ≤ b. Then S(c) ⊆ S(b), showing that Uα is dense. Let
Hα = Ult(A)\Uα for each α < κ. So Hα is closed and nowhere dense. Hence there is an
ultrfilter F ∈ Ult(A)\

⋃

α<κHα. Hence F ∈
⋂

α<κ Uα. For each α < κ there is a b ∈ Dα
such that F ∈ S(b), so that b ∈ F . Thus F is a filter intersecting each Dα.

A topological space X is extremally disconnected iff for every open set U ⊆ X , also U is
open.

Proposition 27.47. If A is a complete BA, then Ult(A) is extremally disconnected.

Proof. Let U ⊆ Ult(A) be open. Let M = {b ∈ A : S(b) ⊆ U}. Thus U =
⋃

b∈M S(b). Let a =
∑
M . For any b ∈ M we have b ≤ a and so S(b) ⊆ S(a). Thus

U =
⋃

b∈M S(b) ⊆ S(a). We claim that S(a) ⊆ U ; hence S(a) = U and U is open. To

prove the claim, suppose to the contrary that S(a)\U 6= ∅. Then there is a c 6= 0 such
that S(c) ⊆ (S(a)\U). So c ≤ a, and hence there is a b ∈ M such that c ∩ b 6= 0. Then
S(c ∩ b) ⊆ U but also S(c ∩ b) ∩ U = ∅, contradiction.

Theorem 27.48. (III.4.7) For any infinite cardinal κ the following are equivalent:
(i) MA(κ).
(ii) MAA\{0}(κ) holds for any ccc BA A.
(iii) MAA\{0}(κ) holds for any ccc complete BA A.
(iv) No ccc compact Hausdorff space is the union of ≤ κ closed nowhere dense sets.
(v) No ccc compact zero-dimensional Hausdorff space is the union of ≤ κ closed

nowhere dense sets.
(vi) No ccc compact extremally disconnected Hausdorff space is the union of ≤ κ closed

nowhere dense sets.

Proof. Obviously (i)⇒(ii)⇒(iii) and (iv)⇒(v)⇒(vi). (i)⇒(iv) by Lemma 25.13.
(vi)⇒(iii): assume (vi), and suppose that A is a ccc complete BA. By Proposition 27.47,
Ult(A) is extremally disconnected; and it is obviously ccc. By (vi), Ult(A) is not the union
of ≤ κ closed nowhere dense sets. Now (iii) follows by Lemma 27.46. So it remains only
to show that (iii)⇒(i). So assume (iii), and suppose that P is a ccc forcing poset. By
Theorem 27.19, RO(P) is a complete BA. By Theorem 27.20(iii), RO(P) has ccc. Hence
by (iii), MARO(P)(κ) holds. Hence by Lemma 25.73 MAP(κ) holds.
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Proposition 27.49. (III.4.11) With e as defined before Theorem 27.20, ∀p, q ∈ P[e(p) ⊆
e(q) iff ¬∃r[r ≤ p and r ⊥ q]].

Proof. ⇒: Suppose that e(p) ⊆ e(q), r ≤ p, and r ⊥ q. By Theorem 27.20(v) there
is an s ≤ r such that s ≤ q, contradiction.
⇐: We apply Theorem 27.20(v). Suppose that r ≤ p. Then by our assumption we

have r 6⊥ q, so there is an s ≤ r, q, as desired.

Proposition 27.50. (III.4.12) If x is a non-isolated point in a Hausdorff space X, p is
an open set with x ∈ p, and q = p\{x}, then e(p) = e(q), where e is as as above for the
poset OX .

Proof. We will apply Proposition 27.49. Suppose that r ⊆ p, then r\{x} ⊆ r, q,
so r 6⊥ q. So e(p) ⊆ e(q). Suppose that r ⊆ q. Then also r ⊆ p, so r 6⊥ p. Hence
e(q) ⊆ e(p).

Proposition 27.51. (III.4.13) Consider the poset P used in the proof of Theorem 25.34.
There are p, q ∈ P such that q ≤ p, p 6≤ q, and e(p) = e(q), where e is as above for the
poset P.

Proof. Take any Z,W ∈ E with Z ⊂ W . Let sp = sq = ∅ and Wp = {Z},
Wq = {Z,W}. Thus q ≤ p and p 6≤ q. To show that e(p) = e(q) we apply Proposition 27.49.
Suppose that r ≤ p and r ⊥ q. Then sr\sp ⊆ Z ⊆ W . Let st = sr and Wt = Wr ∪ {W}.
Then t ≤ r and st\sq = sr\sp ⊆W , so t ≤ q, contradiction.

Suppose that r ≤ q and r ⊥ p. Since q ≤ p, this is a contradiction.

Proposition 27.52. (III.4.14) If |J | > 1, then Fn(I, J, ω) is separative.

Proof. Suppose that p ≤ q ≤ p. Then p ⊇ q ⊇ p, so p = q. Suppose that p 6≤ q.
Thus q 6⊆ p. So there is a pair (i, j) ∈ q\p. If i ∈ dmn(p), then p ⊥ q, as desired. Suppose
that i /∈ dmn(p). Choose k ∈ J\{j}. Then p ∪ {(i, k)} ≤ p and (p ∪ {(i, k)}) ⊥ q.

Proposition 27.53. (III.4.14) RO(Fn(I, J, ω)) is isomorphic to RO(IJ).

Proof. We will use Theorem 27.22. For any p ∈ Fn(I, J, ω) let F (p) = {f ∈ IJ : p ⊆
f}. Note that {f ∈ IJ : p ⊆ f} is clopen, hence regular open. In fact, it is obviously open.
Its complement is

⋃

i∈dmn(p)

{f ∈ IJ : f(i) = 1− p(i)},

which is open. Clearly rng(F ) is dense in RO(IJ). If p ≤ q, then F (q) ⊆ F (p). If
p ⊥ q, clearly F (p) ∩ F (q) = ∅. Conversely, if p 6⊥ q, say r ≤ p, q. Then p, q ⊆ r, so
F (r) ⊆ F (p) ∩ F (q), so that F (p) ∩ F (q) 6= ∅.

Proposition 27.54. (III.4.15) P is separative iff ≤ is antisymmetric and ∀p ∈ P[p↓′ is
regular open].

Proof. ⇒: Assume that P is separative. Then by definition, ≤ is antisymmetric. To
show that p↓′ is regular open it suffices to show that p↓′= e(p), with e as on page 489 for
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the poset P. We will use Proposition 27.21(ii). Suppose that q ∈ e(p) but q 6≤ p. Then
there is an r ≤ q such that r ⊥ p, contradiction.
⇐: Assume the indicated condition, and suppose that q 6≤ p. Then q /∈ e(p), so by

Proposition 27.21(ii), there is an r ≤ q such that r ⊥ p.

Proposition 27.55. (III.4.15) If P is separative, then e(p) = p↓, where e is as above for
the poset P.

If A and B are complete BAs and A is a subalgebra of B, we say that it is a complete
subalgebra iff ∀X ⊆ A[

∑A
X =

∑B
X ].

Proposition 27.56. (III.4.16) Suppose that A and B are complete BAs, with A ≤ B.
Then A ⊆c B iff A is a complete subalgebra of B.

Proof. ⇒: Assume that A ⊆c B. Take any X ⊆ A. Note that
∑B

X ≤
∑A

X . Let
Y be an antichain in A maximal subject to the condition that ∀y ∈ Y ∃x ∈ X [y ≤ x]. Then

obviously
∑A

Y ≤
∑A

X . Actually
∑A

Y =
∑A

X . For, suppose that
∑A

Y <
∑A

X .
Then

0 6=

(
A∑

X · −
A∑

Y

)

=

(
A∑

X · −
A∑

Y

)

·
A∑

X,

and so there is an x ∈ X such that (
∑A

X ·−
∑A

Y )·x 6= 0. Then Y ∪{(
∑A

X ·−
∑A

Y )·x}

contradicts the maximality of Y . Now Y ∪ {−
∑A

Y } is a maximal antichain in A. For,

suppose that a ∈ A+ and a · z = 0 for all z ∈ Y ∪ {−
∑A

Y }. Then y ≤ −a for all y ∈ Y ,

so
∑A

Y ≤ −a, hence a ·
∑A

Y = 0. But also a · −
∑A

Y = 0, so a = 0, contradiction. It

follows that Y ∪ {−
∑A

Y } is a maximal antichain in B. If
∑B

X <
∑A

X , then there

is a y ∈ Y such that y ·
∑A

X · −
∑B

X 6= 0. Then there is an x ∈ X such that y ≤ x.

Then x ·
∑A

X ·−
∑B

X 6= 0, contradicting x ≤
∑B

X . This shows that
∑B

X =
∑A

X .

Hence
∏B

X = −
∑B{y : −y ∈ X} = −

∑A{y : −y ∈ X} =
∏A

X .
⇐: suppose that A is a complete subalgebra of B. Obviously A ⊆ctr B. If X is a

maximal antichain of A, then
∑A

X = 1; hence
∑B

X = 1 and X is a maximal antichain
of B.

Lemma 27.57. (III.8.1) If θ > ω1 and M � H(θ), then ∀R ∈M [|R| ≤ ω → R ⊆M ].

Proof. By Lemma 23.62.

Lemma 27.58. (III.8.1a) If θ > ω1 and M � H(θ), then ∀R ⊆M [|R| < ω → R ∈M ].

Proof. H(θ) |= ∃x∀y
[
y ∈ x↔

∨

a∈R(y = a)
]
, so M |= ∃x∀y

[
y ∈ x↔

∨

a∈R(y = a)
]
,

and this gives R ∈M .

M is countably closed iff [M ]ω ⊆M .

Proposition 27.59. (233) If θ is uncountable, M � H(θ), and M is countably closed,
then ωM ⊆M .
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Proof. If f : ω →M , then f is a countable subset of ω×M . Now ω ∈M by Lemma
23.57, and hence ω ⊆ M by Lemma 23.62. Hence ω ×M ⊆ M by Lemma 23.58. Hence
f ∈ [M ]ω ⊆M .

Lemma 27.60. (III.8.4) Let θ be uncountable and regular and S ⊆ H(θ) with |S| ≤ 2ω.
Then there is a countably closed M � H(θ) such that |M | = 2ω and S ⊆M .

Proof. Let F be the standard countable collection of Skolem functions, and let
g : ωH(θ)→P(H(θ)) be defined by g(a) = {ai : i ∈ ω}. Let M be the closure of S under
F ∪ {g}.

Theorem 27.61. (III.8.5) If X is a first countable compact Hausdorff space, then |X | ≤
2ω.

Proof. Let T be the collection of all open subsets of X . Let θ be a large cardinal such
that X, T ∈ H(θ). Let M be countably closed with M � H(θ), X, T ∈M , and |M | = 2ω,
using Lemma 27.60.

(1) X ∩M is closed in X .

In fact, let a ∈ X be a limit point of X ∩M . Let f : ω → (X ∩M) converge to a. Then
f ∈M since M is countably closed. Now H(θ) |= “f has a limit point”, so M |= “f has a
limit point”. It follows that a ∈M , proving (1). Now take any y ∈ X ∩M . Then

H(θ) |=∃U ∃f [U ⊆ T and f : ω → U is a surjection

and ∀U ∈ U [y ∈ U and ∀V ∈ T [y ∈ V → ∃U ∈ U [U ⊆ V ]]].

Now T, ω, y ∈M , using Lemma 23.57. Hence we get U ′
y , f

′
y ∈M such that

H(θ) |=[U ′
y ⊆ T and f ′

y : ω → U
′
y is a surjection

and ∀U ∈ U
′
y [y ∈ U and ∀V ∈ T [y ∈ V → ∃U ∈ U

′
y [U ⊆ V ]]].

Hence U ′
y ∈M is a countable open neighborhood base for y, and U ′

y ⊆M .
Suppose that X 6⊆ M . Pick any b ∈ X\M . For each y ∈ X ∩M pick Vy ∈ U ′

y such
that b /∈ Vy. By compactness there exist n ∈ ω and yi ∈ X ∩M for all i < n such that
X ∩M ⊆

⋃

i<n Vyi . Now b /∈ Vyi for all i < n. Hence

H(θ) |= ∃x ∈ X [x /∈ Vy0 ∧ . . .∧x /∈ Vyn−1
] but M |= ¬∃x ∈ X [x /∈ Vy0 ∧ . . .∧x /∈ Vyn−1

],

contradicting M � H(θ).

Let θ be an uncountable regular cardinal. A sequence 〈Mξ : ξ < ω1〉 is a nice chain of
elementary submodels of H(θ) provided that the following conditions hold:

(1) M0 = ∅.
(2) ∀ξ ∈ (0, ω1)[Mξ � H(θ)].
(3) ∀ξ < ω1[Mξ is countable].
(4) ∀ξ, η < ω1[ξ < η →Mξ ∈Mη and Mξ ⊆Mη].
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(5) ∀ limit η < ω1

[

Mη =
⋃

ξ<ηMξ

]

.

For x ∈
⋃

ξ<ω1
Mξ, let ht(x) be the ξ < ω1 such that x ∈Mξ+1\Mξ.

Lemma 27.62. (III.8.15) For any regular uncountable cardinal θ a nice chain of elemen-
tary substructures of H(θ) exists.

Proof. By recursion, let M0 = ∅, Mξ+1 be a countable elementary substructure of
H(θ) such that Mξ ∪ {Mξ} ⊆Mξ+1, and for limit η let Mη =

⋃

ξ<ηMξ.

Lemma 27.63. (III.8.15a) If 〈Mξ : ξ < ω1〉 is a nice chain of elementary submodels of
H(θ), then Mξ∩ω1 is an ordinal for each ξ < ω1, ∀ξ, η[x < η < ω1 →Mξ∩ω1 < Mη∩ω1],
and {Mξ ∩ ω1 : ξ < ω1} is a club in ω1.

Proof. Mξ ∩ ω1 is an ordinal by Lemma 23.65. Now suppose that ξ < η < ω1. Then

H(θ) |=∃α[α is an ordinal and ∀β ∈Mξ[β is an ordinal → β < α]

and ∀γ[γ is an ordinal and ∀β ∈Mξ[β is an ordinal and β < γ]→ α ≤ γ]

Since Mη � H(θ) and Mξ ∈Mη, it follows that there is an α ∈Mη such that

H(θ) |=[α is an ordinal and ∀β ∈Mξ[β is an ordinal → β < α]

and ∀γ[γ is an ordinal and ∀β ∈Mξ[β is an ordinal and β < γ]→ α ≤ γ]

Thus α is the union of all ordinals in Mξ, i.e., α = Mξ ∩ ω1. Hence Mξ ∩ ω1 < Mη ∩ ω1.
Clearly then {Mξ ∩ ω1 : ξ < ω1} is a club in ω1.

Lemma 27.64. (III.8.15b) If 〈Mξ : ξ < ω1〉 is a nice chain of elementary submodels of
H(θ), then ∀ξ < ω1[ξ ≤Mξ ∩ ω1].

Proof. By induction on ξ, using Lemma 27.63.

Suppose that f : [I]2 → 2. We define forcing orders Pµ = Pfµ for µ ∈ 2 as follows:

Pµ = {p ∈ [I]<ω : ∀i, j ∈ p[i 6= j → f({i, j}) = µ}

The order is ⊇. Note that trivially ∅ ∈ Pµ and {i} ∈ Pµ for all i ∈ I.

Proposition 27.65. (239) If I is arbitrary and f : [I]2 → 2 has constant value 0, then
{{i} : i ∈ I} is an antichain in P1.

Proposition 27.66. (III.8.21) Let I ∈ [R]ω1. Let < be the usual order on R, and ⊳ a
well-order of R. For x, y ∈ I with x 6= y define

f({x, y}) =
{

0 if < and ⊳ agree on {x, y},
1 otherwise.

Then neither P0 nor P1 has the ccc.

592



Proof. Let 〈lα : α < ω1〉 be a strictly ⊳-increasing sequence of elements of I. Define
α ≪ β iff α < β and lα < lβ. So ≪ is a well-founded relation. Suppose that A ∈ [ω1]ω is
pairwise incomparable under ≪. Then ∀α, β ∈ A[α < β → lβ < lα]. This gives a strictly
decreasing ω1-sequence in R, contradiction. So every pairwise incomparable set is finite.
Thus P0 has ccc.

Suppose that A ∈ [ω1]ω1 is pairwise incomparable in P1. Then ∀α, β ∈ A[α < β →
lα < lβ ]. This gives a strictly increasing ω1-sequence in R, contradiction.

Lemma 27.67. (III.8.22) If f : [I]2 → 2 and I is uncountable, then P0 × P1 is not ccc.

Proof. We claim that {({i}, {i}) : i ∈ I} is an antichain in P0×P1. For, suppose that
i, j ∈ I with i 6= j and (a, b) ≤ ({i}, {i}), ({j}, {j}). Thus {i, j} ⊆ a, b. Since {i, j} ⊆ a,
we have f({i, j}) = 0. Since {i, j} ⊆ b, we have f({i, j}) = 1, contradiction.

Proposition 27.68. (III.8.23) Let T be a Suslin tree, and let f({i, j}) = 0 iff i and j are
incomparable. Then P1 is ccc.

Proof. Suppose that 〈aα : α < ω1〉 is an antichain in P1. Thus each aα is a finite
chain, and if α 6= β then ∃i ∈ aα∃j ∈ aβ[i and j are incomparable]. For each α < ω1 let iα
be the top element of aα. Then iα and iβ are incomparable for α 6= β, contradiction.

Lemma 27.69. (III.8.24) Assume CH, let θ be a regular cardinal > ω1, and suppose that
〈Mξ : ξ < ω1〉 is a nice chain of elementary submodels of H(θ). Then H(ω1) ⊆

⋃

ξ<ω1
Mξ.

Proof. |H(ω1)| = 2ω = ω1, so H(ω1) ∈ H(θ). If f is a surjection of ω1 onto H(ω1),
then |f | = ω1 and so f ∈ H(θ). So H(θ) |= ∃f [f is a surjection from ω1 onto H(ω1).
Since M1 � H(θ), it follows that there is a surjection Φ ∈M1 from ω1 onto H(ω1). Hence
Φ(ζ) ∈Mξ whenever ζ < ξ, by Lemma 27.64. The conclusion of the lemma follows.

Lemma 27.70. (III.8.25) With f : [I]2 → 2, consider the forcing order Pµ defined above.
If Pµ is not ccc, then it has an uncountable antichain whose members are pairwise disjoint.

Proof. Let 〈aξ : ξ < ω1〉 be an antichain. By the delta system lemma let A′ ∈ [ω1]ω1

be such that 〈aξ : ξ ∈ A′〉 forms a delta-system, say with kernel b. If ξ, η ∈ A′ and ξ 6= η,
then there are i ∈ aξ and j ∈ aη such that f({i, j}) = 1 − µ. Clearly i, j /∈ b. Hence
〈aξ\b : ξ ∈ A′〉 is as desired.

Theorem 27.71. (III.8.19) CH implies that there are ccc forcing posets P,Q such that
P×Q is not ccc.

Proof. We will define f : [ω1]2 → 2 so that Pµ = Pfµ is ccc for µ = 0, 1. Then the
result follows by Lemma 27.67.

Let θ be a large cardinal, and let 〈Mξ : ξ < ω1〉 be a nice family of elementary
submodels of H(θ). We claim that for each ξ < ω1 there is a function gξ : ξ → 2 such that
the following conditions hold:

(1) If E ∈Mξ and E is an infinite disjoint family of nonempty finite subsets of ξ, then for
each µ ∈ 2 there are infinitely many q ∈ E such that ∀ζ ∈ q[gξ(ζ) = µ].
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(2) gξ ∈Mξ+1.

The claim is vacuous if ξ is finite. Suppose that ξ is infinite. Let 〈Em : m ∈ ω〉 list all
members of Mξ which are infinite disjoint families of nonempty finite subsets of ξ, such
that for each F ∈ Mξ which is an infinite disjoint family of nonempty finite subsets of ξ,
the set {m ∈ ω : Em = F} contains infinitely many even numbers and infinitely many odd
numbers. Now we define 〈ql : l ∈ ω〉 by recursion; each ql ∈ El. Suppose that ql has been
defined for all l < m. Then

⋃

l<m ql is a finite subset of ξ. Since Em is an infinite disjoint
family of nonempty finite subsets of ξ, choose qm ∈ Em so that qm ∩

⋃

l<m ql = ∅. Thus
ql ∩ qm = ∅ for l < m. Now we define gξ : ξ → 2 as follows:

gξ(ζ) =







0 if ζ ∈ qm and m is even,
1 if ζ ∈ qm and m is odd,
0 if ζ ∈ ξ\

⋃

m∈ω qm.

To check (1), suppose that F ∈Mξ is an infinite disjoint family of nonempty finite subsets
of ζ. For m even and Em = F we have ∀ζ ∈ qm[qξ(ζ) = 0]. For m odd and Em = F
we have ∀ζ ∈ qm[qξ(ζ) = 1]. Then (1) follows. To check (2), note that M(θ) |=“there
is a function gξ satisfying (1)”. Since ξ,Mξ ∈ Mξ+1 and Mξ+1 � H(θ), we can choose
gξ ∈Mξ+1.

Now for ζ < ξ < ω1 we define f({ζ, ξ}) = gξ(ζ). Suppose that Pfµ is not ccc. Then
by Lemma 27.70 let A be an uncountable antichain whose members are pairwise disjoint.
Let E be any countably infinite subset of A. By Lemma 27.69 there is a β < ω1 such
that E ∈ Mβ. Then sup

⋃
E < Mβ ∩ ω1. Take p ∈ A such that min(p) > β. Let

p = {ξ0, . . . , ξn−1} in increasing order. Let ξn = ξn−1 + 1. Let E0 = E, and for l < n let
El+1 = {q ∈ El : ∀ζ ∈ q[f({ζ, ξl}) = µ].

(3) ∀l ≤ n[El ∈Mξl and El is infinite].

We prove (3) by induction. It is given for l = 0. Assume that El ∈Mξl and El is infinite,
with l < n. We apply (1) and (2) to El and ξl. This gives that El+1 is infinite and
gξl ∈Mξl+1, hence El+1 ∈Mξl+1 ⊆Mξl+1

. So (3) holds.
In particular, En 6= ∅. If q ∈ En, then f({ζ, ξl}) = µ for all l < n and ζ ∈ q. Hence q

and p are compatible, contradicting q, p ∈ A, which is an antichain.

Proposition 27.72. (III.8.26) Assume MA(ω1) and assume that |I| = ω1. Suppose that
f : [I]2 → 2 and µ ∈ 2. Assume that Pfµ is ccc. Then there is an uncountable Z ⊆ I such
that ∀{i, j} ∈ [Z]2[f({i, j}) = µ].

Proof. Let W = {{i} : i ∈ I}. By Lemma 25.14, Pfµ has ω1 as a pre-caliber. Hence
there is a B ∈ [I]ω1 such that {{i} : i ∈ B} is centered. Thus if i, j ∈ B with i 6= j then
there is an a ∈ Pfµ such that {i}, {j} ⊆ a. It follows that f({i, j}) = µ.

Proposition 27.73. (III.8.27) Assume MA(ω1) and assume that |I| = ω1. Suppose that
f : [I]2 → 2 and µ ∈ 2. Assume that Pfµ is ccc. Then there are subsets Zn ⊆ I for n ∈ ω
such that I =

⋃

n∈ω Zn and for each n, ∀{i, j} ∈ [Zn]2[f({i, j}) = µ.
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Proof. Let Q ⊆ ωPµ be the finite support product of countably many copies of Pµ.
By Theorem 25.50, Q is ccc. For each i ∈ I let Di = {p ∈ Q : ∃n ∈ ω[pn = {i}]}. Clearly
Di is dense in Q. By MA(ω1) let G be a filter over Q intersecting each set Di. For each
n ∈ ω let Zn = {i ∈ I : ∃p ∈ G[pn = {i}]}. Then I =

⋃

n∈ω Zn. Suppose that n ∈ ω and
{i, j} ∈ [Zn]2. Say p ∈ G with pn = {i} and q ∈ G with qn = {j}. Choose r ∈ G with
r ≤ p, q. Then rn ⊆ pn, qn, so i, j ∈ rn, hence f({i, j} = µ.

Proposition 27.74. (Proposition III.8.28) Assume CH, and let f be as in the proof of
Theorem 27.71, and let Qµ be the finite support product of ω many copies of Pfµ. Then
each Qµ has ccc.

Proof. We assume the notation in the proof of Theorem 27.71, through the definition
of f . We claim

∀E ∈ [[ω1]<ω]ω[E disjoint ⇒ ∃β ∈ (sup(
⋃

E), ω1)

∀µ ∈ 2∀p ∈ [ω1\β]<ω∃q ∈ E∀ζ ∈ q∀ξ ∈ p[f(ζ, ξ) = µ]]

In fact, suppose that E ∈ [[ω1]<ω]ω and E is disjoint. By Lemma 27.69 there is a γ < ω1

such that sup
⋃
E < Mγ ∩ ω1. Let β = Mγ ∩ ω1. Suppose that µ ∈ 2 and p ∈ [ω1\β]<ω.

Let p = {ξ0, . . . , ξn−1} in increasing order. Let ξn = ξn−1 + 1. Let E0 = E, and for l < n
let El+1 = {q ∈ El : ∀ζ ∈ q[f({ζ, ξl}) = µ].

(∗) ∀l ≤ n[El ∈Mξl and El is infinite].

We prove (∗) by induction. It is given for l = 0. Assume that El ∈Mξl and El is infinite,
with l < n. We apply (1) and (2) to El and ξl. This gives that El+1 is infinite and
gξl ∈Mξl+1, hence El+1 ∈Mξl+1 ⊆Mξl+1

. So (∗) holds.
In particular, En 6= ∅. If q ∈ En, then f({ζ, ξl}) = µ for all l < n and ζ ∈ q. This

proves the claim.
Now suppose that 〈pξ : ξ < ω1〉 is a system of elements of Qµ; we want to show that

there are distinct ξ, η < ω1 such that pξ and pη are compatable. For each ξ < ω1, the
support of pξ, support(pξ), is the set of n ∈ ω such that pξn 6= ∅. Since

ω1 =
⋃

F∈[ω]<ω

{ξ < ω1 : support(pξ) = F},

there is an F ∈ [ω]<ω and an A ∈ [ω1]ω1 such that ∀ξ ∈ A[support(pξ) = F ]. For
each n ∈ F define ξ ≡nA η iff ξ, η ∈ A and pξn = pηn. If some ≡nA-class B has ω1

elements, we can work with B instead of A. So after finitely many steps we arrive at
a subset C of A of size ω1 such that we can write F = F ′ ∪ F ′′ where F ′ ∩ F ′′ = ∅,
∀n ∈ F ′∃a ∈ Pµ∀ξ ∈ C[pξn = a], and ∀n ∈ F ′′[|{pξn : ξ ∈ C}| = ω1]. Now we can get a
D ∈ [C]ω1 such that for all n ∈ F ′′, 〈pξn : ξ ∈ D〉 is a ∆-system, say with kernel Kn. Write
F ′′ = {ni : i < k} with n0 < · · · < nk−1. Take a countable subset E of D, and apply the
claim to {pξn0

\K0 : ξ ∈ E}, obtaining an ordinal β. Now choose η so that for all ξ ∈ D
with η < ξ we have β less than each member of pξn0

and pξn1
. Taking a countable subset

E′ of D with each member of E′ greater than η, the claim implies that for each ρ ∈ E′
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the element pρn0
is compatible with some member of {pξn0

\K0 : ξ ∈ E}. Since K0 ⊆ pρn0
,

actually pρn0
is compatible with some member of {pξn0

: ξ ∈ E}. Now we apply the claim
to {pξn1

\K1 : ξ ∈ E′}, obtaining an ordinal β′. Now choose η′ so that for all ξ ∈ D with
η′ < ξ we have β′ less than each member of pξn0

and pξn1
. Taking a countable subset E′′

of D with each member of E′′ greater than η′, the claim implies that for each ρ ∈ E′′ the
element pρn0

is compatible with some member of {pξn0
: ξ ∈ E}, and the element pρn1

is
compatible with some member of {pξn1

: ξ ∈ E′}. Continuing in this way, we finally see
that there are distinct ξ, η < ω1 such that pξ and pη are compatable.
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28. Generic extensions and forcing

In this chapter we give the basic definitions and facts about generic extensions and forcing.
Uses of these things will occupy much of remainder of these notes. We use “c.t.m.” for
“countable transitive model”; see Theorem 15.11. Let M be a c.t.m. of ZFC and let
P = (P,≤, 1) ∈ M be a forcing order. We say that G is P-generic over M provided that
the following conditions hold:

(1) G is a filter on P.

(2) For every dense D ⊆ P such that D ∈M we have G ∩D 6= ∅.

The definition of generic filter just given embodies a choice between two intuitive options.
The option chosen corresponds to thinking of stronger conditions—those containing more
information—as smaller in the forcing order. This may seen counter-intuitive, but it fits
nicely with the embedding of forcing orders into Boolean algebras, as we will see. Many
authors take the opposite approach, considering stronger conditions as the greater ones.
Of course this requires a corresponding change in the definition of generic filter (and
denseness).

The following is the basic existence lemma for generic filters.

Lemma 28.1. If M is a c.t.m. of ZFC, P = (P,≤, 1) ∈M is a forcing order, and p ∈ P ,
then there is a G which is P-generic over M and p ∈ G.

Proof. Let 〈Dn : n ∈ ω〉 enumerate all of the dense subsets of P which are in M . We
now define a sequence 〈qn : n ∈ ω〉 by recursion. Let q0 = p. If qn ∈ P has been defined,
choose qn+1 ∈ Dn with qn+1 ≤ qn. Thus p = q0 ≥ q1 ≥ · · ·. Now we define

G = {r ∈ P : qn ≤ r for some n ∈ ω}.

We check that G is as desired. For (1), suppose that r, s ∈ G. Say m,n ∈ ω with qm ≤ r
and qn ≤ s. By symmetry, say m ≤ n. Then qn ≤ r, s, and qn ∈ G, as desired.

Condition (2) is clear. Hence (3) holds.
For (4), let n ∈ ω. Then qn+1 ∈ G ∩Dn, as desired.

It is important to realize that usually generic filters are not in the ground model M ; this
is expressed in the following lemma.

Lemma 28.2. Suppose that M is a c.t.m. of ZFC and P = (P,≤, 1) ∈ M is a forcing
order. Assume the following:

(1) For every p ∈ P there are q, r ∈ P such that q ≤ p, r ≤ p, and q ⊥ r.

Also suppose that G is P-generic over M .
Then G /∈M .

Proof. Suppose to the contrary that G ∈ M . Then also P\G ∈ M , since M is a
model of ZFC and by absoluteness. We claim that P\G is dense. In fact, given p ∈ P ,
choose q, r as in (1). Then q, r cannot both be in G, by the definition of filter. So one
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at least is in P\G, as desired. Since P\G is dense and in M , we contradict G being
generic.

Most forcing orders used in forcing arguments satisfy the condition of Lemma 28.2; for
more details on this lemma, see later in this chapter.

If P is a forcing order, a subset E of P is predense iff every p ∈ P is compatible with
some member of E.

The following elementary proposition gives six equivalent ways to define generic filters.

Proposition 28.3. Suppose that M is a c.t.m. of ZFC and P is a forcing order in M .
Suppose that G ⊆ P satisfies condition (2), i.e., if p ∈ G and p ≤ q, then q ∈ G. Then the
following conditions are equivalent:

(i) G ∩D 6= ∅ whenever D ∈M and D is dense in P.
(ii) G ∩A 6= ∅ whenever A ∈M and A is a maximal antichain of P.
(iii) G ∩ E 6= ∅ whenever E ∈M and E is predense in P.

Moreover, suppose that G satisfies (2) and one, hence all, of the conditions (i)–(iii). Then
G is P-generic over M iff the following condition holds:

(iv) For all p, q ∈ G, p and q are compatible.

Proof. (i)⇒(ii): Assume (i), and suppose that A ∈ M is a maximal antichain of P.
Let D = {p ∈ P : p ≤ q for some q ∈ A}. We claim that D is dense. Suppose that r is
arbitrary. Choose q ∈ A such that r and q are compatible. Say p ≤ r, q. Thus p ∈ D.
So, indeed, D is dense. Clearly D ∈ M , since A ∈ M . By (i), choose p ∈ D ∩ G. Say
p ≤ q ∈ A. Then q ∈ G ∩A, as desired.

(ii)⇒(iii): Assume (ii), and suppose that E is as in (iii). By Zorn’s lemma, let A be
a maximal member of

(1) {B ⊆ P : B is an antichain, and for every p ∈ B there is a q ∈ E such that p ≤ q}.

We claim that A is a maximal antichain. For, suppose that p ⊥ q for all q ∈ A. Choose
s ∈ E such that p and s are compatible. Say r ≤ p, s. Hence r ⊥ q for all q ∈ A, so r /∈ A.
Thus A ∪ {r} is a member of (1), contradiction.

Clearly A ∈M , since E ∈M . So, since A is a maximal antichain, choose p ∈ A ∩G.
Then choose q ∈ E such that p ≤ q. So q ∈ E ∩G, as desired.

(iii)⇒(i): Obvious.
Now we assume (2) in the definition, and (i)–(iii).
If G is P-generic over M , clearly (iv) holds.
Now asume that (i)–(iv) hold, and suppose that p, q ∈ G; we want to find r ∈ G such

that r ≤ p, q. Let
D = {r : r ⊥ p or r ⊥ q or r ≤ p, q}.

We claim that D is dense in P. For, let s ∈ P be arbitrary. If s ⊥ p, then s ≤ s and s ∈ D,
as desired. So suppose that s and p are compatible; say t ≤ s, p. If t ⊥ q, then t ≤ s and
t ∈ D, as desired. So suppose that t and q are compatible. Say r ≤ t, q. Then r ≤ t ≤ p
and r ≤ t ≤ s, so r ≤ s and r ≤ p, q, hence r ∈ D, as desired. This proves that D is dense.

Now by (i) choose r ∈ D ∩ G. By (iv), r is compatible with p and r is compatible
with q. So r ≤ p, q, as desired.
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We are going to define the generic extension M [G] by first defining names in M , and then
producing the elements of M [G] by using those names. The notion of a name is defined
by recursion, using the following theorem.

Theorem 28.4. Let P be any set. Then there is a function F : V→ V such that for any
set τ ,

F(τ) =







1 if τ is a relation and for all σ, p
if (σ, p) ∈ τ then p ∈ P and F(σ) = 1,

0 otherwise.

Proof. Let R = {(σ, τ) : ∃p ∈ P [(σ, p) ∈ τ ]}. Then R is well-founded on V. In fact,
let X be any nonempty set, and choose τ ∈ X of smallest rank. If σRτ , then there is
a p ∈ P such that (σ, p) ∈ τ , and then σ ∈ {σ} ∈ {{σ}, {σ, p}} = (σ, p) ∈ τ , and hence
rank(σ) < rank(τ). It follows that σ /∈ X , as desired.

Also, R is set-like on V. In fact, for any set τ we have

predVR(τ) = {σ : ∃p ∈ P [(σ, p) ∈ τ ]} =
{

σ ∈
⋃⋃

τ : ∃p ∈ P [(σ, p) ∈ τ ]
}

.

Now we define G : V ×V→ V by setting

G(τ, f) =

{
1 if τ is a relation, f is a function with domain

predVR(τ), and f(σ) = 1 for all σ ∈ predVR(τ)
0 otherwise.

Now we obtain F by Theorem 5.7: for any set τ ,

F(τ) = G(τ,F ↾ predVR(τ))

=







1 if τ is a relation and F(σ) = 1
for all σ ∈ predVR(τ)

0 otherwise,

=

{
1 if τ is a relation and for all σ and p ∈ P , if

(σ, p) ∈ τ then F(σ) = 1,
0 otherwise

Now with F as in this theorem, a P name is a set τ such that F(τ) = 1.

Corollary 28.5. Let P be any set. Then τ is a P -name iff τ is a relation and for all
(σ, p) ∈ τ [σ is a P -name and p ∈ P ].

Proof. ⇒: suppose that τ is a P -name. Thus F(τ) = 1, so τ is a relation, and for
all (σ, p) ∈ τ , F(σ) = 1 and p ∈ P . Hence for all (σ, p) ∈ τ [σ is a P -name and p ∈ P ].

Conversely, suppose that τ is a relation and for all (σ, p) ∈ τ [σ is a P -name and p ∈ P ].
Then τ is a relation and for all (σ, p) ∈ τ [F(σ) = 1 and p ∈ P ]. Hence F(τ) = 1, so τ is a
P -name.

Note that “τ is a P -name” is absolute.
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For any set P , we denote by VP the (proper) class of all P -names. If M is a c.t.m.
of ZFC, then we let MP = VP ∩M . Note by absoluteness that

MP = {τ ∈M : (τ is a P -name)M}.

If G ⊆ P , we define val(τ, G) by recursion.

Theorem 28.6. If G ⊆ P then there is a function val such that for any set τ ,

val(τ, G) = {val(σ,G) : ∃p ∈ G[(σ, p) ∈ τ ]}.

Proof. Let R be as in the proof of Theorem 28.4. Now we define G : V ×V → V
by setting

G(τ, f) =

{
{f(σ) : ∃p ∈ G[(σ, p) ∈ τ ]} if f is a function

with domain predVR(τ),
0 otherwise.

Now we obtain F by Theorem 5.7; for any set τ ,

F(τ) = G(τ,F ↾ predVR(τ))

= {F(σ) : ∃p ∈ G[(σ, p) ∈ τ ]}

We also write τG in place of val(τ, G). Notice that val is absolute for c.t.m. of ZFC.
Finally, if M is a c.t.m. of ZFC and G ⊆ P ∈M , we define

M [G] = {τG : τ ∈MP }.

Note that MP ⊆M , and hence MP is countable. Hence by the replacement axiom, M [G]
is also countable.

Now we can sketch the goals of chapters 28 and 29. We start with a c.t.m. M , and
take κ ∈ M such that κ is regular and greater than ω1 (in the sense of M). Then we
let P be the forcing order (P,⊇, ∅), where P is the set of all finite functions contained in
κ × 2. Let G be any generic filter over P. Then we show that M [G] is a model of ZFC,
in M [G] we have 2ω = κ, and cardinals in M and in M [G] are the same. This shows the
consistency of ¬CH.

On the other hand, starting with a c.t.m. M , we let P be the forcing order (P,⊇, ∅)
with P the set of all countable functions contained in ω1 × 2. Then we show that M [G]
is a model of ZFC, in M [G] we have 2ω = ω1, and ω1 is the same in M and M [G]. This
proves the consistency of CH.

Lemma 28.7. If M is a c.t.m. of ZFC, P ∈M is a forcing order, and G is a filter on P,
then M [G] is transitive.

Proof. Suppose that x ∈ y ∈M [G]. Then there is a τ ∈MP such that y = τG. Since
x ∈ τG, there is a σ ∈MP such that x = σG. So x ∈M [G].
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The following Lemma says that M [G] is the smallest c.t.m. of ZFC which contains M as
a subset and G as a member, once we show that it really is a model of ZFC. This lemma
will be extremely useful in what follows.

Lemma 28.8. (IV.2.19) Suppose that M is a c.t.m. of ZFC, P ∈M is a forcing order, G
is a filter on P, N is a c.t.m. of ZFC, M ⊆ N , and G ∈ N . Then M [G] ⊆ N .

Proof. Take any x ∈ M [G]. Say x = val(σ,G) with σ ∈ MP. Then σ,G ∈ N , so by
absoluteness, x = (val(σ,G))N ∈ N .

To show that M is a subset of M [G], we need a functionˇmapping M into the collection
of all P -names. Again the definition is by recursion.

Theorem 28.9. Suppose that (P,≤, 1) is a forcing order. Then there is a function
F : V→ V such that for every set x, F(x) = {(F(y), 1) : y ∈ x}.

Proof. Let R = {(y, x) : y ∈ x}. Clearly R is well-founded and set-like on V. Define
G : V ×V→ V by

G(x, f) =

{

{(f(y), 1) : y ∈ x} if f is a function with domain x,
∅ otherwise.

Let F be obtained from G by Theorem 5.7. Then for any set x,

F(x) = G(x,F ↾ predVR(x)) = {(F(y), 1) : y ∈ x}.

We denote F(x) by x̌. Thus for any set x,

x̌ = {(y̌, 1) : y ∈ x}.

Note that this depends on P; we could denote it by check(P, x) to bring this out, if necessary.
Again this function is absolute for transitive models of ZFC.

Lemma 28.10. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
and G is a non-empty filter on P . Then

(i) For all x ∈M , x̌ ∈MP and val(x̌, G) = x.
(ii) M ⊆M [G].

Proof. Absoluteness implies that x̌ ∈ MP for all x ∈ M . To prove val(x̌, G) = x
for all x, suppose that this is not true, and by the foundation axiom take x such that
val(x̌, G) = x while val(y̌, G) = y for all y ∈ x. (See Theorem 5.5.) Then

val(x̌, G) = {val(σ,G) : (σ, 1) ∈ x̌}

= {val(y̌, G) : y ∈ x}

= {y : y ∈ x}

= x,
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contradiction.
Finally (ii) is immediate from (i).

Next, for any partial order P we define a P -name Γ. It depends on P and could be defined
as ΓP to bring this out.

Γ = {(p̌, p) : p ∈ P}.

Lemma 28.11. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
and G is a non-empty filter on P . Then ΓG = G. Hence G ∈M [G].

Proof. ΓG = {p̌G : p ∈ G} = {p : p ∈ G} = G.

We also introduce a name for M . Let dmn(M̌) = {ǎ : a ∈ M}, and for any a ∈ M ,
M̌(ǎ) = 1.

Lemma 28.12. (i) p  ȧ ∈ M̌ iff ∀q ≤ p∃b ∈M∃r ≤ q[r  ȧ = b̌].
(ii) If G is generic, then M̌G = {ǎG : a ∈M} = {a : a ∈M} = M .

(ii): clear. (i):

p  ȧ ∈ M̌ iff e(p) ≤ ||ȧ ∈ M̌ ||

iff e(p) ≤
∑

b∈M

||ȧ = b̌||

iff ∀q ≤ p∃b ∈M [e(q) · ||ȧ = b̌|| 6= 0]

iff ∀q ≤ p∃b ∈M∃r ≤ q[e(r) ≤ ||ȧ = b̌||

iff ∀q ≤ p∃b ∈M∃r ≤ q[r  ȧ = b̌]

Lemma 28.13. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
and G is a non-empty filter on P . Then rank(τG) ≤ rank(τ) for all τ ∈MP .

Proof. We prove this by induction on τ . Suppose that it is true for all σ ∈ dmn(τ).
If x ∈ τG, then there is a (σ, p) ∈ τ such that p ∈ G and x = σG. Hence by the inductive
assumption, rank(x) ≤ rank(σ). Hence

rank(τG) = sup
x∈τG

(rank(x) + 1) ≤ rank(τ).

Note by absoluteness of the rank function that rank(τ) is the same within M or M [G].

Lemma 28.14. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
and G is a non-empty filter on P. Then M and M [G] have the same ordinals.

Proof. Since M ⊆M [G], every ordinal of M is an ordinal of M [G]. Now suppose that
α is any ordinal of M [G]. Write α = τG, where τ ∈MP . Now rank(τ) = rankM (τ) ∈ M .
So by Lemma 28.12, α = rank(α) = rank(τG) ≤ rank(τ) ∈M , so α ∈M .

The following lemma will be used often.
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Lemma 28.15. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
E ⊆ P , E ∈M , and G is a P-generic filter over M . Then:

(i) Either G ∩ E 6= ∅, or there is a q ∈ G such that r ⊥ q for all r ∈ E.

(ii) If E is dense below p and q ≤ p, then E is dense below q.

(iii) If p ∈ G and E is dense below p, then G ∩E 6= ∅.

Proof. Let

D = {p : p ≤ r for some r ∈ E} ∪ {q : q ⊥ r for all r ∈ E}.

We claim that D is dense. For, suppose that q ∈ P . We may assume that q /∈ D. So q
is not in the second set defining D, and so there is an r ∈ E which is compatible with q.
Take p with p ≤ q, r. then p ∈ D and p ≤ q, as desired.

Since D is dense, we can choose s ∈ G∩D. Now to prove (i), suppose that G∩E = ∅.
Then s is not in the first set defining D, so it is in the second set, as desired.

(ii) is clear.

For (iii), suppose that G ∩ E = ∅, and by (i) choose q ∈ G such that q ⊥ r for every
r ∈ E. By the definition of filter, there is a t ∈ G with t ≤ p, q. Since E is dense below
p, there is then a u ∈ E with u ≤ t. Thus u ≤ q, so it is not the case that u ⊥ q,
contradiction.

Proposition 28.16. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing
order, and G is a P-generic filter over M . Suppose that p ∈ P and p is compatible with
each member of G. Then p ∈ G.

Proof. The set {q ∈ P : q ≤ p or q ⊥ p} is clearly dense in P.

Now we introduce the idea of forcing. Recall that the logical primitive notions are ¬, →,
∀, and =.

With each formula ϕ(v0, . . . , vm−1) of the language of set theory we define another
formula

p P,M ϕ(σ0, . . . , σm−1),

which we read as “p forces ϕ(σ0, . . . , σm−1) with respect to P and M”; it is the statement

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for every G which is P-
generic over M , if p ∈ G, then the relativization of ϕ to M [G] holds for the elements
σ0G, . . . , σ(m−1)G.

Note that since G in general is not in the model M , this definition cannot be given in M .
The main aim of the next part of this chapter is to show that the definition is equivalent
to one which is definable in any countable transitive model of ZFC. We do this by defining
a notion ∗ in M , and then proving the equivalence of ∗ with . For the definition we
first define a function to take care of atomic ϕ.

To understand the following theorem, see the definition and corollary following its
proof.
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Theorem 28.17. Let P be a forcing order and e the embedding of P into RO(P). Then
there is a class function F mapping 2×VP ×VP into RO(P) such that for any σ, τ ∈ VP ,

F (0, σ, τ) =
∏

(ξ,p)∈τ

[−e(p) + F (1, ξ, σ)] ·
∏

(η,q)∈σ

[−e(q) + F (1, η, τ)]

F (1, σ, τ) =
∑

(ξ,p)∈τ

[e(p) · F (0, σ, ξ)].

Proof. We are going to apply the recursion theorem 5.7. Let A = 2×VP ×VP . Let

(δ′, σ′, τ ′)R(δ, σ, τ) iff (δ′, σ′, τ ′), (δ, σ, τ) ∈ A, and

[δ′ = 1, δ = 0, τ ′ = σ and rank(σ′) < rank(τ)] or

[δ′ = 1, δ = 0, τ ′ = τ and rank(σ′) < rank(σ)] or

[δ′ = 0, δ = 1, σ′ = σ and rank(τ ′) < rank(τ)]

We claim that R is well-founded on A. In fact, note that if (0, σ′′, τ ′′)R(1, σ′, τ ′)R(0, σ, τ),
then

σ′′ = σ′, rank(τ ′′) < rank(τ ′) and

[(τ ′ = σ and rank(σ′) < rank(τ))

or (τ ′ = τ and rank(σ′) < rank(σ))].

Hence one of the following two conditions holds:

(1) τ ′ = σ, rank(σ′) < rank(τ), σ′′ = σ′, and rank(τ ′′) < rank(τ ′).

(2) τ ′ = τ , rank(σ′) < rank(τ), σ′′ = σ′, and rank(τ ′′) < rank(τ ′).

In either case we clearly have max(rank(σ′′), rank(τ ′′)) < max(rank(σ), rank(τ). Hence
there does not exist a sequence · · ·a2Ra1Ra0. Hence R is well-founded on A.

Next we claim that R is set-like on A. For, let (δ, σ, τ) ∈ A. Say σ ∈ Vα and τ ∈ Vβ .
Then if δ = 0 we have

predAR(0, σ, τ) = {(1, σ′, τ ′) ∈ 2× V P × V P : [τ ′ = σ and rank(σ′) < rank(τ)] or

[τ ′ = τ and rank(σ′) < rank(σ)]}

= {(δ′, σ′, τ ′) ∈ 2× Vβ × {σ} : δ′ = 1 and σ′ ∈ V P

and rank(σ′) < rank(τ)}∪

{(δ′, σ′, τ ′) ∈ 2× Vα × {τ} : δ′ = 1 and σ′ ∈ V P

and rank(σ′) < rank(σ)}.

If δ = 1, then

predAR(1, σ, τ) = {(0, σ′, τ ′) : σ′ = σ and rank(τ ′) < rank(τ)}

= {(δ′, σ′, τ ′) ∈ 2× {σ} × Vβ : δ′ = 0 and τ ′ ∈ V P

and rank(τ ′) < rank(σ)}.
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This proves the claim.
Now we define G : 2×VP ×VP → V. Let δ ∈ 2, σ ∈ VP , τ ∈ VP , and suppose that

f is a function mapping predAR(δ, σ, τ) into RO(P). Then we set

for δ = 0 : G(0, σ, τ, f) =
∏

(ξ,p)∈τ

[−e(p) + f(1, ξ, σ)] ·
∏

(η,q)∈σ

[−e(q) + f(1, η, τ)];

for δ = 1 : G(1, σ, τ, f) =
∑

(ξ,p)∈τ

[e(p) · f(0, σ, ξ)].

Note that this makes sense, since (ξ, p) ∈ τ implies that (1, ξ, σ)R(0, σ, τ), (1, η, τ)R(0, σ, τ)
and (0, σ, ξ)R(1, σ, , τ).

For any other f ∈ V let G(δ, σ, τ, f) = ∅.
Now let F be obtained by Theorem 5.7: F(δ, σ, τ) = G(δ, σ, τ,F ↾ predAR(δ, σ, τ)).

Then we have

F(0, σ, τ) = G(0, σ, τ,F ↾ predAR(0, σ, τ))

=
∏

(ξ,p)∈τ

[−e(p) + F(1, ξ, σ)] ·
∏

(η,q)∈σ

[−e(q) + F(1, η, τ)];

F(1, σ, τ) = G(1, σ, τ,F ↾ predAR(1, σ, τ))

=
∑

(ξ,p)∈τ

[e(p) · F(0, σ, ξ)].

Now with F as in this theorem, we define [[σ = τ ]] = F(0, σ, τ) and [[σ ∈ τ ]] = F(1, σ, τ).

Corollary 28.18. With P a forcing order and σ, τ ∈ VP we have

[[σ = τ ]] =
∏

(ξ,p)∈τ

[−e(p) + [[ξ ∈ σ]]] ·
∏

(η,q)∈σ

[−e(q) + [[η ∈ τ ]]];

[[σ ∈ τ ]] =
∑

(ξ,p)∈τ

[e(p) · [[σ = ξ]]].

Thus we are defining [[σ = τ ]] to mean, in a sense, that every element of σ is an element
of τ and every element of τ is an element of σ. And we define [[σ ∈ τ ]] to mean, in a sense,
that there is some element of τ to which σ is equal. We now extend the definition of
Boolean values to arbitrary formulas.

[[¬ϕ(σ0, . . . , σm−1)]] = −[[ϕ(σ0, . . . , σm−1)]];

[[ϕ(σ0, . . . , σm−1)→ ψ(σ0, . . . , σm−1)]] = −[[ϕ(σ0, . . . , σm−1)]] + [[ψ(σ0, . . . , σm−1)]];

[[∀xϕ(σ0, . . . , σm−1, x)]] =
∏

τ∈VP

[[ϕ(σ0, . . . , σm−1, τ)]].

Note that the last big product has index set which is a proper class in general. But the
values are all in the Boolean algebra RO(P), so this makes sense. Namely, this part of the
definition can be rewritten as follows:

[[∀xϕ(σ0, . . . , σm−1, x)]] =
∏

{a ∈ RO(P) : ∃τ ∈ VP (a = [[ϕ(σ0, . . . , σm−1, τ)]])}.

605



Lemma 28.19.

[[ϕ(σ0, . . . , σm−1) ∨ ψ(σ0, . . . , σm−1)]] = [[ϕ(σ0, . . . , σm−1)]] + [[ϕ(σ0, . . . , σm−1)]];

[[ϕ(σ0, . . . , σm−1) ∧ ψ(σ0, . . . , σm−1)]] = [[ϕ(σ0, . . . , σm−1)]] · [[ϕ(σ0, . . . , σm−1)]];

[[∃xϕ(σ0, . . . , σm−1, x)]] =
∑

τ∈VP

[[ϕ(σ0, . . . , σm−1, τ)]].

Proof. Recall from Chapter 2 the definitions of ∨, ∧, ∃. We omit the parameters
σ0, . . . , σm−1.

[[ϕ ∨ ψ]] = [[¬ϕ→ ψ)]]

= −− [[ϕ]] + [[ψ]])

= [[ϕ]] + [[ψ]];

[[ϕ ∧ ψ) = [[¬(ϕ→ ¬ψ)]]

= −(−[[ϕ]] +−[[ψ]])

= [[ϕ]] · [[ψ]];

[[∃viϕ]] = [[¬∀vi¬ϕ]]

= −
∏

τ∈VP

−[[ϕ(τ)]]

=
∑

τ∈VP

[[ϕ(τ)]].

Now we can give our alternate definition of forcing:

p ∗ ϕ(σ0, . . . , σm−1) iff e(p) ≤ [[ϕ(σ0, . . . , σm−1)]].

It is important that Boolean values and ∗ are definable in a c.t.m. M of ZFC. Note
that the discussion of Boolean values and of ∗ has taken place in our usual framework
of set theory. The complete BA RO(P) is in general uncountable. Given a c.t.m. M of
ZFC, the definitions can take place within M , and while M may be a model of “RO(P)
is uncountable”, actually RO(P)M is countable. Thus even if σ0, . . . , σm−1 are members
of MP , the statements p ∗ ϕ(σ0, . . . , σm−1) and (p ∗ ϕ(σ0, . . . , σm−1))M are much
different, since the products and sums involved in the definition of the former range over
a possibly uncountable complete BA, while those in the latter range only over a countable
BA (which is actually incomplete if it is infinite).

Now we prove the fundamental theorem connecting the notion ∗ in a c.t.m. M with
the notion , whose definition takes place outside M .

Theorem 28.20. (The Forcing Theorem) Suppose that M is a c.t.m. of ZFC, P ∈ M is
a forcing order, and G is P-generic over M . Then the following conditions are equivalent:

(i) There is a p ∈ G such that (p ∗ ϕ(σ0, . . . , σm−1))M .
(ii) ϕ(σ0G, . . . , σ(m−1)G) holds in M [G].
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Proof. First we prove the equivalence for σ = τ and σ ∈ τ by induction on the
well-founded relation R given in the proof of Theorem 28.16. For (i)⇒(ii), suppose that
p ∈ G and (p ∗ σ = τ)M . We want to show that σG = τG. Suppose that a ∈ σG. Then
there is an (η, q) ∈ σ such that q ∈ G and a = ηG. Now e(p) ≤ −e(q) + [[η ∈ τ ]], so
e(p) · e(q) ≤ [[η ∈ τ ]]. Since p, q ∈ G, choose r ∈ G with r ≤ p, q. Then e(r) ≤ [[η ∈ τ ]].
So (r ∗ η ∈ τ)M , so by the inductive hypothesis a = ηG ∈ τG. So we have shown that
σG ⊆ τG. Similarly, τG ⊆ σG. So we have shown that (i)⇒(ii) for σ = τ .

Now suppose that p ∈ G and (p ∗ σ ∈ τ)M . Thus e(p) ≤
∑

(ξ,s)∈τ [e(s) · [[σ = ξ]].
Now we claim

(1) {q : ∃(ξ, s) ∈ τ [q ≤ s and e(q) ≤ [[σ = ξ]]]} is dense below p.

For, suppose that r ≤ p. Then e(r) ≤
∑

(ξ,s)∈τ [e(s) · [[σ = ξ]], and hence

e(r) = e(r) ·
∑

(ξ,s)∈τ

[e(s) · [[σ = ξ]] =
∑

(ξ,s)∈τ

[e(r) · e(s) · [[σ = ξ]].

It follows that there is a (ξ, s) ∈ τ such that e(r) · e(s) · [[σ = ξ]] 6= 0. By Theorem 13.20(i)
choose t so that e(t) ≤ e(r) · e(s) · [[σ = ξ]]. By Theorem 13.20(iii), t and r are compatible.
Say u ≤ t, r. Also, e(u) ≤ e(t) ≤ e(s), so u and s are compatible. Say v ≤ u, s. Then
e(v) ≤ e(u) ≤ e(t) ≤ [[σ = ξ]], so v is in the set of (1). So (1) holds.

Now by (1) and Theorem 28.14(iii), there exist a q ∈ G with q ≤ p and (ξ, s) ∈ τ such
that e(q) ≤ [[σ = ξ]] and q ≤ s. So (q ∗ σ = ξ)M , and by the inductive hypothesis we
have σG = ξG. Now q ≤ s implies that s ∈ G, and so (ξ, s) ∈ τ yields ξG ∈ τG (by the
definition of val). This proves (i)⇒(ii) for σ ∈ τ .

Now for (ii)⇒(i), suppose that σG = τG. Let

D ={r : (r ∗ σ = τ)M or ∃(ξ, p) ∈ τ [r ≤ p and e(r) ≤ −[[ξ ∈ σ]]] or

∃(η, q) ∈ σ[r ≤ q and e(r) ≤ −[[η ∈ τ ]]]}.

We claim that D is dense. For, suppose that s ∈ P . Assume that (s 6∗ σ = τ)M . Thus
e(s) 6≤ [[σ = τ ]], so

0 6= e(s) · −[[σ = τ ]]

= e(s) ·

(
∑

(ξ,p)∈τ

(e(p) · −[[ξ ∈ σ[[) +
∑

(η,q)∈σ

(e(q) · −[[η ∈ τ ]])

)

.

It follows that one of the following conditions holds:

(2) There is a (ξ, p) ∈ τ such that e(s) · e(p) · −[[ξ ∈ σ]] 6= 0.

(3) There is a (η, q) ∈ σ such that e(s) · e(q) · −[[ξ ∈ τ ]] 6= 0.

Suppose that (2) holds, with (ξ, p) as indicated. By Theorem 13.20(i) choose t such that
e(t) ≤ e(s) · e(p) · −[[ξ ∈ σ]]. Since e(t) ≤ e(p), by Theorem 13.20(iv) we get u ≤ t, p.
Then e(u) ≤ e(t) ≤ e(s), so again by Theorem 13.20(iv) we get v such that v ≤ u, s. Then
v ≤ u ≤ p and e(v) ≤ e(u) ≤ e(t) ≤ −[[ξ ∈ σ]]. Thus v ∈ D, as desired.
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By a similar argument, (3) gives an element of D below s. Hence D is dense.
Choose r ∈ G ∩ D. We claim that (r ∗ σ = τ)M . Otherwise one of the following

conditions holds:

(4) ∃(ξ, p) ∈ τ [r ≤ p and e(r) ≤ −[[ξ ∈ σ]]].

(5) ∃(η, q) ∈ σ[r ≤ q and e(r) ≤ −[[η ∈ τ ]]].

Suppose that (4) holds, with (ξ, p) as indicated. Now e(r) 6= 0, so e(r) 6≤ [[ξ ∈ σ]]. Thus
(r 6∗ ξ ∈ σ)M . Hence by the inductive hypothesis, ξG /∈ σG. But r ≤ p, so p ∈ G, and
hence ξG ∈ τG. This contradicts our assumption that σG = τG.

(5) leads to a contradiction similarly. Hence our claim holds, and we have proved
(ii)⇒(i) for σ = τ .

For (ii)⇒(i) for σ ∈ τ , assume that σG ∈ τG. Then there is a (ξ, p) ∈ τ such that
p ∈ G and σG = ξG. By the inductive hypothesis there is a q ∈ G such that (q ∗ σ = ξ)M .
Choose r ∈ G with r ≤ p, q. Then e(r) ≤ e(p) · [[σ = ξ]], and so e(r) ≤ [[σ ∈ τ ]]. Thus
(r ∗ σ ∈ τ)M .

Thus now the atomic cases are finished.
In the inductive steps we omit the parameters σ0, . . . , σm−1. Suppose that the equiv-

alence holds for ϕ; we prove it for ¬ϕ. For (i)⇒(ii), suppose that p ∈ G and (p ∗ ¬ϕ)M .
We want to show that ¬ϕ holds in M [G]. Suppose to the contrary that ϕ holds in M [G].
Then by the equivalence for ϕ, choose q ∈ G such that (q ∗ ϕ)M . Choose r ∈ G with
r ≤ p, q. Then (r ∗ ¬ϕ)M and (r ∗ ϕ)M , contradiction.

For (ii)⇒(i), suppose that ¬ϕ holds in M [G]. We claim that D
def
= {p : (p ∗ ϕ)M

or (p ∗ ¬ϕ)M} is dense. For, suppose that q is arbitrary. If (q ∗ ϕ)M , then q ∈ D.
Suppose that (q 6∗ ϕ)M . Then e(q) 6≤ [[ϕ]], so e(q) ·−[[ϕ]] 6= 0. By Theorem 13.20(i) choose
p so that e(p) ≤ e(q) · −[[ϕ]] 6= 0. By Theorem 13.20(iv) choose r ≤ p, q. Then r ≤ q and
e(r) ≤ e(p) ≤ −[[ϕ]] = [[¬ϕ]]. Hence (r  ¬ϕ)M . This shows that r ∈ D. Thus D is dense.
Choose p ∈ D ∩G. If (p ∗ ϕ)M , then ϕM [G], contradiction. Hence (p ∗ ¬ϕ)M .

For →, suppose that p ∈ G, (p ∗ ϕ→ ψ)M , and ϕ holds in M [G]. By the inductive
hypothesis, choose q ∈ G so that (q ∗ ϕ)M . Choose r ∈ G with r ≤ p, q. Then

e(r) ≤ e(p) · e(q) ≤ [[ϕ→ ψ]] · [[ϕ]] = (−[[ϕ]] + [[ψ]]) · [[ϕ]] ≤ [[ψ]].

Thus (r ∗ ψ)M , so by the inductive hypothesis, ψ holds in M [G]. So we have shown that
ϕ→ ψ holds in M [G].

Conversely, suppose that ϕ→ ψ holds in M [G].
Case 1. ϕ holds in M [G]. Then also ψ holds in M [G]. By the inductive hypothesis we

get p ∈ G such that and (p ∗ ψ)M . Thus e(p) ≤ [[ψ]], so e(p) ≤ −[[ϕ]] + [[ψ]] = [[ϕ → ψ]],
hence (p ∗ ϕ→ ψ)M .

Case 2. ϕ does not hold in M [G]. By the case for ¬, there is a p ∈ G such that
(p ∗ ¬ϕ)M . Hence e(p) ≤ −[[ϕ]] ≤ −[[ϕ]] + [[ψ]] = [[ϕ→ ψ]], hence (p ∗ ϕ→ ψ)M .

Finally, we deal with the formula ∀xϕ(x). For (i)⇒(ii), suppose that ∀xϕ(x) does not
hold in M [G]. Then there is a name σ such that ϕ(σG) does not hold. By the case for ¬
it follows that there is a p ∈ G such that (p ∗ ¬ϕ(σ))M , so that e(p) ≤ −[[ϕ(σ)]]. Thus
e(p) ≤ −

∏

τ∈V P [[ϕ(τ)]] and so, since e(p) 6= 0, e(p) 6≤
∏

τ∈V P [[ϕ(τ)]], so that it is not true
that (p ∗ ∀xϕ(x))M .
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For (ii)⇒(i), suppose that (p ∗ ∀xϕ(x))M , and suppose that σ is any name. Then
e(p) ≤ [[ϕ(σ)]], hence (p ∗ ϕ(σ))M , so ϕ(σG) holds in M [G], as desired.

Corollary 28.21. If M is a c.t.m. of ZFC, P is a forcing order in M , p ∈ P , and
ϕ(τ1, . . . , τm) is a formula, then

p  ϕ(τ1, . . . , τm) iff (p ∗ ϕ(τ1, . . . , τm))M .

Proof. Again we omit the parameters τ1, . . . , τm. ⇒: Assume that p  ϕ, but
suppose that (p 6∗ ϕ)M . Thus e(p) 6≤ [[ϕ]], so e(p) · −[[ϕ]] 6= 0. By Theorem 13.20(i)
choose q such that e(q) ≤ e(p) · −[[ϕ]]. By Theorem 13.20(iv) choose r ≤ p, q. Then
e(r) ≤ e(q) ≤ −[[ϕ]] = [[¬ϕ]]. Hence (r  ¬ϕ)M . Let G be P-generic over M with
r ∈ G. Then by Theorem 28.19, ¬ϕM [G]. But r ≤ p, so by the definition of , ϕM [G],
contradiction.
⇐: Assume that (p ∗ ϕ)M . Suppose that G is P-generic over M and p ∈ G. Then

by Theorem 28.19. ϕM [G], as desired.

Corollary 28.22. Let M be a c.t.m. of ZFC, P ∈ M a forcing order, and G ⊆ M a
P-generic filter over M . Then

ϕ(τ1G, . . . , τmG)M [G] iff ∃p ∈ G[p  ϕ(τ1, . . . , τm)].

Proof. ⇒: Assume ϕ(τ1G, . . . , τmG)M [G]. By Theorem 28.19, choose p ∈ G such that
(p ∗ ϕ(τ1, . . . , τm))M . By Corollary 28.20 we have p  ϕ(τ1, . . . , τm).
⇐: by the definition of .

Now if σ and τ are names, we define

up(σ, τ) = {(σ, 1), (τ, 1)};

op(σ, τ) = up(up(σ, σ), up(σ, τ)).

Lemma 28.23. (i) (up(σ, τ))G = {σG, τG}.
(ii) (op(σ, τ))G = (σG, τG).

Theorem 28.24. Let M be a c.t.m. of ZFC, P ∈ M a forcing order, G ⊆ P , and G
P-generic over M . Then M [G] is a model of ZFC.

Proof. We will apply theorems from Chapter 14. Recall from Lemma 28.7 that M [G]
is transitive. Hence extensionality and foundation hold in M [G] by Theorems 14.1 and
14.7. For pairing, suppose that x, y ∈ M [G]. Say x = σG and y = τG. By Lemma 28.22
and Theorem 14.3, pairing holds. For union, suppose that x ∈M [G]. Choose σ such that

x = σG. Note that dmn(σ) is a set of P-names, and hence so is τ
def
=
⋃

dmn(σ). We
claim that

⋃
x ⊆ τG; by Theorem 14.4 this will prove the union axiom. Let y ∈

⋃
x. Say
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y ∈ z ∈ x. Then there exist (ρ, r), (ξ, s) such that y = ρG, r ∈ G, (ρ, r) ∈ ξ, z = ξG,
s ∈ G, and (ξ, s) ∈ σ. So ξ ∈ dmn(σ), and hence (ρ, r) ∈

⋃
dmn(σ) = τ . It follows that

y = ρG ∈ τG, as desired.
To check comprehension, we apply Theorem 14.2. So, suppose ϕ(x, z, w1, . . . , wn) is

a formula with the indicated free variables, and σ, τ1, . . . , τn are P names. Let

y = {x ∈ σG : ϕM [G](x, σG, τ1G, . . . , τnG)};

we want to show that y ∈M [G]. Let

ρ = {(π, p) ∈ dmn(σ)× P : (p ∗ (π ∈ σ ∧ ϕ(π, σ, τ1, . . . , τn))M}.

Thus ρ ∈ MP . We claim that ρG = y, as desired. Suppose that x ∈ ρG. Then there is a
(π, p) ∈ dmn(σ)×P such that p ∈ G, x = πG, and (p ∗ (π ∈ σ∧ϕ(π, σ, τ1, . . . , τn))M . By
Corollary 28.20, p  (π ∈ σ ∧ ϕ(π, σ, τ1, . . . , τn)). Hence by definition of , πG ∈ σG and
ϕM [G](πG, σG, τ1G, . . . , τnG). Thus x ∈ y. Conversely, suppose that x ∈ y. Thus x ∈ σG
and ϕM [G](x, σG, τ1G, . . . , τnG). Choose (π, p) ∈ σ such that x = πG and p ∈ G. Thus
(πG ∈ σG ∧ ϕM [G](πG, σG, τ1G, . . . , τnG))M [G], so by Corollary 28.21 there is a q ∈ G such
that q  π ∈ σ ∧ ϕ(π, σ, τ1, . . . , τn). Thus by Theorem 28.20 again we have (π, q) ∈ ρ,
hence x = πG ∈ ρG, as desired.

For the power set axiom, we will apply Theorem 14.5. Let σ be a P -name. It suffices
to find another P -name ρ such that P(σG) ∩M [G] ⊆ ρG. Let ρ = S × {1}, where

S = {τ ∈MP : dmn(τ) ⊆ dmn(σ)}.

Suppose that µ ∈MP and µG ⊆ σG; we want to show that µG ∈ ρG. Let

τ = {(π, p) : π ∈ dmn(σ) and p  π ∈ µ}.

Thus dmn(τ) ⊆ dmn(σ), so τG ∈ ρG. It suffices now to show that τG = µG. First suppose
that x ∈ µG. Since µG ⊆ σG, there is a (π, q) ∈ σ such that q ∈ G and x = πG. Thus
πG ∈ σG, so by Theorem 28.21 there is a p ∈ G such that p  π ∈ σ. Hence (π, p) ∈ τ ,
and so x = πG ∈ τG. Second, suppose that x ∈ τG. Choose (π, p) ∈ τ such that p ∈ G
and x = πG. By definition of τ we have π ∈ dmn(σ) and p  π ∈ µ. By definition of ,
x = πG ∈ µG. Hence we have shown that τG = µG, as desired.

For replacement, we apply Theorem 14.6. Let ϕ be a formula with free variables
among x, y, A, w1, . . . , wn, suppose that σ, τ1, . . . , τn ∈MP and the following holds:

(1) (∀x ∈ σG∃!y[ϕ(x, y, σG, τ1G, . . . , τ1G)])M [G].

We want to find ρ ∈MP such that

(∀y∃x ∈ σGϕ(x, y, σG, τ1G, . . . , τnG)→ y ∈ ρG)M [G].

In view of the uniqueness condition in (1) it suffices to find ρ ∈MP such that

(2) ∀x ∈ σG∃y ∈ ρG(ϕ(x, y, σG, τ1G, . . . , τnG)M [G].
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In fact, if (2) holds, y ∈M [G], x ∈ σG, and (ϕ(x, y, σG, τ1G, . . . , τnG))M [G]. by (2) choose
z ∈ ρG such that (ϕ(x, z, σG, τ1G, . . . , τnG)M [G]. Then by (1) we have y = z, and so y ∈ ρG.

Now we claim

(3) There is an S ∈M with S ⊆MP such that

∀π ∈ dmn(σ)∀p ∈ P [∃µ ∈MP [(p ∗ ϕ(π, µ, σ, τ1, . . . , τn))M ]

→ ∃µ ∈ S[(p ∗ ϕ(π, µ, σ, τ1, . . . , τn))M ]].

To prove the claim, we make the following argument in M . For each π ∈ dmn(σ) and
p ∈ P , if there is a µ ∈ MP such that (p ∗ ϕ(π, µ, σ, τ1, . . . , τn))M , let α(π, p) be the
least ordinal such that such a µ is in Vα(π,p), while α(π, p) = 0 if there is no such ordinal.
Let β = sup{α(π, p) : π ∈ dmn(α), p ∈ P}. Then

S = {µ ∈ Vβ : ∃π ∈ dmn(σ)∃p ∈ P [(p ∗ ϕ(π, µ, σ, τ1, . . . , τn))M ]}.

Clearly S is as desired in the claim.
Let ρ = S × {1}. To show that ρ satisfies (2), let x ∈ σG. say x = πG with (π, p) ∈ ρ

and p ∈ G. Then by (1) there is a µ ∈ MP such that ϕM [G](πG, µG, σG, τ1G, . . . , τmG).
By Corollary 28.21 choose q ∈ G such that q  ϕ(π, µ, σ, τ1, . . . , τm). By Corollary 28.20,
(q ∗ ϕ(π, µ, σ, τ1, . . . , τm))M . Hence by (3) we may assume that µ ∈ S. Hence µG ∈ ρG,
as desired.

For the infinity axiom, note that ω = ω̌G by Lemma 28.10. Hence the infinity axiom
holds by Theorem 14.8.

Finally we consider the axiom of choice. We show that there is a choice function
for any family A of nonempty sets, where A ∈ M [G]. By absoluteness,

⋃
A ∈ M [G].

Say
⋃
A = σG. Let f be a bijection from some cardinal κ onto dmn(σ) (in M). Define

τ = {op(α̌, f(α)) : α < κ} × {1}. Thus τG = {(op(α̌, f(α)))G = {(α, (f(α))G) : α < κ}.
So τG is a function with domain κ. Each x ∈ A is nonempty, and if y ∈ x then y ∈

⋃
A,

and hence we can write y = τG with (τ, p) ∈ σ and p ∈ G. So there is an α < κ such that
f(α) = τ ; so τG(α) = (f(α))G = τg = y. This shows that for each x ∈ A there is an ordinal
α < κ such that τG(α) ∈ x; we let αx be the least such ordinal. Define g(x) = τG(αx) for
all x ∈ A. Then g(x) ∈ x.

Parts of the following theorem will be used later without reference.

Theorem 28.25. (i) [[σ = τ ]] = [[τ = σ]].
(ii)

[[σ = τ ]] =




∏

(ξ,p)∈τ

(−e(p) + [[ξ ∈ σ]])



 ·




∏

(ρ,q)∈σ

(−e(q) + [[ρ ∈ τ ]])



 .

(iii) [[σ = σ]] = 1.
(iv) If (ρ, r) ∈ σ, then e(r) ≤ [[ρ ∈ σ]], and hence r ∗ ρ ∈ σ.
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(v) p ∗ σ ∈ τ iff the set

{q : ∃(π, s) ∈ τ(q ≤ s and q ∗ σ = π)}

is dense below p.
(vi) p ∗ σ = τ iff the following two conditions hold:

(a) For all (π, s) ∈ σ, the set

{q ≤ p : if q ≤ s, then there is a (ρ, u) ∈ τ such that q ≤ u and q ∗ π = ρ}

is dense below p;
(b) For all (ρ, u) ∈ τ , the set

{q ≤ p : if q ≤ u, then there is a (π, s) ∈ σ such that q ≤ s and q ∗ π = ρ}

is dense below p.
(vii)

p ∗ ϕ(σ0, . . . , σn−1) ∧ ψ(σ0, . . . , σn−1) iff

p ∗ ϕ(σ0, . . . , σn−1) and p ∗ ψ(σ0, . . . , σn−1).

(viii) p ∗ ϕ(σ0, . . . , σn−1) ∨ ψ(σ0, . . . , σn−1) iff for all q ≤ p there is an r ≤ q such
that r ∗ ϕ(σ0, . . . , σn−1) or r ∗ ψ(σ0, . . . , σn−1).

(ix) p ∗ ¬ϕ(σ0, . . . , σn−1) iff for all q ≤ p, q 6∗ ϕ(σ0, . . . , σn−1).
(x) {p : p ∗ ϕ(σ0, . . . , σn−1) or p ∗ ¬ϕ(σ0, . . . , σn−1)} is dense.
(xi) p ∗ ∃xϕ(x, σ0, . . . , σn−1) iff the set

{r ≤ p : there is a τ ∈ VP such that r ∗ ϕ(τ, σ0, . . . , σn−1)}

is dense below p.
(xii) p ∗ ∀xϕ(x, σ0, . . . , σm−1) iff for all τ ∈ VP , p ∗ ϕ(τ, σ0, . . . , σm−1).
(xiiii) The following are equivalent:

(a) p ∗ ϕ(σ0, . . . , σm−1).
(b) For every r ≤ p, r ∗ ϕ(σ0, . . . , σm−1).
(c) {r : r ∗ ϕ(σ0, . . . , σm−1)} is dense below p.

(xiv) p ∗ ϕ(σ0, . . . , σm−1)→ ψ(σ0, . . . , σm−1) iff the set

{q : q ∗ ¬ϕ(σ0, . . . , σm−1) or q ∗ ψ(σ0, . . . , σm−1)}

is dense below p.
(xv) If p ∗ ¬∀xϕ(x, σ0, . . . , σm−1), then the set

{q : there is a τ ∈ VP such that q  ¬ϕ(τ, σ0, . . . , σm−1)}

is dense below p.
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(xvi) If p ∗ ϕ(σ0, . . . , σm−1) and p ∗ ϕ(σ0, . . . , σm−1) → ψ(σ0, . . . , σm−1), then
p ∗ ψ(σ0, . . . , σm−1).

Proof.
(i): By induction:

[[σ = τ ]] =
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ

(e(q) · [[ρ = ξ]])





·
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ

(e(p) · [[ρ = ξ]])





=
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ

(e(p) · [[ρ = ξ]])





·
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ

(e(q) · [[ρ = ξ]])





=
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ

(e(p) · [[ξ = ρ]])





·
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ

(e(q) · [[ξ = ρ]])





= [[τ = σ]].

(ii):

[[σ = τ ]] =
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ

(e(q) · [[ρ = ξ]])





·
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ

(e(p) · [[ρ = ξ]])





=
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ

(e(q) · [[ξ = ρ]])





·
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ

(e(p) · [[ρ = ξ]])





=




∏

(ξ,p)∈τ

(−e(p) + [[ξ ∈ σ]])



 ·




∏

(ρ,q)∈σ

(−e(q) + [[ρ ∈ τ ]])



 .

613



We prove (iii) and (iv) simultaneously by induction on the rank of σ; so suppose that they
hold for all σ′ of rank less than σ. Assume that (ρ, r) ∈ σ. Then by the definition of
[[ρ ∈ σ]],

[[ρ ∈ σ]] =
∑

(µ,s)∈σ

(e(s) · [[ρ = µ]]) ≥ e(r) · [[ρ = ρ]] = e(r),

as desired in (iv). Using this and (ii),

[[σ = σ]] =
∏

(ρ,r)∈σ

(−e(r) + [[ρ ∈ σ]]) = 1,

as desired in (iii).
We now use Theorem 13.20(vii) in several of our arguments.
(v):

p ∗ σ ∈ τ iff e(p) ≤ [[σ ∈ τ ]]

iff e(p) ≤
∑

(π,s)∈τ

(e(s) · [[σ = π]])

iff {q : ∃(π, s) ∈ τ [e(q) ≤ e(s) · [[σ = π]]]} is dense below p.

We claim that the last statement here is equivalent to

(∗) {q : ∃(π, s) ∈ τ [q ≤ s and e(s) ≤ [[σ = π]]]} is dense below p.

In fact clearly (∗) implies the above statement. Now suppose that

{q : ∃(π, s) ∈ τ [e(q) ≤ e(s) · [[σ = π]]]} is dense below p.

Take any r ≤ p, and choose q ≤ r and (π, x) ∈ τ such that e(q) ≤ e(s) · [[σ = π]]. Then q
and s are compatible; say t ≤ q, s. Then t ≤ q ≤ r and e(t) ≤ e(q) ≤ e(s) · [[σ = π]]. Thus
(∗) holds.

Now (∗) is clearly equivalent to

{q : ∃(π, s) ∈ τ [q ≤ s and s ∗ σ = π]} is dense below p.

(vi): Assume that p ∗ σ = τ .
For (a), suppose that (π, s) ∈ σ and r ≤ p. If r 6≤ s, then r itself is in the desired set;

so suppose that r ≤ s. Then

e(r) ≤ e(s) · e(p) ≤ e(s) ·



−e(s) +
∑

(ρ,u)∈τ

(e(u) · [[π = ρ]])



 = e(s) ·
∑

(ρ,u)∈τ

(e(u) · [[π = ρ]]).

Hence there is a (ρ, u) ∈ τ such that e(r) · e(s) · e(u) · [[π = ρ]] 6= 0. Hence there exists a
v ≤ r, s such that e(v) ≤ e(u) · [[π = ρ]]. (See the argument for (v)). It follows that there
is a q ≤ v, u with e(q) ≤ [[π = ρ]]. So q ∗ π = ρ, and q is in the desired set.
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(b) is treated similarly.
Now assume that (a) and (b) hold. We want to show that p ∗ σ = τ , i.e., that

e(p) ≤ [[σ = τ ]]. To show that e(p) is below the first big product in the definition of
[[σ = τ ]], take any (ξ, q) ∈ τ ; we want to show that

e(p) ≤ −e(q) +
∑

(ρ,r)∈σ

(e(r) · [[ρ = ξ]]),

i.e., that

e(p) · e(q) ≤
∑

(ρ,r)∈σ

(e(r) · [[ρ = ξ]]).

Suppose that this is not the case. Then there is an s such that

e(s) ≤ e(p) · e(q) · −
∑

(ρ,r)∈σ

(e(r) · [[ρ = ξ]]) = e(p) · e(q) ·
∏

(ρ,r)∈σ

(−e(r) +−[[ρ = ξ]]).

Hence there is a u ≤ s, p, q. By (b) choose v ≤ u and (ρ, r) ∈ σ such that v ≤ r and
v ∗ ρ = ξ. Then e(v) ≤ e(r) · [[ρ = ξ]], and also e(v) ≤ −e(r) +−[[ρ = ξ]]), contradiction.

Similarly, e(p) is below the second big product in the definition of [[σ = τ ]].

(vii): Clear.

(viii): Since

p ∗ ϕ(σ0, . . . , σn−1) ∨ ψ(σ0, . . . , σn−1) iff e(p) ≤ [[ϕ(σ0, . . . , σn−1) ∨ ψ(σ0, . . . , σn−1)]],

this is immediate from Theorem 16.20(vii).
(ix) ⇒: if p ∗ ¬ϕ(σ0, . . . , σn−1) and q ≤ p, then

e(q) ≤ e(p) ≤ [[¬ϕ(σ0, . . . , σn−1)]] = −[[ϕ(σ0, . . . , σn−1)]],

and hence e(q) 6≤ [[ϕ(σ0, . . . , σn−1)]], since e(q) 6= 0. Thus q 6∗ ϕ(σ0, . . . , σn−1).
⇐: suppose that p 6∗ ¬ϕ(σ0, . . . , σn−1). Then

e(p) 6≤ [[¬ϕ(σ0, . . . , σn−1)]] = −[[ϕ(σ0, . . . , σn−1)]],

and hence
e(p) · [[ϕ(σ0, . . . , σn−1)]] 6= 0,

so we can choose r such that

e(r) ≤ e(p) · [[ϕ(σ0, . . . , σn−1)]],

hence there is a q ≤ p, r, and so q ∗ ϕ(σ0, . . . , σn−1).
(x): Let q be given. If e(q) · [[ϕ(σ0, . . . , σn−1)]] 6= 0, choose r such that e(r) ≤ e(q) ·

[[ϕ(σ0, . . . , σn−1)]], and then choose p ≤ q, r. Thus p ∗ ϕ(σ0, . . . , σn−1), as desired. If
e(q) · [[ϕ(σ0, . . . , σn−1)]] = 0, then q ∗ ¬ϕ(σ0, . . . , σn−1).
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(xi): Suppose that p ∗ ∃xϕ(x, σ0, . . . , σn−1), and suppose that q ≤ p. Then e(q) ≤
∑

τ∈MP [[ϕ(τ, σ0, . . . , σn−1)]], and so there is a τ ∈MP such that e(q)·[[ϕ(τ, σ0, . . . , σn−1)]] 6=
0; hence we easily get r ≤ q such that e(r) ≤ [[ϕ(τ, σ0, . . . , σn−1)]]. This implies that
r ∗ ϕ(τ, σ0, . . . , σn−1), as desired.

Conversely, suppose that the set

{r ≤ p : there is a τ ∈ VP such that r ∗ ϕ(τ, σ0, . . . , σn−1)}

is dense below p, while p 6∗ ∃xϕ(x, σ0, . . . , σn−1). Thus e(p) 6≤ [[∃xϕ(x, σ0, . . . , σn−1)]], so

e(p) ·
∏

τ∈MP

−[[ϕ(τ, σ0, . . . , σn−1)]] 6= 0.

Then we easily get q ≤ p such that

(4) e(q) ≤
∏

τ∈MP

−[[ϕ(τ, σ0, . . . , σn−1)]].

By assumption, choose r ≤ q and τ ∈ MP such that r ∗ ϕ(τ, σ0, . . . , σn−1). Thus
e(r) ≤ [[ϕ(τ, σ0, . . . , σn−1)]]. This clearly contradicts (4).

(xii): Clear.
(xiii): Clearly (a)⇒(b)⇒(c). Now assume (c). Suppose that p 6∗ ϕ(σ0, . . . , σm−1).

Thus e(p) 6≤ [[ϕ(σ0, . . . , σm−1)]], so we easily get q ≤ p such that

(5) e(q) ≤ −[[ϕ(σ0, . . . , σm−1)]].

By (c), choose r ≤ q such that r ∗ ϕ(σ0, . . . , σm−1). Clearly this contradicts (5).
(xiv): First suppose that p ∗ ϕ(σ0, . . . , σm−1) → ψ(σ0, . . . , σm−1). Thus by the

definition of → we have p ∗ ¬ϕ(σ0, . . . , σm−1) ∨ ψ(σ0, . . . , σm−1). Hence the desired
conclusion follows by (viii). The converse follows by reversing these steps.

(xv): This is very similar to part of the proof of (xi), but we give it anyway. We have

i(p) ≤ [[¬∀xϕ(x, σ0, . . . , σm−1)]]

=
∑

τ∈MP

−[[ϕ(τ, σ0, . . . , σm−1)]].

Now suppose that q ≤ p. Then e(q) is ≤ the sum here, so we easily get r ≤ q and τ ∈MP

such that e(r) ≤ [[¬ϕ(τ, σ0, . . . , σm−1)]]. Hence r ∗ ¬ϕ(τ, σ0, . . . , σm−1), as desired.
(xvi): The hypotheses yield

e(p) ≤ [[ϕ(σ0, . . . , σm−1)]] and

e(p) ≤ −[[ϕ(σ0, . . . , σm−1)]] + [[ψ(σ0, . . . , σm−1)]],

so e(p) ≤ [[ψ(σ0, . . . , σm−1)]] and hence p ∗ ψ(σ0, . . . , σm−1)]].
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Proposition 28.26. Let I and J be sets with I infinite and |J | > 1, and let P = (P,≤, ∅),
where P is the collection of all finite functions contained in I × J and ≤ is ⊇ restricted to
P . Then P satisfies the condition of Lemma 28.2.

Proof. Suppose that p ∈ P . Pick any i ∈ I\dmn(p), and let j, k be distinct elements
of J . Then p ⊆ p∪{(i, j)}, p ⊆ p∪{(i, k)}, and these two extensions of p are incompatible.

Proposition 28.27. If the condition in the hypothesis of Lemma 28.2 fails, then there is
a P-generic filter G over M such that G ∈ M , and G intersects every dense subset of P
(not only those in M).

Proof. Let p be such that for all q, r, if q and r are ≤ p then they are compatible.
Define

G = {q : ∃r[r ≤ q and (r ≤ p or p ≤ r)].

We claim that G is as desired. Clearly G ∈M .
Note that p ∈ G, by taking r = p.
To check (1), suppose that q, r ∈ G; we want to find s ∈ G with s ≤ q, r. Choose

t ≤ q such that t ≤ p or p ≤ t, and choose u ≤ r such that u ≤ p or p ≤ u. If t ≤ p and
u ≤ p, then by the choice of p there is a v ≤ t, u. Then v ≤ u ≤ p, and v ≤ t ≤ q, hence
v ∈ G, and v ≤ q and v ≤ u ≤ r, as desired.

If t ≤ p and p ≤ u, then t ≤ u ≤ r, so t ∈ G and t ≤ q, r, as desired.
If p ≤ t and u ≤ p, then u ≤ r implies that u ∈ G, and u ≤ p ≤ t ≤ q, as desired.
Finally, if p ≤ t, u, then p ≤ q, r and p ∈ G, as desired. So (1) holds.
(2) is obvious.
Now suppose that D is dense. Choose q ∈ D such that q ≤ p. Then q ∈ G, as

desired.

Proposition 28.28. Assume the hypothesis of Lemma 28.2. Then there does not exist a
P-generic filter over M which intersects every dense subset of P (not only those which are
in M).

Proof. Take G generic; we show that {p ∈ P : p /∈ G} is dense. Let D be the set
indicated in the hint. Let p be any element of P , and choose incompatible q, r ≤ p by the
hypothesis of Lemma 28.2. Then it is not true that both q, r ∈ G, as desired; this checks
that D is dense. Obviously G ∩D = ∅, proving the assertion of the proposition.

Proposition 28.29. Show that if P satisfies the condition of Lemma 28.2, then it has
uncountably many dense subsets.

Proof. (Proof due to Josh Sanders) For each p ∈ P let p(0), p(1) be members of P
such that p(0), p(1) ≤ p and p(0) ⊥ p(1); thus p(0), p(1) < p. We now define an element
pf for each finite sequence f of 0s and 1s, by recursion on the domain of f . Let p∅ be
any element of P . Having defined pf , let pf0 = pf (0) and pf1 = pf (1). For each f ∈ ω2
let Kf = {pf↾m : m ∈ ω}. Now if f, g ∈ ω2 and f 6= g, choose m minimum such that
f(m) 6= g(m). Clearly then pf↾(m+1) ∈ Kf\Kg. Thus Kf 6= Kg for distinct f, g ∈ ω2. For
each f ∈ ω2 let Df = P\Kf . So Df 6= Dg for f 6= g.
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We claim that each Df is dense; this will prove the statement of the proposition. To
see this, take any q ∈ P . If q ∈ Df , then there is nothing to prove. Suppose that q /∈ Df .
Thus q ∈ Kf . Say q = pf↾m. Let ε = 1 − f(m). Then p(f↾m)ε ∈ Df and p(f↾m)ε ≤ q, as
desired.

Proposition 28.30. Assume the hypothesis of Lemma 28.2. Then there are 2ω filters
which are P-generic over M .

Proof. Let D0, D1, . . . list all of the dense subsets of P which are in M . We now
define elements rf and pf in P for f a finite sequence of 0’s and 1’s, by recursion on the
length of f . Let p∅ = 1 and choose r∅ ∈ D0 so that r∅ ≤ p∅. Now suppose that pf and
rf have been defined, with f having domain n ∈ ω. Choose pf0 and pf1 both ≤ rf so
that pf0 ⊥ pf1. Then choose rf0 ≤ pf0 with rf0 ∈ Dn+1, and choose rf1 ≤ pf1 with
rf1 ∈ Dn+1.

For any f ∈ ω2 let

Gf = {q ∈ P : pf↾n ≤ q for some n ∈ ω}.

Clearly Gf is P-generic; and there are 2ω such filters.

Proposition 28.31. Let P = ({1},≤, 1). The collection of all P-names is a proper class.

Proof. Clearly the following two facts hold with no assumption about P .

(1) If σ is a P -name, then so is {(σ, 1)}.

(2) If A is a set of P -names, then {(σ, 1) : σ ∈ A} is a P -name.

Now let A be the collection of all P -names, and suppose that A is a set. By (2), also

τ
def
= {(σ, 1) : σ ∈ A} is a P -name, and by (1), {(τ, 1)} is a P -name. So σ

def
= {(τ, 1)} ∈ A.

Thus

τ ∈ {τ} ∈ {{τ}, {τ, 1}} = (τ, 1) ∈ {(τ, 1)} = σ ∈ {σ} ∈ {{σ}, {σ, 1}} = (σ, 1) ∈ τ,

contradiction.

Proof.

Proposition 28.32. p  σ = τ iff the following two conditions hold.
(i) For every (ξ, q) ∈ σ and every r ≤ p, q one has r  ξ ∈ τ .
(ii) For every (ξ, q) ∈ τ and every r ≤ p, q one has r  ξ ∈ σ.

Proof. First assume that p  σ = τ . For (i), suppose that (ξ, q) ∈ σ and r ≤ p, q.
Let G be P-generic over M with r ∈ G. Then also p, q ∈ G, so ξG ∈ σG and σG = τG.
Hence ξG ∈ τG, as desired. (ii) is similar.

Second assume the two conditions. To show that p  σ = τ , let G be P-generic over
M with p ∈ G. Suppose that x ∈ σG. Then there is a (ξ, q) ∈ σ such that q ∈ G and
x = ξG. Choose r ∈ G such that r ≤ p, q. By (i) we have ξG ∈ τG. This shows that
σG ⊆ τG. The other inclusion is similar.
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Proof.

Proposition 28.33. Assume that P ∈M , p, q ∈ P , and p ⊥ q. Then {τ ∈MP : p  τ =
∅̌} is a proper class in M .

Proof. In M we define members τα of MP by recursion, such that p  τα = 0̌, and
such that the ranks increase. let τ0 = 0̌. Having defined τα, let τα+1 = {(τα, q)}. Note
that if G is generic and p ∈ G, then q /∈ G, and so (τα+1)G = ∅; so p  τα+1 = ∅. For λ a
limit ordinal, let τλ = {(τα, q) : α < λ}. Clearly p  τλ = 0̌.

Proposition 28.34. The forcing order of Proposition 28.25 is separative.

Proof. If p ⊇ q ⊇ p, then p = q. Now suppose that p 6⊇ q. Choose (i, j) ∈ q\p. If
i ∈ dmn(p), then p ⊥ q, as desired. If i /∈ dmn(p), let k ∈ J\{j} and define r = p∪{(i, k)}.
Then r ⊇ p and r ⊥ q.

Proposition 28.35. Assume that P ∈M is separative and p, q, r ∈ P . Then the following
two conditions are equivalent:

(i) p  {({(∅, q)}, r)} = 1̌.
(ii) p ≤ r and p ⊥ q.

Proof. ⇒: Assume that

(1) p  {({(0, q)}, r)} = 1̌.

Suppose that p 6≤ r. By the definition of separative, choose s such that s ≤ p and s ⊥ r.
Let G be P-generic over M with s ∈ G. Then {({(0, q)}, r)}G = 0, contradiction. Thus
p ≤ r. Suppose that p and q are compatible; say t ≤ p, q. Let G be P-generic over M
with t ∈ G. Then q ∈ G, so {(0, q)}G = {0}. Also r ∈ G, so {({(0, q)}, r)}G = {{0}} 6= 1,
contradiction.
⇐: Suppose that p ≤ r and p ⊥ q. Suppose that G is P-generic over M and p ∈ G.

Then q /∈ G, so {(0, q)}G = 0. Also, r ∈ G, so {({(0, q)}, r)}G = {{(0, q)}G} = {0} = 1, as
desired.

Proposition 28.36. Suppose that f : A → M with f ∈ M [G]. Then there is a B ∈ M
such that f : A→ B.

Proof. Let f = τG and define B = {b : ∃p ∈ P [p  [b̌ ∈ rng(τ)]]}. The definition of B
takes place in M ; so B ∈M . Suppose that b is in the range of f . Thus b̌G = b ∈ rng(τG),
so we can choose p ∈ B such that p  b̌ ∈ rng(τ). So b ∈ B, as desired.

Proposition 28.37. Assume that P ∈ M and α is a cardinal of M . Then for any
P-generic G over M the following conditions are equivalent:

(1) For all B ∈M , αB ∩M = αB ∩M [G].
(2) αM ∩M = αM ∩M [G].

Proof. (1)⇒(2): Assume (1). Obviously ⊆ in (2) holds. Now suppose that f ∈
αM ∩M [G]. By proposition 28.35 choose B ∈M such that f : α→ B. So by (1), f ∈M ,
as desired.

619



(2)⇒(1): Assume (2). Then ⊆ in (1) is clear. Suppose that f ∈ αB ∩M [G]. Then
f ∈ αM ∩M [G] since M is transitive, so f ∈M by (2).

Proposition 28.38. Suppose that P ∈ M is a forcing order satisfying the condition of
Lemma 28.2. Assume that

M = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn ⊆ · · · (n ∈ ω),

where Mn+1 = Mn[Gn] for some Gn which is P-generic over Mn, for each n ∈ ω. Then
the power set axiom fails in

⋃

n∈ωMn.

Proof. Assume that R =
⋃

n∈ωMn does satisfy the power set axiom. Then R |=
∃y∀z(z ⊆ P → z ∈ y). Choose y ∈ R so that R |= ∀z(z ⊆ P → z ∈ y). Say y ∈ Mn.
Then R |= Gn ⊆ P → z ∈ y. By absoluteness, R |= Gn ⊆ P . So R |= Gn ∈ y, hence
Gn ∈ y ∈Mn. This contradicts Lemma 28.2.

Proposition 28.39. The following conditions are equivalent:

[[ϕ(σ0, . . . , σm−1)↔ ψ(σ0, . . . , σm−1)]] = 1

[[ϕ(σ0, . . . , σm−1)]] = [[ψ(σ0, . . . , σm−1)]].

Proof. We omit the parameters σ0, . . . , σm−1. First assume that [[ϕ↔ ψ]] = 1. Then

0 = −[[ϕ↔ ψ]]

= −[[(ϕ→ ψ) ∧ (ψ → ϕ)]]

= −[[¬(ϕ ∧ ¬ψ) ∧ ¬(ψ ∧ ¬ϕ)]]

= −([[¬(ϕ ∧ ¬ψ)]] · [[¬(ψ ∧ ¬ϕ)]]

= −(−[[ϕ ∧ ¬ψ) · −[[ψ ∧ ¬ϕ]])

= [[ϕ ∧ ¬ψ]] + [[ψ ∧ ¬ϕ]]

= ([[ϕ]] · −[[ψ]]) + ([[ψ]] · −[[ψ]].

It follows that [[ϕ]] = [[ψ]].
Conversely, if [[ϕ]] = [[ψ]], then we can reverse the above equations to get−[[ϕ↔ ψ]] = 0,

so that [[ϕ↔ ψ]] = 1.

Proposition 28.40. [[σ = τ ]] · [[τ = ρ]] ≤ [[σ = ρ]].

Proof. Suppose not. Then [[σ = τ ]] · [[τ = ρ]] · −[[σ = ρ]] 6= 0. By Theorem 9.20(i)
choose p so that e(p) ≤ [[σ = τ ]] · [[τ = ρ]] · −[[σ = ρ]]. Then (p ∗ σ = τ)M , (p ∗ τ = ρ)M ,
and p ∗ (¬σ = ρ)M . Let G be P-generic over M . Then by Theorem 28.19, σG = τG,
τG = ρG, and σG 6= ρG, contradiction.

Proposition 28.41. If ZFC |= ϕ then [[ϕ]] = 1, for any sentence ϕ.

Proof. Suppose that [[ϕ]] 6= 1. Thus −[[ϕ]] 6= 0, so by Theorem 13.20(i) choose p
so that e(p) ≤ −[[ϕ]] = [[¬ϕ]]. Thus (p ∗ ¬ϕ)M . Let G be P-generic over M . Then by
Theorem 28.19 we have ¬ϕM [G].
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29. Forcing and cardinal arithmetic

The main forcing orders used in this chapter are special cases of the following. For sets
I, J and for λ an infinite cardinal,

Fn(I, J, λ) = ({f : f is a function contained in I × J and |f | < λ},⊇, ∅).

We first show that ¬CH is consistent. The main part of the proof is given in the following
theorem.

Theorem 29.1. (Cohen) Let M be a c.t.m. of ZFC. Suppose that κ is any infinite cardinal
of M . Let G be Fn(κ, 2, ω)-generic over M . Then 2ω ≥ κ in M [G].

Proof. Let g =
⋃
G. Since any two members of G are compatible, g is a function.

(1) For each α ∈ κ, the set {f ∈ Fn(κ, 2, ω) : α ∈ dmn(f)} is dense in Fn(κ, 2, ω) (and it
is a member of M).

In fact, given f ∈ Fn(κ, 2, ω), either f is already in the above set, or else α /∈ dmn(f) and
then f ∪ {(α, 0)} is an extension of f which is in that set. So (1) holds.

Since G intersects each set (1), it follows that g maps κ into 2. Let (in M) h : κ×ω → κ
be a bijection. For each α < κ let aα = {m ∈ ω : g(h(α,m)) = 1}. We claim that aα 6= aβ
for distinct α, β; this will give our result. In fact, for distinct α, β < κ, the set

{f ∈ Fn(κ, 2, ω) : there is an m ∈ ω such that

h(α,m), h(β,m) ∈ dmn(f) and f(h(α,m)) 6= f(h(α,m))}

is dense in Fn(κ, 2, ω) (and it is in M). In fact, let distinct α and β be given, and suppose
that f ∈ Fn(κ, 2, ω). Now {m : h(α,m) ∈ f or h(β,m) ∈ f} is finite, so choose m ∈ ω not
in this set. Thus h(α,m), h(β,m) /∈ f . Let h = f ∪ {(h(α,m), 0), (h(β,m), 1)}. Then h
extends f and is in the above set, as desired.

It follows that G contains a member of this set. Hence aα 6= aβ.

By taking κ > ω1 in M , it would appear that we have shown the consistency of ¬CH. But
there is a major detail that we have to take care of. Possibly ω1 means something different
in M [G] than it does in M ; maybe we have accidentally introduced a bijection from the
ω1 of M onto ω. Since M is countable, this is conceivable.

To illustrate this problem, let P be the forcing order consisting of all finite functions
mapping a subset of ω into ω1, ordered by ⊇, with ∅ as “largest” element. Suppose that
G is P-generic over M . Now the following sets are dense:

Am
def
= {f ∈ P : m ∈ dmn(f)} for each m ∈ ω,

Bα
def
= {f ∈ P : α ∈ rng(f)} for each α ∈ ωM1 .

In fact, given any g ∈ P , if m ∈ ω\dmn(g), then g ∪ {(m, 0)} is a member of P which
in Am and contains g; and given any g ∈ P and α < ωM1 , choose m ∈ ω\dmn(g); then
g ∪ {(m,α)} is a member of P which in Bα and contains g. Now if G is P-generic over M
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and intersects all of the sets Am and Bα, then clearly
⋃
G, which is a member of M [G], is

a function mapping ω onto ωM1 . So ωM1 gets “collapsed” to a countable ordinal in M [G].
Note that ωM = ωM [G] by absoluteness.

Thus to finish the proof of consistency of ¬CH we need to study the preservation of
cardinals in the passage from M to M [G].

P preserves cardinals ≥ κ iff for every G which is P-generic over M and every ordinal
α ≥ κ in M , α is a cardinal in M iff α is a cardinal in M [G].

P preserves cofinalities ≥ κ iff for every G which is P-generic over M and every limit
ordinal α in M such that (cf(α))M ≥ κ, (cf(α))M = (cf(α))M [G].

P preserves regular cardinals ≥ κ iff for every G which is P-generic over M and every
ordinal α ≥ κ which is a regular cardinal of M , α is also a regular cardinal of M [G].

If κ = ω, we say simply that P preserves cardinals, cofinalities, or regular cardinals.
In these definitions, if we replace “≥” by “≤” we obtain new definitions which will be

used below also.
The relationship between these notions that we want to give uses the following fact.

Lemma 29.2. Suppose that α is a limit ordinal, κ and λ are regular cardinals, f : κ→ α
is strictly increasing with rng(f) cofinal in α, and g : λ → α is strictly increasing with
rng(g) cofinal in α. Then κ = λ.

Proof. Suppose not; say by symmetry κ < λ. For each ξ < κ choose ηξ < λ such
that f(ξ) < g(ηξ). Let ρ = supξ<κ ηξ. Thus ρ < λ by the regularity of λ. But then
f(ξ) < g(ρ) < α for all ξ < κ, contradiction.

Proposition 29.3. Let M be a c.t.m. of ZFC, P ∈ M be a forcing order, and κ be a
cardinal of M .

(i) If P preserves regular cardinals ≥ κ, then it preserves cofinalities ≥ κ.
(ii) If P preserves cofinalities ≥ κ and κ is regular, then P preserves cardinals ≥ κ.
(iii) If P preserves cofinalities, then P preserves cardinals.

Proof. (i): Let α be a limit ordinal of M with (cf(α))M ≥ κ. Then (cf(α))M is a
regular cardinal of M which is ≥ κ and hence is also a regular cardinal of M [G]. Now we
can apply Lemma 29.2 within M [G] to κ = (cf(α))M and λ = (cf(α))M [G] to infer that
(cf(α))M = (cf(α))M [G].

(ii): Suppose that cardinals ≥ κ are not preserved, and let λ be the least cardinal of
M which is ≥ κ but which is not a cardinal of M [G]. If λ is regular in M , then

λ = (cf(λ))M = (cf(λ))M [G],

and so λ is a regular cardinal in M [G], contradiction. If λ is singular in M , then λ > κ
since κ is regular and λ ≥ κ. So λ is the supremum of a set S of cardinals of M which are
regular and ≥ κ, so each member of S is a cardinal of M [G] by the minimality of λ, so λ
is a cardinal of M [G].

(iii): follows from (ii), with κ = ω.
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We can replace “≥” by “≤” in this proposition and its proof; call this new statement
Proposition 29.3 ′. The very last part of the proof of 29.3 can be simplified for ≤, and
actually one does not need to assume that κ is regular in this case.

A forcing order P satisfies the κ-chain condition, abbreviated κ-c.c., iff every antichain in
P has size less than κ.

The following theorem is very useful in forcing arguments.

Theorem 29.4. Let M be a c.t.m. of ZFC, P ∈M be a forcing order, κ be a cardinal of
M , G be P-generic over M , and suppose that P satisfies the κ-c.c. Suppose that f ∈M [G],
A,B ∈M , and f : A→ B. Then there is an F : A→P(B) with F ∈M such that:

(i) f(a) ∈ F (a) for all a ∈ A.
(ii) (|F (a)| < κ)M for all a ∈ A.

Proof. Let τ ∈ MP be such that τG = f . Thus the statement “τG : A → B” holds
in M [G]. Hence by Corollary 28.21 there is a p ∈ G such that

p  τ : Ǎ→ B̌.

Now for each a ∈ A let

F (a) = {b ∈ B : there is a q ≤ p such that q  op(ǎ, b̌) ∈ τ}.

To prove (i), suppose that a ∈ A. Let b = f(a). Thus (a, b) ∈ f , so by Theorem 15.21
there is an r ∈ G such that r  op(ǎ, b̌) ∈ τ . Let q ∈ G with q ≤ p, r. Then q shows that
b ∈ F (a).

To prove (ii), again suppose that a ∈ A. By the axiom of choice in M , there is a
function Q : F (a)→ P such that for any b ∈ F (a), Q(b) ≤ p and Q(b)  op(ǎ, b̌) ∈ τ .

(1) If b, b′ ∈ F (a) and b 6= b′, then Q(b) ⊥ Q(b′).

In fact, suppose that r ≤ Q(b), Q(b′). Then

(2) r  op(ǎ, b̌) ∈ τ ∧ op(ǎ, b̌′) ∈ τ ;

but also r ≤ Q(b) ≤ p, so r  τ : Ǎ→ B̌, hence

r  ∀x, y, z[op(x, y) ∧ op(x, z)→ y = z]

and hence

(3) r  op(ǎ, b̌) ∈ τ ∧ op(ǎ, b̌′) ∈ τ → b̌ = b̌′.

Now let H be P-generic over M with r ∈ H. By the definition of forcing and (2) we have
(a, b) = (op(ǎ, b̌))G ∈ τG and (a, b′) = (op(ǎ, b̌′) ∈ τG. By (3) and the definition of forcing
it follows that b = b′. Thus (1) holds.

By (1), 〈Q(b) : b ∈ F (a)〉 is a one-one function onto an antichain of P . Hence
(|F (a)| < κ)M by the κ-cc.
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Proposition 29.5. If M is a c.t.m. of ZFC, κ is a cardinal of M , and P ∈ M satisfies
κ-cc in M , then P preserves regular cardinals ≥ κ, and also preserves cofinalities ≥ κ. If
also κ is regular in M , then P preserves cardinals ≥ κ.

Proof. First we want to show that if λ ≥ κ is regular in M then also λ is regular in
M [G] (and hence is a cardinal of M [G]). Suppose that this is not the case. Hence in M [G]
there is an α < λ and a function f : α→ λ such that the range of f is cofinal in λ. Recall
from Lemma 28.13 that M and M [G] have the same ordinals. Thus α ∈M . By Theorem
29.4, let F : α → P(λ) be such that f(ξ) ∈ F (ξ) and (|F (ξ)| < λ)M for all ξ < α. Let
S =

⋃

ξ<α F (ξ). Then S is a subset of λ which is cofinal in λ and has size less than λ,
contradiction.

The rest of the proposition follows from Proposition 29.3.

By the countable chain condition, abbreviated ccc, we mean the ω1-chain condition.

Lemma 29.6. If κ is an infinite cardinal, then Fn(κ, 2, ω) satisfies ccc.

Proof. Suppose that F ⊆ Fn(κ, 2, ω) is uncountable. Since for each finite F ⊆ κ there
are only finitely many members of F with domain F , it is clear that {dmn(f) : f ∈ F} is
an uncountable collection of finite sets. By the ∆-system lemma, let G be an uncountable
subset of this collection which forms a ∆-system, say with root R. Then

G =
⋃

k∈R2

{f ∈ G : f ↾ R = k};

since R2 is finite, there is a k ∈ R2 such that

H
def
= {f ∈ G : f ↾ R = k}

is uncountable. Clearly f and g are compatible for any f, g ∈H .

Theorem 29.7. (Cohen) Let M be a c.t.m. of ZFC. Suppose that κ is any cardinal of M .
Let G be Fn(κ, 2, ω)-generic over M . Then M [G] has the same cofinalities and cardinals
as M , and 2ω ≥ κ in M [G].

Proof. By Theorems 29.1, 29.5, and 29.6, also using the fact that ω is absolute.

The method of proof of Theorem 29.7 is called Cohen forcing.

Theorem 29.8. (Cohen) If ZFC is consistent, then so is ZFC + ¬CH.

Proof. Apply Theorem 29.7 with κ a cardinal of M greater than ωM1 .

We now turn to the proof of consistency of CH. This depends on a new notion which is
important in its own right.

Let λ be an infinite cardinal. A forcing order P = (P,≤, 1) is λ-closed iff for all γ < λ
and every system 〈pξ : ξ < γ〉 of elements of P such that pη ≤ pξ whenever ξ < η < γ,
there is a q ∈ P such that q ≤ pξ for all ξ < γ.
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The importance of this notion for generic extensions comes about because of the
following theorem, which is similar to Theorem 29.4.

Theorem 29.9. Suppose that M is a c.t.m. of ZFC, P ∈ M is a forcing order, λ is a
cardinal of M , P is λ-closed, A,B ∈ M , and |A| < λ. Suppose that G is P-generic over
M and f ∈M [G] with f : A→ B. Then f ∈M .

Proof. It suffices to prove this when A is an ordinal. For, suppose that this special
case has been shown, and now suppose that A is arbitrary. In M , let j be a bijection from

α
def
= |A|M onto A. Then f ◦ j : α→ B, so f ◦ j ∈M by the special case. Hence f ∈M .

So now we assume that A = α, an ordinal less than λ. Let K = (αB)M . Let f = τG.
We want to show that f ∈ K, for then f ∈M . Suppose not. Now τG : α→ B and τG ∈ K.
Hence by Theorem 28.21 there is a p ∈ G such that

(1) p  τ : α̌→ B̌ ∧ τ /∈ Ǩ.

For a while we work entirely in M . We will define sequences 〈pη : η ≤ α〉 of elements of P
and 〈zη : η < α〉 of elements of B by recursion, so that the following conditions hold:

(2) p0 = p.
(3) pη ≤ pξ if ξ < η.
(4) pη+1  τ(η̌) = žη.

Of course we start out by defining p0 = p, so that (2) holds. Now suppose that pη has been
defined so that (2)–(4) hold; we define pη+1. In fact, we claim that there exist a pη+1 ≤ pη
and a zη ∈ B such that pη+1 ≤ pη and pη+1  τ(η̌) = žη. To prove this claim, suppose
that pη ∈ H where H is P-generic over M . Then by (1), τH : α→ B and τH /∈ K. Hence
τH(η) ∈ B; say τH(η) = zη. By Theorem 28.21, there is a q ∈ H such that q  τ(η̌) = žη.
Let pη+1 ∈ H with pη+1 ≤ pη, q. This proves the claim. Thus (2)–(4) holds.

For η limit, pη is given by the definition of λ-closed.
Note that the function z defined in this way is in K.
This finishes our argument within M . Now let H be P-generic over M with pα ∈ H.

Then τH(η) = zη for each η < α by (4), so that τH = z ∈ K. This contradicts (1), since
pα ≤ p.

Proposition 29.10. Suppose that M is a c.t.m. of ZFC. P ∈M is a forcing order, λ is a
regular cardinal of M , and P is λ-closed. Then P preserves cofinalities and cardinals ≤ λ.

Proof. Otherwise, by Proposition 29.3′ there is a regular cardinal κ ≤ λ of M which
is not regular in M [G]. Thus there exist in M [G] an ordinal α < κ and a function f : α→ κ
such that rng(f) is cofinal in κ. By Theorem 29.9, f ∈M , contradiction.

Theoerem 29.11. Let M be a c.t.m. of ZFC, and let G be F(ω1, 2, ω1)-generic over M .

Then CH holds in M [G], and ωM1 = ω
M [G]
1 .

First we show that F(ω1, 2, ω1) is ω1-closed. Let 〈fξ : ξ < α〉 be a sequence of members of
F(ω1, 2, ω1) such that α < ω1 and ∀ξ, η[ξ < η < α → fη ⊇ fξ]. Then clearly

⋃

ξ<α fξ ∈
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F(ω1, 2, ω1) and
⋃

ξ<α fξ ⊇ fη for each η < ξ. Now it follows from Proposition 29.10 that

ωM1 = ω
M [G]
1 .

By Theorem 29.9 we have (ω2)M [G] ⊆ M . Let F : ω1 × ω → ω1 be a bijection. For
each f ∈ ω2 let

Df = {g ∈ Fn(ω1, 2, ω1) : ∃α < ω1∀n ∈ ω[F (α, n) ∈ dmn(g) and g(F (α, n)) = f(n)]}}.

Clearly Df is dense in Fn(ω1, 2, ω1). Define h : ωM1 → ω2 in M [G] by: (h(α))(n) =
(
⋃
G)(F (α, n)). Then h maps onto ω2 by the denseness of the Df ’s, as desired.

Theorem 29.12. (Gödel) If ZFC is consistent, then so is ZFC + CH.

Gödel also showed that if ZF is consistent, then so is ZFC + GCH. For this he introduced
the notion of constructible sets.

We give some elementary facts about forcing which will be used later.

Theorem 29.13. p  ǎ ∈ b̌ iff a ∈ b.

Theorem 29.14. p  ∃xϕ(x, σ0, . . . , σm−1) iff the set

{r ≤ p : there is a τ ∈MP [r  ϕ(τ, σ0, . . . , σm−1)]}

is dense below p.

Proof. ⇒: Assume that p  ∃xϕ(x, σ0, . . . , σm−1), and q ≤ p. Let G be P-generic
over M with q ∈ G. Then also p ∈ G, so (∃xϕ(σ0, . . . , σm−1))M [G]. Hence there is
a τ ∈ MP such that ϕM [G](τG, σ0G, . . . , σ(m−1)G) holds. Choose s ∈ G such that s 

ϕ(τ, σ0, . . . , σm−1). Then choose r ∈ G with r ≤ q, s. Thus r is in the indicated set, as
desired.
⇐: Assume the indicated condition, and suppose that p ∈ G with G P-generic over M .

Then there is an r ∈ G with r in the indicated set. Hence ϕM [G](τG, σ0G, . . . , σ(m−1)G),

and so also ∃xϕM [G](x, σ0G, . . . , σ(m−1)G), as desired.

Proposition 29.15. If p  ∃x ∈ σϕ(x), then there exist a q ≤ p and a (τ, r) ∈ σ such
that q ≤ r and q  ϕ(τ).

Proof. Let G be generic such that p ∈ G. Then there is an x ∈ σG such that
M [G] |= ϕ(x). Say (τ, r) ∈ σ with r ∈ G and x = τG. Thus M [G] |= ϕ(τG), so there is an
s ∈ G such that s  ϕ(τ). Choose q ∈ G such that q ≤ p, r, s

Proposition 29.16. Fn(ω1, 2, ω1) preserves cardinals ≥ ω2.

Proof. Clearly |Fn(ω1, 2, ω1)| = ω1, so Fn(ω1, 2, ω1) is ω2-cc. Hence the result follows
by Proposition 29.5.

Proposition 29.17. Work only in ZFC (or in a fixed model of it). Suppose that (X,<) is
a linear order. Let P be the set of all pairs (p, n) such that n ∈ ω and p ⊆ X×n is a finite
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function. Define (p, n) ≤ (q,m) iff m ≤ n, dmn(q) ⊆ dmn(p), ∀x ∈ dmn(q)[p(x) ∩m =
q(x), and

∀x, y ∈ dmn(q), if x < y then p(x)\p(y) ⊆ m.

Then P has ccc.

Proof. Suppose that A is an uncountable subset of P . By the ∆-system theorem, we
may assume that 〈dmn(p) : (p, n) ∈ A 〉 is a ∆-system, say with root r. We may also assume
that p ↾ r = q ↾ r whenever (p, n), (q,m) ∈ A . Now suppose that (p, n), (q,m) ∈ A . Let
s be the maximum of m and n. Clearly p ∪ q is a function, and so (p ∪ q, s) ∈ P . We
claim that (p ∪ q, s) ≤ (p, n), (q,m), as desired. By symmetry it suffices to show that
(p ∪ q, s) ≤ (q,m). Suppose that x ∈ dmn(q). Then (p ∪ q)(x) ∩m = q(x) ∩m = q(x). If
x, y ∈ dmn(q) and x < y, then (p ∪ q)(x)\(p ∪ q)(y) = q(x)\q(y) ⊆ m.

Proposition 29.18. Continuing Proposition 29.17, suppose that we are working in a
c.t.m. M of ZFC. Let G be P-generic over M . For each x ∈ X let

ax =
⋃

{p(x) : (p, n) ∈ G for some n ∈ ω, with x ∈ dmn(p)}.

Thus ax ⊆ ω. Then if x < y, then ax\ay is finite.

Proof. For each z ∈ X let Dz = {(p, n) : z ∈ dmn(p)}. Given any (q,m) ∈ P , if z /∈
dmn(q) clearly (q ∪ {(z, 0)}, m) ∈ P , (q ∪ {(z, 0)}, m) ∈ Dz, and (q ∪ {(z, 0)}, m) ≤ (q,m).
So Dz is dense.

Choose (p, n) ∈ Dx∩G and (q,m) ∈ Dy ∩G. Say (p, n), (q,m) ≥ (r, s) ∈ G. We claim
then that ax\ay ⊆ s. Let i ∈ ax\ay. Say i ∈ u(x) with (u, t) ∈ G and x ∈ dmnu. Say
(u, t), (r, s) ≥ (v, z) ∈ G. Thus v(x)\v(y) ⊆ s. Now i ∈ u(x), so i ∈ v(x). Also, i /∈ v(y)
since i /∈ ay. So i ∈ s, as desired.

Proposition 29.19. Continuing propositions 29.17 and 29.18, if x < y, then ay\ax is
infinite.

Proof. For each i < ω let

Ei = {(p, n) : x, y ∈ dmn(p) and |p(y)\p(x)| ≥ i}.

We claim that Ei is dense. Let (q, n) be given. Wlog x, y ∈ dmn(q). Say dmn(q) is

u0 < · · · < uj = x < · · · < um−1.

Let dmn(r) = dmn(q), r(ut) = q(ut) for t ≤ j; choose w > n with |w − n| = i, and let
r(ut) = q(ut) ∪ (w\n) for j < t. Then (q, n) ≥ (r, w) ∈ Ei, as desired.

Now for any i ∈ ω we show that |ay\ax| ≥ i. Choose (p, n) ∈ Ei ∩ G. We claim
that p(y)\p(x) ⊆ ay\ax (as desired). Let j ∈ p(y)\p(x). So j ∈ ay, and j < n since
p(y) ⊆ n. Suppose that j ∈ ax. Say y ∈ q(x), with (q, v) ∈ G and x ∈ dmn(q). Say
(p, n), (q, v) ≥ (r, s) ∈ G. Then j ∈ r(x) since j ∈ q(x). Hence j ∈ r(x) = p(x) ∩ n, so
j ∈ p(x), contradiction.

627



If τ ∈ V P, a nice name for a subset of τ is a name of the form
⋃
{{σ}×Aσ : σ ∈ dmn(τ)},

where each Aσ is an antichain in P.

Lemma 29.20. Assume that P is ccc, κ = |P|, λ = |dmn(τ)|, and κ and λ are infinite.
Then there are at most κλ nice P-names for subsets of τ .

Proof. By ccc, there are ≤ κω antichains in P. Let K be the set of all functions g
mapping dmn(τ) into the set of all antichains of P. For each g ∈ K let f(g) =

⋃
{{σ}×g(σ) :

σ ∈ dmn(τ)}. Now |K| ≤ κλ, and f maps K onto the set of all nice names for subsets of
τ .

Proposition 29.21. Let M be a c.t.m. of ZFC, P ∈M a forcing order, and σ ∈MP .
(i) For any µ ∈MP there is a nice name τ ∈MP for a subset of σ such that

(∗) 1  τ = µ ∩ σ.

(ii) If G is P-generic over M and a ⊆ σG in M [G], then a = τG for some nice name
τ for a subset of σ.

Proof. Assume the hypotheses of the proposition.
(i): Assume also that µ ∈MP . For each π ∈ dmn(σ) let Aπ ⊆ P be such that

(1) p  (π ∈ µ ∧ π ∈ σ) for all p ∈ Aπ.

(2) Aπ is an antichain of P.

(3) Aπ is maximal with respect to (1) and (2).

Moreover, we do this definition inside M , so that 〈Aπ : π ∈ dmn(σ)〉 ∈M . Now let

τ =
⋃

π∈dmn(σ)

({π} × Aπ).

To prove (∗), suppose that G is P-generic over M ; we want to show that τG = µG ∩ σG.
First suppose that a ∈ µG ∩ σG. Choose (π, p) ∈ σ such that p ∈ G and a = πG.

Clearly p  π ∈ σ.

(4) Aπ ∩G 6= ∅.

For, suppose that Aπ ∩G = ∅. By Lemma 28.14(i), there is a q ∈ G such that q ⊥ r for all
r ∈ Aπ. Now since πG ∈ µG, by Corollary 28.21 there is a q′ ∈ G such that q′  π ∈ µ. Let
r ∈ G with r ≤ q, q′. Then r  (π ∈ µ ∧ π ∈ σ). It follows that Aπ ∪ {r} is an antichain,
contradicting (3). Thus (4) holds.

By (4), take q ∈ Aπ ∩ G. Then (π, q) ∈ τ and q ∈ G, so a = πG ∈ τG. Thus we have
shown that µG ∩ σG ⊆ τG.

Now suppose that a ∈ τG. Choose (π, p) ∈ τ such that p ∈ G and a = πG. Thus
p ∈ Aπ, so by (1), p  (π ∈ µ ∧ π ∈ σ). By the definition of forcing, a = πG ∈ µG ∩ σG.
This shows that τG ⊆ µG ∩ σG. Hence τG = µG ∩ σG.
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(ii): Assume the hypotheses of (ii). Write a = µG. Taking τ as in (i), we have
a = µG = µG ∩ σG = τG, as desired.

Proposition 29.22. Suppose that M is a c.t.m. of ZFC, and in M , P is a forcing order,
|P | = κ ≥ ω, P has the λ-cc, and µ is an infinite cardinal. Suppose that G is P-generic
over M . Then there is a function in M [G] mapping ((κ<λ)µ)M onto a set containing
P(µ)M [G].

Proof. We do some calculations in M . Each antichain in P has size at most κ<λ.
Since |dmn(µ̌)| has size µ, we thus have at most ν

def
= (κ<λ)µ nice names for subsets of µ̌.

Let 〈τα : α < ν〉 enumerate all of these names. Define

π = {(op(α̌, τα), 1) : α < ν}.

Now πG is a function. For, if x ∈ πG, then there is an α < ν such that x = (α, (τα)G),
by Lemma 28.22. Thus πG is a relation. Now suppose that (x, y), (x, z) ∈ πG. Then there
exist α, β < ν such that (x, y) = (α, (τα)G) and (x, z) = (β, (τβ)). Hence α = β and
y = z. Clearly the domain of πG is ν. By Proposition 29.21, P(µ) ⊆ rng(πG) in M [G], as
desired.

Now we can prove a more precise version of Theorem 29.7.

Theorem 29.23. (Solovay) Let M be a c.t.m. of ZFC. Suppose that κ is a cardinal of
M such that κω = κ. Let P be the partial order Fn(κ, 2, ω) ordered by ⊇, and let G be
P-generic over M . Then M [G] has the same cofinalities and cardinals as M , and 2ω = κ
in M [G].

Moreover, if λ is any infinite cardinal in M , then κ ≤ (2λ)M [G] ≤ (κλ)M .

Proof. By Theorem 29.7, M [G] has the same cofinalities and cardinals as M and
κ ≤ 2ω.

Note that |Fn(κ, 2, ω)| = κ in M . Hence by Proposition 29.22, for any infinite cardinal
λ of M we have

κ ≤ (2ω)M [G] ≤ (2λ)M [G] ≤ ((κ<λ)λ)M = (κλ)M .

Applying this to λ = ω we get 2ω = κ in M [G].

By assuming that the ground model satisfies GCH, which is consistent by the theory of
constructible sets, we can obtain a sharper result.

Corollary 29.24. Suppose that M is a c.t.m. of ZFC + GCH. Suppose that κ is an
uncountable regular cardinal of M . Let P be the partial order Fn(κ, 2, ω) ordered by ⊇, and
let G be P-generic over M . Then M [G] has the same cofinalities and cardinals as M , and
2ω = κ in M [G].

Moreover, for any infinite cardinal λ of M we have

(2λ)M [G] =

{
κ if λ < κ,
λ+ if κ ≤ λ.
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Proof. By GCH we have κω = κ. Hence the hypothesis of Theorem 29.23 holds, and
the conclusion follows using GCH in M .

We give several more specific corollaries.

Corollary 29.25. If ZFC is consistent, then so is each of the following:
(i) ZFC + 2ℵ0 = ℵ2.
(ii) ZFC + 2ℵ0 = ℵ203.
(iii) ZFC + 2ℵ0 = ℵω1

.
(iv) ZFC + 2ℵ0 = ℵω4

.

Corollary 29.26. If ZFC+“there is an uncountable regular limit cardinal” is consistent,
so is ZFC+“ 2ω is a regular limit cardinal”.

Corollary 29.27. Suppose that M is a c.t.m. of ZFC. Then there is a generic extension
M [G] such that in it, 2ω = ((2ω)+)M .

Since clearly ((2ω)+)ω = (2ω)+ in M , this is immediate from Theorem 29.23.

Proposition 29.28. (IV.3.12a) There are σ, τ, G such that σ is a nice name for a subset
of τ and σG 6⊆ τG.

Proof. Assume that p ⊥ q. Let τ = {(∅, p)} and σ = {(∅, q)}. Let G be such that
q ∈ G. Then τG = ∅ and σG = {∅}.

Proposition 29.29. (IV.3.18) Assume that P, J ∈ M , P is countable, and J is a set of
size ω1 in the sense of M . In M [G] let E be an uncountable subset of J . Then there is an
E′ ∈M such that E′ ⊆ E and E′ is uncountable in the sense of M .

Proof. Let p ∈ G be such that p  (σ is an injection of ω1 into Ė), where Ė is a
name for E. Take any α < ω1. Then σG(α) ∈ J = J̌G, so there is a (ĵα, 11) ∈ J̌ and a
qα ≤ p such that qα  σ(α) = ĵα. Since P is countable, there is a M ∈ [ω1]ω1 such that
qα = qβ for all α, β ∈ M . Fix α ∈ M . Let E′ = {j ∈ J : qα  ĵ ∈ Ė}. If α 6= β with
α, β ∈M , then p  σ(α) 6= σ(β), hence qα  jα 6= jβ , hence jα 6= jβ .

Proposition 29.30. (IV.3.18a) If P = Fn(J, 2, ω) with J uncountable, then there is an
uncountable E ⊆ J in M [G] such that there is no infinite E′ ∈M such that E′ ⊆ E.

Proof. Assume that J = κ with κ ≥ ω1. For each α < ω1 let Dα = {p : ∃β ∈
(α, ω1)[β ∈ dmn(p) and p(β) = 1]}. Clearly Dα is dense. Let E = {α < ω1 : (

⋃
G)(α) =

1}. So E is uncountable, E ⊆ J , E ∈ M [G]. Suppose that E′ ⊆ E with E′ infinite and
E′ ∈ M . Let F = {p : ∃α ∈ E′[α ∈ dmn(p) and p(α) = 0]}. Clearly F is dense. Choose
α ∈ F ∩G. then α ∈ E′\E, contradiction.

We now need some elementary facts about cardinals. For cardinals κ, λ, we define

κ<λ = sup
α<λ
|ακ|.
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Note here that the supremum is over all ordinals less than λ, not only cardinals.

Proposition 29.31. Let κ and λ be cardinals with κ ≥ 2 and λ infinite and regular. Then
(κ<λ)<λ = κ<λ.

Proof. Clearly ≥ holds. For ≤, by the fact that λ·λ = λ it suffices to find an injection
from

(1)
⋃

α<λ

α



⋃

β<λ

βκ





into

(2)
⋃

α,β<λ

α×β(κ+ 1).

Let x be a member of (1), and choose α < λ accordingly. Then for each ξ < α there is a
βx,ξ < λ such that x(ξ) ∈ βx,ξκ. Let γx = supξ<α βx,ξ. Then γx < λ by the regularity of
λ. We now define f(x) with domain α× γx by setting, for any ξ < α and η < γx

(f(x))(ξ, η) =
{

(x(ξ))(η) if η < βx,ξ,
κ otherwise.

Then f is one-one. In fact, suppose that f(x) = f(y). Let the domain of f(x) be α× γx
as above. Suppose that ξ < α. If βx,ξ 6= βy,ξ, say βx,ξ < βy,ξ. Then γx = γy ≥ βy,ξ > βx,ξ,
and (f(x))(ξ, βx,ξ) = κ while (f(y))(ξ, βx,ξ) < κ, contradiction. Hence βx,ξ = βy,ξ. Finally,
take any η < βxξ. Then

(x(ξ))(η) = (f(x))(ξ, η) = (f(y))(ξ, η) = (y(ξ))(η);

it follows that x = y.
Now the direction ≤ follows.

Proposition 29.32. For any cardinals κ, λ, |[κ]<λ| ≤ κ<λ.

Proof. For each cardinal µ < λ define f : µκ → [κ]≤µ\{∅} by setting f(x) = rng(x)
for any x ∈ µκ. Clearly f is an onto map. It follows that |[κ]≤µ| ≤ |µκ| ≤ κ<λ. Hence

|[κ]<λ| =

∣
∣
∣
∣
∣
∣
∣

⋃

µ<λ,
µ a cardinal

[κ]≤µ

∣
∣
∣
∣
∣
∣
∣

≤
∑

µ<λ,
µ a cardinal

|[κ]≤µ|

≤
∑

µ<λ,
µ a cardinal

κ<λ

≤ λ · κ<λ

= κ<λ.
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Lemma 29.33. If I, J are sets and λ is an infinite cardinal, then Fn(I, J, λ) has the
(|J |<λ)+-cc.

Proof. Let θ = (|J |<λ)+, and suppose that {pξ : ξ < θ} is a collection of elements
of Fn(I, J, λ); we want to show that there are distinct ξ, η < θ such that pξ and pη are
compatible. We want to apply the general indexed ∆-system theorem 24.4, with κ, λ,
〈Ai : i ∈ I〉 replaced by λ, θ, 〈dmn(pξ) : ξ < θ〉 respectively. Obviously θ is regular. If
α < θ, then |[α]<λ| ≤ |α|<λ (by Proposition 29.33) ≤ (|J |<λ)<λ = |J |<λ (by Proposition
29.32) < θ. Thus we can apply 24.4, and we get J ∈ [θ]θ such that 〈dmn(pξ) : ξ ∈ J〉 is an
indexed ∆-system, say with root r. Now |rJ | ≤ |J |<λ < θ, so there exist a K ∈ [J ]θ and
an f ∈ rJ such that pξ ↾ r = f for all ξ ∈ K. Clearly pξ and pη are compatible for any
two ξ, η ∈ K.

Lemma 29.34. If I, J are sets and λ is a regular cardinal, then Fn(I, J, λ) is λ-closed.

Proof. Suppose that γ < λ and 〈pξ : ξ < γ〉 is a system of elements of Fn(I, J, λ)
such that pη ⊇ pξ whenever ξ < η < γ. Let q =

⋃

ξ<γ pξ. Clearly q ∈ Fn(I, J, λ) and
q ⊇ pξ for each ξ < γ.

We now need another little fact about cardinal arithmetic.

Lemma 29.35. If λ is regular, then λ<λ = 2<λ.

Proof. Note that if α < λ, then by the regularity of λ,

|αλ| =

∣
∣
∣
∣
∣
∣

⋃

β<λ

αβ

∣
∣
∣
∣
∣
∣

≤
∑

β<λ

|β||α| ≤
∑

β<λ

|max(α, β)||max(α,β)| ≤
∑

β<λ

2|max(α,β)| ≤ 2<λ ≤ λ<λ;

hence the lemma follows.

Lemma 29.36. Suppose that M is a c.t.m. of ZFC, I, J, λ ∈M , and in M , λ is a regular
cardinal, 2<λ = λ and |J | ≤ λ. Then Fn(I, J, λ)M preserves cofinalities and cardinalities.

Proof. By Lemma 29.34, the set Fn(I, J, λ) is λ-closed, and so by Proposition 29.10,
Fn(I, J, λ) preserves cofinalities and cardinalities ≤ λ. Now |J |<λ ≤ λ<λ = 2<λ = λ by
Lemma 29.35, Hence by Lemma 29.33, Fn(I, J, λ) has the λ+-cc. By Proposition 29.5
Fn(I, J, λ) preserves cofinalities and cardinals ≥ λ+.

Now we can give our main theorem concerning making 2λ as large as we want, for any
regular λ given in advance.

Theorem 29.37. Suppose that M is a c.t.m. of ZFC and in M we have cardinals κ, λ
such that λ < κ, λ is regular, 2<λ = λ, and κλ = κ. Let P = Fn(κ, 2, λ) ordered by ⊇.
Then P preserves cofinalities and cardinalities. Let G be P-generic over M . Then

(i) (2λ = κ)M [G].
(ii) If µ and ν are cardinals of M and ω ≤ µ < λ, then (νµ)M = (νµ)M [G].
(iii) For any cardinal µ of M , if µ ≥ λ then (2µ)M [G] = (κµ)M .
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Proof. Preservation of cofinalities and cardinalities follows from Lemma 29.36. Now
we turn to (i). To show that κ ≤ (2λ)M [G], we proceed as in the proof of Theorem 29.1
Let g =

⋃
G. So g is a function mapping a subset of κ into 2.

(1) For each α ∈ κ, the set {f ∈ Fn(κ, 2, λ) : α ∈ dmn(f)} is dense in P (and it is a
member of M).

In fact, given f ∈ Fn(κ, 2, λ), either f is already in the above set, or else α /∈ dmn(f) and
then f ∪ {(α, 0)} is an extension of f which is in that set. So (1) holds.

Since G intersects each set (1), it follows that g maps κ into 2. Let (inM) h : κ×λ→ κ
be a bijection. For each α < κ let aα = {ξ ∈ λ : g(h(α, ξ)) = 1}. We claim that aα 6= aβ
for distinct α, β; this will give κ ≤ (2λ)M [G]. The set

{f ∈ Fn(κ, 2, λ) : there is a ξ ∈ λ such that

h(α, ξ), h(β, ξ) ∈ dmn(f) and f(h(α, ξ)) 6= f(h(α, ξ))}

is dense in P (and it is in M). In fact, let distinct α and β be given, and suppose that
f ∈ Fn(κ, 2, λ). Now {ξ : h(α, ξ) ∈ f or h(β, ξ) ∈ f} has size less than λ, so choose ξ ∈ λ
not in this set. Thus h(α, ξ), h(β, ξ) /∈ f . Let h = f ∪ {(h(α, ξ), 0), (h(β, ξ), 1)}. Then h
extends f and is in the above set, as desired.

It follows that G contains a member of this set. Hence aα 6= aβ . Thus we have now
shown that κ ≤ (2λ)M [G].

For the other inequality, note by Lemma 29.33 that P has the (2<λ)+-cc, and by
hypothesis (2<λ)+ = λ+. By the assumption that κλ = κ we also have |P | = κ. Hence by
Proposition 29.22 the other inequality follows. Thus we have finished the proof of (i).

For (ii), assume the hypothesis. If f ∈M [G] and f : µ→ ν, then f ∈M by Theorem
29.9. Hence (ii) follows.

Finally, for (iii), suppose that µ is a cardinal of M such that µ ≥ λ. By Proposition
29.22 with λ replaced by λ+ we have (2µ)M [G] ≤ (κµ)M . Now (κµ)M ≤ (κµ)M [G] =
((2λ)µ)M [G] = (2µ)M [G], so (iii) holds.

Corollary 29.38. Suppose that M is a c.t.m. of ZFC+GCH, and in M we have cardinals
κ, λ, both regular, with λ < κ. Let P = Fn(κ, 2, λ) ordered by ⊇. Then P preserves
cofinalities and cardinalities. Let G be P-generic over M . Then for any infinite cardinal
µ,

(2µ)M [G] =







µ+ if µ < λ,
κ if λ ≤ µ < κ,
µ+ if κ ≤ µ.

Proof. Immediate from Theorem 29.37.

Theorem 29.37 gives quite a bit of control over what can happen to powers 2κ for κ regular.
We can apply this theorem to obtain a considerable generalization of it.

Theorem 29.39. Suppose that n ∈ ω and M is a c.t.m. of ZFC. Also assume the
following:

(i) λ1 < · · · < λn are regular cardinals in M .
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(ii) κ1 ≤ · · · ≤ κn are cardinals in M .
(iii) (cf(κi) > λi)

M for each i = 1, . . . , n.
(iv) (2<λi = λi)

M for each i = 1, . . . , n.
(v) (κλii )M = κi for each i = 1, . . . , n

Then there is a c.t.m. N ⊇M with the same cofinalities and cardinals such that:

(vi) (2λi = κi)
N for each i = 1, . . . , n.

(vii) (2µ)N = (κµn)M for all µ > λn.

Proof. The statement vacuously holds for n = 0. Suppose that it holds for n−1, and
the hypothesis holds for n, where n is a positive integer. Let Pn = Fn(κn, 2, λn). Then by
Lemma 29.33, Pn has the (2<λn)+-cc, i.e., by (iv) it has the λ+

n -cc. By Lemma 29.34 it is
λn-closed. So by Proposition 29.36, Pn preserves all cofinalities and cardinalities. Let G be
Pn-generic over M . By Theorem 29.37, (2λn = κn)M [G], (2µ)M [G] = (κµn)M for all µ > λn,
and also conditions (i)-(v) hold for M [G] for i = 1, . . . , n − 1. Hence by the inductive
hypothesis, there is a c.t.m. N with M [G] ⊆ N such that

(1) (2λi = κi)
N for each i = 1, . . . , n− 1.

(2) (2µ)N = (κµn−1)M [G] for all µ > λn−1.

In particular,

(2λn)N = (κλnn−1)M [G] ≤ (κλnn )M [G] = ((2λn)λn)M [G] = (2λn)M [G]

= κn = (2λn)M [G] ≤ (2λn)N .

Thus (2λn)N = κn. Furthermore, if µ > λn then

(2µ)N = (κµn−1)M [G] ≤ (κµn)M [G] = ((2λn)µ)M [G] = (2µ)M [G]

= (κµn)M ≤ (κµn)N = ((2λn)µ)N = (2µ)N .

It follows that (2µ)N = (κµn)M . This completes the inductive proof.

Corollary 29.40. Suppose that n ∈ ω and M is a c.t.m. of ZFC + GCH. Also assume
the following:

(i) λ1 < · · · < λn are regular cardinals in M .
(ii) κ1 ≤ · · · ≤ κn are cardinals in M .
(iii) (cf(κi) > λi)

M for each i = 1, . . . , n.

Then there is a c.t.m. N ⊇M with the same cofinalities and cardinals such that:

(iv) (2λi = κi)
N for each i = 1, . . . , n.

(v) (2µ)N = (κµn)M for all µ > λn.

Corollary 29.41. If ZFC is consistent, then so are each of the following:
(i) ZFC + 2ℵ0 = 2ℵ1 = ℵ3.
(ii) ZFC ∪ {2ℵn = ℵn+2 : n < 100}.
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(iii) ZFC ∪ {2ℵn = ℵω+1 : n < 300}.
(iv) ZFC ∪ {2ℵn = ℵω+n : n < 33}.

Corollary 29.42. If it is consistent with ZFC that there is an uncountable regular limit
cardinal, then the following is consistent:

ZFC ∪ {2ℵn is the first regular limit cardinal: n < 1000}.
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30. General theory of forcing

Theorem 30.1. (IV.4.1) Let M be a transitive model of ZFC, let P ∈ M be a forcing
poset, and fix G ⊆ P. Consider the eight statements we get by letting ϕ be one of

(1) dense set,
(2) dense open set.
(3) maximal antichain.
(4) predense set.

and letting ψ be one of
(a) filter
(b) upward closed linked family.

and asserting that G has property ψ, and G ∩ E 6= ∅ for all E ⊆ P such that E ∈ M and
E has property ϕ.

Then these eight statements are equivalent.

Proof. (A) (xa)⇒(xb). For, Assume (xa). Then G clearly has property b and the
other property for x holds.

(B) (4y)⇒(3y). For, Assume (4y), and suppose that E ⊆ P with E ∈ M and E is a
maximal antichain. Then E is predense, so G ∩ E 6= ∅.

(C) (3y)⇒(1y). For, Assume (3y). Suppose that E ⊆ P with E ∈ M and E dense.
Let F be a maximal antichain consisting of elements of E. Then G∩F 6= ∅, so G∩E 6= ∅.

(D) (1y)⇒(2y). This is clear since 2 implies 1; see (B).
(E) (2a)⇒(4a). Assume (2a), and suppose that G is a filter, E ⊆ P, E ∈M , and E is

predense. By Lemma 25.63, E↓′ is dense open. So G ∩ (E↓′) 6= ∅. Hence G ∩E 6= ∅.
(F) (1a), (2a), (3a), (4a) are all equivalent. This is true by (B)–(E).
(G) (2b)⇒(2a). Assume (2b). We want to show that G is a filter. So, suppose that

p, q ∈ G; we want to get r ∈ G such that r ≤ p, q. Let D = {r ∈ P : r ⊥ p or r ⊥ q or r ≤
p, q}. So D ∈ M . It is clearly open. To show that it is dense, let s ∈ P. If s ⊥ p, then
s ∈ D. Suppose that s 6⊥ p; say t ≤ s, p. If t ⊥ q then t ∈ D; and t ≤ s. Suppose that
t 6⊥ q. Say r ≤ t, q. Then r ∈ D and r ≤ p, as desired. Choose r ∈ D∩G. Clearly r ≤ p, q.

Now all are equivalent. For, (1a)–(4a) are equivalent by (F), (4a)⇒(4b) by (A),
(4b)⇒(3b)⇒(1b)⇒(2b) by (B), (C), (D), and (2b)⇒(2a) by (G).

Lemma 30.2. (IV.4.2) Let M be a transitive model of ZFC, with forcing posets P,Q ∈M ,
and suppose that i : Q→ P is a complete embedding, with i ∈M . Let G ⊆ P be P-generic
over M . Then i−1[G] is Q-generic over M .

Proof. First, i−1[G] is linked. For, suppose that p, q ∈ i−1[G]. Thus i(p), i(q) ∈ G,
so they are compatible. By (iii) in the definition of complete embedding, also p and q are
compatible.

Next, i−1[G] is upwards closed. For, suppose that p ∈ i−1[G] and p ≤ q. Then
i(p) ∈ G and i(p) ≤ i(q) by (ii) in the definition of complete embedding, so i(q) ∈ G and
hence q ∈ i−1[G].

Now by Theorem 30.1 it suffices to show that i−1[G] ∩ A 6= ∅ whenever A ∈ M and
A is a maximal antichain in Q. By definition of complete embedding, i[A] is a maximal

636



antichain in P. Hence G ∩ i[A] 6= ∅; say p ∈ G ∩ i[A]. Say p = i(q) with q ∈ A. Then
q ∈ i−1[G] ∩A.

If P and Q are forcing posets and i : Q→ P we define i∗ with domain V Q by

i∗(τ) = {(i∗(σ), i(q)) : (σ, q) ∈ τ}.

If i : Q→ P and H ⊆ Q, let ĩ(H) = {p ∈ P : ∃q ∈ H[i(q) ≤ p]}.

Lemma 30.3. (IV.4.4) Let M be a transitive model of ZFC, with forcing posets P, Q ∈M .
Suppose that i : Q→ P is a complete embedding, with i ∈M . Let G ⊆ P be P-generic over
M , and let H = i−1[G]. Then

(i) ∀τ ∈MQ[i∗(τ) ∈MP and val(i∗(τ), G) = val(τ,H).
(ii) M [H] ⊆M [G].

Proof. (i): By induction.

i∗(τ) = {(i∗(σ), i(q)) : (σ, q) ∈ τ};

the inductive hypothesis is that each i∗(σ) ∈MP for σ ∈ dmn(τ), so i∗(τ) ∈MP. Also,

val(i∗(τ), G) = {val(i∗(σ), G) : ∃p ∈ G[(i∗(σ), p) ∈ i∗(τ)]}

= {val(σ,H) : ∃p ∈ G∃q[(σ, q) ∈ τ and (i∗(σ), p) = (i∗(σ), i(q))]}

= {val(σ,H) : ∃p ∈ G∃q[(σ, q) ∈ τ and p = i(q)]}

= {val(σ,H) : ∃q∃p ∈ G[(σ, q) ∈ τ and p = i(q)]}

= {val(σ,H) : ∃q[∃p ∈ G[p = i(q)] and (σ, q) ∈ τ ]}

= {val(σ,H) : ∃q[q ∈ i−1[G] and (σ, q) ∈ τ ]}

= {val(σ,H) : ∃q ∈ H[(σ, q) ∈ τ ]}

= val(τ,H).

(ii): If x ∈ M [H], then there is a τ ∈ MQ such that x = val(σ,H). Then by (i),
x = val(i∗(σ), G) ∈M [G].

Lemma 30.4. (IV.4.6) If G1, G2 are both P-generic over M and G1 ⊆ G2, then G1 = G2.

Proof. Take any p ∈ G2. Let D = {r ∈ P : r ≤ p or r ⊥ p}. Then D is dense and in
M . Pick r ∈ G1∩D. Then r ⊥ p would contradict r, p ∈ G2. so r ≤ p, hence p ∈ G1.

Lemma 30.5. (IV.4.7) Let M be a transitive model of ZFC, with Q,P, i ∈M and assume
that i : Q→ P is a dense embedding. Then

1. If H ⊆ Q is Q-generic over M and G = ĩ(H), then G is P-generic over M , and
H = i−1[G].

2. If G ⊆ P is P-generic over M and H = i−1[G], then H is Q-generic over M , and
G = ĩ(H).

3. In (1) and (2), M [H] = M [G].
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4. q  ϕ(τ1, . . . , τn) iff i(q)  ϕ(i∗(τ1), . . . , i∗(τn)).

Proof. 1: G is a filter: suppose that p ∈ G and p ≤ p′ ∈ P. Then there is a q ∈ H
such that i(q) ≤ p. So i(q) ≤ p′, hence p′ ∈ G. Suppose that p, p′ ∈ G. Choose q, q′ ∈ H
such that i(q) ≤ p and i(q′) ≤ p′. Choose r ∈ H such that r ≤ q, q′. Then i(r) ≤ i(q) ≤ p
and i(r) ≤ i(q′) ≤ p′, as desired.

Now suppose that D is dense open in P and D ∈ M . Then i−1[D] is dense by
Proposition 25.71. Choose q ∈ H ∩ i−1[D]. Then i(q) ∈ G ∩D. So G is P-generic.

Now suppose that q ∈ H. Then i(q) ∈ ı̃(H) = G, so q ∈ i−1[G]. Thus H ⊆ i−1[G].
By Lemma 30.2,, i−1[G] is Q-generic over M . Hence H = i−1[G] by Lemma 30.4.

2: H is Q-generic over M by Lemma 30.2. If p ∈ ĩ(H), choose q ∈ H such that
i(q) ≤ p. Thus i(q) ∈ G, so also p ∈ G. Thus ĩ(H) ⊆ G. By Lemma 30.4, ĩ(H) = G.

3: Assume 1. Then M [H] ⊆ M [G] by Lemma 30.3. Clearly G ∈ M [H], so M [G] ⊆
M [H] by Lemma 28.8.

Same argument assuming 2.
4: For ⇒, assume that q Q ϕ(τ1, . . . , τn) and i(q) ∈ G with G P-generic over M .

Let H = i−1[G]. Then H is Q-generic over M by 2, and q ∈ H. Hence M [H] |=
ϕ(τ1H , . . . , τnH). Now by Lemma 30.3 we have τiH = i∗(τi)G for each i, and M [H] = M [G]
by 3. Hence M [G] |= ϕ(i∗(τ1)G, . . . , i∗(τn)G). Hence i(q)  ϕ(i∗(τ1), . . . , i∗(τn)).
⇐: Assume that i(q)  ϕ(i∗(τ1), . . . , i∗(τn)), and suppose that q ∈ H with H Q-

generic over M . Let G = ı̃(H). Then i(q) ∈ G, and G is P-generic over M by 1. Hence
M [G] |= ϕ(i∗(τ1)G, . . . , i∗(τn)G). By 1, H = i−1[G], and by Lemma 30.3, τiH = i∗(τi)G
for each i. By 3, M [H] = M [G]. Hence M [H] |= ϕ(τ1H , . . . , τnH). This shows that
q  ϕ(τ1, . . . , τn).

Proposition 30.6. (IV.4.8) If I is infinite, then Fn(I, ω, ω) 6∼= Fn(I, 2, ω).

Proof. Suppose that f is an isomorphism from Fn(I, ω, ω) onto Fn(I, 2, ω). Clearly

f(∅) = ∅. Fix i ∈ I. Then every non-empty member of Fn(I, 2, ω) extends k0
def
= {(i, 0)}

or k1
def
= {(i, 1)}. Say f(x0) = k0 and f(x1) = k1. Choose r ∈ ω with r /∈ rng(x0) ∪

rng(x1). Then {(i, r)} does not extend x0 or x1, so f({(i, r)}) does not extend k0 or k1,
contradiction.

Proposition 30.7. (IV.4.8a) For I infinite,
∏fin
i∈I(

<ωω) densely embeds in Fn(I, ω, ω).

Proof. Write I =
⋃

i∈I Ji with the Ji’s pairwise disjoint and each of size ω. For each

i ∈ I let gi be a bijection from ω to Ji. Now take any x ∈
∏fin
i∈I(

<ωω). Let

dmn(f(x)) = {k ∈ I : ∃i ∈ I[xi 6= ∅ ∧ ∃l ∈ dmn(xi)[k = gi(l)]]}.

Clearly for each k ∈ dmn(f(x)) there are unique i and l as above. We define (f(x))(k) =
xi(l). Note that f(x) = ∅ if ∀i ∈ I[xi = ∅].

To check (ii) in the definition of dense embedding, suppose that x, y ∈
∏fin
i∈I(

<ωω)
and y ≤ x. Thus ∀i ∈ I[xi ⊆ yi]. Take any k ∈ dmn(f(x)). Choose i and l as above.
Then yi 6= ∅, l ∈ dmn(yi), and k = gi(l). Hence k ∈ dmn(f(y)). Furthermore, (f(y))(k) =
yi(l) = xi(l) = (f(x))(k). Hence f(x) ⊆ f(y).
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To check (iii) in the definition of dense embedding, first note that ⇐ holds by (ii)

in the definition of dense embedding. Now suppose that x, y ∈
∏fin
i∈I(

<ωω) and f(x)
and f(y) are compatible; say f(x), f(y) ⊆ h ∈ Fn(I, ω, ω). Suppose that i ∈ I and
l ∈ dmn(xi) ∩ dmn(yi). Let k = gi(l). Then

xi(l) = (f(x))(k) = h(k) = (f(y))(k) = yi(l).

It follows that if we let zi = xi ∪ yi for all i ∈ ω then z ∈
∏fin
i∈I(

<ωω) and z ≤ x, y.
Now to show that rng(f) is dense in Fn(I, ω, ω), let s ∈ Fn(I, ω, ω) with si 6= ∅ for

some i. We define, for any i ∈ I,

dmn(xi) = {l ∈ ω : ∃k ∈ dmn(s)[s(k) ∈ Ji ∧ l = g−1
i (s(k))]}.

Then we define xi(l) = s(k). To show that this does not depend on the choice of k, suppose
tha also k′ ∈ dmn(s), s(k′) ∈ Ji, and l = g−1

i (s(k′)). Then g−1
i (s(k)) = g−1

i (s(k′)), so
s(k) = s(k′).

Now we claim that s ⊆ f(x). For, suppose that k ∈ dmn(s). Say s(k) ∈ Ji. Let
l = g−1

i (s(k)). So l ∈ dmn(xi) and xi(l) = s(k). Hence k ∈ dmn(f(x)) and (f(x))(k) =
xi(l) = s(k).

Proposition 30.8. (IV.4.8b)
∏fin
i∈I(

<ωω) densely embeds in Fn(I, 2, ω).

Proof. Claim: there is a dense embedding of <ωω into Fn(ω, 2, ω).

For, if x = 〈m0, . . . , mk−1〉 ∈ (<ωω), define

f(x) = 0m010m11 · · ·0mk−11.

Clearly y ⊆ x iff f(y) ⊆ f(x). To show that f is dense, let z ∈ Fn(ω, 2, ω). Let m ∈ ω and
w ∈ m2 be such that z ⊆ w, with w(dmn(w)− 1) = 1. We can write

w = 0n010n11 · · ·0nk−11.

Then f(〈n0, n1, . . . , nk−1〉) = w, as desired. Now see Proposition 25.68.
Fix such an f .
Now write I =

⋃

i∈I Ji with the Ji’s pairwise disjoint and each of size ω. For each i ∈ I

let gi be a bijection of ω onto Ji. Now for each x ∈
∏fin
i∈I(

<ωω) define h(x) ∈ Fn(I, 2, ω)
by setting

dmn(h(x)) = {j ∈ I : ∃i ∈ I[j ∈ Ji ∧ ∃k ∈ dmn(f(xi))[gi(k) = j]]}

and (h(x))(j) = (f(xi))(k).

Suppose that x ≤ y. Thus ∀i ∈ I[xi ⊇ yi]. Suppose that j ∈ dmn(h(y)), and choose
i, k correspondingly. In particular, k ∈ dmn(f(yi)). Since xi ⊇ yi we have f(xi) ⊇ f(yi),
so j ∈ dmn(h(x)). Then (h(y))(j) = f(yi)(k) = f(xi)(k(h(x))(j). This shows that
h(x) ⊇ h(y), hence h(x) ≤ h(y). Conversely, suppose that h(x) ≤ h(y). Take any i ∈ I;
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we want to show that xi ⊇ yi. So, take any k ∈ dmn(yi). Let j = gi(k). Then j ∈ Ji; so
j ∈ dmn(h(y)). So j ∈ dmn(h(x)), and (f(xi))(k) = (h(x))(j) = (h(y))(j) = (f(yi))(k).
This shows that f(yi) ⊆ f(xi); hence yi ⊆ xi.

Finally, to show that rng(h) is dense in Fn(I, 2, ω), let z ∈ Fn(I, 2, ω). Let i ∈ I and
set wi = z ↾ Ji. Then wi ◦ gi ∈ Fn(ω, 2, ω). Choose vi ∈ (<ωω) such that wi ◦ gi ⊆ f(vi).
We claim now that z ⊆ h(v). For, take any j ∈ dmn(z). Choose i ∈ I such that j ∈ Ji.
Thus j ∈ dmn(wi). Let k = g−1

i (j). Then k ∈ dmn(wi ◦gi), so also k ∈ dmn(f(vi)). Hence
j ∈ dmn(h(v)), and

(h(v))(j) = (f(vi))(k) = wi(gi(k)) = wi(j) = z(j).

Lemma 30.9. (IV.4.9) Let M be a ctm of ZFC and let Q ∈M such that (|Q| ≤ ω)M . Let
G be Q-generic over M . Then there is no h ∈ (ωω)∩M [G] such that ∀f ∈ (ωω)∩M [f ≤∗ h].

Proof. First we note:

(1) If p  τ ∈ ω, then X
def
= {l ∈ ω : p  ľ ≤ τ} is finite.

In fact, suppose that X is infinite. Let p ∈ G generic. Let m = τG, and choose distinct
l0, . . . , lm ∈ X . Then l0, . . . , lm < m, contradiction.

Now for the lemma, suppose that there is such an h. Take ḣ such that ḣG = h. Let W =
(ωω) ∩M . Then M [G] |= ∀x ∈ W̌ [x ≤∗ ḣ], so there is a p ∈ G such that p  (ḣ : ω → ω
and ∀x ∈ W̌ [x ≤∗ ḣ]).

Now we work in M . List {s ∈ Q : s ≤ p} as {rj : j ∈ ω}. For each n ∈ ω let

En = {l ∈ ω : ∃j < n[rj  ľ ≤ ḣ(n)}. By (1), for each j < n the set {l ∈ ω : rj  ľ ≤ ḣ(n)}
is finite, and so En is finite. For each n ∈ ω let f(n) = max(En) + 1; f(n) = 1 if En = ∅.
Thus f ∈ (ωω). Hence f ∈W .

Since p  ∀x ∈ W̌ [x ≤∗ ḣ] and 11  f̌ ∈ W̌ , it follows that p  ∃m∀n ≥ m[f̌(n) ≤
ḣ(n)]. Hence there exist a q ≤ p and an m such that q  ∀n ≥ m[f̌(n) ≤ ḣ(n)]. Say q = rj .

Take n with n > j and n > m, and let l = f(n). Then rj  ľ ≤ ḣ(n), so l ∈ En and hence
f(n) > l by the definition of f , contradiction.

Lemma 30.10. (IV.4.10) Let M be a ctm of ZFC and let P = Fn(I, J, ω), where (J ≤ ω)M .
Let G be P-generic over M .

Then there is no h ∈ (ωω) ∩M [G] such that ∀f ∈ (ωω) ∩M [f ≤∗ h].

Proof. Suppose there is such an h. Thus h ⊆ ω× ω. Say h = σG. Let ḣ be a nice P-
name for a subset of (ω×ω)v such that 11  (σ ⊆ (ω×ω)v → σ = ḣ). Say p  σ ⊆ (ω×ω)v.

Then p  σ = ḣ, so ḣG = h. Note that (ω×ω)v = {((m,n)v, 11) : m,n ∈ ω}, so that ĥ has
the form ⋃

m,n∈ω

{{(m,n)v} ×Amn}.

Here each Amn is an antichain in P, and hence is countable. Let S =
⋃

m,n∈ω Amn. Then
S is a countable subset of Fn(I, J, ω). Let K =

⋃

p∈S dmn(p) and Q = Fn(K, J, ω). Then

K is a countable subset of I, and ḣ is a Q-name.
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Now Q ⊆c P by Proposition 25.66, so Lemma 30.3 applies to the inclusion Q ⊆c P.
So with H = G ∩ Q we have M ⊆ M [H] ⊆ M [G] and h = ḣG = ḣH . Moreover,
∀f ∈ (ωω) ∩M [f ≤∗ h. This contradicts Lemma 30.9.

Lemma 30.11. (IV.4.10a) Under the conditions of Lemma 30.9, if M |= CH, then
M [G] |= b = ω1.

Proof. (ωω) ∩M is an unbounded family of size ω1 in M [G].

Let E ⊆ (ωω) be infinite. We define the dominating function order (dfo) (P(E ),≤) as
follows. P(E ) consists of all pairs p = (sp, Yp) such that sp ∈ Fn(ω, ω, ω) and Yp ∈ [E ]<ω.
We define q ≤ p iff sq ⊇ sp, Yq ⊇ Yp, and ∀f ∈ Yp∀n ∈ dmn(sq)\dmn(sp)[sq(n) > f(n)].

Proposition 30.12. (IV.4.11) dfo P is transitive. P is σ-centered, and there is a family
of |E | dense sets such that whenever G is a filter meeting all of them and h =

⋃

p∈G sp,
then h ∈ (ωω) and f ≤∗ h for all f ∈ E .

Proof. First we check transitivity. Suppose that r ≤ q ≤ p, f ∈ Yp, and n ∈
dmn(sr)\dmn(sp). Note that f ∈ Yq. If n /∈ dmn(sq), then sr(n) > f(n). If n ∈ dmn(sq),
then sr(n) = sq(n) > f(n).

P is σ-centered, since for any t ∈ Fn(ω, ω, ω) the set of p ∈ P with sp = t is centered.
For each n ∈ ω let Dn = {p ∈ P : n ∈ dmn(sp)}. Then Dn is dense. For, suppose that

p ∈ P. If n ∈ dmn(sp), then p ∈ Dn. Suppose that n /∈ dmn(sp). Let m be greater than
f(n) for each f ∈ Yp, and let sq = sp ∪ {(n,m)} and Yp = Yp. Then q ≤ p and q ∈ Dn.
So Dn is dense. Also, for each f ∈ E let Ef = {p ∈ P : f ∈ Yp}. Clearly Ef is dense. Let
A = {Dn : n ∈ ω} ∪ {Ef : f ∈ E}. So |A | ≤ |E|.

Suppose that G is a filter meeting all members of A . Because of the Dn’s, we have
h ∈ ωω. Take any f ∈ E . Choose p ∈ G such that f ∈ Yp. We claim that h(n) > f(n)
for all n greater than each member of sp. For, take such an n, and choose q ∈ G so that
n ∈ dmn(sq). Choose r ∈ G with r ≤ p, q. Then n ∈ dmn(sr) since r ≤ q, and r(n) > f(n)
since r ≤ p and f ∈ Yp. Hence h(n) = r(n) > f(n).

Proposition 30.13. For any ctm M there is a forcing order P ∈ M such that in M [G]
there is an h ∈ ωω which almost dominates each f ∈ (ωω) ∩M .

Proof. Let E = (ωω) ∩M and apply Proposition 30.12.

Proposition 30.14. (IV.4.12) Let M be a ctm of ZFC + CH. Then there is an A ∈ M
such that A ⊆ [ω]ω, (A is a mad family)M , (|A| = ω1)M , and A is still mad in any
extension M [G] with G Fn(I, J, ω)-generic, where I, J ∈M and (2 ≤ |J | ≤ ω)M .

Proof. First we work in M with the poset T
def
= <ωω. Note that T is countable.

Hence by CH there are at most ω1 nice names for subsets of ω. Let 〈(τξ, pξ) : ω ≤ ξ < ω1〉
list all pairs (τ, p) such that τ is a nice name for a subset of ω, p ∈ T, and p  |τ | = ω. We
define 〈Aξ : ξ < ω1〉 ∈ ω1([ω]ω) by recursion. Let 〈An : n ∈ ω〉 be disjoint infinite subsets
of ω. Now suppose that Aη has been defined for all η < ξ, where ω ≤ ξ < ω1, so that
Aη ∩ Aρ is finite for η 6= ρ.
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Case 1. There is an η < ξ such that pξ 6 τξ ⊥ Ǎη. Let 〈Bn : n ∈ ω〉 enumerate
{Aη : η < ξ} without repetitions. Note that for each n ∈ ω the set ω\

⋃

m<nBm is infinite,
since Bn is infinite and Bn ∩

⋃

m<nBm =
⋃

m<n(Bn ∩Bm) is finite. By recursion choose

an ∈

(

ω\
⋃

m<n

Bm

)

\{am : m < n}.

Let Aξ = {an : n ∈ ω}. Then Aξ ∩Aη is finite for all η < ξ.
Case 2. ∀η < ξ[pξ  τξ ⊥ Ǎη]. Let 〈Bn : n ∈ ω〉 enumerate {Aη : η < ξ} without

repetitions. Note that for each n ∈ ω the set ω\
⋃

m<nBm is infinite. Let 〈(mi, qi) : i ∈ ω〉
enumerate all pairs (m, q) such that m ∈ ω and q ≤ pξ. We now define 〈ai : i ∈ ω〉 by
recursion. Suppose that aj has been defined for all j < i. Then

q  ∃n[n > m̌i ∧ n ∈ τξ ∧ ∀j < i[n /∈ B̌j ∧ n 6= ǎj]].

It follows that there is an r ≤ q and an ai ∈ ω such that ai > mi, ai /∈
⋃

j<iBj , ai 6= aj
for all j < i, and r  ǎi ∈ τξ. Let Aξ = {ai : i ∈ ω}. Then Aξ ∩ Aη is finite for all η < ξ,
Aξ is infinite, and

(∗) ∀m ∈ ω∀q ≤ pξ∃r ≤ q∃n > m[n ∈ Aξ ∧ r  ň ∈ τξ].

Now suppose that H is T-generic over M , and in M [H] we have a set B ∈ [ω]ω. We want
to show that B ∩ Aξ is infinite for some ξ < ω1. Say B = µH . Let ν be a nice name
for a subset of ω such that 11  µ ⊆ ω → µ = ν. Say p ∈ H and p  µ ⊆ ω ∧ |µ| = ω.
Then p  |ν| = ω. Choose ξ < ω1 so that (p, ν) = (pξ, τξ). Take any m ∈ ω; we will find
n > m such that n ∈ B ∩Aξ. Now by (∗), the set {r : ∃n > m[r  ň ∈ τξ]} is dense below
pξ. Hence there is an n > m with n ∈ Aξ and an r ∈ H such that r  ň ∈ τξ, hence
n ∈ τξH = νH = µH = B, as desired.

Claim 1. T densely embeds in Fn(ω, ω, ω).

Proof. Let f be the inclusion map. It suffices to show that T is dense in Fn(ω, ω, ω),
and this is clear.

Claim 2. If 2 ≤ m ∈ ω, then T densely embeds in Fn(ω,m, ω).

Proof. For m = 2, see the proof of Proposition 30.8. Now suppose that m > 2. For
each natural number n, let gn be the representation of n with base m − 1. Thus gn is a
sequence of the integers 0, . . . , m− 2. For any 〈a0, . . . , ap−1〉 ∈

pω let

f(〈a0, . . . , ap−1〉) = ga0
(m− 1)ga1

(m− 1) · · · gap−1
(m− 1).

Clearly f is the required dense embedding.
Now for the exercise itself, let A = {Aξ : ξ < ω1}. So (|A | = ℵ1)M . Suppose that

I, J ∈ M and (2 ≤ |J | ≤ ω)M , and let P = Fn(I, J, ω). Let G be P-generic over M .
Suppose that B ∈ [ω]ω with B ∈ M [G]; we want to find ξ < ω1 such that B ∩ Aξ is
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infinite. Say B = σG, where σ is a nice name for a subset of ω; say σ =
⋃

n∈ω({ň} × An)
with each An an antichain in P. So each An is countable. Let K =

⋃

n∈ω,f∈An
dmn(f).

Hence K is countable. We may assume that K = ω. Then σ is a Fn(K, J, ω)-name. Then
by c;ao,s 1 and 2, there is an H in T over M such that M [G] = M [H]. Hence the existence
of the desired ξ < ω1 follows.

P is weakly homogeneous iff ∀p ∈ P[{f(p) : p ∈ Aut(P)} is predense in P].

Theorem 30.15. (IV.4.15) If P is weakly homogeneous and ϕ is a sentence, then 11  ϕ
or 11  ¬ϕ.

Proof. Assume that 11 6 ϕ and 11 6 ¬ϕ. By Theorem 28.24(ix) there are p, q such
that p  ¬ϕ and q  ϕ. Since P is weakly homogeneous, there is an f ∈ Aut(P) such
that q and f(p) are compatible. But f(p)  ¬ϕ by Lemma 30.5, so q and f(p) are not
compatible, contradiction.

Proposition 30.16. (IV.4.16) Theorem 30.15 can fail if the condition that P is weakly
homogeneous is omitted.

Proof. Let Q and R be such that Q  2ω = ω2 and R  2ω = ω3 Form P by
putting disjoint copies of Q and R together side-by-side, with a new 11 above them. Then
P 6 2ω = ω2 and P 6 ¬(2ω = ω2).

Proposition 30.17. (IV.4.17) Let E ⊆ (ωω) be such that ∀f, f ′[f =∗ f ′ ⇒ (f ∈ E iff f ′ ∈
E )]. Then the dominating function order is weakly homogeneous.

Proof. Let p, q ∈ P. Choose m ∈ ω so that dmn(sq)∪dmn(sp) ⊆ m. Define h : ω → ω
by setting, for any i ∈ ω,

h(i) =

{
m+ i if i < m,
i−m if m ≤ i < 2m,
i otherwise.

Now define k with domain P by setting, for any r ∈ P,

sk(r) = sr ◦ h and Yk(r) = {f ◦ h : f ∈ Yr}.

If r ≤ r′, then sr′ ⊆ sr and hence sk(r′)) ⊆ sk(r). Also, Yr′ ⊆ Yr. Clearly f =∗ (f ◦ h)
for each f ∈ E . Suppose that f ∈ Sr′ and n ∈ dmn(sk(r)\dmn(sk(r′))). Thus h(n) ∈
dmn(sr)\dmn(sr′), so sr(h(n)) > f(h(n)). Thus (sk(r))(n) > (f ◦ h)(n). This shows that
k(r) ≤ k(r′). Clearly k ◦ k is the identity on P. So k is an automorphism of P.

Now we define r ∈ P. Note that dmn(sk(p)) = h−1[dmn(p)], which is disjoint from
dmn(sq). Let dmn(sr) = dmn(sk(p) ∪ dmn(sq). For any i ∈ dmn(sr) let

sr(i) =

{
max{f(i) : f ∈ Yk(p)}+ 1 if i ∈ dmn(sq),
max{f(i) : f ∈ Yq}+ 1 if i ∈ dmn(sk(p)).

Let Yr = Yk(p) ∪ Yq. Thus r ∈ P.
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To check that r ≤ k(p), suppose that f ∈ Yk(p). Suppose n ∈ dmn(sr)\dmn(sk(p)).
Hence n ∈ dmn(sq). and sr(n) > f(n).

To check that r ≤ q, suppose that f ∈ Yq. Suppose that n ∈ dmn(sr)\dmn(q). Then
n ∈ dmn(sk(p)). and sr(n) > f(n).

Thus r ≤ k(p), q, as desired.

Let A be a complete BA. Set P = A\{0}. Define j(p) = p for all p ∈ P. By Theorem 27.22
there is an isomorphism f from RO(P) onto A such that f ◦ e = j.

Proposition 30.18.

f([[ϕ(σ1, . . . , σn)]] =
A∑

{p ∈ P : p  ϕ(σ1, . . . , σn)}.

Proof. If p  ϕ(σ1, . . . , σn), then e(p) ≤ [[ϕ(σ1, . . . , σn)]], and hence p = f(e(p)) ≤
f([[ϕ(σ1, . . . , σn)]]). Thus f([[ϕ(σ1, . . . , σn)]]) is an upper bound for {p : p  ϕ(σ1, . . . , σn)}.
Suppose that q is any upper bound, but f([[ϕ(σ1, . . . , σn)]]) 6≤ q. Then [[ϕ(σ1, . . . , σn)]] 6≤
f−1(q), so there is a p ∈ P such that e(p) ≤ [[ϕ(σ1, . . . , σn)]] ·−f−1(q). So p  ϕ(σ1, . . . , σn)
and p = f(e(p)) ≤ −q. Thus p · q = 0; but also p ≤ q, contradiction.

We write P→d Q iff there is a dense embedding of P into Q. We write P ≈d Q iff there is
an R such that P→d R and Q→d R.

Proposition 30.19. Let P be a forcing poset, and let e : P → RO(P) be given on page
494. Then e is a dense embedding.

Proposition 30.20. If P→d Q, then P and Q have isomorphic completions.

Proof. Let i : P → Q be a dense embedding and let A and B be the completions of
P, Q respectively. Let j : P → A\{0} and k : Q → B\{0} be dense embeddings given on
page 494. Then k ◦ i : P → B\{0} is a dense embedding. By Theorem 27.22 there is an
isomorphism h : B → A such that h ◦ k ◦ i = j.

Lemma 30.21. (IV.4.26) For posets P,Q, (1)↔(2) and (3)→ (1).
(1) P ≈d Q.
(2) P and Q have isomorphic completions.
(3) There is an S such that S→d P and S→d Q.

Proof. From Proposition 30.20, (1)⇒(2).
Now assume (2); say j : P → A\{0} and k : Q→ B\{0} are dense embeddings given

on page 494, and h : A → B is an isomorphism. Then h ◦ j : P → B\{0} is a dense
embedding. By symmetry, (1) follows.

Assume (3). Then by Proposition 30.20 the completion of S is isomorphic to the
completions of P and Q, so the latter two have isomorphic completions.

Lemma 30.22. (IV.6.1) If r  ∃x ∈ πϕ(x), then there exist a q ≤ r and σ ∈ dmn(π) such
that q  [σ ∈ π and ϕ(σ)].
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Proof. Let G be generic with r ∈ G. Then there is an x ∈ πG such that M [G] |= ϕ(x).
Say x = σG. Then M [G] |= [σ ∈ π and ϕ(σ)]. Hence there is a q ∈ G such that q  [σ ∈ π
and ϕ(σ)].

Lemma 30.23. (IV.6.4) Let T be a well-pruned Suslin tree in M , and force with (T,≥).
Then (T,≥) is ccc, and in M [G], G is a path through T .

Proof. p and q are compatible iff there is an r such that r ≥ p and r ≥ q, thus iff p
and q are comparable. So p ⊥ q iff p and q are incomparable. So ccc holds. If p, q ∈ G,
then p and q are compatible, hence comparable. So G is a chain. For any p ∈ G and any
α < ω1, the set {q : p ≤ q and q has height ≥ α} is dense above p, and hence there is a
q ∈ G with height ≥ α. Since G is upwards closed under ≥, G meets each level of T and
so is a path through T .

Theorem 30.24. If ϕ is a sentence which holds in every ctm M , then ZFC ⊢ ϕ.

Proof. If ZFC+{¬ϕ} is consistent, apply Theorem 15.10 to get a ctm of ZFC+{¬ϕ}.

Lemma 30.25. (IV.6.5) If T is a Suslin tree, then there is no order preserving map
ϕ : T → R.

Proof. Working in a ctm M , suppose such a map exists. Let T ′ be a well-pruned
subtree of T . Applying Lemma 30.23, we get a ccc generic extension M [G] with G a
path through T . Applying ϕ gives a strictly increasing function mappling ω1 into R,
contradiction. This shows that the statement of the lemma holds in every ctm M . Hence
the lemma follows by Theorem 30.24.

Lemma 30.26. (IV.6.6) Let T be a well-pruned Suslin tree. Then in the poset topology
for (T,≥), every countable intersection of dense open sets is dense open.

Proof. Note that U is open iff ∀s ∈ U [(s ↑) ⊆ U . Now suppose that each Un is dense
open, and let V =

⋂

n∈ω Un. Clearly V is open. For each n ∈ ω let An be an antichain,
maximal with respect to An ⊆ Un. Since Un is dense, An is actually a maximal antichain.
Now let p ∈ T be given; we want to find q ∈ V such that p ≤ q. Since each An is countable,
there is an α > ht(x) for all x ∈

⋃

n∈ω An. Since T is well-pruned, there is a q of height α
such that p ≤ q. For each n ∈ ω there is an sn ∈ An such that sn < q. Hence sn ∈ Un and
since Un is open, also q ∈ Un. So p ≤ q ∈

⋂

n∈ω Un = V .

A topological space X is Baire iff in X every countable intersection of dense open sets is
dense.

Lemma 30.27. (IV.6.9) Working in a ctm M , for a forcing poset P, (1)⇒(2) and
(2)↔(3):

(1) P is Baire in the poset topology.
(2) For each set E ∈M and each generic G, M and M [G] have the same elements of

ωE.
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(3) For each E ∈M , each name τ , and each p ∈ P, if p  τ : ω → Ě, then there exist
a function h : ω → E and a q ≤ p such that h ∈M and q  τ = ȟ.

Claim 1. For any forcing poset P, D ⊆ P is dense iff it is dense in the poset topology.

Proof. ⇒: Assume that D is dense and U is nonempty open in the poset topology.
Fix s ∈ U . Then s↓ ⊆ U . Take t ∈ D with t ≤ s. Then t ∈ D ∩ U .
⇐: Assume that D is dense in the poset topology. Take any s ∈ P. Choose t ∈ D∩s↓.

Thus t ∈ D and t ≤ s.

Proof of 30.27 (2)⇒(3): Assume (2), and suppose that E ∈ M , τ is a name,
p ∈ P, and p  τ : ω → Ě. Let G be generic with p ∈ G. Then h = τG : ω → E. By (2),
h ∈M . Thus M [G] |= τ = h. Hence there is a q ∈ G such that q  τ = ȟ and q ≤ p.

(3)⇒(2): Assume (3), and suppose that E ∈ M and G is generic. We want to show
that (ωE)M [G] = (ωE)M . Take any h ∈ (ωE)M [G]. Say h = τG. Then there is an r ∈ G
such that r  τ : ω → Ě. Now

D
def
= {q : q ⊥ r or (q ≤ r and ∃k ∈ (ωE)M [q  τ = ȟ])}

is dense, by (3). Take any q ∈ G ∩ D. Then q ≤ r and there is an k ∈ ωE such that
q  τ = ǩ, hence h = τG = k.

(1)⇒(3): Assume (1), and suppose that E ∈M , τ is a name, p ∈ P, and p  τ : ω →
Ě. For each n ∈ ω let

Un = {q : q ⊥ p or ∃e ∈ E[q  τ(ň) = ě]}

Clearly Un is open. To show that Un is dense, suppose that s ∈ P. If s ⊥ p then s ∈ Un.
If s 6⊥ p, take t ≤ s, p. Now t  ∃x ∈ Ě[(ň, x) ∈ τ ], so by Proposition 29.15 there exist a
q ≤ t and an e ∈ E such that q  (ň, ě) ∈ τ . This shows that Un is dense. By claim 1, Un
is dense in the poset topology.

It follows now from (1) and claim 1 that there is a q ≤ p such that q ∈
⋂

n∈ω Un. Note

that q 6⊥ p. For each n ∈ ω let h(n) be the e such that q  τ(ň) = ě Then q  τ = ȟ. In
fact, if G is generic and q ∈ G, then for each n ∈ ω, τG(n) = e = h(n); so τG = h.

Proposition 30.28. Let P be ω with the order >. For each n ∈ ω let Un = {n, n+ 1, n+
2, . . .}. Then:

(i) Each Un is dense open.
(ii)

⋂

n∈ω Un = ∅.
(iii) For every filter G, M [G] = M .
(iv) (2) and (3) in Lemma 30.27 hold.

Proof. (i): Clearly each Un is open. For any n, k ∈ ω, max(k, n) + 1 is a member of
Un greater than k, so Un is dense.

(ii): Obvious.
(iii): If G is a filter, then G = ω, or there is an n ∈ ω such that G = {0, 1, . . . , n}.

Thus G ∈M and so M [G] = M .
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(iv): (2) is obvious, and (3) follows by Lemma IV.6.9.

Proposition 30.29. (IV.6.10 For a separative poset P in a ctm M , conditions (1)–(3) of
Lemma 30.27 are equivalent.

Proof. By Lemma 30.27 it suffices to prove that (3)⇒(1). So assume (3) and suppose
that Un is dense open for each n ∈ ω. We want to show that

⋂

n∈ω Un is dense. Let An
be maximal such that

(1) An ⊆ Un.

(2) An is pairwise incompatible.

Since Un is dense open, An is a maximal antichain. Let

τ = {(op(ň, p̌), 11) : n ∈ ω, p ∈ An}.

Then for any generic G, τG = {(n, p) : n ∈ ω and p ∈ An ∩ G}, and so τG : ω → P. Thus
11  τ : ω → P̌. and for any generic G and any n ∈ ω, G ∩An = {τG(n)}.

By (3) of Lemma 30.27 there is a h ∈ M and a q such that q  τ = ȟ. To show that
q ∈ Un, note that h(n) ∈ An ⊆ Un. Now we claim

(3) There is no r ≤ q such that r ⊥ h(n).

For, suppose that such an r exists. Then r is compatible with some t ∈ An\{h(n)}. Say
u ≤ r, t. Let H be generic with u ∈ H. Since u ≤ q and q  τ = ȟ, it follows that
τH(n) = h(n). Now t, h(n) ∈ H, contradiction.

Now by (3) and separativity, q ≤ h(n). Since h(n) ∈ Un and Un is open, it follows
that q ∈ Un.

Proposition 30.30. (IV.6.11) There is an atomless ccc Baire poset iff there is a Suslin
tree.

Proof. ⇒: Assume that P is atomless, ccc, Baire. We define 〈Uα : α < ω1〉 by recur-
sion. Let U0 = {1}. Suppose that Uα has been defined so that it is maximal incompatible.
For each w ∈ Uα let Sα,w be a maximal pairwise incompatible collection of elements ≤
w. Then 2 ≤ |Sα,w| by atomlessness, and |Sα,w| ≤ ω by ccc. Let Uα+1 =

⋃

w∈Uα
Sα,w.

Clearly Uα+1 is maximal incompatible. Now suppose that α < ω1 is limit and Uβ has been
defined for all β < α. For each β < α let Dβ = {s : ∃t ∈ Uβ [s ≤ t]}. Clearly Dβ is open.
It is dense; for let t ∈ P. Choose w ∈ Uβ such that w and t are compatible. Say x ≤ w, t.
Then x ∈ Dβ and x ≤ t. Let V =

⋂

β<αDβ . Then V is dense by Baireness. Let Uα be
maximal pairwise incompatible ⊆ V .

Let T =
⋃

α<ω1
Uα. Then T is a Souslin tree by Proposition 22.8.

⇐: Assume that there is a Suslin tree T . By Lemma 22.26 we may assume that T

is well-pruned. Consider the poset P
def
= (T,≥). Since T is well-pruned, P is atomless;

otherwise we would get an uncountable chain. Clearly P is ccc. Now suppose that 〈Dn :
n ∈ ω〉 is a system of dense open sets in P, and t ∈ P; we want to find an element of
⋂

n∈ωDn which is below t in P, i.e., above t in T . For each n ∈ ω let An be maximal

647



pairwise incompatible ⊆ Dn. Let α < ω1 be greater than the height of any element of
⋃

n∈ω An. Choose s ∈ T of height α. For each n ∈ ω choose rn ∈ An which is compatible
with s. Thus rn < s in T . It follows that s ∈

⋂

n∈ωDn.

Proposition 30.31. (IV.6.13) If P is ccc and does not add new real numbers ((ωω)M =
(ωω)M [G] for any generic G), then P does not add ω-sequences (for any A ∈M , (ωA)M =
(ωA)M [G]).

Proof. Suppose that A ∈ M , f : ω → A, f ∈ M [G]. By Theorem 29.4 there is a
F : ω →P(A) such that F ∈ M , ∀n ∈ ω[f(n) ∈ F (n)], and (|F (n)| ≤ ω)M for all n ∈ ω.
Let gn : F (n)→ ω be an injection. Define h(n) = gn(f(n)) for all n ∈ ω. Then h : ω → ω,
so h ∈M by assumption. We have f(n) = g−1

n (h(n)) for all n ∈ ω, so f ∈M .

Proposition 30.32. If λ ≥ ℵ1, I is infinite, and |J | ≥ 2, then there is an antichain in
Fn(I, J, λ) of size 2ℵ0 .

Proof. Let K ⊆ I with |K| = ℵ0 and let a, b ∈ J with a 6= b. Then members of
K{a, b} are in Fn(I, J, λ), and any two members of K{a, b} are incompatible.

Proposition 30.33. Under GCH we have (2<λ)<λ > 2<λ when λ = ℵω

Proof. 2<ℵω = ℵω and (2<ℵω )<ℵω ≥ ℵω
ℵ0 > ℵω.

Lemma 30.34. (IV.7.2) Suppose that M is a c.t.m. of ZFC and in M we have a forcing
order P, an antichain A of P, and a system 〈σq : q ∈ A〉 of members of MP. Then there is
a name π ∈MP such that q  π = σq for every q ∈ A.

Proof. We define

(τ, r) ∈ π iff (τ, r) ∈MP and there is a q ∈ A such that r ≤ q

and r  τ ∈ σq and τ ∈ dmn(σq).

Fix q ∈ A and fix a generic G for P over M such that q ∈ G; we want to show that
πG = (σq)G.

First suppose that x ∈ πG. Choose (τ, r) ∈ π such that r ∈ G and x = τG. By the
definition of π, there is a q′ ∈ A such that r ≤ q′, r  τ ∈ σq′ , and τ ∈ dmn(σq′). Since
r ∈ G, also q′ ∈ G. But A is an antichain, q, q′ ∈ A, and q ∈ G, so q = q′. So r  τ ∈ σq,
and since r ∈ G it follows that τG ∈ (σq)G.

Second, suppose that y ∈ (σq)G. Choose (τ, r) ∈ σq such that r ∈ G and y = τG.
Since τG ∈ (σq)G, there is a p ∈ G such that p  τ ∈ σq. Also q ∈ G, so let s ∈ G be such
that s ≤ p, q. Then (τ, s) ∈ π, and so y = τG ∈ πG.

Theorem 30.35. (IV.7.1) (maximal principle) Suppose that M is a c.t.m. of ZFC, P ∈M
is a forcing order, τ1, . . . , τn ∈ MP, p ∈ P , and p  ∃xϕ(x, τ1, . . . , τn). Then there is a
π ∈MP such that p  ϕ(π, τ1, . . . , τn).

Proof. This argument takes place inM , unless otherwise indicated. By Zorn’s lemma,
let A be an antichain, maximal with respect to the property
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(1) For all q ∈ A, q ≤ p and q  ϕ(σ, π1, . . . , πn) for some σ ∈MP .

By the axiom of choice, for each q ∈ A let σq ∈ MP be such that q  ϕ(σq, π1, . . . , πn).
By Lemma 26.17, let π ∈ MP be such that q  π = σq for every q ∈ A. Since also
q  ϕ(σq, τ1, . . . , τn), an easy argument using the definition of forcing, thus external to M ,
shows that q  ϕ(π, τ1, . . . , τn).

Now we show that p  ϕ(π, τ1, . . . , τn). To this end we argue outside M . Suppose
that G is P-generic over M . We claim that G ∩ A 6= ∅. In fact the set

(2) {r ≤ p : there is a σ ∈MP such that r  ϕ(σ, τ1, . . . , τn)}

is dense below p, and hence there is an r ∈ G which is also in (2). If G∩A = ∅, then there
is an element q ∈ G incompatible with each member of A; in this case, choose s ∈ G with
s ≤ r, q. Then s is in (2) and s is incompatible with each element of A, contradicting the
maximality of A. So G ∩ A 6= ∅.

Say q ∈ G ∩ A. Choose r ∈ G such that r ≤ p, q. Since q  ϕ(π, τ1, . . . , τn), also
r  ϕ(σ, τ1, . . . , τn), and hence ϕ(τG, (τ1)G, . . . , (τn)G) holds in M [G], as desired.

Proposition 30.36. (IV.7.10) In M , let P = Fn(κ, λ, ω), where ω ≤ κ < λ. Then λ is
countable in M [G].

Proof. Clearly f
def
=
⋃
G is a function with domain κ. For each α < λ let Dα = {p :

∃m ∈ ω[m ∈ dmn(p) and p(m) = α}. Clearly Dα is dense. It follows that f ↾ ω maps onto
λ.

Proposition 30.37. (IV.7.10a) In M , let P = Fn(κ, λ, ω), where ω ≤ κ < λ. Then for
every cardinal µ > λ in M , µ is a cardinal in M [G].

Proof. By Lemma 29.33, P has the λ+-cc. Hence the result follows by Theorem
29.5.

Proposition 30.38. (IV.7.10b) In M , let P = Fn(κ, λ, ω), where ω ≤ κ < λ. Assume
that M |=GCH. Then M [G] |=GCH.

Proof. Let λ = ℵMα . We claim

(1) ∀β
[

ℵMα+β = ℵ
M [G]
β

]

.

We prove (1) by induction on β. It holds for β = 0 by Proposition 30.36. Now assume it
for β. Write bij for “bijective”. Then

ℵMα+β+1 bij P(ℵMα+β) bij P(ℵ
M [G]
β ).

Since ℵMα+β+1 is a cardinal in M [G] by Proposition 30.37, it follows that ℵMα+β+1 = ℵ
M [G]
β+1 .

Next suppose that γ is a limit ordinal, and ℵMα+β = ℵ
M [G]
β for all β < γ. Then

ℵMα+γ =
⋃

β<γ

ℵMα+β =
⋃

β<γ

ℵM [G]
β = ℵM [G]

γ .
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Thus (1) holds.
Now take any ordinal β. Then

P(ℵM [G]
β ) bij P(ℵMα+β) bij ℵMα+β+1 = ℵM [G]

β+1 ;

so 2ℵ
M[G]

β = ℵ
M [G]
β+1 .

Lemma 30.39. (IV.7.12) Assume that ω < λ < o(M) and that for all ordinals δ < λ,
(δλ)M = (δλ)M [G]. Then

(i) For all limit γ ≤ λ
[
cfM (γ) = cfM [G](γ)

]
.

(ii) For all β ≤ λ
[
(β is a cardinal)M iff (β is a cardinal)M [G]

]
.

Proof. (i): Let γ be limit ≤ λ, and let δ = cfM (γ). Then there is a function f : δ → γ

with sup(rng(f)) = γ, with f ∈M . So f ∈M [G], and hence cfM [G](γ) ≤ cfM (γ). Suppose

that cfM [G](γ) < cfM (γ). Say cfM [G](γ) = ε < δ ≤ λ. Let g : ε→ γ be such that g ∈M [G]
and sup(rng(g)) = γ. Then g ∈ (ελ)M [G], so g ∈ (ελ)M , and hence cfM (γ) ≤ ε < δ,
contradiction.

(ii): Assume that β ≤ λ. Clearly (β is a cardinal)M [G] → (β is a cardinal)M . Now
suppose that not(β is a cardinal)M [G]. Then there exist a δ < β and a bijection f : δ → β.
So δ < λ and f ∈ (δλ)M [G]. So f ∈ (δλ)M . Hence not(β is a cardinal)M .

Proposition 30.40. If λ ≥ ω1, then Fn(ω1, 2, ω1) ⊆c Fn(λ, 2, ω1).

Proposition 30.41. There is a dense embedding of Fn(ω1, 2
ω, ω1) into Fn(ω1, 2, ω1).

Proof. Let g : ω2 → 2ω be a bijection, and let h : ω1 × ω → ω1 be a bijection. If
α < ω1, p ∈ Fn(ω1, 2

ω, ω1), and 1st(h−1(α)) ∈ dmn(p), let

(f(p))(α) = (g−1(p(1st(h−1(α))))(2nd(h−1(α)).

Note that

dmn(f(p)) = {α < ω1 : 1st(h−1(α)) ∈ dmn(p)} = {h(β, γ) : β ∈ dmn(p), γ < ω},

and so dmn(f(p)) is countable. Thus f(p) ∈ Fn(ω1, 2, ω1).

(1) If p1 ≤ p2 then f(p1) ≤ f(p2).

In fact, suppose that p1 ≤ p2. Thus p1 ⊇ p2. Take any α ∈ dmn(f(p2)). So 1st(h−1(α)) ∈
dmn(p2), hence 1st(h−1(α)) ∈ dmn(p1). Moreover,

p2(1st(h−1(α))) = p1(1st(h−1(α)));

(f(p2))(α) = (g−1(p2(1st(h−1(α))))(2nd(h−1(α)))

= (g−1(p1(1st(h−1(α))))(2nd(h−1(α)))

= (f(p1))(α).
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This proves (1).

(2) rng(f) is dense in Fn(ω1, 2, ω1).

For, let q ∈ Fn(ω1, 2, ω1). We want to find p ∈ Fn(ω1, 2
ω, ω1) such that q ⊆ f(p). For each

β ∈ ω1 let pβ ∈ 2ω be defined by setting, for γ ∈ ω,

kβ(γ) =
{
q(h(β, γ)) if h(β, γ) ∈ dmn(q),
0 otherwise.

Then we set pβ = g(kβ). Now suppose that α ∈ dmn(q). Say h−1(α) = (β, γ). Then

(f(p))(α) = (g−1(pβ))(γ) = kβ(γ) = q(α).

(3) If f(p1) ≤ f(p2), then p1 ≤ p2.

Indeed, assume that f(p1) ≤ f(p2). So f(p2) ⊆ f(p1). Suppose that β ∈ dmn(p2). Let
γ ∈ ω be arbitrary, and let α = h(β, γ). Then α ∈ dmn(f(p2)), so α ∈ dmn(f(p1))
and (g−1(p2(β)))(γ) = (f(p2))(α) = (f(p1))(α) = (g−1(p1(β)))(γ). Hence g−1(p2(β)) =
g−1(p1(β)), so p2(β) = p1(β).

Now see Proposition 25.68.

Proposition 30.42. (IV.7.19) Assume that M |= ¬CH, and let P = (Fn(I, 2, ω1))M ,
where (|I| > ω)M . Then M [G] |=CH.

Proof. We may assume that I is a cardinal λ > ω in M . In M , P is countably
closed, so by Lemma 29.9, (ω2)M = (ω2)M [G]. Also, in M [G] there is no bijection from

α < ωM1 onto ωM1 , again by Lemma 29.9. So (2ω)M = (2ω)M [G] and ωM1 = ω
M [G]
1 . Now

by Propositions 30.38 and 30.39 we have Fn(ω1, 2
ω, ω1) ⊆c Fn(λ, 2, ω1). Hence by Lemma

30.3, in M [G] there is a function mapping ωM1 onto (2ω)M . Thus CH holds in M [G].

Proposition 30.43. (IV.7.19) Assume that M |= ¬CH, and let P = (Fn(I, 2, ω1))M ,
where (|I| > ω)M . Suppose that (ω < κ ≤ 2ω)M Then (κ = ω1)M [G].

Lemma 30.44. (IV.7.23) If f ∈ M [G] and f is a function, then rng(f) ⊆ M iff there is
an E ∈M such that rng(f) ⊆ E.

Proof. ⇐: holds since M is transitive. For ⇒, say α = rank(f). Thus f ∈ Vα+1, so
rng(f) ⊆ Vα. By absoluteness of rank, α < o(M [G]) = o(M), so rng(f) ⊆ Vα ∩M ∈ M ;
see Theorem 13.13..

Proposition 30.44. If P is λ-closed and δ < λ, then 11  ∀f ∈ δM̌ [f ∈M ]. That is, for
all f ∈M [G], if f is a function with domain δ and range included in M , then f ∈M .

Proof. By Lemma 30.44, choose E ∈ M so that rng(f) ⊆ E. Then Lemma 29.9
applies.

Lemma 30.46. (IV.7.25) 11  ∀x[x ∩ M̌ exists]. That is, ∀x ∈M [G][x ∩M ∈M [G]].
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Proof. Let α = rank(x), so that x ⊆ Vα. Then α < o(M [G]) = o(M), so E
def
=

Vα ∩M ∈M . Then x ∩M = x ∩E, and x,E ∈M [G], so x ∩E ∈M [G].

Proposition 30.47. (IV.7.24) Let P be an atomless poset. Then 11  ∀x∃y ⊇ x[|y∩ M̌ | =
|y\M̌ |]. That is, if G is generic, then

∀x ∈M [G]∃y ∈M [G][y ⊇ x and (|y ∩M |M [G] = |y\M |M [G])].

Proof. By Lemma 30.46, x ∩M ∈M [G] and x\M = x\(x ∩M) ∈M [G].
Case 1. |x\M | < |x∩M |. Let y = x ∪ ({G} × |x ∩M |). Then |y ∩M | = |x∩M | and

|y\M | = max(|x\M |, |x ∩M |) = |x ∩M |.
Case 2. |x\M | = |x ∩M |. Let y = x.
Case 3. |x\M | > |x ∩M |. Let y = x ∪ |x\M |. Then |y ∩M | = |x\M | and |y\M | =

|x\M |,

Proposition 30.48. (IV.7.27) In M let θ = |δ|. Then

11  ∀f ∈ δM̌ [f ∈ M̌ ] iff 11  ∀f ∈ θM̌ [f ∈ M̌ ],

that is,

For every generic G,

(i) for every f ∈ M [G]((f is a function with domain δ and range ⊆ M) implies that
f ∈M)

iff

(ii) for every f ∈ M [G]((f is a function with domain θ and range ⊆ M) implies that
f ∈M).

Proof. Let g be a bijection from θ onto δ. Assume (i), and suppose that f ∈ M [G]
is a function with domain θ and range ⊆ M . Then f ◦ g−1 is in M [G] and is a function
with domain δ and range ⊆ M . Hence by (i), f ◦ g−1 ∈M . Hence f ∈M . So (ii) holds.

(ii)⇒(i) is similar.

Proposition 30.49. (IV.7.28) Let θ be a cardinal. Then (1)⇒(2):
(1) In P, every intersection of θ dense open sets is dense.
(2) P does not add θ-sequences. That is, for every f ∈ M [G]((f is a function with

domain θ and range ⊆ M) implies that f ∈M).

Proof. (1)⇒(2): assume (1), and suppose that f ∈ M [G] with f a function with
domain θ and with rng(f) ⊆ M . By Lemma 30.44 let E ∈ M be such that rng(f) ⊆ E.
By Lemma 29.9, f ∈M .

Proposition 30.50. (IV.7.29) Assume that κ is uncountable and regular, and T is a
well-pruned κ-Suslin tree. Then in the poset topology, every intersection of fewer than κ
dense open sets is dense.
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Proof. Let α < κ and let 〈Dξ : ξ < α〉 be a system of dense open sets in T . For each
ξ < α let Aξ = {q ∈ Dξ : (q↓′) ∩ Dξ = ∅}. Then Aξ is an antichain, so |Aξ| < κ. Let β
be a level above the levels of all members of

⋃

ξ<αAξ. Take any q of level β, and take any
ξ < α; we claim that q ∈ Dξ. For, choose r ∈ Dξ such that q ≤ r. Then choose p ∈ Aξ
such that p ≤ r. Then p and q are comparable, so p < q. Hence q ∈ Dξ .

Proposition 30.51. (IV.7.29a) Assume that κ is uncountable and regular, and T is a
well-pruned κ-Suslin tree. Then forcing with T preserves cofinalities and cardinals.

Proof. Since T is κ−cc, cofinalities and cardinals ≥ κ are preserved by Theorem 29.5.
By Propositions 30.49 and 30.50, cofinalities and cardinals less than κ are preserved.

Proposition 30.52. (IV.7.29b) Assume that κ is uncountable and regular, and T is a
well-pruned κ-Suslin tree. Then in M [G], G is a path through T .

Proof. Clearly any two elements of G are comparable, and G is closed downwards.
For any α < κ the set D = {p ∈ T : level(p) > α} is dense; the intersection of G with D
shows that G has an element of level greater than α.

If µ is a probability measure on X , then MB = MB(X, µ) is the Boolean algebra of
measurable sets modulo the ideal of measure zero sets.

Lemma 30.53. (IV.7.34) MB(X, µ), µ a probability measure, is ccc.

Proof. If A is an antichain, then |{p ∈ A : µ(p) ≥ 1/n}| ≤ n for all n ∈ ω. Now
A =

⋃

n∈ω{p ∈ A : µ(p) ≥ 1/n}, so A is countable.

Lemma 30.54. (IV.7.34a) Let µ be a probability measure, and consider MB(X, µ). Then

11  ∀f ∈ ωω∃h ∈ ωω ∩ M̌∀n ∈ ω[f(n) ≤ h(n)],

That is: given a ctm M , suppose that G is generic and f ∈ ωω ∩M [G]. Then there is an
h ∈ ωω ∩M such that ∀n ∈ ω[f(n) ≤ h(n)].

Proof. Let ḟ be a name such that ḟG = f . Choose p ∈ G such that p  ḟ : ω → ω.

(1) There exist an h ∈ ωω ∩M and a q ≤ p such that q  ∀n[ḟ(n) ≤ ȟ(n)].

For, for each n ∈ ω, p ≤ [[ḟ(n) ∈ ω]] =
∑

m∈ω[[ḟ(n) = m]], and so p =
∑

m∈ω(p · [[ḟ(n) =
m]]). Now for each n ∈ ω let h(n) ∈ ω be such that

µ




∑

m≤h(n)

(p · [[ḟ(n) = m]])



 ≥ µ(p)(1− 2−n−2).

Now let rmn = p · [[ḟ(n) = m]] and q =
∏

n∈ω

∑

m≤h(n) rmn. Now for any n,

µ(p) = µ



p ·
∏

m≤h(n)

−rmn + p ·
∑

m≤h(n)

rmn





= µ



p ·
∏

m≤h(n)

−rmn



+ µ



p ·
∑

m≤h(n)

rmn



 ,
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so

µ



p ·
∏

m≤h(n)

−rmn



 = µ(p)− µ



p ·
∑

m≤h(n)

rmn





≤ µ(p)− µ(p)(1− 2−n−2)

= µ(p) · 2−n−2.

Now µ(p) = µ(q) + µ(p · −q), so

µ(q) = µ(p)− µ(p · −q)

= µ(p)− µ



p ·
∑

n∈ω

∏

m≤h(n)

−rmn





= µ(p)− µ




∑

n∈ω



p ·
∏

m≤h(n)

−rmn









≥ µ(p)−
∑

n∈ω

µ



p ·
∏

m≤h(n)

−rmn





≥ µ(p)−
∑

n∈ω

(µ(p) · 2−n−2)

= µ(p)

(

1−
∑

n∈ω

2−n−2

)

= µ(p)/2.

It follows that µ(q) > 0.
Now for all n ∈ ω, q ≤

∑

m≤h(n)[[ḟ(n) = m]], so q  ∃m ≤ ȟ(n)[ḟ(n) = m]. Thus

q  ∀n ∈ ω[ḟ(n) ≤ ȟ(n)]. This proves (1).
Let D = {q : p ⊥ q or (q ≤ p and ∃h ∈ M̌ [q  ∀n ∈ ω[ḟ(n) ≤ ȟ(n)]}. By (1), D is

dense, and this gives the desired h.

Lemma 30.55. (IV.7.35) Let G be Fn(ω, ω, ω)-generic, and in M [G] let f =
⋃
G : ω → ω.

Then there is no h ∈ (ωω) ∩M such that f ≤∗ h.

Proof. Let h ∈ (ωω)∩M . For each m ∈ ω, the set {p ∈ Fn(ω, ω, ω) : ∃n ∈ dmn(p)[n >
m and p(n) > h(n)]} is dense, and so M [G] |= ∀m∃n > m[f(n) > h(n)].

Lemma 30.56. (IV.7.36) Suppose that M is a model for ZFC + CH, MB is a measure
algebra in M , and G is generic. Then M [G] |= b = d = ω1.

Proof. By Lemma 30.54, (ωω) ∩M is a dominating family of size ω1.

654



Lemma 30.57. (IV.7.37) Suppose that M is a ctm for ZFC, κ is an infinite cardinal in
M , and MB = MB(2κ×ω, µ). Let G be generic.

Then M and M [G] have the same cardinals and cofinalities. Assume that kω = κ in
M . Then 2ω = κ in M [G].

Proof. M and M [G] have the same cardinals and cofinalities by Lemma 30.53. Now
for α < κ, n ∈ ω and i ∈ 2 let pαni = {x ∈ κ×ω2 : x(α, n) = i}. Then pαni is measurable
and µ(pαni ) = 1

2 , by Proposition 18.85. {pαn0 , pαn1 } is a maximal antichain, so by Theorem
30.1 exactly one of them is in G. Define F (α, n) to be the i ∈ 2 such that pαni ∈ G. Let
hα(n) = F (α, n) for all α < κ and n ∈ ω. Now suppose that α, β ∈ κ and α 6= β. Then

(1)
∏

n∈ω

{x ∈ κ×ω2 : x(α, n) = x(β, n)} = 0

In fact, take any m ∈ ω\1. With Uf = {x ∈ κ×ω2 : f ⊆ x} for each finite function
f ⊆ (κ× ω)× 2, we have

∏

n<m

{x ∈ κ×ω2 : x(α, n) = x(β, n)} =
⋃

f∈m2

{x ∈ κ×ω2 : ∀n < m[x(α, n) = x(β, n) = f(n)]}.

Now by Proposition 18.86, for each f ∈ m2 we have

µ({x ∈ κ×ω2 : ∀n < m[x(α, n) = x(β, n) = f(n)]}) =
1

22m
.

Hence

µ

(
∏

n<m

{x ∈ κ×ω2 : x(α, n) = x(β, n)}

)

=
2m

22m
=

1

2m
.

Hence (1) follows.
By (1),

∏

n∈ω{x ∈
κ×ω2 : x(α, n) = x(β, n)} /∈ G, so

−
∏

n∈ω

{x ∈ κ×ω2 : x(α, n) = x(β, n)} =
∑

n∈ω

{x ∈ κ×ω2 : x(α, n) 6= x(β, n)} ∈ G.

Now D
def
= {y ∈ MB+ : ∃n ∈ ω[y ≤ {x ∈ κ×ω2 : x(α, n) 6= x(β, n)}]} is dense below

∑

n∈ω{x ∈
κ×ω2 : x(α, n) 6= x(β, n)}. It follows that there is an n ∈ ω such that {x ∈

κ×ω2 : x(α, n) 6= x(β, n)}]} ∈ G. Clearly then F (α, n) 6= F (β, n), so hα(n) 6= hβ(n). Thus
2ω ≥ κ in M [G].

Now note that |MB| = κω by Proposition 18.88. It follows that there are exactly
κω nice names for subsets of κ. Hence by the argument in the proof of Lemma 29.22,
2ω ≤ κω.

Lemma 30.58. (IV.7.37a) Suppose that M is a ctm for GCH, κ is an infinite cardinal in
M , and MB = MB(2κ×ω, µ). Let G be generic.
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Then M and M [G] have the same cardinals and cofinalities. Assume that cf(κ) = ω.
Then 2ω = κ+ in M [G].

Proof. κω = κ+ if cf(κ) = ω.

Lemma 30.59. (IV.7.37b) Suppose that M is a ctm for GCH, κ is an infinite cardinal in
M , and MB = MB(2κ×ω, µ). Let G be generic.

Then M and M [G] have the same cardinals and cofinalities. Assume that µ is a
cardinal, and ω ≤ µ < cf(κ). Then 2µ = κ in M [G].

Proof. By Proposition 29.22 we have (2µ)M [G] ≤ κ. Obviously κ = 2ω ≤ 2µ in
M [G].

Lemma 30.60. (IV.7.37c) Suppose that M is a ctm for GCH, κ is an infinite cardinal in
M , and MB = MB(2κ×ω, µ). Let G be generic.

Then M and M [G] have the same cardinals and cofinalities. Assume that µ is a
cardinal, and κ ≤ µ. Then 2µ = µ+ in M [G].

Proof. By Proposition 29.22 we have (2µ)M [G] ≤ µ+.

Proposition 30.61. (IV.7.38) Let BO be the σ-subalgebra of P(I2) generated by the open
sets, and let PBO = {p ∈ BO : µ(p) > 0}. Then PBO is densely embedded in MB(I2, µ).

Proof. Clearly PBO is a subposet of MB(I2, µ), so by Proposition 188a it suffices to
show that PBO is dense in MB(I2, µ). So let q ∈MB(I2, µ). Thus µ(q) > 0, so µ(−q) < 1.
By the definition of µ (see page 346), there is an open set U such that −q ⊆ U and
µ(U) ≤ µ(−q) + (1− µ(−q))/2 < 1. Then −U ⊆ q and µ(−U) > 0. −U is closed, hence
in PBO.

Proposition 30.62. (IV.7.38a) Let BA be the σ-subalgebra of P(I2) generated by the
clopen sets, and let PBA = {p ∈ BA : µ(p) > 0}. Then PBA is densely embedded in
MB(I2, µ).

Proof. PBO ⊆ PBA, so this follows from Proposition 30.61.

Proposition 30.63. (IV.7.38b) Let F be the set of all closed Gδ’s, and let PF = {p ∈
F : µ(p) > 0}. Then PF is densely embedded in MB(I2, µ).

Proof. The set −U in the proof of Proposition 30.61 is a closed Gδ.

Proposition 30.64. (IV.7.41) Let κ > ω be regular. Let P consist of the empty tree 11
together with all subtrees p of <κ2 such that |p| < κ, height(p) = α+1 for some limit α < κ,
for each s ∈ p of height less than α we have s⌢〈0〉 ∈ p and s⌢〈1〉 ∈ p and ∃t ∈ Lα[s < t].
Define q ≤ p iff q is an end extension of p. Then P is ω1-closed but not ω2-closed.

Proof. Suppose that α is a countable limit ordinal and p0 > p1 > · · · > pξ > · · · with
ξ < α. Let 〈βn : n ∈ ω〉 be strictly increasing with supremum α. Define q as follows. For
each n ∈ ω let height(pβn) = αn + 1. Let γ =

⋃

n∈ω αn. Define

q =
⋃

n∈ω

pβn ∪ {f ∈
γ2 : ∀n ∈ ω[f ↾ βn ∈ pβn ]}.
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Clearly q < pξ for each ξ < α.
For “not ω2-closed”, let T be a well-pruned ω1 Aronszajn tree such that each element

has two immediate successors. This gives rise to a decreasing sequence of length ω1 with
no element below it.

Proposition 30.65. (IV.7.42) Let κ and P be as in Proposition IV.7.41. In P every
intersection of fewer than κ dense open sets is dense.

Proof. Suppose that α < κ and Dξ is dense open for each ξ < α. Let p0 ∈ P be
arbitrary. Let height(p0) = α0 + 1. For s ∈ p0 let f(s, 0) ∈ Lα0

be such that s ≤ f(s, 0).
Now suppose that pη and f(s, η) have been defined for all η < ξ. First suppose that

ξ = η + 1 for some η. Choose pξ ∈ Dη so that pξ < pη. Say height(pξ) = αξ + 1. For each
s ∈ pξ\pη let f(s, ξ) ∈ Lαξ be such that s ≤ f(s, ξ). For s ∈ pη let f(s, ξ) be such that
f(s, η) ≤ f(s, ξ). Thus in this case s ≤ f(s, ξ).

Second suppose that ξ is limit, and for each η < ξ and each s ∈ pη we have f(s, η) ≤
f(s, ρ) for all ρ such that η < ρ < ξ. Let q =

⋃

η<ξ pη. for each s ∈ pη with η < ξ the
sequence 〈f(s, ρ) : η ≤ ρ < ξ〉 is a chain, and we let f(s, ξ) =

⋃

η≤ρ<ξ f(s, ρ). Then pξ is
q ∪ {f(s, ξ) : s ∈ q}.

Proposition 30.66. (IV.7.43) Let Q be the set of all p ∈ Fn(ω1, 2
ω, ω1) such that dmn(p)

is a successor ordinal or 0. Then there is a dense embedding of Q into Fn(ω1, 2, ω1).

Proof. This is clear from Proposition 30.41.

Proposition 30.67. (IV.7.45) Let κ be regular and let T be a well-pruned Aronszajn tree.
As a forcing poset, T is not κ-closed.

Proof. Suppose that T is κ-closed. Then we can define a strictly increasing sequence
〈pξ : ξ < κ〉 in T .

Proposition 30.68. (IV.7.46) Assume in M that κ is uncountable and regular and P is
a κ-closed poset. Then every κ-Aronszajn tree in M remains κ-Aronszajn in M [G].

Proof. Assume the hypothesis, but suppose that p forces that Ċ is a path through
T . Define 〈pξ : ξ < κ〉 and 〈xξ : ξ < κ〉 as follows. Let p0 = p and p0  [x̌0 ∈ Ċ. If pξ and
xξ have been defined for ξ < κ, since sup{height(xη) : η ≤ ξ} < κ, there exist pξ+1 and

xξ+1 such that pξ+1  xξ+1 ∈ Ċ and xξ+1 6= xη for all η ≤ ξ. At limit steps, use κ-closure.
Then {xξ : ξ < κ} is a chain in T , in M , contradiction.

Proposition 30.69. (IV.7.46a) Assume in M that κ is uncountable and regular and P is
a κ-closed poset. Then every κ-Suslin tree in M remains κ-Suslin in M [G].

Proof. Similar to the proof of Proposition 30.68, starting with a well-pruned κ-Suslin
tree and working with an antichain of size κ.

Proposition 30.70. (IV.7.46b) Assume in M that κ is uncountable and regular and P is
a κ-closed poset. If S is stationary in κ in M , then it is stationary in κ in M [G].
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Proof. Suppose not; say C is club in κ in M [G] and C ∩ S = ∅. Let f : κ → C
be the strictly increasing enumeration of C. We now define g : κ → κ by recursion. Say
p  [ḟ : κ → κ and ḟ is strictly increasing and continuous]. Now p  ∃α[ḟ(0) = α], so
there is a q0 ≤ p and an ordinal g(0) such that q0  [ḟ(0) = g(0)̌]. Now suppose that qξ
and g(ξ) have been defined, with qξ ≤ p and g(ξ) an ordinal so that qξ  [ḟ(ξ) = g(ξ)̌.

Then qξ  ∃α[ḟ(ξ+1) = α and f(ξ) < f(ξ+1)]. Hence there is a qξ+1 ≤ qξ and an ordinal

g(ξ + 1) such that qξ+1  ḟ(ξ + 1) = g(ξ + 1)̌ and g(ξ) < g(ξ + 1). Now suppose that η is
a limit ordinal, and qξ and g(ξ) have been defined for all ξ < η so that g(ξ) is an ordinal

and qξ  ḟ(ξ) = g(ξ)̌. By κ closure let r ≤ qξ for all ξ < η. Then

r  ∃α[ḟ(η) = α and ∀σ < η[ḟ(σ) < α] and ∀τ [∀σ < η[ḟ(σ) < τ ]→ [α < τ or α = τ ]]].

Hence there is a qη ≤ r and an ordinal g(η) such that qη  [ḟ(η) = g(η)̌] and also

qη  ∀σ < η[ḟ(σ) < g(η)] and ∀τ [∀σ < η[ḟ(σ) < τ ]→ [g(η) < τ or g(η) = τ ]]].

It follows that g(η) =
⋃

ξ<η g(ξ).
Hence g is strictly increasing and continuous. Hence there is a ξ < κ such that

g(ξ) ∈ S. But qξ  [ḟ(ξ) = g(ξ)̌ and ḟ(ξ) /∈ Š], contradiction.

Proposition 30.71. (IV.7.48) Assume that κ be weakly inaccessible in M , and define

P =
∏fin
α<κ Fn(ω, α, ω). Let G be generic. Then ω

M [G]
1 = κ.

Proof. For α < κ and n ∈ ω let Dnα = {p ∈ P : n ∈ dmn(pα)}. Clearly Dnα is dense
in P. Hence for any α < κ and n ∈ ω there is a p ∈ G such that n ∈ dmn(pα). For α < κ
and n ∈ ω let gα(n) = pα(n), where p ∈ G and n ∈ dmn(pα). For each α < κ and ξ < α
let Eαξ = {p ∈ P : ∃n ∈ ω[n ∈ dmn(pα) and pα(n) = ξ}. Clearly Eαξ is dense in P. It
follows that gα maps ω onto α. Now by Proposition 25.100, P has the κ-ccc. Hence by

Proposition 29.5, all cardinals ≥ κ are still cardinals in M [G]. Hence ω
M [G]
1 = κ.

Proposition 30.72. (IV.7.48a) Assume that κ be weakly inaccessible in M , and define

P =
∏fin
α<κ Fn(ω, α, ω). Let G be generic. Then ∀α[ℵ

M [G]
1+α = ℵMκ+α].

Proof. Since κ = ℵκ in M , this is clear from Propositon 30.71 and its proof.

Proposition 30.73. (IV.7.50) Let B be a complete BA. Then the following are equivalent:
(i) B collapses ω1, i.e., 11  ∃f [f maps ω onto ω1].
(ii) There are bαn ∈ B for α < ω1 and n ∈ ω such that ∀n ∈ ω[〈bαn : α < ω1〉 is an

antichain] and ∀α < ω1

[∑

n∈ω b
α
n = 1

]
.

Proof. (i)⇒(ii): By the maximal principle let ḟ be such that 11  ḟ : ω → ω1 is
surjective. Let bαn = [[ḟ(n) = α]].

(ii)⇒(i): Assume (ii). Let G be generic. Then for all α < ω1 the set {bαn : n ∈ ω}
is predense, since

∑

n∈ω b
α
n = 1; hence there is an n ∈ ω such that bαn ∈ G, since for all

α < ω1,
∑

n∈ω b
α
n = 1. For each n ∈ ω there is only one α < ω1 such that bαn ∈ G, since

658



〈bαn : α < ω1〉 is an antichain. So we can define f(n) to be the α < ω1 such that bαn ∈ G.
Clearly f is as desired.

Proposition 30.74. (IV.7.51) Assume that M is a model of GCH, and P is a poset in M
with ccc. Then in M [G]. |D| ≤ ℵ2 for every almost disjoint family D ⊆ [ω1]ω1.

Proof. Suppose to the contrary that 〈Aξ : ξ < ω3〉 is a system of elements of [ω1]ω1

which is pairwise almost disjoint, in M [G]. For distinct α, β ∈ ω3 let f(α, β) be the least
γ < ω1 such that Aα ∩ Aβ ⊆ γ. Thus f : ω3 × ω3 → ω1. By Theorem 29.4 there is
a function F in M such that F : ω3 × ω3 → P(ω1), and for all (α, β) ∈ ω3 × ω3 we
have f(α, β) ∈ F (α, β) and |F (α, β)| ≤ ω. let g : ω3 × ω3 → ω1 be a member of M
such that ∀(α, β) ∈ ω3 × ω3[F (α, β) ⊆ g(α, β)]. Thus for all α, β ∈ ω3 with α 6= β we
have Aα ∩ Aβ ⊆ g(α, β). Then there is a p ∈ G such that for all distinct α, β < ω3,

p  Ȧα ∩ Ȧβ ⊆ g(α, β)̌. By the Erdös-Rado theorem (2ω1)+ → (ω2)2ω1
there exist a

Γ ∈ [ω3]ω2 and a γ < ω1 such that for all distinct α, β ∈ Γ, p  Ȧα ∩ Ȧβ ⊆ γ. Thus for all
distinct α, β ∈ Γ, Aα ∩ Aβ ⊆ γ. Hence 〈Aα\γ : α ∈ Γ〉 is a system of ω2 pairwise disjoint
uncountable subsets of ω1, contradiction.

Proposition 30.75. (IV.7.52) The existence of an almost disjoint D ⊆ [ω1]ω1 of size ℵ3

is not provable from ZFC + 2ℵ0 = 2ℵ1 = 2ℵ2 = ℵ3.

Proof. Start with M |= GCH. Let P = Fn(ω3, 2, ω). Then by Theorem 29.23, in
M [G] we have 2ω = ω3. Also, ω3 ≤ 2ω1 ≤ ω3, so 2ω1 = ω3. Similarly, 2ω2 = ω3. Finally,
by Proposition 30.74 there is no almost disjoint D ⊆ [ω1]ω1 of size ℵ3.

Proposition 30.76. (IV.7.52a) The existence of an almost disjoint D ⊆ [ω1]ω1 of size ℵ3

is not disprovable from ZFC + 2ℵ0 = 2ℵ1 = 2ℵ2 = ℵ3.

Proof. We start with M |= GCH. Apply Corollary 29.39 with λ1 = ℵ0, λ2 = ℵ1,
λ3 = ℵ2 and κ1 = ℵ1, κ2 = κ3 = ℵ3, to get an extension N of M in which 2ω = ω1 and
2ω1 = 2ω2 = ω3. In N take Fn(ω3, 2, ω). Hence by Theorem 29.23 we have N [G] |= 2ω =
ω3, ω3 ≤ (2ω1)N [G] ≤ (ωω1

3 )N = ω3, so that 2ω1 = ω3 in N [G]. Similarly 2ω2 = ω3 in N [G].
Now in N , the set <ω1ω1 has size ω1, and if f ∈ ω1ω1 then Pf = {f ↾ α : α < ω1} has size
ω1 and for f 6= g, Mf ∩Mg is countable. So in N there is an almost disjoint D ⊆ [ω1]ω1

of size ω3. It is still such a set in N [G].

Recall the definition of i∗ from before Lemma 30.3.

Proposition 30.77. i∗(x̂) = x̂ for any x.

Proof. By induction: i∗(x̂) = i∗({(ŷ, 1) : y ∈ x} = {(i∗(ŷ), 1) : y ∈ x} = {(ŷ, 1) : y ∈
x} = x̂.

Proposition 30.78. If σ is a nice name for a subset of ω, then so is i∗(σ).

Proof. Say σ =
⋃

n∈ω({n̂}×An) with An an antichain. Thus σ = {(n̂, p) : n ∈ ω, p ∈
An}. So i∗(σ) = {(i∗(n̂), i(p)) : n ∈ ω, p ∈ An} = {(n̂, p) : n ∈ ω, p ∈ i[An]}.
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Proposition 30.79. (IV.7.53) Suppose that M |= GCH and P = Fn(κ, 2, ω). Then in
M [G], ω2 is not embeddable in P(ω)/fin.

Proof. Suppose to the contrary that

11 ∃σ[σ is a function with domain ω2 and ∀α < ω2[σ̇α ∈ [ω]ω]

and ∀α, β < ω2[α < β → σ̇α ⊆
∗ σ̇β and σ̇β\σ̇α is infinite]].

By the maximal principle we get a name Ė such that

11 Ė is a function with domain ω2 and ∀α < ω2[Ėα ∈ [ω]ω]

and ∀α, β < ω2[α < β → Ėα ⊆
∗ Ėβ and Ėβ\Ėα is infinite].

For each α < ω2 let Ḟα be a nice name for a subset of ω such that 11  [Ėα ⊆ ω → Ė = Ḟ ].
It follows that

11 Ḟ is a function with domain ω2 and ∀α < ω2[Ḟα ∈ [ω]ω]

and ∀α, β < ω2[α < β → Ḟα ⊆
∗ Ḟβ and Ḟβ\Ḟα is infinite].

By the definition of nice name, for each α < ω2 there is a Jα ∈ [κ]ω such that Ḟα is
a Fn(Jα, 2, ω)-name. We now apply Lemma 24.4 with λ = ω1 and κ = ω2 to obtain a
∆-system 〈Jα : α ∈ Γ〉 with |Γ| = ω2, say with kernel Q. Now for each α ∈ Γ, Jα\Q is a
countable subset of κ. Hence there exist a ∆ ∈ [Γ]ω2 and a countable ordinal γ such that
Jα\Q has order type γ, for each α ∈ ∆.

Now take any α, β ∈ ∆. Let jαβ be the permutation of κ which is the identity on Q, is
the order preserving map between Jα\Q and Jβ\Q, and is the identity outside Jα∪Jβ . jαβ
induces an automorphism j′αβ of P. Namely, if r ∈ P, then dmn(j′αβ(r)) = jαβ [dmn(r)],
and for any ξ ∈ dmn(r), ((j′αβ(r))(jαβ(ξ)) = r(ξ).

Now fix α ∈ ∆. For each β ∈ ∆, (j′βα)∗(Fβ) is a nice name for a subset of ω. Morover,
(j′βα)∗(Fβ) is a Fn(Jα, 2, ω)-name. Now Fn(Jα, 2, ω) is countable, and there are only ω1

nice names for a subset of ω in Fn(Jα, 2, ω) So there are distinct β, δ ∈ ∆ such that
(j′βα)∗(Fβ) = (j′δα)∗(Fδ). By Lemma 30.5.4, for any n ∈ ω we have

p  ň ∈ Ḟβ iff i(p)  ň ∈ (j′βα)∗(Fβ)

iff i(p)  ň ∈ (j′δα)∗(Fδ)

iff p  ň ∈ Ḟδ.

So Fβ = Fδ, contradiction.

Proposition 30.80. (IV.7.55) Assume that in M , κ is strongly inaccessible, and |P| < κ.
Then κ is strongly inaccessible in M [G].

Proof. κ is regular in M [G]: suppose that α < κ and f : α → κ has cofinal range.
By Theorem 29.4 there is a function F : α → P(κ) in M such that ∀ξ < α[f(ξ) ∈ F (ξ)
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and |F (ξ)| < κ] in M . Define, in M , g(ξ) = sup(F (ξ)) + 1 for all ξ < α. Then g : α → κ
has cofinal range, contradiction.

For the strong limit property, suppose that µ < κ ≤ 2µ. Then there is a system
〈Eα : α < κ〉 of nice names for a subset of µ such that 〈EαG : α < κ〉 is one-one. But there
are less than κ nice names for a subset of µ, contradiction.

Proposition 30.81. (IV.7.56) Let G be P-generic over M , P is ccc in M . Let κ > ω be
regular in M . Suppose that C ⊆ κ is club in M [G]. Then there is a club C′ ⊆ κ in M
such that C′ ⊆ C.

Proof. In M [G] define f : κ → κ so that ∀α < κ[α < f(α) ∈ C]. By Theorem 29.4
there is a function F : κ → P(κ) in M such that f(α) ∈ F (α) and |F (α)| < κ for all
α < κ. Now we define 〈βα : α < κ〉 by recursion: β0 = 0,

βα+1 ∈ κ and βα+1 > all members of
⋃

γ≤βα

F (γ),

and βγ =
⋃

α<γ βα for γ limit. Clearly β is strictly increasing, and βα < f(βα) < βα+1 for

all α < κ. Clearly then C′ def
= {βγ : γ limit} is a club in κ, C′ ∈M , and C′ ⊆ C.

Proposition 30.82. (IV.7.57) If P is ccc in M and M [G] |= ♦, then M |= ♦.

Proof. Let 〈Aα : α ∈ ω1〉 be a ♦-sequence in M [G]. Thus A ∈
∏

α<ω1
P(α). Let

B =
⋃

α<ω1
P(α). So A : ω1 → B. By Theorem 29.4 let B : ω1 → P(B) be such

that B ∈ M and ∀α ∈ ω1[Aα ∈ Bα and |Bα| ≤ ω]. Let Aα = Bα ∩P(α). Clearly
〈Aα : α < ω1〉 is a ♦−-sequence.

Proposition 30.83. (IV.7.58) If P is ccc in M , ♦ holds in M , and |P| ≤ ω1, then ♦
holds in M [G].

Proof. Let f be a bijection from {(ξ̌, p) : ξ < ω1, p ∈ P} onto ω1. Let A′
α = {ξ < α :

∃p ∈ G[f(ξ̌, p) ∈ Aα]}. Given B ⊆ ω1 in M [G], let B = ḂG where Ḃ is a nice name for a

subset of ω1. Then S
def
= {α < κ : f [Ḃ] ∩ α = Aα} is stationary. We claim that S′ def

= {α :
B ∩ α = A′

α} is stationary. Let C = {α < ω1 : ∀ξ < α∀p[(ξ̌, p) ∈ Ḃ → f(ξ̌, p) < α]}. Then

(1) C is club in ω1.

In fact, to show that C is closed, suppose that γ < ω1 is limit and C ∩ γ is unbounded
in γ. Suppose that ξ < γ, p ∈ P, and (ξ̌, p) ∈ Ḃ. Choose η ∈ (ξ, γ) with η ∈ C. Then
f(ξ̌, p) < η < γ. So C is closed.

To show that C is unbounded, let β < ω1. Define γ0 = β. If γn has been defined, let

γn+1 = (γn + 1) ∪ sup{f(ξ̌, p) : ξ < γn, (ξ̌, p) ∈ Ḃ}.

(Note that for any ξ < γn, {p : (ξ̌, p) ∈ Ḃ} is countable, by ccc.) Let γω = supn∈ω γn.
Then γω ∈ C.
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Now to show that S′ is stationary, suppose also that D is club (in M [G]). By Propo-
sition 30.81 let D′ ⊆ D be club, with D′ ∈ M . Choose α ∈ S ∩ C ∩ D′. We claim that
B ∩ α = A′

α. First suppose that ξ ∈ B ∩ α. Say p ∈ G and p  ξ̌ ∈ Ḃ. Thus ξ ∈ ḂG, so
there is a q ∈ G such that (ξ, q) ∈ Ḃ. Then f(ξ̌, q) ∈ f [Ḃ]. Also α ∈ C, so f(ξ̌, q) < α.
Hence f(ξ̌, q) ∈ Aα, so ξ ∈ A′

α. Conversely, suppose that ξ ∈ A′
α. Choose p ∈ G so that

f(ξ̌, p) ∈ Aα. Then (ξ̌, p) ∈ Ḃ, so p  ξ̌ ∈ Ḃ and hence ξ ∈ B.

Let A be uncountable. Let KA be the collection of all algebras with universe A and
countably many operations. We allow 0-ary operations, i.e., elements of the universe. For
each M ∈ KA let Sm(M) be the set of all countable subuniverses of M . Clearly Sm(M)
is a club of [A]≤ω.

Theorem 30.84. For A uncountable, for every club W of [A]≤ω there is an algebra
M ∈ KA such that Sm(M) ⊆W .

Proof. We define a function s : <ωA→ W . Let s(∅) be any member of W . Suppose
that s(a) ∈W has been defined for any a ∈ mA, where m ∈ ω. Take any a ∈ m+1A. Then
we let s(a) be any member of W containing the set s(a ↾ m)∪{am}. This is possible since
W is unbounded. Note that rng(a) ⊆ s(a) for any a ∈ <ωA. Now for any positive m and
any a ∈ mA, let xa be a function mapping ω onto s(a). We now define for each positive
integer m and each i ∈ ω an m-ary operation Fmi on A by setting Fmi (a) = xa(i). Let
M = (A, Fmi )m,i∈ω,m>0. We claim that Sm(M) ⊆W .

To prove this, let C ∈ Sm(M). Write C = {ai : i ∈ ω}. For each positive integer m
let tm = s(a0, . . . , am−1). Now by construction, m < n implies that tm ⊆ tn. Moreover,
tm is the range of x〈a0,...,am−1〉, which is {Fmi (a0, . . . , am−1) : i ∈ ω}. Thus tm ⊆ C. It
follows that C =

⋃

m>0 tm ∈W .

Theorem 30.85. Suppose that P is a ccc forcing order in a c.t.m. M . Let G be P -generic
over M . Let λ be an uncountable cardinal in the sense of M , and let C be club in [λ]≤ω

in the sense of M [G]. Then C includes a club of [λ]≤ω in the sense of M .

Proof. In M [G] let N = (λ, Fni )i,n∈ω,0<n be an algebra in M [G] such that Sm(N) ⊆

C. Fix n > 0 and a
def
= 〈a0, . . . , an−1〉 ∈ nλ. Define fna : ω → λ by setting fna(i) =

Fni (a0, . . . , an−1) for all i ∈ ω. Thus fna : ω → λ and fna ∈ M [G]. By Theorem 29.4
let gna : ω → P(λ) be such that ∀i ∈ ω[fna(i) ∈ gna(i)] and ∀i ∈ ω[|gna(i)| ≤ ω], with
gna ∈ M . In M , for each i ∈ ω let hnai : ω → gna(i) be a surjection. Now we define
Hn
ik(a0, . . . , an−1) = hnai (k) for all i, k ∈ ω. Let P = (λ,Hn

ik)i,k,n<ω,n>0. We claim that

Sm(P ) ⊆ Sm(N). For, let s ∈ Sm(P ). Suppose that n, i ∈ ω with n > 0 and a
def
=

〈a0, . . . , an−1〉 ∈ ns. Then Fni (a0, . . . , an−1) = fna(i) ∈ gna(i), so there is a k such that
hnai (k) = fna(i). Hence Fni (a0, . . . , an−1) = fna(i) = hnai (k) = Hn

ik(a0, . . . , an−1) ∈ s.
Thus s ∈ Sm(N). Now since Sm(N) ⊆ C we have Sm(P ) ⊆ C.

Corollary 30.86. (IV.7.59) Suppose that P is a ccc forcing order in a c.t.m. M . Let G
be P -generic over M . Let λ be an uncountable cardinal in the sense of M , and let S be a
stationary subset of [λ]≤ω in M . Then S is also stationary in M [G].
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Proposition 30.87. (IV.7.60) In the ground model M let P = Fn(ω1, 2, ω1). Let G be
generic. Then

(i)
⋃
G : ω1 → 2.

(ii) X
def
= (

⋃
G)

−1
[{1}] is an unbounded subset of ω1.

(iii) If E ∈M and E ⊆ the closure of X, then E is countable.

Proof. (i) is clear. For (ii), suppose that α < ω1. Let D = {p ∈ P : ∃β > α[p(β) =
1]}. Then D is dense. For suppose that p ∈ P. Choose β > α so that β /∈ dmn(p). Then
extend p by taking 1 as the value of β. So D is dense, and (ii) follows.

For (iii), suppose that E ∈M , E ⊆ ω1, E uncountable. For any α < ω1 let Dα = {p :
∃β > α[β ∈ E, β ∈ dmn(p), and p(β) = 0]}. Then Dα is dense, and (iii) follows.

Proposition 30.88. (IV.8.15) Let f : ω → Q and set

Wf =
⋂

n∈ω

⋃

m>n

(f(m)− 2−m, f(m) + 2−m).

Then Wf is a null Gδ in R.

Proof. For any m ∈ ω we have µ(f(m)−2−m, f(m) + 2−m) = 2−m+1, and so for any
n ∈ ω\1,

µ

(
⋃

m>n

(f(m)− 2−m, f(m) + 2−m)

)

≤
∑

m>n

2−m+1 = 2−n+1.

It follows that Wf has measure 0. Clearly Wf is a Gδ.

Proposition 30.89. (IV.8.15) Let f : ω → Q and set

Wf =
⋂

n∈ω

⋃

m>n

(f(m)− 2−m, f(m) + 2−m).

Let P = Fn(I, 2, ω) and let G be P-generic over M . Then for every real number x in M [G]
there is an f ∈ ωQ such that f ∈M and x ∈Wf .

Proof. For each m ∈ ω let h(m) ∈ Q be such that x − 2−m < h(m) < x + 2−m.
Thus h ⊆ ω × Q. Let ḣ be a nice name for a subset of (ω × Q)v such that ḣG = h. By
the argument in the proof of Lemma 30.10 there is a countable K ⊆ I such that ḣ is a
Fn(K, 2, ω)-name. Now Fn(K, 2, ω) ⊆c P by Example 25.64, so Lemma 30.3 applies to the
inclusion Fn(K, 2, ω) ⊆c P. So with H = G∩Fn(K, 2, ω) we have M ⊆M [H] ⊆M [G] and
h = ḣG = ḣH .

Now let ẋ be a P-name such that ẋG = x. Choose p ∈ H such that p  ∀m ∈
ω[ḣ(m) ∈ Q̌]. Let {qi : i ∈ ω} enumerate all the members of Fn(K, 2, ω) which are ≤ p.
We now define two sequences i ∈ ωω and s ∈ ωQ by recursion. Let i(0) and s0 be such
that qi(0) ≤ p, qi(0) ∈ H, and qi(0)  [ḣ(0) = š0]. Let i(m + 1) and sm+1 be such that

qi(m+1) ≤ qi(m), qi(m+1) ∈ H, and qi(m+1)  [ḣ(m+ 1) = šm+1].

Take t ∈ G such that t  ∀m ∈ ω[ẋ− 2−m < ḣ(m) < ẋ+ 2−m]. Now we claim
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(1) ∀m ∈ ω[x− 2−m < sm < x+ 2−m].

In fact, take any m ∈ ω. Let u ∈ G such that u ≤ t, qi(m). Then u  ẋ − 2−m < šm <
ẋ+ 2−m, and hence x− 2−m < sm < x+ 2−m, proving (1).

From (1) we get ∀m ∈ ω[sm − 2−m < x < s+ 2−m]. Hence x ∈Ws.
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31. Iterated forcing

Lemma 31.1. (V.1.1) Let P,Q be posets in the ground model M . Define i : P → P × Q

by i(p) = (p, 11) and j : Q→ P×Q by i(q) = (11, q)). Let K be P×Q-generic over M . In
M [K] let G = i−1[K] and H = j−1[K]. Then

(i) G is P-generic over M .
(ii) H is Q-generic over M .
(iii) K = G×H.

Proof. By Lemma 25.81, i and j are complete embeddings. Hence G and H are
generic by Lemma 30.2. To prove that K ⊆ G × H, suppose that (p, q) ∈ K. Then
(p, 11), (11, q) ∈ K, so p ∈ G and q ∈ H. Thus K ⊆ G×H. For G×H ⊆ K, suppose that
p ∈ G and q ∈ H. Thus (p, 11), (11, q) ∈ K. Since K is a filter, there is a (p′, q′) ∈ K such
that p′, q′) ≤ (p, 11), (11, q). Thus (p′, q′) ≤ (p, q), so (p, q) ∈ K.

Theorem 31.2. (V.1.2) Let P,Q, i, j be as in Lemma 31.1. Outside of M let G ⊆ P and
H ⊆ Q. Then the following are equivalent:

(i) G×H is P×Q-generic over M .
(ii) G is P-generic over M and H is Q-generic over M [G].
(iii) H is Q-generic over M and G is P-generic over M [H].

Moreover, if (i)-(iii) hold, then M [G×H] = M [G][H] = M [H][G].

Proof. (i)⇒(ii): Assume (i). Then i−1[G×H] = G, so by Lemma 31.1, G is P-generic
over M . Also, H is Q-generic over M , and hence H is a filter on Q. Suppose that D ⊆ Q

is dense and D ∈ M [G]. Then there is a P-name Ḋ such that D = ḊG. Take p ∈ G such
that p  [Ḋ is dense in Q̌]. Let

D′ = {(p1, q1) ∈ P×Q : p1 ≤ p and p1  [q̌1 ∈ Ḋ]}.

Then D′ is dense below (p, 11). In fact, suppose that (p2, q2) ≤ (p, 11). Then p2 ≤ p, so
p2  [Ḋ is dense in Q̌]. Hence p2  ∃y ∈ Q̌[y ∈ Ḋ and y ≤ q̌2]. By Proposition 29.15 there
exist p3 ≤ p2 and q3 ∈ Q such that p3  [q̌3 ∈ Ḋ and q̌3 ≤ q̌2]. Thus (p3, q3) ∈ D′ and
(p3, q3) ≤ (p2, q2) as desired. So D′ is dense below (p, 11).

Now p ∈ G, so (p, 11) ∈ G×H. Choose (p4, q4) ∈ D′ ∩ (G×H). Then p4  q̌4 ∈ Ḋ, so
q4 ∈ ḊG = D and q4 ∈ H. This proves that H is Q-generic over M [G]. Hence (ii) holds.

(ii)⇒(i): Assume (ii). Since G and H are filters, clearly G ×H is a filter. To prove
that it is generic, suppose that D ⊆ P×Q is dense and D ∈M . Let

D∗ = {q ∈ Q : ∃p ∈ G[(p, q) ∈ D]}.

Thus D∗ ∈ M [G]. We claim that D∗ is dense in Q. To prove this, suppose that q0 ∈ Q.
Let

D′ = {p1 : ∃q1 ≤ q0[(p1, q1) ∈ D]}.

Clearly D′ is dense in P. Choose p1 ∈ G∩D′. Then choose q1 ≤ q0 such that (p1, q1) ∈ D.
Then q1 ∈ D∗ and q1 ≤ q0. So D∗ is dense in Q.
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Choose q ∈ D∗∩H. Say p ∈ G with (p, q) ∈ D. Thus (p, q) ∈ D∩ (G×H), as desired;
(i) holds.

Similarly, (i)⇔(iii).
For the “moreover” statement, we use Lemma 28.8. We have G×H ∈M [G][H] and

M ⊆M [G][H], so M [G×H] ⊆M [G][H].
Also, G ∈M [G×H] and M ⊆M [G×H], so M [G] ⊆M [G×H]. Also, H ∈M [G×H],

so M [G][H] ⊆M [G×H].
By symmetry, M [G×H] = M [H][G].

An index function is a function E such that dmn(E) is a set of regular cardinals. An
Easton index function is an index function E such that:

(1) ∀κ ∈ dmn(E)[E(κ) is an infinite cardinal such that cf(E(κ)) > κ].

(2) ∀κ, λ ∈ dmn(E)[κ < λ→ E(κ) ≤ E(λ)].

If E is an Easton index function with domain I and R =
∏

κ∈I Fn(E(κ), 2, κ), then the
Easton poset P(E) is defined by

p ∈ P(E) iff p ∈ R and ∀λ[λ regular → |{κ ∈ λ ∩ I : p(κ) 6= 11}| < λ].

Note that 11 = ∅.

Proposition 31.3. Let E be an Easton index function such that there is no regular limit
cardinal λ such that there is a p ∈ R such that |{κ ∈ λ ∩ dmn(E) : p(κ) 6= 11}| = λ. Then
P(E) = R, with R as above.

Proof. Assume the hypothesis, but suppose that λ is regular and there is a p ∈ R

such that |{κ ∈ λ ∩ dmn(E) : p(κ) 6= 11}| = λ. Then λ is a successor cardinal ℵα+1. But
then |{κ ∈ λ ∩ dmn(E) : p(κ) 6= 11}| ≤ max(ω, |α|) < λ, contradiction.

Lemma 31.4. (V.2.3) Suppose that E is an Easton index function such that dmn(E) ⊆
λ+, where λ is a regular cardinal such that 2<λ = λ. Then P(E) has the λ+-cc.

Proof. Say dmn(E) = I. Let W = {pα : α < λ+} ⊆ P(E); we want to show that W
is not an antichain. Thus each pα is a function with domain I, with pα(κ) ∈ Fn(E(κ), 2, κ)
for each κ ∈ I. For each α < λ+ let Dα = {(κ, x) : κ ∈ I, x ∈ dmn(pα(κ))}.

(1) |Dα| < λ for each α < λ+.

In fact, let X = {κ ∈ λ ∩ I : pα(κ) 6= 11}. Then |X | < λ. If λ /∈ I, then

|Dα| =
∑

κ∈I

|dmn(pα(κ))| =
∑

κ∈X

|dmn(pα(κ))| < λ,

since each |dmn(pα(κ))| < κ < λ. If λ ∈ I, then

|Dα| =
∑

κ∈I

|dmn(pα(κ))| =
∑

κ∈X

|dmn(pα(κ))|+ |dmn(pα(λ))| < λ.
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Note by Proposition 29.32 and Lemma 29.35 that for α < λ+ we have |[α]<λ ≤ λ<λ =
2<λ = λ. Hence we can apply Theorem 24.4 with κ, λ replaced by λ, λ+ to obtain
B ∈ [λ+]λ

+

and R such that Dα ∩Dβ = R for all distinct α, β ∈ B. Now 2|R| ≤ 2<λ = λ
and

B =
⋃

h∈Q

{α ∈ B : ∀(κ, s) ∈ R[(pα(κ))(s) = h(κ, s)]},

where Q = R2, so there exist distinct α, β ∈ B such that ∀(κ, s) ∈ R[(pα(κ))(s) =
(pβ(κ))(s)]. Thus pα and pβ are compatible.

If E is an Easton index function and λ is an ordinal, then E+
λ = E ↾ {κ : κ > λ} and

E−
λ = E ↾ {κ : κ ≤ λ}.

Lemma 31.5. (V.2.5) P(E) ∼= P(E−
λ )× P(E+

λ ).

Proof. For any x ∈ P(E) let f(x) = (x ↾ {κ : κ ≤ λ}, x ↾ {κ : κ > λ}).

Lemma 31.6. (V.2.6) Assuming GCH, if E is any Easton index function, then P(E)
preserves cofinalities and cardinals.

Proof. By Proposition 29.3 it suffices to show that every uncountable regular cardinal
in M remains regular in M [K] whenever K is P(E)-generic over M . Suppose not; say θ

is uncountable and regular in M while λ
def
= (cf(θ))M [K] < θ. Thus λ is regular in M [K].

Let f ∈M [K], f : λ→ θ with sup(rng(f)) = θ.
By Lemmas 30.5 and 31.5 and Theorem 31.2 we can write M [K] = M [H][G] with H

(P(E+
λ ))M -generic over M and G (P(E−

λ ))M -generic over M [H].
Now (P(E+

λ ))M is λ-closed in M . For, if α < λ and 〈pξ : ξ < α〉 is decreasing in
(P(E+

λ ))M , recall that (P(E+
λ ))M ⊆

∏

κ∈I,λ<κ Fn(E(κ), 2, κ); hence we can define q(κ) =
⋃

ξ<α pξ(κ) for all κ ∈ I with κ > λ and we get an extension of 〈pξ : ξ < α〉. It follows

from Lemma 29.9 that (P(E+
λ ))M does not add λ-sequences. Hence 2<λ = λ in M [H] and

(P(E−
λ ))M [H] = (P(E−

λ ))M . Now by Lemma 31.4 applied in M [H], (P(E−
λ ))M is λ+-cc in

M [H]. Now by Theorem 29.4 there is an F : λ → P(θ) such that ∀ξ < λ[f(ξ) ∈ F (ξ)
and (|F (ξ)| ≤ λ)M [H]. Now again (P(E+

λ ))M is λ-closed in M , so by Theorem 29.9 we get
F ∈ M and ∀ξ < λ[(|F (ξ)| ≤ λ)M ]. Now in M ,

⋃

ξ<λ F (ξ) is of size ≤ λ and is cofinal in
θ, contradiction.

Proposition 31.7. Assume GCH, and let E be an Easton index function with domain I.
For any infinite cardinal θ, |P(E−

θ )| ≤
∏

κ∈I,κ≤θ E(κ).

Proof. In fact, P(E−
θ ) ⊆

∏

κ∈I,κ≤θ Fn(E(κ), 2, κ). Now if κ ∈ I and κ ≤ θ, then

|[E(κ)]<κ| = E(κ) by (1). Hence

|Fn(E(κ), 2, κ)| = |{f : f is a function, dmn(f) ∈ [E(κ)]<κ, rng(f) ⊆ 2}|

= |{f : ∃X ∈ [E(κ)]<κ[f ∈ X2]}|

=

∣
∣
∣
∣
∣
∣

⋃

X∈[E(κ)]<κ

X2

∣
∣
∣
∣
∣
∣
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≤
∑

X∈[E(κ)]<κ

2|X|

≤ |E(κ)|.

It follows that |P(E−
θ )| ≤

∏

κ∈I,κ≤θ E(κ).

Theorem 31.8. (V.2.7) Let M |= GCH. In M let E be an Easton index function and let
P = P(E). Let K be P-generic over M . Then P preserves cofinalities and cardinals, and
M [K] |= ∀κ ∈ dmn(E)[2κ = E(κ)].

Proof. Preservation of cofinalities and cardinals is given by Lemma 31.6.
Now let κ ∈ dmn(E). We define Fκ : E(κ)→ 2 by saying for δ < E(κ) that Fκ(δ) = i

iff there is a p ∈ K such that δ ∈ dmn(p(κ)) and (p(κ))(δ) = i. Then we define for
α < E(κ) hα ∈

κ2 by defining hα(ξ) = Fκ(κ · α + ξ). Clearly for any δ < κ the set

Dδ
def
= {p ∈ P : δ ∈ dmn(p(κ))} is dense, so Fκ(δ) is defined. If α, β ∈ κ and α 6= β, then

the set

Nαβ
def
= {p ∈ P : ∃ξ < κ[κ·α+ξ, κ·β+ξ ∈ dmn(p(κ)) and (p(κ))(κ·α+ξ) 6= (p(κ))(κ·β+ξ)]}

is dense. It follows that hα 6= hβ for α 6= β.

(1) |P(E−
κ )| ≤ E(κ).

In fact, by Proposition 31.7, |P(E−
κ )| ≤

∏

µ∈I,µ≤κ |E(µ)| ≤ (E(κ))<κ = E(κ).

Now by Lemma 31.4, P(E−
κ ) has the κ+-cc. It follows that there are at most E(κ)

nice P(E−
κ )-names for subsets of κ̌. Now by Lemma 29.9, forcing with P(E+

κ ) does not
add any new κ-sequences. Now a nice P(E−

κ )-name for a subset of κ̌ can be considered as
a κ-sequence. Hence in M [H] there are at most E(κ) nice P(E−

κ )-names for subsets of κ̌.
Now by the proof of Proposition 29.22 we get (2κ ≤ E(κ))M [H][G].

Corollary 31.9. If GCH holds in the ground model, then ∀n ∈ ω[2ℵn = ℵ3+2n] in the
generic extension by

∏

n∈ω Fn(ω3+2n, 2, ωn).

Proof. Let dmn(E) = {ωn : n ∈ ω} and E(ωn) = ω3+2n for all n ∈ ω. Then E
is an Easton index function and

∏

ωn∈dmn(E) Fn(ω3+2n, 2, ωn) and
∏

n∈ω Fn(ω3+2n, 2, ωn)
are isomorphic.

Proposition 31.10. If κ is a limit cardinal, 〈λξ : ξ < cf(κ)〉 is a strictly increasing
sequence of cardinals with supremum κ, then 2κ = (

∑

ξ<cf(κ) 2λξ )cf(κ).

Proof. See the proof of Proposition 11.80.

Theorem 31.11. (Bukovsky, Hechler) If κ is a singular cardinal ν is a cardinal, and
∃α < κ∀µ ∈ (α, κ)[2µ = ν], then 2κ = ν.

Proof. Let 〈λξ : ξ < cf(κ)〉 be a strictly increasing sequence of cardinals with
supremum κ, and let µ < κ be such that 2µ = ν. Then

∑

ξ<cf(κ) 2λξ = (2µ)cf(κ), so by

Proposition 31.10, 2κ = (2µ)cf(κ) = ν.
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Corollary 31.12. It is relatively consistent that 2ℵω is singular.

Proof. Let dmn(E) = {ωn : n ∈ ω} and E(ωn) = ℵℵω+1
for all n ∈ ω. Thus

cf(E(ωn)) = ℵω+1 > ωn for all n. So E is an Easton function. In the generic extension,
2ωn = ℵℵω+1

for all n. Hence by Theorem 31.11, 2ℵω = ℵℵω+1
.

Proposition 31.13. (V.2.9) Working in ZFC, let E be an Easton index function, and
assume that ∀κ ∈ dmn(E)[2κ = E(κ)]. For any infinite cardinal θ let

E′(θ) = max(θ+, sup{E(κ) : κ ∈ θ+ ∩ dmn(E)}).

Then let

E∗(θ) =

{
E′(θ) if cf(E′(θ)) > θ,
(E′(θ))+ if cf(E′(θ)) ≤ θ.

Then 2θ ≥ E∗(θ).

Proof. Case 1. cf(E′(θ) > θ. Then E∗(θ) = E′(θ) = max(θ+, sup{E(κ) : κ ∈
θ+ ∩ dmn(E)}) = max(θ+, sup{2κ : κ ∈ θ+ ∩ dmn(E)}).

Subcase 1.1. θ+ ≤ sup{2κ : κ ∈ θ+ ∩ dmn(E)}. Then E∗(θ) = sup{2κ : κ ∈
θ+ ∩ dmn(E)} ≤ 2θ.

Subcase 1.2. sup{2κ : κ ∈ θ+ ∩ dmn(E)} < θ+. Then E∗(θ) = θ+ ≤ 2θ.
Case 2. cf(E′(θ)) ≤ θ. Then E′(θ) = sup{2κ : κ ∈ θ+ ∩ dmn(E)}. Thus E′(θ) ≤ 2θ.

Now cf(2θ) > θ by Corollary 11.55, so by the case condition, (E′(θ))+ ≤ 2θ.

Proposition 31.14. (V.2.10) In the model of Theorem 31.8, 2θ = E∗(θ) for all infinite
θ, where E∗ is as in Proposition 31.13

Proof. Recall that M [K] is obtained from P = P(E) ⊆
∏

κ∈I Fn(E(κ), 2, κ), where
I = dmn(E). Let θ be any infinite cardinal.

Case 1. θ ∈ I. Then 2θ = E(θ) = E′(θ) and cf(E′(θ)) > θ, so E∗(θ) = E′(θ) = 2θ.
Case 2. θ /∈ I, cf(E′(θ)) > θ. So E∗(θ) = E′(θ). By Proposition 31.13, 2θ ≥ E′(θ).

Subcase 2.1. sup{E(κ) : κ ∈ θ+ ∩ dmn(E)} ≤ θ+. Thus sup{2κ : κ ∈ θ+ ∩
dmn(E)} ≤ θ+. Now by Proposition 31.7, |P(E−

θ )| ≤
∏

κ∈I,κ≤θ E(κ) =
∏

k∈I,κ≤θ 2κ ≤

(θ+)θ = θ+. It follows that there are at most θ+ nice names for a subset of θ̌. Hence
M [H] |= 2θ = θ+. Now P(E+

θ ) is θ+-closed, So no further θ-seqences are introduced. So
M [K] = M [H][G] |= 2θ = θ+ = E′(θ) = E∗(θ).

Subcase 2.2. sup{E(κ) : κ ∈ θ+ ∩ dmn(E)} > θ+. Then E′(θ) = sup{E(κ) : κ ∈
θ+ ∩ dmn(E)}. Now by Proposition 31.7, |P(E−

θ )| ≤
∏

κ∈I,κ≤θ E(κ) ≤ (sup{E(κ) : κ ∈

θ+∩dmn(E)})θ = sup{E(κ) : κ ∈ θ+∩dmn(E)} since cf(E′(θ)) > θ. So there are at most
E′(θ) = sup{E(κ) : κ ∈ θ+ ∩ dmn(E)} nice names for a subset of θ̌. Now E′(θ) ≤ 2θ by
Propositionn 31.13, and so 2θ = sup{E(κ) : κ ∈ θ+ ∩ dmn(E)} = E′(θ) = E∗(θ) in M [H],
hence also in M [K].

Case 3. θ /∈ I, cf(E′(θ)) ≤ θ. So E∗(θ) = (E′(θ)+. By Proposition 31.13, 2θ ≥ E∗(θ).
Now by Proposition 31.7, |P(E−

θ )| ≤
∏

κ∈I,κ≤θ E(κ) ≤ (sup{E(κ) : κ ∈ θ+ ∩ dmn(E)})θ =

(E′(θ))θ = (E′(θ))+. So there are at most (E′(θ))+ nice names for subsets of θ in M , so
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(2θ)M [H] ≤ (E′(θ))+ = E∗(θ). No new subsets of θ are introduced by G, so 2θ = E∗(θ) in
M [K].

Proposition 31.15. Let E(ωn) = ωn+2 for all n ∈ ω and E(ωω+1) = ωω+3 and assume
GCH in M . Force with P(E). Then in M [G] we have:

(i) 2ℵn = ℵn+2 for all n ∈ ω.
(ii) 2ℵω = ℵω+1

(iii) 2ℵω+1 = ℵω+3.
(iv) 2ℵω+β = ℵα+β+1 for β ≥ 2.

Proof. (i) and (iii) are clear from Theorem 31.8. For (ii), E′(ℵω) = ℵω+1 = E∗(ℵω),
and (ii) follows. For (iv), E′(ℵω+β) = max(ℵω+β+1,ℵω+3) = ℵω+β+1, and (iv) follows.

Proposition 31.16. Let E(ωn) = ωω+n+1 for all n ∈ ω and E(ωω+1) = ωω+ω+1 and
assume GCH in M . Force with P(E). Then in M [G] we have:

(i) 2ℵn = ℵω+n+1 for all n ∈ ω.
(ii) 2ℵω = ℵω+ω+1.
(iii) 2ℵω+1 = ℵω+ω+1.
(iv) 2ℵω+β = ℵω+ω+1 for ω > β ≥ 2.
(v) 2ℵω+ω = ℵω+ω+1.
(vi) 2ℵω+ω+β = ℵω+ω+β+1 for β ≥ 1.

Proof. (i) and (iii) are clear from Theorem 31.8. For (ii),

E′(ℵω) = max(ℵω+1,ℵω+ω) = ℵω+ω

and E∗(ℵω) = ℵω+ω+1; (ii) follows. For (iv), E′(ℵω+β) = max(ℵω+β+1,ℵω+ω+1) =
ℵω+ω+1 = E∗(ℵω+β), and (iv) follows. For (v), E′(ℵω+ω) = max(ℵω+ω+1,ℵω+ω+1) =
ℵω+ω+1 = E∗(ℵω+ω), and (v) follows. For (vi), E′(ℵω+ω+β) = max(ℵω+ω+β+1,ℵω+ω+1) =
ℵω+ω+β+1 = E∗(ℵω+ω+β), and (vi) follows.

We work out the class version of Easton’s theorem.

A class Easton function is a class function E such that dmn(E) is a class and conditions
(1) and (2) preceding Proposition 31.3 hold. R(E) is the class of all p such that dmn(p) is
a subset of dmn(E) and for each κ ∈ dmn(p), p(κ) ∈ Fn(E(κ), 2, κ)\{∅}. For p, q ∈ R we
write p ≤ q iff dmn(q) ⊆ dmn(p) and for all κ ∈ dmn(q)[p(κ) ⊆ q(κ)]. P(E) is the class of
all p ∈ R(E) such that

∀regular λ[|{κ ∈ dmn(p) : κ < λ}| < λ].

We now go through the basic results of forcing, for proper classes.

Forcing posets are allowed to be classes.
Generic filters can be classes.
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Lemma 28.1–28.6 hold.
M [G] = {τG : τ ∈MP} ∪ {G}; it is countable.
For each α ∈ On let Γα = {(p̌, p) : p ∈ P ∩ Vα}.

Proposition 31.17. If G is P-generic over M , then G =
⋃

α∈On ΓαG.

Proof. If α ∈ On and x ∈ ΓαG, then there is a p ∈ G∩ Vα such that x = p̌G = p. So
⊇ holds.

If x ∈ G, say x ∈ Vα. Then x = x̌ and (x̌, x) ∈ Γα, so ⊆ holds.

Lemma 28.7 requires an addition to the proof given. Suppose that x ∈ G; we want to
show that x ∈M [G]. By Proposition 31.17, choose α so that x ∈ ΓαG. Thus x = p̌G with
(p̌, p) ∈ P ∩ Vα, so x ∈M [G].

Now Lemmas 28-9–28.10 go through
Lemma 28.11 does not go through.
Lemmas 28.12–28.22 go though.
The proof of Theorem 28.23 goes through except for the power set axiom; the set S defined
in that proof is a proper class.

Proposition 31.18. (V.2.14) Let M be a c.t.m. and let P = Fn(ω, o(M)). Note that
P /∈ M , as otherwise o(M) ∈ M , contradiction. Let G be P-generic over M . Then M [G]
is not a model of ZFC.

Proof. Suppose it is. For each α < o(M) let Dα = {p ∈ P : ∃n ∈ ω[n ∈ dmn(p)
and p(n) = α. Then Dα is dense. It follows that

⋃
G : α → o(M) is surjective, and so

o(M) ∈M [G]. But o(M) = o(M [G]) by Lemma 28.13, contradiction.

Theorem 28.24 holds.
Propositions 28.30–28.31 hold.
Propositions 28.38–28.40 hold.
The results 29.2–29.5 hold.
The results 29.9–29.10 hold.
The results 29.13–29.15 hold.
The results 29.20–29.21 hold.
The results 30.1–30.5 hold.
The results 31.1–31.2 hold.
In the definition preceding Lemma 31.5, note that P(E+

λ ) can be a proper class.

Proposition 31.19. (V.2.15) If E is a class Easton function, then forcing with P(E)
produces a model of ZFC.

Proof. By the above, only the power set axiom remains. So we want to show that
M [K] |= ∀x∃y∀z[z ⊆ x→ z ∈ y]. So, suppose that x ∈M [K].

Now for each infinite cardinal κ, let P(E−
κ )′ be the set of all functions p such that

dmn(p) ⊆ E−
κ , p ∈

∏

κ∈dmn(p) Fn(E(κ), 2, κ) and

∀regular λ[|{κ ∈ dmn(p) : κ < λ}| < λ].
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(1) P(E−
κ ) ∼= P(E−

κ )′

In fact, for each p ∈ P(E−
κ ) let f(p) = p ↾ {λ ∈ dmn(p) : pλ 6= ∅}. Clearly f is the desired

isomorphism.
Now let fκ be the isomorphism of P(E) onto P(E−

κ )′×P(E+
κ ) given as follows: fκ(p) =

(fκ ↾ E−
κ ), fκ ↾ E+

κ ). For each p ∈ P(E−
κ )′ let iκ(p) = f−1

κ (p, 11), and for each q ∈ P(E+
κ )

let jκ(q) = f−1
κ (11, q). Let Gκ = i−1

κ [K] and Hκ = j−1
κ [K].

(1) P(E) =
⋃

κ an infinite cardinal

P(E−
κ )′.

In fact, suppose that p ∈ P(E). Then p is a set, and so there is an infinite cardinal κ such
that dmn(p) ⊆ κ. It follows that p ∈ P(E−

κ )′.
Now for each infinite cardinal κ, let Nκ = {τ : τ is a P(E−

κ )′-name}. Let Q be the
class of all P(E) names.

(2) Q =
⋃

κ an infinite cardinal

Nκ.

We prove this by induction on the name τ ∈ Q. For (σ, p) ∈ τ , say σ ∈ Nκ(σ,p) and

p ∈ P(E−
λ(σ,p)). Let µ be such that κ(σ, p), λ(σ, p) < µ for all (σ, p) ∈ τ . Then τ ∈ Nµ.

This proves (2).

(3) There is an infinite cardinal κ such that x ∈M [Hκ].

In fact, say x = τK . By (2) choose κ so that τ ∈ Nκ. Then x = τHκ ∈ M [Hκ]. Now
M [Hκ] is a model of ZFC. Hence there is a y as called for in the power set axiom.

Theorem 31.20. (V.2.15a) If E is a class Easton function, then forcing with P(E)
produces a model M [K] of ZFC, and M [K] |= ∀κ ∈ dmn(E)[2κ = E(κ)].

Proof. By Proposition 31.19 and the proof of Theorem 31.8.

Corollary 31.21. There is a model of ∀regular κ[2κ = κ++].

This completes the exposition of class forcing.

Proposition 31.22. If W ⊆ I, then Fn(I, J, ω) ∼= Fn(W,J, ω)× Fn(I\W,J, ω).

Lemma 31.23. (V.2.18) In M , assume that W ⊆ I and P = Fn(I, J, ω). Let K be
P-generic over M . Let G = K ∩ Fn(W,J, ω) and let H = K ∩ Fn(I\W,J, ω).

Then G is Fn(W,J, ω)-generic over M and H is Fn(I\W,J, ω)-generic over M [G].
Moreover, M [K] = M [G][H].

Proof. In M define ζ : Fn(W,J, ω)× Fn(I\W,J, ω)→ Fn(I, J, ω) by ζ(p, q) = p ∪ q.
Then ζ is an isomorphism from Fn(W,J, ω) × Fn(I\W,J, ω) onto Fn(I, J, ω). Note that
ζ−1(p) = (p ↾ W, p ↾ (I\W )). Let K̃ = ζ−1[K]. So K̃ is Fn(W,J, ω)×Fn(I\W,J, ω)-generic
over M , and M [K] = M [K̃]. Now let i(p) = (p, 11) and j(p) = (11, p), G = i−1[K̃], and
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H = j−1[K̃]. Then by Lemma 31.1, G is Fn(W,J, ω)-generic over M , H is Fn(I\W,J, ω)-
generic over M [G]. By Theorem 31.2, M [K̃] = M [G][H]. Now

G = {p ∈ Fn(W,J, ω) : (p, 11) ∈ K̃} = {p ∈ Fn(W,J, ω) : p ∪ ∅ ∈ K}

= K ∩ Fn(W,J, ω);

H = {p ∈ Fn(I\W,J, ω) : (11, p) ∈ K̃} = {p ∈ Fn(I\W,J, ω) : ∅ ∪ p ∈ K}

= K ∩ Fn(I\W,J, ω).

Lemma 31.24. (V.2.19) In M , let P = Fn(κ, ω, ω). Let K be P-generic over M . Then
M [K] |= d ≥ κ.

Proof. Suppose not; then there is a dominating family {hα : α < θ} with θ < κ.
Let k : θ × ω → ω be defined by k(α, n) = hα(n). Let τ be a nice name for a subset of
(θ×ω)×ω such that τK = k. Note that there is a W0 ∈ [κ]≤θ such that τ is a Fn(W0, ω)-
name. Let W be such that W0 ⊆ W ⊆ κ and |κ\W | = ω. Then τ is a Fn(W,ω)-name,
and Fn(κ\W,ω) ∼= Fn(ω, ω). Let G = K ∩ Fn(W,ω) and H = K ∩ Fn(κ\W,ω). Then
by Lemma 31.23, G is Fn(W,ω)-generic over M , H is Fn(κ\W,ω)-generic over M [G],
and M [K] = M [G][H]. Now Fn(κ\W,ω) ∼= Fn(ω, ω); let k be an isomorphism. Let
f =

⋃
k[H] : ω → ω. Applying Lemma 30.35 with k[H],M [G] in place of G,M , we infer

that there is no l ∈ (ωω) ∩ M [G] such that f ≤∗ l. But hα ∈ M [G] for each α < θ,
contradiction.

For c ⊆ Q×Q define Uc =
⋃

(x,y)∈c(x, y) ⊆ R.

Lemma 31.25. (V.2.21) Let P = Fn(ω, 2, ω) and let H be P-generic over M . In M [H]
let h =

⋃
H : ω → 2, and let r =

∑

j∈ω(h(j) · 2−j). Thus r ∈ [0, 2] ⊆ R. Then r ∈ Uc for
all c ∈ P(Q×Q) ∩M such that Uc is dense in R.

Proof. For any c ⊆ Q×Q let

Dc =






p ∈ P : ∃n ∈ ω∃(x, y) ∈ c



dmn(p) = n and x <
∑

j<n

(p(j) · 2−j) < y − 21−n










.

(*) If Uc is dense in R, then Dc is dense in P.

In fact, suppose that Uc is dense in R, and suppose that p ∈ P. Let m ∈ ω\1 be such that
m − 1 is greater than all members of rng(p). Take (x, y) ∈ c such that (s + 2−m−1, s +
2−m) ∩ (x, y) 6= ∅. Say z ∈ (s + 2−m−1, s + 2−m) ∩ (x, y). Thus s + 2−m−1 < z < y and
x < z < s+ 2−m. So x < s+ 2−m and s+ 2−m−1 < y. Now we claim:

(1) There are q(0) < q(1) < · < q(k) with m − 1 ≤ q(0) and k > 0 such that x <
s+ 2−q(0) + 2−q(1) + · · ·+ 2−q(k−1) < y and s+ 2−q(0) + 2−q(1) + · · ·+ 2−q(k) < y.

Case 1. s + 2−m < y. Take r > m with s + 2−m + 2−r < y. Then (1) holds with
k = 1, q(0) = m, q(1) = r.
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Case 2. x < s + 2−m−1. Take r > m+ 1 with s + 2−m−1 + 2−r < y. Then (1) holds
with k = 1, q(0) = m+ 1, q(1) = r.

Case 3. s + 2−m−1 ≤ x and y ≤ s + 2−m. Thus y − x ≤ 2−m−1. Note that
s+ 2−m − s− 2−m−1 = 2−m−1.

Subcase 3.1. s + 2−m−1 = x. Take u > m + 2 so that 2−u < (y − x)/3. Then
21−u = 2 · 2−u < 2(y − x)/3 < y − x, hence x < s+ 2−m−1 + 21−u < y and 21−u + 2−u =
2 · 2−u + 2−u = 3 · 2−u < y − x, hence s+ 2−m−1 + 21−u + 2−u < y, giving (1).

Subcase 3.2. s + 2m−1 < x. We now define n(0) < n(1) < · · · by recursion. Let
n(0) = m + 1. If n(i) has been defined, n(0) < · · · < n(i), s + 2−n(0) + · · · + 2−n(i) < x,
and let n(i + 1) > n(i) be minimum such that s + 2−n(0) + · · · + 2−n(i) + 2−n(i+1) ≤ x.
If s + 2−n(0) + · · · + 2−n(i) + 2−n(i+1) = x, then (1) can be satisfied as in Subcase 3.1.
Otherwise the construction continues.

So suppose the construction continues forever. We say that i is a gap iff n(i + 1) >
n(i) + 1.

(1) There is a gap.

Otherwise we have x ≥ s + 2−n(0) + 2−n(1) + · · · = s + 2−n(0)+1 = s + 2−m ≥ y > x,
contradiction.

(2) There are arbitrarily large gaps.

In fact, suppose not, and let i be the largest gap. Then

x ≥ s+ 2−n(0) + · · ·+ 2−n(i) + 2−n(i+1) + 2−n(i+1)−1 + · · ·

= s+ 2−n(0) + · · ·+ 2−n(i) + 2−n(i+1)+1 > x,

contradiction.
Now let i be a gap such that 2−n(i)−1 < (y−x)/2. Then s+ 2−n(0) + · · ·+ 2−n(i) < x,

while s+2−n(0) + · · ·+2−n(i) +2−n(i)−1 > x. So x < s+2−n(0)+ · · ·+2−n(i) +2−n(i)−1 < y.
Also n(i+1) > n(i)+1, so 2−n(i+1) < (y−x)/2. hence s+2−n(0) + · · ·+2−n(i) +2−n(i)−1 +
2−n(i+1) < y. This gives (1).

Now we take q(0) < · · · < q(k) as in (1). Then

s+2−q(0) + · · ·+ 2−q(k−1) + 2−q(k)−1 + 21−q(k)−2

= s+ 2−q(0) + · · ·+ 2−q(k−1) + 2−q(k)−1 + 2−q(k)−1

= s+ 2−q(0) + · · ·+ 2−q(k),

and hence s + 2−q(0) + · · ·+ 2−q(k)−1 < y − 21−q(k)−2. Define r with domain q(k) + 2 by
setting, for any i < q(k) + 2,

r(i) =







p(i) if i ∈ dmn(p),
1 if i = q(j) for some j < k,
1 if i = q(k) + 1,
0 otherwise.

Then p ⊆ r ∈ Dc. So Dc is dense.
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Now with G generic, let g =
⋃
G. Suppose that c ∈P(Q×Q) and Uc is dense in R.

By the above, Dc is dense. Take p ∈ G ∩Dc. Take any q ∈ G, and take r ≤ p, q. Then

x <
∑

j

(g(j) · 2−j) ≤
∑

j<n

(r(j)2−j) +
∞∑

j=n

2−j =
∑

j<n

(r(j)2−j) + 21−n < y.

Lemma 31.26. (V.2.22) Let P = Fn(κ × ω, 2, ω) where κ is any cardinal. Let K be
P-generic over M . Then M [K] |= [cov(meag) ≥ κ].

Proof. This is clear if κ = ω. So assume that κ > ω and the lemma is false. Then
there is a θ < κ and a collection A of meager sets with |A | = θ such that

⋃
A = R. We

may assume that each member of A is closed nowhere dense, by Lemma 18.25. Then for
any Y ∈ A , the set R\Y is open dense. So we may assume that we have given a collection
B of size θ, with each member of B of the form Uc, with c ∈ P(Q × Q), each Uc open
dense and in M (by absoluteness). Now one can proceed as in the proof of Lemma 31.24,
and obtain a generic h : ω → ω. Then Lemma 31.25 gives a contradiction.

Proposition 31.27. (V.2.23) Assume in M that CH holds, κ > ω, and κω = κ. Let K
be Fn(κ, 2, ω)-generic over M . Then in M [K] we have p = b = a = ω1.

Proof. By chapter 20 we have ω1 ≤ p ≤ b ≤ a, and by Proposition 30.14 we have
a ≤ ω1.

Proposition 31.28. (V.2.23a) Assume in M that CH holds, κ > ω, and κω = κ. Let K
be Fn(κ, 2, ω)-generic over M . Then in M [K] we have d = 2ω = κ.

Proof. By Theorem 29.23 we have 2ω = κ, and d = κ by Lemma 31.24.

Proposition 31.29. (V.2.23b) Assume in M that CH holds, κ > ω, and κω = κ. Let K
be Fn(κ, 2, ω)-generic over M . Then in M [K] we have cov(meag) = non(null) = 2ω.

Proof. cov(meag) = 2ω by Lemma 31.26 cov(meag) ≤ non(null) by Chapter 19.

Lemma 31.30. (V.2.26) In M , let (T,⊏) be an ω1-tree and let P be a countably closed
forcing poset. Then if C ∈M [G] is a path through T , it follows that C ∈M .

Proof. Assume not. Let C be the set of all paths through T in M . Then there exisst
a name Ċ and a p ∈ P such that p  [Ċ /∈ Č and Ċ is a path through T ]. Now we will
define ps and xs for s ∈ <ω2 and αn for n ∈ ω so that the following conditions hold:

(1) 0 = α0 < α1 < α2 < · · · < ω1.

(2) ps ∈ P and ps ≤ p.

(3) If dmn(s) = n, then xs ∈ Lαn(T ).

(4) ps  xs ∈ Ċ.

(5) ps⌢〈0〉 ≤ ps and ps⌢〈1〉 ≤ ps.

675



(6) xs⌢〈0〉 6= xs⌢〈1〉.

We start with any p∅ ≤ p and x∅ ∈ L0 such that p∅  x̌∅ ∈ Ċ; and we set α0 = 0. Clearly
(2)–(4) hold, and (1), (5), (6) are vacuously true.

Now suppose that n is given such that ps and xs have been constructed for all s ∈ n2.
For each s ∈ n2 let Es = {y ∈ T : ∃q ≤ ps[q  y ∈ Ċ]}. Then Es is a subtree of T and
meets every level. Moreover, Es ∩ Tαn+1 = xs↓′.

(7) Es is well-pruned.

In fact, suppose that y ∈ Es; say q ≤ ps and q  y ∈ Ċ. Also suppose that height(y) <
β < ω1. Then since q forces that Ċ is a path, there exist an r ≤ q and a z ∈ Lβ ∩ y ↑ such

that r  z ∈ Ċ.

(8) Es is not a path.

For, suppose it is a path. Then Es ∈ C . But ps  [Ċ /∈ Č ], so ps  [Ċ 6= Ěs]. Since
ps  [Ċ is a path and Ěs is a path], it follows that ps  [Ċ 6⊆ Ěs]. Hence there exist
y ∈ T\Es and q ≤ ps such that q  [y̌ ∈ Ċ], contradicting the definition of Es.

Since the Es are well-pruned and not paths, there is an αn+1 > αn such that for each
s ∈ n2 there are distinct. xs⌢〈0〉, xs⌢〈1〉 in Es ∩ Lαn=1

. Then there are ps⌢〈ε〉 for ε = 0, 1

such that ps⌢〈ε〉 ≤ ps and ps⌢〈ε〉  [xs⌢〈ε〉 ∈ Ċ]. Thus (1)–(6) hold.
Now let γ = sup{αn : n ∈ ω}. So γ < ω1. For each f ∈ ω2, by countable closure

and (5) there is a pf ≤ pf↾n for all n ∈ ω. By (2), pf  [Ċ is a path through T ]. Hence

pf  ∃y ∈ Lγ[y ∈ Ċ]. Hence there exist a qf ≤ pf and an xf ∈ Lγ such that qf  [xf ∈ Ċ].

For each n we have qf  [xf↾n ∈ Ċ], and height(xn) = αn < γ, so xf↾n ⊏ xf . Hence by
(6), the xf are all different, so |Lγ | ≥ 2ω, contradiction.

Proposition 31.31. (V.2.26a) In M let θ ≥ 2ω1 and P = Fn(ω1, θ, ω1), and let (T,⊏) be
an ω1-tree. Then T is not a Kurepa tree in M [G].

Proof. Clearly
⋃
G is a mapping from ω

M [G]
1 onto ωM1 . In M let C be the set of

all paths through T . Thus (|C | ≤ θ)M . By Lemma 31.30, C is also the set of all paths
through T in M [G]. So in M [G], |C | ≤ θ| = ω1; so T is not Kurepa.

Theorem 31.32. (V.2.25) Suppose that M is a c.t.m. of ZFC and (κ is strongly

inaccessible)M . Then there is a generic extension M [G] such that κ = ω
M [G]
2 and there is

no Kurepa tree in M [G].

Proof. In M , for each S ⊆ κ let

PS =

{

p ∈
∏

α∈S

Fn(ω1, α, ω1) : |{α ∈ S : pα 6= 11}| ≤ ω

}

.

Let P = Pκ.

(1) ∀S ⊆ κ[P ∼= PS × Pκ\S].
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In fact, for each x ∈ P let f(x) = (x ↾ S, x ↾ (κ\S). Clearly f is the desired isomorphism.

(2) P has the κ-cc.

In fact, let 〈pα : α < κ〉 be a system of elements of P. For each α < κ let Sα = {β < κ :
pα(β) 6= 11}. Thus each Sα is countable. Hence by Theorem 24.4 there is a T ∈ [κ]κ such
that 〈Sα : α ∈ T 〉 is a ∆-system, say with kernel K. Let γ < κ be greater than sup(K).
Then

|{pα ↾ K : α ∈ T}| ≤

∣
∣
∣
∣
∣

∏

α∈K

Fn(ω1, α, ω1)

∣
∣
∣
∣
∣
≤
∏

α∈K

|γ|ω1 ≤ (|γ|ω1)|K| < κ.

Hence there is a k ∈
∏

α∈K Fn(ω1, α, ω1) such that {α ∈ T : pα ↾ K = k} has size κ. For
any two β, γ ∈ {α ∈ T : pα ↾ K = k} the elements pβ and pγ are compatible. So (2) holds.

By (2), P preserves cofinalities and cardinals ≥ κ. Also, P is clearly countably closed,

so it does not add new ω-sequences. Hence κ is still a cardinal in M [G], and ωM1 = ω
M [G]
1 .

(3) For each α < κ there is a complete embedding from Fn(ω1, α, ω1)M into P.

In fact, for any x ∈ Fn(ω1, α, ω1) define f(x) ∈ P by setting, for any β < κ,

f(x)β =
{
x if α = β,
11 otherwise.

We check the conditions. (i) and (ii) are clear, as is ⇐ in (iii). For ⇒, suppose that f(x)
and f(y) are compatible. So there is a z ∈ P with z ≤ f(x), f(y). Then zα ≤ x, y, as
desired. For (iv), suppose that A is a maximal antichain in Fn(ω1, α, ω1). For any x ∈ P,
xα is compatible with some y ∈ A. Hence x is compatible with f(y), as desired. So (3)
holds.

Let f be as in (3). Then by Lemma 30.3, H
def
= f−1[G] is Fn(ω1, α, ω1)-generic over

M , and M [H] ⊆M [G]. We have a surjection
⋃
H : ω1 → α, and

⋃
H ∈M [G]. It follows

that ω
M [G]
2 = κ.

Now suppose that in M [G] there is a Kurepa tree (T,⊏). We may assume that T = ω1.
Thus ⊏⊆ (ω1 × ω1). We may assume that ⊏= ⊏̇G with ⊏̇ a nice name for a subset of
ω1 × ω1. Since P has the κ− cc, there is an A ∈ [P]<κ such that ⊏̇ ⊆ ((ω1 × ω1)×A. Let
S =

⋃

p∈A support(p). Thus |S| < κ. Let f be the isomorphism from P onto PS × Pκ\S
given by (1). Then M [G] = M [f [G]]. By Lemma 31.1 and Theorem 31.2 we obtain generic
G− over PS and G+ over Pκ\S such that M [f [G]] = M [G−][G+]. By Lemma 30.3 we have
(f∗(⊏̇))f [G] = (⊏̇)G =⊏. Now write ⊏̇ =

⋃

(m,n)∈ω×ω({(m.n)} × Bmn) with each Bmn an

antichain in P. Then f∗(⊏̇) =
⋃

(m,n)∈ω×ω({(m.n)} × {f(p) : p ∈ Bmn}). For each p ∈ A

write f(p) = (k(p), 11). For p ∈ PS let h(p) = (p, 11). Let ≺̇ =
⋃

(m,n)∈ω×ω({(m.n)}×{k(p) :

p ∈ Bmn}). Then

≺̇G− = {(m,n) : ∃q ∈ G−[((m,n), q) ∈ ≺̇]}

= {(m,n) : ∃q ∈ h−1[f [G]][((m,n), q) ∈ ≺̇]}

= {(m,n) : ∃q[h(q) ∈ f [G] and ((m,n), q) ∈ ≺̇]}

= {(m,n) : ∃q∃r[r ∈ G and (q, 11) = f(r) and ((m,n), q) ∈ ≺̇]}
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= {(m,n) : ∃q∃r[r ∈ G and q = k(r) and ((m,n), q) ∈ ≺̇]}

= {(m,n) : ∃r[r ∈ G and ((m,n), f(r)) ∈ f∗(⊏̇)]

= f∗(⊏)f [G] =⊏ .

Thus ⊏∈M [G−].
Now PS is countably closed, so it does not add any new ω-sequences. Hence (Pκ\S

is countably closed)M [G−]. By Lemma 31.30 it follows that every path through the tree
(ω1,⊏) that is in M [G] is already in M [G−]. Let C be the collection of all paths through
(ω1,⊏) which are in M [G].

(4) |PS| < κ in M .

In fact, Let γ < κ be greater than each member of S. Then

|PS| ≤
∏

α∈S

|Fn(ω1, α, ω1)| ≤
∏

α∈S

|γ|ω1 = (|γ|ω1)|S| < κ.

So (4) holds. Now by Proposition 30.80, κ is strongly inaccessible in P[G−]. We have
|C | ≤ 2ω1 < κ in M [G−], so there is an α < κ such that α /∈ S and |C | ≤ α. In M [G] we
have |C | ≤ |α| ≤ ω1, so that (ω1,⊏) is not a Kurepa tree in M [G].

Proposition 31.33. (V.2.28) Let S ⊆ ω1 be stationary. Let PS be the set of all countable
p ⊆ S such that p is closed in ω1, i.e., such that if γ is a limit ordinal and p∩γ is unbounded
in γ, then γ ∈ p.

(i) ∀p ∈ PS [p = ∅ or sup(p) = max(p) ∈ p].

For p, q ∈ PS, define q ≤ p iff (p = ∅ or q ∩ (max(p) + 1) = p).
Then PS is Baire.

Proof. Suppose that 〈Dn : n ∈ ω〉 is a system of dense open subsets of PS , and
p ∈ PS ; we want to find a member of

⋂

n∈ωDn which is below p. For each n ∈ ω define
fn : PS × S → PS by setting, for each q ∈ PS and each α ∈ S, fn(q, α) = some p ∈ Dn
such that p ≤ q ∪ {α}. Let θ be such that ω1,PS ∈ H(θ). Let 〈Mα : α < ω1〉 be a
nice chain of elementary submodels of H(θ) such that ω1, p, S ∈ M0 and each fn ∈ M0.

By Lemma 27.63, C
def
= {Mξ ∩ ω1 : ξ < ω1} is club in ω1. Take any ξ < ω1. Then

M(θ) |= ∀α < ω1∃β ∈ S[α < β], so Mξ |= ∀α < ω1∃β ∈ S[α < β]. Thus Mξ ∩ ω1 is a limit
ordinal, and is the supremum of members of S.

Now choose ξ < ω1 such that (Mξ ∩ω1) ∈ S. Let 〈αn : n ∈ ω〉 be a strictly increasing
sequence of members of S with supremum Mξ∩ω1. Now we define a sequence 〈qn : n ∈ ω〉.
Let q0 = p. If qn has been defined, let qn+1 = fn(qn, αn). Then p = q0 ≥ q1 ≥ · · ·, and

supn∈ω qn = Mξ ∩ ω1. Since Mξ ∩ ω1 ∈ S, we have r
def
=
⋃

n∈ω qn ∪ {Mξ ∩ ω1} ∈ PS and
r ≤ qn for all n, so r ∈

⋂

n∈ωDn.

Proposition 31.34. (V.2.28a) Let S ⊆ ω1 be stationary. Let PS be the set of all countable
p ⊆ S such that p is closed in ω1, i.e., such that if γ is a limit ordinal and p∩γ is unbounded
in γ, then γ ∈ p.

678



For p, q ∈ PS, define q ≤ p iff (p = ∅ or q ∩ (max(p) + 1) = p).
Let G be PS-generic over M . Then PS does not add ω-sequences, and hence ωM1 =

ω
M [G]
1 . Also,

⋃
G is a club which is a subset of S.

Proof. PS does not add ω-sequences by Proposition 31.33 and Proposition 30.49.
Clearly

⋃
G is club and is contained in S.

Proposition 31.35. (V.2.28b) If S and T are disjoint stationary subsets of ω1, then
PS × PT collapses ω1.

Proof. Let G be PS × PT -generic over M . By Lemma 31.1 there exist h which is
PS-generic over M and K which is PT -generic over M . By Proposition 31.34,

⋃
H is club

in ωH1 = ωM1 and is contained in S, and
⋃
K is club in ωK1 = ωM1 and is contained in T .

By Theorem 31.2 we have
⋃
H,
⋃
K ∈M [G]. Since S and T are disjoint, so are

⋃
H and

⋃
K. Since the intersection of two clubs in ω1 is a club, it follows that ω

M [G]
1 = ω.

Let H denote the assertion that there are ccc forcing posets P, Q such that P × Q is not
ccc.

Proposition 31.36. (V.2.29) MA(ω1)⇒ ¬H.

Proof. By Theorem 25.50.

Proposition 31.37. (V.2.29a) If there is a Suslin line, then H holds.

Proof. By Lemma 21.37, taking P = Q = O(X).

Proposition 31.38. (V.2.29b) CH⇒ H.

Proof. By Theorem 27.71.

Let H+ denote the assertion that there are ccc forcing posets P, Q such that P×Q collapses
ω1.

Proposition 31.39. (V.2.29c) H+ ⇒ H.

Proof. Assume ¬H. Thus for all ccc poset P and Q, also P× Q is ccc and hence it
preserves cardinals, so that H+ fails.

Proposition 31.40. (V.2.29d) If there is a Suslin tree, then H+ holds.

Proof. Let T be a well-pruned Suslin tree. Then by Proposition 30.50, T is ccc and
adds a path through T . Let Q be the forcing poset given in the proof of Theorem 25.101.
By that proof, Q is ccc. Let G be (T × Q)-generic over M . Let i(p) = (p, 11) for p ∈ T ,
and j(p) = (11, p) for p ∈ Q. Let H = i−1[G] and K = j−1[G]. Then by Lemma 31.1
and Theorem 31.2, H is T -generic over M , K is Q-generic over M , M [H] ⊆ M [G], and
M [K] ⊆ M [G]. Hence there is a path C through T in M [G] and there is a continuous
order preserving map from T into the rationals. Hence C is countable in M [G], so that

ω
M [G]
1 is countable.
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Proposition 31.41. (V.2.29e) CH implies H+.

Proof. Let Qµ be as in Proposition 27.74 for µ ∈ 2. Let G be (Q0×Q1)-generic over
M . Let i(p) = (p, 11) and j(p) = (11, p). Let H = i−1[G] and K = j−1[G]. So by Lemma
31.1 and Theorem 31.2, H is Q0-generic over M , K is Q1-generic over M , M [H] ⊆M [G],

and M [K] ⊆ M [G]. For each i ∈ ω1 the set Di
def
= {p ∈ Q0 : ∃n ∈ ω[pn = {i}]} is dense

in Q0. Hence Di ∩ H 6= ∅, for each i ∈ I. Let Zn = {i ∈ ω1 : ∃p ∈ H[pn = {i}}. Then

ω1 =
⋃

n∈ω Zn. Similarly, for each i ∈ ω1 the set D′
i

def
= {p ∈ Q1 : ∃n ∈ ω[pn = {i}]} is

dense in Q1. Hence D′
i ∩ K 6= ∅, for each i ∈ I. Let Yn = {i ∈ ω1 : ∃p ∈ K[pn = {i}}.

Then ω1 =
⋃

n∈ω Yn. Now suppose that i, j ∈ ω1, i 6= j, and i, j ∈ Zm ∩ Yn. Say p, q ∈ H
with pm = {i} and qm = {j}, and r, s ∈ K with rn = {i} and sn = {j}. Choose t ∈ G
such that t ≤ (p, 11), (q, 11), (11, r), (11s). Say t = (u, v). Then u ≤ p, q, so i, j ∈ um, hence
f({i, j}) = 0. But also v ≤ r, s, so i, j ∈ vn, hence f({i, j}) = 1, contradiction. It follows

that |Zm ∩ Yn| ≤ 1. If ωM1 = ω
M [G]
1 , then

ωM1 =

(
⋃

m∈ω

Zm

)

∩

(
⋂

n∈ω

Yn

)

=
⋃

m,n∈ω

(Zm ∩ Yn),

and this last set is countable, contradiction.

Proposition 31.42. (V.2.31) For ccc forcing posets P,Q the following are equivalent:
(i) P×Q is ccc.
(ii) 11P P [Q̌ is ccc].
(iii) 11Q Q [P̌ is ccc].

Proof. For (i)⇒(ii), assume ¬(ii). Then there exist p ∈ P and a P-name ḟ such that
p  [ḟ : ω1 → Q̌ and ḟ is one-one and rngḟ is an antichain]. For each ξ < ω1 choose
pξ ≤ p and qξ ∈ Q such that pξ  [ḟ(ξ) = q̌ξ]. Then (pξ, qξ) : ξ < ω1} is an antichain.

In fact, suppose that ξ, η < ω1 and (r, s) ≤ (pξ, qξ), (pη, qη). Then r  [ḟ(ξ) = q̌ξ] and

r  [ḟ(η) = q̌η] Hence r  ¬∃s[s ≤ q̌ξ and s ≤ q̌η]. But s ≤ qξ, qη, contradiction.

For (ii)⇒(i), assume (ii) and ¬(i). Let {(pξ, qξ) : ξ < ω1} be an antichain. Let Ḋ be the

P-name {(ξ̌, pξ) : ξ < ω1}. Now if G is P-generic over M , then ḊG = {ξ < ω1 : pξ ∈ G}.
If ξ, η ∈ DG, then pξ and pη are compatible, hence qξ and qη are incompatible, since

{(pξ, qξ) : ξ < ω1} is an antichain. It follows from (ii) that ḊG is countable. Thus 11  [Ḋ
is countable].

Let E = {ξ < ω1 : ∃r ∈ P[r  [ξ̌ = sup Ḋ]]}. For each ξ ∈ E let rξ ∈ Pbe such that

rξ  [ξ̌ = sup Ḋ]. Then {rξ : ξ ∈ E} is an antichain. So E is countable. Say E ⊆ β ∈ ω1.

If G is P-generic and α = sup ḊG, then there is an r ∈ G such that r  [α̌ = sup Ḋ], so
α ∈ E and hence α < β. Thus 11  [Ḋ ⊆ β̌]. Let G be P-generic with pβ ∈ G. Then

β ∈ ḊG ⊆ β, contradiction.

Let P be a forcing poset. A P-name for a forcing poset is a triple (Q̇, ≤̇Q, 1̇1Q) of P-names
such that 11Q ∈ dmn(Q̇) and

11P P [1̇1Q ∈ Q̇ and ≤̇Q is a forcing order with largest element 1̇1Q].
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Lemma 31.43. (V.3.2) Let M be a c.t.m. for ZFC, P ∈M a forcing poset, and let G be
P-generic over M . In M [G] let (X,≤X , 11X) be a forcing poset.

Then there is a P-name (Q̇, ≤̇Q, 1̇1Q) for a forcing poset such that, in M [G], the forcing
poset (Q̇G, (≤̇Q)G, (1̇1Q)G) is isomorphic to (X,≤X , 11X).

Moreover, we may take Q̇ to be α̌ for some ordinal α, and 11Q to be ∅̌, and ≤̇Q to be
a nice name for a subset of (α× α)̌ .

Proof. In M [G] let α = |X |. Let f be a bijection from X onto α which takes
11X to 0. Define ξ ⊑ η iff ξ, η < α and f−1(ξ) ≤X f−1(η). Thus f is an isomorphism
from (X,≤X , 11X) onto (α,⊑, 0). Let ϕ(u, v, w) abbreviate the statement “u ⊆ v × v is a
pre-order of the set v with largest element w ∈ v”. Thus ϕ(⊑, α, 0) holds.

Fix a P-name τ over M with τG =⊑. Let Q̇ = α̌ and 1̇1Q = 0̌. Now

11  ∃y[ϕ(y, α̌, 0̌) ∧ [ϕ(τ, α̌, 0̌)→ y = τ ]]

In fact, let H be P-generic over M . If ϕ(τH , α, 0), then we can take y = τH . If ¬ϕ(τH , α, 0),
then we can take y = α× α. By the maximal principle, Theorem 30.35, there is a name σ
such that

(1) 11  [ϕ(σ, α̌, 0̌) ∧ [ϕ(τ, α̌, 0̌)→ σ = τ ]].

By Proposition 29.21 let ⊑̇Q be a nice name for a subset of (α× α)̌ such that

(2) 11  [σ ⊆ (α× α)̌ → σ = ⊑̇Q].

Now ϕ(τG, α, 0), so by (1), σG = τG =⊑⊆ (α× α). Hence by (2), ⊑= σG = (⊑̇Q)G.

If P is a forcing poset and Q̇ is a P-name for a forcing poset, then P ∗ Q̇ is the triple
(R,≤, 11), where

R = {(p, q̇) ∈ P× dmn(Q̇) : p  [q̇ ∈ Q̇]};

11 = (11Q, 1̇1Q);

(p1, q̇1) ≤ (p2, q̇2) iff p1 ≤P p2 and p1  q̇1≤̇Qq̇2.

Moreover, i(p) = (p, 1̇1Q) for any p ∈ P.

Lemma 31.44. With the above notation,
(i) P ∗ Q̇ is a forcing poset.
(ii) p0 ≤ p1 iff i(p1) ≤ i(p2).
(iii) i(11P) = 11P∗Q̇.

(iv) If (p0, q̇0), (p1, q̇1) ∈ P ∗ Q̇ and p0 ⊥ p1, then (p0, q̇0) ⊥ (p1, q̇1).
(v) If p0 ⊥ p1 and (p1, q̇1) ∈ P ∗ Q̇, then (p0, 1̇1Q) ⊥ (p1, q̇1).
(vi) p0 ⊥ p1 iff i(p1) ⊥ i(p2).
(vii) i is a complete embedding.
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Proof. All except (vii) are clear. For (vii), we claim that p is a reduction of (p, q̇)
to P; see Lemma 25.78. In fact, suppose that i(r) ⊥ (p, q̇). Thus (r, 1̇1Q) ⊥ (p, q̇). Clearly
then p ⊥ r.

Proposition 31.45. If P,Q ∈M , then P×Q is isomorphic to P ∗ (Q̌, ≤̌Q, 1̌1Q).

Proof. Define f(p, q) = (p, q̌). Clearly p  [q̌ ∈ Q̌], so f(p, q) ∈ R. Clearly f is a
bijection. f(11P, 11Q) = (11P, 1̌1Q) = 11. For pi ∈ P and qi ∈ Q with i ∈ 2 we have

(p1, q1) ≤ (p2, q2) iff p1 ≤ p2 and q1 ≤ q2 iff p1 ≤ p2 and p1  q̌1≤̌Qq̌2.

With P and Q̇ as above, suppose that G is P-generic over M and H is a subset of Q̇G. We
define G ∗H = {(p, q̇) ∈ P ∗ Q̇ : p ∈ G and q̇G ∈ H}.

Theorem 31.46. (V.3.6) Assume given a product as above in M . Let K be P ∗ Q̇-generic
over M . Let G = i−1[K] and H = {q̇G : q̇ ∈ dmn(Q̇) and ∃p[(p, q̇) ∈ K]}.

Then G is P-generic over M and H is Q̇G-generic over M [G]. Also K = G ∗H and
M [K] = M [G][H].

Proof. G is generic because i is a complete embedding; see Lemma 30.2.

(1) H ⊆ Q̇G.

For, suppose that x ∈ H. Say x = q̇G with q̇ ∈ dmn(Q̇) and (p, q̇) ∈ K. Then p ∈ G and
p  q̇ ∈ Q̇, so x = q̇G ∈ Q̇G, proving (1).

(2) 11Q̇G
∈ H.

For, 11Q̇G
= (1̇1Q)G, 1̇1Q ∈ dmn(Q). and (11P, 1̇1Q) ∈ K, so (2) follows.

(3) If x ∈ H and x ≤ y, then y ∈ H.

For, suppose that x ∈ H and x ≤ y. Say x = q̇G and (p, q̇) ∈ K. Since y ∈ Q̇G, there
is an (ṙ, p′) ∈ Q such that p′ ∈ G and y = ṙG. So q̇G ≤ ṙG. Let p′′ ∈ G be such that
p′′  q̇ ≤ ṙ. Hence (p, q̇), (p′, 1̇1), (p′′, 1̇1) ∈ K. Let (p′′′, ṡ) ∈ K be such that (p′′′, ṡ) ≤
(p, q̇), (p′, 1̇1), (p′′, 1̇1). Now (p′′′, ṡ) ≤ (p, q̇), so p′′′  ṡ ≤ q̇. Also, (p′′′, ṡ) ≤ (p′′, 1̇1), so
p′′′ ≤ p′′ and hence p′′′  q̇ ≤ ṙ. So p′′′  ṡ ≤ ṙ. Thus (p′′′, ṡ) ≤ (p′′′, ṙ), so (p′′′, ṙ) ∈ K. It
follows that y = ṙG ∈ H, proving (3).

(4) If x, y ∈ H, then there is a z ∈ H such that z ≤ x, y.

For, suppose that x, y ∈ H. Say x = q̇G with q̇ ∈ Q̇, (p, q̇) ∈ K, and y = ṙG with ṙ ∈ Q̇.
(s, ṙ) ∈ K, Choose (t, u̇) ∈ K such that (t, u̇) ≤ (p, q̇), (s, ṙ). Then u̇G ∈ H and t  u̇ ≤ q̇,
and t ∈ G, so u̇G ≤ q̇G. Similarly u̇G ≤ ṙG. So (4) holds.

(5) H is Q̇G-generic over M [G].

In fact, it remains only to take any D ⊆ Q̇G which is dense in Q̇G with D ∈ M [G] and
show that D ∩ H 6= ∅. There is a P-name Ḋ such that D = ḊG. Take p ∈ G such that
p  [Ḋ is dense in Q̌]. Let

D′ = {(p1, q̇1) ∈ P ∗ Q̇ : p1 ≤ p and p1  [q̌1 ∈ Ḋ]}.
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Then D′ is dense below (p, 1̇1). In fact, suppose that (p2, q̇2) ≤ (p, 1̇1). Then p2 ≤ p, so
p2  [Ḋ is dense in Q̌]. Hence p2  ∃y ∈ Q̇[y ∈ Ḋ and y ≤ q̇2]. Hence by Proposition
29.15 there exist p3 ≤ p2 and q̇3 ∈ dmn(Q̇) such that p3  [q̇3 ∈ Ḋ and q̇3 ≤ q̇2]. Thus
(p3, q̇3) ∈ D′ and (p3, q̇3) ≤ (p2, q̇2) as desired. So D′ is dense below (p, 1̇1).

Choose (p4, q̇4) ∈ D′ ∩K. Then p4  q̇4 ∈ Ḋ, so q̇4G ∈ ḊG = D and q̇4G ∈ H. This
proves that H is Q-generic over M [G]. Hence (5) holds.

(6) K ⊆ G ∗H.

For, suppose that (p, q̇) ∈ K. Then p ∈ G and q̇G ∈ H, so (p, q̇) ∈ G ∗H.

(7) G ∗H ⊆ K.

In fact, suppose that x ∈ G∗H. Say x = (p, q̇) with (p, q̇) ∈ P∗Q̇, p ∈ G, and q̇G ∈ H. Say
q̇G = q̇′G with q̇′ ∈ dmn(Q̇) and (p′, q̇′) ∈ K. Choose p′′ ∈ G such that p′′  q̇ = q̇′. Take
(p′′′, ṙ) ∈ K such that (p′′′, ṙ) ≤ (p, 1̇1), (p′, q̇′), (p′′, 1̇1). Then p′′′  ṙ ≤ q̇′. Also, p′′′ ≤ p′′,
so p′′′  q̇′ ≤ q̇. Hence (p′′′, r) ≤ (p, q̇) and so x = (p, q̇) ∈ K, proving (7).

(8) M [K] ⊆M [G][H].

This holds since K = G ∗H ∈M [G][H], so Lemma 28.8 applies.

(9) M [G][H] ⊆M [K]

For, M [G] ⊆ M [K] since G ∈ M [K], using Lemma 28.8, and H ∈ M [K], so M [G][H] ⊆
M [K] by Lemma 28.8 again.

Lemma 31.47. (V.3.8) In M suppose that κ is uncountable and regular, and P is ccc.
Suppose that Ṡ is a name, and 11  [Ṡ ⊆ κ ∧ |Ṡ| < κ]. Then there is a β < κ such that
11  [Ṡ ⊆ β̌].

Proof. Let E = {α < κ : ∃p[p  [α̌ = sup(Ṡ)]]}. For each α ∈ E let pα be such that
pα  [α̌ = sup(Ṡ)]. Clearly {pα : α ∈ E} is an antichain, so E is countable. Hence there
is a β < κ such that E ⊆ β. We claim that 11  [Ṡ ⊆ β̌].

Suppose not. Then there is a p such that p  ¬[Ṡ ⊆ β̌]. So p  [sup(Ṡ) ≥ β], hence
p  ∃x ∈ κ[x ≥ β ∧ sup(Ṡ) = x]. Hence there exist a q ≤ p and an α < κ such that
q  [α̌ ≥ β̌ ∧ sup(Ṡ) = α̌]. Hence α ≥ β and q  sup(Ṡ) = α, so α ∈ E, contradicting
E ⊆ β.

Lemma 31.48. (V.3.9) If κ is uncountable and regular, P is κ-cc, Q̇ is a P-name for a
poset, and 11  [Q̇ is κ-cc], then P ∗ Q̇ is κ-cc.

Proof. Assume the hypotheses, but suppose that P ∗ Q̇ is not κ-cc. Let 〈(pξ, q̇ξ) : ξ <

κ〉 be an antichain. Let Ṡ be the P-name {(ξ̌, pξ) : ξ < κ}. Clearly 11  [Ṡ ⊆ κ].

(1) There is no β < κ such that 11  [Ṡ ⊆ β̌].

In fact, suppose that there is such a β. Let G be P-generic such that pβ ∈ G. Then

β ∈ ṠG ⊆ β, contradiction.
But now we will show that 11  [|Ṡ| < κ̌]; then Lemma 31.47 gives a contradiction.

Let G be P-generic over M . Since Q̇G has the κ-cc, |ṠG| < κ will follow if we prove that
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(q̇ξ)G ⊥ (q̇η)G for distinct ξ, η ∈ ṠG. So suppose that ξ, η ∈ ṠG but (q̇ξ)G and (q̇η)G are

compatible; say q̇ ∈ dmn(Q̇) and q̇G≤̇G(q̇ξ)G, (q̇η)G. Then there is a p ∈ G such that

p  [q̇ ∈ Q̇], p  [q̇≤̇q̇ξ], and p  [q̇≤̇q̇η ]. Now ξ, η ∈ ṠG, so pξ, pη ∈ G. Let p′ ∈ G be

such that p′ ≤ p, pξ, pη. Then (p′, q̇) ∈ P ∗ Q̇, (p′, q̇) ≤ (pξ, q̇ξ), and (p′, q̇) ≤ (pη, qη). This
contradicts (pξ, q̇ξ) ⊥ (pη, qη).

Let κ be an infinite cardinal and α an ordinal. A κ-supported α-stage iterated forcing
construction is a pair

(〈(Pξ,≤ξ, 11ξ) : ξ ≤ α〉, 〈(Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) : ξ < α〉)

satisfying the following conditions:

(1) Each (Pξ,≤ξ, 11ξ) is a forcing poset.

(2) Each (Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) is a (Pξ,≤ξ, 11ξ)-name for a forcing poset.

(3) Each p ∈ Pξ is a sequence of length ξ, with pµ ∈ dmn(Q̇µ) for each µ < ξ.

(4) If ξ < η and p ∈ Pη, then (p ↾ ξ) ∈ Pξ.

(5) If ξ < η and p ∈ Pξ, then iηξ (p) ∈ Pη, where iηξ (p) = p ∪ {(µ, 1̇1Q̇µ
) : ξ ≤ µ < η}.

(6) 11ξ = 〈1̇1Q̇η
: η < ξ〉.

(7) If p, p′ ∈ Pξ, then p ≤ξ p′ iff ∀µ < ξ[p ↾ µ Pµ (pµ ≤ p′µ)].

(8) If ξ + 1 ≤ α, then Pξ+1 = {p⌢〈q̇〉 : p ∈ Pξ and q̇ ∈ dmn(Q̇ξ) and p Pξ [q̇ ∈ Q̇ξ]}.

(9) If η is limit ≤ α, then p ∈ Pη iff p is a sequence of length η, ∀ξ < η[(p ↾ ξ) ∈ Pξ], and
|supp(pη)| < κ, where supp(pη) = {ξ < η : pσ 6= 1̇1Q̇ξ

}.

Proposition 31.49. With the above notation, P0 = {∅}, ∅ ≤0 ∅, 110 = ∅, and the P0-
names are

∅, {(∅, ∅)}, {({(∅, ∅)}, ∅)}, {({({(∅, ∅)}, ∅)}, ∅)},

{(∅, ∅), ({(∅, ∅)}, ∅)} . . .

Proposition 31.50. With the above notation, G is P0-generic over M iff G = P0.

Proposition 31.51. With the above notation, there is a P0-name Q̇ for a forcing poset
such that if G is P0-generic over M then QG = 2 with its natural order.

Proof. We use Lemma 28.22.

Q̇ = up(∅, up(∅, ∅))

1̇1Q̇ = ∅;

≤Q̇ = up(up(op(∅, ∅), op(∅, up(∅, ∅))), op(up(∅, ∅), up(∅, ∅)))
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Proposition 31.52. With the above notation, |supp(p)| < κ for all p in any Pξ.

Proof. By induction on ξ.

Proposition 31.53. With the above notation, if ξ ≤ η ≤ α, p ∈ Pη, r ∈ Pξ, and
r ≤ (p ↾ ξ), then r ∪ (p ↾ (η\ξ)) ∈ Pη.

Proof. With ξ fixed we prove this by induction on η. It is trivial for η = ξ. Now
assume that it is true for η ≥ ξ, and we have ξ ≤ η + 1, p ∈ Pη+1, r ∈ Pξ, and r ≤ p ↾ ξ.
The case ξ = η + 1 is trivial, so suppose that ξ < η + 1.

Case 1. ξ = η. By Definition (8) we have(p ↾ η)  [pη ∈ Q̇η], hence r  [pη ∈ Q̇η],
hence by Definition (8) we get r ∪ (p ↾ ((η + 1)\η)) ∈ Pη+1.

Case 2. ξ < η. By the inductive hypothesis applied to p ↾ η we get r∪(p ↾ (η\ξ)) ∈ Pη.
Now by Definition (7) we have r ∪ (p ↾ (η\ξ)) ≤ (p ↾ η), and by Definition (8) we have
(p ↾ η)  [pη ∈ Q̇η], so r ∪ (p ↾ (η\ξ))  [pη ∈ Q̇η]. Hence by Definition (8) r ∪ (p ↾

((η + 1)\ξ)) ∈ Pη+1.
The limit case follows from the Definition (9).

Proposition 31.54. With the notation of the above Definition, for any ξ < α the poset
Pξ+1 is isomorphic to Pξ ∗ Q̇ξ.

Proof. For any p ∈ Pξ+1 let f(p) = (p ↾ ξ, pξ). By Definition (4), p ↾ ξ ∈ Pξ. By

Definition (3), pξ ∈ dmn(Q̇ξ). By Definition (8), (p ↾ ξ)  [pξ ∈ Q̇ξ]. Hence f(p) ∈ Pξ ∗Q̇ξ.
Clearly f is a bijection. Suppose that p1, p2 ∈ Pξ+1. Then

p1 ≤ p2 iff ∀µ ≤ ξ[p ↾ µ  [p1
µ ≤ p

2
µ]] by Definition (7)

iff [p1 ↾ ξ ≤ p2 ↾ ξ] and p ↾ ξ  [p1
ξ ≤ p

2
ξ ]

iff (p1 ↾ ξ, p1
ξ) ≤ (p2 ↾ ξ, p2

ξ)

iff f(p1) ≤ f(p2).

Lemma 31.55. (V.3.12) With the notation of the above Definition, iηξ : Pξ → Pη is a
complete embedding.

Proof. See the definition of complete embedding on page 444. For (i), we have

iηξ (11ξ) = 11ξ ∪ {(µ, 11Q̇µ
) : µ ∈ [ξ, η)} = 〈11Q̇µ

: µ < η〉 = 11η.

For (ii), suppose that p1, p2 ∈ Pξ and p1 ≤ξ p2. Then by Definition (7), ∀µ < ξ[p1 ↾ µ Pµ

[p1µ ≤ p2µ]. If ξ ≤ µ < η, then by Definition (2), (Q̇µ, ≤̇Q̇µ
, 1̇1Q̇µ

) is a (Pµ,≤µ, 11µ)-name

for a forcing poset. Hence by Definition (1), 11µ Pµ [1̇1Q̇µ
∈ Q̇µ ∧ 11Q̇µ

≤Q̇µ
11Q̇µ

]. It

follows that for all µ < η, iηξ (p1) ↾ µ Pµ [(iηξ (p1))µ ≤ iηξ (p2)µ]. Hence by Definition,

iηξ (p1) ≤ iηξ (p2).

⇐ in (iii) follows from (ii). Now suppose that p1, p2 ∈ Pξ and iηξ (p1) and iηξ (p2) are

compatible. Say r ≤ iηξ (p1), iηξ (p2). By Definition (4), r ↾ ξ ∈ Pξ, and by Definition (7),
r ↾ ξ ≤ p1, p2.
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Finally, for the notion of reduction, see page 447. Suppose that p ∈ Pη, r ∈ Pξ, and r
and p ↾ ξ are compatible; say s ≤ r, p ↾ ξ. Let s′ = s ∪ (p ↾ [ξ, η)). By Proposition 31.53,
s′ ∈ Pη. Clearly s′ ≤ iηξ (r), p.

In a forcing poset, 6⊥ (p1, . . . , pn) means that there is a q ≤ pi for all i.

Lemma 31.56. (V.3.15) In a <κ-supported iteration, using the above Definition, take
p1, . . . , pn ∈ Pα and suppose that ξ < α and supp(pi) ∩ support(pj) ⊆ ξ whenever i 6= j.
Then 6⊥ (p1, . . . , pn) iff 6⊥ (p1 ↾ ξ, . . . , pn ↾ ξ).

Proof. ⇒: assume that 6⊥ (p1, . . . , pn). Say q ≤ pi for all i. Then by Definition (7),
(q ↾ ξ) ≤ (pi ↾ ξ) for all i.
⇐: assume that 6⊥ (p1 ↾ ξ, . . . , pn ↾ ξ). Say q ≤ pi ↾ ξ for all i. Define r by

rη =

{
qη if η < ξ,
piη if ξ ≤ η ∈ supp(pi) for some i,
11 otherwise.

Then r ∈ Pξ by induction as in the proof of Proposition 31.53. Clearly r ≤ pi for all
i.

Lemma 31.57. (V.3.16) In a finite support iteration, using the above Definition, assume
that α is a limit ordinal and pµ ∈ Pα for all µ < ω1. Then

∃ξ < α∃I ∈ [ω1]ω1∀n ∈ ω\2∀µ ∈ nI[ 6⊥ (pµ0 , . . . , pµn−1) iff 6⊥ (pµ0 ↾ ξ, . . . , pµn−1 ↾ ξ)].

Proof. By the ∆-system lemma, choose I ∈ [ω1]ω1 such that {supp(pµ) : µ ∈ I}
forms a ∆-system, say with kernel R. Take ξ < α such that R ⊆ ξ. Now Lemma 31.56
applies.

Lemma 31.58. (V.3.17) In a finite support iteration, using the above definition, if α ≥ 1
and ∀ξ < α[11ξ  [Q̇ξ is ccc]], then Pα is ccc.

Proof. We proceed by induction on α. For α = 0, note that P0 = {∅}, which is
ccc. The successor case follows from Proposition 31.54 and Lemma 31.48. The limit case
follows from Lemma 31.57.

tbc(α,⊑) abbreviates the statement that α is a nonzero ordinal, ⊑ is a subset of α × α,
and (α,⊑, 0) is a ccc forcing poset.

Lemma 31.59. (V.4.3) For any infinite cardinal θ, MA(θ) holds iff MAQ(θ) holds for
every poset Q of the form (α,⊑, 0), where tbc(α,⊑) and α ≤ θ.

Proof. ⇒: trivial. ⇐: Assume the indicated condition, and suppose that MAP(θ)
is false. By Lemma 25.57, there is a Q ⊆ctr P such that MAQ(θ) is false and |Q| ≤ θ.
let f be a bijection of Q onto |Q| such that f(11Q) = 0. Define ξ ⊑ η iff ξ, η < |Q| and
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f−1(ξ) ≤Q f−1(η). Then R
def
= (|Q|,⊑, 0) is a forcing poset, tbc(|Q|,⊑), and MAR(θ) is

false, contradiction.

Proposition 31.60. Let a finite support α-stage interation be given and suppose that
ξ < α. Let G be Pα-generic over M . Then:

(i) Let Gξ = (iαξ )−1[G]; then Gξ is Pξ-generic over M , and M [Gξ] ⊆M [G].
(ii) Let Rξ = (Qξ)Gξ , by Proposition 31.54 let f be an isomorphism from Pξ+1 onto

Pξ ∗ Q̇ξ, and let G′ = f [(iαξ+1)−1[G]]. Then G′ is Pξ ∗ Q̇ξ-generic over M . Now let

Hξ = {ρGξ : ρ ∈ Qξ ∧ ∃p ∈ Pξ[(p, ρ) ∈ G′]}.

Then Hξ is Rξ-generic over M [Gξ], and M [G′] = M [Gξ][Hξ].

Proof. (i) holds by Lemma 30.3 and Lemma 31.55. For (ii), clearly G′ is Pξ ∗ Q̇ξ-
generic over M . The rest follows from Theorem 31.46.

Proposition 31.61. If P is a subposet of Q, then every P-name is a Q-name.

Proof. An easy induction, using Corollary 28.5.

For a forcing poset P, Ntbc(α, ⊑̇,P) holds iff ⊑̇ is a nice name for a subset of α × α and
11 P tbc(α, ⊑̇).

Lemma 31.62. (V.4.5) Suppose that P1 is ccc, P0 ⊆c P1, and ⊑̇ is a P0-name; then
Ntbc(α, ⊑̇,P1) implies Ntbc(α, ⊑̇,P0).

Proof. Assume that Ntbc(α, ⊑̇,P1) and ¬Ntbc(α, ⊑̇,P0) hold in M . Then there is a
p ∈ P0 such that p P0

¬tbc(α̌, ⊑̇). Let G be P1-generic over M with p ∈ G. By Lemmas
30.2 and 30.3, G∩ P0 is P0-generic over M , and M [G∩ P0] ⊆M [G]. Now by Lemma 30.3
⊑̇G = ⊑̇G∩P0

. But tbc(α, ⊑̇G) holds in M [G] because Ntbc(α, ⊑̇,P1), while tbc(α, ⊑̇G∩P0
)

does not hold in M [G ∩ P0] since p P0
¬tbc(α̌, ⊑̇). This contradicts the absoluteness of

the formula tbc(x, y).

Lemma 31.63. (V.4.6) Let M be a c.t.m. for ZFC. In M let θ be an infinite cardinal.
Let G be P-generic over M . In M [G] let (X,≤X , 11X) be a ccc forcing poset with |X | ≤ θ.

Then there is a name ⊑̇ in M and an α ≤ θ such that Ntbc(α, ⊑̇.P) holds in M and
such that in M [G] the poset (α, ⊑̇G, 0) is isomorphic to (X,≤X , 11X).

Proof. In M [G] let α = |X |. Let f be a bijection from X onto α which takes 11X
to 0. Define ξ ⊑ η iff ξ, η < α and f−1(ξ) ≤X f−1(η). Thus f is an isomorphism from
(X,≤X , 11X) onto (α,⊑, 0).

Fix a P-name τ over M with τG =⊑. Let Q̇ = α̌ and 1̇1Q = 0̌. Now

11  ∃y[tbc(α, y) ∧ [tbc(α, τ)→ y = τ ]].

In fact, let H be P-generic over M . If tbc(α, τH), then we can take y = τH . If ¬tbc(α, τH),
then we can take y = α× α. By the maximal principle, Theorem 30.35, there is a name σ
such that

(1) 11  [tbc(α.σ) ∧ [tbc(α, τ)→ σ = τ ]].

687



By Proposition 29.21 let ⊑̇Q be a nice name for a subset of (α× α)̌ such that

(2) 11  [σ ⊆ (α× α)̌ → σ = ⊑̇Q].

Now tbc(α, τG), so by (1), σG = τG =⊑⊆ (α× α). Hence by (2), ⊑= σG = (⊑̇Q)G.

Proposition 31.64. Let κ be an infinite cardinal, and let f : κ → κ × κ be the bijection
given by the proof of Theorem 11.32. Then ζ ≤ f−1(ζ, µ) for any ζ, µ < κ.

Proof. We prove this by induction on ζ. It is trivial for ζ = 0. Assume that it is true
for ζ. Now (ζ, µ) ≺ (ζ+1, µ), so ζ ≤ f−1(ζ, µ) < f−1(ζ+1, µ) and so ζ+1 ≤ f−1(ζ+1, µ).
Assume that ζ is a limit ordinal and ρ < f−1(ρ, µ) for all ρ < ζ and all µ. Then for any
ρ < ζ we have ρ ≤ f−1(ρ, µ) < f−1(ζ, µ), and hence ζ ≤ f−1(ζ, µ).

Proposition 31.65. Suppose that i : P→ Q is a complete embedding.
(i) For any x ∈M , i∗x̌ = x̌.
(ii) For any x, y ∈M , i∗up(x̌, y̌) = up(x̌, y̌).
(iii) For any x, y ∈M , i∗op(x̌, y̌) = op(x̌, y̌).
(iv) If σ is a nice P-name for a subset of α̌× α̌, then i∗σ is a nice Q-name for a subset

of α̌× α̌.

Proof. (i): By induction:

i∗x̌ = i∗{(y̌, 11) : y ∈ x} = {(i∗y̌, 11) : y ∈ x} = {(y̌, 11) : y ∈ x} = x̌.

(ii):

i∗up(x̌, y̌) = i∗{(x̌, 11), (y̌, 11)} = {(i∗x̌, 11), (i∗y̌, 11)} = {(x̌, 11), (y̌, 11)} = up(x̌, y̌).

(iii):

i∗op(x̌, y̌) = i∗up(up(x̌, x̌), up(x̌, y̌))

= i∗{(up(x̌, x̌), 11), (up(x̌, y̌), 11)}

= {(i∗up(x̌, x̌), 11), (i∗up(x̌, y̌), 11)}

= {(up(x̌, x̌), 11), (up(x̌, y̌), 11)}

= op(x̌, y̌).

(iv): Say σ =
⋃
{{op(ρ̌, σ̌)} ×Aρσ : ρ, σ ∈ α}, with each Aρσ an antichain in P. Then

i∗σ =
⋃

{{i∗op(ρ̌, σ̌)} × i[Aρσ] : ρ, σ ∈ α} =
⋃

{{op(ρ̌, σ̌)} × i[Aρσ] : ρ, σ ∈ α},

with each i[Aρσ] an antichain in Q; this is a nice Q-name for a subset of α̌× α̌.

Theorem 31.66. (V.4.1) Assume that κ is an uncountable regular cardinal and 2<κ = κ.
Then there is a ccc forcing poset P such that 11P  [MA ∧ 2ω = κ].
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Proof. Let f : κ → κ × κ be the bijection given by the proof of Theorem 11.32; see
Proposition 31.64.

We are going to define by recursion a finite support κ-stage iteration. The starting
stage is trivial; P = {∅}. The limit stage is determined by the previous stages. Now we
make the step from ξ < κ to ξ + 1. We assume that for each ζ ≤ ξ we have specified a
sequence 〈(αµζ , ⊑̇

µ
ζ ) : µ < κ〉 listing all pairs (α, ⊑̇) such that 0 < α < κ and ⊑̇ is a nice Pζ-

name for a subset of α×α. As the inductive hypothesis we assume that |dmn(Qζ)|, |Pζ| < κ
for each ζ < ξ, and

(〈(Pζ ,≤ζ , 11ζ) : ζ ≤ ξ〉, 〈(Q̇ζ, ⊑̇Q̇ζ
, 11Q̇ζ

) : ζ < ξ〉)

is a finite support ξ-stage iterated forcing construction.
Let f(ξ) = (ζ, µ). By Proposition 31.64, ζ ≤ ξ. Then ⊑̇µζ is a nice Pζ-name for a

subset of αµζ × α
µ
ζ . Hence by Proposition 31.65, (iξζ)∗(⊑̇µζ ) is a nice Pξ-name for a subset

of αµζ × α
µ
ζ . If Ntbc(αµζ , (i

ξ
ζ)∗(⊑̇µζ ),Pξ), then we let (Q̇ξ, ≤̇Q̇ξ

, 1̇1Q̇ξ
) be (α̌µζ , (i

ξ
ζ)∗(⊑̇µζ ), 0̌). If

¬Ntbc(αµζ , (i
ξ
ζ)∗(⊑̇µζ ),Pξ), then we let Q̇ξ = {(∅, 11Pξ)}, ≤̇Q̇ξ

= ∅, and 1̇1Q̇ξ
= ∅.

This completes the construction of our finite support κ-stage iteration.

(1) ∀ξ < κ[|Pξ| < κ ∧ |Q̇ξ| < κ].

This is clear by induction, using the regularity of κ at the limit stages.

(2) ∀ξ < κ[11Pξ  [Q̇ξ is ccc]].

This holds by definition of Ntbc.
Next, note that

(3) κω = κ.

In fact,

κω = |ωκ| ≤
∑

λ<κ

λω ≤
∑

λ<κ

2λ = 2<κ = κ.

Let P = Pκ, and let G be P-generic over M . Note that Proposition 29.22 holds if we replace
|P| = κ by |P| ≤ κ. Hence using (3) we have

(4) M [G] |= [2ω ≤ κ].

Now if we prove that MA(θ) for every θ < κ, then by Theorem 25.3 we will have κ ≤ 2ω,
so 2ω = κ by (4). Also, MA follows.

Now for each ξ < κ let P′
ξ = iκξ [Pξ]. Then for ξ < η < κ we have P′

ξ ⊆ P′
η ⊆ P.

Suppose that θ < κ. Take a ccc forcing poset Q and a family D of dense subsets of Q

with |D | ≤ θ. By Lemma 25.57 we may assume that |Q| ≤ θ. Then by Lemma 31.63 we
get a P-name ⊑̇ and an α ≤ θ such that Ntbc(α, ⊑̇,P) holds and (α, ⊑̇G,P) is isomorphic
to Q. So we may assume that Q = (α, ⊑̇G, 0). Let 〈Dν : ν < θ〉 enumerate D . Thus
Dν ⊆ α for each ν < θ. Let Ḋν be a nice P-name for a subset of α such that Dν = Ḋν

G.
The names ⊑̇ and Ḋν for ν < θ altogether involve fewer than κ members of P. Hence
there exists a ζ < κ such that all of these names are P′

ζ-names. Let ⊑̇′ be a Pζ-name
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such that ⊑̇ = (iκζ )∗(⊑̇′). Then there is a µ < κ such that (αµζ , ⊑̇
µ
ζ ) is (α, ⊑̇′). Let ξ =

f−1(ζ, µ). Now by Lemma 31.62 we get Ntbc(α, ⊑̇,P′
ξ). Hence Ntbc(α, (iξζ)∗(⊑̇′),Pξ). That

is, Ntbc(αµζ , (i
ξ
ζ)∗(⊑̇µζ ),Pξ). Hence (Q̇ξ, ≤̇Q̇ξ

, 1̇1Q̇ξ
) = (α̌µζ , (i

ξ
ζ)∗(⊑̇µζ ), 0̌) by construction.

Note that
⊑̇G = ((iκζ )∗(⊑̇′))G = (iκξ )∗((iξζ)∗(⊆̇′)) = ((iξζ)∗(⊆̇′))Gξ .

Now we apply Proposition 31.60. Let Gξ+1 = (iκξ+1)−1[G], f an isomorphism of Pξ+1 onto

Pξ ∗ Q̇ξ, G
′ = f [Gξ+1], Hξ = {ρGξ : ρ ∈ Qξ ∧ ∃p ∈ Pξ[(p, ρ) ∈ G′]}. Now by Proposition

31.60, Hξ is (Q̇ξ)Gξ -generic over M [Gξ] and M [G′] = M [Gξ][Hξ]. Let Ḋν′ be a Pξ-name

such that Ḋν = (iκξ )∗(Ḋν′). Then Dν = Ḋν
G = (Ḋν′)Gξ ∈ Pξ[Gξ]. Each Dν is dense in

(Q̇ξ)Gξ , so Hξ ∩Dν 6= ∅ for all ν < θ.

A forcing poset P has property K iff ∀E ∈ [P]ω1∃L ∈ [E]ω1[L is linked].

Lemma 31.67. (V.4.9) Assume that Q̇ is a P-name for a forcing poset. Suppose that P

has property K and 11  [Q̇ has property K]. Then P ∗ Q̇ has property K.

Proof. Assume the hypotheses. Let 〈(pξ, q̇ξ) : ξ < ω1〉 be a system of elements of

P ∗ Q̇. Let Ṡ be the P-name {(ξ̌, pξ) : ξ < ω1}. Let Ḟ = {(op(ξ̌, q̇ξ), pξ) : ξ < ω1}. Thus

for any generic G, ḞG is the function with domain {ξ : pξ ∈ G} such that ḞG(ξ) = q̇ξG for
any ξ with pξ ∈ G.

(1) There is no β < ω1 such that 11  [Ṡ ⊆ β].

In fact, otherwise let G be generic with pβ ∈ G. Then β ∈ ṠG ⊆ β, contradiction.

Now clearly 11  [Ṡ ⊆ ω1]. Hence by Lemma 31.47 we have 11 6 [|Ṡ| < ω1]. So there
is a p such that p  [|Ṡ| = ω1]. Let G be generic with p ∈ G. Then

(2) M [G] |= [|ṠG| = ω1].

Now ḞG maps ṠG into Q̇G and Q̇G has property K, so in M [G] there is a set B ∈ [ṠG]ω1

such that {ḞG(ξ) : ξ ∈ B} is linked. Say B = ḂG. Take p∗ ∈ G with p∗ ≤ p and

p∗  [Ḃ ⊆ Ṡ and {Ḟ (ξ) : ξ ∈ Ḃ} is linked].

In M let
A = {ξ < ω1 : ∃q[(q ≤ p∗) ∧ (q ≤ pξ) ∧ q  [ξ ∈ Ḃ]}.

(3) B ⊆ A.

In fact, suppose that ξ ∈ B. Since B ⊆ ṠG, we have ξ ∈ ṠG and hence pξ ∈ G. Also, there

is an r ∈ G such that r  [ξ ∈ Ḃ]. Choose q ∈ G so that q ≤ r, p∗, pξ. Thus ξ ∈ A.
It follows that A is uncountable, as otherwise A ⊆ β for some β < ω1, hence by (3)

B ⊆ β, contradicting |B| = ω1. Now in M , for any ξ ∈ A choose p′ξ such that p′ξ ≤ p∗, pξ

and p′ξ  ξ ∈ Ḃ. Since A is uncountable and P has property K, choose L ∈ [A]ω1 such that
{p′ξ : ξ ∈ L} is linked.

Finally, to show that {(pξ, q̇ξ) : ξ ∈ L} is linked, take any ξ, η ∈ L. Take any

p′′ ≤ p′ξ, p
′
η. Then p′′  [ξ ∈ Ḃ ∧ η ∈ Ḃ]. Then p′′  [q̇ξ 6⊥ q̇η], so p′′  ∃q′[(q′ ≤
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q̇ξ) ∧ (q′ ≤ q̇η)]. Hence by Lemma 30.22, there is a p′′′ ≤ p′′ and a q′′ ∈ dmn(Q̇) such that

p′′′  [(q′′ ≤ q̇ξ) ∧ (q′′ ≤ q̇η)]. By the definition of the order on P ∗ Q̇, this shows that
(p′′′, q′′) ≤ (pξ, q̇ξ), (pη, q̇η).

Lemma 31.68. (V.4.9) Assume that Q̇ is a P-name for a forcing poset. Suppose that P

has pre-caliber ω1 and 11  [Q̇ has pre-caliber ω1]. Then P ∗ Q̇ has pre-caliber ω1.

Proof. Assume the hypotheses. Let 〈(pξ, q̇ξ) : ξ < ω1〉 be a system of elements of

P ∗ Q̇. Let Ṡ be the P-name {(ξ̌, pξ) : ξ < ω1}. Let Ḟ = {(op(ξ̌, q̇ξ), pξ) : ξ < ω1}. Thus

for any generic G, ḞG is the function with domain {ξ : pξ ∈ G} such that ḞG(ξ) = q̇ξG for
any ξ with pξ ∈ G.

(1) There is no β < ω1 such that 11  [Ṡ ⊆ β].

In fact, otherwise let G be generic with pβ ∈ G. Then β ∈ ṠG ⊆ β, contradiction.

Now clearly 11  [Ṡ ⊆ ω1]. Hence by Lemma 31.47 we have 11 6 [|Ṡ| < ω1]. So there
is a p such that p  [|Ṡ| = ω1]. Let G be generic with p ∈ G. Then

(2) M [G] |= [|ṠG| = ω1].

Now ḞG maps ṠG into Q̇G and Q̇G has pre-caliber ω1, so in M [G] there is a set B ∈ [ṠG]ω1

such that {ḞG(ξ) : ξ ∈ B} is centered. Say B = ḂG. Take p∗ ∈ G with p∗ ≤ p and

p∗  [Ḃ ⊆ Ṡ and {Ḟ (ξ) : ξ ∈ Ḃ} is centered].

In M let
A = {ξ < ω1 : ∃q[(q ≤ p∗) ∧ (q ≤ pξ) ∧ q  [ξ ∈ Ḃ]}.

(3) B ⊆ A.

In fact, suppose that ξ ∈ B. Since B ⊆ ṠG, we have ξ ∈ ṠG and hence pξ ∈ G. Also, there

is an r ∈ G such that r  [ξ ∈ Ḃ]. Choose q ∈ G so that q ≤ r, p∗, pξ. Thus ξ ∈ A.
It follows that A is uncountable, as otherwise A ⊆ β for some β < ω1, hence by (3)

B ⊆ β, contradicting |B| = ω1. Now in M , for any ξ ∈ A choose p′ξ such that p′ξ ≤ p∗, pξ

and p′ξ  ξ ∈ Ḃ. Since A is uncountable and P has pre-caliber ω1, choose L ∈ [A]ω1 such
that {p′ξ : ξ ∈ L} is centered.

Finally, to show that {(pξ, q̇ξ) : ξ ∈ L} is centered, take any finite subset F of L. Take

any p′′ ≤ p′ξ for all ξ ∈ L. Then p′′  ∀ξ ∈ F [ξ ∈ Ḃ]. Then p′′  ∃q′∀ξ ∈ F [(q′ ≤ q̇ξ)].

Hence by Lemma 30.22, there is a p′′′ ≤ p′′ and a q′′ ∈ dmn(Q̇) such that p′′′  ∀ξ ∈
F [(q′′ ≤ q̇ξ)]. By the definition of the order on P ∗ Q̇, this shows that (p′′′, q′′) ≤ (pξ, q̇ξ)
for all ξ ∈ F .

Proposition 31.69. Suppose that a κ-supported α-stage iterated forcing construction is
given. For each ξ ≤ α let P′

ξ = {iαξ (p) : p ∈ Pξ}. Then
(i) If η < ξ ≤ α then P′

η ⊆c P′
ξ.

(ii) If ξ ≤ α is a limit ordinal, κ is regular, and κ ≤ cf(ξ), then P′
ξ =

⋃

η<ξ P′
η.

(iii) If ξ ≤ α is a limit ordinal and κ = ω, then P′
ξ =

⋃

η<ξ P′
η.
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Proof. (i): Assume that η < ξ ≤ α. Clearly P′
η is a subposet of P′

ξ. To show that
P′
η ⊆ctr P′

ξ, suppose that F ∈ [P′
η]<ω, p ∈ P′

ξ, and ∀q ∈ F [p ≤ q]; see the definition of ⊆ctr

following Proposition 25.54. Say ∀q ∈ F [q = iαη (q′)], and p = iαξ (p′). Now ∀u, v ∈ Pη[u ≤ v

iff iξη(u) ≤ iξη(v)]. It follows from Proposition 25.70 that

(1) iξη[Pη] ⊆c Pξ.

Now ∀q ∈ F [p′ ≤ iξη(q′)], so by (1) there is an r ∈ Pη such that ∀q ∈ F [r ≤ iξη(q′)]. Hence
∀q ∈ F [iαη (r) ≤ q]. This shows that P′

η ⊆ctr P′
ξ.

Now suppose that A ⊆ Pη and iαη [A] is a maximal antichain in P′
η. Then clearly A is

a maximal antichain in Pη. Since iξη is an isomorphism from Pη onto iξη[Pη], it follows that

iξη[A] is a maximal antichain in iξη[Pη]. Hence by (1), iξη[A] is a maximal antichain in Pξ.

So iαη [A] = iαξ [iξη[A]] is a maximal antichain in P′
ξ. This proves (i).

(ii) and (iii) are clear.

MAK is the assertion that MAP(κ) holds for all κ < 2ω and all forcing posets P which
have property K. MAP is the assertion that MAP(κ) holds for all κ < 2ω and all forcing
posets P which have pre-caliber ω1.

Proposition 31.70. MA implies MAK.

Proposition 31.71. MA implies MAP.

Proposition 31.72. MAP implies that p = 2ω.

Proof. Assume MAP, and suppose that P is σ-centered. Then by Proposition 25.41,
P has ω1 as a pre-caliber. Hence MAP(κ) holds for all κ < 2ω and all σ-centered forcing
posets P. Hence by Theorem 25.65, p = 2ω.

Proposition 31.73. If Q ⊆ctr P and P has ω1 as a pre-caliber, then Q has ω1 as a
pre-caliber.

Proof. Assume the hypotheses, and suppose that 〈qξ : ξ < ω1〉 is a system of elements
of Q. Let A ∈ [ω1]ω1 be such that {qξ : ξ ∈ A} is centered, in P. By the definition of ⊆ctr,
{qξ : ξ ∈ A} is centered, in Q.

tbc′(α,⊑) abbreviates the statement that α is a nonzero ordinal, ⊑ is a subset of α × α,
and (α,⊑, 0) is a forcing poset having property K.

Proposition 31.74. For any infinite cardinal θ, MAK(θ) holds iff MAQ(θ) holds for
every poset Q of the form (α,⊑, 0), where tbc′(α,⊑) and α ≤ θ.

Proof. ⇒: trivial. ⇐: Assume the indicated condition, and suppose that MAP(θ) is
false, where P has property K. By Lemma 25.57, there is a Q ⊆ctr P such that MAQ(θ) is
false and |Q| ≤ θ. let f be a bijection of Q onto |Q| such that f(11Q) = 0. Define ξ ⊑ η

iff ξ, η < |Q| and f−1(ξ) ≤Q f−1(η). Then R
def
= (|Q|,⊑, 0) is a forcing poset, tbc′(|Q|,⊑),

and MAR(θ) is false, contradiction.
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For a forcing poset P, Ntbc′(α, ⊑̇,P) holds iff ⊑̇ is a nice name for a subset of α× α and
11 P tbc′(α, ⊑̇).

Proposition 31.75. Suppose that P1 has property K, P0 ⊆c P1, and ⊑̇ is a P0-name;
then Ntbc′(α, ⊑̇,P1) implies Ntbc′(α, ⊑̇,P0).

Proof. Assume that Ntbc′(α, ⊑̇,P1) and ¬Ntbc′(α, ⊑̇,P0) hold in M . Then there
is a p ∈ P0 such that p P0

¬tbc′(α̌, ⊑̇). Let G be P1-generic over M with p ∈ G. By
Lemmas 30.2 and 30.3, G ∩ P0 is P0-generic over M , and M [G ∩ P0] ⊆ M [G]. Now by
Lemma 30.3, ⊑̇G = ⊑̇G∩P0

. But tbc′(α, ⊑̇G) holds in M [G] because Ntbc′(α, ⊑̇,P1), while
tbc′(α, ⊑̇G∩P0

) does not hold in M [G ∩ P0] since p P0
¬tbc′(α̌, ⊑̇). This contradicts the

absoluteness of the formula tbc′(x, y).

Proposition 31.76. Let M be a c.t.m. for ZFC. In M let P be a forcing poset with
property K, and let θ be an infinite cardinal. Let G be P-generic over M . In M [G] let
(X,≤X , 11X) be a ccc forcing poset with |X | ≤ θ.

Then there is a name ⊑̇ in M and an α ≤ θ such that Ntbc′(α, ⊑̇.P) holds in M and
such that in M [G] the poset (α, ⊑̇G, 0) is isomorphic to (X,≤X , 11X).

Proof. In M [G] let α = |X |. Let f be a bijection from X onto α which takes 11X
to 0. Define ξ ⊑ η iff ξ, η < α and f−1(ξ) ≤X f−1(η). Thus f is an isomorphism from
(X,≤X , 11X) onto (α,⊑, 0).

Fix a P-name τ over M with τG =⊑. Let Q̇ = α̌ and 1̇1Q = 0̌. Now

11  ∃y[tbc′(α.y) ∧ [tbc′(α, τ)→ y = τ ]].

In fact, let H be P-generic over M . If tbc′(α, τH), then we can take y = τH . If ¬tbc′(α, τH),
then we can take y = α× α. By the maximal principle, Theorem 30.35, there is a name σ
such that

(1) 11  [tbc′(α.σ) ∧ [tbc′(α, τ)→ σ = τ ]].

By Lemma 29.21 let ⊑̇Q be a nice name for a subset of (α× α)̌ such that

(2) 11  [σ ⊆ (α× α)̌ → σ = ⊑̇Q].

Now tbc′(α, τG), so by (1), σG = τG =⊑⊆ (α× α). Hence by (2), ⊑= σG = (⊑̇Q)G.

Theorem 31.77. (V.4.12) Assume that κ > ω is regular and 2<κ = κ. Then there is a
forcing poset PK of size κ such that 11Pκ  [MAK ∧ 2ω = κ]; and Pκ has property K.

Proof. Let f : κ→ κ× κ be the bijection given by the standard proof that κ = κ · κ;
see the proof of Theorem 11.32 on page 143; and see Proposition 31.64.

We are going to define by recursion a finite support κ-stage iteration. The starting
stage is trivial; P = {∅}. The limit stage is determined by the previous stages. Now we
make the step from ξ < κ to ξ + 1. We assume that for each ζ ≤ ξ we have specified a
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sequence 〈(αµζ , ⊑̇
µ
ζ ) : µ < κ〉 listing all pairs (α, ⊑̇) such that 0 < α < κ and ⊑̇ is a nice Pζ-

name for a subset of α×α. As the inductive hypothesis we assume that |dmn(Qζ |, |Pζ| < κ
for each ζ < ξ, and

(〈(Pζ,≤ζ , 11ζ) : ζ ≤ ξ〉, 〈(Q̇ζ, ⊑̇Q̇ζ
, 11Q̇ζ

) : z < ξ〉)

is a finite support ξ-stage iterated forcing construction.

Let f(ξ) = (ζ, µ). By Proposition 31.64, ζ ≤ ξ. Then ⊑̇µζ is a nice Pζ-name for

a subset of αµζ × α
µ
ζ . Hence by Lemma 30.3, and Lemma 31.55, (iξζ)∗(⊑̇µζ ) is a nice Pξ-

name for a subset of αµζ × α
µ
ζ . If Ntbc′(αµζ , (i

ξ
ζ)∗(⊑̇µζ ),Pξ), then we let (Q̇ξ, ≤̇Q̇ξ

, 1̇1Q̇ξ
) be

(α̌µζ , (i
ξ
ζ)∗(⊑̇µζ ), 0̌). If ¬Ntbc′(αµζ , (i

ξ
ζ)∗(⊑̇µζ ),Pξ), then we let Q̇ξ = {(∅, 11Pξ)}, ≤̇Q̇ξ

= ∅, and

1̇1Q̇ξ
= ∅.

This completes the construction of our finite support κ-stage iteration.

(1) ∀ξ < κ[|Pξ| < κ ∧ |Q̇ξ| < κ].

This is clear by induction, using the regularity of κ at the limit stages.

(2) ∀ξ ≤ κ[11Pξ  [Q̇ξ has property K]].

This holds by definition of Ntbc′.

Next, note that

(3) κω = κ.

In fact,

κω = |ωκ| ≤
∑

λ<κ

λω ≤
∑

λ<κ

2λ = 2<κ = κ.

Let P = Pκ, and let G be P-generic over M . Note that Lemma 29.22 holds if we replace
|P| = κ by |P| ≤ κ. Hence using (3) we have

(4) M [G] |= [2ω ≤ κ].

Now if we prove that MAR(θ) for every θ < κ and every forcing poset R having property
K, then (1) 2ω = κ by the proof of Theorem 25.3; (2) MAK holds.

Now for each ξ < κ let P′
ξ = iκξ [Pξ]. Then for ξ < η < κ we have P′

ξ ⊆ P′
η ⊆ P.

Suppose that θ < κ. Take a forcing poset Q with property K, and a family D of
dense subsets of Q with |D | ≤ θ. By Proposition 31.74 we may assume that |Q| ≤ θ.
Then by Proposition 31.76 we get a P-name ⊑̇ and an α ≤ θ such that Ntbc′(α, ⊑̇,P)
holds and (α, ⊑̇G,P) is isomorphic to Q. So we may assume that Q = (α, ⊑̇G, 0). Let
〈Dν : ν < θ〉 enumerate D . Thus Dν ⊆ α for each ν < θ. Let Ḋν be a nice P-name
for a subset of α such that Dν = Ḋν

G. The names ⊑̇ and Ḋν for ν < θ altogether
involve fewer than κ members of P. Hence there exists a ζ < κ such that all of these
names are P′

ζ-names. Let ⊑̇′ be a Pζ-name such that ⊑̇ = (iκζ )∗(⊑̇′). Then there is a

µ < κ such that (αµζ , ⊑̇
µ
ζ ) is (α, ⊑̇′). Let ξ = f−1(ζ, µ). Now by Proposition 31.75 we get
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Ntbc′(α, ⊑̇,P′
ξ). Hence Ntbc′(α, (iξζ)∗(⊑̇′),Pξ). That is, Ntbc′(αµζ , (i

ξ
ζ)∗(⊑̇µζ ),Pξ). Hence

(Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) = (α̌µζ , (i
ξ
ζ)∗(⊑̇µζ ), 0̌) by construction. Note that

⊑̇G = ((iκζ )∗(⊑̇′))G = (iκξ )∗((iξζ)∗(⊆̇′)) = ((iξζ)∗(⊆̇′))Gξ .

Now we apply Proposition 31.60. Let Gξ+1 = (iκξ+1)−1[G], f an isomorphism of Pξ+1 onto

Pξ ∗ Q̇ξ, G
′ = f [Gξ+1], Hξ = {ρGξ : ρ ∈ Qξ ∧ ∃p ∈ Pξ[(p, ρ) ∈ G′]}. Now by Proposition

31.60, Hξ is (Q̇ξ)Gξ -generic over M [Gξ] and M [G′] = M [Gξ][Hξ]. Let Ḋν′ be a Pξ-name

such that Ḋν = (iκξ )∗(Ḋν′). Then Dν = Ḋν
G = (Ḋν′)Gξ ∈ Pξ[Gξ]. Each Dν is dense in

(Q̇ξ)Gξ , so Hξ ∩Dν 6= ∅ for all ν < θ.

tbc′′(α,⊑) abbreviates the statement that α is a nonzero ordinal, ⊑ is a subset of α × α,
and (α,⊑, 0) is a forcing poset with pre-caliber ω1.

Proposition 31.78. For any infinite cardinal θ, MAP (θ) holds iff MAQ(θ) holds for
every poset Q of the form (α,⊑, 0), where tbc′′(α,⊑) and α ≤ θ.

Proof. ⇒: trivial. ⇐: Assume the indicated condition, and suppose that MAP(θ) is
false, where P has pre-caliber ω1. By Lemma 25.57, there is a Q ⊆ctr P such that MAQ(θ)
is false and |Q| ≤ θ. let f be a bijection of Q onto |Q| such that f(11Q) = 0. Define ξ ⊑ η

iff ξ, η < |Q| and f−1(ξ) ≤Q f−1(η). Then R
def
= (|Q|,⊑, 0) is a forcing poset, tbc′′(|Q|,⊑),

and MAR(θ) is false, contradiction.

For a forcing poset P, Ntbc′′(α, ⊑̇,P) holds iff ⊑̇ is a nice name for a subset of α× α and
11 P tbc′′(α, ⊑̇).

Proposition 31.79. Suppose that P1 has pre-caliber ω1, P0 ⊆c P1, and ⊑̇ is a P0-name;
then Ntbc′′(α, ⊑̇,P1) implies Ntbc′′(α, ⊑̇,P0).

Proof. Assume that Ntbc′′(α, ⊑̇,P1) and ¬Ntbc′′(α, ⊑̇,P0) hold in M . Then there
is a p ∈ P0 such that p P0

¬tbc′′(α̌, ⊑̇). Let G be P1-generic over M with p ∈ G. By
Lemmas 30.2 and 30.3, G ∩ P0 is P0-generic over M , and M [G ∩ P0] ⊆ M [G]. Now by
Lemma 30.3, ⊑̇G = ⊑̇G∩P0

. But tbc′′(α, ⊑̇G) holds in M [G] because Ntbc′′(α, ⊑̇,P1), while
tbc′′(α, ⊑̇G∩P0

) does not hold in M [G ∩ P0] since p P0
¬tbc′′(α̌, ⊑̇). This contradicts the

absoluteness of the formula tbc′′(x, y).

Proposition 31.80. Let M be a c.t.m. for ZFC. In M let P be a forcing poset with
pre-caliber ω1 and let θ be an infinite cardinal. Let G be P-generic over M . In M [G] let
(X,≤X , 11X) be a forcing poset with pre-caliber ω1 and with |X | ≤ θ.

Then there is a name ⊑̇ in M and an α ≤ θ such that Ntbc′′(α, ⊑̇.P) holds in M and
such that in M [G] the poset (α, ⊑̇G, 0) is isomorphic to (X,≤X , 11X).

Proof. In M [G] let α = |X |. Let f be a bijection from X onto α which takes 11X
to 0. Define ξ ⊑ η iff ξ, η < α and f−1(ξ) ≤X f−1(η). Thus f is an isomorphism from
(X,≤X , 11X) onto (α,⊑, 0).
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Fix a P-name τ over M with τG =⊑. Let Q̇ = α̌ and 1̇1Q = 0̌. Now

11  ∃y[tbc′′(α.y) ∧ [tbc′′(α, τ)→ y = τ ]].

In fact, let H be P-generic over M . If tbc′(α, τH), then we can take y = τH . If ¬tbc′(α, τH),
then we can take y = α× α. By the maximal principle, Theorem 30.35, there is a name σ
such that

(1) 11  [tbc′′(α.σ) ∧ [tbc′′(α, τ)→ σ = τ ]].

By Lemma 29.21 let ⊑̇Q be a nice name for a subset of (α× α)̌ such that

(2) 11  [σ ⊆ (α× α)̌ → σ = ⊑̇Q].

Now tbc′′(α, τG), so by (1), σG = τG =⊑⊆ (α× α). Hence by (2), ⊑= σG = (⊑̇Q)G.

Theorem 31.81. (V.4.12) Assume that κ > ω is regular and 2<κ = κ. Then there is a
forcing poset PP of size κ such that 11PP  [MAP ∧ 2ω = κ] and PP has pre-caliber ω1.

Proof. Let f : κ→ κ× κ be the bijection given by the standard proof that κ = κ · κ;
see the proof of Theorem 11.32; and see Proposition 31.64.

We are going to define by recursion a finite support κ-stage iteration. The starting
stage is trivial; P = {∅}. The limit stage is determined by the previous stages. Now we
make the step from ξ < κ to ξ + 1. We assume that for each ζ ≤ ξ we have specified a
sequence 〈(αµζ , ⊑̇

µ
ζ ) : µ < κ〉 listing all pairs (α, ⊑̇) such that 0 < α < κ and ⊑̇ is a nice Pζ-

name for a subset of α×α. As the inductive hypothesis we assume that |dmn(Qζ |, |Pζ| < κ
for each ζ < ξ, and

(〈(Pζ,≤ζ , 11ζ) : ζ ≤ ξ〉, 〈(Q̇ζ, ⊑̇Q̇ζ
, 11Q̇ζ

) : z < ξ〉)

is a finite support ξ-stage iterated forcing construction.
Let f(ξ) = (ζ, µ). By Proposition 31.64, ζ ≤ ξ. Then ⊑̇µζ is a nice Pζ-name for

a subset of αµζ × αµζ . Hence by Lemma 30.3 and Lemma 31.55, (iξζ)∗(⊑̇µζ ) is a nice Pξ-

name for a subset of αµζ × α
µ
ζ . If Ntbc′′(αµζ , (i

ξ
ζ)∗(⊑̇µζ ),Pξ), then we let (Q̇ξ, ≤̇Q̇ξ

, 1̇1Q̇ξ
) be

(α̌µζ , (i
ξ
ζ)∗(⊑̇µζ ), 0̌). If ¬Ntbc′′(αµζ , (i

ξ
ζ)∗(⊑̇µζ ),Pξ), then we let Q̇ξ = {(∅, 11Pξ)}, ≤̇Q̇ξ

= ∅,

and 1̇1Q̇ξ
= ∅.

This completes the construction of our finite support κ-stage iteration.

(1) ∀ξ < κ[|Pξ| < κ ∧ |Q̇ξ| < κ].

This is clear by induction, using the regularity of κ at the limit stages.

(2) ∀ξ ≤ κ[11Pξ  [Q̇ξ has pre-caliber ω1]].

This holds by definition of Ntbc′′.
Next, note that
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(3) κω = κ.

In fact,

κω = |ωκ| ≤
∑

λ<κ

λω ≤
∑

λ<κ

2λ = 2<κ = κ.

Let P = Pκ, and let G be P-generic over M . Note that Proposition 29.22 holds if we replace
|P| = κ by |P| ≤ κ. Hence using (3) we have

(4) M [G] |= [2ω ≤ κ].

Now if we prove that MAR(θ) for every θ < κ and every forcing poset R having pre-caliber
ω1, then (1) 2ω = κ by the proof of Theorem 25.3; (2) MAP holds.

Now for each ξ < κ let P′
ξ = iκξ [Pξ]. Then for ξ < η < κ we have P′

ξ ⊆ P′
η ⊆ P.

Suppose that θ < κ. Take a forcing poset Q with pre-caliber ω1. and a family D

of dense subsets of Q with |D | ≤ θ. By Proposition 31.78 we may assume that |Q| ≤ θ.
Then by Proposition 31.80 we get a P-name ⊑̇ and an α ≤ θ such that Ntbc′′(α, ⊑̇,P)
holds and (α, ⊑̇G,P) is isomorphic to Q. So we may assume that Q = (α, ⊑̇G, 0). Let
〈Dν : ν < θ〉 enumerate D . Thus Dν ⊆ α for each ν < θ. Let Ḋν be a nice P-name
for a subset of α such that Dν = Ḋν

G. The names ⊑̇ and Ḋν for ν < θ altogether
involve fewer than κ members of P. Hence there exists a ζ < κ such that all of these
names are P′

ζ-names. Let ⊑̇′ be a Pζ-name such that ⊑̇ = (iκζ )∗(⊑̇′). Then there is a

µ < κ such that (αµζ , ⊑̇
µ
ζ ) is (α, ⊑̇′). Let ξ = f−1(ζ, µ). Now by Proposition 31.79 we get

Ntbc′′(α, ⊑̇,P′
ξ). Hence Ntbc′′(α, (iξζ)∗(⊑̇′),Pξ). That is, Ntbc′′(αµζ , (i

ξ
ζ)∗(⊑̇µζ ),Pξ). Hence

(Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) = (α̌µζ , (i
ξ
ζ)∗(⊑̇µζ ), 0̌) by construction. Note that

⊑̇G = ((iκζ )∗(⊑̇′))G = (iκξ )∗((iξζ)∗(⊆̇′)) = ((iξζ)∗(⊆̇′))Gξ .

Now we apply Proposition 31.60. Let Gξ+1 = (iκξ+1)−1[G], f an isomorphism of Pξ+1 onto

Pξ ∗ Q̇ξ, G
′ = f [Gξ+1], Hξ = {ρGξ : ρ ∈ Qξ ∧ ∃p ∈ Pξ[(p, ρ) ∈ G′]}. Now by Proposition

31.60, Hξ is (Q̇ξ)Gξ -generic over M [Gξ] and M [G′] = M [Gξ][Hξ]. Let Ḋν′ be a Pξ-name

such that Ḋν = (iκξ )∗(Ḋν′). Then Dν = Ḋν
G = (Ḋν′)Gξ ∈ Pξ[Gξ]. Each Dν is dense in

(Q̇ξ)Gξ , so Hξ ∩D
ν 6= ∅ for all ν < θ.

Lemma 31.82. (V.4.13) If T is a Suslin tree and P has property K, then 11 P [T is
Suslin].

Proof. Assume the hypotheses, but suppose that 11 6P [T is Suslin]. Then there is a
p ∈ P such that p forces T to have an uncountable chain or an uncountable antichain.

Case 1. p forces T to have an uncountable antichain. Thus p  ∃f [f : ω1 → T and
f is one-one and rng(f) is an antichain]. By the maximal principle we get a name ḟ such
that p  [ḟ : ω1 → T and ḟ is one-one and rng(ḟ) is an antichain]. For each ξ < ω1 choose
qξ ≤ p and xξ ∈ T such that qξ  [ḟ(ξ) = x̌ξ]. By Property K, there is an L ∈ [ω1]ω1 such
that {qξ : ξ ∈ L} is linked. So for distinct ξ, η ∈ L we get r ≤ qξ, qη and r  x̌ξ ⊥ x̌η,
hence xξ ⊥ xη. This contradicts T being Suslin.

Case 2. p forces T to have an uncountable chain. This is treated similarly.
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Corollary 31.83. (V.4.14) Assume that there is a c.t.m. of ZFC. Then there is a generic
extension M [G] satisfying ¬SH plus MAK.

Proof. Start with a model M of V = L. Then M |=GCH and in M there is a Suslin
tree. Then apply Theorem 31.77 and Lemma 31.82.

Lemma 31.84. (V.4.15) The amoeba order used in the proof of Theorem 25.12 is σ-linked.

Proof. If F ∈ [Q×Q]<ω and δ is a positive rational, let

AFδ =






p ∈ P : µ



p△
∑

(a,b)∈F

(a, b)



 ≤ δ ∧ µ(p) < ε− 5δ






.

We claim that AFδ is linked. For, suppose that p, q ∈ AFδ with p 6= q. Let W =
∑

(a,b)∈F (a, b). Then

µ(p ∪ q) = µ((p ∪ q) ∩W + µ((p ∪ q)\W )

≤ µ((p\q) ∩W ) + µ((q\p) ∩W ) + µ(p ∩ q ∩W ) + µ(p\W ) + µ(q\W )

≤ ε− 5δ + 4δ < ε.

So p and q are compatible by (1) in the proof of Theorem 25.12.
To show that P is the union of all of the sets AFδ. let p ∈ P. Then µ(p) < ε, so there

is a positive δ such that µ(p) < ε− 5δ. By Lemma 18.98, there is an F ∈ [Q]<ω such that
µ(p△

∑

(a,b)∈F (a, b) < δ. Thus p ∈ AFδ.

Lemma 31.85. (V.4.15) The amoeba order used in the proof of Theorem 25.1 has property
K.

Proposition 31.86. If T is a Suslin tree and P has pre-caliber ω1, then 11 P [T is Suslin].

Proof. See the proof of Lemma 31.82.

Corollary 31.87. (V.4.16) Assume CH in M , and suppose that κ > ω is regular and
2<κ = κ. Take the forcing poset PP given by Theorem 31.81. Let G be PP -generic over
M . Then M [G] |= [MAP ∧ 2ω = κ], in M [G] there is a Suslin tree, and cov(null) = ω1.

Proof. M [G] |= [MAP ∧2ω = κ] and PP has pre-caliber ω1 by Theorem 31.81. Hence
in M [G] there is a Suslin tree by Proposition 31.86. Recall that if c ⊆ Q × Q, then Uc =
⋃

(a,b)∈c(a, b). By absoluteness, (Uc)
M = (Uc)

M [G] ∩M . and µ((Uc)
M [G]) = µ((Uc)

M ).

If ~c ⊆ ω× (Q×Q), for each n ∈ ω let ~cn = {(q, r) : (n, q, r) ∈ ~c}. Let B~c =
⋂

n∈ω U~cn .

Again, µ(BM~c ) = µ(B
M [H]
~c ).

Now in M let R = {rξ : ξ < ω1}, and for each α < ω1 let Eα = {rξ : ξ < α}. Then Eα
is countable, and hence is a null set. Now by Lemma 18.98 there is a (~c)α ⊆ ω × (Q×Q)
such that Eα ⊆ B(~c)α and µ(B(~c)α) = 0.

Now we work in M [G]. Now the proof will be finished when we prove
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(*) R =
⋃
{B(~c)α : α < ω1}.

Suppose that (*) fails; say x ∈ R\
⋃
{B(~c)α : α < ω1}. Fix a ∈ ω such that −a ≤ x ≤ a.

Let f(α) = (~c)α for all α < ω1. Thus f : ω1 → P(ω × (Q × Q)). Let ẋ be a name such
that ẋG = x. Fix p ∈ PP such that

p  [ẋ is a real number and −a ≤ ẋ ≤ a and ∀α < ω1[x /∈ Bf(α)]].

Now in M , for each α < ω1 we have p  [ẋ /∈ B(~c)α ], so p  ∃n ∈ ω[ẋ /∈ U(cn)α ].
Hence there exist an n(α) ∈ ω and a pα ≤ p such that pα  [ẋ /∈ U(cn)α ]. Since PP
has pre-caliber ω1, there is a J ∈ [ω1]ω1 such that {pα : α ∈ J} is centered. Now
[−a, a] ⊆ R =

⋃

α∈J Eα ⊆
⋃

α∈J U(~cn(α))α . Since [−a, a] is compact, there is a finite S ⊆ J
such that [−a, a] ⊆

⋃

α∈S U(~cn(α))α . This last statement is absolute, so 11  [[−a, a] ⊆
⋃

α∈S U(~cn(α))α ]. Now there is a q ≤ pα for all α ∈ S. Then q  ẋ /∈ U(~cn(α))α for all α ∈ S,
so that q  ẋ /∈ [−a, a], contradicting p  [−a ≤ ẋ ≤ a].

Corollary 31.88. (V.4.16) Assume CH in M and that κ > ω is regular and 2<κ = κ.
Take the forcing poset PP given by Theorem 31.81. Let G be PP -generic over M . Then
M [G] |= [MAP ∧ 2ω = κ], in M [G] there is a Suslin tree, and add(null) = ω1.

Proof. See Corollary 31.87 and Lemma 18.9.

Corollary 31.89. (V.4.16) Assume CH in M and that κ > ω is regular and 2<κ = κ.
Take the forcing poset PP given by Theorem 31.81. Let G be PP -generic over M . Then
M [G] |= [MAP ∧ 2ω = κ], in M [G] there is a Suslin tree, and p = 2ω.

Proof. See Corollary 31.87 and Proposition 31.72.

Proposition 31.90. If p = 2ω, then non(null) = 2ω.

Proof. By Chapter 20 we have p ≤ t ≤ s ≤ non(null).

Proof.

Proposition 31.91. If X is Lebesgue measurable with finite measure, then there is a Gδ
Y such that X ⊆ Y and µ(X) = µ(Y ).

Proof. This is immediate from Lemma 18.98.

Let M be a c.t.m. of ZFC, and fix x ∈ R (not necessarily in M). Then x is random over
M iff ∀~c ⊆ (ω ×Q×Q) with ~c ∈M and µ(B~c) = 0 we have x /∈ BM~c .

Proposition 31.92. (V.4.19) Let M be a c.t.m. of ZFC, and let P = MB([0, 1], µ) with µ
Lebesgue measure. Let G be P-generic over M . Then in M [G] there is an x ∈ [0, 1] such
that ∀a, b ∈ Q[0 ≤ a < b ≤ 1 and [a, b] ∈ G imply that x ∈ [a, b]].

Proof. Recall that P consists of equivalence classes [S] of measurable sets of positive
measure modulo the ideal of measure 0 sets. [S] and [T ] are compatible iff µ(S ∩ T ) > 0.
Hence G is centered. Moreover, {[a, b] : 0 ≤ a < b ≤ 1 and [[a, b]] ∈ G} is centered.

699



This is a collection of closed sets in the compact space [0, 1], so there is a point x in the
intersection.

Proposition 31.93. (V.4.19) Continuing Proposition 31.92, the point x is unique.

Proof. Suppose that also ∀a, b ∈ Q[0 ≤ a < b ≤ 1 and [a, b] ∈ G imply that y ∈ [a, b]],
with x 6= y. Say x < y. Let D = {[[a, b]] : a < b and b−a < (y−x)/2}. Clearly D is dense
in P. So, choose [[a, b]] ∈ D ∩G. Then x, y ∈ [a, b], but y− x > b− a, contradiction.

Proposition 31.94. (V.4.19) Continuing Propositions 31.92, 31.93, the point x is random
over M .

Proof. Suppose that ~c ⊆ (ω × Q × Q), ~c ∈ M , and µ(B~c) = 0. Let D = {[X ] ∈ P :
∃m[X ∩ U~cm = ∅]}. We claim that D is dense in P. For, let p ∈ P. Say p = [X ]. Then
µ(X) = µ(X ∩B~c) + µ(X\B~c) = µ(X\B~c). Now

µ(X\B~c) = µ

(

X ∩
⋃

m∈ω

([0, 1]\U~cm)

)

≤
∑

m∈ω

µ(X ∩ ([0, 1]\U~cm));

it follows that there is an m ∈ ω such that µ(X∩([0, 1]\U~cm)) 6= 0. Hence X∩([0, 1]\U~cm) ∈
D, as desired.

Now choose [X ] ∈ D ∩ G. Say X ∩ U~cm = ∅. It follows that X ∩ B~c = ∅, and so
x /∈ B~c.

The x given in Propositions 31.92, 31.93 is denoted by x(G).

Proposition 31.95. (V.4.20) Using the notation of Proposition 31.92, suppose that y ∈
[0, 1] is random over M . Then there is a P-generic filter G over M such that y = x(G).

Proof. Let G = {BM~c : µ(BM~c ) > 0 and y ∈ BM~c }. G is closed under intersection,
since if BM~c , B

M
~d
∈ G then y ∈ BM~c ∩B

M
~d

, while if µ(BM~c ∩B
M
~d

) = 0, say BM~c ∩B
M
~d

= BM~e ;

then y ∈ BM~e , contradiction. Clearly G is closed upwards. Suppose that D is dense. Then
µ([0, 1]\

⋃
D) = 0, so y ∈

⋃
D. Say y ∈ a ∈ D. Then also a ∈ G.

Clearly x(G) = y.

Proposition 31.96. (V.4.21) Let P be a ccc forcing poset and let κ be regular. Let T be
a κ-tree.

If T is an ω1-Aronszajn tree and no subtree of T is a Suslin tree, then 11  [Ť is
Aronszajn].

Proof. Suppose not. Then there is a p ∈ P such that p  [Ť is not Aronszajn]. If
p ∈ G, then T is still an ω1-tree in M [G]. Hence there must be an uncountable chain
C in M [G]. Let Ċ be a name and q ≤ p such that q  [Ċ is a chain through T ]. Let
S = {x ∈ T : ∃r ≤ q[r  x̌ ∈ Ċ]}. Clearly S is a subtree of T . Hence S has height κ
and there is no chain through S. Suppose that K is an uncountable antichain in S. For
each x ∈ K let rx ≤ q be such that rx  [x̌ ∈ Ċ]. Since P is ccc, there exist distinct
x, y ∈ K such that rx and ry are compatible. Say s ≤ rx, ry. Then s  [x̌, y̌ ∈ Ċ], hence
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s  [x̌ ≤ y̌ or y̌ ≤ x̌], hence x and y are comparable, contradiction. Thus S does not have
an uncountable antichain, so it is Suslin, contradiction.

Proposition 31.97. (V.4.21) Let P be a ccc forcing poset and let κ be regular. Let T be
a κ-tree.

If T is a Hausdorff κ-Aronszajn tree and κ > ω1, then 11  [Ť is κ-Aronszajn].

Proof. Suppose not, and let G be P-generic over M such that T is not κ-Aronszajn.
Clearly T is still a κ-tree, so there is a chain through T ; say f : κ→ T with f(α) ∈ Levα(T )
for each α < κ and f(α) < f(β) for α < β. For each b ∈ T and each β < height(b) let bβ
be the element of height β which is less than b. Thus f ∈

∏

α<κ Lα(T ). Let ḟ be a name

and p ∈ G such that p  ḟ ∈
∏

α<κ Lα(T ). For each α < κ let F (α) = {b ∈ Lα(T ) : ∃q ≤

p[q  ḟ(α) = b̌]}. By the argument for Theorem 29.4, F (α) is countable and f(α) ∈ F (α)
for all α < κ. If b ∈ Xα, q ≤ p, and q  [ḟ(α) = b̌], and β < α, then q  [ḟ(β) = b̌β ]. Let
∆ = {α < κ : cf(α) = ω1}.

(1) ∀α ∈ ∆∀s ∈ F (α)∃β < α[{tγ : β ≤ γ < α, sβ < t ∈ F (α)} is a chain].

For, suppose not; say α ∈ ∆, s ∈ F (α), and for all β < α the set {tγ : β ≤ γ < α, sβ < t ∈
F (α)} is not a chain.

(2) ∀β < α∃γ ∈ [β, α)∃t ∈ F (α)[sγ < t 6= s ∧ sγ+1 6≤ t].

In fact, say t, t′ ∈ F (α), γ, γ′ ∈ [β, α), sβ < t, t′, tγ , t
′
γ′ incomparable. So t 6= t′. Say t 6= s.

Choose δ ∈ (β, α) such that sδ < t and sδ+1 6≤ t. So (2) holds.
Now we use (2) to construct by recursion two sequences 〈γξ : ξ < ω1〉 and 〈tξ : ξ < ω1〉.

Suppose that these have been defined for all ξ < η, where η < ω1, so that each γξ < α. Let
δ =

⋃

ξ<η γξ. So δ < α since cf(α) = ω1. By (2), choose γη ∈ [δ + 1, α) and tη ∈ Levα(T )
such that sγη < tη 6= s and sγη+1 6≤ tη. Since F (α) has size less than ω1, there exist ξ, η
with ξ < η and tξ = tη. Then sγξ+1 ≤ sγη < tη = tξ, contradiction. Hence (1) holds.

(3) For every α ∈ ∆ there is a β < α such that for each s ∈ F (α) the set {tγ : sβ ≤ t ∈
F (α), β ≤ γ < α} is a chain.

To prove this, let α ∈ ∆. By (1), for each s ∈ F (α) choose γs < α such that the set
{tδ : sγs ≤ t ∈ F (α), γs ≤ δ < α} is a chain. Let β = supht(s)=α γs. Clearly β is as desired
in (3).

Now for each α ∈ ∆ choose h(α) to be a β as in (3). So h is a regressive function
defined on the stationary set ∆. Hence there is a β < α such that h−1[{β}] is stationary,
and hence of size κ.

(4) If α, δ ∈ h−1[{β}], α < δ, s ∈ F (α), then there is a t ∈ F (δ) such that tα = s.

In fact, say q ≤ p and q  [ḟ(α) = s]. Also q  ∃t ∈ Ľδ(T )[ḟ(δ) = t], so there exist an
r ≤ q and a t ∈ Lα(T ) such that r  [ḟ(δ) = ť]. Thus t ∈ F (δ) and tα = s.

Now let α be the least member of h−1[{β]. Suppose that s ∈ F (α) and s < t, u with
t 6= u and t, u ∈ F (γ) with γ ∈ h−1[{β}]. Then there are t′ < t and u′ < u with t′ and u′

incomparable. Choose s′ ∈ F (γ) such that s < s′, by (4). This contradicts (3).
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By (4) there are κ many elements of T in some F (γ) with α < γ ∈ h−1[{β}], and they
are all comparable. This gives a chain in T of size κ, contradiction.

Proposition 31.98. If T is a κ-Suslin tree with ω1 < κ, then any subset of T of size κ
contains an uncountable chain.

Proof. Let X ∈ [T ]κ. We define a sequence S0, S1, . . . of subsets of X . Let S0 be a
subset of X which is a maximal tree with a single root under the order of T . If Sξ has
been defined for all ξ < η, and X\

⋃

ξ<η Sξ is nonempty, let Sη be a subset of X\
⋃

ξ<η Sξ
which is a maximal tree with a single root under the order of T . This construction stops
at some ordinal α, and X =

⋃

ξ<α Sξ. By the maximality condition, the roots of the trees
Sξ form an incomparable set, and hence α < κ. Hence some Sξ has height κ, and this
gives an uncountable chain.

Proposition 31.99. (V.4.21) Let P be a ccc forcing poset and let κ be regular. Let T be
a κ-tree.

If T is a κ-Suslin tree and κ > ω1, then 11  [Ť is κ-Suslin].

Proof. Suppose to the contrary that in M [G] there is a one-one function f : κ → T
whose range is an antichain. Say p ∈ P and ḟG = f and p  [ḟ is a one-one function whose
range is an antichain]. For each ξ < κ choose xξ ∈ T and qξ ≤ p such that qξ  [ḟ(ξ) = x̌ξ].
By Proposition 31.98 let A ∈ [κ]ω1 be such that {xξ : ξ ∈ A} is a chain. Choose ξ, η

distinct members of A such that qξ and qη are compatible. Say r ≤ qξ, qη. Then r  [ḟ(ξ)

is incomparable with ḟ(η)], hence xξ and xη are incomparable, contradiction.

Proposition 31.100. (V.4.24) Suppose that 〈Pξ : ξ ≤ ω〉 is a finite support iterated

forcing construction, λ ≥ 2 is a cardinal, and ∀n[11 Pn [Q̇n has an antichain of size λ].
Then there is a Pω-generic filter G such that in M [G] there is a surjection from ω onto λ.

Proof. For each n ∈ ω we have 11Pn  [Q̇n has a maximal antichain of size at least λ].
Hence by the maximal principle, for each n there is a Pn-name Ȧn such that 11Pn  [Ȧn
is a maximal antichain of size at least λ in Q̇n]. Again by the maximal principle, for each
n ∈ ω there is a Pn-name B such that

11Pn [Ḃ is a function with domain λ× ω such that for each n,

〈Ḃ(ξ, ν) : ξ < λ〉 is a partition of Ȧn into nonempty subsets].

Now for each α < λ let Dα = {p ∈ Pω : ∃n ∈ ω[p ↾ n  ∃q ∈ Ḃ(α, n)∃r[r ≤ q, pn]]}. We
claim that Dα is dense in Pω. For, let s ∈ Pω. Choose n so that ∀m ≥ n[sm = 11]. Now
11Pn  ∃q ∈ Ḃ(α, n). It follows that there is a p ≤ s such that Pn  [pn ∈ Ḃ(α, n)]. Clearly
p ∈ Dα, as desired.

Now let G be Pω-generic intersecting each set Dα. Take any n ∈ ω. Let Gn =
(iωn)−1[G]. Then Gn is Pn-generic over M , and hence 〈ḂGn(ξ, ν) : ξ < λ〉 is a partition of
ȦnGn into nonempty subsets. Hence there is an α < λ such that |Gn ∩ BGn(α, n)| = 1.
Clearly α is unique, and we let f(n) be this α.
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For any α < λ let p ∈ G∩Dα. Choose n ∈ ω so that p ↾ n  ∃q ∈ Ḃ(α, n)∃r[r ≤ q, pn].
Then Gn ∩BGn(α, n) 6= ∅, so f(n) = α.

Proposition 31.101. Suppose that in M we are given an α-stage finite support iterated
forcing construction

(〈Pξ,≤ξ, 11ξ) : ξ ≤ ω1〉, 〈Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) : ξ < α〉)

with α a limit ordinal. Suppose that G is Pα-generic over M , S ∈M , X ∈M [G], X ⊆ S,
and (|S| < cf(α))M [G]. Then there is an η < α such that X ∈M [(iαη )−1[G]].

Proof. Clearly ∀s ∈ S[s ∈ X ↔ ∃p ∈ G[p Pα š ∈ Ẋ], where Ẋ is a Pα-name such
that ẊG = X . Now Pα =

⋃

ξ<α i
α
ξ [Pξ] and G =

⋃

ξ<α i
α
ξ [(iαξ )−1[G]]. Let Gξ = (iαξ )−1[G].

In M [G], for each s ∈ X there is a ξ = ξs < α such that ∃p ∈ Gξ[i
α
ξ (p) Pα š ∈ Ẋ ].

Let η = sups∈X ξs. So η < α since (|S| < cf(α))M [G]. Then X = {s ∈ S : ∃p ∈ Gη[iαη (p) 

š ∈ Ẋ ]}. Hence X ∈M [Gη].

Lemma 31.102. (V.4.27) Let M be a c.t.m. of ZFC. In M let κ = 2ω. Then there is in
M a ccc forcing poset P of size κ such that whenever G is P-generic over M , in M [G] we
have 2ω = κ and there is a non-principal ultrafilter U on ω with character ω1.

Proof. We construct a finite support ω1-stage iterated forcing construction

(〈Pξ,≤ξ, 11ξ) : ξ ≤ ω1〉, 〈Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) : ξ < ω1〉)

along with a sequences of Pξ-names 〈U̇ξ : ξ < ω1〉, and Pξ+1-names 〈K̇ξ : ξ < ω1〉, by

recursion. Let P0 = {0}. Let V be a non-principal ultrafilter on ω in M , and let U̇0 = V̌ .
The construction of Pξ for ξ limit is given by the finite support property. Also for ξ limit
we have

11ξ  ∃U [U is an ultrafilter and ∀x∀η < ξ[x ∈ (iξη)∗U̇η → x ∈ U ]],

so by the maximal principle there is a Pξ-name U̇ξ such that

11ξ  [U̇ξ is an ultrafilter and ∀x∀η < ξ[x ∈ (iξη)∗U̇η → x ∈ U̇ξ]],

Now suppose that Pξ and U̇ξ have been defined. We now define Q̇ξ, U̇ξ+1, Pξ+1, and K̇ξ.
We have

11Pξ ξ ∃Q∀u[u ∈ Q↔ ∃x, y[u = op(x, y) ∧ x ∈ [ω]<ω ∧ y ∈ [U̇ξ]
<ω]].

By the maximal principle there is a name Q̇ξ such that

11Pξ ξ ∀u[u ∈ Q̇ξ ↔ ∃x, y[u = op(x, y) ∧ x ∈ [ω]<ω ∧ y ∈ [U̇ξ]
<ω]].
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Also,

11Pξ ξ ∃R∀u[u ∈ R↔ ∃x, y, x′, y′[u = op(op(x, y), op(x′, y′))∧

op(x, y) ∈ Q̇ξ ∧ op(x′, y′) ∈ Q̇ξ ∧ x
′ ⊆ x ∧ y′ ⊆ y∧

∀Z ∈ y′[x\x′ ⊆ Z]]].

Hence by the maximal principle there is a Pξ-name ≤̇Q̇ξ
such that

11Pξ ξ∀u[u ∈ ≤̇Q̇ξ
↔ ∃x, y, x′, y′[u = op(op(x, y), op(x′, y′))∧

op(x, y) ∈ Q̇ξ ∧ op(x′, y′) ∈ Q̇ξ ∧ x
′ ⊆ x ∧ y′ ⊆ y∧

∀Z ∈ y′[x\x′ ⊆ Z]]].

Let 11Q̇ξ
= op(∅, ∅). Now (Q̇ξ, ≤̇Q̇ξ

, 11Q̇ξ) is a Pξ-name for a forcing poset. This also defines

Pξ+1. Next, let Γ = {(p̌, p) : p ∈ Pξ+1} and Γ′ = {(p̌, p) : p ∈ Pξ}. Then

11Pξ+1
ξ+1 ∃K∀x[x ∈ K ↔ ∃p ∈ Γ∃u, v[(iξ+1

ξ )∗pξ ∈ (iξ+1
ξ )∗Γ′ and pξ = op(u, v) ∧ x ∈ u]].

Hence by the maximal principle there is a Pξ+1-name K̇ξ such that

11Pξ+1
ξ+1 ∀x[x ∈ K̇ξ ↔ ∃p ∈ Γ∃u, v[(iξ+1

ξ )∗pξ ∈ (iξ+1
ξ )∗Γ′ and pξ = op(u, v) ∧ x ∈ u]].

Now
11Pξ+1

ξ+1 ∃U [U is an ultrafilter, and ((iξ+1
ξ )∗U̇ξ) ⊆ U and K̇ξ ∈ U ]

Hence by the maximal principle there is a Pξ+1-name U̇ξ+1 such that

11Pξ+1
ξ+1 [U̇ξ+1 is an ultrafilter, and ((iξ+1

ξ )∗U̇ξ) ⊆ U̇ξ+1 and K̇ξ ∈ U̇ξ+1].

This finishes the construction.

(1) For each ξ ≤ ω1[11ξ  [Q̇ξ is ccc]].

In fact, let G be Pξ-generic over M . Then Q̇ξG is the poset described in the proof of
Lemma 25.34, and so it is ccc.

(2) Pω1
is ccc.

This follows from (1) and Lemma 31.58.
Now let G be Pω1

-generic over M , and for each ξ ≤ ω1 let Gξ = (iω1

ξ )−1[G]. So by
Lemma 30.3, Gξ is Pξ-generic over M .

(3) ∀ξ ≤ ω1[U̇ξGξ is a nonprincipal ultrafilter on ω].

We prove (3) by induction on ξ. It is given for ξ = 0. Assume that it is true for ξ < ω1. By
the definition of U̇ξ+1 it follows that U̇ξ+1,G is an ultrafilter on ω, and it is non principal

since V ⊆ U̇ξ+1,G. The case of limit ξ is clear.

704



(4) ∀ξ < ω1∀x ∈ U̇ξGξ [K̇ξGξ+1
⊆∗ x].

In fact, let ξ < ω1. By Lemma 30.3, if p ∈ Pξ, then ((iξ+1
ξ )∗pξ)Gξ+1

= pξGξ and

((iξ+1
ξ )∗Γ′)Gξ+1

= Γ′
Gξ

= Gξ. Hence by the definition of K̇ξ we have ∀x[x ∈ K̇ξGξ+1

iff ∃p ∈ Gξ+1∃u, v[pξGξ ∈ Gξ and pξ = (u, v) and x ∈ u]]. Now let f(p) = (p ↾ ξ, pξ)

for all p ∈ Pξ+1. Then f [Gξ+1] is (Pξ ∗ Q̇ξ)-generic over M . Let j(p) = (p, 11Q̇ξ)

for any p ∈ Pξ. Then j is a complete embedding of Pξ into (Pξ ∗ Q̇ξ). Moreover,

f−1(j(p)) = iξ+1
ξ (p). We have j−1[f [Gξ+1]] = (j−1 ◦ f)[Gξ+1] = (iξ+1

ξ )−1[Gξ+1] = Gξ.

Let H = {q̇Gξ : ∃p[(p, q̇) ∈ f [Gξ+1]]}. By Proposition 31.60, H is Q̇ξGξ -generic over

M [Gξ]. Moreover, H = {pξGξ : p ∈ Gξ+1}. Hence x ∈ K̇ξGξ+1
iff pξGξ ∈ H and there are

u, v such that pξ = (u, v) and x ∈ u. By the proof of Lemma 25.34 it now follows that

∀x ∈ U̇ξGξ [K̇ξGξ+1
⊆∗ x].

(5) If ξ < η ≤ ω1, then U̇ξGξ ⊆ U̇ηGη .

We prove this by induction on η, with ξ fixed. It is trivial for ξ = η. Assume that it is
true for η. Then

U̇ξGξ ⊆ U̇ηGη = ((iη+1
η )∗U̇η)Gη+1

⊆ Ġη+1,Gη+1
.

For η limit the conclusion is clear.

(6) U̇ω1Gω1
is generated by {X ⊆ ω : ω\X is finite} ∪ {K̇ξGξ : ξ < ω1}.

In fact, suppose that X ∈ U̇ω1Gω1
. Then by Proposition 31.101 there is an η < ω1 such

that X ∈M [Gη], and hence X ∈ U̇ηGη . Then K̇ηGη ⊆
∗ X .

If follows that the character of U̇ω1Gω1
is ω1; it is uncountable by Chapter 20.

By induction, |Pξ| ≤ κ for all ξ ≤ ω1. Hence 2ω = κ in M [G] by Proposition
29.22.

Proposition 31.103. (V.4.32) MA implies that cov(meager) = cov(null) = 2ω.

Proof. See Proposition 25.40 and Chapter 19.

Proposition 31.104. (V.4.32) It is consistent that 2ω is large and cov(meager) = 2ω and
cov(null) = ω1

Proof. Use Fn(κ, 2, ω) in a model of CH. By Propositions 30.88 and 30.89, cov(null) =
ω1 in the extension. By Lemma 31.26, cov(meager) = 2ω in the extension.

Proposition 31.105. (V.4.32) It is consistent that 2ω is large and cov(meager) =
cov(null) = ω1

Proof. First get the continuum large, and then use Lemma 31.102; see Chapter
20.

Proposition 31.106. (V.4.37) Let M be a ctm for ZFC+GCH. Then there is a cardinal
preserving extension M [G] of M satisfying ZFC +MA+ (2ω = ω2) + (2ω2 = ω3).
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Proof. First force with Fn(ω3, 2, ω2), obtaining M ′. By Theorem 29.38, in M ′ we
have 2ω = ω1, 2ω1 = ω2, and 2ω2 = ω3. In particular, in M ′, 2<ω2 = ω2. So we can apply
Theorem 31.66 to get an extension M [G] such that M [G] |= [MA+ (2ω = ω2)]. In M [G]
we have 2ω2 ≥ ω3. Since |P| = ω2 in M ′, there are ωω2 = ω2 nice names for subsets of ω2.
So M [G] adds at most ω2 new subsets of ω2, so 2ω2 = ω3 in M [G].

For an ordinal α, a normal α-chain of posets is a sequence 〈Pξ : ξ < α〉 of posets such that
Pξ ⊆c Pη whenever ξ ≤ η and Pη =

⋃

ξ<η Pξ whenever η < α is a limit ordinal.

Proposition 31.107. (V.4.40) Let 〈Pξ : ξ < γ〉 be a normal γ-chain of posets, where γ is
a limit ordinal. Let Pγ =

⋃

ξ<γ Pξ. Then 〈Pξ : ξ ≤ γ〉 is a normal (γ + 1)-chain.

Proof. First we check that each Pξ is a subposet of Pγ . We have

≤Pγ ∩(Pξ × Pξ) = (Pξ × Pξ) ∩
⋃

η<γ

(Pη × Pη) = (Pξ × Pξ).

Next we check that Pξ ⊆ctr Pγ . Suppose that n ∈ ω, q1, . . . , qn ∈ Pξ, p ∈ Pγ , and ∀i[p ≤ qi].
Choose η < γ such that ξ ≤ η and p ∈ Pη. Then ∃q ∈ Pξ∀i[q ≤ qi] since Pξ ⊆ctr Pη.

Finally, to show that Pξ ⊆c Pγ , we apply Lemma 25.79, with i the inclusion embedding.
First note

11Pξ = 11Pγ .
∀q1, q2 ∈ Pξ[q1 ≤Pξ q2 → q1 ≤Pγ q2].
∀q1, q2 ∈ Pξ[q1 ⊥Pξ q2 ↔ q1 ⊥Pγ q2].

Now let p ∈ Pγ . Choose η < γ such that ξ < η and p ∈ Pη. Let p′ ∈ Pξ be a reduction of
p to Pξ. Then for any q ∈ Pξ, q ⊥Pγ p iff q ⊥Pη p iff q ⊥Pξ p

′.

Proposition 31.108. (V.4.43) There are posets Pξ for ξ ≤ ω1 such that ∀ξ, η ≤ ω1[ξ, η→
Pξ ⊆c Pη] and Pω1

=
⋃

ξ<ω1
Pξ, each Pξ is countable, and Pω1

is not ccc.

Proof. Let T be a tree of height ω1 consisting of a branch 〈bξ : ξ < ω1〉 together with
elements xξ with bξ < xξ for all ξ < ω1. Let Pξ = Tξ+1 for each ξ < ω1 and Pω1

= T .
If ξ < η ≤ ω1 then Pξ ⊆c Pη. In fact, suppose that u ∈ Pη. If height(u) ≤ ξ, then u
is a reduction of u to Pξ. If height(u) > ξ, let p be of height ξ with p < u. Then p is
a reduction of u to Pξ, since if q ∈ Pξ and q 6⊥ p, then q and p are comparable, hence
q ≤ p ≤ u, so that q 6⊥ u. Clearly T has an antichain of size ω1, so Pω1

is not ccc.

Lemma 31.109. (V.4.44) If i : P → R is a complete embedding and G is a filter on P,
let R/G = {r ∈ R : ∀p ∈ G[r 6⊥ i(p)]}. Then R/G is an upward closed subset of R, and
i[G] ⊆ R/G.

Proof. Suppose that r ∈ R/G and r ≤ s. Take any p ∈ G. Say t ≤ r, i(p). Then
t ≤ s, i(p), so s ∈ R/G.

Next, suppose that q ∈ G. Take any p ∈ G. Then p 6⊥ q, so i(p) 6⊥ i(q), hence
i(q) ∈ R/G.
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Lemma 31.110. (V.4.44) If i : P → R is a complete embedding, G is a filter on P, P,
R, i are in M , and Γ is the standard P-name for a generic filter, then for any p ∈ P and
r ∈ R, p P [r ∈ R/Γ] iff p is a reduction of r to P.

Proof. ⇒: Suppose that p P [r ∈ R/Γ]. Suppose that q ∈ P and q 6⊥ p; we want to
show that i(q) 6⊥ r. Let G be generic such that p, q ∈ G. Then r ∈ R/G and q ∈ G, so
r 6⊥ i(q).
⇐: Suppose that p is a reduction of r to P. Let G be any generic filter such that

p ∈ G; we want to show that r ∈ R/G. So suppose that q ∈ G. Then p 6⊥ q, so i(q) 6⊥ r,
as desired.

Let i : P → R is a complete embedding. Then red(p, r) is an abbreviation for “p ∈ P and
r ∈ R and p is a reduction of r to P”. In M we define

Q̇ = {(ř, p) : r ∈ R and p ∈ P and red(p, r)}.

Proposition 31.111. With the above definitions, if G is P-generic over M then Q̇G =
{r ∈ R : ∃p ∈ G[p  [r ∈ R/Γ]]}.

Proof. By definition, Q̇G = {r ∈ R : ∃p ∈ G[red(p, r)]}. By Lemma 31.110, this is
{r ∈ R : ∃p ∈ G[p  [r ∈ R/Γ]]}.

Proposition 31.112. With the above definitions, if G is P-generic over M then Q̇G =
R/G.

Proof. First suppose that r ∈ Q̇G. Then by Proposition 31.111, choose p ∈ G such
that p  [r ∈ R/Γ]. so r ∈ R/G.

Second, suppose that r ∈ R/G. Then there is a p ∈ G such that p  [r ∈ R/Γ]. By
Proposition 31.111, r ∈ Q̇G.

Proposition 31.113. With the above definitions, 11  [Q̇ = R/Γ].

Proposition 31.114. With the above definitions, if p ∈ P and r ∈ R, then p  [ř ∈ Q̇] iff
red(p, r).

Proof. p  [ř ∈ Q̇] iff (p  [ř ∈ Q̇] and p  [Q̇ = R/Γ]) iff p  [ř ∈ R/Γ] iff red(p, r),
using Proposition 31.113 and Lemma 31.110.

Proposition 31.115. Suppose that i : P→ Q is a complete embedding. Then the following
are equivalent:

(i) red(p, r),
(ii) ∀q ∈ P[q 6⊥ p→ i(q) 6⊥ r].
(iii) ∀q ∈ P[q ≤ p→ i(q) 6⊥ r].

Proof. By definition, red(p, r) ↔ ∀q ∈ P[i(q) ⊥ r → q ⊥ p]. Hence (i) and (ii) are
equivalent. Now suppose that red(p, r), q ∈ P, and q ≤ p. Then q 6⊥ p, so i(q) 6⊥ r by
(ii). Finally, assume (iii), and suppose that q ∈ P and q 6⊥ p. Say q′ ≤ q, p. Then by (iii),
i(q′) 6⊥ r. Say s ≤ i(q′), r. Then s ≤ i(q), r, so i(q) 6⊥ r, as desired.
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Proposition 31.116. Suppose that i : P → Q is a complete embedding and red(p, r).
Then i(p) 6⊥ r.

Proof. Obviously p 6⊥ p, fo i(p) 6⊥ r by Proposition 31.115(ii).

Proposition 31.117. Suppose that i : P → Q is a complete embedding, red(p, r), and
p′ ≤ p. Then red(p′, r).

Proof. By Proposition 31.115(iii), ∀q[q ≤ p → i(q) 6⊥ r], so ∀q[q ≤ p′ → i(q) 6⊥ r].
Hence red(p′, r) by Proposition 31.115(iii).

Proposition 31.118. Suppose that i : P → Q is a complete embedding, red(p, r), and
r ≤ i(p1). Then ∃p2[p2 ≤ p1 and p2 ≤ p and red(p2, r)].

Proof. By Proposition 31.115(iii) we have ∀q ∈ P [q ≤ p → i(q) 6⊥ r]. Hence
∀q ∈ P [q ≤ p → i(q) 6⊥ i(p1)], hence ∀q ∈ P [q ≤ p → q 6⊥ p1]. Since p ≤ p, it follows that
p 6⊥ p1. Choose p2 ≤ p, p1. By Proposition 31.117, red(p2, r).

Proposition 31.119. Suppose that i : P → Q is a complete embedding and r3 ≤
i(p1), i(p2). Then ∃p3 ≤ p1, p2[red(p3, r3)].

Proof. Let p′ be a reduction of r3 to P. Thus red(p′, r3) and r3 ≤ i(p1). Hence
by Proposition 31.118 there is a p′′ ≤ p′, p1 such that red(p′′, r3). So red(p′′, r3) and
r3 ≤ p2. Hence by Proposition 31.118 there is a p3 ≤ p′′, p2 such that red(p3, r3). Note
that p3 ≤ p′′ ≤ p1.

Proposition 31.120. Let i : P → Q be a dense embedding. Suppose that n ∈ ω,
p1, . . . , pn ∈ P, and 6⊥ (i(p1), . . . , i(pn)). Then 6⊥ (p1, . . . , pn).

Proof. Say r ≤ i(p1), . . . , i(pn). Choose s ∈ P so that i(s) ≤ r. Then i(s) ≤ i(p1),
so i(s) 6⊥ i(p1) and hence s 6⊥ p1. Say t1 ≤ s, p1. Suppose that we have found tk so that
tk ≤ s, p1, . . . , pk, with 1 ≤ k < n. Then i(tk) ≤ i(s) ≤ i(pk+1), so i(tk) 6⊥ i(pk+1). Hence
tk 6⊥ pk+1. Say tk+1 ≤ tk, pk+1. Then tk+1 ≤ s, p1, . . . , pk+1.

Now tn ≤ p1, . . . , pn, as desired.

Lemma 31.121. (V.4.45) Suppose that i : P→ R is a complete embedding. Let

Q̇ = {(ř, p) : r ∈ R and p ∈ P and p is a reduction of r to P}.

Then P ∗ Q̇ ≈d R. (See the definition of ≈d on page 567.)

Proof. By definition,

P ∗ Q̇ = {(p, ř) ∈ P× dmn(Q̇) : r ∈ R and p  [ř ∈ Q̇]};

(p1, ř1) ≤ (p2, ř2) iff p1 ≤ p2 and p1  [ř1 ≤ ř2].

Using Proposition 31.114 we get

P ∗ Q̇ = {(p, ř) ∈ P× dmn(Q̇) : r ∈ R and red(p, r)};

(p1, ř1) ≤ (p2, ř2) iff p1 ≤ p2 and r1 ≤ r2].
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Hence we get P ∗ Q̇ ∼= {(p, r) ∈ P×R : red(p, r)}.
Now let A be the completion of R with the dense embedding j : R → A. To prove

the lemma it suffices to find a dense embedding k of {(p, r) ∈ P × R : red(p, r)} into
A. If red(p, r), then by Proposition 31.113 we have r 6⊥ i(p) since p 6⊥ p. We define
k(p, r) = j(r) · j(i(p)). Then rng(k) is dense in A since k(p, r) ≤ j(r). To show that k
is a dense embedding, we check conditions 1-3 of the definition on page 445. We have
k(11, 11) = j(11) · j(i(11)) = 11. If (p1, r1) ≤ (p2, r2), then k(p1, r1) = j(r1) · j(i(p1)) ≤
j(r2) · j(i(p2)) = k(p2, r2). For the → direction of 3, suppose that k(p1, r1) 6⊥ k(p2, r2).
Thus j(r1)·j(i(p1))·j(r2)·j(p2)) 6= 0. By Proposition 31.120 choose r3 ≤ r1, i(p1), r2, i(p2).
By Proposition 31.119 there is a p3 ≤ p1, p2 such that red(p3, r3). Since also r3 ≤ r1, r2,
we have (p3, r3) ≤ (p1, r1), (p2, r2).

For the ← direction of 3, suppose (p1, r1) 6⊥ (p2, r2); say (p3, r3) ≤ (p1, r1), (p2, r2).
Then by 2, k(p3, r3) ≤ k(p1, r1) · k(p2, r2), and hence k(p1, r1) 6⊥ k(p2, r2).

Let 〈Pξ : ξ < α〉 and 〈Xξ : ξ < α〉 be two normal α-chains of posets. Then these two
chains are strongly forcing equivalent iff there is another normal α chain 〈Aξ : ξ < α〉 of
posets and dense embeddings iξ : Pξ → Aξ and jξ : Xξ → Aξ such that iξ = iη ↾ Pξ and
jξ = jη ↾ Xξ whenever ξ < η < α.

Proposition 31.122. Let

(〈(Pξ,≤ξ, 11ξ) : ξ ≤ α〉, 〈(Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) : ξ < α〉)

be an α-stage finite support iterated forcing construction. For each ξ ≤ α let Pξ = iαξ [Pξ].

Pξ is considered as a subposet of Pα.
Then 〈Pξ : ξ ≤ α〉 is a normal (α+ 1)-chain of posets.

Proof. Suppose that ξ < η ≤ α. Clearly Pξ ⊆ Pη and in fact Pξ is a subposet of Pη.
To show that Pξ ⊆ctr Pη, suppose that n ∈ ω, q1, . . . , qn ∈ Pξ, p ∈ Pη, and ∀i[p ≤ qi]. Say
qi = iαξ (q′i) and p = iαη (p′). Let p′′ = p′ ↾ ξ. Then p′′ ∈ Pξ by 4 in the definition of iterated

forcing. We have ∀i[p′′ ≤ q′i] by 7 in the definition, so ∀i[iαξ (p′′) ≤ qi]. Thus Pξ ⊆ctr Pη. To

show that Pξ ⊆c Pη, let p ∈ Pη. Let p′ = iαξ (p ↾ ξ). We claim that p′ is a reduction of p to

Pξ. For, suppose that q ∈ Pξ and q ≤ p′. (We are going to apply Proposition 31.115(iii).)
Let r = (q ↾ ξ) ∪ (p ↾ (α\ξ)). Then r ∈ Pη and r ≤ q, p as desired.

Finally, if η ≤ α is a limit ordinal, then

Pη = iαη [Pη] =
⋃

ξ<η

iαξ [Pξ] =
⋃

ξ<η

Pξ.

Proposition 31.123. Suppose that P ⊆c Q, A is the completion of P with dense embedding
i : P→ A, and B is the completion of Q with dense embedding j : Q→ B.

Then there is a complete embedding k : A→ B such that k ◦ i = j ↾ P.

A diagram for this:
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P Q

A B

⊆c

i j

k

Proof. First we claim

(1) If X.Y ⊆ P and
∑A

i[X ] =
∑A

i[Y ], then
∑B

j[X ] =
∑B

j[Y ].

In fact, assume not. Say
∑B

j[X ] 6≤
∑B

j[Y ]. Thus
∑B

j[X ] · −
∑B

j[Y ] 6= 0 so there is

an x ∈ X such that j(x) ·−
∑B

j[Y ] 6= 0. Choose u ∈ Q such that j(u) ≤ j(x) ·−
∑B

j[Y ].
Thus

(2) u ≤ x.

(3) ∀y ∈ Y [u ⊥ y].

Let v be a reduction of u to P. Then by (3), ∀y ∈ Y [v ⊥ y]. Also v 6⊥ u, so by (2), v 6⊥ x.

Say w ≤ v, x. Then i(w) ≤
∑A

i[X ] and i(w) ·
∑A

i[Y ] = 0, contradiction. So (1) holds.

Now for any a ∈ A write a =
∑A

i[X ] and define k(a) =
∑B

j[X ]. This definition is
unambiguous by (1).

(4) k(−a) = −k(a).

In fact, write a =
∑A

i[X ] and −a =
∑A

i[Y ]. Clearly ∀x ∈ X∀y ∈ Y [i(x) · i(y) = 0], so

∀x ∈ X∀y ∈ Y [x ⊥ y], hence ∀x ∈ X∀y ∈ Y [j(x) · j(y) = 0], so
∑B

j[X ] ·
∑B

j[Y ] = 0.

Let Z be a maximal antichain in P. Then
∑A

i[Z] = 1 = a + −a =
∑A

i[X ∪ Y ], so by

(1),
∑B

j[Z] =
∑B

j[X ∪Y ] =
∑B

j[x] +
∑B

j[Y ]. Now Z is a maximal antichain in Q, so
∑B

j[Z] = 1. This proves (4).

(5) If Z ⊆ A, then k(
∑A

Z) =
∑B

k[Z].

In fact, for each z ∈ Z write z =
∑A

i[Xz] with Xz ⊆ P. Then

k

(
A∑

Z

)

= k

(
A∑

z∈Z

A∑

i[Xz]

)

= k

(
A∑

i

[
⋃

z∈Z

Xz

])

=

B∑

j

[
⋃

z∈Z

Xz

]

710



=

B∑

z∈Z

B∑

j[Xz]

=
B∑

k[Z]

Clearly k is one-one. Finally, if p ∈ P, then (k ◦ i)(p) = k(i(p)) = j(p).

Proposition 31.124. (V.4.47) Let 〈Xξ : ξ ≤ α〉 be a normal (α+1)-chain of posets. Then
there is an α-stage finite support iterated forcing construction

(〈(Pξ,≤ξ, 11ξ) : ξ ≤ α〉, 〈(Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) : ξ < α〉)

such that, with Pξ = iαξ [Pξ] for each ξ ≤ α, the chain 〈Xξ : ξ ≤ α〉 is strongly forcing

equivalent to 〈P1+ξ : ξ ≤ α〉.

Proof. First we define P0, Q̇0, P1, A0, i0, and j0. Let P0 = {∅}. Let Q̇0 = {(ř, ∅) :
r ∈ X0}. Let P1 = {{((ř, ∅), 0)} : r ∈ X0}. Let A0 be the Boolean completion of X0, with
associated dense embedding j0. Let i0({((ř, ∅), 0)}) = j0(r) for each r ∈ X0.

Now suppose that P1+β , Aβ , iβ , jβ have been defined so that iβ : P1+β → Aβ is a
dense embedding and jβ : Xβ → Aβ is a dense embedding. (These statements are true for

β = 0.) We now define P1+β+1, Q̇β+1, Aβ+1, iβ+1, and jβ+1. Let A′
β+1 be the completion

of Xβ+1 with associated dense embedding j′β+1. We now apply Proposition 31.123 to get
a complete embedding k of Aβ into A′

β+1 such that k ◦ jβ = j′β+1 ↾ Xβ :

Xβ Xβ+1

Aβ A′
β+1

Aβ+1

⊆c

jβ j′β+1

k

s
⊆c

Now there is a complete BA Aβ+1 such that Aβ is a subalgebra of Aβ+1 and there is an
isomorphism s of A′

β+1 onto Aβ+1 such that s ◦ k is the identity on Aβ. We claim that
Aβ ⊆c Aβ+1. Clearly Aβ is a subposet of Aβ+1. To check that Aβ ⊆ctr Aβ+1, suppose
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that n ∈ ω, q1, . . . , qn ∈ Aβ , p ∈ Aβ+1, and ∀i[p ≤ qi]. Then
∏

i qi 6= 0 and ∀i[
∏

i qi ≤ qi].
Finally, suppose that p ∈ Aβ+1. Let q ∈ Aβ be a reduction of s−1(p) to Aβ using k. Then
for any r ∈ Aβ we have k(r) ⊥ s−1(p) implies that r ⊥ q, so r ⊥ p implies that s−1(r) ⊥
s−1(p). Since s ◦ k is the inclusion map, we have s−1(r) = s−1(s(k(r)) = k(r). So r ⊥ p
implies that k(r) ⊥ s−1(p) and hence r ⊥ p, as desired. Let jβ+1 = s◦j′β+1. Clearly jβ+1 is
a dense embedding of Xβ+1 into Aβ+1. Also, jβ+1 ↾ Xβ = (s ◦ j′β+1) ↾ Xβ = s ◦ k ◦ jβ = jβ.

Note that iβ is a complete embedding of P1+β into Aβ+1. Let Q̇β+1 = {(ř, p) : r ∈
Aβ+1 and p ∈ P1+β and p is a reduction of r to P1+β using iβ}. Then by the proof of
V.4.45,

P1+β ∗ Q̇β+1 = {(p, ř) ∈ P1+β × dmn(Q̇β+1) :

p is a reduction of r to P1+β using iβ}.

Hence

P1+β+1 = {p : p is a function with domain 1 + β + 1 and

p ↾ (1 + β) ∈ P1+β and p(1 + β) ∈ Aβ+1 and

p ↾ (1 + β) is a reduction of p(1 + β) to P1+β using iβ}.

Now if p ∈ P1+β+1, then (p ↾ (1 + β)) 6⊥ p(1 + β), so iβ(p ↾ (1 + β)) 6⊥ p(1 + β). We

define iβ+1(p) = iβ(p ↾ (1 + β)) · p(1 + β). Then if p ∈ P1+β then iβ+1(iβ+1
β (p)) =

iβ+1(p⌢〈11〉) = iβ(p) · 11 = iβ(p). Now rng(iβ+1) is dense in Aβ+1. For, suppose that
r ∈ A+

β+1. Let p ∈ P1+β be a reduction of r to P1+β using iβ . Then p⌢〈ř〉 ∈ P1+β+1,
and iβ+1(p⌢〈ř〉) = iβ(p) · r ≤ r. Clearly p ≤ q implies that iβ+1(p) ≤ iβ+1(q), and p 6⊥ q

implies that iβ+1(p) 6⊥ iβ+1(q). Now suppose that iβ+1(p) 6⊥ iβ+1(q). Thus r
def
= iβ(p ↾

(1 +β)) ·p(1 +β) · iβ(q ↾ (1 +β)) · q(1 +β) 6= 0. We have r ≤ iβ(p ↾ (1 +β)), iβ(q ↾ (1 +β)).
Hence by Proposition 350h there is an s ≤ p ↾ (1 +β), q ↾ (1 +β) such that s is a reduction
of r to P1+β using iβ . Let t = s⌢〈ř〉. Then t ∈ P1+β+1 and t ≤ p, q. So p 6⊥ q. So iβ+1 is
a dense embedding of P1+β+1 into Aβ+1.

This completes the successor step.
Now suppose that β is a limit ordinal. Pβ is given by the definition of finite support

iteration. We let Aβ =
⋃

γ<β Aγ . Then Aβ is not in general complete, but Aγ ⊆c Aβ . Let
jβ =

⋃

γ<β jγ . Then jβ : Xβ → Aβ is a dense embedding. For p ∈ Pβ, choose ξ < β so
that p(η) = 11 for all η ∈ [ξ, β) and define iβ(p) = iξ(p ↾ ξ). Then iβ is a dense embedding
of Pβ into Aβ .

MA∗(κ) is the statement that MAP(κ) holds for all posets which are ω2-cc and countably
closed. MA∗ is the statement that ∀κ < 2ω1MA∗(κ).

Lemma 31.125. (V.5.2) If P is countably closed, then MAP(ω1).

Proof. Let P be countably closed, and let 〈Dξ : ξ < ω1〉 be a system of dense subsets
of P. We define rξ ∈ P for each ξ < ω1, by recursion. Let r0 ∈ D0. Suppose that rξ has
been defined for all ξ < η, so that r0 ≥ r1 ≥ · · · ≥ rξ ≥ · · ·. By countable closure, let
rη ≤ rξ for all ξ < η, with rη ∈ Dη. Now let G = {q ∈ P : ∃ξ < ω1[rξ ≤ q].
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Lemma 31.126. (V.5.3) If P is countably closed and 11  [Q̇ is countably closed], then
P ∗ Q̇ is countably closed.

Proof. Suppose that 〈(pξ, q̇ξ) : ξ < α〉 is such that α is countable and ∀ξ, η <
α[ξ < η → (pη, q̇η) ≤ (pξ, q̇ζ)]. Choose r ∈ P such that r ≤ pξ for all ξ < α. Then
∀ξ, η < α[ξ < η → r  [q̇η ≤ q̇ξ]], so r  ∃s∀ξ < α[s ≤ q̇ξ]. Then there is a t ≤ r and a u̇
such that t  ∀ξ < α[u̇ ≤ q̇ξ]. Hence ∀ξ < α[(t, u̇) ≤ (pξ, q̇ξ)].

Proposition 31.127. {t ∈ Fn(ω1, ω, ω1) : dmn(t) ∈ ω1} is a complete subposet of
Fn(ω1, ω, ω1).

Proof. It is obviously a subposet. To show that {t ∈ Fn(ω1, ω, ω1) : dmn(t) ∈
ω1} ⊆ctr Fn(ω1, ω, ω1), suppose that n ∈ ω, q1, . . . , qn ∈ {t ∈ Fn(ω1, ω, ω1) : dmn(t) ∈ ω1},
p ∈ Fn(ω1, ω, ω1), and ∀i[p ≤ qi]. Let r ∈ {t ∈ Fn(ω1, ω, ω1) : dmn(t) ∈ ω1} be such that
p ⊆ r. Then ∀i[r ≤ qi. Finally denseness follows in the same way.

Example 31.128. (V.5.4) There is an ω-stage countable support iterated forcing con-
struction such that ∀n[11  [Q̇n is countably closed]] and ∀n[Pn is countably closed], but Pω
is not countably closed, and in fact collapses ω1.

Proof. In M let T = {t ∈ Fn(ω1, ω, ω1) : dmn(t) ∈ ω1}. Let P0 = {∅} and Q̇0 = Ť.
This also defines P1.

Now suppose that Pn+1 has been defined so that 11Pn  [Q̇n ⊆d T]. Let i : Pn → Pn+1

be the usual complete embedding. Let Γ′′ = {(i∗pn, p) : p ∈ Pn+1} using the definition of
i∗ on page 560. Then

11Pn+1
∃f : ω1 → ω∀α < ω1∀k ∈ ω

[f(α) = k ↔ ∃p ∈ Γ′′[α ∈ dmn(p) and p(α) = k]]

Hence there is a Pn+1-name ḟn such that

11Pn+1
ḟn : ω1 → ω and ∀α < ω1∀k ∈ ω

[ḟn(α) = k ↔ ∃p ∈ Γ′′[α ∈ dmn(p) and p(α) = k]]

Now we claim

(1) For all p ∈ Pn+1, α < ω1, and k ∈ ω, p  ḟn(α) = k iff for every K which is Pn+1-
generic over M with p ∈ K, and with G = {r ∈ Pn : r⌢〈11〉 ∈ K}, we have α ∈ dmn(pnG)
and pnG(α) = k.

For, suppose that p ∈ Pn+1, α < ω1, and k ∈ ω. First suppose that p  ḟn(α) = k.
Suppose that K is Pn+1-generic over M with p ∈ K, and G = {r ∈ Pn : r⌢〈11〉 ∈ K}. But
suppose that α /∈ dmn(pnG). Then there is a q ≤ p such that α ∈ dmn(qnG), q ↾ n = p ↾ n,
and qnG(α) 6= k. Let qnG ∈ L generic, and H = G ∗ L; see the definition on page 605.
Now q ≤ p, so q  ḟn(α) = k. Hence ḟnL(α) = k. Now Γ′′

L = {(i∗rn)L : r ∈ L}, so

(i∗qn)L ∈ Γ′′
L. By Lemma 30.3, (i∗q)L = qnG. Hence ḟnL(α) 6= k, contradiction. It

follows that α ∈ dmn(pnG). Suppose that pnG(α) 6= k. Now Γ′′
K = {(i∗rn)K : r ∈ K},

713



so (i∗pn)K ∈ Γ′′
K . By Lemma 30.3, (i∗p)K = pnG. Hence ḟnK 6= k. But p  ḟn(α) = k,

contradiction.
Second, suppose that the condition in (1) holds. Let K be Pn+1-generic over M with

p ∈ K, and G = {r ∈ Pn : r⌢〈11〉 ∈ K}. Now Γ′′
K = {(i∗rn)K : r ∈ K}, so (i∗pn)K ∈ Γ′′

K .
By Lemma IV.4.4, (i∗p)K = pnG. Then by the condition in (1), α ∈ dmn(pnG) and
pnG(α) = k. Hence ḟnK(α) = k, as desired. This completes the proof of (1).

Now

11Pn+1
∃Q[Q is a forcing poset and Q ⊆d T and ∀t ∈ T

[t ∈ Q↔ ∃ limit γ∃k ∈ ω[dmn(t) = γ + k and k = ḟn(γ + ω)]]]

Hence there is a Pn+1-name Q̇n+1 such that

11Pn+1
Q̇n+1 is a forcing poset and Q̇n+1 ⊆d T and ∀t ∈ T

[t ∈ Q̇n+1 ↔ ∃ limit γ∃k ∈ ω[dmn(t) = γ + k and k = ḟn(γ + ω)]]]

Now by definition, q ∈ Pω iff q is a function with domain ω and ∀n ∈ ω[q ↾ n  [qn ∈ Q̇n]].
Now let q ∈ Pω, n ∈ ω, and suppose that qn+1 6= 11. Then q ↾ (n+ 1)  [qn+1 ∈ Q̇n+1], so

q ↾ (n+ 1)  ∃ limit γ∃k ∈ ω[dmn(qn+1) = γ + k and k = ḟn(γ + ω)].

By the maximal principle twice, there are Pn+1 names γ̇ and k̇ such that

q ↾ (n+ 1)  [γ̇ is a limit ordinal and dmn(qn+1) = γ̇ + k̇ and k̇ = ḟn(γ̇ + ω)].

Now let G be Pω-generic over M . Let Gn = (iωn)−1[G] and Gn+1 = (iωn+1)−1[G]. Since

q ↾ (n + 1)  k̇ = ḟn(γ̇ + ω), it follows by (1) that γ̇Gn+1
+ ω ∈ dmn(qnGn). But also

γ̇Gn+1
+ k = dmn(qn+1,Gn+1

). Thus dmn(qn+1,Gn+1
) < dmn(qnGn). It follows that there is

an m ∈ ω such that qm = 11. Hence our interated forcing construction has finite support.
Now clearly ∀n[11  [Q̇n has an antichain of size at least ω1]], so by Proposition 31.100,

Pω collapses ω1. By Theorem 29.9, Pω is not countably closed.

If P is a forcing poset, then a P-name τ is full iff for all P-names σ and all p ∈ P, if
p  [σ ∈ τ ], then there is a σ′ ∈ dmn(τ) such that p  [σ′ = σ] and (σ′, p) ∈ τ .

Lemma 31.129. (V.5.6) If τ is a P-name, then there is a full P-name τ̃ such that
11  [τ̃ = τ ].

Proof. Let π =
⋃

dmn(τ). Thus π is a P -name. We claim

(1) 11  ∀x∀y[x ∈ y ∈ τ → x ∈ π].

In fact, let G be generic. Suppose that x ∈ y ∈ τG. Then there is a (ρ, p) ∈ τ such that
p ∈ G and y = ρG; and there is a (ξ, q) ∈ ρ such that q ∈ G and x = ξG. So ρ ∈ dmn(τ)
and (ξ, q) ∈ ρ, so (ξ, q) ∈ π. It follows that x = ξG ∈ πG, as desired.

Let E be the set of all nice names for subsets of π, and let τ̃ = {(σ′, p) ∈ E × P : p 

σ′ ∈ τ}. Then
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(2) 11  τ̃ ⊆ τ .

In fact, suppose that G is generic and x ∈ τ̃G. Then there is a (σ′, p) ∈ τ̃ such that p ∈ G
and x = σ′

G. Now p  σ′ ∈ τ , so x = σ′
G ∈ τG. This proves (2).

(3) If p  σ ∈ τ , then there is a σ′ ∈ E such that p  σ′ = σ; hence p  σ′ ∈ τ , and so
(σ′, p) ∈ τ̃ .

In fact, let σ′ be a nice name for a subset of π such that 11  σ′ = σ ∩ π. Hence
11  σ ⊆ π → σ = σ′. Now p  σ ⊆ π by (1), so p  σ = σ′, as desired in (3).

A consequence of (3) is that 11  τ ⊆ τ̃ . In fact, suppose that G is P -generic over M
and x ∈ τG. Say x = σG. Choose p ∈ G such that p  σ ∈ τ . Choose σ′ by (3). Then
(σ′, p) ∈ τ̃ and p ∈ G, so x = σG = σ′

G ∈ τ̃
′
G, as desired.

Together with (2) this shows that 11  τ = τ̃ . Clearly τ̃ is full.

Proposition 31.130. (V.5.7) If P is atomless and τ is a full P-name such that τG = 2
for every P-generic G, then |τ | ≥ 2ω.

Proof. Let B be a an infinite maximal antichain in P. Suppose that A
def
= (A0, A1) is

a partition of B. Let σA = {(∅, p) : p ∈ A0}. Suppose that p ∈ G, generic. If p ∈ A0, then
σAG = {∅G} = {∅}. If p /∈ A0, then σAG = ∅. Hence p  σA ∈ τ , so there is a σ′A ∈ dmn(τ)

such that p  σ′A = σA and (σ′A, p) ∈ τ . Suppose that also C
def
= (C0, C1) is a partition of

B, and A0 6= C0. Say p ∈ A0\C0. Then for p ∈ G generic we have σAG = {∅} and σCG = ∅.
Since p  σ′A = σA and σ′C = σC , we have σ′A

G 6= σ′C
G , hence σ′A 6= σ′C . So we get at

least 2ω members of τ .

Lemma 31.131. (V.5.8) Suppose given an α-stage iterated forcing construction such that
for each ξ < α, Q̇ξ is a full name and 11Pξ  [Q̇ξ is countably closed]. Then Pα is countably
closed.

Proof. Suppose that pn ∈ Pα for all n ∈ ω, and p0 ≥ p1 ≥ · · ·. We now define
〈qωµ : µ < α〉 by recursion so that the following conditions hold for each ξ ≤ α:

(1ξ) q
ω ↾ ξ ∈ Pξ.

(2ξ) ∀n ∈ ω[qω ↾ ξ ≤ pn ↾ ξ].

(3ξ) ∀µ /∈
⋃

n∈ω supp(pn)[qωµ = 11].

For the successor step, suppose that qω ↾ ξ has been defined so that (1ξ)–(3ξ) hold. We
want to define qωξ . If ξ /∈

⋃

n∈ω supp(pn), let qωξ = 11. Now by Definition V.3.11.7,

pn+1 ↾ ξ  [pn+1
ξ ≤ pnξ ], and hence pω ↾ ξ  [pn+1

ξ ≤ pnξ ]. Since 11Pξ  [Q̇ξ is countably
closed], it follows that pω ↾ ξ  ∃r∀n ∈ ω[r ≤ pnξ ]. Hence by the maximal principle there

is a Pξ-name s such that pω ↾ ξ  ∀n ∈ ω[s ≤ pnξ ]. Now pω ↾ ξ  s ∈ Q̇ξ and Q̇ξ is a full

name. So there is a qωξ ∈ dmn(Qξ) such that pω ↾ ξ  s = qωξ and (qωξ , p
ω ↾ ξ) ∈ Q̇ξ. Hence

(1ξ+1)–(3ξ+1) hold.
The limit step is clear. Finally, we have qω ≤ pn for all n ∈ ω.
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P is ω1-linked iff P is the union of ω1 linked subfamilies. P is ω1-centered iff P is the union
of ω1 centered subfamilies.

Proposition 31.132. If Fn(κ, 2, λ) is linked, then it is centered.

Proof. Assume that Fn(κ, 2, λ) is linked, and p1, . . . , pn ∈ Fn(κ, 2, λ). Then p1∪p2 ∈
Fn(κ, 2, λ). If α ∈ dmn(p1) ∩ dmn(p3), then p1(α) = p3(α). Similarly for p2 and p3. So
p1 ∪ p2 ∪ p3 ∈ Fn(κ, 2, λ). Etc.

Proposition 31.133. (V.5.10) Let κ be an infinite cardinal, and let Pκ = Fn(κ, 2, ω1).
Then Pκ is ω1-linked iff it is ω1-centered.

Proof. ⇐ is obvious. Now suppose that Pκ is ω1-linked; say Pκ =
⋃

α<ω1
Qα with

each Qα linked.

(∗) ∀α < ω1∀n ∈ ω∀p1, . . . , pn ∈ Qα[(p1 ∪ . . . ∪ pn) ∈ Pκ].

This is clear by induction on n. Now for each α < ω1 let Q′
α = {p1 ∪ . . . ∪ pn : n ∈

ω, p1, . . . , pn ∈ Qα}. Then by (∗), Q′
α ⊆ Pκ. Q′

α is clearly centered; and clearly Pκ =
⋃

α<ω1
Q′
α.

Proposition 31.134. Assume CH. There is an F ⊆ 2ω1
2 such that |F | = 2ω1 and for

all j ∈ ω2 and one-one f ∈ ωF there is an α < 2ω1 such that ∀n ∈ ω[fn(α) = jn].

Proof. Let E = {(s, p) : s ∈ [ω1]ω, p : P(s) → 2}. Note that |E| = 2ω1 . Let
g : 2ω1 → E be a bijection. For each A ⊆ ω1 and each α < 2ω1 , with g(α) = (s, p) let
fA(α) = p(A ∩ s). Suppose that A ∈ ωP(ω1) is injective and i ∈ ωω1. For m 6= n let
amn ∈ Am△An. Suppose that {amn : m 6= n} ⊆ s ∈ [ω1]ω. For each X ⊆ s let

p(X) =
{
in if X = An ∩ s,
0 otherwise.

Then ∀n ∈ ω[fAn(g−1(s, p)) = p(An ∩ s) = in].

Proposition 31.135. (V.5.10) Assume CH. Let κ be an infinite cardinal, and let Pκ =
Fn(κ, 2, ω1). Then Pκ is ω1-centered iff κ ≤ 2ω1 .

Proof. First suppose that Pκ is ω1-centered, but κ > 2ω1 . Say Pκ =
⋃

α<ω1
Qα with

each Qα centered. For each α < ω1 let fα ∈ κ2 be such that
⋃

Qα ⊆ fα. Then for each
β ∈ κ we have 〈fα(β) : α < ω1〉 ∈ ω12. Hence there exist distinct β, γ < κ such that
〈fα(β) : α < ω1〉 = 〈fα(γ) : α < ω1〉. Let h = {(β, 0), (γ, 1)}. Thus h ∈ Pκ. Say h ∈ Qα.
Then fα(β) = h(β) = 0 6= 1 = h(γ) = fα(γ), contradiction.

Second suppose that κ ≤ 2ω1 . Let F be as in Proposition 31.134, and let f : κ→ F

be an injection. Now for each α < ω1 we define xα ∈ κ2 by setting xα(β) = fβ(α) for any
β < κ. For each α < ω1 let Kα = {h ∈ Fn(κ, 2, ω1) : h ⊆ xα}. Clearly Kα is centered.
We claim that Pκ =

⋃

α<ω1
Kα. For, suppose that h ∈ Pκ. Let dmn(h) = {βi : i ∈ ω}.

Define gi = fβi . By the condition of Proposition 31.134, choose α < 2ω1 such that
∀i ∈ ω[gi(α) = h(βi). Then for any i ∈ ω, xα(βi) = fβi(α) = gi(α) = h(βi). Thus
h ∈ Kα.
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A forcing poset P is well-met iff for all p1, p2 ∈ P, if p1, p2 are compatible, then there is a
q ≤ p1, p2 such that for all r ≤ p1, p2[r ≤ q].

Corollary 31.136. Assume CH. Let κ be an infinite cardinal, and let Pκ = Fn(κ, 2, ω1).
Then Pκ is countably closed, well-met, ω1-centered, ω1-linked, and ω2-cc.

Proof. It is obviously countably closed and well-met. It is ω1-centered by Proposition
31.135, and it is ω1-linked by Proposition 31.133. Clearly then it is also ω2-cc.

BA is the statement that MAP(κ) holds for all κ < 2ω1 and all countably closed well-met
ω1-linked forcing posets P. BACH is the statement BA+CH.

Proposition 31.137. ¬CH implies BA.

Proof. By Lemma 31.125.

Proposition 31.138. CH + 2ω1 = ω2 implies BACH.

Proof. By Lemma 31.125.

Proposition 31.139. Assume CH. Let κ be an infinite cardinal, and let P = Fn(κ, 2, ω1).
Then MAP(2ω1) does not hold.

Proof. Suppose it does hold. For each α ∈ ω1 let

Dα = {f ∈ P : α ∈ dmn(f)}.

Each such set is dense in P.
For each h ∈ ω12 let

Eh = {f ∈ P : there is an α ∈ dmn(f) such that f(α) 6= h(α)}.

Again, each such set Eh is dense in P.
Now let G be P-generic over M , and set k =

⋃
G. Clearly k ∈ ω12. Now take any

f ∈ G ∩Ek. Choose α ∈ dmn(f) such that f(α) 6= k(a). But f ⊆ k, contradiction.

Lemma 31.140. (V.5.14) Assume CH, and suppose given a countable support α-stage
iterated forcing construction such that for each ξ < α Q̇ξ is a full name, and 11  [Q̇ξ is
countably closed, well-met, and ω1-linked]. Then Pα has the ω2-cc.

Proof. By Lemma 31.131, Pα is countably closed, and hence ω1 is preserved. Now
for each ξ < α let L̇ξ be a Pξ-name such that

11Pξ  [L̇ξ : Q̇ξ → ω1 and ∀λ < ω1[L̇−1
ξ [{γ}] is linked] and L̇ξ(11) = 0].

Now we claim

∀p ∈ Pα∃p
∗ ≤ p[supp(p) ⊆ supp(p∗) and ∀ξ < α

∃γ(p, ξ) < ω1[p∗ ↾ ξ  [L̇ξ(pξ) = γ(p, ξ)]]](∗)
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In fact, suppose that p ∈ Pα. Let supp(p) = {ηn : n ∈ ω}. We now define 〈rn : n ∈ ω〉
by recursion. Let r0 = p. Suppose that rn ≤ p has been defined. Then rn ↾ ηn 

∃δ < ω1[L̇ηn(pηn) ∈ ω1], so there exist an s ≤ rn ↾ ηn and a γ(p, ηn) ∈ ω1 such that

s  [L̇ηn(pηn) = γ(p, ηn)]. Let rn+1 ↾ ηn = s, rn+1,ηn = pηn if rnηn = 11, equal to rnηn
otherwise, and rn+1 ↾ (α\(ηn + 1) = rn ↾ (α\(ηn + 1)). Finally, let p∗ ≤ rn for all n using
the fact that Pα is countably closed. This proves (∗).

Now for each p ∈ Pα let 0p = p and n+1p = (np)∗. Let Σ(p) =
⋃

n∈ω supp(np).
Now take any A ∈ [Pα]ω2 ; we show that A is not an antichain. We apply the ∆-system

theorem, Theorem 24.4, to the sets Σ(p) for p ∈ A, with κ = ω1 and λ = ω2, recalling that
CH is assumed. We get a B ∈ [A]ω2 such that 〈Σ(p) : p ∈ B〉 forms a ∆-system, say with
root R ∈ [α]≤ω. Now

B =
⋃

{{x ∈ B : 〈γ(nx, ξ) : n ∈ ω, ξ ∈ R〉 = f} : f ∈ ω×Rω1}.

It follows that there are distinct x, y ∈ B such that 〈γ(nx, ξ) : n ∈ ω, ξ ∈ R〉 = 〈γ(ny, ξ) :
n ∈ ω, ξ ∈ R〉. We claim that x 6⊥ y (as desired).

We define pξ for ξ < α by recursion. Assume inductively that for all n, p ↾ ξ ≤ (nx) ↾ ξ
and p ↾ ξ ≤ (ny) ↾ ξ. If ξ /∈ Σ(x)∪Σ(y). let pξ = 11. Now suppose that ξ ∈ (Σ(x)∪Σ(y))\R.
Say ξ ∈ Σ(x). Note that ξ /∈ Σ(y). For each n ∈ ω let rn = (nx)ξ. Thus r0 = xξ. We
claim:

(∗∗) ∀n ∈ ω[p ↾ ξ  [rn+1 ≤ rn]].

In fact, take any n ∈ ω. Now rn+1 = (n+1x)ξ = ((nx)∗)ξ and (nx)∗ ≤ nx, so (nx)∗ ↾ ξ 
[(nx)∗ξ ≤ (nx)ξ], i.e. (n+1x) ↾ ξ  [rn+1 ≤ rn]. Since p ↾ ξ ≤ (n+1x) ↾ ξ, (∗∗) follows.

Since 11  [Q̇ξ is countably closed], and Q̇ξ is a full name, there is a ṗξ ∈ dmn(Q̇ξ)
such that (p ↾ ξ)⌢〈ṗξ〉 ≤ (nx) ↾ (ξ + 1) for all n. Since ξ /∈ Σ(y), we have (ny)ξ = 11 for all

n, so also (p ↾ ξ)⌢〈ṗξ〉 ≤ (ny) ↾ (ξ + 1) for all n. Now since 11  [Q̇ξ is countably closed,

there is a full name pξ ∈ dmn(Q̇ξ) such that p ↾ ξ  [pξ ≤ (nx)ξ, (
ny)ξ] for all n.

Now suppose that ξ ∈ R. For brevity let nγ = γ(xn, ξ) (= γ(yn, ξ)). Now for any
n ∈ ω, n+1x = (nx)∗, and (nx)∗ ↾ ξ  [L̇ξ((

nx)ξ) = γ(nx, ξ) = nγ], so p ↾ ξ  [L̇ξ((
nx)ξ) =

nγ]. Similarly, p ↾ ξ  [L̇ξ((
ny)ξ) = nγ]. Thus p ↾ ξ  [nx, ny ∈ L̇−1

ξ [{nγ}]. Since

11  [L̇−1
ξ [{nγ}] is linked and Q̇ξ is well-met], it follows that p ↾ ξ  [(nx)ξ ∧ (ny)ξ ∈ Q̇ξ].

Now n+1x = (nx)∗ ≤ nx, so n+1x ↾ ξ  [(n+1x)ξ ≤ (nx)ξ], so p ↾ ξ  [(n+1x)ξ ≤ (nx)ξ].
Similarly, p ↾ ξ  [(n+1y)ξ ≤ (ny)ξ]. Hence p ↾ ξ  [(n+1x)ξ ∧ (n+1y)ξ ≤ (nx)ξ ∧ (ny)ξ].

Again since 11  [Q̇ξ is countably closed, there is a full name pξ ∈ dmn(Q̇ξ) such that
p ↾ ξ  [pξ ≤ (nx)ξ, (

ny)ξ] for all n.
This finishes the definition of the pξ. Hence p ≤ x, y.

Proposition 31.141. Suppose that λ < 2ω, P is a countably closed well-met ω1-linked
poset such that MAP(λ) is false. Then there is a countably closed well-met ω1-linked poset
Q ≤ctr P such that |Q| ≤ λω and MAQ(λ) is false.

Proof. Fix dense sets Dα in P for α < λ such that there is no filter intersecting each
Dα. Consider the structure (P,≤, 11, Dα)α<κ. Let A be a set of Skolem functions for this
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structure. Let F be an ω-ary operation on P assigning to each decreasing sequence an
element below it. Then let (Q,≤, 11, D′

α)α<κ be the closure of some one-element subset of
P under A and P .

(1) |Q ≤ λω.

(2) D′
α is dense in Q for each α < λ.

In fact, if q ∈ Q, then P |= ∃x ∈ Dα[x ≤ q], so Q |= ∃x ∈ D′
α[x ≤ q].

(3) Q ⊆ctr P.

For, if F ∈ [Q]<ω and P |= ∃p[
∧

q∈F [p ≤ q], then Q |= ∃p[
∧

q∈F [p ≤ q].

(4) Q is countably closed.

(5) Q is well-met.

In fact, this holds in P and it is a first-order sentence, so it holds in Q.

(6) Q is ω1-linked.

For say P =
⋃

α<ω1
Sα with each Sα linked. Suppose that p, q ∈ Sα ∩Q. Then P |= ∃r[r ≤

p, q], so Q |= ∃r[r ≤ p, q].

(7) MAQ(κ) does not hold.

Suppose that MAQ(κ) holds. Let G be a filter on Q which intersects each D′
α. Let

G+ = {p ∈ P : ∃q ∈ G[q ≤ p]}. Clearly G+ is a filter on P, and it intersects each Dα,
contradiction.

tbc∗(α,⊑) abbreviates the statement that α is a nonzero ordinal, ⊑ is a subset of α× α,
and (α,⊑, 0) is a countably closed, well-met, ω1-linked forcing poset.

ntbc∗(α, ⊑̇,P) holds iff ⊑̇ is a nice name for a subset of α× α and 11 P tbc∗(α, ⊑̇).

Lemma 31.142. Let M be a c.t.m. for ZFC. In M let θ be an infinite cardinal. Let G
be P-generic over M . In M [G] let (X,≤X , 11X) be a countably closed well-met ω1-linked
forcing poset with |X | ≤ θ.

Then there is a name ⊑̇ in M and an α ≤ θ such that Ntbc(α, ⊑̇.P) holds in M and
such that in M [G] the poset (α, ⊑̇G, 0) is isomorphic to (X,≤X , 11X).

Proof. See the proof of Lemma 31.63.

Theorem 31.143. Assume that κ > ω1 is a regular cardinal, 2<κ = κ, and ∀λ < κ[λω <
κ]. Then there is a countably closed ω2-cc poset P of size κ such that 11P BACH and
2ω1 = κ.

Proof. We start with a model M of CH. Let f : κ→ κ× κ be the bijection given by
the proof of Theorem 11.32; see Proposition 31.64.

We are going to define by recursion a countable support κ-stage iteration. The starting
stage is trivial; P = {∅}. The limit stage is determined by the previous stages. Now we
make the step from ξ < κ to ξ + 1. We assume that for each ζ ≤ ξ we have specified a

719



sequence 〈(αµζ , ⊑̇
µ
ζ ) : µ < κ〉 listing all pairs (α, ⊑̇) such that 0 < α < κ and ⊑̇ is a nice Pζ-

name for a subset of α×α. As the inductive hypothesis we assume that |dmn(Qζ)|, |Pζ| < κ
for each ζ < ξ, and

(〈(Pζ ,≤ζ , 11ζ) : ζ ≤ ξ〉, 〈(Q̇ζ, ⊑̇Q̇ζ
, 11Q̇ζ

) : ζ < ξ〉)

is a countable support ξ-stage iterated forcing construction.
Let f(ξ) = (ζ, µ). By Proposition 31.64, ζ ≤ ξ. Then ⊑̇µζ is a nice Pζ-name for a subset

of αµζ×α
µ
ζ . Hence by Proposition 31.65, (iξζ)∗(⊑̇µζ ) is a nice Pξ-name for a subset of αµζ ×α

µ
ζ .

If Ntbc∗(αµζ , (i
ξ
ζ)∗(⊑̇µζ ),Pξ), then we let (Q̇ξ, ≤̇Q̇ξ

, 1̇1Q̇ξ
) be (α̌µζ , ⋆, 0̌), where ⋆ is the full name

obtained from (iξζ)∗(⊑̇µζ ) by the proof of Lemma 31.129. If ¬Ntbc∗(αµζ , (i
ξ
ζ)∗(⊑̇µζ ),Pξ), then

we let Q̇ξ = {(∅, 11Pξ)}, ≤̇Q̇ξ
= ∅, and 1̇1Q̇ξ

= ∅.

This completes the construction of our countable support κ-stage iteration.

(1) ∀ξ < κ[|Pξ| < κ ∧ |Q̇ξ| < κ].

This is clear by induction, using the regularity of κ at the limit stages.

(2) ∀ξ < κ[11Pξ  [Q̇ξ is countably closed, well-met, and ω1-linked]].

This holds by definition of Ntbc∗.
Next, note that

(3) κω1 = κ.

In fact,

κω1 = |ω1κ| ≤
∑

λ<κ

λω1 ≤
∑

λ<κ

2λ = 2<κ = κ.

Let P = Pκ, and let G be P-generic over M .

(4) P is countably closed, and hence CH holds in M [G].

This is true by Lemma 31.131.

(5) Pκ has the ω2-cc.

This holds by Lemma 31.138.
Now we apply Proposition 29.22 with λ = ω2 and µ = ω1; we get

(6) M [G] |= [2ω1 ≤ κ].

Now for each ξ < κ let P′
ξ = iκξ [Pξ]. Then for ξ < η < κ we have P′

ξ ⊆ P′
η ⊆ P.

Suppose that θ < κ. Take a countably closed well-met ω1-linked forcing poset Q; we
want to show that MAQ(θ). By Lemma 31.140 we may assume that |Q| ≤ θ. Take a family
D of dense subsets of Q with |D | ≤ θ. Then by Lemma 31.142 we get a P-name ⊑̇ and
an α ≤ θ such that Ntbc∗(α, ⊑̇,P) holds and (α, ⊑̇G,P) is isomorphic to Q. So we may
assume that Q = (α, ⊑̇G, 0). Let 〈Dν : ν < θ〉 enumerate D . Thus Dν ⊆ α for each ν < θ.
Let Ḋν be a nice P-name for a subset of α such that Dν = Ḋν

G. The names ⊑̇ and Ḋν for
ν < θ altogether involve fewer than κ members of P. Hence there exists a ζ < κ such that
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all of these names are P′
ζ-names. Let ⊑̇′ be a Pζ-name such that ⊑̇ = (iκζ )∗(⊑̇′). Then

there is a µ < κ such that (αµζ , ⊑̇
µ
ζ ) is (α, ⊑̇′). Let ξ = f−1(ζ, µ). Now by Lemma 31.142

we get Ntbc∗(α, ⊑̇,P′
ξ). Hence Ntbc∗(α, (iξζ)∗(⊑̇′),Pξ). That is, Ntbc∗(αµζ , (i

ξ
ζ)∗(⊑̇µζ ),Pξ).

Hence (Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) = (α̌µζ , (i
ξ
ζ)∗(⊑̇µζ ), 0̌) by construction. Note that

⊑̇G = ((iκζ )∗(⊑̇′))G = (iκξ )∗((iξζ)∗(⊆̇′)) = ((iξζ)∗(⊆̇′))Gξ .

Now we apply Proposition 31.60. Let Gξ+1 = (iκξ+1)−1[G], f an isomorphism of Pξ+1 onto

Pξ ∗ Q̇ξ, G
′ = f [Gξ+1], Hξ = {ρGξ : ρ ∈ Qξ ∧ ∃p ∈ Pξ[(p, ρ) ∈ G′]}. Now by Proposition

31.60, Hξ is (Q̇ξ)Gξ -generic over M [Gξ] and M [G′] = M [Gξ][Hξ]. Let Ḋν′ be a Pξ-name

such that Ḋν = (iκξ )∗(Ḋν′). Then Dν = Ḋν
G = (Ḋν′)Gξ ∈ Pξ[Gξ]. Each Dν is dense in

(Q̇ξ)Gξ , so Hξ ∩Dν 6= ∅ for all ν < θ.

Let θ be a regular cardinal. We define

f ≤θ g iff f, g ∈ θθ and |{ξ < θ : f(ξ) > g(ξ)}| < θ;

D ⊆ θθ is almost dominating iff ∀f ∈ θθ∃g ∈ D [f ≤θ g];

dθ = min{|D | : D ⊆ θθ is almost dominating};

B ⊆ θθ is almost unbounded iff ¬∃f ∈ θθ∀g ∈ B[g ≤θ f ];

bθ = min{|B| : B ⊆ θθ is almost unbounded}.

Also, E ⊆P(θ) has the strong θ-intersection property, SθIP, iff ∀F ∈ [E ]<θ[|
⋂

F | = θ].

pθ = min{|E | : E has the strong SθIP and ¬∃K ∈ [θ]θ∀Z ∈ E [|K\Z| < θ]}.

Proposition 31.144. (V.5.17) For any regular cardinal θ, θ+ ≤ pθ.

Proof. Suppose that F = {Aα : α ∈ θ} has SθIP. For each α ∈ θ choose kα ∈(
⋂

β≤αAβ

)

\{kβ : β < α}. Then y
def
= {kα : α ∈ θ} has size θ, and for each α < θ,

y\Aα ⊆ {kβ : β < α}.

Proposition 31.145. (V.5.17) For any regular cardinal θ, pθ ≤ bθ.

Proof. Let κ < pθ. Suppose that B ⊆ θθ and |B| ≤ κ. For each α < θ and f ∈ B

let Zαf = {β < θ : β > f(α)}. Then for any α < θ,

⋂

f∈B

Zαf = {β < θ : ∀f ∈ B[β > f(α)]} =

{

β < θ : β > sup
f∈B

f(α)

}

,

a set of size θ. Hence there is a Kα ⊆ θ such that for each f ∈ B, Kα ⊆θ Zαf , with
|Kα| = θ. For each f ∈ B choose βαf < θ such that Kα\Zαf ⊆ βαf . Thus ∀f ∈ B∀γ ≥
βαf [γ ∈ Kα → γ ∈ Zαf ]. Let γ = supf∈B βαf , and let g(α) be a member of Kα which is
≥ γ. Then for all α < θ, ∀f ∈ B[g(α) ∈ Zαf ], so g(α) > f(α).
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Proposition 31.146. (V.5.17) For any regular cardinal θ, cf(bθ) = bθ.

Proof. Suppose that cf(bθ) < bθ. Let X be almost unbounded with |X | = bθ.
Then we can write X =

⋃

α<cf(bθ)
Yα with |Yα| < bθ for all α < cf(bθ). Choose a bound

gα for Yα for each α < cf(bθ), and then by the above argument choose a bound h for
{gα : α < cf(bθ)}. Then h is a bound for X , contradiction. Thus cf(bθ) = bθ.

Proposition 31.147. (V.5.17) For any regular cardinal θ, bθ ≤ cf(dθ).

Proof. Let D be a almost dominating family of size dθ, and write D =
⋃

α<cf(dθ)
Eα,

with each Eα of size less than dθ. Since then Eα is not almost dominating, there is an
fα ∈ ωω such that for all g ∈ Eα we have fα 6≤θ g. Suppose that cf(dθ) < bθ, and
accordingly let h ∈ θθ be such that fα ≤θ h for all α < cf(dθ). Choose k ∈ D such that
h ≤θ k. Say k ∈ Eα. But fα ≤θ h ≤θ k, contradiction.

Proposition 31.148. (V.5.17) For any regular cardinal θ, dθ ≤ 2θ.

Theorem 31.149. (V.5.18) BACH⊢ pω1
= bω1

= dω1
= 2ω1.

Proof. Assume BACH. Suppose that κ < 2ω1 is an infinite cardinal; we show that
κ < p. Let E ⊆ [ω1]ω1 have Sω1IP, with |E | = κ. We want to find a pseudo-intersection of
E . Let

P = {(sp,Wp) : sp ∈ [ω1]<ω1 and Wp ∈ [E ]<ω1}.

We define q ≤ p iff the following hold:

(1) sp ⊆ sq.
(2) Wp ⊆Wq .
(3) ∀Z ∈Wp[(sq\sp) ⊆ Z].

This is a forcing order. For transitivity, suppose that r ≤ q ≤ p. Clearly (1) and (2) for r
and p hold. Now suppose that Z ∈Wp. Then Z ∈Wq, and (sr\sp) = (sr\sq)∪(sq\sp) ⊆ Z.

(4) P is countably closed.

For, suppose that (sp(0),Wp(0)) ≥ (sp(1),Wp(1)) ≥ · · ·. Let s′ =
⋃

i∈ω sp(i) and W ′ =
⋃

i∈ωWp(i). Clearly s′ ∈ [ω1]<ω1 and W ′ ∈ [E ]<ω1 . Take any i ∈ ω. Then sp(i)) ⊆ s′ and
Wp(i) ⊆W

′. Suppose that Z ∈Wp(i). Then

s′\sp(i) =
⋃

j∈ω

(sp(j)\sp(i)) =
⋃

j>i

(sp(j)\sp(i)) ⊆ Z.

Hence (s′,W ′) ≤ (sp(i),Wp(i)). Hence (4) holds

(5) P is well-met.

For, suppose that p, q ∈ P are compatible. Then (sp ∪ sq,Wp ∪ Wq) ≤ p, q and r ≤
(sp ∪ sq,Wp ∪Wq) whenever r ≤ p, q; so (5) holds.

(6) P is ω1-linked.
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In fact, P =
⋃
{{p ∈P : sp = t} : t ∈ [ω1]<ω1}, and each {{p ∈P : sp = t} is linked.

Thus MAP(κ) applies.

Now for each α ∈ ω1 let Dα = {p ∈ P : sp∩(α, ω1) 6= ∅}. Then Dα is dense, for if p ∈ P,
then |

⋂
Wp| = ω1, so we can choose β ∈

⋂
Wp with β > α, and then (sp ∪ {β},Wp) ∈ Dα

and (sp ∪ {β},Wp) ≤ p.
For any Z ∈ E let EZ = {p ∈ P : Z ∈ Wp}. Then EZ is dense, since if p ∈ P, then

(sp,Wp ∪ {Z}) ∈ EZ and (sp,Wp ∪ {Z}) ≤ p.
Let G be a filter intersecting all of these dense sets. Let KG =

⋃

p∈G sp. Then G
intersecting all sets Dα for α ∈ ω1 implies that |KG| = ω1.

Given Z ∈ E , choose p ∈ G ∩ EZ . Suppose that α ∈ KG\Z. Say α ∈ sq with q ∈ G.
Choose r ∈ G such that r ≤ p, q. Then α ∈ sr since r ≤ q. If α /∈ sp, then α ∈ Z since
r ≤ p. Thus KG\Z ⊆ sp and hence |KG\Z| < ω1.

Lemma 31.150. Let M be a ctm of ZFC and let Q ∈M such that (|Q| ≤ ω1)M . Let G be
Q-generic over M . Then there is no h ∈ (ω1ω1)∩M [G] such that ∀f ∈ (ω1ω1)∩M [f ≤ω1 h].

Proof. First we note:

(1) If p  τ ∈ ω1, then X
def
= {α ∈ ω1 : p  α̌ ≤ τ} is countable.

In fact, suppose that |X | = ω1. Let p ∈ G generic. Let α = τG, and choose distinct βξ ∈ X
for ξ < ω1. Then βξ ≤ α for all ξ < ω1, contradiction.

Now for the lemma, suppose that there is such an h. Take ḣ such that ḣG = h. Let
W = (ω1ω1) ∩ M . Then M [G] |= ∀x ∈ W̌ [x ≤ω1 ḣ], so there is a p ∈ G such that
p  (ḣ : ω1 → ω1 and ∀x ∈ W̌ [x ≤ω1 ḣ]).

Now we work in M . List {s ∈ Q : s ≤ p} as {rα : α ∈ ω1}. For each α ∈ ω1 let
Eα = {β ∈ ω1 : ∃γ < α[rγ  β̌ ≤ ḣ(α)]}. By (1), for each γ < ω1 the set {β ∈ ω1 : rγ 

β̌ ≤ ḣ(α)} is countable, and so Eα is countable. For each α ∈ ω1 let f(α) = sup(Eα) + 1.
Thus f ∈ (ω1ω1). Hence f ∈W .

Since p  ∀x ∈ W̌ [x ≤ω1 ḣ] and 11  f̌ ∈ W̌ , it follows that p  ∃α < ω1∀β ≥
α[f̌(β) ≤ ḣ(β)]. Hence there exist a q ≤ p and an α such that q  ∀β ≥ α[f̌(β) ≤ ḣ(β)].
Say q = rγ . Take β with β > γ and β > α, and let δ = f(β). Then rγ  δ̌ ≤ ḣ(β), so
δ ∈ Eβ and hence f(β) > δ by the definition of f , contradiction.

Lemma 31.151. Let M be a ctm of ZFC and let P = Fn(I, J, ω1), where (|J | ≤ ω1)M .
Assume that CH holds in M . Let G be P-generic over M .

Then there is no h ∈ (ω1ω1) ∩M [G] such that ∀f ∈ (ω1ω1) ∩M [f ≤ω1 h].

Proof. Suppose there is such an h. Thus h ⊆ ω1 × ω1. Say h = σG. Let ḣ be a nice
P-name for a subset of (ω1 × ω1)v such that 11  (σ ⊆ (ω1 × ω1)v → σ = ḣ). Say p  σ ⊆
(ω1×ω1)v. Then p  σ = ḣ, so ḣG = h. Note that (ω1×ω1)v = {((α, β)v, 11) : α, β ∈ ω1},

so that ĥ has the form
⋃

α,β∈ω1

{{(α, β)v} × Aαβ}.
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Here each Aαβ is an antichain in P, and hence has size ≤ ω1 by CH and Lemma 29.33. Let
S =

⋃

α,β∈ω1
Aαβ . Then S is a subset of Fn(I, J, ω1) of size ≦ ω1. Let K =

⋃

p∈S dmn(p)

and Q = Fn(K, J, ω). Then K is a subset of I of size ≤ ω1, and ḣ is a Q-name.
Now Q ⊆c P by Proposition 25.66, so Lemma 30.3 applies to the inclusion Q ⊆c P.

So with H = G ∩ Q we have M ⊆ M [H] ⊆ M [G] and h = ḣG = ḣH . Moreover,
∀f ∈ (ω1ω1) ∩M [f ≤∗ h]. This contradicts Lemma 31.150.

Lemma 31.152. Let G be Fn(ω1, ω1, ω1)-generic, and in M [G] let f =
⋃
G : ω1 → ω1.

Then there is no h ∈ (ω1ω1) ∩M such that f ≤ω1 h.

Proof. Assume that G is Fn(ω1, ω1, ω1)-generic, and in M [G] f =
⋃
G : ω1 → ω1.

Suppose that h ∈ (ω1ω1) ∩ M . For each α ∈ ω1, the set {p ∈ Fn(ω1, ω1, ω1) : ∃β ∈
dmn(p)[β > α and p(β) > h(β)]} is dense, and so M [G] |= ∀α∃β > α[f(α) > h(α)]. Thus
f 6≤ω1 h.

Lemma 31.153. In M , assume that W ⊆ I and P = Fn(I, J, ω1). Let K be P-generic
over M . Let G = K ∩ Fn(W,J, ω1) and let H = K ∩ Fn(I\W,J, ω1).

Then G is Fn(W,J, ω1)-generic over M and H is Fn(I\W,J, ω1)-generic over M [G].
Moreover, M [K] = M [G][H].

Proof. In M define ζ : Fn(W,J, ω1)×Fn(I\W,J, ω1)→ Fn(I, J, ω1) by ζ(p, q) = p∪q.
Then ζ is an isomorphism from Fn(W,J, ω1)×Fn(I\W,J, ω1) onto Fn(I, J, ω1). Note that
ζ−1(p) = (p ↾ W, p ↾ (I\W )). Let K̃ = ζ−1[K]. So K̃ is Fn(W,J, ω1) × Fn(I\W,J, ω1)-
generic over M , and M [K] = M [K̃]. Now let i(p) = (p, 11) and j(p) = (11, p), G =
i−1[K̃], and H = j−1[K̃]. Then by Lemma 31.1, G is Fn(W,J, ω1)-generic over M , H is
Fn(I\W,J, ω1)-generic over M [G]. By Theorem 31.2, M [K̃] = M [G][H]. Now

G = {p ∈ Fn(W,J, ω1) : (p, 11) ∈ K̃} = {p ∈ Fn(W,J, ω1) : p ∪ ∅ ∈ K}

= K ∩ Fn(W,J, ω1);

H = {p ∈ Fn(I\W,J, ω1) : (11, p) ∈ K̃} = {p ∈ Fn(I\W,J, ω1) : ∅ ∪ p ∈ K}

= K ∩ Fn(I\W,J, ω1).

Lemma 31.154. In M , let P = Fn(κ, ω1, ω1). Let K be P-generic over M . Then
M [K] |= dω1

≥ κ.

Proof. Suppose not; then there is a dominating family {hα : α < θ} with θ < κ.
Let k : θ × ω1 → ω1 be defined by k(α, β) = hα(β). Let τ be a nice name for a subset
of (θ × ω1) × ω1 such that τK = k. Note that there is a W0 ∈ [κ]≤θ such that τ is a
Fn(W0, ω1, ω1)-name. Let W be such that W0 ⊆ W ⊆ κ and |κ\W | = ω1. Then τ is a
Fn(W,ω1, ω1)-name, and Fn(κ\W,ω1, ω1) ∼= Fn(ω1, ω1, ω1). Let G = K ∩ Fn(W,ω1, ω1)
and H = K ∩ Fn(κ\W,ω1). Then by Lemma 31.153, G is Fn(W,ω1, ω1)-generic over M ,
H is Fn(κ\W,ω1, ω1)-generic over M [G], and M [K] = M [G][H]. Now Fn(κ\W,ω1, ω1) ∼=
Fn(ω1, ω1, ω1); let l be an isomorphism. Let f =

⋃
l[H] : ω1 → ω1. Applying Lemma

31.152 with k[H],M [G] in place of G,M , we infer that there is no r ∈ (ω1ω1)∩M [G] such
that f ≤∗ r. But hα ∈M [G] for each α < θ, contradiction.
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Theorem 31.155. (V.5.19.2) Let M model GCH, κ any regular cardinal ≥ ω2, and take
P = Fn(κ, ω1, ω1). Then for G P-generic over M , in M [G] we have 2ω = ω1, 2ω1 = κ,
pω1

= bω1
= ω2, and dω1

= κ.

Proof. 2ω = ω1 and 2ω1 = κ by Theorem 29.37. pω1
= bω1

= ω2 by Propositions
31.144–31.146 and Lemma 31.151. dω1

= κ by Lemma 31.154.

Proposition 31.156. Assume CH. Let E ⊆ (ω1ω1) be infinite. We define P
def
= (P(E ),≤)

as follows. P(E ) consists of all pairs p = (sp, Yp) such that sp ∈ Fn(ω1, ω1, ω1) and Yp ∈
[E ]<ω1 . We define q ≤ p iff sq ⊇ sp, Yq ⊇ Yp, and ∀f ∈ Yp∀α ∈ dmn(sq)\dmn(sp)[sq(α) >
f(α)].

Then P is transitive. P is ω1-centered, and there is a family of |E | dense sets such
that whenever G is a filter meeting all of them and h =

⋃

p∈G sp, then h ∈ (ω1ω1) and
f ≤ω1 h for all f ∈ E .

Proof. First we check transitivity. Suppose that r ≤ q ≤ p, f ∈ Yp, and α ∈
dmn(sr)\dmn(sp). Note that f ∈ Yq. If α /∈ dmn(sq), then sr(α) > f(α). If α ∈ dmn(sq),
then sr(α) = sq(α) > f(α).

P is ω1-centered, since for any t ∈ Fn(ω1, ω1, ω1) the set of p ∈ P with sp = t is
centered.

For each α ∈ ω1 let Dα = {p ∈ P : α ∈ dmn(sp)}. Then Dα is dense. For, suppose
that p ∈ P. If α ∈ dmn(sp), then p ∈ Dα. Suppose that α /∈ dmn(sp). Let β be greater
than f(α) for each f ∈ Yp, and let sq = sp ∪ {(α, β)} and Yp = Yp. Then q ≤ p and
q ∈ Dα. So Dα is dense. Also, for each f ∈ E let Ef = {p ∈ P : f ∈ Yp}. Clearly Ef is
dense. Let A = {Dα : α ∈ ω1} ∪ {Ef : f ∈ E}. So |A | ≤ |E|.

Suppose that G is a filter meeting all members of A . Because of the Dα’s, we have
h ∈ ω1ω1. Take any f ∈ E . Choose p ∈ G such that f ∈ Yp. We claim that h(α) > f(α)
for all α greater than each member of sp. For, take such an α, and choose q ∈ G so that
α ∈ dmn(sq). Choose r ∈ G with r ≤ p, q. Then α ∈ dmn(sr) since r ≤ q, and r(α) > f(α)
since r ≤ p and f ∈ Yp. Hence h(α) = r(α) > f(α).

Proposition 31.157. The poset P in Proposition 31.156 is well-met and countably closed.

Proof. well-met: suppose that p, q, r ∈ P and r ≤ p, q. Let t = sp∪sq and X = Yp∪Yq.
It suffices to show that (t, X) ≤ p. Suppose that f ∈ Yp and α ∈ dmn(sq)\dmn(sp). So
α ∈ dmn(sr)\dmn(sp), so sq(α) = sr(α) > f(α), as desired.

Countably closed: Suppose that p0 ≥ p1 ≥ · · ·. Let sq =
⋃

n∈ω spn and X =
⋃

n∈ω Ypn .
Suppose that n ∈ ω, f ∈ Ypn , and α ∈ dmn(sq)\dmn(spn). Say α ∈ dmn(spm). Then
n < m and sq(α) = spm(α) > f(α), as desired.

Proposition 31.158. Suppose that in M we are given an ω2-stage countable support
iterated forcing construction

(〈Pξ,≤ξ, 11ξ) : ξ ≤ ω2〉, 〈Q̇ξ, ≤̇Q̇ξ
, 1̇1Q̇ξ

) : ξ < ω2〉)

Also suppose that Pω2
has the ω2-cc. Suppose that G is Pω2

-generic over M , S ∈M , X ∈
M [G], X ⊆ S, and (|S| < ω2)M [G]. Then there is an η < ω2 such that X ∈M [(iω2

η )−1[G]].
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Proof. Clearly ∀s ∈ S[s ∈ X ↔ ∃p ∈ G[p Pω2
š ∈ Ẋ], where Ẋ is a Pω2

-name

such that ẊG = X . Now Pω2
=
⋃

ξ<ω2
iω2

ξ [Pξ] and G =
⋃

ξ<ω2
iω2

ξ [(iω2

ξ )−1[G]]. Let

Gξ = (iω2

ξ )−1[G].

In M [G], for each s ∈ X there is a ξ = ξs < ω2 such that ∃p ∈ Gξ[i
ω2

ξ (p) Pω2
š ∈ Ẋ ].

Let η = sups∈X ξs. So η < ω2 since (|S| < cf(ω2))M [G]. Then X = {s ∈ S : ∃p ∈

Gη[iω2
η (p)  š ∈ Ẋ ]}. Hence X ∈M [Gη].

Theorem 31.159. (V.5.19.1) Let κ > ω1 be a regular cardinal. Then there is a generic
extension N of M such that CH holds in N , 2ω1 ≥ κ in N , and in N , pω1

= bω1
= dω1

=
ω2.

Proof. First we extend M to a model S such that CH holds in S and 2ω1 ≥ κ in
S. Then starting with S we form an ω2-stage countable support iteration 〈Pξ : ξ ≤ ω2〉,
applying Proposition 31.156 at the successor steps, using full names. Namely, if Pξ has
been constructed, then

11Pξ  ∃Q∀x[x ∈ Q↔ ∃s∃Y [s ∈ (Fn(ω1, 1, ω1))v ∧ Y ∈ ((ωω)<ω1)v ∧ x = (s, Y )]]

Now by Theorem 30.35 and Lemma 31.129 we get a full name Q̇ξ such that

11Pξ  ∀x[x ∈ Q̇ξ ↔ ∃s∃Y [s ∈ (Fn(ω1, 1, ω1))v ∧ Y ∈ ((ωω)<ω1)v ∧ x = (s, Y )]]

Then

11Pξ ∃R∀z[z ∈ R↔ ∃s, Y, s′, Y ′[(s, Y ), (s′, Y ′) ∈ Q̇ξ ∧ z = ((s, Y ), (s′, Y ′))

∧ s′ ⊆ s ∧ Y ′ ⊆ Y ∧ ∀f ∈ Y ′∀α ∈ dmn(s)\dmn(s′)[s(α) > f(α)]]

Again by Theorem 30.35 and Lemma 31.129 we get a full name ≤̇ξ such that

11Pξ ∀z[z ∈ ≤̇ξ ↔ ∃s, Y, s
′, Y ′[(s, Y ), (s′, Y ′) ∈ Q̇ξ ∧ z = ((s, Y ), (s′, Y ′))

∧ s′ ⊆ s ∧ Y ′ ⊆ Y ∧ ∀f ∈ Y ′∀α ∈ dmn(s)\dmn(s′)[s(α) > f(α)]]

By Propositions 31.156 and 31.157,

11Pξ  [Q̇ξ is ω1-centered, countably closed, and well-met]

By Lemma 31.131 each Pξ is countably closed. By Lemma 31.140, Pω2
has the ω2-cc.

Hence cardinals and cofinalities are preserved. Also, CH holds since each Pξ is countably
closed, and of course 2ω1 ≥ κ in Pω2

. By Propositions 31.144–31.148 we have ω2 ≤ pω1
≤

bω1
≤ dω1

.
Now let G be Pω2

-generic over S. Take any ξ < ω2. Let Gξ = (iω2

ξ )−1[G]; so Gξ
is Pξ-generic over S, by Lemma 30.2, and S[Gξ] ⊆ S[G] by Proposition 31.60(i). By

Proposition 31.54, Pξ+1 is isomorphic to Pξ ∗ Q̇ξ; say kξ is an isomorphism. Then kξ[Gξ+1]

is (Pξ ∗ Q̇ξ)-generic over S. Now let

Hξ = {ρGξ : ρ ∈ Q̇ξ ∧ ∃p ∈ Pξ[(p, ρ) ∈ kξ[Gξ+1]]}.
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Then by Proposition 31.60, Hξ is (Q̇ξ)Gξ-generic over S[Gξ], and S[kξ[Gξ+1]] = S[Gξ][Hξ].

Also, S[kξ[Gξ+1]] = S[Gξ+1]. By the above, in S[Gξ] we have a poset (Q̇ξGξ , ≤̇ξGξ ) satis-
fying the conditions of Proposition 31.156. Let hξ =

⋃

p∈Gξ
sp. Then hξ ∈

ωω and for all

f ∈ (ωω)Pξ we have f ≤ω1 h; and hξ ∈ S[Gξ] ⊆ S[G]. Let D = {hξ : ξ < ω2}. We claim
that in S[G] the set D is dominating. For, suppose that f ∈ (ωω)S[G]. By Proposition
31.158 there is a ξ < ω2 such that f ∈ S[Gξ]. Then f ≤ω1 hξ, as desired.

Proposition 31.160. Suppose that κ is an infinite cardinal, F ⊆ P(ω1), |F | ≥ κ, and
∀α < ω1[|{X ∩ α : X ∈ F}| ≤ ω.

Then there is an ω1-tree T such that there are ≥ κ paths through T .

Proof. Let T =
⋃

α<ω1
{χX∩α : X ∈ F}.

Proposition 31.161. Assume BACH and κ < 2ω1 . Then there is an ω1-tree with at least
κ paths through T .

Proof. We may assume that ω1 ≤ κ. Let P consist of all pairs p = (αp, Fp) such
that αp < ω1 and Fp is a nonempty countable subset of P(ω1). Define q ≤ p iff αq ≥ αp,
Fq ⊇ Fp, and {X ∩ αp : X ∈ Fq} = {X ∩ αp : X ∈ Fp}. Let 11P = (0, {∅}).

(1) ≤ is transitive.

For, suppose that r ≤ q ≤ p. If X ∈ Fr, choose Y ∈ Fq such that X ∩ αq = Y ∩ αq. Then
choose Z ∈ Fp such that Y ∩ αp = Z ∩ αp. Then X ∩ αp = X ∩ αq ∩ αp = Y ∩ αq ∩ αp =
Z ∩ αq ∩ αp = Z ∩ αp.

Conversely, suppose that Z ∈ Fp. Choose Y ∈ Fq such that Y ∩ αp = Z ∩ αp. Then
choose X ∈ Fr so that X ∩ αq = Y ∩ αq. Then X ∩ αp = X ∩ αq ∩ αp = Y ∩ αq ∩ αp =
Z ∩ αq ∩ αp = Z ∩ αp.

(2) P is countably closed.

For, suppose that p0 ≥ p1 ≥ · · ·. Let αq = supn∈ω αpn and Fq =
⋃

n∈ω Fpn . To check that
q ≤ pn, first suppose that X ∈ Fq; we want to find Y ∈ Fpn such that X ∩αpn = Y ∩αpn .
Choose m ∈ ω such that X ∈ Fpm .

Case 1. m ≤ n. Then pn ≤ pm. Hence Fpm ⊆ Fpn , so X ∈ Fpn . So we can take
Y = X .

Case 2. n < m. Then pm ≤ pn. Choose Y ∈ Fpn so that X ∩ αpn = Y ∩ αpn .

Second suppose that Y ∈ Fpn ; we want to find X ∈ Fq such that X ∩ αpn = Y ∩ αpn . We
can take X = Y .

This proves (2).

(3) If p, q ∈ P and αq ≥ αp, then p and q are compatible iff the following conditions hold:
(a) {X ∩ αp : X ∈ Fp} = {Y ∩ αp : Y ∈ Fq}.
(b) {X ∩ αq : X ∈ Fp} ⊆ {Y ∩ αq : Y ∈ Fq}.

For, first suppose that p and q are compatible. Say r ≤ p, q. Thus

(4) {Z ∩ αp : Z ∈ Fr} = {X ∩ αp : X ∈ Fp} and
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(5) {Z ∩ αq : Z ∈ Fr} = {Y ∩ αq : Y ∈ Fq}.

Now suppose that X ∈ Fp; we want to find Y ∈ Fq such that X ∩ αp = Y ∩ αp. By
(4) choose Z ∈ Fr such that Z ∩ αp = X ∩ αp. Then by (5) choose Y ∈ Fq such that
Z ∩ αq = Y ∩ αq. Then Y ∩ αp = Y ∩ αq ∩ αp = Z ∩ αq ∩ αp = Z ∩ αp = X ∩ αp.

Next, suppose that Y ∈ Fq; we want to find X ∈ Fp such that X ∩ αp = Y ∩ αp. By
(5) choose Z ∈ Fr such that Z ∩ αq = Y ∩ αq. Then by (4) choose X ∈ Fp such that
Z ∩ αp = X ∩ αp. Then X ∩ αp = Z ∩ αp = Z ∩ αq ∩ αp = Y ∩ αq ∩ αp = Y ∩ αp.

Finally, suppose that X ∈ Fp; we want to find Y ∈ Fq so that X ∩αq = Y ∩αq. Now
X ∈ Fr, so such a Y exists by (5).

Second, suppose that (a) and (b) hold. Let αr = αq and Fr = Fp ∪ Fq, To show that
r ≤ p, suppose that Z ∈ Fr; we want to find W ∈ Fp such that Z ∩ αp = W ∩ αp.

Case 1. Z ∈ Fp. Take W = Z.
Case 2. Z ∈ Fq. Then (a) gives the desired W .
Conversely, suppose that W ∈ Fp; we want Z ∈ Fr so that Z ∩ αp = W ∩ αp. Take

Z = W .
To show that r ≤ q, suppose that Z ∈ Fr; we want to find W ∈ Fq such that

Z ∩ αq = W ∩ αq.
Case 1. Z ∈ Fp. Then W exists by (b).
Case 2. Z ∈ Fq. Take W = Z.
On the other hand, suppose that W ∈ Fq; we want to find Z ∈ Fr such that Z ∩αq =

W ∩ αq. Take Z = W .
Hence (3) holds.

(6) P is well-met.

In fact, suppose that p and q are compatible. Say αq ≥ αp. Let r be defined as in the
proof of (3). Now suppose that s ≤ p, q; we want to show that s ≤ r.

First suppose that X ∈ Fs; we want to find Y ∈ Fr such that X ∩αr = Y ∩αr. Since
s ≤ q, choose y ∈ Fq such that X ∩ αq = Y ∩ αq. Then Y ∈ Fr and αq = αr, as desired.

Second suppose that Y ∈ Fr; we want to find X ∈ Fs such that X ∩ αr = Y ∩ αr.
Case 1. Y ∈ Fq. Since s ≤ q, choose X ∈ Fs such that X ∩ αq = Y ∩ αq. Since

αq = αr, this is as desired.
Case 2. Y ∈ Fp. Then by (3)(b) choose Z ∈ Fq such that Y ∩ αq = Z ∩ αq. Then

since s ≤ q, choose X ∈ Fs such that X ∩ αq = Z ∩ αq. So X ∩ αr = Y ∩ αr.

This proves (6).

(7) |P| = ω1.

This is clear, by CH.
Thus MAP(κ) holds.

(8) For each ξ < ω1 the set Dξ
def
= {p : αp ≥ ξ} is dense.

To prove this, take any q ∈ P. If ξ ≤ αq, this is ok. If αq < ξ, let αp = ξ and Fp = Fq.
Then p ≤ q, as desired. So (8) holds.

(9) For any X ⊆ ω1 the set EX
def
= {p ∈ P : ∃Y ∈ Fp[X△Y is countable]} is dense.
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For, let q ∈ P. For each Y ∈ Fq let ZY = (X\αq) ∪ (Y ∩ αq). Let αp = αq and
Fp = Fq ∪{ZY : y ∈ Fq}. If Y ∈ Fq, then Y ∩αq = ZY ∩αq. Hence p ≤ q. For any Y ∈ Fq
we have X\Zy ⊆ αq and ZY \X ⊆ αq. So X△ZY is countable, proving (9).

LetE be a strongly independent subset of P(ω1) of size κ, and let G ⊆ P be a filter
intersecting each set Dξ for ξ < ω1 and each set EX for X ∈ E . Let F =

⋃

p∈G Fp.

(10) ∀ξ < ω1[|{Y ∩ ξ| : Y ∈ F}| ≤ ω].

In fact, pick p ∈ G ∩Dξ. Thus αp ≥ ξ. We claim that

(11) ∀Y ∈ F∃X ∈ Fp[X ∩ αp = Y ∩ αp].

For, suppose that Y ∈ F . Say Y ∈ Fq with q ∈ G. Say r ∈ G and r ≤ p, q. Thus Fq ⊆ Fr,
so Y ∈ Fr. Since r ≤ p, there is an X ∈ Fp such that X ∩ αp = Y ∩ αp. So (11) holds.

Now it follows from (11) that {Y ∩αp : Y ∈ F} is countable. Hence also {Y ∩ ξ : Y ∈
F} is countable, as desired in (10).

(12) |F | ≥ κ.

In fact, for each X ∈ E choose p ∈ G ∩ EX , and choose YX ∈ Fp such that X△YX is
countable. We claim that EX 6= EZ for distinct X,Z ∈ E ; in fact, actually EX△EZ is
uncountable. This follows from

(13) If X,Z ∈ E and X 6= Z, then (X△Z) ⊆ (X△YX) ∪ (YX△YZ) ∪ (YZ△Z).

To prove (13), suppose that X,Z ∈ E and X 6= Z. Take any α ∈ X△Z. By symmetry
say α ∈ X\Z. We may assume that α ∈ YX and α ∈ YZ . Hence α ∈ (YZ\Z). This proves
(13), and hence also (12).

Now the proposition follows from Proposition 31.160.

Proposition 31.162. (V.5.21) Suppose that M ⊢ GCH and there is a strongly inaccessible
cardinal. Then there is a generic extension M [G] in which there is no Kurepa tree, CH
holds, and 2ω1 ≥ ℵ85.

Proof. Let κ be an inaccessible cardinal in M . By Theorem 31.32 there is a generic
extension M [H] in which there is no Kurepa tree, CH holds, and κ = ω2. Note that in
M [H] we have 2ω = ω1. Now in M [H] we take G Fn(ωω1

85 , ω1, ω1)-generic over M [H]. Then
by Theorem 29.37 with κ, λ replaced by ωω1

85 , ω1 respectively we obtain M [H][G] in which
CH holds, and 2ω1 = ωω1

85 . By Lemma 31.30 there is no Kurepa tree in M [H][G].

A poset P is proper iff for all uncountable κ and all stationary S ⊆ [κ]≤ω we have 11 P [S
is stationary].

Proposition 31.163. Every ccc poset is proper.

Proof. By Corollary 30.86.

Lemma 31.164. (V.7.3) Assume that P is proper, κ is uncountable, and p  [Ȧ ∈ [κ]≤ω].
Then there exist a B ∈ [κ]≤ω and a q ≤ p such that q  [Ȧ ⊆ B̌].
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Proof. Obviously ([κ]≤ω)M is club in [κ]≤ω and hence is also stationary in M . Let
G be P-generic over M with p ∈ G. Then ([κ]≤ω)M is stationary in M [G]. Now obviously
{X ∈ [κ]≤ω : ȦG ⊆ X} is club. Hence there is a B ∈ ([κ]≤ω)M such that ȦG ⊆ B. So
there is a q ≤ p such that q  [Ȧ ⊆ B̌].

Corollary 31.165. Assume that P is proper, and G is P-generic over M . Then ωM1 =

ω
M [G]
1 .

Proof. Suppose not. Then there is a p ∈ G such that p  ω̌1 ∈ [ω1]≤ω. Hence by
Lemma 31.164 there exist a B ∈ [ω1]≤ω and a q ≤ p such that q  [ω̌1 ⊆ B̌]. Let q ∈ H
generic. Then ω1 = ω̌1G ⊆ B, contradiction.

Proposition 31.166. If P is proper and 11P P [Q̇ is proper], then P ∗ Q̇ is proper.

Proof. Assume the hypothesis, and suppose that κ is uncountable and S ⊆ [κ]≤ω is
stationary. Let K be (P ∗ Q̇)-generic over M . Form G and H as in Theorem 31.46. Then
S is stationary in M [G]. Also, Q̇G is proper, so S is stationary in M [G][H] = M [K].

Proposition 31.167. (V.7.8) If A ⊆ B, define p : [B]≤ω → [A]≤ω by p(y) = y ∩ A.
If C ⊆ [A]≤ω is club in [A]≤ω, then p−1[C] is club in [B]≤ω.

Proof. Assume the hypotheses. Unbounded: Suppose that x ∈ [B]≤ω. Choose y ∈ C
such that x ∩A ⊆ y. Then x ∪ y ∈ p−1[C] and x ⊆ x ∪ y.

Closed: suppose that x0 ⊆ x1 ⊆ · · · and each xi ∈ p−1[C]. Thus p(x0) ⊆ p(x1) ⊆ · · ·
and each p(xi) ∈ C. Hence p(

⋃

n∈ω xi) =
⋃

n∈ω p(xn) ∈ C, so
⋃

n∈ω xn ∈ p
−1[C].

Proposition 31.168. (V.7.8) If A ⊆ B, define p : [B]≤ω → [A]≤ω by p(y) = y ∩ A.
If C ⊆ [B]≤ω is club in [B]≤ω, then p[C] contains a club subset of [A]≤ω.

Proof. Assume the hypotheses.

(1) For each finite s ⊆ A there is an f(s) ∈ C with s ⊆ f(s) such that if s ⊆ t then
f(s) ⊆ f(t).

We prove this by induction on |s|. It is obvious for |s| = 0, i.e., for s = ∅. Now suppose it
is true for |s| = n. For |s| = n+ 1, write s = {x0, . . . , xn}. Choose f(s) ∈ C such that

⋃

i≤n

f(s\{xi}) ∪ s ⊆ f(s).

Then if t ⊂ s then there is an i ≤ n such that t ⊆ s\{xi}, hence f(t) ⊆ f(s\{xi}) ⊆ f(s).
So (1) holds.

Let C0 = {x ∈ [A]≤ω : ∀s ∈ [x]<ω[f(s) ∩A ⊆ x]}.

(2) C0 is club in [A]≤ω.

To prove (2), first we show that C0 is unbounded. Suppose that x ∈ [A]≤ω. Define y0 = x
and yn+1 =

⋃
{f(s) ∩ A : s ∈ [yn]<ω}, and z =

⋃

n∈ω yn. Then x ⊆ z ∈ C0.
Closed: suppose that x0 ⊆ x1 ⊆ · · · with each xi ∈ C0. Clearly

⋃

n∈ω xn ∈ C0.
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(3) C0 ⊆ p[C].

In fact, suppose that x ∈ C0. If x is finite, then f(x)∩A = x, i.e., p(f(x)) = x, so x ∈ p[C].
Suppose that x is infinite; say x = {a0, a1, . . .}. Then f({a0}) ⊆ f({a0, a1}) ⊆ · · ·, and
each term here is in C, so f({a0}) ∪ f({a0, a1}) ∪ · · · ∈ C. We have

x ⊆ ((f({a0}) ∪ f({a0, a1}) ∪ · · ·) ∩A) ⊆ x,

so x = (f({a0}) ∪ f({a0, a1}) ∪ · · ·) ∩A.

Proposition 31.169. (V.7.8) If A ⊆ B, define p : [B]≤ω → [A]≤ω by p(y) = y ∩ A.
If S ⊆ [A]≤ω is stationary in [A]≤ω, then p−1[S] is stationary in [B]≤ω.

Proof. Suppose that C ⊆ [B]≤ω is club in [B]≤ω. By Proposition 31.168 let D ⊆
[A]≤ω be club in [A]≤ω such that D ⊆ p[C]. Choose a ∈ D ∩ S. Say a = p(b) with b ∈ C.
Then b ∈ p−1[S]. So C ∩ p−1[S]] 6= ∅.

Proposition 31.170. (V.7.8) If A ⊆ B, define p : [B]≤ω → [A]≤ω by p(y) = y ∩ A.
If S ⊆ [B]≤ω is stationary in [B]≤ω, then p[S] is stationary in [A]≤ω.

Proof. Suppose that C ⊆ [A]≤ω is club in [A]≤ω. By Proposition 31.167, p−1[C] is
club in [B]≤ω. Choose a ∈ S ∩ p−1[C]. Then p(a) ∈ C ∩ p[S].

For E ⊆ P, p ⊥ E means ∀q ∈ E[p ⊥ q]. We say that E is predense below p, in symbols
p ≤

∨
E, iff ∀q ≤ p∃r ∈ E[q and r are compatible].

Lemma 31.171. (V.7.10) q ⊥ E iff q  [Ě ∩ Γ = ∅].

Proof. ⇒: Assume that q ⊥ E and q ∈ G generic. Suppose that p ∈ E ∩G. Then p
and q are compatible, contradiction.
⇐: Suppose that q 6⊥ E. Say p ∈ E with p, q compatible. Say r ≤ p, q. Let r ∈ G,

generic. Then p ∈ E ∩G. Thus E ∩G 6= ∅. Hence q 6 [Ě ∩ Γ = ∅].

Lemma 31.172. (V.7.10) p ≤
∨
E iff p  [Ě ∩ Γ 6= ∅].

Proof. ⇒: Assume that p ≤
∨
E. Thus ∀q ≤ p[q 6⊥ E], so by Lemma 31.171,

(1) ∀q ≤ p[q 6 [Ě ∩ Γ = ∅]].

Now suppose that p 6 [Ě ∩ Γ 6= ∅]. Then there is a generic G with p ∈ G such that
E ∩ G = ∅. Hence there is a q ∈ G such that q  [Ě ∩ Γ = ∅]. Say r ≤ p, q. Then
r  [Ě ∩ Γ = ∅]. This contradicts (1).
⇐: Assume that p  [Ě ∩ Γ 6= ∅]. Suppose that p 6≤

∨
E. Then there is a q ≤ p such

that ∀r ∈ E[q ⊥ r]; that is, such that q ⊥ E. By Lemma 31.171, q  [Ě ∩ Γ = ∅]. But
q ≤ p so q  [Ě ∩ Γ 6= ∅], contradiction.

If P ∈ M , then p ∈ P is (M,P)-generic iff for all dense D ⊆ P such that D ∈ M we have
p ≤

∨
(D ∩M).
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Proposition 31.173. (V.7.12) If θ is uncountable and regular, P ∈M � H(θ) and p ∈ P,
then the following conditions are equivalent:

(i) p is (M,P)-generic.
(ii) For all open dense D ⊆ P such that D ∈M we have p ≤ (D ∩M).
(iii) For all predense D ⊆ P such that D ∈M we have p ≤ (D ∩M).

Proof. First we claim:

(1) If D ∈M , then (D↓′) ∈M .

In fact, suppose that D ∈M . Then

H(θ) |= ∃X∀x[x ∈ X ↔ ∃y ∈ D[x ≤ y]]; hence

M |= ∃X∀x[x ∈ X ↔ ∃y ∈ D[x ≤ y]];

taking X ∈M such that M |= ∀x[x ∈ X ↔ ∃y ∈ D[x ≤ y]], we have H(θ) |= ∀x[x ∈ X ↔
∃y ∈ D[x ≤ y]], so X = (D↓′). So (1) holds.

Now obviously (i)⇒(ii). (ii)⇒(iii): Assume (ii), and suppose that D ⊆ P is predense
and D ∈ M . By Lemma 25.63, D↓′ is open dense, and by (1) (D↓′) ∈ M . Hence by (ii),
p ≤

∨
((D↓′) ∩M). Thus ∀q ≤ p∃r ∈ (D↓′) ∩M [q and r are compatible]. Suppose that

q ≤ p, and choose r ∈ (D↓′) ∩M so that q and r are compatible. Choose s ∈ D such that
r ≤ s. Then q and s are compatible. This shows that p ≤

∨
(D ∩M), as desired in (iii).

(iii)⇒(i): similarly.

Proposition 31.174. If D ⊆ P is dense, then there is an A ⊆ D such that A is a maximal
antichain.

Proof. Let A ⊆ D be maximal such that it is an antichain. We claim that A is a
maximal antichain in P. For, suppose not; then there is a b ∈ P incompatible with each
member of A. Choose d ≤ b with d ∈ D. Then d is incompatible with each member of A;
so A ∪ {d} is a subset of D which is an antichain, and d /∈ A since otherwise b would be
incompatible with d. This contradiction proves the proposition.

Proposition 31.175. (V.7.12) If θ is uncountable and regular, P ∈M � H(θ) and p ∈ P,
then the following conditions are equivalent:

(i) p is (M,P)-generic.
(ii) For every maximal antichain D ⊆ P such that D ∈M we have p ≤ (D ∩M).

Proof. (i)⇒(ii): Assume (i), and suppose that D ⊆ P is a maximal antichain such
that D ∈ M . Then (D↓′) ∈ M by (1) in the proof of Proposition 31.173. We claim that
D↓′ is dense. For, let q ∈ P. Choose r ∈ D such that q and r are compatible; say s ≤ q, r.
Thus s ∈ (D↓′) and s ≤ q, as desired. It follows that p ≤ ((D↓′) ∩M). As in the proof of
31.173 this shows that p ≤ (D ∩M).

(ii)⇒(i): Assume (ii), and suppose that D ⊆M with D dense. Then

H(θ) |= ∃X [X is a maximal antichain and X ⊆ D], hence

M |= ∃X [X is a maximal antichain and X ⊆ D].
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Take X ∈ M such that M |= [X is a maximal antichain and X ⊆ D]. Then H(θ) |=
[X is a maximal antichain and X ⊆ D]; so X is a maximal antichain and X ⊆ D. Hence
by (ii), p ≤ (X ∩M). To show that p ≤ (D ∩M), take any q ≤ p. Since p ≤ (X ∩M),
choose r ∈ X so that q and r are compatible. Then r ∈ D, as desired.

Proposition 31.176. (V.7.13) If P ∈ M � H(θ) and P is ccc, then every p ∈ P is
(M,P)-generic.

Proof. Suppose that A ⊆ P is a maximal antichain of P and A ∈ M . By Lemma
23.61, A ⊆ M . Hence A ∩ M = A. Clearly p ≤

∨
A. So p ∈ P is (M,P)-generic by

Proposition 31.175.

Proposition 31.177. (V.7.14) If P ∈ M � H(θ), P is countably closed, p ∈ M , and M
is countable, then there is a q ≤ p such that q is (M,P)-generic.

Proof. Let 〈Dn : n ∈ ω〉 list all of the dense subsets of P which are in M .

(1) ∀q ≤ p∀n ∈ ω∃r ≤ q[r ∈ Dn ∩M ].

For, assume that q ≤ p and n ∈ ω. Then H(θ) |= ∃r ≤ q[r ∈ Dn], so M |= ∃r ≤ q[r ∈ Dn];
this gives (1).

By (1) we get p = p0 ≥ p1 ≥ · · · such that each pn+1 ∈ Dn ∩M . Choose q ∈ P such
that q ≤ each pn. Then q ≤

∨
(Dn∩M) for all n. In fact, if r ≤ q then r ≤ pn+1 ∈ Dn∩M ,

so r is compatible with the member pn+1 of Dn ∩M .

Proposition 31.178. (V.7.15) If θ ≥ ω2, θ regular, M is countable, M � H(θ), and
P = Fn(ω, ω1, ω), then P ∈M and no q is (M,P)-generic.

Proof.

H(θ) |= ∃X∀f [f ∈ X iff f is a finite function with domain ⊆ ω and range ⊆ ω1];

as usual, this shows that P ∈ M . Suppose that q is (M,P)-generic. Fix n ∈ ω\dmn(g).

Now A
def
= {{(n, ξ)} : ξ < ω1} ∈ M by the usual argument. A is a maximal antichain

in P. Hence by Proposition 31.175, q ≤
∨

(A ∩M). Thus M |= ∀r ≤ q∃f ∈ A ∩M [r
and f are compatible]. So H(θ) |= ∀r ≤ q∃f ∈ A ∩ M [r and f are compatible]. Let
r = q∪{(n, (supf∈A∩M f(n)) + 1)}. Then r is not compatible with any member of A∩M ,
contradiction.

Proposition 31.179. (V.7.16) Let S ⊆ ω1 be stationary, and let P be the poset described
in Proposition 31.33. Suppose that M � H(θ), M countable, and S ∈ M . Let γ =
sup(M ∩ ω1), and assume that γ ∈ S. Then

(i) P ∈M .
(ii) ∀p ∈ P ∩M∃q ≤ p[q is (M,P)-generic].

Proof. For (i), note that

H(θ) |= ∃X∀f [f ∈ X iff p ⊆ S and |p| ≤ ω and ∀limit ρ < ω1

[∀δ ∈ p ∩ ρ∃ε ∈ (δ, ρ)[ε ∈ p ∩ ρ]→ ρ ∈ p] and ∃Y [Y ⊆ X ×X

and ∀p, q ∈ X [(q, p) ∈ Y iff [p = ∅ or q ∩ (max(p) + 1) = p]]]]
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Hence this statement holds in M , so that there exist X, Y ∈M such that

M |=∀f [f ∈ X iff p ⊆ S and |p| ≤ ω and ∀limit ρ < ω1

[∀δ ∈ p ∩ ρ∃ε ∈ (δ, ρ)[ε ∈ p ∩ ρ]→ ρ ∈ p] and [Y ⊆ X ×X

and ∀p, q ∈ X [(q, p) ∈ Y iff [p = ∅ or q ∩ (max(p) + 1) = p]]]]

This holds in H(θ), and (i) follows.
For (ii), let p ∈ P ∩M . Let 〈Dn : n ∈ ω〉 list all of the dense open subsets of P which

are in M . For each n ∈ ω define f : ω × P× S → P by setting, for each n ∈ ω, q ∈ P, and
α ∈ S, f(n, q, α) = some p ∈ Dn such that p ≤ q ∪ {α}. Thus f ∈ H(θ). So

H(θ) |= ∃f [f is a function and dmn(f) = ω × P× S and ∀n ∈ ω∀q ∈ P∀α ∈ S

[f(n, q, α) ∈ Dn and f(n, q, α) ≤ q ∪ {α}]

It follows that this statement holds in M , and hence the function f is in M . Now let
〈βn : n ∈ ω〉 be a strictly increasing sequence of ordinals with supremum γ. We now define
〈qn : n ∈ ω〉. Let q0 = p. If q0 ≥ · · · ≥ qn have been defined, let qn+1 = f(n, qn, βn). Since
f ∈M , it follows that each qn ∈M , and hence max(qn) < γ. Finally, let r =

⋃

n∈ω qn∪{γ}.
Then clearly r ∈ P. Now we claim that r is (M,P)-generic. We need to show that
r ≤ (Dn ∩M) for each n ∈ ω. Suppose that s ≤ r. Then s ≤ qn+1 = f(n, qn, βn) ∈ Dn, so
s is compatible with the member qn+1 of Dn.

Proposition 31.180. (V.7.16) Let S ⊆ ω1 be stationary, and let P be the poset described
in Proposition 31.33. Suppose that M � H(θ), M countable, and S ∈ M . Let γ =
sup(M ∩ ω1), and assume that γ /∈ S. Then

(i) P ∈M .
(ii) There is no q ∈ P which is (M,P)-generic.

Proof. (i) holds as in the proof of Proposition 31.179. Now note:

(1) r, s ∈ P are compatible iff r ≤ s, where max(s) ≤ max(r).

In fact, ⇐ is obvious. For⇒, suppose that t ≤ r, s. Then r∩ (max(s) +1) = t∩ (max(r) +
1) ∩ (max(s) + 1) = t ∩ (max(s) + 1) = s.

Now for (ii), suppose that q ∈ P is (M,P)-generic. Let r = q∪{δ}, where max(q), γ <
δ ∈ S. So r ∈ P and r ≤ q. 〈βn : n ∈ ω〉 be a strictly increasing sequence of ordinals with

supremum γ. Take any n ∈ ω. Then Dn
def
= {s ∈ P : βn ≤ max(s)} is dense, and hence

q ≤ Dn ∩M . It follows that there is an sn ∈ D ∩M such that r and sn are compatible.
Hence by (1), r ≤ sn. Now βn ≤ max(s) < γ. Since n is arbitrary, r ∩ γ is unbounded in
γ. Since γ /∈ S, this contradicts r being closed.

Lemma 31.181. (V.7.18) In M suppose that θ is uncountable and regular and P ∈ H(θ).
Then in any generic extension M [G] there is a club C ⊆ [(H(θ))M ]≤ω such that for

all N ∈ C and p ∈ P the following conditions hold:
(i) N � (H(θ))M and P ∈ N .
(ii) For all D ∈ N , if D is a dense subset of P, then D ∩N ∩G 6= ∅.
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(iii) If N ∈M and p ∈ G, then there is a q ≤ p that is (N,P)-generic.

Proof. Let C be the set of all N ∈ [(H(θ))M ]≤ω satisfying (i) and (ii). Clearly C
is closed. To show that it is unbounded, let K ∈ [(H(θ))M ]≤ω. Let c be a choice funtion
for nonempty subsets of (H(θ))M . Let 〈∃xnϕn(xn, yn) : n ∈ ω〉 list all formulas in the
language of set theory that begin with an existential quantifier. We define Y0 = K and

Ym+1 = Ym ∪ {a ∈ (H(θ))M : n ∈ ω, ∃b ⊆ Ym[(H(θ))M |= ϕn(a, b)]}

∪ {c(D ∩G) : D ⊆ P, D dense, D ∈ Ym}.

Finally, let N =
⋃

m∈ω Ym. Clearly N satisfies (i) and (ii).
For (iii), suppose that N ∈ M (and N ∈ C), and p ∈ G. Then there is a q ∈ G with

q ≤ p such that q  ∀D[D dense in P̌ → ∃x[x ∈ Ň ∩ D ∩ Γ]]. Thus for all D ∈ N such
that D ⊆ P is dense in P we have q  [(D ∩ N)v ∩ Γ 6= ∅]. Hence by Lemma 31.172,
q ≤

∨
(D ∩N) for all D ∈M such that D ⊆ P is dense in P.

Lemma 31.182. (V.7.19) Assume that M ∈ [H(θ)]≤ω and P, κ, p ∈ M and M � H(θ).
Let q ≤ p be (M,P)-generic, and let τ be a P-name such that p  [τ ∈ [κ]≤ω]. Then
q  [τ ⊆M ∩ κ].

Proof. Fix ḟ ∈ M such that p  [ḟ ∈ ωκ and τ ⊆ rng(ḟ)]. For each n ∈ ω let
Dn = {r ∈ P : r ⊥ p or ∃α[r  [ḟ(n) = α]]}. Clearly Dn is dense and Dn ∈ M ; so
q ≤

∨
(Dn ∩M). Hence q ≤

∨
{r ≤ p : ∃α ∈M [r  [ḟ(n) = α]]}. Then q  [ḟ(n) ∈M ]. In

fact, let q ∈ G, generic. Suppose that ḟG(n) /∈M . Then there is an s ≤ q with s ∈ G such
that s  [ḟ(n) /∈M ]. But q ≤

∨
{r ≤ p : ∃α ∈M [r  [ḟ(n) = α]]} implies that there is an

r ≤ p compatible with s and an α ∈M such that r  [ḟ(n) = α], contradiction.

Let A be an uncountable set and f : [A]<ω → [A]≤ω. A set x ∈ [A]≤ω is a closure point of
f iff f(e) ⊆ x for every e ∈ [x]<ω. Cl(f) is the collection of all closure points of f .

If A is uncountable, f : [A]<ω → [A]≤ω, and x ∈ [A]≤ω, we define y0 = x and
yi+1 = yi ∪

⋃
{f(e) : e ∈ [yi]

<ω}, and Clf (x) =
⋃

i∈ω yi.

Lemma 31.183. If A is an uncountable set, C ⊆ [A]≤ω is club, and D ⊆ C is countable
and directed, then

⋃
D ∈ C.

Proof. Let D = {di : i < ω}. For each i < ω let ei ∈ D be such that dj ⊆ ei for each
j < i and also ej ⊆ ei for each j < i. Then

⋃
D =

⋃

i<ω ei ∈ C.

Lemma 31.184. If A is uncountable, f : [A]<ω → [A]≤ω and ∅ 6= x ∈ [A]≤ω, then:
(i) Clf (x) ∈ Cl(f);
(ii) If z ⊆ x, then Clf (z) ⊆ Clf (x);
(iii) Clf (x) =

⋃
{Clf (z) : z ∈ [x]<ω};

(iv) If y ⊆ x ∈ Cl(f), then Clf (y) ⊆ x;
(v) If x ∈ Cl(f), then Clf (x) = x.

Proof. (i): suppose that e ∈ [Clf (x)]<ω. With 〈yi : i ∈ ω〉 as in the definition of
Clf (x), there is an i ∈ ω such that e ∈ [yi]

<ω. Hence f(e) ⊆ yi+1 ⊆ Clf (x). This proves
(i).
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(ii): if 〈yzi : i ∈ ω〉 is as in the definition of Clf (z) and 〈yxi : i ∈ ω〉 is as in the
definition of Clf (x), then by induction yzi ⊆ y

x
i for all i ∈ ω, and (ii) follows.

(iii): ⊇ holds by (ii). For ⊆, with 〈yi : i ∈ ω〉 as in the definition of Clf (x), we
prove that yi ⊆ rhs for all i ∈ ω by induction on i, where rhs is the right-hand side of
(iii). Since z ⊆ Clf (z) for each z ∈ [x]<ω we have y0 = x ⊆ rhs. Now suppose that
yi ⊆ rhs. If e ∈ [yi]

<ω, then there is a z ∈ [x]<ω such that e ∈ Clf (z), by (ii). Then
f(e) ⊆ Clf (z) ⊆ rhs. Hence yi+1 ⊆ rhs. This proves (iii).

(iv): clear.
(v): x ⊆ Clf (x) ⊆ x by (iv).

Lemma 31.185. If A is an uncountable set and f : [A]<ω → [A]≤ω, then Cl(f) is a club
of [A]≤ω.

Proof. Clearly Cl(f) is closed. If x ∈ [A]≤ω, then x ⊆ Clf (x) ∈ Cl(f) by Lemma
31.184, so Cl(f) is unbounded.

Lemma 31.186. If A is an uncountable set and C is club in [A]≤ω, then there is an
f : [A]<ω → [A]≤ω such that Cl(f) ⊆ C.

Proof. We define f(e) ∈ C for all e ∈ [A]<ω by recursion on |e|. For each a ∈ A
choose f({a}) ∈ C with {a} ⊆ f({a}). Now suppose that f(e) has been defined for all
e ∈ [A]n, and e ∈ [A]n+1. Choose f(e) ∈ C such that e∪

⋃

a∈e f(e\{a}) ⊆ f(e). Note that
e1 ⊆ e2 implies that f(e1) ⊆ f(e2).

We claim that Cl(f) ⊆ C. For, suppose that x ∈ Cl(f). Then {f(e) : e ∈ [x]<ω} is
directed and x =

⋃
{f(e) : e ∈ [x]<ω}, so x ∈ C.

Lemma 31.187. Suppose that θ is uncountable and regular, and λ is uncountable and
λ ∈ H(θ). Suppose that C ⊆ [H(θ)]≤ω is club. Then there is a club C′ in [λ]≤ω such that
C′ ⊆ {x ∩ λ : x ∈ C}.

Proof. Let f : [H(θ)]<ω → [H(θ)]≤ω be such that Cl(f) ⊆ C, by Lemma 31.186.
Define g : [λ]<ω → [λ]≤ω by setting g(e) = Clf (e) ∩ λ for all e ∈ [λ]<ω. We claim that
Cl(g) ⊆ {x ∩ λ : x ∈ Cl(f)}. For, suppose that y ∈ Cl(g). Then

Clf (y) ∩ λ =
⋃

{Clf (z) ∩ λ : z ∈ [y]<ω} =
⋃

{g(z) : z ∈ [y]<ω}

⊆
⋃

{Clg(z) : z ∈ [y]<ω} = y,

so y = Clf (y) ∩ λ.

Theorem 31.188. (V.7.17) Suppose that P is a forcing order. Then the following are
equivalent:

(i) P is proper,
(ii) For every uncountable regular cardinal θ with P ∈ H(θ) there is a club C ⊆

[H(θ)]≤ω such that for all N ∈ C the following conditions hold:
(a) P ∈ N .
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(b) N � H(θ)
(c) for all p ∈ P ∩N there is a q ≤ p which is (N,P )-generic.

(iii) There is an infinite cardinal ρ such that for every uncountable regular cardinal
θ ≥ ρ with P ∈ H(θ) there is a club C ⊆ [H(θ)]≤ω such that for all N ∈ C the following
conditions hold:

(a) P ∈ N .
(b) N � H(θ)
(c) for all p ∈ P ∩N there is a q ≤ p which is (N,P )-generic.

Proof. (i)⇒(ii): Assume that P is proper and θ is a regular uncountable cardinal
such that P ∈ H(θ). Let

S = {N ⊆ [H(θ)]≤ω : P ∈ N, N � H(θ), ∃p ∈ P ∩N∀q ≤ p[q is not (N,P)-generic]}.

We claim that S is not stationary. For, suppose that it is. For each N ∈ S choose
p ∈ P ∩ N as indicated. Then by Fodor’s theorem, Theorem 23.23, there exist a p ∈ P

and a stationary subset T of S such that for all N ∈ T , p ∈ P ∩ N and ∀q ≤ p[q is not
(N,P)-generic]. Suppose that G is P-generic over M with p ∈ G. In M [G] let C be a club
given by Lemma 31.181. Since P is proper, T is stationary in M [G], and so we can choose
N ∈ T ∩C. Thus N ∈M . By Lemma 31.181(iii), there is a q ≤ p which is (N,P)-generic.
This contradicts the definition of T . So S is not stationary.

It follows that there is a club C in [H(θ)]≤ω such that C ∩ S = ∅. Let C′ = {N ∈
[H(θ)]≤ω : P ∈ N and N � H(θ)}. Then C′ is club. Now C ∩ C′ is as desired in the
theorem.

(ii)⇒(iii): obvious.
(iii)⇒(i): Assume (iii). Let λ be an uncountable cardinal, and suppose that S ⊆ [λ]≤ω

is stationary, G is generic, and S is not stationary in M [G]. Say C ⊆ [λ]≤ω is club with
S ∩ C = ∅. Let 〈fni : i ∈ ω, n ∈ ω〉 be a system of members of M [G] with fni : nλ → λ
and, with M = (λ, 〈fni : i ∈ ω, n ∈ ω〉) we have Sm(M) ⊆ C. (See Theorem 30.84.)
Then there is a name σ and a p ∈ G such that ∀i ∈ ω∀n ∈ ω[p  [σni : nλ → λ and
Sm(op(λ, σ))∩ S = ∅]. Let θ ≥ ρ be an uncountable cardinal such that λ ∈ H(θ). By (iii)
let C′ ⊆ [H(θ)]≤ω satisfy the indicated conditions. By Lemma 31.187, let C′′ be a club in
[λ]≤ω such that C′′ ⊆ {N ∩ λ : N ∈ C′}. Since S is stationary, choose N ∈ C′ ∩ C′′ such
that N ∩ λ ∈ C′′ ∩ C′ ∩ S. Now H(θ) |= ∃p[p  [σni : nλ → λ and Sm(op(λ, σ)) ∩ S = ∅]],
so there is a p ∈ N and σni ∈ N such that p  [σni : nλ → λ and Sm(op(λ, σ)) ∩ S = ∅].
Choose q ≤ p such that q is (N,P)-generic. We claim that q  N ∩ λ ∈ Sm(op(λ, σ)). Let
e ∈ n(N ∩ λ); we show that q  σni (e) ∈ N ∩ λ. Let

A = {r : ∃α < λ[r  σni (e) = α]} ∪ {r : r ⊥ q}.

Then A is dense and A ∈ N . From q being (N,P)-generic it follows that for all r ≤ q, r is
compatible with some s ∈ A ∩ N . Hence for any r ≤ q there exist s, t such that t ≤ r, s
and s ∈ A ∩N . Therefore there is an α < λ such that s  σni (e) = α. Since α is definable
from s, σni , e, it follows that α ∈ N .

Thus we have shown that q  N ∩ λ ∈ Sm(op(λ, σ)), q  Sm(op(λ, σ)) ∩ S = ∅], and
N ∩ λ ∈ S, contradiction.
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The proper forcing axiom, PFA, is the statement that MAP(ω1) holds for every proper
poset P.

Lim is the set of all countable limit ordinals. A ladder system is a sequence 〈Cγ : γ ∈
Lim〉 such that each Cγ is a cofinal subset of γ of order type ω.

A ladder system 〈Cγ : γ ∈ Lim〉 is club guessing iff for every club D ⊆ ω1 there is a
γ ∈ Lim such that Cγ ⊆ D.

Lemma 31.189. (V.7.21) ♦ implies that there is a club guessing system.

Proof. Let 〈Aα : α < ω1〉 be a ♦ sequence. For each γ < ω1 let Cγ ⊆ Aγ be cofinal
in γ if sup(Aγ) = γ, and Cγ = ∅ otherwise. Now let D ⊆ ω1 be club. Let D′ = {γ ∈ D : γ
is limit and D ∩ γ is cofinal in γ}. Then {γ < ω1 : D ∩ γ = Aγ} is stationary. Choose
γ ∈ D′ with D ∩ γ = Aγ . Then D ∩ γ is cofinal in γ, so also Aγ is cofinal in γ, so
Cγ ⊆ Aγ ⊆ D.

Lemma 31.190. (V.7.22) If C is a club guessing system and P is ccc, then C remains a
club guessing system in any generic extension M [G] using P.

Proof. Suppose that C is a club guessing system and P is ccc. Let D be a club in
M [G]. By Proposition 30.81, there is a club D′ in M such that D′ ⊆ D. Then there is a
limit γ such that Cγ ⊆ D′.

Theorem 31.191. (V.7.24) Assume PFA, and suppose that C is a ladder system. Then
there is a club D ⊆ ω1 such that Cγ\D is infinite for every limit γ < ω1.

Proof. Let P be the set of all countable closed p ⊆ ω1 such that sup(p) ∈ Lim∪{0} and
∀limit γ < ω1[Cγ\p is infinite]. We order P by saying q ≤ p iff p ⊆ q and (q\p)∩sup(p) = ∅.
Clearly ≤ is reflexive. Now suppose that r ≤ q ≤ p. Then obviously p ⊆ r. Also,

(r\p) ∩ sup(p) = ((r\q) ∪ (q\p)) ∩ sup(p) ⊆ ((r\q) ∩ sup(q)) ∪ ((q\p) ∩ sup(p)) = ∅.

Hence r ≤ p.
For each α < ω1 let Dα = {p ∈ P : sup(p) > α}.

(1) Dα is dense.

For, let q ∈ P. Let γ be a limit ordinal greater than max(α, sup(q)). Let 〈δi : i < ω〉
enumerate in order all the members of Cγ which are greater than max(α, sup(q)). Set
p = q ∪ {δ2i : i < ω} ∪ {γ}. Then p ≤ q and p ∈ Dα.

Assuming that P is proper, let G be a filter meeting all the sets Dα, and let D =
⋃
G.

Now D is club in ω1. In fact, it is unbounded since G ∩ Dα 6= ∅ for all α < ω1. Now
suppose that γ < ω1 is limit and D∩γ is unbounded in γ. Choose p ∈ G∩Dγ . Then p∩γ
is unbounded in γ. For, if α < γ choose β ∈ D ∩ γ with α < β < γ. Say β ∈ q ∈ G. Say
r ∈ G and r ≤ p, q. Then β ∈ r since r ≤ q, and β ∈ p since r is an end extension of p
and β < γ < sup(p). Since p ∩ γ is unbounded in γ and p is closed, it follows that γ ∈ p
and hence γ ∈ D. So D is club. If γ ∈ Lim, choose p ∈ G with sup(p) > γ. Then Cγ\p is
infinite, and so clearly Cγ\D is infinite.
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Now to prove that P is proper, we apply Theorem 31.188. So, suppose that θ is an
uncountable regular cardinal and P ∈ H(θ). Take any countable N such that P ∈ N and
N � H(θ). Suppose that p ∈ P ∩ N . Let 〈Dn : n ∈ ω〉 list all of the dense subsets of P

which are in N .

(1) There is a limit ordinal γ < ω1 which is a limit of limit ordinals such that sup(p) < γ
and for all n ∈ ω and all q ∈ N if sup(q) < γ then there is an r ∈ Dn such that r ≤ q and
sup(r) < γ.

In fact, for each q ∈ P and n ∈ ω let f(q, n) ∈ Dn be such that f(q, n) ≤ q. Now we define
α0 = sup(p) and αm+1 = sup{sup(f(q, n)) : sup(q) ≤ αm, n ∈ ω}+ω, and γ = supm∈ω αm.
Clearly (1) holds.

Let 〈αn : n ∈ ω〉 be the strictly increasing enumeration of Cγ . We now define two
sequences 〈qn : n ∈ ω〉 and 〈βn : n ∈ ω〉. Let q0 = p and let β0 be a limit ordinal less than
γ, with sup(p) < β0, with some member of Cγ in the interval (sup(p), β0). Having defined
qm and βm, with βm a limit ordinal less than γ with sup(qm) < βm, let q′m+1 = qm∪{βm},
and let qm+1 ≤ q′m+1 be a member of Dm ∩N with sup(qm+1) < γ. Let βm+1 be a limit
ordinal less than γ with sup(qm+1) < βm+1, and with some member of Cγ in the interval
(sup(qm+1), βm+1).

Now let r =
⋃

m∈ω qm ∪ {γ}. We claim that r is (N,P)-generic. For, suppose that
m ∈ ω; we claim that r ≤ (Dm ∩N). Suppose that s ≤ r. Then s ≤ q′m+1 ∈ Dm ∩N , so s
and q′m+1 are compatible.

Theorem 31.192. (V.7.2) Every countably closed poset is proper.

Proof. We apply Theorem 31.188. Let θ be an uncountable regular cardinal such that
P ∈ H(θ). Let C = {N : N countable, P ∈ N and N � H(θ)}. Suppose that p ∈ P ∩N .
Let 〈Dn : n ∈ ω〉 list all of the dense subsets of P which are in N . Define 〈qn : n ∈ ω〉 by
recursion: q0 = p. If qn has been defined, let qn+1 ≤ qn with qn+1 ∈ Dn. Let r ≤ qn for
all n. Clearly r is (N,P)-generic.

We now give an equivalent definition of properness involving a game. Let P be a forcing
order; we describe a game Γ(P) played between players I and II. First I chooses p0 ∈ P
and a maximal antichain A0 of P. Then II chooses a countable subset B0

0 of A0. At the
n-th pair of moves, I chooses a maximal antichain An and then II chooses countable sets
Bni ⊆ Ai for each i ≤ n. Then we say that II wins iff there is a q ≤ p0 such that for every
i ∈ ω, the set

⋃

i≤n∈ω

Bni

is predense below q.
We give a rigorous formulation of these ideas, not relying on informal notions of games.

A play of the game Γ(P) is an infinite sequence

〈p0, A0, C0, A1, C1, . . . , An, Cn . . .〉

satisfying the following conditions for each n ∈ ω:
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(1) p0 ∈ P.

(2) An is a maximal antichain of P.

(3) Cn = 〈Bni : i ≤ n〉, where each Bni is a countable subset of Ai.

Given such a play, we say that II wins iff there is a q ≤ p0 such that for every i ∈ ω, the
set ⋃

i≤n∈ω

Bni

is predense below q.
A partial play of length m of Γ(P) is a sequence

〈p0, A0, C0, A1, C1, . . . , Am−1, Cm−1, Am〉

satisfying the above conditions. Note that the partial play ends with one of the max-
imal antichains Am. A strategy for II is a function S whose domain is the set of all
partial plays of Γ(P), such that if P is a partial play as above, then S(P) is a set
Cm satisfying the condition (3). A play is said to be according to S iff for every m,
Cm = S(〈p0, A0, C0, A1, C1, . . . , Am−1, Cm−1, Am〉). The strategy S is winning iff II wins
every play which is played according to S.

Proposition 31.193. P is proper iff II has a winning strategy in Γ(P).

Proof. First suppose that P is proper. Let θ be an uncountable regular cardinal such
that P ∈ H(θ), and by Theorem 31.188 let C ⊆ [H(θ)]≤ω be a club with the indicated
properties.

Now a strategy for II is as follows. After I chooses A0, II chooses a countable N0 ∈ C
with N0 � H(λ) and with A0 ∈ N0; and II sets B0

0 = A0∩N0. Suppose that I chooses An,
and II has chosen N0 � · · · � Nn−1 � H(λ) with each Ni ∈ C. Then II chooses Nn ∈ C
so that Nn−1 � Nn � H(λ), and sets Bni = Ai ∩ Nn for all i ≤ n. When the game is
finished, let Nω =

⋃

n∈ωNn. So Nω � H(λ) and Nω ∈ C. By Theorem 31.188 choose
q ≤ p0 so that q is (Nω, P )-generic. Since Nω � H(λ), we may assume that q ∈ Nω. Take
any i ∈ ω; we claim that q ≤

∨⋃

i≤n B
n
i . Say q ∈ Nn with i ≤ n. Again since Nn � H(λ),

An ∈ Nn, and Bni = Ai ∩ Nn, it follows that Bni is a maximal antichain in P ∩ Nn. Let
D = {r ∈ P ∩Nn : r ≤ s for some s ∈ Bni }. Then D is dense in P ∩Nn. Take any r ≤ q.
Then r is compatible with some s ∈ D ∩ Nn. Hence r is compatible with some t ∈ Bni .
This shows that II wins.

Conversely, suppose that II has a winning strategy σ. Let λ be sufficiently large, and
let N � H(λ) be such that P, p0, σ ∈ N , N countable. Then we take the game in which
I lists all of the maximal antichains of P which are in N , and II plays using his strategy.
All of the sets Bni which II plays are in N , since σ ∈ N . Since II wins, choose q ≤ p0 such
that for each i ∈ ω the set

⋃

i≤nB
n
i is predense below q. We claim that q is (P,N)-generic.

For, let D ⊆ P , D ∈ N , be dense. Let C be maximal such that C is an antichain and
∀p ∈ C∃d ∈ D[p ≤ d]. Then C is a maximal antichain. For, suppose that p ⊥ C. Choose
d ∈ D such that d ≤ p. Then d ⊥ C, so that C ∪ {d} still satisfies the conditions on C,
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contradiction. Say C = Ai. Say q ∈ Nn with i ≤ n. Now
⋃

i≤mB
m
i is predense below

q. Hence there is an s ∈
⋃

i≤mB
m
i such that s and q are compatible. Say t ≤ s, q. Say

s ∈ Bmi with n ≤ m. Now Bi = Ai ∩N , so s ∈ Ai = C. Choose d ∈ D such that s ≤ d.
Now t is compatible with d ∈ D ∩N and t ≤ q. This shows that q is (P,N)-generic. So P
is proper.

For the following results, recall the notion of full name from just before Lemma 31.129;
proper from just before Proposition 31.163; (N,P)-generic from just before Proposition
31.173. i∗ from just before Lemma 30.3.

If M is a c.t.m. and N ∈M , for G a generic filter over M we let N [G] = {σG : σ is a
P-name and σ ∈ N .

Theorem 31.194. For any forcing poset P the following conditions are equivalent:
(i) P is proper.
(ii) For every regular θ > 2|trcl(P)|, every countable N � H(θ) with P ∈ N , and every

p ∈ P ∩N , there is a q ≤ p such that q is (N,P)-generic.

Proof. (i)⇒(ii): Assume that P is proper. Let θ > 2|trcl(P)|, θ regular, let N � H(θ)
with P ∈ N , N countable, and let r ∈ P ∩N .

By Theorem 31.188 let C ⊆ [H(|trcl(P)|+)]≤ω be club such that for all Q ∈ C the
following conditions hold:

(1) P ∈ Q.

(2) Q � H(|trcl(P)|+)

(3) for all p ∈ P ∩Q there is a q ≤ p which is (Q,P)-generic.

Now by Lemma 31.186 there is an f : [H(|trcl(P)|+]<ω → [H(|trcl(P)|+)]≤ω such
that Cl(f) ⊆ C. Now note that if (M,N) ∈ f then M ∈ [H(|trcl(P)|+)]<ω and
N ∈ [H(|trcl(P)|+)]≤ω. So |M | < |trcl(P)|+ and each member of M is in H(|trcl(P)|+) and
hence has size < |trcl(P)|+. So M ∈ H(|trcl(P)|+). Similarly, N ∈ H(|trcl(P)|+). Now

|f | = |H(|trcl(P)|+)]<ω| = |H(|P|+)| = 2<|trcl(P)|+ = 2|trcl(P)| < θ, using Lemma 12.53. So
f ∈ H(θ).

Now for all Q ∈ Cl(f) the conditions (1)–(3) hold. We may assume that f is the least
function in H(θ) with this property. Then clearly N is closed under f , and so N ∩H(θ) is
closed under f . So N ∩H(θ) ∈ Cl(f). Thus by (3) for N ∩H(θ), since p ∈ H(θ) because
p ∈ P ∈ H(θ), it follows that there is a q ≤ p which is (N ∩H(θ),P)-generic. We claim
that q is (N,P)-generic. For, suppose that D ⊆ P is dense and D ∈ N . Since P ∈ H(θ),
we have D ∈ N ∩ H(θ). Hence q ≤

∨
(D ∩ N ∩ H(θ)). Hence for all r ≤ q there is an

s ∈ D ∩N ∩H(θ) such that r and s are compatible. So q ≤
∨

(D ∩N), as desired.
(ii)⇒(i): Assume (ii), and let C be the set of all countable N � H(θ) such that P ∈ N .

Then Theorem 31.188(iii) holds, and so P is proper.

Lemma 31.195. If N � H(λ), then N [G] � H(λ)M [G].

Proof. We apply Tarski’s criterion. Suppose that H(λ)M [G] |= ∃xϕ(x, y1, . . . , yn)
with each yi in N [G]. Say yi = τ iG with τi ∈ N . Thus H(λ)M [G] |= ∃xϕ(x, τ1

G, . . . , τ
n
G).

741



Choose p ∈ G such that p  (∃xϕ(σ, τ1, . . . , τn))H(λ). Then since N � H(λ), it follows
that p  (∃xϕ(σ, τ1, . . . , τn))N . Hence N [G] |= ∃xϕ(x, y1, . . . , yn).

Proposition 31.196. Let P be a forcing order, σ a P-name, p ∈ P, and p  [σ is an
ordinal]. Then the set {q ∈ P : ∃α[q  [σ = α̌]]} is dense below p.

Proof. Assume the hypotheses. Suppose that r ≤ p. Let G be generic with r ∈ G.
Then σG is an ordinal α. Thus there is an s ∈ G such that s  [σ = α̌]. Choose q ∈ G
with q ≤ r, s. Then q is in the set of the proposition.

Proposition 31.197. Suppose that N � H(λ), P is a forcing order in N , and p ∈ P.
Then the following are equivalent:

(i) p is (N,P)-generic.

(ii) If D ⊆ P, D is dense, and D ∈ N , then for every generic G, p ∈ G implies that
D ∩N ∩G 6= ∅.

Proof. (i)⇒(ii): Assume (i), D ⊆ P, D is dense, D ∈ N , and p ∈ G generic. By (i),
D ∩N is predense below p, so D ∩N ∩G 6= ∅.

(ii)⇒(i): Assume (ii) and suppose that D ⊆ P is dense, D ∈ N . Take any q ≤ p. Let
G be generic with q ∈ G. By (ii), choose r ∈ D ∩ N ∩ G. Thus q is compatible with a
member of D ∩N , as desired.

Proposition 31.198. Suppose that N � H(λ), P is a forcing order in N , and p ∈ P.
Then the following are equivalent:

(i) p is (N,P)-generic.

(ii) For every P-name σ ∈ N and every q ≤ p, if q  σ is an ordinal, then for every
generic G with q ∈ G, σG ∈ N .

Proof. (i)⇒(ii): Assume (i), σ ∈ N is a P-name, q ≤ p, q  σ is an ordinal, and q ∈ G

generic. Then by Proposition 31.196, D
def
= {r ∈ P : ∃α[r  σ = α̌]} is dense below q. Let

f be a one-one function mapping D into On such that for each r ∈ D, r  σ = f(r)v.
Since N � H(λ), f ∈ N . Let D′ = D ∪ {r : r ⊥ q}. Then D′ ∈ N and D′ is dense.
So by (i) D′ ∩ N is pre-dense below p, hence also pre-dense below q, so we can choose
r ∈ D ∩N ∩G with r ≤ q. Now r  σ = f(r)v. Hence σG = f(r) ∈ N .

(ii)⇒(i): Assume (ii); we verify Proposition 31.197(ii). Suppose that D ⊆ P, D is
dense, and D ∈ N . Let p ∈ G generic. Let f be a bijection from a cardinal κ onto D.
Then f, κ ∈ H(λ), so we get that f and κ are in N . Choose a ∈ D ∩G, and let α < κ be
such that f(α) = a. Let σ be a P-name such that σG = α. Choose q ≤ p with q ∈ G such
that q  σ is an ordinal. Then by (ii), σG ∈ N . Hence also a ∈ N , so a ∈ D∩N ∩G.

Proposition 31.199. Suppose that P is a forcing order, N � H(λ), and p ∈ P. Then the
following are equivalent:

(i) p is (N,P)-generic.

(ii) If p ∈ G generic and α ∈ N [G] ∩On, then α ∈ N .
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Proof. (i)⇒(ii): Assume (i), and suppose that p ∈ G generic and α ∈ N [G] ∩ On.
Say α = σG with σ ∈ N . Choose q ∈ G such that q  σ is an ordinal, and choose r ∈ G
with r ≤ p, q. Then by Proposition 31.198(ii), σG ∈ N .

(ii)⇒(i): Assume (ii). We will check Proposition 31.198(ii). Suppose that σ is a P-
name, σ ∈ N , q ≤ p, q  σ is an ordinal, and q ∈ G generic. Then σG ∈ N [G] ∩On, so by
(ii), σG ∈ N .

Now suppose that P is a forcing order and π is a P-name for a forcing order. We now
associate with each (P ∗ π)-name τ a P-name τ∗, by recursion:

τ∗ = {(η, p) : ∃µ∃θ[θ ∈ dmn(π) ∧ η = op(µ∗, θ) ∧ (µ, (p, θ)) ∈ τ}.

Proposition 31.200. Suppose that P is a forcing order, π is a P-name for a forcing order,
τ is a (P ∗ π)-name, and G is P-generic over M . Then τ∗G is a πG-name.

Proof. By induction:

τ∗G = {ηG : ∃p ∈ G[(η, p) ∈ τ∗]}

= {ηG : ∃p ∈ G∃µ∃θ[θ ∈ dmn(π) ∧ η = op(µ∗, θ) ∧ (µ, (p, θ)) ∈ τ ]}

= {(µ∗
G, θG) : θ ∈ dmn(π) ∧ ∃p ∈ G[(µ, (p, θ)) ∈ τ ]}.

Proposition 31.201. Suppose that P is a forcing order and π is a P-name for a forcing
order. Let G ∗H be (P ∗ π)-generic. Then for any (P ∗ π)-name τ we have τG∗H = (τ∗G)H .

Proof. By induction:

τG∗H = {σG∗H : ∃(p, ξ) ∈ G ∗H[(σ, (p, ξ)) ∈ τ ]}

= {(σ∗
G)H : ∃p ∈ G∃ξ ∈ dmn(π)[ξG ∈ H ∧ (σ, (p, ξ)) ∈ τ ]}.

On the other hand,

(τ∗G)H = {ρH : ∃q ∈ H[(ρ, q) ∈ τ∗G]}

= {µ∗
G : ∃p ∈ G∃θ ∈ dmn(π)[θG ∈ H ∧ (µ, (p, θ)) ∈ τ ]}

which is the same as above.

Proposition 31.202. Let P be a forcing order, π a P -name for a forcing order, N �
H(λ), p is (N,P )-generic, (p, σ) ∈ P ∗ π, and for all P -generic G, if p ∈ G then σG is
(N [G], πG)-generic.

Then (p, σ) is (N,P ∗ π)-generic.

Proof. We will apply Proposition 31.199. Suppose thatG∗H is generic, (p, σ) ∈ G∗H,
and α ∈ N [G ∗ H] ∩ On. Then there is a P ∗ π name τ ∈ N such that α = τG∗H . By
Proposition 31.201 we have α = (τ∗G)H . Clearly τ∗ ∈ N , so τ∗G ∈ N [G]. Now σG ∈ H,
α ∈ N [G][H] and σG is (N [G], πG)-generic, it follows that α ∈ N [G] ∩ On. Let ξ be a
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P -name, ξ ∈ N , such that ξG = α. Since p ∈ G and p is (N,P )-generic, it follows that
α ∈ N .

Lemma 31.203. Suppose that P is a forcing order, π is a P-name for a forcing order,
i(p) = (p, 1) for all p ∈ P ; so i is a complete embedding of P into P ∗ π. Suppose that σ is
a P -name, and G ∗H is generic. Then (i∗(σ))G∗H = σG.

Proof. By induction on σ:

x ∈ (i∗(σ))G∗H iff ∃q ∈ G ∗H∃ν[(ν, q) ∈ i∗(σ) ∧ x = νG∗H ]

iff ∃q ∈ G ∗H∃ν∃(ρ, r) ∈ σ[(ν, q) = (i∗(ρ), i(r)) ∧ x = νG∗H ]

iff ∃q ∈ G ∗H∃(ρ, r) ∈ σ[x = (i∗(ρ))G∗H ∧ i(r) = q]

iff ∃(ρ, r) ∈ σ[x = ρG ∧ r ∈ G]

iff x ∈ σG.

Theorem 31.204. Suppose that P is a forcing poset and π is a full P -name such that
 [π is proper]. Let θ be a regular uncountable cardinal such that trcl(P), π ∈ H(θ), and
suppose that N � H((2θ)+), N countable, and P ∗π ∈ N . Let i be the complete embedding
of P into P ∗ π. Suppose that p ∈ P is (N,P)-generic, σ and η are P-names, η ∈ N , and

p  σ ∈ Nv ∧ η ∈ Nv ∧ op(σ, η) ∈ (P ∗ π)v ∧ σ ∈ Γ.

Then there is a ξ ∈ dmn(π) such that (p, ξ) is (N,P∗π)-generic and (p, ξ)  i∗(op(σ, ξ)) ∈
Γ.

Proof. Let p ∈ G generic. Then σG ∈ N , ηG ∈ N , (σG, ηG) ∈ P ∗ π, and σG ∈ G.
By Lemma 31.195, N [G] � (H((2θ)+))M [G]. Now η ∈ N , so ηG ∈ N [G]. Also, π ∈ H(θ),
so πG ∈ (H(θ))M [G]. Note that πG is a proper forcing order in M [G]. Now by Theorem
31.194 there is a q ≤ ηG such that q is (N [G], πG)-generic. Thus

p  ∃χ[χ ∈ π ∧ χ ≤ η ∧ χ is (N [Γ], π)− generic.

By the maximal principle let τ be a P-name such that

p  τ ∈ π ∧ τ ≤ η ∧ τ is (N [Γ], π)− generic.

By the definition of full names, let ξ ∈ dmn(π) be such that p  ξ = τ and (ξ, p) ∈ π.
Then (p, ξ) ∈ P ∗ π and p  ξ is (N [Γ], π)− generic. Hence by Proposition 31.202, (p, ξ) is
(N,P ∗ π)-generic. It remains to show that (p, ξ)  i∗(op(σ, ξ)) ∈ Γ. Let (p, ξ) ∈ G ∗H,
generic. Thus p ∈ G and ξG ∈ H. Also, σG ∈ G by assumption. Hence (i∗(op(σ, ξ)))G∗H =
(op(σ, ξ))G = (σG, ξG) ∈ G ∗H.

Lemma 31.205. Let α > 0, and let (〈(Pξ : ξ ≤ α〉, 〈πξ : ξ < α〉) be a countable support
iteration, with each Pξ for ξ < α proper, and each name πξ full. For ξ ≤ η ≤ α, let iξη
be the complete embedding of Pξ into Pη. For each ξ ≤ α let Γξ be the standard name for
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a generic filter over Pξ. Let λ be sufficiently large, and let N � H(λ) be countable with
α,Pα, 〈Pξ : ξ ≤ α〉, 〈πξ : ξ < α〉 ∈ N . Let γ0 ∈ α ∩ N , and assume that pγ0 ∈ Pγ0 is
(N,Pγ0)-generic and σ and τ are Pγ0-names such that

pγ0 Pγ0
σ ∈ Nv ∧ σ ∈ Pv

α ∧ τ ∈ Pvγ0 ∧ τ ⊆ σ ∧ τ ∈ Γγ0 .

Then there is a (N,Pα)-generic condition q such that q ↾ γ0 = pγ0 and q Pα (iγ0α)∗(σ) ∈
Γα.

Proof. Induction on α; so assume that the lemma holds for any positive ordinal less
than α. First suppose that α is a successor ordinal β + 1, and suppose that γ0 = β. Let
G be Pγ0 -generic with pγ0 ∈ G. Then σG ∈ N , σG ∈ Pα, τG ∈ Pγ0 , τG ⊆ σG, and τG ∈ G.
Hence there is a ξ such that σG = τG

⌢〈ξG〉. Then

pγ0  τ ∈ Nv ∧ ξ ∈ Nv ∧ op(τ, ξ) ∈ (P ∗ πγ0)v ∧ τ ∈ Γ.

Then by Theorem 31.204 there is a ξ ∈ dmn(πγ0) such that (pγ0 , ξ) is (N,Pγ0 ∗ πγ0)-
generic and (pγ0 , ξ)  i∗(op(τ, ξ)) ∈ Γ. Now for each q ∈ Pα let f(q) = (q ↾ γ0, q(γ0)).
Then f is an isomorphism from Pα onto Pγ0 × πγ0 . It follows that pγ0

⌢〈ξ〉 is (N,Pα)-
generic. We claim that pγ0

⌢〈ξ〉  ((iγ0α)∗)(σ) ∈ Γ. For, suppose that pγ0
⌢〈ξ〉 ∈ G

generic. Then (pγ0 , ξ) ∈ f [G], so (i∗(op(τ, ξ)))f [G] ∈ f [G]. Now f [G] = (G ↾ γ0) ∗ H
for some H, so by Lemma 31.203, (i∗(op(τ, ξ)))f [G] = (τG↾γ0 , ξG↾γ0) = f(σG↾γ0). Since
(i∗(op(τ, ξ)))f [G] ∈ f [G], it follows that σG↾γ0 ∈ G. Hence it remains only to show that
(((iγ0α)∗)(σ))G = σG↾γ0 :

x ∈ (((iγ0α)∗)(σ))G iff ∃q ∈ G∃ν[(ν, q) ∈ (iγ0α)∗(σ) ∧ x = νG]

iff ∃q ∈ G∃ν∃(ρ, r) ∈ σ[(ν, q) = ((iγ0α)∗(ρ), iγ0α(r)) ∧ x = νG]

iff ∃q ∈ G∃(ρ, r) ∈ σ[q = iγ0α(r) ∧ x = ((iγ0α)∗(ρ))G]

iff ∃q ∈ G∃(ρ, r) ∈ σ[iγ0,α(r) ∈ G ∧ x = ρG↾γ0 ]

iff ∃(ρ, r) ∈ σ[r ∈ G ↾ γ0 ∧ x = ρG↾γ0 ]

iff x ∈ σG↾γ0 .

Now suppose that α = β + 1 and γ0 < β. Now For any Pα-generic G let σG = ρG
⌢〈ξG〉.

Now
pγ0  ρ ∈ Nv ∧ ρ ∈ Pβ ∧ τ ∈ Pvγ0 ∧ τ ⊆ ρ ∧ τ ∈ Γγ0 ,

so by the inductive hypothesis we get a (N,Pβ)-generic q such that q ↾ γ0 = pγ0 and
q  (iγ0β)∗(ρ) ∈ Γβ . Thus

q (iγ0β)∗(σ) ∈ Nv ∧ (iγ0β)∗(σ) ∈ Pvα ∧ (iγ0β)∗(ρ) ∈ Pvβ∧

(iγ0β)∗(ρ) ⊆ (iγ0β)∗(σ) ∧ (iγ0β)∗(σ) ∈ Γβ .

Then by the first special case of this proof we get a (N,Pα)-generic r such that r ↾ β = q and
r  (iβα)∗((iγ0β)∗(σ)) ∈ Γα. Now Proposition 31.202 finishes this part of the induction.
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Now suppose that α is a limit ordinal. Now since N � H(λ), there is no largest ordinal
in α ∩N . Moreover, N is countable. Hence there is an increasing sequence 〈γi : i ∈ ω〉 of
ordinals in α ∩ N , cofinal in α ∩ N , starting with our given γ0. Thus supi∈ω γi = α. Let
〈Di : i ∈ ω〉 list all of the dense subsets of Pα which are in N . Now we are going to define
sequences 〈qi : i ∈ ω〉, 〈τi : i ∈ ω〉, 〈µi : i ∈ ω〉 so that the following conditions hold:

(1) qn ∈ Pγn for each n ∈ ω.

(2) q0 = pγ0 , qn is (N,Pγn)-generic, and qn+1 ↾ γn = qn.

(3) τ0 = σ, and for n > 0, τn is a Pγn -name such that qn forces (in Pγn) each of the
following:

(a) τn ∈ N
v ∧ τn ∈ Pv

α.
(b) µn is a Pγn -name, µn ⊆ τn, and µn ∈ Γγn .
(c) τn ≤α (iγn−1γn)∗(τn−1).
(d) τn ∈ Dv

n−1.

We define q0 = pγ0 and τ0 = σ. Now suppose that qn and τn have been defined so that
(1)–(3) hold. We claim

qn Pγn
∃χ[χ ∈ Pv

α ∧ χ ∈ N
v ∧ ∃µ[µ ∈ Γγn ∧ µ ⊆ χ](4)

∧ χ ∈ Dv
n ∧ χ ≤ τn]

To prove (4), let G be generic over Pγn with qn ∈ G. Since (a)–(d) hold for n, we have
τnG ∈ N , τnG ∈ Pα, µnG ⊆ τnG, µnG ∈ G, τnG ≤α ((iγn−1γn)∗(τn−1))G, and τnG ∈ Dn−1.
Now let

D′
n = {p ↾ γn : p ∈ Dn ∧ [p ≤α τnG ∨ (p ↾ γn) ⊥ µnG)]}.

Then D′
n ∈ N since N � H(λ). We claim that D′

n is dense in Pγn . To see this, let r ∈ Pγn .
Case 1. r ⊥ µnG. By the density of Dn, choose s ∈ Dn such that s ≤α (iγnα)∗(r).

Then s ↾ γn ≤ r, and so (s ↾ γn) ⊥ µnG. Hence s ↾ γn ∈ D′
n, as desired.

Case 2. r and µnG are compatible. Hence (iγnα)∗(r) and τnG are compatible; say
s ≤ (iγnα)∗(r), τnG. By the density of Dn, let t be such that t ∈ Dn and t ≤ s. Thus
t ≤ τnG, so t ↾ γn ∈ D

′
n, and t ↾ γn ≤ r, as desired.

So D′
n is dense and D′

n ∈ N . Since qn is (N,Pγn)-generic, it follows by definition that
D′
n ∩ N is pre-dense below qn. So we can choose x ∈ G ∩D′

n ∩ N . Say x = p ↾ γn with
p ∈ Dn. Thus H(λ) |= ∃p ∈ Dn[x = p ↾ γn], so since N � H(λ), we may assume that
p ∈ N . Now x, µnG ∈ G, so they are compatible. Hence p ≤α τnG. Thus with χG = p we
have verified the conclusion of (4). So (4) holds.

By the maximal principle we get a Pγn-name ρ such that

(5) qn Pγn
ρ ∈ Pv

α ∧ ρ ∈ N
v ∧ ∃µ[µ ∈ Γγn ∧ µ ⊆ ρ] ∧ ρ ∈ Dv

n ∧ ρ ≤ τn.

Now qn Pγn
∃ξ[ξ ∈ Pv

γn+1
∧ ξ ∈ Nv ∧ ξ ⊆ ρ]. Hence by the maximal principle again, there

is a Pγn -name ξ such that qn  ξ ∈ Pv
γn+1

∧ ξ ∈ Nv ∧ ξ ⊆ ρ. Thus

qn Pγn
ξ ∈ Nv ∧ ξ ∈ Pv

γn+1
∧ ∃µ[µ ∈ Γγn ∧ µ ⊆ ξ].
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We now apply the inductive hypothesis to γn, γn+1, qn, ξ in place of γ0, α, pγ0 , σ to ob-
tain a (N,Pγn+1

)-generic condition qn+1 such that qn+1 ↾ γn = qn and qn+1 Pγn+1

(iγnγn+1
)∗(ξ) ∈ Γγn+1

. Let τn+1 = (iγnγn+1
)∗(ρ). Then we claim

qn+1 τn+1 ∈ N
v ∧ τn+1 ∈ Pv

α ∧ ∃µ[µ ⊆ τn+1 ∧ µ ∈ Γγn+1
](6)

∧ τn+1 ≤ iγnγn+1
(τn) ∧ τn+1 ∈ D

v
n

To prove (6) we apply Theorem 26.4. Let G be generic on Pγn+1
with qn+1 ∈ G. Let

H = (iγnγn+1
)−1[G]. Then H is Pγn -generic by Theorem 26.3. Since qn+1 ↾ γn = qn, we

have qn+1 ≤ iγnγn+1
(qn), hence iγnγn+1

(qn) ∈ G and qn ∈ H. Hence by (5), ρH ∈ N ,
ρH ∈ Pα, ρH ↾ γn ∈ H, ρH ≤α τnH , and ρH ∈ Dn. Now by Theorem 26.4 we have
τn+1,G = ((iγnγn+1

)∗(ρ))G = ρH . It follows that τn+1,G ∈ N , τn+1,G ∈ Pα, τn+1,G ∈ Dn,
and τn+1,G ≤α (iγnγn+1

)∗(τnG). Finally,

τn+1,G ↾ γn+1 = ((iγnγn+1
)∗(ρ))G ↾ γn+1

= ρH ↾ γn+1

= ξH

= ((iγnγn+1
)∗(ξ))G

∈ G since qn+1 Pγn+1
(iγnγn+1

)∗(ξ) ∈ Γγn+1
.

This finishes the construction.
Let r =

⋃

n∈ω qn. We claim that r is as desired in the Lemma. Clearly r has countable
support. By (3), using Theorem 26.4, we have

(7) iγnα(qn)  (iγnα)∗(τn) ∈ Nv ∧ (iγnα)∗(τn) ∈ Pv
α.

(8) iγnα(qn)  (iγnα)∗(τn) ↾ γn ∈ (iγnα)∗(Γγn).

(9) iγn+1α(qn+1)  (iγn+1α)∗(τn+1) ≤α (iγnα)∗(τn)).

(10) iγn+1α(qn+1)  (iγn+1α)∗(τn+1) ∈ Dv
n.

Since r ≤ iγnα(qn) for all n, this gives

(11) r  (iγnα)∗(τn) ∈ Nv ∧ (iγnα)∗(τn) ∈ Pv
α.

(12) r  (iγnα)∗(τn) ↾ γn ∈ (iγnα)∗(Γγn).

(13) r  (iγn+1α)∗(τn+1) ≤α (iγnα)∗(τn)).

(14) r  (iγn+1α)∗(τn+1) ∈ Dv
n.

Now to show that r is (N,Pα)-generic, we will apply Lemma 31.197. So suppose that G is
generic on Pα, r ∈ G, D is dense in Pα, and D ∈ N ; we want to show that D∩N ∩G 6= ∅.
Choose n so that D = Dn. Let s = ((iγn+1α)∗(τn+1))G. Thus by (11) and (14), s ∈ D∩N .
By Theorem 26.4 and (12), s = τn+1,Gηn+1

∈ Gηn+1
⊆ G. This finishes the proof that r is

(N,Pα)-generic.
Clearly r ↾ γ0 = pγ0 , and r  (iγ0α)∗(σ) ∈ Γα since σ = τ0.
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Theorem 31.206. Let α > 0, and let (〈(Pξ : ξ ≤ α〉, 〈πξ : ξ < α〉) be a countable support
iteration, with each Pξ for ξ < α proper, and each name πξ full. Then Pα is proper.

Proof. Let N and λ be as in the statement of Lemma 31.205. We are going to apply
Lemma 31.194 So, let p ∈ Pα with p ∈ N . Let γ0 = 0. Recall that P0 = {0}. Trivially, 0 is
(N,P0)-generic. The hypothesis of Lemma 31.205 holds, with pv in place of σ. Hence by
Lemma 31.205 we get a q ∈ Pα such that q is (N,Pα)-generic and q α (i0α)∗(pv) ∈ Γα.
Let G be Pα-generic with q ∈ G. Then ((i0α)∗(pv))G ∈ G, i.e., p ∈ G. Choose r ∈ G such
that r ≤ p, q. Then r is clearly (N,Pα)-generic.
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32. p = t

For the proof we need many-sorted forms of  Loś’s theorem on ultraproducts. We give
a proof of this theorme in the case of certain two-sorted structures; the general case of
finitely many sorts is treated similarly. The language is as follows. There are two sorts
of variables: v0, v1, . . . and w0, w1, . . .. There is a four-place relation symbol Q. Atomic
formulas have the form vi = vj , wi = wj , or Qviwjwkwl. We have connectives ¬, →,
∀vi, and ∀wi. A structure for this language is a triple (A,B,C) such that A and B are
nonempty sets and C ⊆ A×B×B×B. Given a ∈ ωA and b ∈ ωB and any formula ϕ, we
define (A,B,C) |= ϕ[a, b] as follows:

(A,B,C) |=(vi = vj)[a, b] iff ai = aj ;

(A,B,C) |=(wi = wj)[a, b] iff bi = bj ;

(A,B,C) |=(¬ϕ)[a, b] iff not((A,B,C) |= ϕ[a, b])

(A,B,C) |=(ϕ→ ψ)[a, b] iff not((A,B,C) |= ϕ[a, b]) or ((A,B,C) |= ϕ)[a, b])

(A,B,C) |=∀viϕ[a, b] iff for all u ∈ A((A,B,C) |= ϕ[aiu, b])

(A,B,C) |=∀wiϕ[a, b] iff for all u ∈ B((A,B,C) |= ϕ[a, biu])

Suppose that 〈(Ai, Bi, Ci) : i ∈ I〉 is a system of structures, and F is an ultrafilter on
I. For each i ∈ I let Mi = (Ai, Bi, Ci). Further, let A′ =

∏

i∈I Ai, B
′ =

∏

i∈I Bi, and
C′ = {(a, b, c, d) : a ∈ A′, b, c, d ∈ B′}. We define

a ≡0 b iff a, b ∈ A′ and {i ∈ I : ai = bi} ∈ F ;

c ≡1 d iff c, d ∈ B′ and {i ∈ I : ci = di} ∈ F.

It is easy to check that ≡0 is an equivalence relation on A′ and ≡1 is an equivalence relation
on B′. We let A′′ be the set of all ≡0-classes, and B′′ the set of all ≡1-classes. We also
define

C′′ = {([a], [b], [c], [d]) : {i ∈ I : (ai, bi, ci, di) ∈ Ci} ∈ F}.

Proposition 32.1. For any (a, b, c, d) ∈ A′ ×B′ ×B′ ×B′ the following are equivalent:
(i) ([a], [b], [c], [d]) ∈ C′′.
(ii) {i ∈ I : (ai, bi, ci, di) ∈ Ci} ∈ F .

Proof. (ii)⇒(i) holds by definition. Now assume (i). Then there are a′ ∈ A′ and
b′, c′, d′ ∈ B′ such that [a] = [a′], [b] = [b′], [c] = [c′], [d] = [d′] and {i ∈ I : (a′i, b

′
i, c

′
i, d

′
i) ∈

Ci} ∈ F . Then {i ∈ I : ai = a′i} ∈ F , {i ∈ I : bi = b′i} ∈ F , {i ∈ I : ci = c′i} ∈ F , and
{i ∈ I : di = d′i} ∈ F . Now

{i ∈ I : ai = a′i} ∩ {i ∈ I : bi = b′i} ∩ {i ∈ I : ci = c′i} ∩ {i ∈ I : di = d′i}∩

{i ∈ I : (a′i, b
′
i, c

′
i, d

′
i) ∈ Ci} ⊆ {i ∈ I : (ai, bi, ci, di) ∈ Ci};

it follows that {i ∈ I : (ai, bi, ci, di) ∈ Ci} ∈ F .

The ultraproduct of 〈Mi : i ∈ I〉 is the structure (A′′, B′′, C′′); it is denoted by
∏

i∈IMi/F .
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Theorem 32.2. ( Loś) Let 〈Mi : i ∈ I〉 be a system of structures as above, and let F be
an ultrafilter on I. Suppose that a ∈ ωA′ and b ∈ ωB′. Let π : A′ → A′′ be the natural
map; we use π also for the natural map from B′ to B′′. Then the following conditions are
equivalent:

(i)
∏

i∈IMi/F |= ϕ[π ◦ a, π ◦ b].
(ii) {i ∈ I : Mi |= ϕ[pri ◦ a, pri ◦ b]} ∈ F .

Proof. For brevity let N =
∏

i∈IMi/F . We prove the theorem by induction on ϕ:

N |= (vk = vj)[π ◦ a, π ◦ b] iff (π ◦ a)(k) = (π ◦ a)(j)

iff [ak] = [aj]

iff {i ∈ I : ak(i) = aj(i)} ∈ F

iff {i ∈ I : (pri ◦ a)(k) = (pri ◦ a)(j)} ∈ F

iff {i ∈ I : Mi |= (vk = vj)[pri ◦ a, pri ◦ b]} ∈ F ;

similarly for wk = wj

N |= ¬ϕ[π ◦ a, π ◦ b] iff not(N |= ϕ[π ◦ a, π ◦ b])

iff not({i ∈ I : Mi |= ϕ[pri ◦ a, pri ◦ b]} ∈ F )

iff (I\{i ∈ I : Mi |= ϕ[pri ◦ a, pri ◦ b]}) ∈ F

iff {i ∈ I : Mi |= ¬ϕ[pri ◦ a, pri ◦ b]} ∈ F

N |= (ϕ→ ψ)[π ◦ a, π ◦ b] iff

not(N |= ϕ[π ◦ a, π ◦ b]) or N |= ψ[π ◦ a, π ◦ b]

iff

{i ∈ I : Mi |= ¬ϕ[pri ◦ a, pri ◦ b]} ∈ F

or {i ∈ I : Mi |= ψ[pri ◦ a, pri ◦ b]} ∈ F

iff

{i ∈ I : Mi |= ¬ϕ[pri ◦ a, pri ◦ b]} ∪ {i ∈ I : Mi |= ψ[pri ◦ a, pri ◦ b]} ∈ F

iff {i ∈ I : Mi |= (¬ϕ ∨ ψ)[pri ◦ a, pri ◦ b]} ∈ F

iff {i ∈ I : Mi |= (ϕ→ ψ)[pri ◦ a, pri ◦ b]} ∈ F.

Now suppose that not(N |= (∀vkϕ)[π◦a, π◦b]). Then there is a u ∈M ′ such that not(N |=
ϕ[π◦aku, π◦b]), so by the inductive hypothesis we get {i ∈ I : Mi |= ϕ[pri ◦a

k
u, pri ◦b]} /∈ F .

Since

{i ∈ I : Mi |= ∀vkϕ[pri ◦ a, pri ◦ b]} ⊆ {i ∈ I : Mi |= ϕ[pri ◦ a
k
u, pri ◦ b]},

it follows that {i ∈ I : Mi |= ∀vkϕ[pri ◦ a, pri ◦ b]} /∈ F .
On the other hand, suppose that {i ∈ I : Mi |= ∀vkϕ[pri ◦ a, pri ◦ b]} /∈ F . Then

P
def
= {i ∈ I : Mi |= ∃vk¬ϕ[pri ◦ a, pri ◦ b]} ∈ F . For each i ∈ P choose ui ∈ Ai such that

Mi |= ¬ϕ[(pri ◦ a)kui , pri ◦ b]. For i ∈ I\P let ui ∈ Ai be arbitrary. Then for each i ∈ P we
have Mi |= ¬ϕ[pri ◦ a

k
u, pri ◦ b], so {i ∈ I : Mi |= ¬ϕ[pri ◦ a

k
u, pri ◦ b]} ∈ F , hence {i ∈ I :
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Mi |= ϕ[pri ◦ a
k
u, pri ◦ b]} /∈ F , hence by the inductive hypothesis not(N |= ϕ[π ◦ aku, π ◦ b]),

so not(N |= (∀vkϕ)[π ◦ a, π ◦ b]).
The case ∀wkϕ is similar.

Let µ be an infinite cardinal. We define

L(µ, F ) =

{
∏

α<µ

Lα/F : each Lα is a finite linear order, and

F is an ultrafilter on µ and ∀n ∈ ω[{α < µ : |Lα| > n} ∈ F ]

}

P (µ, F ) =

{
∏

α<µ

Pα/F : each Pα is a finite tree with a unique root, and

F is an ultrafilter on µ and ∀n ∈ ω[{α < µ : |Pα| > n} ∈ F ]

}

A pseudo-tree is a partial order P such that for each x ∈ P , {y ∈ P : y ≤ x} is linearly
ordered.

Proposition 32.3. (i) L(µ, F ) ⊆ P (µ, F ).
(ii) If A ∈ P (µ, F ), then A has a maximal element, a unique minimum element,

every non maximal element has at least one immediate successor, and every non-minimum
element has a unique immediate predecessor. A is a pseudo-tree, and any two elements of
A have a glb.

(iii) If A ∈ L(µ, F ), then A has a maximum element, a minimum element, and every
non maximum element has an immediate successor, and every non minimum element has
an immediate predecessor. A is a linear order.

Proof. (i) is clear. For (ii), suppose that A ∈ P (µ, F ) as in the definition.
maximal element: Pα |= ∃x∀y[x ≤ y → x = y]
unique minimal element: Pα |= ∃x∀y[x ≤ y].
every non maximal element has at least one immediate successor:

Pα |= ∀x[∃y[x < y]→ ∃y[x < y ∧ ∀z[z < y → z ≤ x]]].

every non-minimum element has a unique immediate predecessor:

Pα |= ∀x[∃y[y < x]→ ∃!y[y < x ∧ ∀z[z < x→ z ≤ y]]].

A is a pseudo-tree: Suppose that [x], [y], [z] ∈ A and [x], [y] ≤ [z]. Thus M
def
= {α ∈ µ :

xα ≤ zα} ∈ F and N
def
= {α ∈ µ : yα ≤ zα} ∈ F . If α ∈ M ∩ N then xα, yα ≤ zα, so

xα ≤ yα or yα ≤ xα. Thus

M ∩N ⊆ {α ∈ µ : xα ≤ yα} ∪ {α ∈ µ : yα ≤ xα}.
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It follows easily that [x] ≤ [y] or [y] ≤ [x].
any two elements [x], [y] have a glb:

Pα |= ∀x, y∃z[z ≤ x, y ∧ ∀w[w ≤ x, y → w ≤ z]].

(iii) is clear.

If A ∈ L(µ, F ), then 1 is the greatest element of A, and 0 the least element. If x ∈ A and
it has at least n successors, we denote its n-th successor by x+ n. x is near 1 iff there is
an n ∈ ω such that x+ n = 1.

Proposition 32.4. In any A ∈ L(µ, F ), 0 is not near 1.

Proof. Suppose that 0 is near 1; say 0+n = 1. Then A has only n+1 elements.

For infinite regular cardinals κ, λ, and a linear order (X,<), a (κ, λ)-gap in (X,<) is a
pair (a, b) with a ∈ κX and b ∈ λX such that:

(1) ∀α, β < κ∀γ, δ < λ[α < β and γ < δ imply that aα < αβ < bδ < bγ ].

(2) There is no x ∈ X such that ∀α < κ∀β < λ[aα < x < bβ ].

We define

C(µ, F ) = {(κ, λ) : there is a (κ, λ)-gap in some (X,<) ∈ L(µ, F )};

p(µ, F ) = min{κ : ∃(κ1, κ2) ∈ C(µ, F )[max(κ1, κ2) = κ]};

t(µ, F ) = min{κ ≥ ω : κ is regular and there is a strictly increasing

unbounded x ∈ κA for some (A,≤) ∈ P (µ, F )};

D(µ, F ) = {(κ, λ) ∈ C(µ, F ) : max(κ, λ) < t(µ, F )}

Proposition 32.5. If X ∈ L(µ, F ) and 〈aξ : ξ < µ〉 is a strictly increasing sequence of
elements of X, with µ a limit ordinal less than p(µ, F ), then there is a b ∈ X not near to
1 such that ∀ξ < µ[aξ < b].

Proof. Clearly each aξ is not near to 1. Let c0 be the maximum element of X , and
let cn+1 = cn− 1 for all n ∈ ω. Then (a, c) is not a gap, and this gives the desired element
b.

Proposition 32.6. Suppose that 〈Aα : α < µ〉 is a system of finite linear orders, and
∀α < µ[∅ 6= Bα ⊆ Aα].

(i) There is an isomorphism f of
∏

α<µBα/F into
∏

α<µAα/F such that f([x]B) =
[x]A for all x ∈

∏

α<µBα.
(ii) For any X ⊆

∏

α<µAα/F the following are equivalent:
(a) There exist Bα ⊆ Aα for all α < µ such that, with f as in (i), X = f [

∏

α<µBα].
(b) There exist Bα ⊆ Aα for all α < µ such that X = {[x]A : {α < µ : xα ∈ Bα} ∈

F}.
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Proof. (i): Suppose that [x]B = [y]B. Thus {α < µ : xα = yα} ∈ F . Hence
[x]A = [y]A. Preservation of < is clear.

(ii)(a)⇒(ii)(b): Clear.

(ii)(b)⇒(ii)(a): Assume (ii)(b). Suppose that u ∈ X . Say u = [x]A such that T
def
=

{α < µ : xα ∈ Bα} ∈ F . Let y ∈
∏

α<µBα such that ∀α ∈ T [xα = yα]. Then f([y]B) =
[y]A = [x]A = u. Conversely, suppose that u ∈ f [

∏

α<µBα]. Say x ∈
∏

α<µBα and
u = f([x]B). So u = [x]A and {α < µ : xα ∈ Bα} = µ ∈ F , so u ∈ X .

A subset M of
∏

α<µAα/F is internal iff there is a system 〈Bα : α < µ〉 such that
∀α < µ[∅ 6= Bα ⊆ Aα] and M = f [

∏

α<µBα/F ], with f as in Proposition 32.6.

Proposition 32.7. Let 〈Aα : α < µ〉 be a system of finite linear orders. Then every
nonempty internal subset of

∏

α<µAα/F has a greatest and least element.

Proof. Say M is internal, as above. For each α < µ let xα be the least element of
Bα. Then {α < µ : xα is the least element of Bα} = µ ∈ F . Thus

∏

α<µBα/F |= [x] is
the least element. Similarly for the greatest element.

Proposition 32.8. The collection of internal subsets of
∏

α<µAα/F is a field of subsets
of
∏

α<µAα/F containing all singletons.

Proof. Let X and Y be internal subsets of
∏

α<µAα/F , say given by 〈Bα : α < µ〉 and
〈Cα : α < µ〉. For each α < µ let Dα = Bα ∪Cα. Let f([x]B) = [x]A for all x ∈

∏

α<µBα,
g([x]C) = [x]A for all x ∈

∏

α<µ Cα, and h([x]D) = [x]A for all x ∈
∏

α<µDα. Say
Z = h[

∏

α<µDα]. We claim that X ∪ Y = Z. Suppose that u ∈ X . Say u = f([x])
with x ∈

∏

α<µBα. Then u = [x]A = h([x]), so u ∈ Z. Thus X ⊆ Z. Similarly
Y ⊆ Z. Now suppose that u ∈ Z. Say u = h([x]D) = [x]A with x ∈

∏

α<µDα. Thus

µ = {α < µ : xα ∈ Bα} ∪ {α < µ : xα ∈ Cα}. Wlog T
def
= {α < µ : xα ∈ Bα} ∈ F . Let

y ∈
∏

α<µBα be such that xα = yα for all α ∈ T . Then f([y]B) = [y]A = [x]A = u ∈ X .
So X ∪ Y = Z.

Now let X be an internal subset of
∏

α<µAα/F , say given by 〈Bα : α < µ〉 and the
function f . Let Cα = Aα\Bα for all α < µ, and let g([x]C) = [x]A for all x ∈

∏

α<µ Cα.
Let Y = g[

∏

α<µ Cα]. We claim that (
∏

α<µAα/F )\X = Y . First suppose that u ∈
∏

α<µAα/F )\X . Say u = [x]A with x ∈
∏

α<µ Aα.

(1) T
def
= {α < µ : xα ∈ Bα} /∈ F .

In fact, otherwise let y ∈
∏

α<µBα be such that xα = yα for all α ∈ T . Then u = [x]A =
[y]A = f([y]B) ∈ X , contradiction.

So (1) holds. It follows that S
def
= {α < µ : xα ∈ Cα} ∈ F . Let z ∈

∏

α<µ Cα
be such that zα = xα for all α ∈ S. Then u = [x]A = [z]A = g([z]C) ∈ Y . Thus
(
∏

α<µAα/F )\X ⊆ Y .
Now suppose that u ∈ Y ; say u = g([x]C) with x ∈

∏

α<µ Cα. Suppose that u ∈ X .
Say u = f([y]B) with y ∈

∏

α<µBα. Thus [x]A = [y]A. Now ∀α < µ[xα /∈ Bα ∧ tα ∈ Bα,
so {α < µ : xα = yξ} = ∅, contradiction. Thus (

∏

α<µAα/F )\X = Y , and we have a field
of sets.
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Given [f ] ∈
∏

α<µ Aα/F , {[f ]} is internal, given by 〈{fα} : α < µ〉.

If ψ(v0) is a formula with one free variable v0 and X is a structure, then ψ(X) = {x ∈ X :
X |= ψ[x]}.

Proposition 32.9. Let X =
∏

α<µAα/F , and let ψ(v0) be a formula with one free
variable v0. Then ψ(X) is an internal subset of X.

Proof. We claim that 〈ψ(Aα) : α < µ〉 shows that ψ(X) is internal. In fact,

[x] ∈ ψ(X) iff X |= ψ[[x]]

iff {α < µ : Aα |= [xα]} ∈ F

iff {α < µ : xα ∈ ψ(Aα)} ∈ F.

Proposition 32.10. If κ is uncountable regular, κ < t(µ, F ), and κ ≤ p(µ, F ), then
(κ, κ) /∈ C(µ, F ).

Proof. Suppose not. Let 〈Lα : α < µ〉 be a system of finite linear orders, and
X =

∏

α<µ Lα/F . Suppose that X has a (κ, κ)-gap a, b ∈ κX . For each α < µ let Pα be
the set of all functions p such that:

(1) dmn(p) is an initial segment of Lα, and rng(p) ⊆ Lα × Lα.

(2) ∀d, d′ ∈ dmn(p)[d <α d
′ → π0(p(d)) <α π0(p(d′)) <α π1(p(d′)) <α π1(p(d))].

The partial order on Pα is inclusion. Clearly this gives a tree with the unique root ∅. Let
(Q,≤Q) =

∏

α<µ Pα/F .

For each α < µ let Gα = {(p, c, d, e) : p ∈ Pα, c, d, e ∈ Lα, c ∈ dmn(p), p(c) = (d, e)}.
Let H = {([p], [c].[d], [e]) : {α < µ : (pα, cα, dα, eα) ∈ Gα} ∈ F}. For details below it is
convenient to apply  Loś’s Theorem to the two-sorted structure A = (Q,X,≤Q,≤X , H).
Note that H ⊆ Q×X ×X ×X . Now suppose that q ∈ Q, x, y, z ∈ X , and (q, x, y, z) ∈ H.
Say q = [q∗], x = [x∗], y = [y∗], and z = [z∗]. Then

{α < µ : (q∗α, x
∗
α, y

∗
α, z

∗
α) ∈ Gα} ∈ F, i.e.,

{α < µ : q∗α ∈ Pα, x
∗
α, y

∗
α, z

∗
α ∈ Lα, x

∗
α ∈ dmn(q∗α), q∗α(x∗α) = (y∗α, z

∗
α)} ∈ F

{α < µ : q∗α ∈ Pα, x
∗
α, y

∗
α, z

∗
α ∈ Lα, x

∗
α ∈ dmn(q∗α), q∗α(x∗α) = (y∗α, z

∗
α)}

⊆ {α < µ : q∗α ∈ Pα, x
∗
α ∈ Lα, x

∗
α ∈ dmn(q∗α), ∃ unique u, v ∈ Pα[q∗α(x∗α) = (u, v)}.

Hence using A, for all q ∈ Q and x ∈ X , if there are y, z ∈ X such that (q, x, y, z) ∈ H,
then there are unique u, v ∈ X such that (q, x, u, v) ∈ H. Hence we can make the following
definition. For any q ∈ Q let dmn(fq) = {x ∈ X : ∃y, z ∈ X [(q, x, y, z) ∈ H]}, and set
fq(x) = (y, z) with (q, x, y, z) ∈ H.

(3) If d, d′ ∈ dmn(fq) and d < d′, then π0(fq(d)) < π0(fq(d
′)) < π1(fq(d

′)) < π1(fq(d)).
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In fact, let fq(d) = (r, s) and fq(d
′) = (t, u). Thus (q, d, r, s), (q, d′, t, u) ∈ H. Write

x = [x∗] for any x in X or Q. Hence the following sets are in F :

{α < µ : q∗α ∈ Pα, d
∗
α, r

∗
α, s

∗
α ∈ Lα, d

∗
α ∈ dmn(q∗α), q∗α(d∗α) = (r∗α, s

∗
α)};

{α < µ : q∗α ∈ Pα, d
′∗
α , t

∗
α, u

∗
α ∈ Lα, d

′∗
α ∈ dmn(q∗α), q∗α(d′∗α ) = (t∗α, u

∗
α)};

{α < µ : d∗α < d′∗α }.

Take any α in the intersection of these three sets. Then by (2) we have r∗α < t∗α < u∗α < s∗α.
Hence (3) follows.

(4) ∀q ∈ Q[dmn(fq) has a maximal element].

For, let q ∈ Q. Say q = [q′]. Then for all α < µ, q′α ∈ Pα and so dmn(q′α) has a maximal
element dα. Thus

∃b, c[(q′α, dα, b, c) ∈ Gα ∧ ∀e, b
′, c′[(q′α, e, b

′, c′) ∈ Gα → e ≤ dα].

It follows that

∃b, c[(q, [dα], b, c) ∈ H] ∧ ∀e, b′, c′[(q, e, b′, c′) ∈ H → dα ≤ e].

Now (4) follows.

(5) ∀q, r ∈ Q[q < r → fq ⊆ fr].

In fact, suppose that q, r ∈ Q and q < r. Write q = [q′] and r = [r′]. Then M
def
= {α < µ :

q′α ⊆ r
′
α} ∈ F . For any α ∈M we have

∀a, b, c[(q′α, a, b, c) ∈ Gα → (r′α, a, b, c) ∈ Gα];

hence
∀a, b, c[(q, a, b, c) ∈ H → (r, a, b, c) ∈ H];

(5) follows.
Now we define cα ∈ Q for α < κ. Let aα = [a′α] and bα = [b′α] for all α < κ. For each

α < µ let pα = {(minLα, (a
′
0α, b

′
0α))}, and set c0 = [〈pα : α < µ〉]. Note that for each α < µ

we have (pα,minLα, a
′
0α, b

′
0α) ∈ Gα, so (c0, 0, a0, b0) ∈ H. Hence fc0 = {(0, (a0, b0))}. By

Proposition 32.4, 0 is not near to 1. Now suppose that cα = [c′α] has been defined so that
dmn(fcα) has a maximum element dα = [d′α] which is not near to 1. Let

M
def
= {β < µ : d′αβ is the maximum element of dmn(c′αβ)

and d′αβ is not the maximum element of Lα} ∈ F.

For β ∈M let c′α+1,β = c′αβ∪{(d
′
αβ+1, (a′α+1,β, b

′
α+1,β))}, with c′α+1,β arbitrary otherwise.

Let cα+1 = [〈c′α+1,β : β < µ〉]. Then fcα+1
= fcα ∪ {(dα + 1, (aα+1, bα+1))}. Note that the

maximum element dα + 1 of dmn(fcα+1
) is not near to 1.
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Now suppose that α is a limit ordinal less than κ and cβ has been defined for all
β < α, with cβ < cγ for β < γ < α; also, for all β < α the domain of the function fcβ has
a maximum element dβ which is not near to 1. Since α < κ < t(µ, F ), there is an e ∈ Q
such that cβ < e for all β < α. Say e = [e′]. For each γ < µ let g′γ be the maximal member
of dmn(e′γ), and set g = [g′]. Let

N = {γ < µ : g′γ is the maximum member of dmn(e′γ) and a′0γ < a′αγ < b′αγ < b′0γ}.

Thus N ∈ F . Now

N ⊆ {γ < µ : ∃s ≤ g′γ∃u, v[(e′γ , s, u, v) ∈ Gγ ∧ u < a′αγ < b′αγ < v]}.

The set on the right is thus in F . For each γ ∈ N let w′
γ be the maximum s as indicated.

and let wγ be arbitrary for γ not in this set. Then w
def
= [〈w′

γ : γ < µ〉] is maximum such
that w ≤ g and (e, w, u, v) ∈ H for some u, v with u < aα < bα < v. Now {γ < µ : w′

γ ∈
dmn(e′γ)} ∈ F . For any γ in this set, let q′γ = e′γ ↾ w′

γ . Thus q′γ ∈ Pγ . Then

∀s, t, u[Gγ(q′γ , s, t, u)→ Gγ(e′γ , s, t, u)]∧ ∀s[∃t, u[Gγ(q′γ , s, t, u)]↔ s < w′
γ ].

Then by  Loś’s theorem we have

∀s, t, h[H([q′], s, t, u)→ H(e, s, t, u)]∧ ∀s[∃t, u[H([q′], s, t, u)↔ s < w].

Thus f[q′] = fe ↾ w.
Case 1. w is not near to 1. For any γ < µ let c′αγ = q′γ ∪ {(w

′
γ , (a

′
αγ, b

′
αγ))}. Let

cα = [c′α]. Now if β < α, then cβ < e and dβ < w, so cβ < cα. This completes the recursive
definition. Since κ < t(µ, F ), there is a u ∈ Q such that cα < u for all α < κ. Let v be the
largest element of the domain of fu. Then for any α < κ we have

aα = π0(fu(α)) < π0(fu(v)) < p1(fu(v)) < π1(fu(α)) = bα,

contradicting a, b being a gap.
Case 2. w is near to 1. Let 〈βξ : ξ < cf(α)〉 be strictly increasing with supremum

α. Now 〈dβξ : ξ < cf(α)〉, 〈w − n : n ∈ ω〉 is not a (cf(α), ω)-gap since κ is uncountable

and ≤ p(µ, F ), so there is a d̃α ∈ X such that ∀ξ < cf(α)∀n ∈ ω[dβξ < d̃α < w − n〉.

Now we get a contradiction as in Case 1. Namely, for each γ < µ let q′′γ = e′γ ↾ d̃αγ and

c′αγ = q′′γ ∪ {(d̃αγ, (a
′
αγ, b

′
αγ))} and cα = [c′], then proceed as before to get a contradiction.

If L is a linear order and X is any nonempty set, then X<L is the set of all functions f
such that the domain of f is an initial segment of L and the range of f is contained in X .
Under ⊆, X<L is a pseudo-tree with a unique root, the empty set.

Theorem 32.11. Every finite tree with a unique root can be isomorphically embedded in
X<L for some finite linear order L and some finite set X.
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Proof. Let T be a finite tree with a unique root r. Let κ be the height of T , and let
L = κ under its natural order. Let X = Y \{r}. For each t ∈ T let f(t) = 〈a0, . . . , am〉
where a0, . . . , am is a list in strictly increasing order of all elements different from r which
are ≤ t. In particular, f(r) = ∅. Clearly f is the desired isomorphic embedding.

Proposition 32.12. If κ = t(µ, F ), then (κ, κ) ∈ C(µ, F ).

Proof. Let P =
∏

α<µ Pα/F , each Pα a finite tree with a unique root, with c ∈ κP

strictly increasing and unbounded. By Theorem 32.11 we may assume that Pα ⊆ X<Mα
α

where Mα is a finite linear order and Xα is a finite set. For each α < µ let <α be a well-
order on Xα and≪α a well-order on Mα. If p, q ∈ Pα are incomparable, then χ(p, q) is the

≪α-least i ∈Mα such that pi 6= qi. Now we define a relation ≺α on Qα
def
= Pα × {0, 1}:

(p, ε) ≺α (q, δ) iff one of the following holds:
(1) p and q are comparable, ε = 0, and δ = 1.
(2) p ⊂ q and ε = δ = 0.
(3) p ⊃ q and ε = δ = 1.
(4) p and q are incomparable and pχ(p,q) <α qχ(p,q).
(5) (p, 0) �α (q, ε) �α (p, 0) is impossible.

For, assume that (p, 0) �α (q, ε) �α (p, 0.
Case 1. p and q are comparable and ε = 1. This is impossible.
Case 2. p ⊂ q and ε = 0. This is impossible.
Case 3. p and q are incomparable and pχ(p,q) <α qχ(p,q). this is impossible.

Thus (5) holds.
(6) (p, 1) �α (q, ε) �α (p, 1) is impossible.

This is proved similarly.
Now let Q =

∏

α<µQα/F . For each α < κ let cα = [c′α]. Note that c′α ∈
∏

β<µ Pβ.
and so c′αβ ∈ Pβ for all β < µ. Now define

c′0α = 〈(c′αβ, 0) : β < µ〉 ∈
∏

β<µ

Qβ ,

c′1α = 〈(c′αβ, 1) : β < µ〉 ∈
∏

β<µ

Qβ .

Now we claim

(7) (〈[c′0α ] : α < κ〉, 〈[c′1α ] : α < κ〉) is a (κ, κ)-gap in Q.

In fact, take β < α < κ. Then cβ < cα, so [c′β] < [c′α], hence {γ < µ : c′βγ ⊂ c′αγ} ∈ F .
Now

{γ < µ : c′βγ ⊂ c
′
αγ} ⊆ {γ < µ : c′0βγ ≺γ c

′0
αγ ≺γ c

′1
αγ ≺γ c

′1
βγ}.

It follows that for β < α < κ we have [c′0β ] < [c′0α ] < [c′1α ] < [c′1β ].

Now suppose that q ∈ Q and [c′0α ] < q < [c′1α ] for all α < κ. Write q = [q′] with
q′ ∈

∏

β<µQβ. Say q′β = (pβ, εβ) for all β < µ. Now [〈pβ : β < µ〉] is not a bound for
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〈cα : α < κ〉, so there is an α < κ such that cα 6< [〈pβ : β < µ〉]. Hence the following sets
are in F :

R
def
= {β < µ : c′αβ 6⊆ pβ};

N
def
= {β < µ : (c′αβ, 0) ≺β (pβ, εβ)};

S
def
= {β < µ : (pβ, εβ) ≺β (c′αβ , 1)}.

Now {β < µ : εβ = 0} ∪ {β < µ : εβ = 1} = µ ∈ F , so we have two cases.

Case 1. M
def
= {β < µ : εβ = 0} ∈ F . Now suppose that β ∈ M ∩N ∩ R ∩ S. Then

(c′αβ, 0) ≺β (pβ, 0) and c′αβ 6⊆ pβ .
Subcase 1.1. pβ ⊂ c′αβ . Then (pβ , 0) ≺β (c′αβ, 0) ≺β (pβ, 0). This contradicts (5)
Subcase 1.2. pβ and c′αβ are incomparable. Since (c′αβ , 0) ≺β (pβ , 0), it follows

that
(c′αβ)χ(c′

αβ
,pβ) <β (pβ)χ(c′

αβ
,pβ).

Then (c′αβ , 1) ≺β (pβ , 0) ≺β (c′αβ, 1), which contradicts (6).

Case 2. M
def
= {β < µ : εβ = 1} ∈ F . Now suppose that β ∈ M ∩N ∩ R ∩ S. Then

(pβ , 1) ≺β (c′αβ, 1). Since c′αβ 6⊆ pβ , it follows that c′αβ and pβ are incomparable, and

(pβ)χ(pβ ,c
′
αβ

) <β (c′αβ)χ(pβ ,c
′
αβ

)

Hence (c′αβ , 0) ≺β (pβ , 1) ≺β (c′αβ, 0), which contradicts (5).

Corollary 32.13. p(µ, F ) ≤ t(µ, F ).

Proposition 32.14. If L is a linear order, a, b is a κ, λ-gap in L, and a, c is a κ, µ-gap
in L, then λ = µ.

Proof. Say λ < µ. For each ξ < λ there is an η < µ such that cη < bξ, as otherwise bξ
would be below each cη and hence would fill the gap a, c. So for each ξ < λ choose ηξ < µ
such that cηξ < bξ. Let θ = supξ<λ ηξ +1. Then cθ is below each bξ, again a contradiction.
(Recall that κ, λ, µ are regular.)

Proposition 32.15. If Lα is a finite linear order for each α < µ, then we have
(
∏

α<µ

Lα/F,≤

)

∼=

(
∏

α<µ

Lα/F,≥

)

.

Proof. For each α < µ let hα be an isomorphism of (Lα,≤) onto (Lα,≥). Define
k :
∏

α<µ Lα/F →
∏

α<µ Lα/F by setting h([x]) = [y], where yα = hα(xα) for all α < µ.
Clearly k is a well-defined bijection. Now take any x, y ∈

∏

α<µ Lα.

[x] ≤ [y] iff {α < µ : xα ≤ yα} ∈ F

iff {α < µ : hα(xα) ≥ hα(yα)} ∈ F

iff k([x]) ≥ k([y]).
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Theorem 32.16. Suppose that κ is regular uncountable and κ ≤ p(µ, F ). Let 〈Lα :
α < µ〉 be a system of finite linear orders, let F be an ultrafilter on µ, and suppose that
∀n ∈ ω[{α < µ : |Lα| > n} ∈ F ]. Let (L,≤) =

∏

α<µ Lα/F . Then there is a regular θ such
that (L,≤) has a (κ, θ)-gap; and there is a regular θ′ such that (L,≤) has a (θ′, κ)-gap.

Proof. By Proposition 32.3, L has an infinite increasing sequence 〈cn : n ∈ ω〉. Thus
each cn is not near to 1. Now suppose that α < κ and cα has been defined and is not
near to 1. Let cα+1 = cα + 1. Suppose that α < κ is limit and cβ has been defined for
all β < α, each cβ not near to 1. Now (〈cβ : β < α〉, 〈1 − n : n ∈ ω〉) is not a gap,
since |α|, ω < κ ≤ p(µ, F ). Hence there is a cα not near to 1 such that cβ < cα for all
β < α. So we have constructed c ∈ κL strictly increasing with no element near to 1. Let
A = {d ∈ L : ∀α < κ[cα < d]}. Note that A is nonempty, since e.g. 1 ∈ A. If A has a first
element d, then there is an α < κ such that d− 1 ≤ cα < cα+1 < d, contradiction. So A
does not have a first element. Let 〈eξ : ξ < θ〉 be a strictly decreasing coinitial sequence of
elements of A. This gives θ as required in the theorem; for the second conclusion, apply
Proposition 32.15.

Theorem 32.17. Suppose that κ is uncountable and regular, κ < t(µ, F ), and κ ≤ p(µ, F ).
Then there is a unique regular θ such that (κ, θ) ∈ C(µ, F ).

Proof. Existence was proved in Theorem 32.16. Now suppose that 〈Mα : α < µ〉
and 〈Nα : α < µ〉 are systems of finite linear orders, ∀n ∈ ω[{α < µ : |Mα| > n} ∈ F ],
∀n ∈ ω[{α < µ : |Nα| > n} ∈ F ], M =

∏

α<µMα/F , N =
∏

α<µNα/F , a0 ∈ κM ,

b0 ∈ θ0M , (a0, b0) is a (κ, θ0)-gap, a1 ∈ κN , b1 ∈ θ1N , and (a1, b1) is a (κ, θ1)-gap. We
may assume that Mα ∩ Nα = ∅ for all α < µ, and we define an order on Mα ∪ Nα by
putting each member of Mα before each member of Nα. For each α < µ let Pα be the set
of all functions p such that

(1) dmn(p) is a nonempty initial segment of Mα ∪Nα, and rng(p) ⊆Mα ×Nα.

(2) ∀d, d′ ∈ dmn(p)[d < d′ → π0(p(d)) < π0(p(d′)) and π1(p(d)) < π1(p(d′))].

We now consider the two-sorted structure (Pα,Mα ∪Nα, Gα) where Gα = {(p, a, b, c, d) :
p ∈ Pα, a ∈ dmn(p), p(a) = (b, c), d = max(dmn(p))}. Let P =

∏

α<µ Pα/F and X =
∏

α<µ(Mα ∪Nα)/F . For each α < µ let

H = {([p], [x], [y], [z], [w]) : {α < µ : (pα, xα, yα, zα, wα) ∈ Gα} ∈ F}.

Thus H ⊆ P ×X ×X ×X ×X . We claim

(3) ∀p ∈ P∀x ∈ X∀y, z, u, v, s, t ∈ X [(p, x, y, z, s) ∈ H and (p, x, u, v, t) ∈ H → y = u,
z = v and s = t].

In fact, suppose that p ∈ P , x, y, z, u, v, s, t ∈ X , (p, x, y, z, s) ∈ H, and (p, x, u, v, t) ∈ H.
Say p = [p′], x = [x′], y = [y′], u = [u′], v = [v′], s = [s′], and t = [t′]. Then

{α < µ : (p′α, x
′
α, y

′
α, z

′
α, s

′
α) ∈ Gα} ∈ F and {α < µ : (p′α, x

′
α, u

′
α, v

′
α, t

′
α) ∈ Gα} ∈ F.
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If α is in both of the sets here, then p′α ∈ Pα, x′α ∈ dmn(p′α), p′α(x′α) = (y′α, z
′
α) = (u′α, v

′
α),

and s′α = t′α = max(dmn(p′α). Hence y′α = u′α and z′α = v′α. So {α < µ : y′α = u′α} ∈ F ; so
y = u. Similarly z = v and s = t. So (3) holds.

Now for any p ∈ P let dmn(fp) = {x : ∃y, z, s[(p, x, y, z, s) ∈ H}, and set fp(x) =
(y, z). This is justified by (3). Note that dmn(fp) has a maximum element; we denote it
by sp.

(4) Let d, e ∈ dmn(fp) and d < e. Say fp(d) = (x, y) and fp(e) = (u, v). Then x < u and
y < v.

In fact, write p = [p′], d = [d′], x = [x′], y = [y′], e = [e′], u = [u′], v = [v′] and sp = [sp′].
Now (p, d, x, y, sp), (p, e, u, v, sp) ∈ H, so

{α < µ : (p′α, d
′
α, x

′
α, y

′
α, s

p′
α ) ∈ Gα} ∈ F and {α < µ : (p′α, e

′
α, u

′
α, v

′
α, s

p′
α ) ∈ Gα} ∈ F.

For α in the intersection of these two sets we have p′α(d′α) = (x′α, y
′
α) and p′α(e′α) = (u′α, v

′
α).

Hence by (2), x′α < u′α and y′α < v′α. Then (4) follows.
We now construct 〈cα : α < κ〉 ∈ κP stictly increasing such that the following condi-

tion holds:

(5) scα is not near to 1.

Now if ξ < κ, then a0
ξ ∈ M and a1

ξ ∈ N . Say a0
ξ = [a0′

ξ ] and a1
ξ = [a1′

ξ ]. Thus ∀ξ <

κ[a0′
ξ ∈

∏

α<µMα] and ∀ξ < κ[a1′
ξ ∈

∏

α<µNα]. For each α < µ let 0α be the smallest

element of Mα ∪Nα. For each α < µ let pα = {(0α, ((a0′
0 )α, (a

1′
0 )α))}. Thus pα ∈ Pα. Let

c0 = [〈pα : α < µ〉]. Now for any α < µ we have (pα, 0, (a
0′
0 )α, (a

1′
0 )α, 0) ∈ Gα. Hence

(c0, 0, a
0
0, a

1
0, 0) ∈ H. Hence fc0 = {(0, (a0

0, a
1
0)}. Thus sc0 = 0. Note that 0 is not near to

1, since F is nonprincipal; so (5) holds for α = 0.
If cα has been defined so that the maximum member scα of dmn(fcα) is not near to

1, let cα = [c′α], scα = [d′α]. Then

Q
def
= {β < µ : d′αβ is the maximum element of dmn(c′α)

but is not the greatest element of Mα ∪Nα} ∈ F.

Then for β ∈ Q let c′α+1,β = c′αβ ∪{(d
′
αβ + 1, (a0′

α+1, a
1′
α+1))}. c′α+1,β is arbitrary otherwise.

Then (c′α+1,β, d
′
αβ, a

0′
α+1,β, a

1′
α+1,β, d

′
αβ) ∈ Gβ , and so, with cα+1 = [〈c′α+1,β : β < µ〉],

fcα+1
= fcα ∪ {(s

cα + 1, (a0
α+1, a

1
α+1))}.

Thus scα+1 = scα + 1, and (5) clearly holds for α+ 1.
Now suppose that α is limit. Since α < κ < t(µ, F ), there is an e ∈ P such that

∀β < α[cβ < e]. Let se = [d′] and e = [e′]. Let

Q = {γ < µ : d′γ is the maximum member of dmn(e′γ) and a0′
0 < a0′

γ and a1′
0 < a1′

γ }.

Thus Q ∈ F . Now

Q ⊆ {γ < µ : ∃s ≤ d′γ∃u, v, w[(e′γ, s, u, v, w) ∈ Gγ ∧ u < a0′
αγ and v < a1′

αγ}.
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The set on the right is thus in F . For each γ ∈ Q let w′
γ be the maximum s as indicated.

and let wγ be arbitrary for γ not in this set. Then w
def
= [〈w′

γ : γ < µ〉] is maximum such
that w ≤ d and (e, w, u, v, x) ∈ H for some u, v, x with u < a0

α and v < a1
α. Thus w is the

maximum member of P which is ≤ dmn(fe) such that π0(fe(w)) < a0
α and π1(fe(w)) < a1

α.
Now {γ < µ : w′

γ ∈ dmn(e′γ)} ∈ F . For any γ in this set, let qγ = e′γ ↾ w′
γ . Then

∀s, t, u, v[Gγ(qγ , s, t, u, v)→ Gγ(e′γ , s, t, u, v)]∧ ∀s[∃t, u, v[Gγ(qγ , s, t, u, v)]↔ s < w′
γ ].

Then by  Loś’s theorem we have

∀s, t, u, v[H([q], s, t, u, v)→ H(e, s, t, u, v)]∧ ∀s[∃t, u, v[H([q], s, t, u, v)↔ s < w]].

Thus f[q] = fe ↾ w.
Case 1. w is not near to 1. For any γ < µ let c′αγ = qγ ∪ {(w′

γ , (a
′
αγ, b

′
αγ))}. Then

[c′α] = [q] ∪ {(w, (aα, bα))}. Let scα = w. Let cα = [c′α].
Case 2. w is near to 1. Let 〈βξ : ξ < cf(α)〉 be strictly increasing with supremum α.

Now 〈scβξ : ξ < cf(α)〉, 〈w − n : n ∈ ω〉 is not a (cf(α), ω)-gap since κ is uncountable and
≤ p(µ, F ), so there is an scα ∈ X such that ∀ξ < cf(α)∀n ∈ ω[scβξ < scα < w − n]〉. As in
Case 1 we get c′ such that [c′α] = [q] ∪ {(scα , (aα, bα))}. Let cα = [c′α].

Note that for each α < κ, scα is the maximum member of dmn(cα). For brevity we
let u = 〈scγ : γ < κ〉.

Since κ < t(µ, F ), there is an e ∈ P such that ∀α < κ[cα < e]. Let t = max(dmn(fe)).
We construct d0 ∈ θ0(

∏

α<µ(Mα ∪ Nα)/F ) so that (c, d0) is a (κ, θ0)-gap. A similar

construction will give a (κ, θ1)-gap (c, d1), so θ0 = θ1 by Proposition 32.14. Let d0
0 = t.

Then ∀γ < κ[scγ < s]. Suppose that ξ < θ0 and d0
ξ has been constructed so that ∀γ <

κ[scγ < d0
ξ].

(6) There is an x ∈ dmn(fe) such that π0(fe(x)) ≤ b0ξ+1 and x < d0
ξ .

In fact, take any η < κ. Then π0(fe(dη)) = a0
η ≤ b

0
ξ+1 and scη < d0

ξ . So (6) holds. Let

d0
ξ+1 = max{x ∈ dmn(fe) : π0(fe(x)) ≤ b0ξ+1 and x < d0

ξ}.

Note that scη < d0
ξ+1 for all η < κ.

Now suppose that ξ is limit and d0
η has been defined for every η < ξ so that scθ < d0

η

for all θ < κ and η < ξ. We claim that there is a x such that the following conditions hold:

(7) x ∈ dmn(fe).

(8) π0(fe(x)) ≤ b0ξ .

(9) scγ < x for all γ < κ.

(10) x < d0
η for all η < ξ.

Suppose there is no such x. Now we claim

(11) ∀η < ξ∃γ < θ0[b0γ < π0(fe(d
0
η))].
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For, suppose that η < ξ. Then for any γ < κ, scγ < d0
η, and hence π0(fe(d

0
η)) >

π0(fe(dγ)) = a0
γ. Now since a0, b0 is a gap, it follows that there is a δ < θ0 such that

b0δ < π0(fe(d
0
η), as desired in (11).

Now for each η < ξ let

g(η) = min{γ < θ0 : π0(fe(d
0
η)) > b0γ}.

We claim that rng(g) is cofinal in θ0 (contradicting θ0 regular). For, suppose that ξ < γ <
θ0. Let

y = max{u ∈ dmn(fe) : π0(fe(u)) ≤ b0γ}.

Clearly y satisfies (7) and (9). Now π0(fe(y)) ≤ b0γ < b0ξ, so (8) holds. Hence by assumption,

(10) does not hold. Hence there is an η < ξ such that d0
η ≤ y. Now π0(fe(d

0
η)) ≤

π0(fe(y)) ≤ b0γ . It follows that g(η) > γ, proving the claim.

So there is a x satisfying (7)–(10); we let d0
ξ be such a x.

This finishes the construction of d0. We claim that (u, d0) is a (κ, θ0)-gap. Suppose
that x fills the gap. Take any ξ < κ and η < θ0. Then

a0
ξ = π0(fe(dξ)) < π0(fe(x)) < π0(fe(d

0
η)) ≤ b0η.

Thus π0(fχ(x)) fills the gap (a0, b0), contradiction.

So (u, d0) is a (κ, θ0)-gap. Similarly we get a (k, θ1)-gap. By Proposition 32.14,
θ0 = θ1.

Corollary 32.18. If κ is a regular cardinal, κ < t(µ, F ), κ ≤ p(µ, F ), and there is an
L ∈ L(µ, F ) such that there is no (κ, θ)-gap in L, then (κ, θ) /∈ C(µ, F ).

Proof. Assume the hypothesis, but suppose that (κ, θ) ∈ C(µ, F ). Let (X,<) ∈
L(µ, F ) be such that it has a (κ, θ)-gap. By Theorem 32.16, there is a (κ, θ′)-gap in L for
some regular θ′. Thus (κ, θ), (κ, θ′) ∈ C(µ, F ), so by Theorem 32.17, θ = θ′. Hence L has
a (κ, θ)-gap, contradiction.

Theorem 32.19. Suppose that 〈(Xα,≤α) : α < µ〉 is a system of finite linear orders,
X =

∏

α<µXα/F , U is an infinite subset of X, Z is a nonempty family of nonempty
internal subsets of X, |U |, |Z| < t(µ, F ), p(µ, F ), and U ⊆ z for all z ∈ Z.

Then there is an internal Y such that U ⊆ Y ⊆
⋂
Z.

Proof. Let z ∈ κZ enumerate Z. For each α < κ let zα = [z′α]. For each α < µ let
Qα be the set of all functions f satisfying the following conditions:

(1) dmn(f) is an initial segment of Xα.

(2) rng(f) ⊆P(Xα).

(3) ∀x, y ∈ Xα[x ≤ y ∈ dmn(f)→ f(y) ⊆ f(x)].
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Let Q =
∏

α<µ(Qα,⊆)/F . For α < µ let Gα = {(f, a, b) : f ∈ Qα, a ∈ dmn(f), b ∈ f(a)}.
Let

H =

{

([f ], [a], [b]) : f ∈
∏

α<µ

Qα, a ∈ X, b ∈
∏

α<µ

P(Xα),

{α : (fα, aα, bα) ∈ Gα} ∈ F}

}

.

For c ∈ Q let dmn(fc) = {a : ∃b[(c, a, b) ∈ H]} and for any a ∈ dmn(fc) let fc(a) = {b :
(c, a, b) ∈ H}. Now we construct q ∈ κ+1Q by recursion so that the following conditions
hold for all α ≤ κ:

(4) dmn(fqα) has a maximal element dα.

(5) dα is not near to 1.

(6) U ⊆ fqα(d) for all d ≤ dα.

(7) fqα(dα) ⊆ zα for α < κ.

(8) fqα(dα) is an internal subset of X .

(9) If β < α, then qβ ≤ qα. (Hence fqβ ⊆ fqα .)

Now z0 is an internal subset of X , so let 〈Bα : α < µ〉 be such that ∀α < µ[Bα ⊆ Xα] and
z0 = {[x] : {α < µ : xα ∈ Bα} ∈ F}. Define q′0α = {(0α, Bα)} for all α < µ, where 0α is
the zero of Xα. Thus q′0α ∈ Qα for all α < µ. Let q0 = [〈q′0αα : α < µ〉] Then q0 ∈ Q. Now

dmn(fq0) =

{

[a] : a ∈ X, ∃b ∈
∏

α<µ

P(Xα)[(q0, [a], [b]) ∈ H]

}

=

{

[a] : a ∈ X, ∃b ∈
∏

α<µ

P(Xα)

[{α < µ : (q′0α, aα, bα) ∈ Gα} ∈ F ]

}

.

Now for all α < µ, a ∈ X , and b ∈
∏

α<µ P(Xα), (q′0α, aα, bα) ∈ Gα iff aα = 0 and
bα ∈ Bα. Thus for a ∈ X ,

[a] ∈ dmn(f) iff ∃b ∈
∏

α<µ

P(Xα)[{α < µ : (q′0α, aα, bα) ∈ Gα} ∈ F ]

iff {α < µ : aα = 0} ∈ F.

In fact, if b ∈
∏

α<µ P(Xα) and {α < µ : (q′0α, aα, bα) ∈ Gα} ∈ F , then {α < µ :
(q′0α, aα, bα) ∈ Gα} ⊆ {α < µ : aα = 0}, so {α < µ : aα = 0} ∈ F . Conversely, if
{α < µ : aα = 0} ∈ F , choose b ∈

∏

α<µ P(Xα) such that {α < µ : bα 6= ∅} ∈ F .
Then {α < µ : bα 6= ∅} ∩ {α < µ : aα = 0} ⊆ {α < µ : (q′0α, aα, bα) ∈ Gα}, and so
(q′0α, aα, bα) ∈ Gα} ∈ F .
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It follows that

fq0(0) = {b : (q0, 0, b) ∈ H} = {[b] : {α : (q′0α, 0, bα) ∈ Gα} ∈ F}

= {[b] : {α : bα ∈ q
′
0α(0)} ∈ F} = {[b] : {α : bα ∈ Bα} ∈ F} = z0

Hence (4)–(9) hold for α = 0.
Now assume that qα has been defined satisfying (4)–(9). By (8) let 〈Cβ : β < m〉 be

such that ∀β < µ[Cβ ⊆ Xβ] and fqα(dα) = {[x] : {β < µ : xβ ∈ Cβ} ∈ F}. Let qα = [q′α]
and dα = [d′α]. For each β < µ let

q′α+1,β = q′αβ ∪ {(d
′
αβ + 1, z′α+1,β ∩ q

′
αβ(d′αβ))}.

Then q′α+1,β ∈ Qβ. Let qα+1 = [q′α+1]. Then fqα+1
= fqα ∪ {(dα + 1, zα+1 ∩ fqα(dα))}.

Then (4)–(7) and (9) clearly hold for α+1. For (8), we have fqα+1
(dα+1) = zα+1∩fqα(dα);

as an intersection of two internal sets, this is internal by Proposition 32.7.
Now suppose that α is a limit ordinal ≤ κ. Then 〈fqβ : β < α〉 is strictly increasing

by (9), and κ < t(µ, F ), so there is an r ∈ Q such that qβ ≤ r for all β < α. Now note
that if β < α and u ∈ U , then by (6), u ∈ fqβ(dβ) ⊆ fr(dβ). Now let u ∈ U . Say r = [r′]
and u = [u′]. Since u ∈ fr(d0), the set {β < µ : ∃x ∈ dmn(r′β)[u′β ∈ r

′
β(x)]} is nonempty

and is in F , and for a given β in this set there are only finitely many such x. (Since r′β
is finite.) Hence there is a maximum d ∈ dmn(fr) such that u ∈ fr(d); denote this d by
eu. Thus dβ < eu for all β < α. Now dmn(fr) ⊆ X . Since |U |, |α| < p(µ, F ), there is a dα
such that dβ ≤ dα ≤ eu for all β < α and u ∈ U . Let

q′αβ =

{
r′β ↾ d′αβ ∪ {(d

′
αβ, z

′
αβ ∩ r

′
β(d′αβ))} if α < κ,

r′β ↾ d′αβ ∪ {(d
′
αβ, r

′
β(d′αβ))} if α = κ

Then let qα = [q′α]. Then

fcα =

{
fr ∪ {(dα, zα ∩ r(dα))} if α < κ,
fr ∪ {(dα, r(dα))} if α = κ

Then (4)–(7) and (9) clearly hold. For (8), for each β < µ let

Bβ = {u ∈ Xβ : d′αβ ∈ dmn(q′αβ) and u ∈ q′αβ(d′αβ)}.

Then

[x] ∈ fcα(dα) iff [x] ∈ r(dα)

iff (r, dα, [x]) ∈ H

iff {β < µ : (r′β, d
′
αβ, xβ) ∈ Gβ} ∈ F

iff [x] ∈ Bβ .

This finishes the construction. Clearly fqκ(dκ) is as desired.
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A function f : m(
∏

α<µAα/F )→ (
∏

α<µAα/F is internal iff there is a system 〈fα : α < µ〉
such that each fα : mAα → Aα and for all x0, . . . , xm−1, y ∈

∏

α<µAα we have

f([x0], . . . , [xm−1]) = [y] iff {α < µ : fα(x0α, . . . , xm−1,α) = yα} ∈ F.

Theorem 32.20. Suppose that 〈Xα : α < µ〉 is a system of finite linear orders. Let
X =

∏

α<µXα/F . Suppose that d ∈ κX is strictly decreasing, with κ < t(µ, F ), and let
D = rng(d). Suppose that G : D → X. Then there is an internal H : X → X such that
G ⊆ H.

Proof. Write dβ = [d′β] for all β < κ, and let G′ : D →
∏

α<µXα be such that
G(dβ) = [G′(dβ)] for all β < κ.

For each α < µ let Pα be the set of all functions f such that for some d ∈ Xα,
dmn(f) = {x ∈ Xα : d < x}, and rng(f) ⊆ Xα. Let Kα = {(f, x, y) : f ∈ Pα, x, y ∈
Xα, x ∈ dmn(f), f(x) = y}. We take the two-sorted structure Aα = (Xα,≤, Pα,⊆, Kα).
So Kα ⊆ Pα×Xα×Xα. Let X =

∏

α<µXα/F , P =
∏

α<µ Pα/F , and H = {([f ], [x], [y]) :

{α < µ : (fα, xα, yα) ∈ Kα} ∈ F}. B =
∏

α<µAα/F = (X,P,H). Then for any α < µ,

Aα |=∀f ∈ Pα[∀x, y, z ∈ Xα[(f, x, y) ∈ Kα ∧ (f, x, z) ∈ Kα → y = z]

∧ ∃!d ∈ Xα∀x ∈ Xα[∃y ∈ Xα[(f, x, y) ∈ Kα]↔ d < x].

It follows by  Loś’s theorem that for every c ∈ P there exist d ∈ X and fc ∈ P such that fc
is a function with domain {x ∈ X : d < x} and range contained in X , with f[c′]([x

′]) = [y′]
iff {α < µ : c′α(x′α) = y′α} ∈ F .

We now define by recursion c ∈ κP so that the following conditions hold:

(1) dmn(fcβ) = {x ∈ X : dβ < x}.

(2) ∀γ < β[fcγ (dγ) = G(dγ).

(3) ∀γ < β[fcγ ⊆ fcβ ].

Now define c′0α(x) = x for all α < µ and x > d′0α, and c0 = [c′0]. To check (1), first
suppose that [x′] ∈ dmn(fc0). Let [y′] = fc0([x′]). Then {α < µ : c′0α(x′α) = y′α} ∈ F .
Thus {α < µ : d′0α < x′α} ∈ F , so [d′0] < [x′]. Conversely, suppose that [d′0] < [x′]. Then

M
def
= {α < µ : d′0α < x′α} ∈ F . Then c′α(x′α) = x′α. It follows that [x′] ∈ dmn(fc0). This

proves (1). (2) and (3) hold vacuously.
Suppose that cβ = [c′β] has been defined satisfying (1)–(3). For any α < µ and

d′β+1,α < x define

c′β+1,α(x) =

{
c′βα(x) if d′βα < x,
(G′(dβ))α if x ≤ d′βα.

Let cβ+1 = [c′β+1]. To check (1), first suppose that [x′] ∈ dmn(fcβ+1
). Let [y′] = fcβ+1

([x′]).
Then {α < µ : c′β+1,α(x′α) = y′α} ∈ F . Then {α < µ : d′β+1,α < x′α} ∈ F , so dβ+1 < [x′].
Conversely, suppose that dβ+1 < [x′]. Then M = {α < µ : d′β+1,α < x′α} ∈ F . If α ∈ M ,
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then d′β+1,α < x′α, and so x′α ∈ dmn(c′β+1,α). Say c′β+1,α(x′α) = y′α. Then fcβ+1
([x′] = [y′],

so [x′] ∈ dmn(fcβ+1
. Thus (1) holds for β + 1.

For (3), if γ < β, then fcγ ⊆ fcβ by the inductive hypothesis. So it suffices to show

that fcβ ⊆ fcβ+1
. If [x′] > dβ, then M

def
= {α < µ : x′α > d′βα} ∈ F , and for α ∈ M ,

c′β+1,α(x′α) = c′β(x′α), so fcβ ([x′]) = fcβ+1
([x′]. So (3) holds.

Now suppose that β is limit and cγ = [c′γ ] has been defined for all γ < β so that
(1)–(3) hold. Since κ < t(µ, F ), there is an r = [r′] ∈ P such that cγ < r for all γ < β.
Now for each α < µ let dmn(c′βα) = {x ∈ Xα : d′βα < x}. For any x ∈ Xα with d′βα < x
let

c′βα(x) =
{
r′α(x) if x ∈ dmn(r′α),
x otherwise.

To check (1), suppose that [x′] ∈ dmn(fcβ). Let [y′] = fcβ ([x′]). Then M
def
= {α < µ :

c′βα(x′α) = y′α} ∈ F . For α ∈M we have x′α ∈ dmn(c′βα), so d′β,α < x′α. Hence [d′β] < [x′].

Conversely, suppose that [d′β] < [x′]. Then M
def
= {α < µ : d′βα < x′α} ∈ F . For any

α ∈M we have x′α ∈ dmn(c′βα); say c′βα(x′α) = y′α. Then fcβ([x′]) = [y′]. This proves (1).
For (2), suppose that γ < β. Then fcγ (dγ) = G(dγ) by the inductive hypothesis, since

γ + 1 < β.

For (3), suppose that γ < β and [x′] > dγ . Then [x′] ∈ dmn(r), so M
def
= {α < µ :

x′α ∈ dmn(r′α)} ∈ F . Also, cγ+1 < r, so N = {α < µ : cγ+1,α(x′α) = r′α(x′α)} ∈ F . For any
α ∈M ∩N , c′βα(x′α) = r′α(x′α) = cγ+1,α(x′α). Hence cβ([x′]) = cγ+1([x′]) = cγ([x′]). So (3)
holds.

This completes the construction. Since κ < t(µ, F ), choose e = [e′] ∈ P such that
cβ < e for all β < κ. Now define for any x ∈

∏

α<µXα and α < µ

(H ′(x))α =

{

e′α(xα) if xα ∈ dmn(e′α),
xα otherwise.

Next define for any x ∈
∏

α<µXα, H([x]) = [H ′(x)]. This is well-defined. In fact, suppose

that x, y ∈
∏

α<µXα and [x] = [y]. Then M
def
= {α < µ : xα = yα} ∈ F . If α ∈M , clearly

(H ′(x))α = (H ′(y))α.
Now G ⊆ H. For, suppose that β < κ. Then H(dβ) = H([d′β]) = [H ′(d′β)]. Now

fcβ(dβ) = G(dβ), so M
def
= {α < µ : c′β(dβα) = (G′(dβ))α} ∈ F . For any α ∈M ,

(H ′(d′β))α = e′α(d′βα) = c′β(d′βα) = (G′(dβ))α).

Hence H(dβ) = G(dβ).
If remains only to show that H is internal. For each α < µ and x ∈ Xα let

fα(x) =
{
e′α(x) if x ∈ dmn(e′α),
x otherwise.

Then for any x, y ∈
∏

α<µXα,

H([x]) = [y] iff [H ′(x)] = [y] iff {α < µ : (H ′(x))α = yα} ∈ F

iff {α < µ : fα(xα) = yα} ∈ F.
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Theorem 32.21. Suppose that 〈Xα : α < µ〉 is a system of finite linear orders. Let
X =

∏

α<µXα/F . Suppose that d ∈ κX is strictly decreasing, with κ < t(µ, F ), and let

D = rng(d). Suppose that G : 2D → X. Then there is an internal H : 2X → X such that
G ⊆ H.

Proof. Write dβ = [d′β ] for all β < κ, and let G′ : D ×D →
∏

α<µXα be such that
G(dβ , dγ) = [G′(dβ , dγ)] for all β, γ < κ.

For each α < µ let Pα be the set of all functions f such that for some e ∈ Xα,
dmn(f) = {(x, y) ∈ Xα × Xα : x, y > e} and rng(f) ⊆ Xα. Let Kα = {(f, x, y, z) : f ∈
Pα, x, y, z ∈ Xα, f(x, y) = z}. We take the two-sorted structure Aα = (Xα,≤, Pα,⊆, Kα)
and let B =

∏

α<µAα/F . Write B = (X,P,H). Then for any α < µ,

Aα |=∀f ∈ Pα[∀x, y, z, w ∈ Xα[Kα(f, x, y, z) ∧Kα(f, x, y, w)→ z = w]

∧ ∃!d ∈ Xα∀x, y ∈ Xα[∃z ∈ Xα[Kα(f, x, y, z)]↔ d < x, y].

It follows by  Loś’s theorem that for every c ∈ P there exist d ∈ X and fc ∈ P such that
fc is a function with domain {(x, y) ∈ X ×X : d < x, y} and range contained in X , with
f[c′]([x

′], [y′]) = [z′] iff {α < µ : c′α(x′α, y
′
α) = z′α} ∈ F .

Now we define by recursion c ∈ κP so that the following conditions hold:

(1) dmn(fcβ) = {(x, y) ∈ P × P : dβ < x, y}.

(2) If γ, δ < β, then fcβ(dγ , dδ) = G(dγ , dδ).

(3) If γ < β, then cγ < cβ.

Let c′0α(x, y) = x for all x, y > d′0α and all α < µ; and let c0 = [c′0]. To check (1), first
suppose that ([x′], [y′]) ∈ dmn(fc0). Let [z′] = fc0([x′], [y′]). Then {α < µ : c′0α(x′α, y

′
α) =

z′α} ∈ F . Thus {α < µ : d′0α ≤ x′α, y
′
α} ∈ F , so [d′0] < [x′], [y′]. Conversely, suppose that

[d′0] < [x′], [y′]. Then M
def
= {α < µ : d′0α < x′α, y

′
α} ∈ F . Then c′0α(x′α, y

′
α) = x′α. It

follows that ([x′], [y′]) ∈ dmn(fc0) and fc0([x′], [y′]) = G(d0, d0). This proves (1). (2) and
(3) hold vacuously.

Now suppose that cβ has been defined. By Theorem 32.19 let gβ : X → X be internal
such that gβ(dη) = G(dβ , dη) for all η < κ, and let hβ : X → X be internal such that
hβ(x) = G(dη, dβ) for all η < κ. Then there is a system 〈g′β : β < µ〉 such that each
g′β : Xβ → Xβ and

∀x, y ∈
∏

α<µ

Xα[gβ([x]) = [y] iff {α < µ : g′β(xβ) = yβ} ∈ F ].

Similarly, there is a system 〈h′β : β < µ〉 such that each h′β : Xβ → Xβ and

∀x, y ∈
∏

α<µ

Xα[hβ([x]) = [y] iff {α < µ : h′β(xβ) = yβ} ∈ F ].

Now we define, for x, y ∈
∏

α<µXα,

c′β+1,α(xα, yα) =







c′βα(xα, yα) if xα, yα > d′βα,
g′βα(y) if d′β+1,α < xα ≤ d′βα and yα > d′β+1,α,
h′βα(x) if xα > d′β+1,α and dβ+1,α < yα ≤ d

′
βα
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Then let cβ+1 = [c′β+1]. To check (1), first suppose that ([x′], [y′]) ∈ dmn(fβ+1). Say
fβ+1([x′], [y′]) = [z′]. Then {α < µ : c′β+1,α(x′, y′) = z′} ∈ F . Hence {α < µ : d′β+1,α <

x′α, y
′
α} ∈ F . So dβ+1 < [x′], [y′]. Conversely, suppose that dβ+1 < [x′], [y′]. Then M

def
=

{α < µ : dβ+1,α < x′α, y
′
α} ∈ F . For α ∈ M there is a z′α such that c′β+1,α(x′α, y

′
α) = z′α.

Hence ([x′], [y′]) ∈ dmn(cβ+1). So (1) holds.
For (2), suppose that γ, δ < β + 1.

Case 1. γ, δ < β. Then dβ < dγ , dδ, so M
def
= {α < µ : d′βα < d′γα, d

′
δα} ∈ F . Now

fcβ(dγ , dδ) = G(dγ , dδ), so N
def
= {α < µ : c′βα(d′γα, d

′
δα) = (G′(dγ, dδ))α} ∈ F . For α ∈

M ∩ N we have c′β+1,α(d′γα, d
′
δα) = c′βα(d′γα, d

′
δα) = (G′(dγ , dδ))α. Hence fcβ+1

(dγ , dδ) =
G(dγ , dδ).

Case 2. γ = β, β > δ. Then

M
def
= {α < µ : c′β+1,α(d′βα, d

′
δα) = g′βα(d′δα) = (G(dβ, dδ))α} ∈ F.

Hence fcβ+1
(dβ , dδ) = G(dβ , dδ).

Case 3. γ ≤ β, β = δ. Then

M
def
= {α < µ : c′β+1,α(d′γα, d

′
βα) = h′γα(d′βα) = (G(dγ, dβ))α} ∈ F.

Hence fcβ+1
(dγ , dβ) = G(dγ , dβ).

Now for (3), suppose that γ < β + 1.
Case 1. γ < β. Then by the inductive hypothesis, cγ < cβ. Hence it suffices to show

(3) for γ = β.
Case 2. γ = β. Now for any α < µ, if x, y ∈

∏

γ<µXγ and xα, yα > d′βα, then
c′β+1,α(xα, yα) = c′βα(xα, yα). Hence fcβ+1

)([x], [y]) = fcβ([x], [y]).
Now suppose that β is limit and cγ = [c′γ ] has been defined for all γ < β. Since

κ < t(µ, F ), there is an r = [r′] ∈ P such that cγ < r for all γ < β. Say r = [r′]. For
[x′], [y′] > dβ let

c′βα(x′α, y
′
α) =

{
r′(x′α, y

′
α) if (x′α, y

′
α) ∈ dmn(r′),

x′α otherwise.

For (1), first suppose that ([x′], [y′]) ∈ dmn(fcβ). Say fcβ([x′], [y′]) = [z′]. Then {α < µ :
c′βα(x′, y′) = z′} ∈ F . Hence {α < µ : d′βα < x′α, y

′
α} ∈ F . So dβ < [x′], [y′]. Conversely,

suppose that dβ < [x′], [y′]. Then M
def
= {α < µ : dβα < x′α, y

′
α} ∈ F . For α ∈ M there is

a z′α such that c′βα(x′α, y
′
α) = z′α. Hence ([x′], [y′]) ∈ dmn(cβ). So (1) holds.

For (2), suppose that γ, δ < β. Choose ε with γ, δ < ε < β. Then

c′βα(d′γα, d
′
δα) = r′(d′γα, d

′
δα) = c′ε(d

′
γα, d

′
δα) = ((G(dγ , dδ))α.

Hence fcβ(dγ , dδ) = G(dγ , dδ).
For (3), if γ < β and x′α, y

′
α > d′γ then c′βα(x′α, y

′
α) = r′(x′α, y

′
α) = c′γα(x′α, y

′
α). So

fcα([x′], [y′]) = fcγ ([x′], [y′]).
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This completes the construction. Since κ < t(µ, F ), choose e ∈ P such that cα < e
for all α < κ. Now define

H ′(x, y)β =
{
c′γβ(x, y) if dγβ ≤ x, y for some γ < κ,
x otherwise.

Clearly H = [H ′] is as desired.

Theorem 32.22. If κ is an infinite cardinal, then there is a function F : [κ+]2 → κ such
that for every cofinal A ⊆ κ+ we have |F [[A]2]| = κ.

Proof. For each α < κ+ let gα : α → κ be an injection. Define F ({α, β}) = gα(β)
where β < α. Suppose that A ⊆ κ+ is cofinal. Let 〈αξ : ξ < κ+〉 be the strictly increasing
enumeration of A. Then for any ξ < κ we have F ({αξ, ακ}) = gακ(αξ), and so

κ = |rng(gκ)| = |{F [{αξ, ακ}] : ξ < κ}| ≤ |F [[A]2]|

Lemma 32.23. Assume that 〈Xα : α < µ〉 is a system of nonempty sets. For each α < µ
let

Pα = {f : f is a function and ∃D ⊆ Xα[dmn(f) = 2D and rng(f) ⊆ Xα]}.

Let X =
∏

α<µXα, P =
∏

α<µ Pα, and

Rα = {(f,D, x, y, z) : f ∈ Pα, D ⊆ Xα, dmn(f) = 2D, x, y ∈ dmn(f), f(x, y) = z}.

We consider the three-sorted structure (Xα, Pα,P(Xα), Rα). For each [p] ∈ P let f[p] be
the function such that

dmn(f[p]) = {([x], [y]) ∈ X×X : {α < µ : ∃D ⊆ Xα∃z ∈ Xα[(pα, D, xα, yα, z) ∈ Rα]} ∈ F}

and

∀([x], [y]) ∈ dmn(f[p])∀[z] ∈ X [f[p]([x], [y]) = [z] iff {α < µ : pα(xα, yα) = zα} ∈ F.

Assume that ξ < κ, w ∈ X, and
(a) u ∈ ξX is strictly decreasing.
(b) H : 2ξ → {x ∈ X : x > w}.
(c) p ∈ P is such that fp(uα, uβ) = H(α, β) for all α, β ∈ ξ such that (uα, uβ) ∈

dmn(fp).

Then there is a p ∈ P such that:
(d) ∀α, β ∈ ξ[(uα, uβ) ∈ dmn(fp) and fp(uα, uβ) = H(α, β)].
(e) fp(x, y) > w for all x, y such that (x, y) ∈ dmn(fp).
(f) If (x, y) ∈ dmn(fp) ∩ dmn(fp), then fp(x, y) = fp(x, y).

Proof. Define G : 2(rng(u))→ X by setting, for any ϕ, ψ < ξ, G(uϕ, uψ) = H(ϕ, ψ).
Then we apply Theorem 32.20 to get an internal ρ1 : 2X → X such that for all ϕ, ψ < ξ,
ρ1(uϕ, uψ) = G(uϕ, uψ) = H(ϕ, ψ). Now for any x, y ∈ X let

ρ2(x, y) =

{
fp(x, y) if (x, y) ∈ dmn(fρ),
ρ1(x, y) otherwise.
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Note that ρ2 is internal. In fact, since ρ1 is internal there is a system 〈lα : α < µ〉 such
that ∀α < µ[lα : 2Xα → Xα] and for any [x], [y], [z] ∈ X ,

ρ1([x], [y]) = [z] iff {α < µ : lα(xα, yα) = zα} ∈ F.

Now for any α < µ and x, y ∈ Xα, with p = [p′] define

aα(x, y) =

{
p′α(x, y) if ∃d[(p′α, d, x, y, p

′
α(x.y)) ∈ Rα

lα(x, y) otherwise.

Then clearly for all [x], [y], [z] ∈ P ,]

ρ2([x], [y]) = [z] iff {α < µ : aα(xα, yα) = zζ} ∈ F.

This shows that ρ2 is internal.
For each β < ξ let Zβ = {x ∈ X : ρ2(x, uβ) > w}. Then Zβ is internal since ρ2 is

internal. In fact, say w = [w′]. For each α < µ let Bα =
⋃

t>w′
α
{x ∈ Xα : aα(x, u′βα) = t}.

Then by  Loś’s theorem,

[x] ∈
∏

α<µ

Bα/F iff A |= ∃t > w[ρ2([x], uβ) = t] iff [x] ∈ Zβ .

Now let U = {uβ : β < ξ}. Then U ⊆ Zβ for each β < ξ by (c) and the definition of ρ2.
Now by Theorem 32.18 there is an internal Y such that U ⊆ Y ⊆

⋂

β<ξ Zβ. Define

Y ∗ = Y \{y ∈ Y : ∃y′ ∈ Y [ρ2(y′, y) ≤ w]}.

Then Y ∗ is internal. In fact, since Y is internal, there is a system 〈Cα : α < µ〉 such
that each Cα ⊆ Xα and [x] ∈ Y iff {α < µ : xα ∈ Cα} ∈ F . For each α < µ let
Dα = {x ∈ Cα : ∀y, z ∈ Xα[aα(x, y) = z → z > w′

α}. Then for any [x] ∈ X ,

{α < µ : xα ∈ Dα} ∈ F iff A |= ∀y, z ∈ X [ρ2(x, y) = z → z > w] iff [x] ∈ Y ∗.

(∗) U ⊆ Y ∗.

For, let β < ξ. Then uβ ∈ Y . Suppose that y′ ∈ Y . Then y′ ∈ Zβ , so ρ2(y′, uβ) > w. It
follows that uβ ∈ Y ∗. So (∗) holds.

Clearly ρ2(x, y) > w for all x, y ∈ Y ∗. Let p = ρ2 ↾ 2(Y ∗). Then p is internal, i.e.,
p ∈ P . For, if α < µ let dmn(a′) = 2Dα and a′(x, y) = a(x, y) for any x, y ∈ Dα. Then

{α < µ : a′(x′α, y
′
α) = z′α} = {α < µ : x′α ∈ Dα} ∩ {α < µ : y′α ∈ Dα}

∩ {α < µ : a(x′α, y
′
α) = z′α}

and so

{α < µ : a′(x′α, y
′
α) = z′α} ∈ F iff {α < µ : x′α ∈ Dα} ∈ F and {α < µ : y′α ∈ Dα} ∈ F

and {α < µ : a(x′α, y
′
α) = z′α} ∈ F

iff [x], [y] ∈ Y ∗ and ρ2([x], [y]) = [z]

iff p([x], [y]) = [z].
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Clearly (d)–(f) hold.

Theorem 32.24. p(µ, F ) = t(µ, F ).

Proof. By Corollary 32.12 we have p(µ, F ) ≤ t(µ, F ), so we just need to show
that t(µ, F ) ≤ p(µ, F ). Let 〈Xα : α < µ〉 be a system of finite linear orders such that

X
def
=
∏

α<µXα/F has a (κ, θ)-gap with θ ≤ κ = p(µ, F ). If θ = κ, then t(µ, F ) = p(µ, F )
by Proposition 32.9. Now suppose that θ < κ = p(µ, F ) < t(µ, F ); we want to get a
contradiction. Let (x1, x0) be a (κ, θ)-gap in X . If x ∈ Xα let Xα ↾ x = {x′ ∈ Xα : x′ ≤ x}.
Define Pα = {f : f is a function and ∃D ⊆ Xα[dmn(f) = 2D] and rng(f) ⊆ Xα}. Set

Rα = {(f,D, x, y, z) : f ∈ Pα, D ⊆ Xα, dmn(f) = 2D, x, y ∈ dmn(f), f(x, y) = z}.

Let Qα be the set of all functions ψ such that

(1) dmn(ψ) = Xα ↾ x for some x ∈ Xα.

(2) rng(ψ) ⊆ Xα × Pα.

(3) ∀z ∈ dmn(ψ)∀(a, b) ∈ dmn(2nd(ψ(z))[2nd(ψ(z)))(a, b) ≥ 1st(ψ(z))].

(4) ∀z, z′[z ≤ z′ ∈ dmn(ψ)→ 1st(ψ(z)) ≤ 1st(ψ(z′)).

∀z,z′, a, b[z ≤ z′ ∈ dmn(ψ) ∧ ∀w[z ≤ w ≤ z′ → (a, b) ∈ dmn(2nd(ψ(w)))]→(5)

∀w[z ≤ w ≤ z′ → (2nd(ψ(z)))(a, b) = (2nd(ψ(w)))(a, b) = (2nd(χ(z′)))(a, b)]].

(∗) Qα is a finite tree with a unique minimum element.

For, we can take the unique root to be ∅. Now suppose that χ, ϕ, ψ ∈ Qα and χ, ϕ ≤ ψ.
Say dmn(χ) = Xα ↾ x′, dmn(ϕ) = Xα ↾ x′′, and dmn(ψ) = Xα ↾ x. Then x′, x′′ ≤ x; say
x′ ≤ x′′. For any y ≤ x′, χ(y) = ψ(y) and ϕ(y) = ψ(y); so χ(y) = ϕ(y). Thus χ ≤ ϕ. So
(∗) holds.

For each α < µ let

Tα = {(ψ, x, y, a, p, u, v, w) : ψ ∈ Qα, dmn(ψ) = Xα ↾ x,

y ∈ Xα, y ≤ x, ψ(y) = (a, p), (u, v) ∈ dmn(p), p(u, v) = w}.

We consider the 4-sorted structure (Xα, Pα,P(Pα), Qα, Rα, Tα). Thus

Rα ⊆ Pα ×P(Xα)×Xα ×Xα ×Xα,

Tα ⊆ Qα ×Xα ×Xα × Pα ×Xα ×Xα ×Xα.

Let P =
∏

α<µ Pα/F , V =
∏

α<µ P(Xα)/F , Q =
∏

α<µQα/F ,

R ={([f ], [D], [x], [y], [z]) : {α < µ : (fα, Dα, xα, yα, zα) ∈ Rα} ∈ F},

T ={([ψ], [x], [y], [a], [p], [u], [v], [w]) :

{α < µ : (ψα, xα, yα, aα, pα, uα.vα, wα) ∈ Tα} ∈ F},

A =(X,P, V,Q,R, T ).
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Applying  Loś’s theorem to the structure A, looking in particular at P , we see that for each
p ∈ P there is a function fp whose domain is 2D for some D ⊆ X and whose range is a
subset of X . We denote D by Dp. Looking at T , we see that for each ψ ∈ Q there is a
function gψ with the following properties:

(6) dmn(gψ) = X ↾ x for some x ∈ X .

(7) rng(gψ) ⊆ X × P .

(8) ∀z ≤ x let gψ(z) = (y, p). Then ∀(a, b) ∈ dmn(fp)[fp(a, b) ≥ y].

(9) ∀z, z′ ∈ X [z ≤ z′ ∈ dmn(gψ)→ 1st(gψ(z)) ≤ 1st(gψ(z′))].

(10) ∀z, z′, a, b ∈ X [∀w[z ≤ w ≤ z′ ∈ dmn(gψ)→ (a, b) ∈ dmn(2nd(gψ(w)]→ ∀w[z ≤ w ≤
z′ ∈ dmn(gψ)→ f2nd(gψ(z))(a, b) = f2nd(gψ(w))(a, b) = f2nd(gψ(z′))(a, b)].

For any ψ ∈ Q let rψ be the maximum element of dmn(gψ). For any ψ ∈ Q and z ∈
dmn(gψ) let Dψ(z) = D2nd(gψ(z)). Let Dψ = Dψ(rψ). Further, let gψ(z) = (ψ1(z), ψ2(z))

and gψ(rψ) = (ψ1, ψ2).
By Theorem 32.21, let G0 : [θ+]2 → θ be such that for every cofinal A ⊆ θ+ we have

|G0[[A]2]| = θ. For α, β ∈ κ with α 6= β define

G({α, β}) =
{
G0({α, β}) if α, β < θ+,
0 otherwise.

Clearly

(11) If ψ, χ ∈ Q and ψ ≤ χ, then
(a) rψ ≤ rχ.
(b) ∀z ∈ dmn(gψ)[ψ(z) = χ(z)].

Now we construct c ∈ κQ, y ∈ κX , and µ ∈ κκ by recursion so that the following conditions
hold for all β < κ:

(12) yβ is not near to 0.

(13) If γ < β, then cγ < cβ and yβ < yγ .

(14) ∀γ ≤ β[yγ ∈ Dcβ ].

(15) For all γ, δ ≤ β[fc2
β
(yγ , yδ) = x0

G(γ,δ)].

(16) ∀γ < β[µ(γ) < µ(β) and c1β = x1
µ(β) + 1.

(17) ∀z < rcβ [1st(gcβ(z)) ≤ 1st(gcβ(rcβ))].

Let y0 ∈ X be such that y0 is not near to 0, and let c0 = {(0, (x1
0 +1, {((y0, y0), x0

G(0,0))})}.

Clearly c0 ∈ Q and (12)–(17) hold.
Now suppose that cγ ∈ Q has been defined for all γ ≤ β satisfying (12)–(17). Let

yβ+1 = yβ−1. We apply Lemma 32.22 with ξ replaced by β+2, u replaced by 〈yγ : γ ≤ β+
1〉, H given by H(γ, δ) = x0

G(γ,δ) for all γ, δ ≤ β+1, w replaced by x1
β+1, with ρ replaced by
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c2β . Note that if γ, δ ∈ β+ 2 and (yγ , yδ) ∈ dmn(fc2
β
), then fc2

β
(yγ, yδ) = x0

G(γ,δ) = H(γ, δ).

So Lemma 32.22 gives a function ρ satisfying

(18) ∀γ, δ ∈ β + 2[(yγ, yδ) ∈ dmn(fρ) and fρ(yγ , yδ) = H(γ, δ)].

(19) fρ(x, y) > x1
β+1 for all x, y such that (x, y) ∈ dmn(fρ).

(20) If (x, y) ∈ dmn(fρ) ∩ dmn(fc2
β
), then fρ(x, y) = fc2

β
(x, y).

Let ρ′ = ρ ↾ 2{w : yβ+1 ≤ w}, µ(β + 1) = µ(β) + 1 and cβ+1 = cβ ∪ {(rcβ + 1, (x1
µ(β+1) +

1, ρ′))}. Now we check (6)–(10) and (12)–(17) for β + 1. (6) and (7) are clear. For
(8), we have gcβ+1

(rcβ+1) = (x1
β+1 + 1, ρ′). If (a, b) ∈ dmn(fρ′), then yβ+1 ≤ a, b and

fρ′(a, b) = fρ(a, b) > x1
β+1 by (19); so (8) holds. If z ≤ rcβ , then by (17) and (16),

1st(gcβ+1
(z)) = 1st(gcβ(z)) ≤ 1st(gcβ(rcβ)) = c1β = x1

β + 1 < x1
β+1 + 1 = 1st(gcβ+1

(rβ+1).

This proves (9). For (10), suppose that z ≤ rcβ+1
, a, b ∈ X , and ∀w[z ≤ w ≤ rcβ+1

→

(a, b) ∈ dmn(2nd(gcβ+1
(w))]. Then ∀w[z ≤ w ≤ rcβ → (a, b) ∈ dmn(2nd(gcβ+1

(w)) =

dmn(2nd(gcβ(w))], and so (10) for β gives

∀w[z ≤ w ≤ rcβ → f2nd(gcβ (z))(a, b) = f2nd(gcβ (w))(a, b) = f2nd(gcβ (rcβ ))(a, b)]

and hence

(⋆) ∀w[z ≤ w ≤ rcβ → f2nd(gcβ+1
(z))(a, b) = f2nd(gcβ+1

(w))(a, b) = f2nd(gcβ+1
(rcβ+1

))(a, b)]

Now if z ≤ rcβ , then our assumption for proving (10) implies that

(a, b) ∈ dmn(2nd(gcβ+1
(rcβ)) ∩ dmn(2nd(gcβ+1

(rcβ+1
))],

and hence by (20), f2nd(gcβ (rcβ ))(a, b) = f2nd(gcβ+1
(rcβ+1

))(a, b). Together with (⋆) this gives

(10) for β + 1.
(12) and (13) are clear. (14) follows from (18). For (15), suppose that γ, δ ≤ β + 1.

Then by (18), fc2
β+1

(yγ , yδ) = H(γ, δ) = x0
G(γ,δ). (16) is clear. (17) follows from (16) for β

and β + 1. Thus we have checked (6)–(10) and (12)–(17) for β + 1.

Now suppose that β is limit < κ. Then β < p(µ, F ), so there is an e ∈ Q such that
∀γ < β[cγ < e]. For each γ < β we have rcγ ∈ dmn(gcγ ) ∩ dmn(ge), and by (11)(b),
cγ(rcγ ) = e(rcγ ). Hence Dcγ = Dcγ (rcγ ) = De(rcγ ). By (14), yγ ∈ Dcγ = De(rcγ ). For
each γ < β let

dγ = max{z ∈ dmn(e) : yγ ∈ De(z)]}.

(21) ∀γ, δ < β[rcγ < dδ].

In fact, suppose that δ < β. Suppose that δ < ε < β. By (14), yδ ∈ Dcε . Thus
yδ ∈ Dcε(rcε) = De(rcε). Hence rcε ≤ dδ. This is true for all ε ∈ (δ, β). So (21) holds.
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Now {rcγ : γ < β} has cofinality less than κ and also {dγ : γ < β} has coinitiality
less than κ. Hence the assumption that κ = p(µ, F ) gives an element rβ of X such that
∀γ < κ[rcγ < rβ < dγ ] Now let dmn(e′) = dmn(e) ∩ (X ↾ rβ); e′ = e ↾ dmn(e′).

Now since β < p(µ, F ), there is a yβ less than each yγ for γ < β, with yβ not near 0.
We apply Lemma 32.22 with ξ replaced by β + 1, u replaced by 〈yγ : γ ≤ β〉, H given by
H(γ, δ) = x0

G(γ,δ) for all γ, δ ≤ β, w replaced by x1
β, ρ replaced by 2nd(e(rβ)). Note that

by (15) ∀γ, δ < β[f2nd(e(rβ))(yγ , yδ) = x0
G(γ,δ)]. So we get p ∈ P such that

(22) ∀γ, δ ≤ β[(yγ , yδ) ∈ dmn(fp) and fp(yγ , yδ) = H(γ, δ)].

(23) fp(x, y) > x1
β for all x, y such that (x, y) ∈ dmn(fp).

(24) If (x, y) ∈ dmn(fp) ∩ dmn(f2nd(e(rβ))), then fp(x, y) = f2nd(e(rβ))(x, y).

Let ρ′ = p ↾ 2{s : rβ ≤ s}. Since β < κ and κ is regular, let µ(β) = sup{µ(γ) : γ < β}
Let cβ = e′ ∪ {(rβ, (x1

µ(β) + 1, ρ′))}. Now we check (6)–(10) and (12)–(17). (6) and (7) are

clear. For (8), suppose that z ≤ rβ . If z ∈ dmn(c′) the conclusion is clear. Suppose that
z = rβ. Then gcβ(rβ) = (x1

β + 1, ρ′), and ∀(a, b) ∈ dmn(fρ′)[fρ′(a, b) ≥ x1
β + 1 by (23). So

(8) holds. (9) is clear. (10) follows from (24). Clearly (12) and (13) hold. (14) and (15)
follow from (22). (16) holds by definition. (17) is clear.

This finishes the construction of 〈cβ : β < κ〉.
Suppose that 〈cβ : β < κ〉 is bounded; say cβ < s for all β < κ. For each η < θ+ we

have by (14) yη ∈ Dcη = Dcη (rcη) = Ds(rsη), so we can let zη be the maximum element of

Hη
def
= {z ∈ dmn(gc) : ∀z′[rcη ≤ z

′ ≤ z → yη ∈ Ds(z
′)]}.

(25) rcβ ≤ zη for all β < κ.

For, suppose that β < κ. Wlog η < β. Suppose that rcη ≤ z′ ≤ rcβ . By (14), yη ∈
Dcβ (z′) = Dc(z

′), so by the definition of Hη we have rcβ ≤ zη, and (25) holds.
By (16) and (25), for each η < θ+, c1(zη) ≥ c1(rcβ) = c1β > x1

β for all β < κ. So

there is a K(η) < θ such that x0
K(η) < c1zη . Let A ∈ [θ+]θ

+

and γ ∈ θ be such that

∀η ∈ A[K(η) = γ]. Choose ζ, η ∈ A such that G(η, ζ) > γ. Let z∗ = min(zη, zζ). So
rcη , rcζ ≤ z

∗ ≤ zη, zζ , so [yη, yζ} ⊆ Dc(z∗). Hence with µ = max(η, ζ + 1),

(gc(z
∗))(yη, yζ) = (gc(dcµ))(yη, yζ) = c2µ(yη, yζ) = x0

G(η,ζ) < x0
γ ;

(gc(z
∗))(yη, yζ) ≥ c

1(z∗) > x0
K(η) = x0

γ ,

contradiction.
Since 〈cβ : β < κ〉 is unbounded, it follows that t(µ, F ) ≤ κ < t(µ, F ), contradiction.

Theorem 32.25.

p = min{κ : ∃A ∈ κ([ω]ω)[∀ξ, η < κ∃ρ < κ[Aρ ⊆ Aξ ∩ Aη]

∧ ¬∃C ∈ [ω]ω∀ξ < κ[|C\Aξ| < ω]]}.
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Proof. Clearly ≤ holds. Now suppose that A ⊆ [ω]ω, |A | = p, ∀F ∈ [A ]<ω[
⋂
F

is infinite], and there is no C ∈ [ω]ω such that C\A is finite for all A ∈ A . Let B =
{
⋂
F : F ∈ A <ω}, and let A ∈ pB be a bijection. Clearly A satisfies the conditions of the

theorem.

Theorem 32.26. Assume that p < t. Suppose that A ∈ p([ω]ω) is as in Theorem 32.24
with κ replaced by p. Then there exist an uncountable regular κ < p and a B ∈ κ([ω]ω)
such that:

(i) ∀ξ < p∀α < κ[Bα ∩ Aξ is infinite].

(ii) ∀α, β < κ[β ≤ α→ Bα\Bβ is finite].

(iii) ¬∃C ∈ [ω]ω[∀α < κ[|C\Bα| < ω] and ∀ξ < p[C ∩ Aξ is infinite]].

Proof. We define ζ and B′ ∈ ζ([ω]ω) by recursion so that

(1) ∀ξ < ζ∀α < p[B′
ξ ∩Aα is infinite].

B′
0 = ω. Obviously (1) holds. Now assume that B′

ξ has been defined so that (1) holds. Let
B′
ξ+1 = B′

ξ ∩Aξ. Thus B′
ξ+1 is infinite, by (1) for ξ. Suppose that η < p. By the condition

in Theorem 32.24 there is a ρ < p such that Aρ ⊆ Aξ∩Aη. By (1) for ξ, B′∩Aρ is infinite;
so B′ ∩ Aξ ∩ Aη is infinite. So (1) holds for ξ + 1. For ξ limit we consider two cases.

Case 1. There is an infinite C ⊆ ω such that ∀η < ξ[C\B′
η is finite] and ∀γ < p[C∩Aγ

is infinite]. Then we let B′
ξ be such a C. Clearly (1) holds for ξ.

Case 2. Otherwise let ζ = ξ and stop.

This finishes the construction. Clearly ζ is not a successor ordinal.

(2) ζ ≤ p.

In fact, suppose not. Then ∀η < p[B′
p\B

′
η is finite]. Now for any ξ < p we have B′

ξ+1 ⊆ Aξ,
so B′

p\Aξ ⊆ B
′
p\B

′
ξ+1; so B′

p\Aξ is finite. This contradicts the hypothesis on A.

(3) If ξ < η < ζ, then B′
η\B

′
ξ is finite.

In fact, this is clear if η is limit, or if η = ξ + m for some m ∈ ω. So suppose that
η = ω · α + m with m ∈ ω\{0} and ξ < ω · α. Then B′

η\B
′
ξ ⊆ B′

ω·α\B
′
ξ, and the latter is

finite. So (3) holds.

(4) ζ < p.

For, suppose that ζ = p. Since p < t, there is a C ∈ [ω]ω such that ∀ξ < ζ[C ⊆∗ B′
ξ]. If

ξ < p, then C ⊆∗ B′
ξ+1 ⊆ Aξ. This contradicts Theorem 32.24. So (4) holds.

Let κ = cf(ζ).

(5) ω < κ.

For, assume that ω = κ. Let 〈ρi : i < ω〉 be strictly increasing with supremum ζ. For
each n ∈ ω let B̂n = (

⋂

i≤nB
′
ρi

)\n. Then ∀m,n ∈ ω[m ≤ n → B̂n ⊆ B̂m]. Clearly

775



⋂

n∈ω B̂n = ∅. For any n ∈ ω,

B′
ρn△B̂n =



B′
ρn\








⋂

i≤n

B′
ρi



 \n







 ∪












⋂

i≤n

B′
ρi



 \n



 \B′
ρn





=
⋃

i≤n

(B′
ρn
\B′

ρi
) ∪ (B′

ρn
∩ n)

and this last set is finite. Thus

(6) ∀n ∈ ω[B′
n△B̂n is finite].

From (1) and (6) it follows that ∀n ∈ ω∀ξ < p[B̂n ∩ Aξ is infinite]. Now for each ξ < p

define fξ ∈
ωω by setting fξ(n) = min(B̂n ∩ Aξ). Now p < t ≤ b, so there is an f ∈ ωω

such that ∀ξ < p[fξ ≤∗ f ]. Let C =
⋃

n∈ω((f(n) + 1) ∩ B̂n).

(7) ∀ξ < p[C ∩Aξ is infinite].

In fact, let ξ < p. Choose m ∈ ω so that ∀n ≥ m[fξ(n) ≤ f(n)]. Then for all n ≥ m,

min(B̂n ∩Aξ) = fξ(n) ≤ f(n) and so min(B̂n ∩Aξ) ∈ C. Since min(B̂n ∩Aξ) > geqn, this
proves (7).

Now for all n ∈ ω, C\B̂n ⊆ f(n) + 1, so C ∩ B̂n is finite. Hence also C ∩B′
n is finite,

by (6). But this means that B′
ζ is defined, contradiction.

So (5) holds, and the theorem is proved.

Theorem 32.27. Suppose that ζ < t is an ordinal, A ∈ ζ([ω]ω), B ∈ ω([ω]ω), and:
(i) Bn\Bm is finite if m < n.
(ii) ∀ξ < ζ∀n ∈ ω[Aξ ∩Bn is infinite].
(iii) ∀ξ, η < ζ[η ≤ ξ → ∃n ∈ ω[Bn ∩ (Aξ\Aη) is finite]].

Then there is a C ∈ [ω]ω such that ∀ξ < ζ∀n ∈ ω[C\Aξ and C\Bn are finite].

Proof. For each n ∈ ω let B′
n = (

⋂

m≤nBm)\n. Then clearly

(1) B′
n ⊆ B

′
m if m < n.

(2) ∀ξ < ζ∀n ∈ ω[Aξ ∩B′
n is infinite].

We prove (2) for fixed ξ < ζ by induction on n. It is clear for n = 0. Assuming it for n,

Aξ ∩B
′
n+1 = Aξ ∩








⋂

m≤n+1

Bm



 \(n+ 1)





=



Aξ ∩








⋂

m≤n

Bm



 \n







 ∪ (Aξ ∩ (Bn+1\(n+ 1))),

and the latter is infinite by the inductive hypothesis.
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(3) ∀ξ, η < ζ[η ≤ ξ → ∃n ∈ ω[B′
n ∩ (Aξ\Aη) is finite]].

This is clear.
For all ξ < ζ let fξ ∈

ωω be strictly increasing such that ∀n ∈ ω[fξ(n) ∈ B′
n∩Aξ]. Since

ζ < t ≤ b, there is an f ∈ ωω such that fξ <
∗ f for all ξ < ζ. Define B∗ =

⋃

n∈ω(B′
n∩f(n)).

(4) ∀ξ < ζ[Aξ ∩B∗ is infinite].

In fact, let ξ < ζ. Choose N so that ∀n ≥ N [fξ(n) < f(n)]. Then for any n ≥ N we have
fξ(n) ∈ Aξ ∩ f(n). So (4) holds.

(5) ∀ξ, η < ζ[η ≤ ξ → B∗ ∩ (Aξ\Aη) is finite].

In fact, for any n ∈ ω we have B∗\B′
n ⊆

⋃

i<n(B′
i∩f(i)), so B∗\B′

n is finite. Now suppose
that ξ, η < ζ and η ≤ ξ. By (3), choose n ∈ ω such that B′

n ∩ (Aξ\Aη) is finite. Then, in
P(ω)/fin we have [B∗] ≤ [B′

n] ≤ [ω\(Aξ\Aη)], and (5) follows.
Now by (5), 〈B∗ ∩ Aξ : ξ < ζ〉 is decreasing mod finite. Since ζ < t, choose C ∈ [ω]ω

such that [C] ≤ [B∗ ∩ Aξ] for all ξ < ζ. Thus ∀ξ < ζ[C\Aξ is finite]. Also, for any n ∈ ω,
B∗\B′

n is finite. (See above, after (5).) Now B∗\Bn ⊆ B∗\B′
n, so B∗\Bn is finite. Now

C\Bn ⊆ (C\B∗) ∪ (B∗\Bn), so C\Bn is finite.

If σ and τ are finite subsets of ω, we write σ ⊳ τ if σ is a proper initial segment of τ . Now
we define:

Σ = {S ∈ [[ω]<ω\{∅}]ω : ∀σ, τ ∈ S[σ 6= τ → min(σ) 6= min(τ)]}

S ≺Σ S′ iff S, S′ ∈ Σ and ∃F ∈ [S′]<ω∀τ ∈ S′\F∃σ ∈ S[σ ⊳ τ ].

Note that the σ ∈ S asserted to exist here is unique, since σ ⊳ τ implies that the first
element of σ is the same as the first element of τ , and distinct members of S have different
first members.

Proposition 32.28. If S ∈ Σ and m ∈ ω, then {σ ∈ S : min(σ) < m} and {σ ∈ S :
max(σ) < m} are finite.

Proof. For, obviously {σ ∈ S : min(σ) < m} is finite. Since {σ ∈ S : max(σ) < m} ⊆
{σ ∈ S : min(σ) < m}, also {σ ∈ S : max(σ) < m} is finite.

Proposition 32.29. ∀S, S′ ∈ Σ[S ≺Σ S′ iff ∃n ∈ ω∀τ ∈ S′[min(τ) > n→ ∃σ ∈ S[σ ⊳ τ ]].

Proof. ⇒: Assume that S ≺Σ S′, and choose F ∈ [S′]<ω correspondingly. Let n be
greater than each minσ) for σ ∈ F . Suppose that τ ∈ S′ and min(τ) > n. Then τ /∈ F , so
∃σ ∈ S[σ ⊳ τ ].
⇐: Assume the indicated condition, and choose n correspondingly. Let F = {σ ∈

S′ : min(σ) ≤ n}. So F is a finite subset of S′. If τ ∈ S′\F , then min(σ) > n, and hence
∃σ ∈ S[σ ⊳ τ ].

Theorem 32.30. ≺Σ is transitive.

777



Proof. Suppose that S ≺ S′ ≺ S′′. Choose n0, n1 such that

∀τ ∈ S′[min(τ) > n0 → ∃σ ∈ S[σ ⊳ τ ]];

∀ν ∈ S′′[min(ν) > n1 → ∃τ ∈ S
′[τ ⊳ ν]].

Let
m = max{n1, sup{max(τ) : τ ∈ S′, min(τ) ≤ n0}.

Now suppose that ν ∈ S′′ and min(ν) > m. Since min(ν) > n1, it follows that there is a
τ ∈ S′ such that τ ⊳ ν. If min(τ) ≤ n0, then min(ν) > m ≥ max(τ), contradiction. So
min(τ) > n0 and so there is a σ ∈ S such that σ ⊳ τ , hence σ ⊳ ν.

Theorem 32.31. Suppose that ζ < t is an ordinal, S ∈ ζΣ, and ∀η, ξ < ζ[η < ξ → Sη ≺
Sξ]. Then there is a T ∈ Σ such that Sξ ≺ T for all ξ < ζ.

Proof. For each n ∈ ω let Bn = {σ ∈ [ω]<ω\{∅} : min(σ) ≥ n}. For each ξ < ζ let

Aξ = {τ ∈ [ω]<ω\{∅} : ∃σ ∈ Sξ[σ ⊳ τ ]}

Suppose that η < ξ < ζ. Since Sη ≺ Sξ, choose n0 so that ∀τ ∈ Sξ[min(τ) ≥ n0 → ∃σ ∈
Sη[σ ⊳ τ ]]. Thus Sξ ∩Bn0

⊆ Aη. Choose n such that max(σ) < n whenever σ ∈ Sξ\Bn0
.

(1) Aξ ∩Bn ⊆ Aη.

In fact, suppose that τ ∈ Aξ ∩Bn. So min(τ) ≥ n. Choose σ ∈ Sξ such that σ ⊳ τ . Then
min(σ) ≥ n, so by the choice of n, σ ∈ Bn0

. So min(σ) ≥ n0. Hence σ ∈ Sξ ∩ Bn0
⊆ Aη,

so there is a ρ ∈ Sη such that ρ ⊳ σ. Thus ρ ⊳ τ . This shows that τ ∈ Aη, proving (1).
Now obviously each Aξ is infinite, so also Aξ ∩ Bn is infinite. Clearly Bm ⊆ Bn if

n < m. Let f : ω → [ω]<ω be a bijection, A′
ξ = {m ∈ ω : f(m) ∈ Aξ} for all ξ < ζ, and

B′
n = {m ∈ ω : f(m) ∈ Bn}. Then the hypotheses of Theorem 32.26 hold for A′

ξ and B′
n.

So let C ∈ ([ω]<ω)ω be such that ∀ξ < ζ∀n ∈ ω[C\Bn and C\Aξ are finite].
Now suppose that ξ < ζ; we show that Sξ ≺ C. Choose n ∈ ω such that ∀σ ∈

C[min(σ) ≥ n → σ ∈ Aξ]. Now take any τ ∈ C such that min(τ) ≥ n. Then τ ∈ Aξ, so
there is a σ ∈ Sξ such that σ ⊳ τ .

Theorem 32.32. Suppose that p < t, A ∈ p([ω]ω) as in Theorem 32.24, and κ and
B ∈ κ([ω]ω) as in Theorem 32.25. Then there is a function S with domain p+1 such that:

(i) ∀ξ ≤ p[Sξ ∈ Σ].
(ii) ∀ξ < p∀α < κ[Sξ\[Bα]<ω is finite].
(iii) ∀η, ξ ≤ p[η < ξ → Sη ≺ Sξ].
(iv) ∀ξ < p∀σ ∈ Sξ+1[max(σ) ∈ Aξ].

Proof. We define Sξ for ξ ≤ p by recursion.
ξ = 0: Since κ < p < t and ∀α, β < κ[α < β → Bβ\Bα is finite], there is an infinite

C ⊆ ω such that C\Bα is finite for all α < κ. Let S0 = {{n} : n ∈ C}. Clearly (i)
holds for ξ = 0. Suppose that α < κ. Then C\Bα is finite, so there is an N such that
∀n ≥ N [n ∈ C → n ∈ Bα]. Hence ∀x ∈ S0\{{n} : n < N}[x ∈ [Bα]<ω]. So S0\[Bα]<ω is
finite. So (ii) holds. (iii) and (iv) hold vacuously for ξ = 0.
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ξ to ξ + 1: If α < β < κ then Bβ ∩ Aξ\(Bα ∩ Aξ) is finite; and by (i) of Theorem
32.25, Bα ∩Aξ is infinite for all α < κ. Hence since κ < p < t, there is an infinite C ⊆ Aξ
such that C\Bα is finite for all α < κ. For each σ ∈ Sξ there is a σ′ ∈ [ω]<ω\{∅} such
that σ ⊳ σ′ ⊆ σ ∪ C; namely one can take any n ∈ C with n > σ (possible since σ is finite
and C is infinite), and let σ′ = σ ∪ {n}. Let Sξ+1 = {σ′ : σ ∈ Sξ}. Then (i) is clear for
ξ + 1. Concerning (ii), suppose that α < κ. Choose N so that ∀n ≥ N [n ∈ C → n ∈ Bα],
and choose M so that ∀σ ∈ Sξ[min(σ) ≥ M → σ ∈ [Bα]<ω]. Suppose that τ ∈ Sξ+1 and
min(τ) ≥ M,N . Say τ = σ′ with σ ∈ Sξ. Since min(σ) ≥ M it follows that σ ∈ [Bα]<ω.
Now σ′\σ ⊆ C and min(σ′\σ) ≥ N , so σ′\σ ⊆ Bα. Hence τ ∈ [Bα]<ω. This proves (ii).
Clearly Sξ ≺ Sξ+1. Finally, (iv) holds since for σ ∈ Sξ+1 we have max(σ) ∈ C ⊆ Aξ.

ξ limit, ξ < p: Let ζ max(ξ, κ) and

I = {I ∈ [[ω]<ω\{∅}]<ω : ∀σ, τ ∈ I[σ 6= τ → min(σ) 6= min(τ)]};

P = I× [ζ]<ω;

(I, J) ≤ (I ′, J ′) iff (I, J), (I ′, J ′) ∈ P, I ⊆ I ′, J ⊆ J ′, and ∀σ ∈ I ′\I :

(1) ∀η ∈ J ∩ ξ∃τ ∈ Sη[τ ⊳ σ];

(2) ∀α ∈ J ∩ κ[σ ⊆ Bα].

Clearly ≤ is reflexive on P. Suppose that (I, J) ≤ (I ′, J ′) ≤ (I ′′, J ′′) and σ ∈ I ′′\I.
Case 1. σ /∈ I ′. Then (1) and (2) hold for J ′, hence also for J .
Case 2. σ ∈ I ′. Clearly (1) and (2) hold for J .

It follows that ≤ is transitive. Clearly ≤ is antisymmetric. So ≤ is a partial order on P.
Also, P is σ-centered upwards. For, P =

⋃

I0∈I{(I, J) ∈ P : I = I0}, and for any I0 ∈ I

the set {(I, J) ∈ P : I = I0} is centered: if (I0, J0), . . . , (I0, Jm) ∈ P, then for each k ≤ m,
(I0, Jk) ≤ (I0, J0 ∪ . . . ∪ Jm).

(3) ∀η < ζ[Q′
η

def
= {(I, J) ∈ P : η ∈ J} is cofinal in P].

For, given η < ζ and (I, J) ∈ P we have (I, J) ≤ (I, J ∪ {η}).

(4) ∀k ∈ ω[Qk
def
= {(I, J) ∈ P : ∃σ ∈ I[σ 6⊆ k]} is cofinal in P].

To prove (4), let k ∈ ω and (I, J) ∈ P. By (3) we may assume that 0 ∈ J . Let η∗ =
max(J ∩ ξ) and B∗ =

⋂

α∈J∩κBα.

(5)
⋃
Sη∗\B∗ is finite.

For, let α be the maximum element of J ∩ κ. Then by Theorem 32.25(ii), Bα\B
∗ is finite.

Choose m ∈ ω such that ∀p ≥ m[p ∈ Bα → p ∈ B∗]. Also by (ii), there is an n ∈ ω such
that ∀σ ∈ Sη∗ [max(σ) ≥ n→ σ ∈ [Bα]<ω]. Take any p ≥ m,n and suppose that l ∈

⋃
Sη∗

with l ≥ p. Say l ∈ σ ∈ Sη∗ . Then max(σ) ≥ l ≥ p ≥ n, so σ ∈ [Bα]<ω. Hence l ∈ Bα and
l ≥ m, so l ∈ B∗. This proves (5).

By (5) there is a k′ ≥ k such that
⋃
Sη∗\B∗ ⊆ k′.

(6) ∃σ ∈ Sη∗ [k′ ≤ min(σ) and ∀η ∈ J ∩ η∗∃τ ∈ Sη[τ ⊳ σ]].

In fact, Sη ≺ Sη∗ for all η ∈ J ∩ η∗, so for every η ∈ J ∩ η∗ there is an sη ∈ ω such that
∀τ ∈ Sη∗ [min(τ) ≥ sη → ∃σ ∈ Sη[σ ⊳ τ ]]. Let t = max{sη : η ∈ J ∩ η∗}. Let σ ∈ Sη∗ be
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such that min(σ) ≥ k′, t. Suppose that η ∈ J ∩ η∗. Then there is a τ ∈ Sη such that τ ⊳ σ.
So (6) holds.

Take σ as in (6). Since σ ∈ Sη∗ and k′ ≤ min(σ), it follows that σ ⊆ B∗. Since B∗ is
infinite, choose m ∈ B∗ such that m > max(σ). Let σ′ = σ ∪ {m}. Now m > max(σ) ≥
min(σ) ≥ k′ ≥ k, so (I, J) ≤ (I ∪ {σ′}, J) ∈ Qk. This proves (4).

The following two statements are clear:

(7) If η < ξ, (I, J) ∈ Q′
η, and (I, J) ≤ (I ′, J ′), then (I ′, J ′) ∈ Q′

η.

(8) If k ∈ ω, (I, J) ∈ Qk, and (I, J) ≤ (I ′, J ′), then (I ′, J ′) ∈ Qk.

Now we apply mσ = p to get R ⊆ P such that R is upwards directed and R intersects every
Q′
η, η < ζ and every Qk, k ∈ ω. Let T =

⋃
{I : (I, J) ∈ R}.

(9) T is infinite.

For, suppose that σi ∈ T for each i < m. Say σi ∈ Ii with (Ii, Ji) ∈ R, for each i < m. Let
k be larger than each member of

⋃

i<m σi, and choose (I ′, J ′) ∈ R ∩ Qk. Choose τ ∈ I ′

such that τ 6⊆ k. Then τ 6= σi for all i < m. So (9) holds.

(10) ∀η < ξ[Sη ≺ T ].

For, suppose that η < ξ. Choose (I, J) ∈ R ∩Q′
η. Thus η ∈ J . Let k ∈ ω be greater than

max(σ) for all σ ∈ I. Suppose that τ ∈ T and min(τ) ≥ k. Then τ /∈ I. Say τ ∈ I ′ with
(I ′, J ′) ∈ R. Choose (I ′′, J ′′) ∈ R such that (I, J), (I ′, J ′) ≤ (I ′′, J ′′). Then τ ∈ I ′′ since
I ′ ⊆ I ′′. Since (I, J) ≤ (I ′′, J ′′) it follows that there is a σ ∈ Sη such that σ ⊳ τ . This
proves (10).

(11) ∀α < κ[T\[Bα]<ω is finite].

For, let α < κ. Choose (I, J) ∈ R ∩ Q′
α. Let k be greater than max(σ) for all σ ∈ I.

Suppose that σ ∈ T and min(σ) ≥ k. Say σ ∈ I ′ with (I ′, J ′) ∈ R. So σ /∈ I. Choose
(I ′′, J ′′) ∈ R such that (I, J), (I ′, J ′) ≤ (I ′′, J ′′). Hence α ∈ J ′′. It follows that σ ⊆ Bα,
i.e., σ ∈ [Bα]<ω. So (11) holds.

Let Sξ = T . Clearly (i)–(iii) hold. (iv) holds vacuously.
ξ = p. Since p < t, we can apply Theorem 32.30 to get Sp such that Sξ ≺ Sp for all

ξ < p. This completes the construction.

A strict partial order is a pair (P,<) such that < is irreflexive and transitive. Generalizing
the notion for linear orderings, for infinite regular cardinals κ, λ, and a strict partial order
(X,<), a (κ, λ)-gap in (X,<) is a pair (a, b) with a ∈ κX and b ∈ λX such that:

(1) ∀α, β < κ∀γ, δ < λ[α < β and γ < δ imply that aα < αβ < bδ < bγ ].

(2) There is no x ∈ X such that ∀α < κ∀β < λ[aα < x < bβ ].

A gap (a, b) ∈ (κX)× (λX) is linear provided the following conditions hold:

∀x ∈ X [∀ξ < κ[aξ < x]→ ∃η < λ[bη < x]];

∀x ∈ X [∀ξ < λ[x < bξ]→ ∃η < κ[x < aη]].

The gap is then called a linear (κ, λ)-gap.
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Note that P(ω)/fin under < is a strict partial order. So is ωω under the relation <∗,
where f <∗ g iff ∃k∀n ≥ k[f(n) ≤ g(n)] and {n : f(n) < g(n)} is infinite.

Theorem 32.33. If p < t, then there is a regular uncountable κ < p such that there is a
linear (p, κ)-gap in (P(ω)/fin, <) and also one in (ωω,<∗).

Proof. Let A ∈ p([ω]ω) be as in Theorem 32.24, κ and B ∈ κ([ω]ω) as in Theorem
32.25, S ∈ p+1Σ as in Theorem 32.31. Recall that p is regular and uncountable. Let
A′ = {min(σ) : σ ∈ Sp}, and for each n ∈ A′ let σn ∈ Sp be such that n = min(σn).
Clearly A′ is infinite. For any α < κ and n ∈ A′ let

fα(n) =

{
min(σn\Bα) if σn\Bα 6= ∅,
1 + max(σn) otherwise.

For each ξ < p and each n ∈ A′ let

gξ(n) =

{
max(σ) such that σ ∈ Sξ+1 and σ ⊳ σn} if there is such a σ
1 + max(σn) otherwise.

If α < κ and n ∈ A′, then (σn\Bα) ∩ fα(n) = ∅, so

(1) For all α < κ and n ∈ A′ we have σn ∩ fα(n) ⊆ Bα.

(2) ∀ξ < p∃k ∈ ω∀n ∈ A′\k[gξ(n) ∈ Aξ].

In fact, Sξ+1 ≺ Sp by Theorem 32.31(iii). Hence there is a k ∈ ω such that for all τ ∈ Sp, if
min(τ) ≥ k then ∃µ ∈ Sξ+1[µ⊳τ ]. Suppose that n ≥ k and n ∈ A′. Then min(σn) = n ≥ k,
so there is a τ ∈ Sξ+1 such that τ ⊳ σn. Hence the first clause in the definition of gξ(n)
applies, and we then get gξ(n) ∈ Aξ by Theorem 32.31(iv).

(3) ∀n ∈ A′[n ≤ gξ(n)].

In fact, let n ∈ A′. If the first clause in the definition of gξ(n) holds, then n = min(σn) ≤
max(σ) = gξ(n), where σ ⊳ σn as in the definition. If the second clause holds, then
n = min(σn) ≤ 1 + max(σn) = gξ(n). This proves (3).

(4) If α ≤ β < κ, then there is an n0 ∈ ω such that ∀n ∈ A′\n0[σn ∩ (Bβ\Bα) = ∅].

For, assume that α ≤ β < κ. Then Bβ\Bα is finite by Theorem 32.25(ii). Let n0 >
(Bβ\Bα). Suppose that n ∈ A′\n0. Then min(σn) = n ≥ n0, so σn ∩ (Bβ\Bα) = ∅.

(5) If α ≤ β < κ, and with n0 as in (4), we have ∀n ∈ A′\n0[fβ(n) ≤ fα(n)].

In fact, by (4) we have σn\Bα ⊆ σn\Bβ.
Case 1. σn\Bα 6= ∅. Then fβ(n) ≤ fα(n) by definition.
Case 2. σn\Bα = ∅ 6= σn\Bβ. Then fβ(n) = min(σn\Bβ) ≤ 1 + max(σn) = fα(n).
Case 3. σn\Bβ = ∅. Clearly fβ(n) = fα(n).

So (5) holds.

(6) ∀α < κ∃β ∈ (α, κ)[{n ∈ A′ : fβ(n) ≥ fα(n)} is finite].
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Suppose not; so there is an α < κ such that for all β ∈ (α, κ)[{n ∈ A′ : fβ(n) ≥ fα(n)} is
infinite]. For each β < κ let Cβ = {n ∈ A′ : fβ(n) ≥ fα(n)}.

(7) ∀β < κ[Cβ is infinite].

For, suppose that β < κ and Cβ is finite. Then by definition, β ≤ α. Choose m ∈ ω such
that ∀n ≥ m[n ∈ A′ → fβ(n) < fα(n)]. This contradicts (5).

(8) ∀β, γ < κ[β < γ → Cγ ⊆
∗ Cβ ].

In fact, suppose that β < γ < κ. By (5) choose k ∈ ω so that ∀n ∈ A′\k[fγ(n) ≤ fβ(n)].
Hence if n ≥ k and n ∈ Cγ then fα(n) ≤ fγ(n) ≤ fβ(n). So (8) holds.

Since κ < t (applied to A′ rather than ω), let D ∈ [A′]ω be such that ∀β ∈ κ[D ⊆∗ Cβ ].
In particular, D ⊆∗ C0, so D\C0 is finite. Now let

E =
⋃

n∈D

(σn ∩ [n, fα(n))).

(9) ∀β < p∃k ∈ ω∀n ∈ A′\k∃τn ∈ Sβ [τn ⊳ σn and τn ⊆ Bα]].

In fact, let β < p. Since Sβ ≺ Sp by Theorem 32.31(iii), by Proposition 32.28 choose k ∈ ω
such that ∀n ∈ A′[k < n → ∃τ ∈ Sβ [τ ≺ σn]]. Also, by Theorem 32.31(ii) choose l ∈ ω
so that ∀τ ∈ Sβ [l < min(τ) → τ ⊆ Bα]. Then ∀n > k, l[n ∈ A′ → ∃τn ∈ Sβ [τn ⊳ σn and
τn ⊆ Bα]].

(10) E is infinite.

For, take any β < p and let k be as in (9). Take any n ∈ D\k. Now if σn\Bα 6= ∅, then
max(τn) < min(σn\Bα), hence τn ⊆ fα(n). If σn\Bα = ∅, then clearly τn ⊆ fα(n). Hence
σn ∩ [n, fα(n)) 6= ∅. Thus (10) holds.

(11) ∀β ∈ (α, κ)[D ⊆∗ {n ∈ A′ : fβ(n) = fα(n)}].

In fact, suppose that α < β < κ. By the choice of D we have D ⊆∗ Cβ , and by (5)
∀n ≥ n0[fβ(n) ≤ fα(n)]. Hence (11) holds.

(12) ∀β ∈ κ[E ⊆∗ Bβ].

For, suppose that β ∈ κ. Now by (1), ∀n ∈ A′[σn ∩ fα(n) ⊆ Bα]. Thus E ⊆ Bα. If β ≤ α,
then by Theorem 32.25(ii), Bα ⊆∗ Bβ; hence E ⊆∗ Bβ. So we may assume that α < β. By
(11) choose k ∈ ω such that ∀n ≥ k[n ∈ D → fβ(n) = fα(n)]. Suppose that m is greater
than max(σp) for all p < k, and m ∈ E. Say p ∈ D and m ∈ σp ∩ [p, fα(p)). Then p ≥ k
and so fα(p) = fβ(p). Now σp ∩ [p, fα(p)) = σp ∩ [p, fβ(p)) ⊆ Bβ by (1). So m ∈ Bβ. This
proves (12).

(13) ∀ξ < p[E ∩Aξ is infinite].

For, suppose that ξ < p. By (9) choose k ∈ ω such that ∀n ∈ A′\k∃τn ∈ Sξ+1[τn ⊳
σn and τn ⊆ Bα]. Take any n ∈ D\k. Then τn ∈ Sξ+1, so max(τn) ∈ Aξ by Theorem
32.31(iv). Also max(τn) ∈ σn. Since τn ⊆ fα(n), because τn ⊆ Bα, we have max(τn) ∈ E.
So (13) holds.
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Now (10), (12), (13) contradict Theorem 32.25(iii). Hence (6) holds.

(14) If ξ < η < p, then ∃k ∈ ω∀n ∈ A′\k[gξ(n) < gη(n)].

For, assume that ξ < η < p. Then Sξ+1 ≺ Sη+1 ≺ Sp, so by Proposition 32.28,

∃k ∈ ω∀σ[min(σ) ≥ k → ∃τ ∈ Sη+1[τ ⊳ σ]];

∃l ∈ ω∀τ [min(τ) ≥ l→ ∃ρ ∈ Sξ+1[ρ ⊳ τ ]].

Let s = max(k, l). Suppose that n ≥ s and n ∈ A′. Then min(σn) = n ≥ k, so there is a
τ ∈ Sη+1 such that τ ⊳ σn. Also, min(τ) = min(σn) = n ≥ l, so there is a ρ ∈ Sξ+1 such
that ρ ⊳ τ . Now gξ(n) = max(ρ) < max(τ) = gη(n). This proves (14).

(15) ∀ξ < p∀α < κ[gξ ≤∗ fα].

For, suppose that ξ < p and α < κ. By (9), ∃N∀n ∈ A′\N∃τ ∈ Sξ+1[τ ⊳ σn and τ ⊆ Bα].
Thus for any n ∈ A′\N ,

gξ(n) = max(τ) ≤ min(σn\Bα) = fα(n) if σn\Bα 6= ∅

or gξ(n) = max(τ) ≤ 1 + max(σn) = fα(n) if σn\Bα = ∅,

proving (15).

(16) Suppose that f ∈ A′

ω and ∀α < κ[f ≤∗ fα]. Then ∃ξ < p[f ≤∗ gξ].

For, suppose that f ∈ A′

ω and ∀α < κ[f ≤∗ fα]. For any n ∈ A′ let

f ′(n) =

{
f(n) if f(n) ≤ 1 + max(σn),
1 + max(σn) otherwise.

(17) ∀α < κ[f ′ ≤∗ fα].

For, choose k ∈ ω such that ∀n ∈ A′\k[f(n) ≤ fα(n)]. Take any n ∈ A′\k.
Case 1. f(n) ≤ 1 + max(σn). Then f ′(n) = f(n) ≤ fα(n).
Case 2. f(n) > 1 + max(σn). Then f ′(n) = 1 + max(σn) < f(n) ≤ fα(n).

So (17) holds.

(18) If ξ < p and f ′ ≤∗ gξ, then f ≤∗ gξ.

In fact, suppose that ξ < p and f ′ ≤∗ gξ. Choose k so that ∀n ∈ A′\k[f ′(n) ≤ gξ(n)].
Since always gξ(n) ≤ 1 + max(σn), it follows that ∀n ∈ A′\k[f(n) ≤ gξ(n)]. Thus f ≤∗ gξ.

By (17) and (18) we may assume that f(n) ≤ 1 + max(σn) for all n ∈ A′. Now let
D′ =

⋃

n∈A′(σn ∩ f(n)).

(19) ∀α < κ[D′\Bα is finite].

In fact, fix α < κ. Then D′\Bα =
⋃

n∈A′((σn ∩ f(n))\Bα). Choose k so that ∀n ∈
A′\k[f(n) ≤ fα(n)]. Then if n ∈ A′\k and σn\Bα 6= ∅, then f(n) ≤ min(σn\Bα), and so
(σn\Bα) ∩ f(n) = ∅. It follows that

D′\Bα =
⋃

{σn ∩ f(n) : n ∈ A′ and n < k},
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and so D′\Bα is finite.
It now follows by Theorem 32.25(iii) that there is a ξ < p such that D′∩Aξ is finite. By

(2) let k be such that ∀n ∈ A′\k[gξ(n) ∈ Aξ]. Let l ∈ ω be such that ∀n ∈ A′\l∃τ ∈ Sξ+1[τ ⊳
σn]]. Hence if n ∈ A′, n ≥ k, l, and gξ(n) < f(n), then gξ(n) = max(τ) ∈ σn ∩ f(n) ∩ Aξ,
i.e., gξ(n) ∈ D′ ∩Aξ. Since D′ ∩Aξ is finite and gξ(n) ≥ n for all n by (3), it follows that
f ≤∗ gξ, proving (16).

(20) Suppose that f ∈ A′

ω and ∀ξ < p[gξ ≤∗ f ]. Then ∃α < κ[fα ≤∗ f ].

In fact, suppose that f ∈ A′

ω and ∀ξ < p[gξ ≤∗ f ], but ∀α < κ[fα 6≤∗ f ].

(21) There is an infinite C ⊆ A′ such that ∀α < κ[C\{n ∈ A′ : fα(n) > f(n)} is finite].

For, let aα = {n ∈ A′ : fα(n) > f(n)} for each α < κ. Suppose that F is a finite nonempty
subset of κ, and let β be the largest member of F . By (5), {n ∈ A′ : fβ(n) > fα(n)} is
finite for all α ∈ F , hence also

⋃

α∈F {n ∈ A
′ : fβ(n) > fα(n)} is finite. Hence the first set

in the following sequence is infinite:

{n ∈ A′ : fβ(n) > f(n)} ∩
⋂

α∈F

{n ∈ A′ : fβ(n) ≤ fα(n)}

⊆ {n ∈ A′ : ∀α ∈ F [fα(n) > f(n)]}

=
⋂

α∈F

aα.

Now since κ < p, the existence of C as in (21) follows.
Let D =

⋃

n∈C(σn ∩ f(n)).

(22) ∀α < κ[D\Bα is finite].

In fact, fix α < κ. Then D\Bα =
⋃

n∈C((σn ∩ f(n))\Bα). By the definition of C, choose
k so that ∀n ≥ k[n ∈ C → f(n) < fα(n)]. Then if n ≥ k, n ∈ C, and σn\Bα 6= ∅, then
f(n) ≤ min(σn\Bα), and so (σn\Bα) ∩ f(n) = ∅. It follows that

D\Bα =
⋃

{σn ∩ f(n) : n ∈ C and n < k},

and so D\Bα is finite.
Now by Theorem 32.25(iii) there is a ξ < p such that D∩Aξ is finite. By (2), let k ∈ ω

be such that ∀n ∈ A′\k[gξ(n) ∈ Aξ]. Let l ∈ ω be such that ∀n ∈ A′\l∃τ ∈ Sξ+1[τ ⊳ σn].
Since gξ <

∗ gξ+1 ≤∗ f , choose s so that ∀n ≥ s[gξ(n) < f(n)]. Hence if n ∈ C, n ≥ s, k, l,
gξ(n) = max(τ) ∈ σn ∩ f(n) ∩ Aξ, i.e., gξ(n) ∈ D ∩ Aξ. Since C is infinite and gξ(n) ≥ n
for all n ∈ C, this contradicts D ∩ Aξ being finite. So (20) holds.

Now by (6) and using p < t, there is a strictly increasing α ∈ pp such that ∀γ, δ < p[γ <
δ → fαδ <

∗ fαγ ]. Let k be the strictly increasing enumeration of A′; thus k is a bijection
from ω onto A′. Now by (14), (15), (16), and (20), (〈gξ ◦ k : ξ < p〉, 〈fαγ ◦ k : γ < κ〉) is a
linear (p, κ)-gap in (ωω,<∗).
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Now let M = A′ × ω and define

Uξ = {(n, i) : n ∈ A′, i ≤ gξ(n)} for all ξ < p

Vγ = {(n, i) : n ∈ A′, i ≤ fαγ (n)} for all γ < κ.

(23) (〈[Uξ] : ξ < p〉, 〈[Vγ] : γ < κ〉 is a linear (p, κ)-gap in (P(M)/fin, <).

To prove (23), first note:

(24) ∀β, γ < κ[β < γ → [Vγ ] < [Vβ]].

In fact, suppose that β < γ < κ. Then fαγ <
∗ fαβ . Hence there is a k ∈ ω such that

∀n ∈ A′\k[fαγ (n) ≤ fαβ(n)]. Hence Vγ\Vβ = {(n, i) : n ∈ A′ ∩ k, fαβ(n) < i ≤ fαγ (n)} is
finite. So [Vγ ] ≤ [Vβ ].

Now because fαγ <∗ fαβ , the set {n ∈ A′ : fαγ (n) < fαβ (n)} is infinite. Hence
Vβ\Vγ = {(n, i) : n ∈ A′ ∩ k, fαγ (n) < i ≤ fαβ (n)} is infinite. So [Vγ ] < [Vβ]. So (24)
holds.

(25) ∀ξ, η < p[ξ < η → [Uξ] < [Uη]].

For, assume ξ < η < p. By (14) ∃k ∈ ω∀n ∈ A′\k[gξ(n) < gη(n)]. Hence Uξ\Uη = {(n, i) :
n < k, gη(n) < i ≤ gξ(n)} is finite, so [Uξ] ≤ [Uη].

Now because gξ <
∗ gη, the set {n ∈ A′ : gξ(n) < gη(n)} is infinite. Hence Uη\Uξ =

{(n, i) : n ∈ A′ ∩ k, gξ(n) < i ≤ gη(n)} is infinite. So [Uξ] < [Uη]. This proves (25)

(26) ∀ξ < p∀γ < κ[[Uξ] ≤ [Vγ ]].

In fact, let ξ < p and γ < κ. By (15) choose k such that ∀n ∈ A′\k[gξ(n) ≤ fαγ (n)]. Hence
Uξ\Vγ = {(n, i) : n < k, fαγ (n) < i ≤ gξ(n)} is finite, and so [Uξ] ≤ [Vγ ]. So (26) holds.

Now suppose that W ⊆M and [W ] ≤ [Vγ ] for all γ < κ.

(27) For all n ∈ A′, the set {i : (n, i) ∈ W} is finite.

For, let F ∈ [M ]<ω be such that ∀(m, i) ∈ M [(m, i) /∈ F and (m, i) ∈ W → (m, i) ∈ V0].
Then

{i : (n, i) ∈W} ⊆ {i : ∃m[(m, i) ∈ F ]} ∪ {i : i ≤ fα0
(n)}.

So (27) holds.
Now for each n ∈ A′ let f(n) = sup{i : (n, i) ∈W}, with sup ∅ = 0.

(28) f ≤∗ fαγ for all γ < κ.

In fact, with γ < κ let F ∈ [M ]<ω be such that ∀(n, i) ∈ M [(n, i) /∈ F and (n, i) ∈ W →
(n, i) ∈ Vγ ]. Let k be greater than all m such that (m, i) ∈ F for some i. Suppose that
n ∈ A′ and n ≥ k. If (n, i) ∈ W , then (n, i) /∈ F , hence (n, i) ∈ Vγ ; it follows that
i ≤ fαγ (n). Hence f(n) ≤ fαγ (n). This proves (28).

Now α is strictly increasing, so γ ≤ αγ for all γ < κ. Hence by (28) we have f ≤∗ fγ
for all γ < κ. Hence by (16) there is a ξ < p such that f ≤∗ gξ. Say k ∈ ω and
∀n ≥ k[f(n) ≤ gξ(n)]. Let F = {(m, i) : m < k and (m, i) ∈ W}. Suppose that
(n, i) ∈M\F and (n, i) ∈ W . Then n ≥ k, so f(n) ≤ gξ(n). Also i ≤ f(n), so (n, i) ∈ Uξ.
Thus we have shown:
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(29) [W ] ≤ [Uξ].

Now suppose that X ⊆M and [Uξ] ≤ [X ] for all ξ < p. For each n ∈ ω let

f(n) =

{
min{i ∈ ω : (n, i) /∈ X} if this set is nonempty,
2 + max(σn) otherwise.

Suppose that ξ < p. Then Uξ\X is finite. So for F = Uξ\X we have ∀(n, i) ∈M\F [(n, i) ∈
Uξ → (n, i) ∈ X ]. Let k be greater than each n ∈ A′ such that (n, i) ∈ F for some i.
Suppose that n ≥ k. Then (n, i) ∈ Uξ\F for all i ≤ gξ(n), so (n, i) ∈ X for all i ≤ gξ(n).
Hence f(n) > gξ(n). Thus gξ ≤

∗ f .
This is true for all ξ < p. By (20) there is a γ < κ such that fγ <

∗ f . Hence fαγ <
∗ f .

So there is a k ∈ ω such that ∀n ≥ k[fαγ (n) < f(n)]. Let F = {(m, i) : m < k, i ≤ fαγ (m)}.
Suppose that (n, i) ∈M\F and (m, i) ∈ Vγ . Then i ≤ fαγ (n). It follows that n ≥ k. Hence
fαγ (n) < f(n). Hence (n, i) ∈ X . Thus [Vγ] ≤ [X ].

This finishes the proof of (23).

Proposition 32.34. The forcing order ([ω]ω,≤∗, ω) is t-closed.

For brevity let P = ([ω]ω,≤∗, ω).

Proposition 32.35. Suppose that G is M -generic over P. Then G is an ultrafilter on ω.

Proof. By the definition of generic filter, G ⊆ [ω]ω. If A,B ∈ G then there is a
C ∈ G such that C ⊆ A,B; hence A ∩ B ∈ G. G is closed upwards since it is a filter
on P. Obviously ∅ /∈ G. Now suppose that A ⊆ ω in M [G]; we want to show that
A ∈ G or (ω\A) ∈ G. By Theorem 16.10 of setth or Theorem 29.9 of full, A ∈ M . Let
D = {a ∈ P : a ≤∗ A or a ≤∗ (ω\A)}. Then D is dense in P , since if B ∈ [ω]ω then B ∩A
or B\A is infinite. Take a ∈ G ∩D. Then A ∈ G or (ω\A) ∈ G.

Proposition 32.36. If A,B ∈ [ω]ω in M and G is M generic over P, then A ≤∗ B iff
M [G] |= Ǎ ≤∗ B̌.

Proof. We take A ≤∗ B to mean that there exist an m ∈ ω and a bijection f from
m onto A\B. If such f, g exist in M , then m, f ∈ M [G] and so A ≤∗ B in M [G]. If they
exist in M [G], then f, g ∈M by Theorem 16.10 of setth or Theorem 29.9 of full.

Proposition 32.37. If A,B ∈ [ω]ω, and G is M generic over P, then A <∗ B in M iff
M [G] |= Ǎ <∗ B̌.

Proof. We take A <∗ B to mean that A ≤∗ B and there is an injection g from ω into
B\A. Hence the result follows by the above argument.

Proposition 32.38. If G is M generic over P, then M [G] |= t ≤ tM .

Proof. Suppose in M that 〈Aα : α < t〉 is strictly decreasing under ≤∗, each Aα ∈
[ω]ω, such that there is no B ∈ [ω]ω such that ∀α < t[B ≤∗ Aα]. Then in M [G] the
sequence 〈Aα : α < t〉 is strictly decreasing under ≤∗ by Proposition 32.36. Suppose in
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M [G] that B ∈ [ω]ω such that ∀α < t[B ≤∗ Aα]. Then by Theorem 16.10 of setth or
Theorem 29.9 of full, B ∈M , contradiction.

Proposition 32.39. If G is M generic over P, then M [G] |= t = tM .

Proof. Suppose that κ < t and A ∈ κ([ω]ω) ∈ M [G] is strictly decreasing under ≤∗.
Let B : κ× ω → 2 be defined by

B(ξ, n) =

{
1 if n ∈ Aξ,
0 if n /∈ Aξ.

Then B ∈ M by Theorem 16.10. Hence A ∈ M . Let C ∈ [ω]ω be such that C ≤∗ Aξ
for all ξ < κ. Then this is true in M [G] also by Proposition 32.36. Since κ is arbitrary,
M [G] |= tM ≤ t. The other inequailty holds by Proposition 32.37.

Proposition 32.40. If G is M generic over P, then M [G] |= p = pM .

Proof. Let A be as in Theorem 32.24 (in M). Suppose that B ∈ [ω]ω in M [G] and
B ≤∗ Aξ for all ξ < p. Then B ∈ M by Theorem 16.10 of setth or Theorem 29.9 of full,
contradiction. Hence M [G] |= p ≤ pM .

Now suppose that A is as in Theorem 32.24 (in M [G]) for any κ < p. Then A ∈ M
by the argument in the proof of Proposition 32.37. Hence there is a C ∈ [ω]ω in M such
that ∀ξ < κ[C ≤∗ Aξ]. Since C ∈M [G], it follows that κ < p in the sense of M [G]. Since
κ is arbitrary, pM ≤ p.

Theorem 32.41. M [G] |= t ≤ t(ω,G).

Proof. Working in M [G], suppose that κ < t, 〈Pn : n ∈ ω〉 is a sequence of finite
trees each with a single root, and A ∈ κ(

∏

n∈ω Pn) is such that 〈[Aξ] : ξ < κ〉 is strictly
increasing and unbounded. Wlog ∀n ∈ ω[Pn ⊆ ω] and ∀m,n ∈ ω[m 6= n→ Pn ∩ Pm = ∅].
Let B : κ × ω → ω be defined by B(ξ, n) = Aξ(n). Then B ∈ M by Theorem 16.10 of
setth or Theorem 29.9 of full. Hence A ∈M . This is a contradiction.

Theorem 32.42. Suppose that p < t and G is M -generic over P. Then M [G] |= p(ω,G) ≤
p.

Proof. By Theorem 32.32 let κ be an uncountable regular cardinal less than p and
(f, g) be a linear (p, κ)-gap in (ωω,<∗), in M [G]. Note that fξ and gα are in M , by
Theorem 16.10. Let k ∈ ω be such that ∀n ≥ k[g1(n) < g0(n)]. Define

g′0(n) =

{
1 if n < k,
g0(n) if n ≥ k.

Thus ∀n ∈ ω[g′0(n) > 0]. Now for each α ∈ κ\{0} let lα ∈ ω be such that ∀n ≥ lα[gα(n) <
g0(n)]. Define

g′α(n) =
{
gα(n) if n ≥ lα,
0 otherwise.
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Thus ∀α ∈ κ\{0}∀n ∈ ω[g′α(n) < g0(n)].
For each ξ < p let mξ ∈ ω be such that ∀n ≥ mξ[fξ(n) < g0(n)]. Define

f ′
ξ(n) =

{
fξ(n) if n ≥ mξ,
0 otherwise.

Thus ∀ξ < κ∀n ∈ ω[f ′
ξ(n) < g0(n)].

Thus we may assume that ∀n ∈ ω[g0(n) > 0], ∀α ∈ κ\{0}∀n ∈ ω[gα(n) < g0(n)], and
∀ξ < p∀n ∈ ω[fξ(n) < g0(n)].

Now for any n ∈ ω let Xn = (g0(n),≤) and X =
∏

n∈ωXn/G. Let hα(n) = g1+α(n)
for all α < κ. It suffices now to show that (〈[fξ] : ξ < p〉, 〈[hη] : η < κ〉) is a gap in X .

If ξ < η < p, then {n ∈ ω : fξ(n) ≥ fη(n)} is finite, and hence its complement is in G;
so [fξ] < [fη]. Similarly, α < β < κ implies that [hβ ] < [hα]. Also, by the same argument
[fξ] < [hα] for all ξ < p and α < κ.

Suppose that k ∈ ωω and ∀η < κ[[k] ≤ [hη]]. Thus ∀η < κ[{n ∈ ω : k(n) ≤ hη(n)} ∈
G]. Let p ∈ G such that

p  ∀η < κ[{n ∈ ω : ǩ(n) ≤ ȟη(n)} ∈ Γ].

For each η < κ let Aη = {n ∈ ω : k(n) ≤ hη(n)}.

(1) ∀η < κ[p ⊆∗ Aη].

For, fix η < κ and suppose that p 6⊆∗ Aη. Then p\Aη is infinite. Let H be M -generic over
P with p\Aη ∈ H. Now p ∈ H, so [k]H ≤ [hη]H . Also ω\Aη = {n ∈ ω : hη(n) < k(n)} and
(ω\Aη) ∈ H, so [hη]H < [k]H , contradiction. This proves (1).

Now for any n ∈ ω let

k̃(n) =
{
k(n) if n ∈ p,
0 otherwise.

(2) ∀η < κ[k̃ ≤∗ hη].

For, take any η < κ. By (1) let k ∈ ω be such that ∀n ≥ k[n ∈ p → n ∈ Aη]. Thus

∀n ≥ k[n ∈ p→ k(n) ≤ hη(n)]. So ∀n ≥ k[k̃(n) ≤ hη(n)]. So (2) holds.

It follows that there is a γ < p such that k̃ <∗ fγ . Since p ∈ G, we get [k] = [k̃] < [fγ ].
This proves that (〈[fξ] : ξ < p〉, 〈[hη] : η < κ〉) is a gap in X .

Theorem 32.43. p = t.

Proof. Suppose that p < t. Let G be M -generic over P. Then

M [G] |= p(ω,G) ≤ p < t ≤ t(ω,G) = p(ω,G),

contradiction.
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PCF

33. Cofinality of posets

We begin the study of possible cofinalities of partially ordered sets—the PCF theory. In
this chapter we develop some combinatorial principles needed for the main results.

Ordinal-valued functions and their orderings

A filter on a set A is a collection F of subsets of A with the following properties:

(1) A ∈ F .
(2) If X ∈ F and X ⊆ Y ⊆ A, then Y ∈ F .
(3) If X, Y ∈ F then X ∩ Y ∈ F .

A filter F is proper iff F 6= P(A).
Suppose that F is a filter on a set A and R ⊆ On×On. Then for functions f, g ∈ AOn

we define
f RF g iff {i ∈ A : f(i)Rg(i)} ∈ F.

The most important cases of this notion that we will deal with are f <F g, f ≤F g, and
and f =F g. Thus

f <F g iff {i ∈ A : f(i) < g(i)} ∈ F ;

f ≤F g iff {i ∈ A : f(i) ≤ g(i)} ∈ F ;

f =F g iff {i ∈ A : f(i) = g(i)} ∈ F.

Sometimes we use this notation for ideals rather than filters, using the duality between
ideals and filters, which we now describe. An ideal on a set A is a collection I of subsets
of A such that the following conditions hold:

(4) ∅ ∈ I
(5) If X ⊆ Y ∈ I then X ∈ I.
(6) If X, Y ∈ I then X ∪ Y ∈ I.

An ideal I is proper iff I 6= P(A).
If F is a filter on A, let F ′ = {X ⊆ A : A\X ∈ F}. Then F ′ is an ideal on A. If I is

an ideal on A, let I∗ = {X ⊆ A : A\X ∈ I}. Then I∗ is a filter on A. If F is a filter on
A, then F ′∗ = F . If I is an ideal on A, then I∗′ = I.

Now if I is an ideal on A, then

f RI g iff {i ∈ A : ¬(f(i)RI g(i))} ∈ I;

f <I g iff {i ∈ A : f(i) ≥ g(i)} ∈ I;

f ≤I g iff {i ∈ A : f(i) > g(i)} ∈ I;

f =I g iff {i ∈ A : f(i) 6= g(i)} ∈ I.

Some more notation: RI(f, g) = {i ∈ I : f(i)Rg(i)}. In particular, <I (f, g) = {i ∈ I :
f(i) < g(i)} and ≤I (f, g) = {i ∈ I : f(i) ≤ g(i)}.

The following trivial proposition is nevertheless important in what follows.
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Proposition 33.1. Let F be a proper filter on A. Then
(i) <F is irreflexive and transitive.
(ii) ≤F is reflexive on AOn, and it is transitive.
(iii) f ≤F g <F h implies that f <F h.
(iv) f <F g ≤F h implies that f <F h.
(v) f <F g or f =F g implies f ≤F g.
(vi) If f =F g, then g ≤F f .
(vii) If f ≤F g ≤F f , then f =F g.

Some care must be taken in working with these notions. The following examples illustrate
this.

(1) An example with f ≤F g but neither f <F g nor f =F g nor f = g: Let A = ω,
F = {A}, and define f, g ∈ ωω by setting f(n) = n for all n and

g(n) =
{
n if n is even,
n+ 1 if n is odd.

(2) An example where f =F g but neither f <F g nor f = g: Let A = ω and let F consist
of all subsets of ω that contain all even natural numbers. Define f and g by

f(n) =

{
n if n is even,
1 if n is odd;

g(n) =
{
n if n is even,
0 if n is odd.

Products and reduced products

In the preceding section we were considering ordering-type relations on the proper classes
AOn. Now we restrict ourselves to sets. Suppose that h ∈ AOn. We specialize the general
notion by considering

∏

a∈A h(a) ⊆ AOn. To eliminate trivialities, we usually assume that
h(a) is a limit ordinal for every a ∈ A; then we call h non-trivial.

Proposition 33.2. If F is a proper filter on A, g, h ∈ AOn, h is non-trivial, and g <F h,
then there is a k ∈

∏

a∈A h(a) such that g =F k.

Proof. For any a ∈ A let

k(a) =
{
g(a) if g(a) < h(a),
0 otherwise.

Thus k ∈
∏

a∈A h(a). Moreover,

{a ∈ A : g(a) = k(a) ⊇ {a ∈ A : g(a) < h(a)} ∈ F,

so g =F k.

We will frequently consider the structure (
∏

a∈A h(a), <F ,≤F ) in what follows. For most
considerations it is equivalent to consider the associated reduced product, which we define
as follows. Note that =F is an equivalence relation on the set

∏

a∈A h(a). We define the
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underlying set of the reduced product to be the collection of all equivalence classes under
=F ; it is denoted by

∏

a∈A h(a)/F . Further, we define, for x, y ∈
∏

a∈A h(a)/F ,

x <F y iff ∃f, g ∈
∏

A[x = [f ], y = [g], and f <F g];

x ≤F y iff ∃f, g ∈
∏

A[x = [f ], y = [g], and f ≤F g].

Here [h] denotes the equivalence class of h ∈
∏
A under =F .

Proposition 33.3. Suppose that h ∈ AOn is nontrivial, and f, g ∈
∏

a∈A h(a). Then
(i) [f ] <F [g] iff f <F g.
(ii) [f ] ≤F [g] iff f ≤F g.

Proof. (i): The direction⇐ is obvious. Now suppose that [f ] <F [g]. Then there are
f ′, g′ ∈

∏
A such that [f ] = [f ′], [g] = [g′], and f ′ <F g′. Hence

{κ ∈ A : f(κ) = f ′(κ)} ∩ {κ ∈ A : g(κ) = g′(κ)} ∩ {κ ∈ A : f ′(κ) < g′(κ)}

⊆ {κ ∈ A : f(κ) < g(κ)},

and it follows that {κ ∈ A : f(κ) < g(κ)} ∈ F , and so f <F g.
(ii): similarly.

A filter F on A is an ultrafilter iff F is proper, and is maximal under all the proper filters
on A. Equivalently, F is proper, and for any X ⊆ A, either X ∈ F or A\X ∈ F . The dual
notion to an ultrafilter is a maximal ideal.

If F is an ultrafilter on A, then
∏

a∈A h(a)/F is an ultraproduct of h.

Proposition 33.4. If h ∈A On is nontrivial and F is an ultrafilter on A, then <F is a
linear order on

∏

a∈A h(a)/F , and [f ] ≤F [g] iff [f ] <F [g] or [f ] = [g].

Proof. By Proposition 33.1(iii) and Proposition 33.3, <F is transitive. Also, from
Proposition 33.3 it is clear that <F is irreflexive. Now suppose that f, g ∈

∏
A; we want

to show that [f ] and [g] are comparable. Assume that [f ] 6= [g]. Thus {κ ∈ A : f(κ) =
g(κ)} /∈ F , so {κ ∈ A : f(κ) 6= g(κ)} ∈ F . Since

{κ ∈ A : f(κ) 6= g(κ)} = {κ ∈ A : f(κ) < g(κ)} ∪ {κ ∈ A : g(κ) < f(κ)},

it follows that [f ] < [g] or [g] < [f ].
Thus <F is a linear order on

∏
A/F .

Next,

{κ ∈ A : f(κ) ≤ g(κ)} = {κ ∈ A : f(κ) = g(κ)} ∪ {κ ∈ A : f(κ) < g(κ)},

so it follows by Proposition 33.3 that [f ] ≤F [g] iff [f ] = [g] or [f ] <F [g].

791



Basic cofinality notions

In this section we allow partial orders P to be proper classes. We may speak of a partial
ordering P if the relation <P is clear from the context. Recall the essential equivalence of
the notion of a partial ordering with the “≤” version; see the easy exercise E13.15.

A double ordering is a system (P,≤P , <P ,=P ) such that the following conditions hold
(cf. Proposition 33.1):

(i) <P is irreflexive and transitive.

(ii) ≤P is reflexive on P , and it is transitive.

(iii) f ≤P g <P h implies that f <P h.

(iv) f <P g ≤P h implies that f <P h.

(v) f <P g or f =P g implies f ≤P g.

(vi) If f =P g, then g ≤P f .

(vii) If f ≤P g ≤P f , then f =P g.

Proposition 33.5. For any set A any proper filter F on A, and any P ⊆ AOn the system
(P,≤F , <F ,=F ) is a double ordering.

Proposition 33.6. Let h ∈ AOn, with h taking only limit ordinal values, and let F be a
proper filter on A. Then (

∏

a∈A h(a)/F,≤F , <F ,=) is a double ordering.

We now give some general definitions, applying to any double ordering (P,≤P , <P ) unless
otherwise indicated.

• A subclass X ⊆ P is cofinal in P iff ∀p ∈ P∃q ∈ X(p ≤P q). By the condition (3) above,
this is equivalent to saying that X is cofinal in P iff ∀p ∈ P∃q ∈ X(p <P q).

• Since clearly P itself is cofinal in P , we can make the basic definition of the cofinality
cf(P ) of P , for a set P :

cf(P ) = min{|X | : X is cofinal in P}.

Note that cf(P ) can be singular. For, let A = ω, h(a) = ωa for all a ∈ ω, I = {∅}, and
Y =

∏

a∈A h(a).. Suppose that X is cofinal in
∏

a∈A h(a). Take any a ∈ ω; we show that
ωa ≤ |X |. We define a one-one sequence 〈fα : α < ωi〉 of elements of X by recursion.
Suppose that fβ has been defined for all β < α. Let k be the member of

∏

a∈A h(a) such
that k(b) = 0 for all b 6= a, while k(a) ∈ ωa\{fβ(a) : β < α}. Choose fα ∈ X such that
k <I fα.

• A sequence 〈pξ : ξ < λ〉 of elements of P is <P -increasing iff ∀ξ, η < λ(ξ < η → pξ <P
pη). Similarly for ≤P -increasing.

• Suppose that P is a double order and is a set. We say that P has true cofinality iff P
has a linearly ordered subset which is cofinal.
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Proposition 33.7. Suppose that a set P is a double order, and 〈pα : α < λ〉 is strictly
increasing in the sense of P , is cofinal in P , and λ is regular. Then P has true cofinality,
and its cofinality is λ.

Proof. Obviously P has true cofinality. If X is a subset of P of size less than λ, for
each q ∈ X choose αq < λ such that q < pαq . Let β = supq∈X αq. Then β < λ since λ is
regular. For any q ∈ X we have q < pβ. This argument shows that cf(P ) = λ.

Proposition 33.8. Suppose that P is a double ordering, P a set, and P has true cofnality.
Then:

(i) cf(P ) is regular.
(ii) cf(P ) is the least size of a linearly ordered subset which is cofinal in P .
(iii) There is a <P -increasing, cofinal sequence in P of length cf(P ).

Proof. Let X be a linearly ordered subset of P which is cofinal in P , and let {yα :
α < cf(P )} be a subset of P which is cofinal in P ; we do not assume that 〈yα : α < cf(P )〉
is <P - or ≤P -increasing.

(iii): We define a sequence 〈xα : α < cf(P )〉 by recursion. Let x0 be any element of
X . If xα has been defined, let xα+1 ∈ X be such that xα, yα < xα+1; it exists since X is
cofinal, using condition (3). Now suppose that α < cf(P ) is limit and xβ has been defined
for all β < α. Then {xβ : β < α} is not cofinal in P , so there is a z ∈ P such that z 6≤ xβ
for all β < α. Choose xα ∈ X so that z < xα. Since X is linearly ordered, we must
then have xβ < xα for all β < α. This finishes the construction. Since yα < xα+1 for all
α < cf(P ), it follows that {xα : ξ < cf(P )} is cofinal in P . So (iii) holds.

(i): Suppose that cf(P ) is singular, and let 〈βξ : ξ < cf(cf(P ))〉 be a strictly increasing
sequence cofinal in cf(P ). With 〈xα : α < cf(P )〉 as in (iii), it is then clear that {xβξ :
ξ < cf(cf(P ))} is cofinal in P , contradiction (since cf(cf(P )) < cf(P ) because cf(P ) is
singular).

(ii): By (iii), there is a linearly ordered subset of P of size cf(P ) which is cofinal in
P ; by the definition of cofinality, there cannot be one of smaller size.

For P with true cofinality, the cardinal cf(P ) is called the true cofinality of P , and is
denoted by tcf(P ). We write tcf(P ) = λ to mean that P has true cofinality, and it is equal
to λ.

• P is λ-directed iff for any subset Q of P such that |Q| < λ there is a p ∈ P such that
q ≤P p for all q ∈ Q; equivalently, there is a p ∈ P such that q <P p for all q ∈ Q.

Proposition 33.9. (Pouzet) Assume that P is a double ordering which is a set. For any
infinite cardinal λ, we have tcf(P ) = λ iff the following two conditions hold:

(i) P has a cofinal subset of size λ.
(ii) P is λ-directed.

Proof. ⇒ is clear, remembering that λ is regular. Now assume that (i) and (ii) hold,
and let X be a cofinal subset of P of size λ.

First we show that λ is regular. Suppose that it is singular. Write X =
⋃

α<cf(λ) Yα
with |Yα| < λ for each α < cf(λ). Let pα be an upper bound for Yα for each α < cf(λ),
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and let q be an upper bound for {pα : α < cf(λ)}. Choose r > q. Then choose s ∈ X with
r ≤ s. Say s ∈ Yα. Then s ≤ pα ≤ q < r ≤ s, contradiction.

So, λ is regular. Let X = {rα : α < λ}. Now we define a sequence 〈pα : α < λ〉 by
recursion. Having defined pβ for all β < α, by (ii) let pα be such that pβ < pα for all
β < α, and rβ < pα for all β < α. Clearly this sequence shows that tcf(P,<P ) = λ.

Proposition 33.10. Let P be a set. If G is a cofinal subset of P , then cf(P ) = cf(G).
Moreover, tcf(P ) = tcf(G), in the sense that if one of them exists then so does the other,
and they are equal. (That is what we mean in the future too when we assert the equality
of true cofinalities.)

Proof. Let H be a cofinal subset of P of size cf(P ). For each p ∈ H choose qp ∈ G
such that p ≤P qp. Then {qp : p ∈ H} is cofinal in G. In fact, if r ∈ G, choose p ∈ H such
that r ≤P p. Then r ≤P qp, as desired. This shows that cf(G) ≤ cf(P ).

Now suppose that K is a cofinal subset of G. Then it is also cofinal in P . For, if p ∈ P
choose q ∈ G such that p ≤P q, and then choose r ∈ K such that q ≤P r. So p ≤P r, as
desired. This shows the other inequality.

For the true cofinality, we apply Theorem 33.9. So suppose that P has true cofinality
λ. By Theorem 33.9 and the first part of this proof, G has a cofinal subset of size λ, since
cofinality is the same as true cofinality when the latter exists. Now suppose that X ⊆ G
is of size < λ. Choose an upper bound p for it in P . Then choose q ∈ G such that p ≤P q.
So q is an upper bound for X , as desired. Thus since Theorem 33.9(i) and 33.9(ii) hold
for G, it follows from that theorem that tcf(G) = λ.

The other implication, that the existence of tcf(G,<) implies that of tcf(P,<) and
their equality, is even easier, since a sequence cofinal in G is also cofinal in P .

• A sequence 〈pξ : ξ < λ〉 of elements of P is persistently cofinal iff

∀h ∈ P∃ξ0 < λ∀ξ(ξ0 ≤ ξ < λ⇒ h <P pξ).

Proposition 33.11. (i) If 〈pξ : ξ < λ〉 is <P -increasing and cofinal in P , then it is
persistently cofinal.

(ii) If 〈pξ : ξ < λ〉 and 〈p′ξ : ξ < λ〉 are two sequences of members of P , 〈pξ : ξ < λ〉 is
persistently cofinal in P , and pξ ≤P p′ξ for all ξ < λ, then also 〈p′ξ : ξ < λ〉 is persistently
cofinal in P .

• If X ⊆ P , then an upper bound for X is an element p ∈ P such that q ≤P p for all q ∈ X .

• If X ⊆ P , then a least upper bound for X is an upper bound a for X such that a ≤P a′ for
every upper bound a′ for X . So if a and b are least upper bounds for X , then a ≤P b ≤P a.

It is possible here to have a 6= b. For example, let A = ω, h(a) = ω + ω for all
a ∈ ω, fn(m) = m + n for all m,n ∈ ω, I = {Y ⊆ ω : each member of Y is odd}.
X = {fn : n ∈ ω}. We consider the double order (

∏

a∈ω h(a),≤I , <I). Let

g(m) =
{
ω if m is even,
0 if m is odd

h(m) =
{
ω if m is even,
1 if m is odd
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Then g and h are least upper bounds for X , while g 6= h.

• If X ⊆ P , then a minimal upper bound for X is an upper bound a for X such that if b
is an upper bound for X and b ≤P a, then a ≤P b.

Proposition 33.12. If X ⊆ P and a is a least upper bound for X, then a is a minimal
upper bound for X.

Now we come to an ordering notion which is basic for pcf theory.

• If X ⊆ P and for every x ∈ X there is an x′ ∈ X such that x <P x′, then an element
a ∈ P is an exact upper bound of X provided

(1) a is a least upper bound for X , and

(2) X is cofinal in {p ∈ P : p <P a}.

Note that under the hypothesis here, a /∈ X , and hence x <F a for all x ∈ X by (1).
Here is an example of a set X with a least upper bound but no exact upper bound.

Let A = ω, h(a) = ω + ω for all a ∈ ω, and for m,n ∈ ω,

fn(m) =

{
n if m 6= n,
0 if m = n,

X = {fn : n ∈ ω}, I = {∅}. We consider the double order (
∏

a∈ω h(a),≤I , <I). Then a
least upper bound for X is the function a such that a(m) = ω for all m ∈ ω, but X does
not have an exact upper bound.

Ordinal-valued functions and exact upper bounds

In this section we give some simple facts about exact upper bounds in the case of most
interest to us—the partial ordering of ordinal-valued functions.

First we note that the rough equivalence between products and reduced products
continues to hold for the cofinality notions introduced above. We state this for the most
important properties above:

Proposition 33.13. Suppose that h ∈ AOn, and h takes only limit ordinal values. Then
(i) If X ⊆

∏

a∈A h(a), then X is cofinal in (
∏

a∈A h(a), <I ,≤I) iff {[f ] : f ∈ X} is
cofinal in (

∏

a∈A h(a)/I, <I ,≤I).
(ii) cf(

∏

a∈A h(a), <I ,≤I) = cf(
∏

a∈A h(a)/I, <I ,≤I).
(iii) tcf(

∏

a∈A h(a), <I ,≤I) = tcf(
∏

a∈A h(a)/I, <I ,≤I).
(iv) If X ⊆

∏

a∈A h(a) and f ∈
∏

a∈A h(a), then f is an exact upper bound for X iff
[f ] is an exact upper bound for {[g] : g ∈ X}.

Proof. (i) is immediate from Proposition 33.3. For (ii), if X is cofinal in the sys-
tem (

∏

a∈A h(a), <I ,≤I), then clearly {[f ] : f ∈ X} is cofinal in (
∏

a∈A h(a)/I, <I ,≤I),
by Proposition 33.3 again; so ≥ holds. Now suppose that {[f ] : f ∈ Y } is cofinal in
(
∏

a∈A h(a)/I, <I ,≤I). Given g ∈
∏

a∈A h(a), choose f ∈ Y such that [g] <I [f ]. Then
g <I f . So Y is cofinal in (

∏

a∈A h(a), <I ,≤I), and ≤ holds.
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(iii) and (iv) are proved similarly.

The following obvious proposition will be useful.

Proposition 33.14. Suppose that F ∪ {f, g} ⊆ AOn, I is an ideal on A, and f =I g.
Suppose that f is an upper bound, least upper bound, minimal upper bound, or exact upper
bound for F under ≤I . Then also g is an upper bound, least upper bound, minimal upper
bound, or exact upper bound for F under ≤I , respectively.

Here is our simplest existence theorem for exact upper bounds.

• If X is a collection of members of AOn, then supX ∈ AOn is defined by

(supX)(a) = sup{f(a) : f ∈ X}.

Proposition 33.15. Suppose that λ > |A| is a regular cardinal, and f = 〈fξ : ξ < λ〉 is an
increasing sequence of members of AOn in the partial ordering < of everywhere dominance.
(That is, f < g iff f(a) < g(a) for all a ∈ A.) Then sup f is an exact upper bound for f ,
and cf((sup f)(a)) = λ for every a ∈ A.

Proof. For brevity let h = sup f . Then clearly h is an upper bound for f .
Now suppose that fξ ≤ g ∈ AOn for all ξ < λ. Then for any a ∈ A we have
h(a) = supξ<λ fξ(a) ≤ g(a), so h ≤ g. Thus h is a least upper bound for f . Now

suppose that k ∈ AOn and k < h. Then for every a ∈ A we have k(a) < h(a), and hence
there is a ξa < λ such that k(a) < fξa(a). Let η = supa∈A ξa. So η < λ since λ is regular
and greater than |A|. Clearly k < fη, as desired.

The next proposition gives equivalent definitions of least upper bounds for our special
partial order.

Proposition 33.16. Suppose that I is a proper ideal on A, F ⊆ AOn, and f ∈ AOn.
Then the following conditions are equivalent.

(i) f is a least upper bound of F under ≤I .
(ii) f is an upper bound of F under ≤I , and for any f ′ ∈ AOn, if f ′ is an upper

bound of F under ≤I and f ′ ≤I f , then f =I f
′.

(iii) f is a minimal upper bound of F under ≤I .

Proof. (i)⇒(ii): Assume (i) and the hypotheses of (ii). Hence f ≤I f ′, so f =I f
′ by

Proposition 33.1(vii).
(ii)⇒(iii): Assume (ii), and suppose that g ∈ AOn is an upper bound for F and

g ≤I f . Then g =I f by (ii), so f ≤I g.
(iii)⇒(i): Assume (iii). Let g ∈ AOn be any upper bound for F . Define h(a) =

min(f(a), g(a)) for all a ∈ A. Then h is an upper bound for F , since if k ∈ F , then
{a ∈ A : k(a) > f(a)} ∈ I and also {a ∈ A : k(a) > g(a)} ∈ I, and

{a ∈ A : k(a) > min(f(a), g(a))} ⊆ {a ∈ A : k(a) > f(a)} ∪ {a ∈ A : k(a) > g(a)} ∈ I,
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so k ≤I h. Also, clearly h ≤I f . So by (iii), f ≤I h, and hence f ≤I g, as desired.

In the next proposition we see that in the definition of exact upper bound we can weaken
the condition (1), under a mild restriction on the set in question.

Proposition 33.17. Suppose that F is a nonempty set of functions in AOn and ∀f ∈
F∃f ′ ∈ F [f <I f

′]. Suppose that h is an upper bound of F , and ∀g ∈A On, if g <I h then
there is an f ∈ F such that g <I f . Then h is an exact upper bound for F .

Proof. First note that {a ∈ A : h(a) = 0} ∈ I. In fact, choose f ∈ F . Then f <I h,
and so {a ∈ A : h(a) = 0} ⊆ {a ∈ A : f(a) ≥ h(a)} ∈ I, as desired.

Now we show that h is a least upper bound for F . Let k be any upper bound. Let

l(a) =
{
k(a) if k(a) < h(a),
0 otherwise.

Since {a ∈ A : l(a) ≥ h(a)} ⊆ {a ∈ A : h(a) = 0}, it follows by the above that {a ∈ A :
l(a) ≥ h(a)} ∈ I, and so l <I h. So by assumption, choose f ∈ F such that l <I f . Now
f ≤I k, so l <I k and hence

{a ∈ A : k(a) < h(a)} ⊆ {a ∈ A : l(a) ≥ k(a)} ∈ I,

so h ≤I k, as desired.
For the other property in the definition of exact upper bound, suppose that g <I h.

Then by assumption there is an f ∈ F such that g <I f , as desired.

Corollary 33.18. If h ∈ AOn is non trivial and F ⊆
∏

a∈A h(a), then h is an exact upper
bound of F with respect to an ideal I on A iff F is cofinal in

∏

a∈A h(a).

In the next proposition we use the standard notation I+ for A\I. The proposition shows
that exact upper bounds restrict to smaller sets A.

Proposition 33.19. Suppose that F is a nonempty subset of AOn, I is a proper ideal on
A, h is an exact upper bound for F with respect to I, and ∀f ∈ F∃f ′ ∈ F (f <I f

′). Also,
suppose that A0 ∈ I+. Then:

(i) J
def
= I ∩P(A0) is a proper ideal on A0.

(ii) For any f, f ′ ∈ AOn, if f <I f
′ then f ↾ A0 <J f

′ ↾ A0.
(iii) h ↾ A0 is an exact upper bound for {f ↾ A0 : f ∈ F}.

(i) is clear. Assume the hypotheses of (ii). Then

{a ∈ A0 : f ′(a) ≤ f(a)} ⊆ {a ∈ A : f ′(a) ≤ f(a)} ∈ I,

and so f ↾ A0 <J f
′ ↾ A0.

For (iii), by (ii) we see that h ↾ A0 is an upper bound for {f ↾ A0 : f ∈ F}. To
see that it is an exact upper bound, we will apply Proposition 33.18. So, suppose that
k <J h ↾ A0. Fix f ∈ F . Now define g ∈ AOn by setting

g(a) =

{
f(a) if a ∈ A\A0,
k(a) if a ∈ A0.
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Then

{a ∈ A : g(a) ≥ h(a)} ⊆ {a ∈ A : f(a) ≥ h(a)} ∪ {a ∈ A0 : k(a) ≥ h(a)} ∈ I,

so g <I h. Hence there is an l ∈ F such that g <I l. Hence

{a ∈ A0 : k(a) ≥ l(a)} ⊆ {a ∈ A : g(a) ≥ l(a)} ∈ I,

so k <J l, as desired.

Next, increasing the ideal maintains exact upper bounds:

Proposition 33.20. Suppose that F is a nonempty subset of AOn, I is a proper ideal on
A, h is an exact upper bound for F with respect to I, and ∀f ∈ F∃f ′ ∈ F (f <I f

′).
Let J be a proper ideal on A such that I ⊆ J . Then h is an exact upper bound for F

with respect to J .

Proof. We will apply Proposition 33.17. Note that h is clearly an upper bound for
F with respect to J . Now suppose that g <J h. Let f ∈ F . Define g′ by

g′(a) =

{
g(a) if g(a) < h(a),
f(a) otherwise.

Then {a ∈ A : g′(a) ≥ h(a)} ⊆ {a ∈ A : f(a) ≥ h(a)} ∈ I, since f <I h. So g′ <I h.
Hence by the exactness of h there is a k ∈ F such that g′ <I k. So

{a : g(a) ≥ k(a)} ⊆{a ∈ A : h(a) > g(a) ≥ k(a)} ∪ {a ∈ A : h(a) ≤ g(a)}

⊆{a ∈ A : g′(a) ≥ k(a)} ∪ {a ∈ A : h(a) ≤ g(a)},

and this union is in J since the first set is in I and the second one is in J . Hence g <J k,
as desired.

Again we turn from the general case of proper classes AOn to the sets
∏

a∈A h(a), where
h ∈A On has only limit ordinal values. We prove some results which show that under a
weak hypothesis we can restrict attention to

∏
A for A a nonempty set of infinite regular

cardinals instead of
∏

a∈A h(a), as far as cofinality notions are concerned. Here
∏
A

consists of all choice functions f with domain A; f(a) ∈ a for all a ∈ A.

Proposition 33.21. Suppose that h ∈ AOn and h(a) is a limit ordinal for every a ∈ A.
For each a ∈ A, let S(a) ⊆ h(a) be cofinal in h(a) with order type cf(h(a)). Suppose that
I is a proper ideal on A. Then

(i) cf(
∏

a∈A h(a), <I) = cf(
∏

a∈A S(a), <I) and
(ii) tcf(

∏

a∈A h(a), <I) = tcf(
∏

a∈A S(a), <I).

Proof. For each f ∈
∏
h define gf ∈

∏

a∈A S(a) by setting

gf (a) = least α ∈ S(a) such that f(a) ≤ α.
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We prove (i): suppose that X ⊆
∏
h and X is cofinal in (

∏
h,<I); we show that {gf : f ∈

X} is cofinal in cf(
∏

a∈A S(a), <I), and this will prove ≥. So, let k ∈
∏

a∈A S(a). Thus
k ∈

∏
h, so there is an f ∈ X such that k <I f . Since f ≤ gf , it follows that k <I gf , as

desired. Conversely, suppose that Y ⊆
∏

a∈A S(a) and Y is cofinal in (
∏

a∈A S(a), <I); we
show that also Y is cofinal in

∏
h, and this will prove ≤ of the claim. Let f ∈

∏
h. Then

f ≤ gf , and there is a k ∈ Y such that gf <I k; so f <I k, as desired.

This finishes the proof of (i).

For (ii), first suppose that tcf(
∏
h,<I) exists; call it λ. Thus λ is an infinite regular

cardinal. Let 〈fi : i < λ〉 be a <I -increasing cofinal sequence in
∏
h. We claim that gfi ≤

gfj if i < j < λ. In fact, if a ∈ A and fi(a) < fj(a), then fi(a) < fj(a) ≤ gfj (a) ∈ S(a),
and so by the definition of gfi we get gfi(a) ≤ gfj (a). This implies that gfi ≤I gfj . Now
cf(
∏
h,<I) = λ, so for any B ∈ [λ]<λ there is a j < λ such that gfi <I fj ≤ gfj . It follows

that we can take a subsequence of 〈gfi : i < λ〉 which is strictly increasing modulo I; it is
also clearly cofinal, and hence λ = tcf(

∏

a∈A S(a), <I).

Conversely, suppose that tcf(
∏

a∈A S(a), <I) exists; call it λ. Let 〈fi : i < λ〉 be
a <I -increasing cofinal sequence in

∏

a∈A S(a). Then it is also a sequence showing that
tcf(
∏
h,<I) exists and equals tcf(

∏

a∈A S(a), <I).

Proposition 33.22. Suppose that 〈La : a ∈ A〉 and 〈Ma : a ∈ A〉 are systems of linearly
ordered sets such that each La and Ma has no last element. Suppose that La is isomorphic
to Ma for all a ∈ A. Let I be any ideal on A. Then

(
∏

a∈A

La, <I ,≤I

)

∼=

(
∏

a∈A

Ma, <I ,≤I

)

.

Putting the last two propositions together, we see that to determine cofinality and true
cofinality of (

∏
h,<I ,≤I), where h ∈ AOn and h(a) is a limit ordinal for all a ∈ A, it

suffices to take the case in which each h(a) is an infinite regular cardinal. (One passes
from h(a) to S(a) and then to cf(h(a)).) We can still make a further reduction, given in
the following useful lemma.

Lemma 33.23. (Rudin-Keisler) Suppose that c maps the set A into the class of regular
cardinals, and B = {c(a) : a ∈ A} is its range. For any ideal I over A, define its Rudin-
Keisler projection J on B by

X ∈ J iff X ⊆ B and c−1[X ] ∈ I.

Then J is an ideal on B, and there is an isomorphism h of
∏
B/J into

∏

a∈A c(a)/I such
that for any e ∈

∏
B we have h(e/J) = 〈e(c(a)) : a ∈ A〉/I.

If |A| < min(B), then the range of h is cofinal in
∏

a∈A c(a)/I, and we have

(i) cf(
∏
B/J) = cf(

∏

a∈A c(a)/I and

(ii) tcf(
∏
B/J) = tcf(

∏

a∈A c(a)/I).
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Proof. Clearly J is an ideal. Next, for any e ∈
∏
B let e = 〈e(c(a)) : a ∈ A〉. Then

for any e1, e2 ∈
∏
B we have

e1 =J e2 iff {b ∈ B : e1(b) 6= e2(b)} ∈ J

iff c−1[{b ∈ B : e1(b) 6= e2(b)}] ∈ I

iff {a ∈ A : e1(c(a)) 6= e2(c(a))} ∈ I

iff e1 =I e2.

This shows that h exists as indicated and is one-one. Similarly, h preserves <I in each
direction. So the first part of the lemma holds.

Now suppose that |A| < min(B). Let G be the range of h. By Proposition 33.11, (i)
and (ii) follow from G being cofinal in

∏

a∈A c(a)/I. Let g ∈
∏

a∈A c(a). Define e ∈
∏
B

by setting, for any b ∈ B,

e(b) = sup{g(a) : a ∈ A and c(a) = b}.

The additional supposition implies that e ∈
∏
B. Now note that {a ∈ A : g(a) >

e(c(a))} = ∅ ∈ I, so that g/I ≤ h(e/J), as desired.

According to these last propositions, the calculation of true cofinalities for partial orders
of the form (

∏

a∈A h(a), <I), with h ∈ AOn and h(a) a limit ordinal for every a ∈ A, and
with |A| < min(cf(h(a)), reduces to the calculation of true cofinalities of partial orders of
the form (

∏
B,<J) with B a set of regular cardinals with |B| < min(B).

Lemma 33.24. If (Pi, <i) is a partial order with true cofinality λi for each i ∈ I and D
is an ultrafilter on I, then tcf(

∏

i∈I λi/D) = tcf(
∏

i∈I Pi/D).

Proof. Note that
∏

i∈I λi/D is a linear order, and so its true cofinality µ exists and
equals its cofinality. So the lemma is asserting that the ultraproduct

∏

i∈I Pi/D has µ as
true cofinality.

Let 〈gξ : ξ < µ〉 be a sequence of members of
∏

i∈I λi such that 〈gξ/D : ξ < µ〉 is
strictly increasing and cofinal in

∏

i∈I λi/D. For each i ∈ I let 〈fξ,i : ξ < λi〉 be strictly
increasing and cofinal in (Pi, <i). For each ξ < µ define hξ ∈

∏

i∈I Pi by setting hξ(i) =
fgξ(i),i. We claim that 〈hξ/D : ξ < µ〉 is strictly increasing and cofinal in

∏

i∈I Pi/D (as
desired).

To prove this, first suppose that ξ < η < µ. Then

{i ∈ I : hξ(i) < hη(i)} = {i ∈ I : fgξ(i),i <i fgη(i),i} = {i ∈ I : gξ(i) < gη(i)} ∈ D;

so hξ/D < hη/D.
Now suppose that k ∈

∏

i∈I Pi; we want to find ξ < µ such that k/D < hξ/D.
Define l ∈

∏

i∈I λi by letting l(i) be the least ξ < µ such that k(i) < fξ,i. Choose ξ < µ
such that l/D < gξ/D. Now if l(i) < gξ(i), then k(i) < fl(i),i <i fgξ(i),i = hξ(i). So
k/D < hξ/D.
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Existence of exact upper bounds

We introduce several notions leading up to an existence theorem for exact upper bounds:
projections, strongly increasing sequences, a partition property, and the bounding projec-
tion property.

We start with the important notion of projections. By a projection framework we
mean a triple (A, I, S) consisting of a nonempty set A, an ideal I on A, and a sequence
〈Sa : a ∈ A〉 of nonempty sets of ordinals. Suppose that we are given such a framework. We
define sup S in the natural way: it is a function with domain A, and (sup S)(a) = sup(Sa)
for every a ∈ A. Thus sup S ∈ AOn. Now suppose also that we have a function f ∈ AOn.
Then we define the projection of f onto

∏

a∈A Sa, denoted by f+ = proj(f, S), by setting,
for any a ∈ A,

f+(a) =

{
min(Sa\f(a)) if f(a) < sup (Sa),
min(Sa) otherwise.

Thus

f+(a) =







f(a) if f(a) ∈ Sa and f(a) is not
the largest element of Sa,

least x ∈ Sa such that f(a) < x if f(a) /∈ Sa and f(a) < sup(Sa),

min(Sa) if sup(Sa) ≤ f(a).

Proposition 33.25. Let a projection framework be given, with the notation above.
(i) If f ∈ AOn, then f+ ∈

∏

a∈A Sa.

(ii) If f1, f2 ∈ AOn and f1 =I f2, then f+
1 =I f

+
2 .

(iii) If f ∈ AOn and f <I supS, then f ≤I f+, and for every g ∈
∏

a∈A Sa, if f ≤I g
then f+ ≤I g.

Proof. (i) and (ii) are clear. For (iii), suppose that f ∈ AOn and f <I supS.
Then if f(a) > f+(a) we must have f(a) ≥ sup(Sa). Hence f ≤I f+. Now suppose that
g ∈

∏

a∈A Sa and f ≤I g. If f(a) ≤ g(a) and f(a) < sup(Sa), then f+(a) ≤ g(a). Hence

{a ∈ A : g(a) < f+(a)} ⊆ {a ∈ A : f(a) > g(a)} ∪ {a ∈ A : f(a) ≥ sup(Sa)} ∈ I,

so f+ ≤I g.

Another important notion in discussing exact upper bounds is as follows. Let I be an ideal
over A, L a set of ordinals, and f = 〈fξ : ξ ∈ L〉 a sequence of members of AOn. Then we
say that f is strongly increasing under I iff there is a system 〈Zξ : ξ ∈ L〉 of members of
I such that

∀ξ, η ∈ L[ξ < η ⇒ ∀a ∈ A\(Zξ ∪ Zη)[fξ(a) < fη(a)]].

Under the same assumptions we say that f is very strongly increasing under I iff there is
a system 〈Zξ : ξ ∈ L〉 of members of I such that

∀ξ, η ∈ L[ξ < η ⇒ ∀a ∈ A\Zη[fξ(a) < fη(a)].
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Proposition 33.26. Under the above assumptions, f is very strongly increasing under I
iff for every ξ ∈ L we have

(∗) sup{fα + 1 : α ∈ L ∩ ξ} ≤I fξ.

Proof. ⇒: suppose that f is very strongly increasing under I, with sets Zξ as
indicated. Let ξ ∈ L. Suppose that a ∈ A\Zξ. Then for any α ∈ L ∩ ξ we have
fα(a) < fξ(a), and so sup{fα(a) + 1 : α ∈ L ∩ ξ} ≤ fξ(a); it follows that (∗) holds.
⇐: suppose that (∗) holds for each ξ ∈ L. For each ξ ∈ L let

Zξ = {a ∈ A : sup{fα(a) + 1 : α ∈ L ∩ ξ} > fξ(a)};

it follows that Zξ ∈ I. Now suppose that α ∈ L and α < ξ. Suppose that a ∈ A\Zξ. Then
fα(a) < fα(a) + 1 ≤ sup{fβ(a) + 1 : β ∈ L ∩ ξ} ≤ fξ(a), as desired.

Lemma 33.27. (The sandwich argument) Suppose that h = 〈hξ : ξ ∈ L〉 is strongly
increasing under I, L has no largest element, and ξ′ is the successor in L of ξ for every
ξ ∈ L. Also suppose that fξ ∈ AOn is such that

hξ <I fξ ≤I hξ′ for every ξ ∈ L.

Then 〈fξ : ξ ∈ L〉 is also strongly increasing under I.

Proof. Let 〈Zξ : ξ ∈ L〉 testify that h is strongly increasing under I. For every ξ ∈ L
let

Wξ = {a ∈ A : hξ(a) ≥ fξ(a) or fξ(a) > hξ′(a)}.

Thus by hypothesis we have Wξ ∈ I. Let Zξ = Wξ ∪ Zξ ∪ Zξ′ for every ξ ∈ L; so Zξ ∈ I.
Then if ξ1 < ξ2, both in L, and if a ∈ A\(Zξ1 ∪ Zξ2), then

fξ1(a) ≤ hξ′1(a) ≤ hξ2(a) < fξ2(a);

these three inequalities hold because a ∈ A\Wξ1 , a ∈ A\(Zξ′1 ∪ Zξ2), and a ∈ A\Wξ2

respectively.

Now we give a proposition connecting the notion of strongly increasing sequence with the
existence of exact upper bounds.

Proposition 33.28. Let I be a proper ideal over A, let λ > |A| be a regular cardinal, and
let f = 〈fξ : ξ < λ〉 be a <I increasing sequence of functions in AOn. Then the following
conditions are equivalent:

(i) f has a strongly increasing subsequence of length λ under I.
(ii) f has an exact upper bound h such that {a ∈ A : cf(h(a)) 6= λ} ∈ I.
(iii) f has an exact upper bound h such that cf(h(a)) = λ for all a ∈ A.
(iv) There is a sequence g = 〈gξ : ξ < λ〉 such that gξ < gη (everywhere) for ξ < η,

and f is cofinally equivalent to g, in the sense that ∀ξ < λ∃η < λ(fξ <I gη) and ∀ξ <
λ∃η < λ(gξ <I fη).
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Proof. (i)⇒(ii): Let 〈η(ξ) : ξ < λ〉 be a strictly increasing sequence of ordinals less
than λ, thus with supremum λ since λ is regular, and assume that 〈fη(ξ) : ξ < λ〉 is strongly
increasing under I. Hence for each ξ < λ let Zξ ∈ I be chosen correspondingly. We define
for each a ∈ A

h(a) = sup{fη(ξ)(a) : ξ < λ, a /∈ Zξ}.

To see that h is an exact upper bound for f , we are going to apply Proposition 33.17.
If fη(ξ)(a) > h(a), then a ∈ Zξ ∈ I. Hence fη(ξ) ≤I h for each ξ < λ. Then for any
ξ < λ we have fξ ≤I fη(ξ) ≤I h, so h bounds every fξ. Now suppose that d <I h. Let
M = {a ∈ A : d(a) ≥ h(a)}; so M ∈ I. For each a ∈ A\M we have d(a) < h(a), and so
there is a ξa < λ such that d(a) < fη(ξa)(a) and a /∈ Zξa . Since |A| < λ and λ is regular,

the ordinal ρ
def
= supa∈A\M ξa is less than λ. We claim that d <I fη(ρ). In fact, suppose

that a ∈ A\(M ∪ Zρ). Then a ∈ A\(Zξa ∪ Zρ), and so d(a) < fη(ξa)(a) ≤ fη(ρ)(a). Thus
d <I fη(ρ), as claimed. Now it follows easily from Proposition 33.17 that h is an exact
upper bound for f .

For the final portion of (ii), it suffices to show

(1) There is a W ∈ I such that cf(h(a)) = λ for all a ∈ A\W .

In fact, let

W = {a ∈ A : ∃ξa < λ∀ξ′ ∈ [ξa, λ)[a ∈ Zξ′ ]}.

Since |A| < λ, the ordinal ρ
def
= supa∈W ξa is less than λ. Clearly W ⊆ Zρ, so W ∈ I.

For a ∈ A\W we have ∀ξ < λ∃ξ′ ∈ [ξ, λ)[a /∈ Zξ′ ]. This gives an increasing sequence
〈σν : ν < λ〉 of ordinals less than λ such that a /∈ Zσν for all ν < λ. By the strong
increasing property it follows that fη(σ0)(a) < fη(σ1)(a) < · · ·, and so h(a) has cofinality
λ. This proves (1), and with it, (ii).

(ii)⇒(iii): Let W = {a ∈ A : cf(h(a)) 6= λ}; so W ∈ I by (ii). Since I is a proper
ideal, choose a0 ∈ A\W , and define

h′(a) =

{
h(a) if a ∈ A\W ,
h(a0) if a ∈ W .

Then h =I h
′, and it follows that h′ satisfies the properties needed.

(iii)⇒(iv): For each a ∈ A, let 〈µaξ : ξ < λ〉 be a strictly increasing sequence of ordinals
with supremum h(a). Define gξ(a) = µaξ for all a ∈ A and ξ < λ. Clearly gξ < gη if ξ < η.
Now suppose that ξ < λ. Then fξ <I h. For each a ∈ A such that fξ(a) < h(a) choose
ρa < λ such that fξ(a) < µaρa . Since |A| < λ, choose η < λ such that ρa < η for all a ∈ A.
Then for any a ∈ A such that fξ(a) < h(a) we have fξ(a) < µaη = gη(a). Hence fξ <I gη,
which is half of what is desired in (iv).

Now suppose that ξ < λ. Then gξ < h, so by the exactness of h, there is an η < λ
such that gξ <I fη, as desired.

(iv)⇒(i): Assume (iv). Define strictly increasing continuous sequences 〈η(ξ) : ξ < λ〉
and 〈ρ(ξ) : ξ < λ〉 of ordinals less than λ as follows. Let η(0) = 0, and choose ρ(0) so
that g0 <I fρ(0). If η(ξ) and ρ(ξ) have been defined, choose η(ξ + 1) > η(ξ) such that
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fρ(ξ) ≤I gη(ξ+1), and choose ρ(ξ + 1) > ρ(ξ) such that gη(ξ+1) <I fρ(ξ+1). Thus for every
ξ < λ we have

gη(ξ) <I fρ(ξ) ≤I gη(ξ+1).

since obviously 〈gη(ξ) : ξ < λ〉 is strongly increasing under I, Lemma 33.27 gives (i).

The notion of a strongly increasing sequence is clarified by giving an example of a sequence
such that no subsequence is strongly increasing. This example depends on the following
well-known lemma.

Lemma 33.29. If κ is a regular cardinal and I is the ideal [κ]<κ on κ, then there is a

sequence f
def
= 〈fξ : ξ < κ+〉 of members of κκ such that fξ <I fη whenever ξ < η < κ.

Proof. We construct the sequence by recursion. Let f0(α) = 0 for all α < κ. If fξ
has been defined, let fξ+1(α) = fξ(α) + 1 for all α < κ. Now suppose that ξ < κ is a
limit ordinal, and fη has been defined for every η < ξ. Let 〈η(β) : β < γ〉 be a strictly
increasing sequence of ordinals with supremum ξ, where γ = cf(ξ). Thus γ ≤ κ. Define

fξ(α) = (sup
β≤α

fη(β)(α)) + 1.

The sequence constructed this way is as desired. For example, if ξ is a limit ordinal as
above, then for each ρ < κ we have {α < κ : fη(ρ)(α) ≥ fξ(α)} ⊆ ρ, and so fη(ρ) <I fξ.

Now let A = κ and let I and f be as in the lemma. Suppose that f has a strongly
increasing subsequence of length κ+ under I. Then by proposition 33.28, f has an exact
upper bound h such that cf(h(α)) = κ+ for all α < κ. Now the function k with domain κ
taking the constant value κ is clearly an upper bound for f . Hence h ≤I k. Hence there
is an α < κ such that h(α) ≤ k(α) = κ, contradiction.

A further fact along these lines is as follows.

Lemma 33.30. Suppose that I = [ω]<ω and f
def
= 〈fξ : ξ < λ〉 is a <I -increasing sequence

of members of ωω which has an exact upper bound h, where λ is an infinite cardinal. Then
〈fξ : ξ < λ〉 is a scale, i.e., for any g ∈ ωω there is a ξ < λ such that g <I fξ.

Proof. Let k(m) = ω for all m < ω. Then k is an upper bound for f under <I ,
and so h ≤I k. Letting h′(m) = min(h(m), k(m)) for all m ∈ ω, we thus get h =I h

′. So
by Proposition 33.14, h′ is also an exact upper bound for f . Hence we may assume that
h(m) ≤ ω for every m < ω. Now we claim

(1) ∃n < ω∀p ≥ n(0 < h(p)).

In fact, the set {p ∈ ω : f0(p) ≥ h(p)} is in I, so there is an n such that f0(p) < h(p) for
all p ≥ n, as desired in (1).

Let n0 be as in (1).

(2) M
def
= {p ∈ ω : h(p) 6= ω} is finite.
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For, suppose that M is infinite. Define

l(p) =
{
h(p)− 1 if 0 < h(p) < ω,
0 otherwise.

We claim that l <I h. For, {p : l(p) ≥ h(p)} ⊆ {p : h(p) = 0} ∈ I. So our claim holds.
Now by exactness, choose ξ < κ such that l <I fξ. Then we can choose p ∈ M such that
l(p) < fξ(p) < h(p), contradiction.

Thus M is finite. Hence we may assume that h(p) = ω for all p, and the desired
conclusion of the lemma follows.

Now there is a model M of ZFC in which there are no scales (see for example Blass [∞]),

and yet it is easy to see that there is a sequence f
def
= 〈fξ : ξ < ω1〉 which is <I -increasing.

Hence by Lemma 33.30, this sequence does not have an exact upper bound.
Another fact which helps the intuition on exact upper bounds is as follows.

Lemma 33.31. Let κ be a regular cardinal, and let I = [κ]<κ. For each ξ < κ let fξ ∈ κκ

be defined by fξ(α) = ξ for all α < κ. Thus f
def
= 〈fξ : ξ < κ〉 is increasing everywhere.

Claim: f does not have a least upper bound under <I . (Hence it does not have an exact
upper bound.)

Proof. Suppose that h is an upper bound for f under <I . We find another upper
bound k for f under <I such that h is not ≤I k. First we claim

(1) ∀α < κ∃β < κ∀γ ≥ β(α ≤ h(γ)).

In fact, otherwise we get a ξ < κ such that for all β < κ there is a γ > β such that
ξ > h(γ). But then |{α < κ : fξ(α) > h(α)}| = κ, contradiction.

By (1) there is a strictly increasing sequence 〈βα : α < κ〉 of ordinals less than κ such
that for all α < κ and all γ ≥ βα we have α < h(γ). Now we define k ∈ κκ by setting, for
each γ < κ,

k(γ) =

{
α if βα+1 ≤ γ < βα+2,
h(γ) otherwise.

To see that k is an upper bound for f under <I , take any ξ < κ. If βξ+1 ≤ γ, then
h(γ) ≥ ξ + 1, and hence k(γ) ≥ ξ = fξ(γ), as desired. For each ξ < κ we have k(βξ+1) =
ξ < h(βξ+1), so h is not ≤I k.

Now we define a partition property. Suppose that I is an ideal over a set A, λ is an
uncountable regular cardinal > |A|, f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of
members of AOn, and κ is a regular cardinal such that |A| < κ ≤ λ. The following
property of these things is denoted by (∗)κ:

(∗)κ
For all unbounded X ⊆ λ there is an X0 ⊆ X of order type κ

such that 〈fξ : ξ ∈ X0〉 is strongly increasing under I.

Proposition 33.32. Assume the above notation, with κ < λ. Then (∗)κ holds iff the set

{δ < λ :cf(δ) = κ and 〈fξ : ξ ∈ X0〉 is strongly increasing under I

for some unbounded X0 ⊆ δ}
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is stationary in λ.

Proof. Let S be the indicated set of ordinals δ.
⇒: Assume (∗)κ and suppose that C ⊆ λ is a club. Choose C0 ⊆ C of order type κ

such that 〈fξ : ξ ∈ C0〉 is strongly increasing under I. Let δ = sup(C0). Clearly δ ∈ C ∩S.
⇐: Assume that S is stationary in λ, and suppose that X ⊆ λ is unbounded. Define

C = {α ∈ λ : α is a limit ordinal and X ∩ α is unbounded in α}.

We check that C is club in λ. For closure, suppose that α < λ is a limit ordinal and C ∩α
is unbounded in α; we want to show that α ∈ C. So, we need to show that X ∩ α is
unbounded in α. To this end, take any β < α; we want to find γ ∈ X ∩α such that β < γ.
Since C ∩ α is unbounded in α, choose δ ∈ C ∩ α such that β < δ. By the definition of C
we have that X ∩ δ is unbounded in δ. So we can choose γ ∈ X ∩ δ such that β < γ. Since
γ < δ < α, γ is as desired. So, indeed, C is closed.

To show that C is unbounded in λ, take any β < λ; we want to find an α ∈ C such
that β < α. Since X is unbounded in λ, we can choose a sequence γ0 < γ1 < · · · of
elements of X with β < γ0. Now λ is uncountable and regular, so supn∈ω γn < λ, and it
is the member of C we need.

Now choose δ ∈ C∩S. This gives us an unbounded set X0 in δ such that 〈fξ : ξ ∈ X0〉
is strongly increasing under I. Now also X ∩ δ is unbounded, since δ ∈ C. Hence we can
define by induction two increasing sequences 〈η(ξ) : ξ < κ〉 and 〈ν(ξ) : ξ < κ〉 such that
each η(ξ) is in X0, each ν(ξ) is in X , and η(ξ) < ν(ξ) ≤ η(ξ + 1) for all ξ < κ. It follows

by the sandwich argument, Lemma 33.28, that X1
def
= {ν(ξ) : ξ < κ} is a subset of X as

desired in (∗)κ.

Finally, we introduce the bounding projection property.
Suppose that f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in AOn, with

λ a regular cardinal > |A|. Also suppose that κ is a regular cardinal and |A| < κ ≤ λ.
We say that f has the bounding projection property for κ iff whenever 〈S(a) : a ∈ A〉 is

a system of nonempty sets of ordinals such that each |S(a)| < κ and for each ξ < λ we have
fξ <I sup(S(a)), then for some ξ < λ, the function proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f .

We need the following simple result.

Proposition 33.33. Suppose that f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of

functions in OnA, with λ a regular cardinal > |A|. Also suppose that κ is a regular
cardinal and |A| < κ ≤ λ. Assume that f has the bounding projection property for κ.

Also suppose that f ′ = 〈f ′
ξ : ξ < λ〉 is a sequence of functions in OnA, and fξ =I f

′
ξ

for every ξ < λ.
Then f ′ has the bounding projection property for κ.

Proof. Clearly f ′ is <I -increasing, so that the setup for the bounding projection
property holds. Now suppose that 〈S(a) : a ∈ A〉 is a system of nonempty sets of ordinals
such that each |S(a)| < κ and for each ξ < λ we have f ′

ξ <I sup(S). Then the same
is true for f , so by the bounding projection property for f we can choose ξ < λ such
that the function proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f . Now suppose that η < λ. Then
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fη ≤I proj(fξ, 〈S(a) : a ∈ A〉). Hence f ′
η ≤I proj(fξ, 〈S(a) : a ∈ A〉), and proj(fξ, 〈S(a) :

a ∈ A〉) = proj(f ′
ξ, 〈S(a) : a ∈ A〉), as desired.

The following proposition shows that we can weaken the bounded projection property
somewhat, by replacing “<I” by “< (everywhere)”.

Proposition 33.34. Suppose that f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of

functions in OnA, with λ a regular cardinal > |A|. Also suppose that κ is a regular
cardinal and |A| < κ ≤ λ. Then the following conditions are equivalent:

(i) f has the bounding projection property for κ.
(ii) If 〈S(a) : a ∈ A〉 is a system of nonempty sets of ordinals such that each |S(a)| < κ

and for each ξ < λ we have fξ < sup(S) (everywhere), then for some ξ < λ, the function
proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f .

Proof. Obviously (i)⇒(ii). Now assume that (ii) holds, and suppose that 〈S(a) : a ∈
A〉 is a system of sets of ordinals such that each |S(a)| < κ and for each ξ < λ we have
fξ <I sup(S). Now for each a ∈ A let

γ(a) =

{
sup{fξ(a) + 1 : ξ < λ and fξ(a) ≥ sup(S(a))} if this set is nonempty,
sup(S(a)) + 1 otherwise;

S′(a) = S(a) ∪ {γ(a)}.

Note that fξ < sup(S′) everywhere. Hence by (ii), there is a ξ < λ such that the function
proj(fξ, 〈S′(a) : a ∈ A〉) <I -bounds f . Now let η < λ. If fξ(a) < sup(S(a)) and fη(a) <
(proj(fξ, 〈S

′(a) : a ∈ A〉))(a), then

(proj(fξ, 〈S
′(a) : a ∈ A〉))(a) = min(S′(a)\fξ(a))

= min(S(a)\fξ(a))

= (proj(fξ, 〈S(a) : a ∈ A〉))(a).

Hence fη <I proj(fξ, 〈S(a) : a ∈ A〉), as desired.

Lemma 33.35. (Bounding projection lemma) Suppose that I is an ideal over A, λ > |A|
is a regular cardinal, f = 〈fξ : ξ < λ〉 is a <I -increasing sequence satisfying (∗)κ for a
regular cardinal κ such that |A| < κ ≤ λ. Then f has the bounding projection property for
κ.

Proof. Assume the hypothesis of the lemma and of the bounding projection property
for κ. For every ξ < λ let

f+
ξ = proj(fξ, S).

Suppose that the conclusion of the bounding projection property fails. Then for every
ξ < λ, the function f+

ξ is not a bound for f , and so there is a ξ′ < λ such that fξ′ 6≤I f
+
ξ .

Since fξ ≤I f
+
ξ , we must have ξ < ξ′. Clearly for any ξ′′ ≥ ξ′ we have fξ′′ 6≤I f

+
ξ . Thus

for every ξ′′ ≥ ξ′ we have <(f+
ξ , fξ′′) ∈ I

+. Now we define a sequence 〈ξ(µ) : µ < λ〉 of
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elements of λ by recursion. Let ξ(0) = 0. Suppose that ξ(µ) has been defined. Choose
ξ(µ+ 1) > ξ(µ) so that <(f+

ξ(µ), fξ′′) ∈ I
+ for every ξ′′ ≥ ξ(µ+ 1). If ν is limit and ξ(µ)

has been defined for all µ < ν, let ξ(ν) = supµ<ν ξ(µ). Then let X be the range of this
sequence. Thus

if ξ, ξ′ ∈ X and ξ < ξ′, then <(f+
ξ , fξ′) ∈ I

+.

Since (∗)κ holds, there is a subset X0 ⊆ X of order type κ such that 〈fξ : ξ ∈ X0〉 is
strongly increasing under I. Let 〈Zξ : ξ ∈ X0〉 be as in the definition of strongly increasing
under I.

For every ξ ∈ X0, let ξ′ be the successor of ξ in X0. Note that

<(f+
ξ , fξ′)\(Zξ ∪ Zξ′ ∪ {a ∈ A : fξ(a) ≥ sup(S(a))}) ∈ I+,

and hence it is nonempty. So, choose

aξ ∈<(f+
ξ , fξ′)\(Zξ ∪ Zξ′ ∪ {a ∈ A : fξ(a) ≥ sup(S(a))}).

Note that this implies that f+
ξ (aξ) ∈ S(aξ). Since κ > |A|, we can find a single a ∈ A such

that a = aξ for all ξ in a subset X1 of X0 of size κ. Now for ξ1 < ξ2 with both in X1, we
have

f+
ξ1

(a) < fξ′1(a) ≤ fξ2(a) ≤ f+
ξ2

(a).

[The first inequality is a consequence of a = aξ1 ∈<(f+
ξ1
, fξ′1), the second follows from

ξ′1 ≤ ξ2 and the fact that

a = aξ1 = aξ2 ∈ A\(Zξ′1 ∪ Zξ2),

and the third is true by the definition of f+
ξ2

.]

Thus 〈f+
ξ (a) : ξ ∈ X1〉 is a strictly increasing sequence of members of S(a). This

contradicts our assumption that |S(a)| < κ.

The next lemma reduces the problem of finding an exact upper bound to that of finding a
least upper bound.

Lemma 33.36. Suppose that I is a proper ideal over A, λ ≥ |A|+ is a regular cardinal, and
f = 〈fξ : ξ ∈ λ〉 is a <I -increasing sequence of functions in AOn satisfying the bounding
projection property for |A|+. Suppose that h is a least upper bound for f . Then h is an
exact upper bound.

Proof. Assume the hypotheses, and suppose that g <I h; we want to find ξ < λ
such that g <I fξ. By increasing h on a subset of A in the ideal, we may assume that
g < h everywhere. Define Sa = {g(a), h(a)} for every a ∈ A. By the bounding projection

property we get a ξ < λ such that f+
ξ

def
= proj(fξ, 〈Sa : a ∈ A〉) is an upper bound for f .

We shall prove that g <I fξ, as required.

Since h is a least upper bound, it follows that h ≤I f+
ξ . Thus M

def
= {a ∈ A :

h(a) > f+
ξ (a)} ∈ I. Also, the set N

def
= {a ∈ A : fξ(a) ≥ supSa} is in I. Suppose that
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a ∈ A\(M ∪ N). Then g(a) < h(a) ≤ f+
ξ (a) = min(Sa\fξ(a)), and this implies that

g(a) < fξ(a). So g <I fξ, as desired.

Here is our first existence theorem for exact upper bounds.

Theorem 33.37. (Existence of exact upper bounds) Suppose that I is a proper ideal over
A, λ > |A|+ is a regular cardinal, and f = 〈fξ : ξ ∈ λ〉 is a <I -increasing sequence of
functions in AOn that satisfies the bounding projection property for |A|+. Then f has an
exact upper bound.

Proof. Assume the hypotheses. By Lemma 33.36 it suffices to show that f has a
least upper bound, and to do this we will apply Proposition 33.16(ii). Suppose that f
does not have a least upper bound. Since it obviously has an upper bound, this means, by
Proposition 33.16(ii):

(1) For every upper bound h ∈ AOn for f there is another upper bound h′ for f such that
h′ ≤I h and {a ∈ A : h′(a) < h(a)} ∈ I+.

In fact, Proposition 33.16(ii) says that there is another upper bound h′ for f such that
h′ ≤I h and it is not true that h =I h′. Hence {a ∈ A : h(a) < h′(a)} ∈ I and
{a ∈ A : h(a) 6= h′(a)} ∈ I+. So

{a ∈ A : h(a) 6= h′(a)}\{a ∈ A : h(a) < h′(a)} ∈ I+ and

{a ∈ A : h(a) 6= h′(a)}\{a ∈ A : h(a) < h′(a)} = {a ∈ A : h′(a) < h(a)},

so (1) follows.
Now we shall define by induction on α < |A|+ a sequence Sα = 〈Sα(a) : a ∈ A〉 of

sets of ordinals satisfying the following conditions:

(2) 0 < |Sα(a)| ≤ |A| for each a ∈ A;

(3) fξ(a) < supSα(a) for all ξ ∈ λ and a ∈ A;

(4) If α < β, then Sα(a) ⊆ Sβ(a), and if δ is a limit ordinal, then Sδ(a) =
⋃

α<δ S
α(a).

We also define sequences 〈hα : α < |A|+〉 and 〈h′α : α < |A|+〉 of functions and 〈ξ(α) : α <
|A|+〉 of ordinals.

The definition of Sα for α limit is fixed by (4), and the conditions (2)–(4) continue to
hold. To define S0, pick any function k that bounds f (everywhere) and define S0(a) =
{k(a)} for all a ∈ A; so (2)–(4) hold.

Suppose that Sα = 〈Sα(a) : a ∈ A〉 has been defined, satisfying (2)–(4); we define
Sα+1. By the bounding projection property for |A|+, there is a ξ(α) < λ such that

hα
def
= proj(fξ(α), S

α) is an upper bound for f under <I . Then

(5) if ξ(α) ≤ ξ′ < λ, then hα =I proj(fξ′ , S
α).

In fact, recall that hα(a) = min(Sα(a)\fξ(α)(a)) for every a ∈ A, using (3). Now suppose
that ξ(α) < ξ′ < λ. Let M = {a ∈ A : fξ(α)(a) ≥ fξ′(a)}. So M ∈ I. For any a ∈ A\M
we have fξ(α)(a) < fξ′(a), and hence

min(Sα(a)\fξ(α)(a)) ≤ min(Sα(a)\fξ′(a));
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it follows that hα ≤I proj(fξ′ , S
α). For the other direction, recall that hα is an upper

bound for f under <I . So fξ′ ≤I hα. If a is any element of A such that fξ′(a) ≤ hα(a)
then, since hα(a) ∈ Sα(a), we get min(Sα(a)\fξ′(a)) ≤ hα(a). Thus proj(fξ′ , S

α) ≤I hα.
This checks (5).
Now we apply (1) to get an upper bound h′α for f such that h′α ≤I hα and < (h′α, hα) ∈

I+. We now define Sα+1(a) = Sα(a) ∪ {h′α(a)} for any a ∈ A.

(6) If ξ(α) ≤ ξ < λ, then proj(fξ, S
α+1) =I h

′
α.

For, we have fξ ≤I h′α and, by (5), hα =I proj(fξ, S
α). If a ∈ A is such that fξ(a) ≤ h′α(a),

h′α(a) ≤ hα(a), and hα(a) = proj(fξ, S
α)(a), then min(Sα(a)\fξ(a)) = hα(a) ≥ h′α(a) ≥

fξ(a), and hence

proj(fξ, S
α+1)(a) = min(Sα+1(a)\fξ(a)) = h′α(a).

It follows that proj(fξ, S
α+1) =I h

′
α, as desired in (6).

Now since |A|+ < λ, let ξ < λ be greater than each ξ(α) for α < |A|+. Define
Hα = proj(fξ, S

α) for each α < |A|+. Since ξ > ξ(α), we have Hα =I hα by (5). Note that
Hα+1 = proj(fξ, S

α+1) =I h
′
α; so < (Hα+1, Hα) ∈ I+. Now clearly by the construction we

have Sα1(a) ⊆ Sα2(a) for all a ∈ A when α1 < α2 < |A|+. Hence we get

(7) if α1 < α2 < |A|+, then Hα2
≤ Hα1

, and < (Hα2
, Hα1

) ∈ I+.

Now for every α < |A|+ pick aα ∈ A such that Hα+1(aα) < Hα(aα). We have aα = aβ for
all α, β in some subset of |A|+ of size |A|+, and this gives an infinite decreasing sequence
of ordinals, contradiction.

Lemma 33.38. Suppose that I is a proper ideal over A, λ ≥ |A|+ is a regular cardinal,
f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in AOn, |A|+ ≤ κ ≤ λ, f
satisfies the bounding projection property for κ, and g is an exact upper bound for f . Then

{a ∈ A : g(a) is non-limit, or cf(g(a)) < κ} ∈ I.

Proof. Let P = {a ∈ A : g(a) is non-limit, or cf(g(a)) < κ}. If a ∈ P and g(a) is
a limit ordinal, choose S(a) ⊆ g(a) cofinal in g(a) and of order type < κ. If g(a) = 0 let
S(a) = {0}, and if g(a) = β + 1 for some β let S(a) = {β}. Finally, if g(a) is limit but is
not in P , let S(a) = {g(a)}.

Now for any ξ < λ let

Nξ = {a ∈ A : fξ(a) ≥ fξ+1(a)} and

Qξ = {a ∈ A : fξ+1(a) ≥ g(a)}.

Then clearly

(∗) If a ∈ A\(Nξ ∪Qξ), then fξ(a) < sup(S(a)).

It follows that {a ∈ A : fξ(a) ≥ sup S(a)} ⊆ Nξ ∪ Qξ ∈ I. Hence the hypothesis of

the bounding projection property holds. Applying it, we get ξ < λ such that f+
ξ

def
=
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proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f . Since g is a least upper bound for f , we get

g ≤I f
+
ξ , and hence M

def
= {a ∈ A : f+

ξ (a) < g(a)} ∈ I. By (∗), for any a ∈ P\(Nξ ∪Qξ)

we have f+
ξ (a) = min(S(a)\fξ(a)) < g(a). This shows that P\(Nξ ∪ Qξ) ⊆ M , hence

P ⊆ Nξ ∪Qξ ∪M ∈ I, so P ∈ I, as desired.

Now we give our main theorem on the existence of exact upper bounds.

Theorem 33.39. Suppose that I is a proper ideal over A, λ > |A|+ is a regular cardinal,
f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in AOn, and |A|+ ≤ κ. Then
the following are equivalent:

(i) (∗)κ holds for f .
(ii) f satisfies the bounding projection property for κ.
(iii) f has an exact upper bound g such that

{a ∈ A : g(a) is non-limit, or cf(g(a)) < κ} ∈ I.

Proof. (i)⇒(ii): By the bounding projection lemma, Lemma 33.35.
(ii)⇒(iii): Since the bounding projection property for κ clearly implies the bounding

projection property for |A|+, this implication is true by Theorem 33.37 and Lemma 33.38.
(iii)⇒(i): Assume (iii). By modifying g on a set in the ideal we may assume that g(a)

is a limit ordinal and cf(g(a)) ≥ κ for all a ∈ A. Choose a club S(a) ⊆ g(a) of order type
cf(g(a)). Thus the order type of S(a) is ≥ κ. We prove that (∗)κ holds. So, assume that
X ⊆ λ is unbounded; we want to find X0 ⊆ X of order type κ over which f is strongly
increasing under I. To do this, we intend to define by induction on α < κ a function
hα ∈

∏
S and an index ξ(α) ∈ X such that

(1) hα <I fξ(α) ≤I hα+1.

(2) The sequence 〈hα : α < κ〉 is<-increasing (increasing everywhere; and hence it certainly
is strongly increasing under I).

(3) 〈ξ(α) : α < κ〉 is strictly increasing.

After we have done this, the sandwich argument (Lemma 33.27) shows that 〈fξ(α) : α < κ〉
is strongly increasing under I and of order type κ, giving the desired result.

The functions hα are defined as follows.

h0 ∈
∏
S is arbitrary.

For a limit ordinal δ < κ let hδ = supα<δ hα.

Having defined hα, we define hα+1 as follows. Since g is an exact upper bound and hα < g,
choose ξ(α) greater than all ξ(β) for β < α such that hα <I fξ(α). Also, since fξ <I g for

all ξ < λ, the projections f+
ξ = proj(f, S) are defined. We define

hα+1(a) =

{
max(hα(a), f+

ξ(α)(a)) + 1 if fξ(α)(a) < g(a),

hα(a) + 1 if fξ(α)(a) ≥ g(a).
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Thus we have

hα <I fξ(α) ≤I hα+1, for every α.

So conditions (1)–(3) hold.

Now we apply some infinite combinatorics to get information about (∗)κ.

Theorem 33.40. (Club guessing) Suppose that κ is a regular cardinal, λ is a cardinal such
that cf(λ) ≥ κ++, and Sλκ = {δ ∈ λ : cf(δ) = κ}. Then there is a sequence 〈Cδ : δ ∈ Sλκ〉
such that:

(i) For every δ ∈ Sλκ the set Cδ ⊆ δ is club, of order type κ.
(ii) For every club D ⊆ λ there is a δ ∈ D ∩ Sλκ such that Cδ ⊆ D.

The sequence 〈Cδ : δ ∈ Sλκ〉 is called a club guessing sequence for Sλκ .

Proof. First we take the case of uncountable κ. Fix a sequence C′ = 〈C′
δ : δ ∈ Sλκ〉

such that C′
δ ⊆ δ is club in δ of order type κ, for every δ ∈ Sλκ . For any club E of λ, let

C′ ↾ E = 〈C′
δ ∩ E : δ ∈ Sλκ ∩ E

′〉,

where E′ = {δ ∈ E : E ∩ δ is unbounded in δ}. Clearly E′ is also club in λ. Also note that
C′
δ ∩ E is club in δ for each δ ∈ Sλκ ∩ E

′. We claim:

(1) There is a club E of λ such that for every club D of λ there is a δ ∈ D ∩E′ ∩ Sλκ such
that C′

δ ∩E ⊆ D.

Note that if we prove (1), then the theorem follows by defining Cδ = C′
δ ∩ E for all

δ ∈ E′ ∩ Sλκ , and Cδ = C′
δ for δ ∈ Sκλ\E

′.
Assume that (1) is false. Hence for every club E ⊆ λ there is a club DE ⊆ λ such

that for every δ ∈ DE ∩ E′ ∩ Sλκ we have

C′
δ ∩ E 6⊆ DE .

We now define a sequence 〈Eα : α < κ+〉 of clubs of λ decreasing under inclusion, by
induction on α:

(2) E0 = λ.

(3) If γ < κ+ is a limit ordinal and Eα has been defined for all α < γ, we set Eγ =
⋂

α<γ E
α.

Since γ < κ+ < cf(λ), Eγ is club in λ.

(4) If Eα has been defined, let Eα+1 be the set of all limit points of Eα ∩DEα , i.e., the
set of all ε < λ such that Eα ∩DEα ∩ ε is unbounded in ε.

This defines the sequence. Let E =
⋂

α<κ+ Eα. Then E is club in λ. Take any δ ∈ Sλκ ∩E.
Since |C′

δ| = κ and the sequence 〈Eα : α < κ+〉 is decreasing, there is an α < κ+ such that
C′
δ ∩ E = C′

δ ∩E
α. So C′

δ ∩E
α = C′

δ ∩ E
α+1. Hence C′

δ ∩ E
α ⊆ DEα , contradiction.

Thus the case κ uncountable has been finished.
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Now we take the case κ = ω. For S = Sλℵ0
fix C = 〈Cδ : δ ∈ S〉 so that Cδ is club in δ

with order type ω. We denote the n-th element of Cδ by Cδ(n). For any club E ⊆ λ and
any δ ∈ S ∩ E′ we define

CEδ = {max(E ∩ (Cδ(n) + 1)) : n ∈ ω},

where again E′ is the set of limit points of members of E. This set is cofinal in δ. In fact,
given α < δ, there is a β ∈ E ∩ δ such that α < β since δ ∈ E′, and there is an n ∈ ω such
that β < Cδ(n). Then α < max(E ∩ (Cδ(n) + 1)), as desired. There may be repetitions
in the description of CEδ , but max(E ∩ (Cδ(n) + 1)) ≤ max(E ∩ (Cδ(m) + 1)) if n < m, so
CEδ has order type ω. We claim

(5) There is a closed unbounded E ⊆ λ such that for every club D ⊆ λ there is a δ ∈
D ∩ S ∩E′ such that CEδ ⊆ D. [This proves the club guessing property.]

Suppose that (5) fails. Thus for every closed unbounded E ⊆ λ there exist a club DE ⊆ λ
such that for every δ ∈ DE ∩ S ∩ E′ we have CEδ 6⊆ D. Then we construct a descending
sequence Eα of clubs in λ as in the case κ > ω, for α < ω1. Thus for each α < ω1 and
each δ ∈ DEα ∩ S ∩ (Eα)′ we have CE

α

δ 6⊆ DEα . Let E =
⋂

α<ω1
Eα. Take any δ ∈ S ∩E.

For n ∈ ω and α < β we have

Eα ∩ (Cδ(n) + 1) ⊇ Eβ ∩ (Cδ(n) + 1),

and so max(Eα∩(Cδ(n)+1)) ≥ max(Eβ∩(Cδ(n)+1)); it follows that there is an αn < ω1

such that max(Eβ ∩ (Cδ(n) + 1)) = max(Eαn ∩ (Cδ(n) + 1)) for all β > αn. Choose γ
greater than all αn. Thus

(6) For all ε > γ and all n ∈ ω we have max(Eε ∩ (Cδ(n) + 1)) = max(Eγ ∩ (Cδ(n) + 1)).

But there is a ρ ∈ CE
γ

δ \DEγ ; say that ρ = max(Eγ ∩ (Cδ(n) + 1)). Then ρ = max(Eγ+1 ∩
(Cδ(n) + 1)) ∈ Eγ+1 = (Eγ ∩DEγ )′ ∈ DEγ , contradiction.

Lemma 33.41. Suppose that:
(i) I is an ideal over A.
(ii) κ and λ are regular cardinals such that |A| < κ and κ++ < λ.
(iii) f = 〈fξ : ξ < λ〉 is a sequence of length λ of functions in AOn that is <I -

increasing and satisfies the following condition:
For every δ < λ with cf(δ) = κ++ there is a club Eδ ⊆ δ such that for some
δ′ ≥ δ with δ′ < λ,

(⋆) sup{fα : α ∈ Eδ} ≤I fδ′ .

Under these assumptions, (∗)κ holds for f .

Proof. Assume the hypotheses. Let S = Sκ
++

κ ; so S is stationary in κ++. By
Theorem 33.40, let 〈Cδ : δ ∈ S〉 be a club guessing sequence for S; thus

(1) For every δ ∈ S, the set Cδ ⊆ δ is a club of order type κ.
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(2) For every club D ⊆ κ++ there is a δ ∈ D ∩ S such that Cδ ⊆ D.

Now let U ⊆ λ be unbounded; we want to find X0 ⊆ U of order type κ such that
〈fξ : ξ ∈ X0〉 is strongly increasing under I. To do this we first define an increasing

continuous sequence 〈ξ(i) : i < κ++〉 ∈ κ++

λ recursively.
Let ξ(0) = 0. For i limit, let ξ(i) = supk<i ξ(k).
Now suppose for some i < κ++ that ξ(k) has been defined for every k ≤ i; we define

ξ(i+ 1). For each α ∈ S we define

hα = sup{fη : η ∈ ξ[Cα ∩ (i+ 1)]} and

σα =

{
least σ ∈ (ξ(i), λ) such that hα ≤I fσ if there is such a σ,
ξ(i) + 1 otherwise.

Now we let ξ(i+ 1) be the least member of U which is greater than sup{σα : α ∈ S}. It
follows that

(3) If α ∈ S and the first case in the definition of σα holds, then hα <I fξ(i+1).

Now the set F
def
= {ξ(k) : k ∈ κ++} is closed, and has order type κ++. Let δ = supF .

Then F is a club of δ, and cf(δ) = κ++. Hence by the hypothesis (iii) of the lemma, there
is a club Eδ ⊆ δ and a δ′ ∈ [δ, λ) such that (⋆) in the lemma holds. Note that F ∩ Eδ is
club in δ.

Let D = ξ−1[F ∩ Eδ]. Since ξ is strictly increasing and continuous, it follows that D
is club in κ++. Hence by (2) there is an α ∈ D ∩ S such that Cα ⊆ D. Hence

Cα
def
= ξ[Cα] ⊆ F ∩ Eδ

is club in ξ(α) of order type κ. Then by (⋆) we have

sup{fρ : ρ ∈ Cα} ≤I fδ′ .

Now

(4) For every ρ < ρ′ both in Cα, we have sup{fζ : ζ ∈ Cα ∩ (ρ+ 1)} <I fρ′ .

To prove this, note that there is an i < κ++ such that ρ = ξ(i). Now follow the definition of
ξ(i+ 1). There Cα was considered (among all other closed unbounded sets in the guessing
sequence), and hα was formed at that stage. Now

hα = sup{fη : η ∈ ξ[Cα ∩ (i+ 1)]} ≤ sup{fη : η ∈ ξ[Cα]} = sup{fη : η ∈ Cα} ≤I fδ′ ,

so the first case in the definition of σα holds. Thus by (3), hα <I fξ(i+1). Clearly
ξ(i+ 1) ≤ ρ′, so (4) follows.

Now let 〈η(ν) : ν < κ〉 be the strictly increasing enumeration of Cα, and set

X0 = {η(ω · ρ+ 2m+ 1) : ρ < κ, 0 < m < ω},

X1 = {η(ω · ρ+ 2m) : ρ < κ, 0 < m < ω},
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and for each β ∈ X1 let f ′
β = sup{fσ + 1 : σ ∈ X0 ∩ β}. Then for β < β′, both in X1,

we have f ′
β < f ′

β′ . Now suppose that ζ ∈ X0; say ζ = η(ω · ρ + 2m + 1) with ρ < κ and
0 < m < ω. Then

f ′
η(ω·ρ+2m) = sup{fσ + 1 : σ ∈ X0 ∩ η(ω · ρ+ 2m)} <I fζ by (4)

≤ sup{fσ + 1 : σ ∈ X0 ∩ η(ω · ρ+ 2m+ 2)}

= f ′
η(ω·ρ+2m+2).

Hence by Proposition 33.27, 〈fζ : ζ ∈ X0〉 is very strongly increasing under I.

Now we need a purely combinatorial proposition.

Proposition 33.42. Suppose that κ and λ are regular cardinals, and κ++ < λ. Suppose
that F is a function with domain contained in [λ]<κ and range contained in λ. Suppose
that for every δ ∈ Sλκ++ there is a closed unbounded set Eδ ⊆ δ such that [Eδ]

<κ ⊆ dmn(F ).
Then the following set is stationary:

{α ∈ Sλκ : there is a closed unbounded D ⊆ α such that for any a, b ∈ D

with a < b, {d ∈ D : d ≤ a} ∈ dmn(F ) and F ({d ∈ D : d ≤ a}) < b}

Proof. We follow the proof of Theorem 33.41 closely. Call the indicated set T . Let
U be a closed unbounded subset of λ. We want to find a member of T ∩ U .

Let S = Sκ
++

κ ; so S is stationary in κ++. By Theorem 33.40, let 〈Cδ : δ ∈ S〉 be a
club guessing sequence for S; thus

(1) For every δ ∈ S, the set Cδ ⊆ δ is a club of order type κ.

(2) For every club D ⊆ κ++ there is a δ ∈ D ∩ S such that Cδ ⊆ D.

We define an increasing continuous sequence 〈ξ(i) : i < κ++〉 ∈ κ++

λ recursively.
Let ξ(0) be the least member of U . For i limit, let ξ(i) = supk<i ξ(k).
Now suppose for some i < κ++ that ξ(k) has been defined for every k ≤ i; we define

ξ(i + 1). For each α ∈ S we consider two possibilities. If ξ[Cα ∩ (i + 1)] ∈ dmn(F ), we
let σα be any ordinal greater than both ξ(i) and F (ξ[Cα ∩ (i + 1)]). Otherwise, we let
σα = ξ(i) + 1. Since |S| < λ, we can let ξ(i+ 1) be the least member of U greater than all
σα for α ∈ S. Hence

(3) If α ∈ S and the first case in the definition of σα holds, then ξ[Cα ∩ (i+ 1)] ∈ dmn(F )
and F (ξ[Cα ∩ (i+ 1)]) < ξ(i+ 1).

Now the set G = rng(ξ) is closed and has order type κ++. Let δ = sup(G). Hence
by the hypothesis of the proposition, there is a closed unbounded set Eδ ⊆ δ such that
[Eδ]

<κ ⊆ dmn(F ). Note that G ∩ Eδ is also closed unbounded in δ.
Let H = ξ−1[G ∩ Eδ]. Thus H is club in κ++. Hence by (2) there is an α ∈ H ∩ S

such that Cα ⊆ H. Hence Cα
def
= ξ[Cα] ⊆ G∩Eδ is club in ξ(α) of order type κ. We claim

that Cα is as desired in the proposition. For, suppose that a, b ∈ Cα and a < b. Write
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a = ξ(i). Then {d ∈ Cα : d ≤ a} = ξ[Cα ∩ (i + 1)] ⊆ Eδ, and so (3) gives the desired
conclusion.

Next we give a condition under which (∗)κ holds.

Lemma 33.43. Suppose that I is a proper ideal over a set A of regular cardinals such that
|A| < min(A). Assume that λ > |A| is a regular cardinal such that (

∏
A,<I) is λ-directed,

and 〈gξ : ξ < λ〉 is a sequence of members of
∏
A.

Then there is a <I -increasing sequence f = 〈fξ : ξ < λ〉 of length λ in
∏
A such that:

(i) gξ < fξ+1 for every ξ < λ.
(ii) (∗)κ holds for f , for every regular cardinal κ such that κ++ < λ and {a ∈ A : a ≤

κ++} ∈ I.

Proof. Let f0 be any member of
∏
A. At successor stages, if fξ is defined, let fξ+1

be any function in
∏
A that <-extends fξ and gξ.

At limit stages δ, there are three cases. In the first case, cf(δ) ≤ |A|. Fix some Eδ ⊆ δ
club of order type cf(δ), and define

fδ = sup{fi : i ∈ Eδ}.

For any a ∈ A we have cf(δ) ≤ |A| < min(A) ≤ a, and so fδ(a) < a. Thus fδ ∈
∏
A.

In the second case, cf(δ) = κ++, where κ is regular, |A| < κ, and {a ∈ A : a ≤
κ++} ∈ I. Then we define f ′

δ as in the first case. Then for any a ∈ A with a > κ++ we
have f ′

δ(a) < a, and so {a ∈ A : a ≤ f ′
δ(a)} ∈ I, and we can modify f ′

δ on this set which is
in I to obtain our desired fδ.

In the third case, neither of the first two cases holds. Then we let fδ be any ≤I -upper
bound of {fξ : ξ < δ}; it exists by the λ-directedness assumption.

This completes the construction. Obviously (i) holds. For (ii), suppose that κ is a
regular cardinal such that κ++ < λ and {a ∈ A : a ≤ κ++} ∈ I. If |A| < κ, the desired
conclusion follows by Lemma 33.41. In case κ ≤ |A|, note that 〈fξ : ξ < κ〉 is <-increasing,
and so is certainly strongly increasing under I.

Now we apply these results to the determination of true cofinality for some important
concrete partial orders.

Notation. For any set X of cardinals, let

X(+) = {α+ : α ∈ X}.

Theorem 33.44. (Representation of µ+ as a true cofinality, I) Suppose that µ is a singular
cardinal with uncountable cofinality. Then there is a club C in µ such that C has order
type cf(µ), every element of C is greater than cf(µ), and

µ+ = tcf
(∏

C(+), <Jbd

)

,

where Jbd is the ideal of all bounded subsets of C(+).
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Proof. Let C0 be any closed unbounded set of limit cardinals less than µ such that
|C0| = cf(µ) and all cardinals in C0 are above cf(µ). Then

(1) all members of C0 which are limit points of C0 are singular.

In fact, suppose on the contrary that κ ∈ C0, κ is a limit point of C0, and κ is regular. Thus
C0 ∩ κ is unbounded in κ, so |C0 ∩ κ| = κ. But cf(µ) < κ and |C0| = cfµ, contradiction.
So (1) holds. Hence wlog every member of C0 is singular.

Now we claim

(2) (
∏
C

(+)
0 , <Jbd) is µ-directed.

In fact, suppose that F ⊆
∏
C

(+)
0 and |F | < µ. For a ∈ C

(+)
0 with |F | < a let h(a) =

supf∈F f(a); so h(a) ∈ a. For a ∈ C
(+)
0 with a ≤ |F | let h(a) = 0. Clearly f ≤Jbd h for all

f ∈ F . So (2) holds.

(3) (
∏
C

(+)
0 , <Jbd) is µ+-directed.

In fact, by (2) it suffices to find a bound for a subset F of
∏
C

(+)
0 such that |F | = µ. Write

F =
⋃

α<cf(µ)Gα, with |Gα| < µ for each α < cf(µ). By (2), each Gα has an upper bound

kα under <Jbd . Then {kα : α < cf(µ)} has an upper bound h under <Jbd . Clearly h is an
upper bound for F .

Now we are going to apply Lemma 33.43 to Jbd, C
(+)
0 , and µ+ in place of I, A, and

λ; and with anything for g. Clearly the hypotheses hold, so we get a <Jbd-increasing

sequence f = 〈fξ : ξ < µ+〉 in
∏
C

(+)
0 such that (∗)κ holds for f and the bounding

projection property holds for κ, for every regular cardinal κ < µ. It also follows that the
bounding projection property holds for |A|+, and hence by 33.37, f has an exact upper
bound h. Then by Lemma 33.38, for every regular κ < µ we have

(⋆) {a ∈ C(+)
0 : h(a) is non-limit, or cf(h(a)) < κ} ∈ Jbd.

Now the identity function k on C
(+)
0 is obviously is an upper bound for f , so h ≤Jbd k. By

modifying h on a set in Jbd we may assume that h(a) ≤ a for all a ∈ C
(+)
0 . Now we claim

(⋆⋆) The set C1
def
= {α ∈ C0 : h(α+) = α+} contains a club of µ.

Assume otherwise. Then for every club K, K ∩ (µ\C1) 6= 0. This means that µ\C1 is

stationary, and hence S
def
= C0\C1 is stationary. For each α ∈ S we have h(α+) < α+.

Hence cf(h(α+)) < α since α is singular. Hence by Fodor’s theorem 〈cf(h(α+)) : α ∈ C0〉
is bounded by some κ < µ on a stationary subset of S. This contradicts (⋆).

Thus (⋆⋆) holds, and so there is a club C ⊆ C0 such that h(α+) = α+ for all α ∈ C.
Now 〈fξ ↾ C(+) : ξ < µ+〉 is <Jbd-increasing. We claim that it is cofinal in (

∏
C(+), <Jbd).

For, suppose that g ∈
∏
C(+). Let g′ be the extension of g to

∏
C

(+)
0 such that g′(a) = 0

for any a ∈ C0\C. Then g′ <Jbd h, and so there is a ξ < µ+ such that g′ <Jbd fξ. So
g <Jbd fξ ↾ C(+), as desired. This shows that µ+ = tcf(

∏
C(+), <Jbd).
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Theorem 33.45. (Representation of µ+ as a true cofinality, II) If µ is a singular cardinal
of countable cofinality, then there is an unbounded set D ⊆ µ of regular cardinals such that

µ+ = tcf
(∏

D,<Jbd

)

.

Proof. Let C0 be a set of uncountable regular cardinals with supremum µ, of order
type ω.

(1)
∏
C0/J

bd is µ-directed.

For, let X ⊆
∏
C0 with |X | < µ. For each a ∈ C0 such that |X | < a, let h(a) = sup{f(a) :

f ∈ X}, and extend h to all of C0 in any way. Clearly h ∈
∏
C0 and it is an upper bound

in the <Jbd sense for X .
From (1) it is clear that

∏
C0/J

bd is also µ+-directed. By Lemma 33.43 we then get
a <Jbd-increasing sequence 〈fξ : ξ < µ+〉 which satisfies (∗)κ for every regular κ < µ+. By
Theorems 33.37 and 33.38 f has an exact upper bound h such that {a ∈ C0 : h(a) is non-
limit or cf(h(a)) < κ} ∈ Jbd for every regular κ < µ+. We may assume that h(a) ≤ a for all
a ∈ C0, since the identity function is clearly an upper bound for f ; and we may assume that
each h(a) is a limit ordinal of uncountable cofinality since {a ∈ C0 : cf(h(a)) < ω1} ∈ Jbd.

(2) tcf
(∏

a∈C0
cf(h(a)), <Jbd

)
= µ+.

To prove this, for each a ∈ C0 let Da be club in h(a) of order type cf(h(a)), and let
〈ηaξ : ξ < cf(h(a))〉 be the strictly increasing enumeration of Da. For each ξ < µ+ we
define f ′

ξ ∈
∏

a∈C0
cf(h(a)) as follows. Since fξ <Jbd h, the set {a ∈ C0 : fξ(a) ≥ h(a)} is

bounded, so choose a0 ∈ C0 such that for all b ∈ C0 with a0 ≤ b we have fξ(b) < h(b). For
such a b we define f ′

ξ(b) to be the least ν such that fξ(b) < ηbν . Then we extend f ′
α in any

way to a member of
∏

a∈C0
cf(h(a))).

(3) ξ < σ < µ+ implies that f ′
ξ ≤Jbd f ′

σ.

This is clear by the definitions.
Now for each l ∈

∏

a∈C0
cf(h(a))) define kl ∈

∏
C0 by setting kl(a) = ηal(a) for all a.

So kl < h. Since h is an exact upper bound for f , choose ξ < µ+ such that kl <Jbd fξ.
Choose a such that kl(b) < fξ(b) < h(b) for all b ≥ a. Then for all b ≥ a, ηbl(b) < ηbf ′

ξ
(b),

and hence l(b) < f ′
ξ(b). This proves that l <Jbd f ′

ξ. This proves the following statement.

(4) {f ′
ξ : ξ < µ+} is cofinal in

(∏

a∈C0
cf(h(a)), <Jbd

)
.

Now (3) and (4) yield (2).
Now let B = {cf(h(a)) : a ∈ C0}. Define

X ∈ J iff X ⊆ B and h−1[cf−1[X ]] ∈ Jbd.

By Lemma 33.24 we get tcf(
∏
B/J) = µ+. It suffices now to show that J is the ideal of

bounded subsets of B. Suppose that X ∈ J , and choose a ∈ C0 such that h−1[cf−1[X ]] ⊆
{b ∈ C0 : b < a}. Thus X ⊆ {b ∈ A : cf(h(b)) < a} ∈ Jbd, so X is bounded. Conversely, if
X is bounded, choose a ∈ B such that X ⊆ {b ∈ B : b ≤ a}. Now

h−1[cf−1[X ]] = {b ∈ C0 : cf(h(b)) ∈ X}

⊆ {b ∈ C0 : cf(h(b)) ≤ a},
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and this is bounded by the choice of h.

Proposition 33.46. (The trichotomy theorem) Suppose that λ > |A|+ is a regular cardinal
and f = 〈fξ : ξ < λ〉 is a <I -increasing sequence. Consider the following properties of f
and a regular cardinal κ such that |A| < κ ≤ λ:

Badκ: There exist:
(a) sets Sa of ordinals for a ∈ A such that fα <I supS for all α < λ and |Sa| < κ;

and
(b) an ultrafilter D over A extending the dual of I

such that for every α < λ there is a β < λ such that proj(fα, S) <D fβ.

Ugly There exists a function g ∈A Ord such that, defining tα = {a ∈ A : g(a) < fα(a)},
the sequence 〈tα : α < λ〉 does not stabilize modulo I. That is, for every α there is a β > α
in λ such that tβ\tα ∈ I+. Note here that 〈tα : α < λ〉 is ⊆I -increasing.

Goodκ There exists an exact upper bound g for f such that cf(g(a)) ≥ κ for every a ∈ A.

Then the assertion of this theorem is that the bounding projection property for κ is equiv-
alent to ¬Badκ ∧ ¬Ugly. Hence if neither Badκ nor Ugly, then Goodκ.

Proof. We use the abbreviation f+
α for proj(fα, S).

First assume the bounding projection property for κ. Suppose that Badκ holds, and
assume the notation of it. Choose α < λ such that f+

α is a <I -upper bound for f . Choose
β > α as in the definition of Badκ. Then fβ <D f+

α <D fβ , contradiction.
To prove ¬Ugly, suppose that g is as in the definition of Ugly. By 2.13, let h be an

exact upper bound for f , and for each a ∈ A let S(a) = {g(a), h(a)}. Thus fα <I supS for
each α < λ. By the bounding projection property, choose α < λ such that f+

α <I -bounds
f . Take any β > α. Then fβ <I f

+
α , so {a : fβ(a) ≥ f+

α (a)} ∈ I. Now

tβ\tα = {a : fα(a) ≤ g(a) < fβ(a)} ⊆ {a : fβ(a) ≥ f+
α (a)} ∈ I,

contradiction.
Conversely, assume ¬Badκ and ¬Ugly, but also suppose that the bounding projection

property for κ fails to hold. By the last supposition we get the hypothesis of the bounding
projection property, but there is no ξ < λ such that f+

ξ bounds f . For all ξ, α < λ let

tξα = {a ∈ A : f+
ξ (a) < fα(a)}.

(1) For every ξ < λ there is a βξ > ξ such that tξβξ ∈ I+ and for all γ > βξ we have

tξγ\t
ξ
βξ
∈ I.

In fact, since f+
ξ does not bound f , we can choose βξ > ξ such that fβξ 6≤I f

+
ξ ; and since

¬Ugly, we can choose δξ > ξ such that for all γ > δξ we have tξγ\t
ξ
δξ
∈ I. We may assume

that βξ = δξ, and this gives the desired conclusion of (1).
By (1) we can define strictly increasing sequences 〈ξ(ν) : ν < λ〉 and 〈β(ν) : ν < λ〉

such that for all ν < λ, t
ξ(ν)
β(ν) ∈ I+, ξ(ν) < β(ν), β(ν) < ξ(ρ) if ν < ρ < λ, and

t
ξ(ν)
γ \tξ(ν)β(ν) ∈ I for all γ > β(ν).
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(2) If ν < ρ < λ, then

t
ξ(ρ)
β(ρ) ⊆

(

t
ξ(ν)
β(ν) ∩ t

ξ(ρ)
β(ρ)

)

∪
(

t
ξ(ν)
β(ρ)\t

ξ(ν)
β(ν)

)

∪
{

a ∈ A : f+
ξ(ρ)(a) < f+

ξ(ν)(a)
}

.

To prove this, suppose that a is not a member of the right side. Then the following
conditions hold:

(3) fβ(ν)(a) ≤ f+
ξ(ν)(a) or fβ(ρ)(a) ≤ f+

ξ(ρ)(a).

(4) fβ(ρ)(a) ≤ f+
ξ(ν)(a) or f+

ξ(ν)(a) < fβ(ν)(a).

(5) f+
ξ(ν)(a) ≤ f+

ξ(ρ)(a).

Clearly then, fβ(ρ)(a) ≤ f+
ξ(ρ)(a), which shows that a is not in the left side. So (2) holds.

(6) If ν1 < · · · < νm < λ, then t
ξ(ν1)
β(ν1)

∩ . . . ∩ tξ(νm)
β(νm) ∈ I

+.

We prove this by induction on m. It is clear for m = 1. Assume it for m, and suppose
that ν1 < · · · < νm+1. Then by (2),

t
ξ(ν2)
β(ν2)

∩ . . . ∩ tξ(νm)
β(νm) ⊆

(

t
ξ(ν1)
β(ν1)

∩ . . . ∩ t
ξ(νm+1)
β(νm+1)

)

∪
(

t
ξ(ν1)
β(ν2)
\tξ(ν1)β(ν1)

)

∪
{

a ∈ A : f+
ξ(ν2)

(a) < f+
ξ(ν1)

(a)
}

,

and the last two sets are in I, so our conclusion follows by the inductive hypothesis.

By (6), the set I∗ ∪ {t
ξ(ν)
β(ν) : ν < λ} has fip, and hence is contained in an ultrafilter D.

By ¬Badκ, choose α < λ such that f+
α is a <D-bound for f . Take ν with α < ξ(ν).

Now t
ξ(ν)
β(ν) ∈ D, so f+

ξ(ν) <D fβ(ν). Thus f+
α ≤D f+

ξ(ν) <D fβ(ν) <D f+
α , contradiction.

The final assertion of the theorem follows by 2.15.

Proposition 33.47. Suppose that λ is a regular cardinal, A is an infinite set such that
∀µ < λ(µ|A| < λ, and 〈fα : α < λ〉 is a system of members of AOrd.

Then there is a stationary subset E of λ such that for all α, β ∈ E, if α < β then
fα ≤ fβ. Moreover, for all a ∈ A, either 〈fα(a) : α ∈ E〉 is a constant sequence, or it is
strictly increasing.

If in addition I is a proper ideal on A and 〈fα : α < λ〉 is <I -increasing, then (∗)λ
holds.

Proof. For each a ∈ A fix γa > sup{fα(a) : α < λ}. For α < λ and a ∈ A let
Sα(a) = {fβ(a) : β < α} ∪ {γa}. For any α < λ and a ∈ A, let gα(a) = min(Sα\fα(a)).
Thus either gα(a) = γa or gα(a) = fβ(a) for some β < α. In the second case, choose such
a β; call it βa.

Let T = {δ < λ : cf(δ) = |A|+}. Suppose that α ∈ T . Since cf(α) = |A|+, we
can choose µα < α such that βa < µα for all a ∈ A for which βa is defined. Hence
gα = proj(fα, S

µα). By Fodor’s theorem we may assume that µ = µα is fixed on a
stationary subset T ′ of T . Since Sµ has size µ < λ, µ|A| < λ, and gα maps A into a set of
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size at most µ, we may assume that g = gα is fixed for all α in a stationary subset T ′′ of
T ′. Now

T ′′ =
⋃

h∈A2

{α ∈ T ′′ : ∀a ∈ A(fα(a) < g(a)↔ h(a) = 1}.

Since 2|A| < λ, it follows that there is an h ∈ A2 such that

E
def
= {α ∈ T ′′ : ∀a ∈ A(fα(a) < g(a)↔ h(a) = 1}

is stationary. Suppose that α, β ∈ E, α < β, a ∈ A, and fβ(a) < fα(a). Then

fα(a) ≤ min(Sα(a)\fα(a)) = g(a) = min(Sβ(a)\fβ(a)) ≤ fα(a),

and so fα(a) = g(a). It follows that h(a) = 0. But fβ(a) < fα(a) = g(a), contradiction.
So we have proved that if α, β ∈ E and α < β, then fα ≤ fβ.
We claim that also for each a ∈ A, either fα(a) = g(a) for all α ∈ E, or fα(a) < fβ(a)

for all α, β ∈ E such that α < β. Otherwise, there is an α ∈ E with fα(a) < g(a) and
there are β, δ ∈ E with β < δ and fβ(a) = fδ(a). Then g(a) = min(Sδ(a)\fδ(a)) = fδ(a),
since fβ(a) ∈ Sδ(a). But then h(a) = 0, contradicting fα(a) < g(a).

For the last statement of the theorem, assume that fα <I fβ for all α < β < λ. Now
if α, β ∈ E and α < β, then {a ∈ A : fα(a) ≥ fβ(a)} ∈ I. Since fα ≤ fβ, this means that

{a ∈ A : fα(a) = fβ(a)} ∈ I. But this set is B
def
= {a ∈ A : fδ(a) = fε(a) for all δ, ε ∈ E}.

For a /∈ B and α < β, both in E, we have fα(a) < fβ(a). So 〈fα : α ∈ E〉 is strongly
increasing mod I. By 2.6 it follows then that 〈fα : α < λ〉 has an exact upper bound h
such that cf(h(a)) = λ for all a ∈ A. Hence by 2.15, (∗)λ holds for 〈fα : α < λ〉.
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34. Basic properties of PCF

For any set A of regular cardinals define

pcf(A) =
{

cf
(∏

A/D
)

: D is an ultrafilter on A
}

.

By definition, pcf(∅) = ∅. We begin with a very easy proposition which will be used a lot
in what follows.

Proposition 34.1. Let A and B be sets of regular cardinals.
(i) A ⊆ pcf(A).
(ii) If A ⊆ B, then pcf(A) ⊆ pcf(B).
(iii) pcf(A ∪B) = pcf(A) ∪ pcf(B).
(iv) If B ⊆ A, then pcf(A)\pcf(B) ⊆ pcf(A\B).
(v) If A is finite, then pcf(A) = A.
(vi) If B ⊆ A, B is finite, and A is infinite, then pcf(A) = pcf(A\B) ∪B.
(vii) min(A) = min(pcf(A)).
(viii) If A is infinite, then the first ω members of A are the same as the first ω members

of pcf(A).

Proof. (i): For each a ∈ A, the principal ultrafilter with {a} as a member shows that
a ∈ pcf(A).

(ii): Any ultrafilter F on A can be extended to an ultrafilter G on B. The mapping
[f ] 7→ [f ] is easily seen to be an isomorphism of

∏
A/F onto

∏
B/G. Note here that [f ]

is used in two senses, one for an element of
∏
A/F , where each member of [f ] is in

∏
A,

and the other for an element of
∏
B/G, with members in the larger set

∏
B.

(iii): ⊇ holds by (ii). Now suppose that D is an ultrafilter on A ∪B. Then A ∈ D or
B ∈ D, and this proves ⊆.

(iv): Suppose that B ⊆ A and λ ∈ pcf(A)\pcf(B). Let D be an ultrafilter on A
such that λ = cf(

∏
A/D). Then B /∈ D, as otherwise λ ∈ pcf(B). So A\B ∈ D, and so

λ ∈ pcf(A\B).
(v): If A is finite, then every ultrafilter on A is principal.
(vi): We have

pcf(A) = pcf(A\B) ∪ pcf(B) by (iii)

= pcf(A\B) ∪B by (v)

(vii): Let a = min(A). Thus a ∈ pcf(A) by (i). Suppose that λ ∈ pcf(A) with λ < a;
we want to get a contradiction. Say 〈[gξ] : ξ < λ〉 is strictly increasing and cofinal in
∏
A/D. Now define h ∈

∏
A as follows: for any b ∈ A, h(b) = sup{gξ(b) + 1 : ξ < λ}.

Thus [gξ] < [h] for all ξ < λ, contradiction.
(viii): Suppose that λ ∈ pcf(A)\A. Suppose that λ∩A is finite, and let a = min(A\λ).

So λ ≤ a, and if b ∈ A ∩ a then b < λ. Thus A ∩ λ = A ∩ a. Hence λ ∈ pcf(A) =
pcf(A\a) ∪ (A ∩ λ) by (vi), and so a ≤ λ by (vii). So λ = a, contradiction. Thus λ ∩ A is
infinite, and this proves (viii).

The following result gives a connection with earlier material; of course there will be more
connections shortly.
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Proposition 34.2. If A is a collection of regular cardinals, F is a proper filter on A, and
λ = tcf(

∏
A/F ), then λ ∈ pcf(A).

Proof. Let 〈fξ : ξ < λ〉 be a <F -increasing cofinal sequence in
∏
A/F . Let D be any

ultrafilter containing F . Then clearly 〈fξ : ξ < λ〉 is a <D-increasing cofinal sequence in
∏
A/D.

Definitions. A set A is progressive iff A is an infinite set of regular cardinals and |A| <
min(A).

If α < β are ordinals, then (α, β)reg is the set of all regular cardinals κ such that
α < κ < β. Similarly for [α, β)reg, etc. All such sets are called intervals of regular
cardinals.

Proposition 34.3. Assume that A is a progressive set, then
(i) Every infinite subset of A is progressive.
(ii) If α is an ordinal and A ∩ α is unbounded in α, then α is a singular cardinal.
(iii) If A is an infinite interval of regular cardinals, then A does not have any weak

inaccessible as a member, except possibly its first element. Moreover, there is a singular
cardinal λ such that A ∩ λ is unbounded in λ and A\λ is finite.

Proof. (i): Obvious.
(ii): Obviously α is a cardinal. Now A∩α is cofinal in α and |A∩α| ≤ |A| < min(A) <

α. Hence α is singular.
(iii): If κ ∈ A, then by (ii), A ∩ κ cannot be unbounded in κ; hence κ is a successor

cardinal, or is the first element of A. For the second assertion of (iii), let sup(A) = ℵα+n

with α a limit ordinal. Since A is an infinite interval of regular cardinals, it follows that
A∩ℵα is unbounded in ℵα, and hence by (ii), ℵα is singular. Hence the desired conclusion
follows.

Theorem 34.4. (Directed set theorem) Suppose that A is a progressive set, and λ is a
regular cardinal such that sup(A) < λ. Suppose that I is a proper ideal over A containing
all proper initial segments of A and such that (

∏
A,<I) is λ-directed. Then there exist a

set A′ of regular cardinals and a proper ideal J over A′ such that the following conditions
hold:

(i) A′ ⊆ [min(A), sup(A)) and A′ is cofinal in sup(A).
(ii) |A′| ≤ |A|.
(iii) J contains all bounded subsets of A′.
(iv) λ = tcf(

∏
A′, <J).

Proof. First we note:

(∗) A does not have a largest element.

For, suppose that a is the largest element of A. Note that then I = P(A\{a}). For each
ξ < a define fξ ∈

∏
A by setting

fξ(b) =

{
0 if b 6= a,
ξ if b = a.
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Since a < λ, choose g ∈
∏
A such that fξ <I g for all ξ ∈ a. Thus {b ∈ A : fξ(b) ≥ g(b)} ∈

I, so fξ(a) < g(a) for all ξ < a. This is clearly impossible. So (∗) holds.
Now by Lemma 34.43 there is a <I -increasing sequence f = 〈fξ : ξ < λ〉 in

∏
A which

satisfies (∗)κ for every κ ∈ A. Hence by 34.37–34.39, f has an exact upper bound h ∈ AOn
such that

(1) {a ∈ A : h(a) is non-limit or cf(h(a)) < κ} ∈ I

for every κ ∈ A. Now the identity function k on A is clearly an upper bound for f , so
h ≤I k; and by (1), {a ∈ A : h(a) is non-limit or cf(h(a)) < min(A)} ∈ I. Hence by
changing h on a set in the ideal we may assume that

(2) min(A) ≤ cf(h(a)) ≤ a for all a ∈ A.

Now f shows that (
∏
h,<I) has true cofinality λ. Let A′ = {cf(h(a)) : a ∈ A}. By Lemma

34.23 there is a proper ideal J on A′ such that (
∏
A′, <J) has true cofinality λ; namely,

X ∈ J iff X ⊆ A′ and h−1[cf−1[X ]] ∈ I.

Clearly (ii) and (iv) hold. By (2) we have A′ ⊆ [min(A), sup(A)). Now to show that
A′ is cofinal in sup(A), suppose that κ ∈ A; we find µ ∈ A′ such that κ ≤ µ. In fact,
{a ∈ A : cf(h(a)) < κ} ∈ I by (1). Let X = {b ∈ A′ : b < κ}. Then

h−1[cf−1[X ]] = {a ∈ A : cf(h(a)) < κ} ∈ I,

and so X ∈ J . Taking any µ ∈ A′\X we get κ ≤ µ. Thus (i) holds. Finally, for (iii),

suppose that µ ∈ J ; we want to show that Y
def
= {b ∈ A′ : b < µ} ∈ J . By (i), choose

κ ∈ A such that µ ≤ κ. Then Y ⊆ {b ∈ A′ : b < κ}, and by the argument just given, the
latter set is in J . So (iii) holds.

Corollary 34.5. Suppose that A is progressive, is an interval of regular cardinals, and λ
is a regular cardinal > sup(A). Assume that I is a proper ideal over A such that (

∏
A,<I)

is λ-directed. Then λ ∈ pcf(A).

Proof. We may assume that I contains all proper initial segments of A. For, suppose
that this is not true. Then there is a proper initial segment B of A such that B /∈ I. With
a ∈ A\B we then have B ⊆ A ∩ a, and so A ∩ a /∈ I. Let a be the smallest element of A

such that A ∩ a /∈ I. Then J
def
= I ∩P(A ∩ a) is a proper ideal that contains all proper

initial segments of A ∩ a. we claim that (
∏

(A ∩ a), J) is λ-directed. For, suppose that
X ⊆

∏
(A ∩ a) with |X | < λ. For each g ∈ X let g+ ∈

∏
A be such that g+ ⊇ g and

g+(b) = 0 for all b ∈ A\a. Choose f ∈
∏
A such that g+ ≤I f for all g ∈ X . So if g ∈ X

we have

{b ∈ A ∩ a : g(b) > f(b)} = {b ∈ A : g+(b) > f(b)} ∈ I ∩P(A ∩ a),

and so g ≤J (f ↾ (A ∩ a) for all g ∈ X , as desired.
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Now the corollary follows from the theorem.

The ideal J<λ

Let A be a set of regular cardinals. We define

J<λ[A] = {X ⊆ A : pcf(X) ⊆ λ}.

In words, X ∈ J<λ[A] iff X is a subset of A such that for any ultrafilter D over A, if
X ∈ D, then cf(

∏
A,<D) < λ. Thus X “forces” the cofinalities of ultraproducts to be

below λ.
Clearly J<λ[A] is an ideal of A. If λ < min(A), then J<λ[A] = {∅} by 34.1(vii). If

λ < µ, then J<λ[A] ⊆ J<µ[A]. If λ /∈ pcf(A), then J<λ[A] = J<λ+ [A]. If λ is greater than
each member of pcf(A), then J<λ[A] is the improper ideal P(A). If λ ∈ pcf(A), then
A /∈ J<λ[A].

If A is clear from the context, we simply write J<λ.
If I and J are ideals on a set A, then I + J is the smallest ideal on A which contains

I ∪ J ; it consists of all X such that X ⊆ Y ∪ Z for some Y ∈ I and Z ∈ J .

Lemma 34.6. If A is an infinite set of regular cardinals and B is a finite subset of A,
then for any cardinal λ we have

J<λ[A] = J<λ[A\B] + P(B ∩ λ).

Proof. Let X ∈ J<λ[A]. Thus pcf(X) ⊆ λ. Using 34.1(vi) we have pcf(X) =
pcf(X\B) ∪ (X ∩ B), so X\B ∈ J<λ[A\B] and X ∩ B ⊆ B ∩ λ, and it follows that
X ∈ J<λ[A\B] + P(B ∩ λ).

Now suppose that X ∈ J<λ[A\B] + P(B ∩ λ). Then there is a Y ∈ J<λ[A\B] such
that X ⊆ Y ∪ (B ∩ λ). Hence by 34.1(vi) again, pcf(X) ⊆ pcf(Y ) ∪ (B ∩ λ) ⊆ λ, so
X ∈ J<λ[A].

Recall that for any ideal on a set Y , I∗ = {a ⊆ Y : Y \a ∈ I} is the filter corresponding to
I.

Proposition 34.7. If A is a collection of regular cardinals and λ is a cardinal, then

J∗
<λ[A] =

⋂{

D : D is an ultrafilter and cf
(∏

A/D
)

≥ λ
}

.

The intersection is to be understood as being equal to P(A) if there is no ultrafilter D such
that cf(

∏
A/D) ≥ λ.

Proof. Note that for any X ⊆ A, X ∈ J∗
<λ[A] iff A\X ∈ J<λ[A] iff pcf(A\X) ⊆ λ.

Now suppose that X ∈ J∗
<λ[A] and D is an ultrafilter such that cf(

∏
A/D) ≥ λ. If

X /∈ D, then A\X ∈ D and hence pcf(A\X) 6⊆ λ, contradiction. Thus X is in the
indicated intersection.
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If X is in the indicated intersection, we want to show that A\X ⊆ λ. To this end,
suppose that D is an ultrafilter such that A\X ∈ D, and to get a contradiction suppose
that cf(

∏
A/D) ≥ λ. Then X ∈ D by assumption, contradiction.

Note that the argument gives the desired result in case there are no ultrafilters D
as indicated in the intersection; in this case, pcf(A\X) ⊆ λ for every X ⊆ A, and so
J∗
<λ[A] = P(A).

Theorem 34.8. (λ-directedness) Assume that A is progressive. Then for every cardinal
λ, the partial order (

∏
A,<J<λ[A]) is λ-directed.

Proof. We may assume that there are infinitely many members of A less than λ. For,
suppose not. Let F ⊆

∏
A with |F | < λ. We define g ∈

∏
A by setting, for any a ∈ A,

g(a) =
{

sup{f(a) : f ∈ F} if |F | < a,
0 otherwise.

We claim that f ≤ g mod J<λ[A] for all f ∈ F . For, if f(a) > g(a), then λ > |F | ≥ a; thus
{a : f(a) > g(a)} ⊆ λ ∩ A. Now pcf(λ ∩ A) = λ ∩ A ⊆ λ, so {a : f(a) > g(a)} ∈ J<λ[A].

So, we make the indicated assumption. By this assumption, the set B
def
= A ∩ {|A|+,

|A|++, |A|+++, |A|++++} ⊆ λ. Suppose that we have shown that (
∏

(A\B), J<λ(A\B))
is λ-directed. Now let Y ⊆

∏
A with |Y | < λ. Choose g ∈

∏
(A\B) such that f ↾

(A\B) <J<λ[A\B] g for all f ∈ Y . Let g+ ∈
∏
A be an extension of g. Then

{a : f(a) > g+(a)} = {a ∈ A\B : f(a) > g(a)} ∪ {a ∈ B : f(a) > g+(a)}

∈ J<λ[A\B] + P(B ∩ λ)

= J<λ[A] by Lemma 34.6.

Thus g+ is an upper bound for Y mod J<λ[A].
Hence we may assume that |A|+3 < min(A).
Now we prove by induction on the cardinal λ0 that if λ0 < λ and F = {fi : i < λ0} ⊆∏

A is a family of functions of size λ0, then F has an upper bound in (
∏
A,<J<λ). So,

we assume that this is true for all cardinals less than λ0. If λ0 < min(A), then sup(F ) is
as desired. So, assume that min(A) ≤ λ0.

First suppose that λ0 is singular. Let 〈αi : i < cf(λ0)〉 be increasing and cofinal in λ0,
each αi a cardinal. By the inductive hypothesis, let gi be a bound for {fξ : ξ < αi} for
each i < cfλ0, and then let h be a bound for {gi : i < cfλ0}. Clearly h is a bound for F .

So assume that λ0 is regular. We are now going to define a <J<λ -increasing sequence
〈f ′
ξ : ξ < λ0〉 which satisfies (∗)κ, with κ = |A|+, and such that fi ≤ f ′

i for all i < λ0. To

do this choose, for every δ ∈ Sλ0

κ++ a club Eδ ⊆ δ of order type κ++. Now for such a δ we
define

f ′
δ = sup({f ′

j : j ∈ Eδ} ∪ {fδ}).

For ordinals δ < λ0 of cofinality 6= κ++ we apply the inductive hypothesis to get f ′
δ such

that f ′
ξ <J<λ f

′
δ for every ξ < δ and also fδ <J<λ f

′
δ.

This finishes the construction. By Lemma 34.41, (∗)|A|+ holds for f , and hence by

Theorem 34.39, f has an exact upper bound g ∈ AOn with respect to <J<λ . The identity
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function on A is an upper bound for f , so we may assume that g(a) ≤ a for all a ∈ A.

Now we shall prove that B
def
= {a ∈ A : g(a) = a} ∈ J<λ[A], so a further modification of g

yields the desired upper bound for f .
To get a contradiction, suppose that B /∈ J<λ[A]. Hence pcf(B) 6⊆ λ, and so there is

an ultrafilter D over A such that B ∈ D and cf(
∏
A/D) ≥ λ. Clearly D ∩ J<λ[A] = ∅, as

otherwise cf(
∏
A/D) < λ. Now f has length λ0 < λ, and so it is bounded in

∏
A/D; say

that fi <D h ∈
∏
A for all i < λ0. Thus h(a) < a = g(a) for all a ∈ B. Now we define

h′ ∈
∏
A by

h′(a) =
{
h(a) if a ∈ B,
0 otherwise.

Then h′ <J<λ g, since

{a ∈ A : h′(a) ≥ g(a)} = {a ∈ A : g(a) = 0} ⊆ {a ∈ A : f0(a) ≥ g(a)} ∈ J<λ.

Hence by the exactness of g it follows that h′ <J<λ fi for some i < λ0. But B ∈ D and
hence h =D h′. So h <D fi, contradiction.

Corollary 34.9. Suppose that A is progressive, D is an ultrafilter over A, and λ is a
cardinal. Then:

(i) cf(
∏
A/D) < λ iff J<λ[A] ∩D 6= ∅.

(ii) cf(
∏
A/D) = λ iff J<λ+ ∩D 6= ∅ = J<λ ∩D.

(iii) cf(
∏
A/D) = λ iff λ+ is the first cardinal µ such that J<µ ∩D 6= ∅.

Proof. (i): ⇒: Assuming that J<λ[A] ∩ D = ∅, the fact from Theorem 34.8 that
<J<λ is λ-directed implies that also

∏
A/D is λ-directed, and hence cf(

∏
A/D) ≥ λ.

⇐: Assume that J<λ[A] ∩ D 6= ∅. Choose X ∈ J<λ ∩ D. Then by definition,
pcf(A) ⊆ λ, and hence cf(

∏
A/D) < λ.

(ii): Immediate from (i).
(iii): Immediate from (ii).

We now give two important theorems about pcf.

Theorem 34.10. If A is progressive, then |pcf(A)| ≤ 2|A|.

Proof. By Corollary 34.9, for each λ ∈ pcf(A) we can select an element f(λ) ∈
J<λ+\J<λ. Clearly f is a one-one function from pcf(A) into P(A).

Notation. We write J≤λ in place of J<λ+ .

Theorem 34.11. (The max pcf theorem) If A is progressive, then pcf(A) has a largest
element.

Proof. Let
I =

⋃

λ∈pcf(A)

J<λ[A].

Now clearly each ideal J<λ is proper (since for example {λ} /∈ J<λ), so I is also proper.
Extend the dual of I to an ultrafilter D, and let µ = cf(

∏
A/D). Then for each λ ∈ pcf(A)

we have J<λ ∩D = ∅ since I ∩D = ∅, and by Corollary 34.9 this means that µ ≥ λ.
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Corollary 34.12. Suppose that A is progressive. If λ is a limit cardinal, then

J<λ[A] =
⋃

θ<λ

J≤θ[A].

Proof. The inclusion ⊇ is clear. Now suppose that X ∈ J<λ[A]. Thus pcf(X) ⊆ λ.
Let µ be the largest element of pcf(X). Then µ ∈ λ, and pcf(X) ⊆ µ+, so X ∈ J<µ+ , and
the latter is a subset of the right side.

Theorem 34.13. (The interval theorem) If A is a progressive interval of regular cardinals,
then pcf(A) is an interval of regular cardinals.

Proof. Let µ = sup(A). By 34.3(iii) and 34.1(vi) we may assume that µ is singular.
By Theorem 34.11 let λ0 = max(pcf(A)). Thus we want to show that every regular cardinal
λ in (µ, λ0) is in pcf(A). By Theorem 34.8, the partial order (

∏
A,<J<λ) is λ-directed.

Clearly J<λ is a proper ideal, so λ ∈ pcf(A) by Corollary 34.5.

Definition. If κ is a cardinal ≤ |A|, then we define

pcfκ(A) =
⋃

{pcf(X) : X ⊆ A and |X | = κ}.

Theorem 34.14. If A is an interval of regular cardinals and κ < min(A), then pcfκ(A)
is an interval of regular cardinals.

Note here that we do not assume that A is progressive.

Proof. Let λ0 = sup pcfκ(A). Note that each subset X of A of cardinality κ is
progressive, and so max(pcf(X)) exists by Theorem 34.11. Thus

λ0 = sup{max(pcf(X)) : X ⊆ A and |X | = κ}.

To prove the theorem it suffices to take any regular cardinal λ such that min(A) < λ < λ0

and show that λ ∈ pcfκ(A). In fact, this will show that pcfκ(A) is an interval of regular
cardinals, whether or not λ0 is regular. Since λ < λ0, there is an X ⊆ A of size κ such that
λ ≤ max(pcf(X)). Hence X /∈ J<λ[X ]. If there is a proper initial segment Y of X which
is not in J<λ[X ], we can choose the smallest a ∈ X such that X ∩ a /∈ J<λ[X ] and work
with X ∩ a rather than X . So we may assume that every proper initial segment of X is in
J<λ[X ]. If λ ∈ A, clearly λ ∈ pcfκ(A). So we may assume that λ /∈ A. If λ < sup(X), then
λ ∈ A, contradiction. If λ = sup(X), then λ = sup(A) since λ /∈ A, and this contradicts
Proposition 34.3(ii). So sup(X) < λ. Since J<λ[X ] is λ-directed by Theorem 34.8, we can
apply 34.4 to obtain λ ∈ pcf(X), and hence λ ∈ pcfκ(A), as desired.

Another of the central results of pcf theory is as follows.

Theorem 34.15. (Closure theorem.) Suppose that A is progressive, B ⊆ pcf(A), and B
is progressive. Then pcf(B) ⊆ pcf(A). In particular, if pcf(A) itself is progressive, then
pcf(pcf(A)) = pcf(A).
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Proof. Suppose that µ ∈ pcf(B), and let E be an ultrafilter on B such that µ =
cf(
∏
B/E). For every b ∈ B fix an ultrafilter Db on A such that b = cf(

∏
A/Db). Define

F by
X ∈ F iff X ⊆ A and {b ∈ B : X ∈ Db} ∈ E.

It is straightforward to check that F is an ultrafilter on A. The rest of the proof consists
in showing that µ = cf(

∏
A/F ).

By Proposition 34.22 we have

µ = cf

(
∏

b∈B

(∏

A/Db

)

/E

)

.

Hence it suffices by Proposition 34.10 to show that
∏
A/F is isomorphic to a cofinal subset

of this iterated ultraproduct. To do this, we consider the Cartesian product B × A and
define

H ∈ P iff H ⊆ B ×A and {b ∈ B : {a ∈ A : (b, a) ∈ H} ∈ Db} ∈ E.

Again it is straightforward to check that P is an ultrafilter over B ×A. Let r(b, a) = a for
any (b, a) ∈ B ×A. Then

(∗)




∏

(b,a)∈B×A

a



 /P ∼=
∏

b∈B

(∏

A/Db

)

/E.

To prove (∗), for any f ∈
∏

〈b,a〉∈B×A a we define f ′ ∈
∏

b∈B(
∏
A/Db) by setting

f ′(b) = 〈f(b, a) : a ∈ A〉/Db.

Then for any f, g ∈
∏

〈b,a〉∈B×A a we have

f =P g iff {(b, a) : f(b, a) = g(b, a)} ∈ P

iff {b : {a : f(b, a) = g(b, a)} ∈ Db} ∈ E

iff {b : f ′(b) = g′(b)} ∈ E

iff f ′ =E g′.

Hence we can define k(f/P ) = f ′/E, and we get a one-one function. To show that it is
a surjection, suppose that h ∈

∏

b∈B(
∏
A/Db). For each b ∈ B write h(b) = h′b/Db with

h′b ∈
∏
A. Then define f(b, a) = h′b(a). Then

f ′(b) = 〈f(b, a) : a ∈ A〉/Db = 〈h′b(a) : a ∈ A〉/Db = h′b/Db = h(b),

as desired. Finally, k preserves order, since

f/P < g/P iff {(b, a) : f(b, a) < g(b, a)} ∈ P

iff {b : {a : f(b, a) < g(b, a)} ∈ Db} ∈ E

iff {b : f ′(b) < g′(b)} ∈ E

iff k(f/P ) < k(g/P ).
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So (∗) holds.
Now we apply Lemma 34.23, with r, B × A,A, P in place of c, A,B, I respectively.

Then F is the Rudin-Keisler projection on A, since for any X ⊆ A,

X ∈ F iff {b ∈ B : X ∈ Db} ∈ E

iff {b ∈ B : {a ∈ A : r(b, a) ∈ X} ∈ Db} ∈ E

iff {b ∈ B : {a ∈ A : (b, a) ∈ r−1[X ]} ∈ Db} ∈ E

iff r−1[X ] ∈ P.

Thus by Lemma 34.23 we get an isomorphism h of
∏
A/F into

∏

(b,a)∈B×A a/P such that

h(e/F ) = 〈e(r(b, a)) : (b, a) ∈ B × A〉/P for any e ∈
∏
A. So now it suffices now to show

that the range of h is cofinal in
∏

(b,a)∈B×A a/P . Let g ∈
∏

(b,a)∈B×A a. For every b ∈ B

define gb ∈
∏
A by gb(a) = g(b, a). Let λ = min(B). Since B is progressive, we have

|B| < λ. Hence by the λ-directness of
∏
A/J<λ[A] (Theorem 34.8), there is a function

k ∈
∏
A such that gb <J<λ k for each b ∈ B. Now λ ≤ b for all b ∈ B, so J<λ∩Db = ∅, and

so gb <Db k. It follows that g/P <P h(k/D). In fact, let H = {(b, a) : g(b, a) < k(r(b, a))}.
Then

{b ∈ B : {a ∈ A : (b, a) ∈ H} ∈ Db} = {b ∈ B : {a ∈ A : gb(a) < k(a)} ∈ Db} = B ∈ E,

as desired.

Generators for J<λ

If I is an ideal on a set A and B ⊆ A, then I +B is the ideal generated by I ∪ {B}; that
is, it is the intersection of all ideals J on A such that I ∪ {B} ⊆ J .

Proposition 34.16. Suppose that I is an ideal on A and B,X ⊆ A. Then the following
conditions are equivalent:

(i) X ∈ I +B.
(ii) There is a Y ∈ I such that X ⊆ Y ∪B.
(iii) X\B ∈ I.

Proof. Clearly (ii)⇒(i). The set

{Z ⊆ A : ∃Y ∈ I[Z ⊆ Y ∪B]}

is clearly an ideal containing I ∪ {B}, so (i)⇒(ii). If Y is as in (ii), then X\B ⊆ Y , and
hence X\B ∈ I; so (ii)⇒(iii). If X\B ∈ I, then X ⊆ (X\B) ∪ B, so X satisfies the
condition of (ii). So (iii)⇒(ii).

The following easy lemma will be useful later.

Lemma 34.17. Suppose that A is progressive and B ⊆ A.
(i) P(B) ∩ J<λ[A] = J<λ[B].
(ii) If f, g ∈

∏
A and f <J<λ[A] g, then (f ↾ B) <J<λ[B] (g ↾ B).
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Proof. (i): Suppose that X ∈P(B)∩J<λ[A] and X ∈ D, an ultrafilter on B. Extend
D to an ultrafilter E on A. Then

∏
B/D ∼=

∏
A/E, and cf(

∏
A/E) < λ. So X ∈ J<λ[B].

The converse is proved similarly.
(ii): Assume that f, g ∈

∏
A and f <J<λ[A] g. Then

{a ∈ B : g(b) ≤ f(b)} ∈P(B) ∩ J<λ[A] = J<λ[B]

by (i), as desired.

Definitions. If there is a set X such that J≤λ[A] = J<λ + X , then we say that λ is
normal.

Let A be a set of regular cardinals, and λ a cardinal. A subset B ⊆ A is a λ-generator
over A iff J≤λ[A] = J<λ[A] + B. We omit the qualifier “over A” if A is understood from
the context.

Suppose that λ ∈ pcf(A). A universal sequence for λ is a sequence f = 〈fξ : ξ < λ〉
which is <J<λ[A]-increasing, and for every ultrafilter D over A such that cf(

∏
A/D) = λ,

the sequence f is cofinal in
∏
A/D.

Theorem 34.18. (Universal sequences) Suppose that A is progressive. Then every λ ∈
pcf(A) has a universal sequence.

Proof. First,

(1) We may assume that |A|+ < min(A) < λ.

In fact, suppose that we have proved the theorem under the assumption (1), and now take
the general situation. Recall from Proposition 3.19(vii) that min(A) ≤ λ. If λ = min(A),
define fξ ∈

∏
A, for ξ < λ, by fξ(a) = ξ for all a ∈ A. Thus f is <-increasing, hence

<J<λ[A]-increasing. Suppose that D is an ultrafilter on A such that cf(
∏
A/D) = λ. Then

{min(A)} ∈ D, as otherwise A\{min(A)} ∈ D and hence cf(
∏
A/D) > λ by Proposition

34.1(vii). Thus for any g ∈
∏
A, let ξ = g(min(A)) + 1. Then {a ∈ A : g(a) < fξ(a)} ⊇

{min(A)} ∈ D, so [g] < [fξ]. Hence 〈[fξ] : ξ < λ〉 is cofinal in
∏
A/D.

Now suppose that min(A) < λ. Let a0 = minA. Let A′ = A\{a0}. If D is an
ultrafilter such that λ = cf(

∏
A/D), then A′ ∈ D since a0 < λ, hence {a0} /∈ D. It

follows that λ ∈ pcf(A′). Clearly |A′|+ < minA′ ≤ λ. Hence by assumption we get a
system 〈fξ : ξ < λ〉 of members of

∏
A′ which is increasing in <J<λ[A′] such that for every

ultrafilter D over A′ such that λ = cf(
∏
A′/D), f is cofinal in

∏
A′/D. Extend each fξ

to gξ ∈
∏
A by setting gξ(a0) = 0. If ξ < η < λ, then

{a ∈ A : gξ(a) ≥ gη(a)} ⊆ {a ∈ A′ : fξ(a) ≥ fη(a)} ∪ {a0},

and {a ∈ A′ : fξ(a) ≥ fη(a)} ∈ J<λ[A′] ⊆ J<λ[A] and also {a0} ∈ J<λ[A] since a0 < λ,
so gξ <J<λ gη. Now let D be an ultrafilter over A such that λ = cf(

∏
A/D). As above,

A′ ∈ D; let D′ = D∩P(A′). Then λ = cf(
∏
A′/D′). To show that g is cofinal in

∏
A/D,

take any h ∈
∏
A. Choose ξ < λ such that (h ↾ A′)/D′ < fξ/D

′. Then

{a ∈ A : h(a) ≥ gξ(a)} ⊇ {a ∈ A′ : h(a) ≥ fξ(a)},
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so h/D < gξ/D, as desired.
Thus we can make the assumption as in (1). Suppose that there is no universal

sequence for λ. Thus

(2) For every <J<λ -increasing sequence f = 〈fξ : ξ < λ〉 there is an ultrafilter D over A
such that cf(

∏
A/D) = λ but f is not cofinal in

∏
A/D.

We are now going to construct a <J<λ -increasing sequence fα = 〈fαξ : ξ < λ〉 for each

α < |A|+. We use the fact that
∏
A/J<λ is λ-directed (Theorem 34.8).

Using this directedness, we start with any <J<λ -increasing sequence f0 = 〈f0
ξ : ξ < λ〉.

For δ limit < |A|+ we are going to define f δξ by induction on ξ so that the following
conditions hold:

(3) f δi <J<λ f
δ
ξ for i < ξ,

(4) sup{fαξ : α < δ} ≤ f δξ .

Suppose that f δi has been defined for all i < ξ. By λ-directedness, choose g such that
f δi <J<λ g for all i < ξ. Now for any a ∈ A we have sup{fαξ (a) : α < δ} < a, since

δ < |A|+ < minA ≤ a. Hence we can define

f δξ (a) = max{g(a), sup{fαξ (a) : α < δ}}.

Clearly the conditions (3), (4) hold.
Now suppose that fα has been defined and is <J<λ -increasing; we define fα+1. By

(2), choose an ultrafilter Dα over A such that

(5) cf(
∏
A/Dα) = λ;

(6) The sequence fα is bounded in <Dα .

By (6), choose fα+1
0 which bounds fα in <Dα ; in addition, fα+1

0 ≥ fα0 . Let 〈hξ/Dα : ξ < λ〉
be strictly increasing and cofinal in

∏
A/Dα. Now we define fα+1

ξ by induction on ξ when

ξ > 0. First, by λ-directness, choose k such that fα+1
i <J<λ k for all i < ξ. Then for any

a ∈ A let

fα+1
ξ (a) = max(k(a), hξ(a), fαξ (a)).

Then the following conditions hold:

(7) fα+1 is strictly increasing and cofinal in
∏
A/Dα;

(8) fα+1
i ≥ fαi for every i < λ.

This finishes the construction. Clearly we then have

(9) If i < λ and α1 < α2 < |A|+, then fα1
i ≤ f

α2
i .

(10) fα is bounded in
∏
A/Dα by fα+1

0 .

(11) fα+1 is cofinal in
∏
A/Dα.
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Now let h = supα<|A|+ f
α
0 . Then h ∈

∏
A, since |A|+ < min(A). By (11), for each

α < |A|+ choose iα < λ such that h <Dα f
α+1
iα

. Since λ > |A|+ is regular, we can choose
i < λ such that iα < i for all α < |A|+. Now define

Aα = {a ∈ A : h(a) ≤ fα(a)}.

By (9) we have Aα ⊆ Aβ for α < β < |A|+. We are going to get a contradiction by showing
that Aα ⊂ Aα+1 for every α < |A|+.

In fact, this follows from the following two statements.

(12) Aα /∈ Dα.

This holds because fαi <Dα f
α+1
i ≤ h.

(13) Aα+1 ∈ Dα.

This holds because h <Dα f
α+1
i by the choice of i and (7).

Proposition 34.19. If A is a set of regular cardinals, λ is the largest member of pcf(A),
and 〈fξ : ξ < λ〉 is universal for λ, then it is cofinal in (

∏
A, J<λ).

Proof. Assume the hypotheses. Fix g ∈
∏
A; we want to find ξ < λ such that

g <J<λ fξ. Suppose that no such ξ exists. Then, we claim, the set

(1) J∗
<λ ∪ {{a ∈ A : g(a) ≥ fξ(a)} : ξ < λ}

has fip. For, suppose that it does not have fip. Then there is a finite nonempty subset F
of λ such that

(2)
⋃

ξ∈F

{a ∈ A : g(a) < fξ(a)} : ξ < λ} ∈ J∗
<λ.

Let η be the largest member of F . Note that the set

{a ∈ A : fξ(a) < fρ(a) for all ξ, ρ ∈ F such that ξ < ρ}

is also a member of J∗
<λ; intersecting this set with the set of (2), we get a member of J∗

<λ

which is a subset of {a ∈ A : g(a) < fη(a)}, so that g <J<λ fη, contradiction.
Thus the set (1) has fip. Let D be an ultrafilter containing it. Then cf(

∏
A/D) = λ,

so by hypothesis there is a ξ < λ such that g <D fξ. Thus {a ∈ A : g(a) < fξ(a)} ∈ D.
But also {a ∈ A : g(a) ≥ fξ(a)} ∈ D, contradiction.

Theorem 34.20. If A is progressive, then cf(
∏
A,<) = max(pcf(A)). In particular,

cf(
∏
A,<) is regular.

Proof. First we prove ≥. Let λ = max(pcf(A)), and let D be an ultrafilter on A such
that λ = cf(

∏
A/D). Now for any f, g ∈

∏
A, if f < g then f <D g. Hence any cofinal

set in (
∏
A,<) is also cofinal in (

∏
A,<D), and so λ = cf(

∏
A,<D) ≤ cf(

∏
A,<).
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To prove ≤, we exhibit a cofinal subset of (
∏
A,<) of size λ. For every µ ∈ pcf(A)

fix a universal sequence fµ = 〈fµi : i < µ〉 for µ, by Theorem 34.18. Let F be the set of all
functions of the form

sup{fµ1

i1
, fµ2

i2
, . . . , fµnin },

where µ1, µ2, . . . , µn is a finite sequence of members of pcf(A), possibly with repetitions,
and ik < µk for each k = 1, . . . , n. We claim that F is cofinal in (

∏
A,<); this will

complete the proof.
To prove this claim, let g ∈

∏
A. Let

I = {>(f, g) : f ∈ F}.

(Recall that >(f, g) = {a ∈ A : f(a) > g(a)}.) Now I is closed under unions, since

>(f1, g)∪ >(f2, g) =>(sup(f1, f2), g).

If A ∈ I, then A = > (f, g) for some f ∈ F , as desired. So, suppose that A /∈ I. Now

J
def
= {A\X : X ∈ I} has fip since I is closed under unions, and so this set can be extended

to an ultrafilter D over A. Let µ = cf(
∏
A/D). Then fµ is cofinal in (

∏
A,<D) since it

is universal for µ. But fµi ≤I g for all i < µ, since fµi ∈ F and so > (fµi , g) ∈ I. This is a
contradiction.

Note that Theorem 34.20 is not talking about true cofinality. In fact, clearly any increasing
sequence of elements of

∏
A under < must have order type at most min(A), and so true

cofinality does not exist if A has more than one element.

Lemma 34.21. Suppose that A is progressive, λ ∈ pcf(A), and f ′ = 〈f ′
ξ : ξ < λ〉 is a

universal sequence for λ. Suppose that f = 〈fξ : ξ < λ〉 is <J<λ -increasing, and for every
ξ′ < λ there is a ξ < λ such that f ′

ξ′ ≤J<λ fξ. Then f is universal for λ.

Proof. This is clear, since for any ultrafilter D over A such that cf(
∏
A/D) = λ we

have D ∩ J<λ = ∅, and hence f ′
ξ′ ≤J<λ fξ implies that f ′

ξ′ ≤D fξ.

For the next result, note that if A is progressive, then |A| < min(A), and hence |A|+ ≤
min(A). So A ∩ |A|+ = ∅ ∈ J<λ for any λ. So if µ is an ordinal and A ∩ µ /∈ J<λ, then
|A|+ < µ.

Lemma 34.22. Suppose that A is a progressive set of regular cardinals and λ ∈ pcf(A).
(i) Let µ be the least ordinal such that A ∩ µ /∈ J<λ[A]. Then there is a universal

sequence for λ that satisfies (∗)κ for every regular cardinal κ such that κ < µ.
(ii) There is a universal sequence for λ that satisfies (∗)|A|+.

Proof. First note that (ii) follows from (i) by the remark preceding this lemma. Now
we prove (i). Note by the minimality of µ that either µ = ρ+ 1 for some ρ ∈ A, or µ is a
limit cardinal and A ∩ µ is unbounded in µ.

(1) µ ≤ λ+ 1.
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For, let D be an ultrafilter such that λ = cf(
∏
A/D). Then A∩ (λ+ 1) ∈ D, as otherwise

{a ∈ A : λ < a} ∈ D, and so cf(
∏
A/D) > λ by 34.1(vii), contradiction. Thus λ ∈

pcf(A ∩ (λ+ 1)), and hence pcf((A ∩ (λ+ 1)) 6⊆ λ, proving (1).

(2) µ 6= λ.

For, |A| < min(A) ≤ λ, so A ∩ λ is bounded in λ because λ is regular. Hence µ 6= λ by an
initial remark of this proof.

Now we can complete the proof for the case in which µ is ρ + 1 for some ρ ∈ A. In
this case, actually ρ = λ. For, we have A ∩ ρ ∈ J<λ[A] while A ∩ (ρ+ 1) /∈ J<λ[A]. Let D
be an ultrafilter on A such that A ∩ (ρ + 1) ∈ D and cf(

∏
A/D) ≥ λ. Then A ∩ ρ /∈ D,

since A ∩ ρ ∈ J<λ[A], so {ρ} ∈ D, and so ρ ≥ λ. By (1) we then have ρ = λ.
Now define, for ξ < λ and a ∈ A,

fξ(a) =

{
0 if a < λ,
ξ if λ ≤ a.

Thus fξ ∈
∏
A. The sequence 〈fξ : ξ < λ〉 is <J<λ[A]-increasing, since if ξ < η < λ

then {a ∈ A : fξ(a) ≥ fη(a)} ⊆ A ∩ λ ∈ J<λ[A]. It is also universal for λ. For, suppose
that D is an ultrafilter on A such that cf(

∏
A/D) = λ. Suppose that g ∈

∏
A. Now

|A| < min(A) ≤ λ, so ξ
def
= (supa∈A g(a)) + 1 is less than λ. Now {a ∈ A : g(a) < fξ(a)} =

A ∈ D, so g <D fξ, as desired. Finally, 〈fξ : ξ < λ〉 satisfies (∗)λ, since it is itself strongly
increasing under J<λ[A]. In fact, if ξ < η < λ and a ∈ A\λ, then fξ(a) = ξ < η = fη(a),
and A ∩ λ ∈ J<λ[A].

Hence the case remains in which µ < λ and A ∩ µ is unbounded in µ. Let 〈f ′
ξ :

ξ < λ〉 be any universal sequence for λ. We now apply Lemma 34.43 with I replaced by
J<λ[A]. (Recall that (

∏
A, I<λ[A] is λ-directed by Theorem 34.8.) This gives us a <J<λ[A]-

increasing sequence f = 〈fξ : ξ < λ〉 such that f ′
ξ < fξ+1 for every ξ < λ, and (∗)κ holds

for f , for every regular cardinal κ such that κ++ < λ and {a ∈ A : a ≤ κ++} ∈ J<λ[A].
Clearly then f is universal for λ. If κ is a regular cardinal less than µ, then κ++ < µ < λ,
and {a ∈ A : a ≤ κ++} ⊆ J<λ[A] by the minimality of µ, so the conclusion of the lemma
holds.

Lemma 34.23. Suppose that A is a progressive set of regular cardinals, B ⊆ A, and λ is
a regular cardinal. Then the following conditions are equivalent:

(i) J≤λ[A] = J<λ[A] +B.
(ii) B ∈ J≤λ[A], and for every ultrafilter D on A, if cf(

∏
A/D) = λ, then B ∈ D.

Proof. (i)⇒(ii): Assume (i). Obviously, then, B ∈ J≤λ[A]. Now suppose that D is
an ultrafilter on A and cf(

∏
A/D) = λ. By Corollary 34.9(ii) we have J≤λ[A] ∩D 6= ∅ =

J<λ[A]∩D. Choose X ∈ J≤λ[A]∩D. Then by Proposition 34.16, X\B ∈ J<λ[A], so since
J<λ[A] ∩D = ∅, we get B ∈ D.

(ii)⇒(i): ⊇ is clear. Now suppose that X ∈ J≤λ[A]. If X ⊆ B, then obviously
X ∈ J<λ[A] +B. Suppose that X 6⊆ B, and let D be any ultrafilter such that X\B ∈ D.
Then cf(

∏
A/D) ≤ λ since pcf(X) ⊆ λ+, and so cf(

∏
A/D) < λ by the second assumption

in (ii). This shows that pcf(X\B) ⊆ λ, so X\B ∈ J<λ[A], and hence X ∈ J<λ[A] +B by
Proposition 34.16.
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Theorem 34.24. If A is progressive, then every member of pcf(A) has a generator.

Proof. First suppose that we have shown the theorem if |A|+ < min(A). We show
how it follows when |A|+ = min(A). The least member of pcf(A) is |A|+ by 34.1(vii).
We have J<|A|+ [A] = {∅} and J≤|A|+ [A] = {∅, {|A|+}} = J<|A|+ [A] + |A|+, so |A|+ is a
|A|+-generator. Now suppose that λ ∈ pcf(A) with λ > |A|+. Let A′ = A\{|A|+}. By
34.1(vi) we also have λ ∈ pcf(A′). By the supposed result there is a b ⊆ A′ such that
J≤λ[A′] = J<λ[A′] + b. Hence, applying Lemma 34.6 to λ+ and {|A|+},

J≤λ[A] = J≤λ[A′] + {|A|+}

= J<λ[A′] + b+ {|A|+}

= J<λ[A] + b,

as desired.
Thus we assume henceforth that |A|+ < min(A). Suppose that λ ∈ pcf(A). First we

take the case λ = |A|++. Hence by Lemma 34.1(vii) we have λ ∈ A. Clearly

J≤λ[A] = {∅, {λ}} = {∅}+ {λ} = J<λ[A] + {λ},

so λ has a generator in this case. So henceforth we assume that |A|++ < λ.
By Lemma 34.22, there is a universal sequence f = 〈fξ : ξ < λ〉 for λ such that (∗)|A|+

holds. Hence by Lemma 8.40, f has an exact upper bound h with respect to <J<λ . Since
h is a least upper bound for f and the identity function on A is an upper bound for f , we
may assume that h(a) ≤ a for all a ∈ A. We now define

B = {a ∈ A : h(a) = a}.

Thus we can finish the proof by showing that

(⋆) J≤λ[A] = J<λ[A] +B

First we show that B ∈ J≤λ[A], i.e., that pcf(B) ⊆ λ+. Let D be any ultrafilter over A
having B as an element; we want to show that cf(

∏
A/D) ≤ λ. If D ∩ J<λ 6= ∅, then

cf(
∏
A/D) < λ by the definition of J<λ. Suppose that D ∩ J<λ = ∅. Now since f is

<J<λ -increasing and D ∩ J<λ = ∅, the sequence f is also <D-increasing. It is also cofinal;
for let g ∈

∏
A. Define

g′(a) =
{
g(a) if a ∈ B,
0 otherwise.

Then {a ∈ A : g′(a) ≥ h(a)} ⊆ {a ∈ A : h(a) = 0} ⊆ {a ∈ A : f0(a) ≥ h(a)} ∈ J<λ.
So g′ <J<λ h. Since h is an exact upper bound for f , there is hence a ξ < λ such
that g′ <J<λ fξ. Hence g′ <D fξ, and clearly g =D g′, so g <D fξ. This proves that
cf(
∏
A/D) = λ. So we have proved ⊇ in (⋆).

For ⊆, we argue by contradiction and suppose that there is an X ∈ J≤λ such that
X /∈ J<λ[A] + B. Hence (by Proposition 34.16), X\B /∈ J<λ. Hence J∗

<λ ∪ {X\B} has
fip, so we extend it to an ultrafilter D. Since D ∩ J<λ = ∅, we have cf(

∏
A/D) ≥ λ. But
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also X ∈ D since X\B ∈ D, and X ∈ J≤λ, so cf(
∏
A/D) = λ. By the universality of f it

follows that f is cofinal in cf(
∏
A/D). But A\B ∈ D, so {a ∈ A : h(a) < a} ∈ D, and so

there is a ξ < λ such that h <D fξ. This contradicts the fact that h is an upper bound of
f under <J<λ .

Now we state some important properties of generators.

Lemma 34.25. Suppose that A is progressive, λ ∈ pcf(A), and B ⊆ A.
(i) If B is a λ-generator, D is an ultrafilter on A, and cf(

∏
A/D) = λ, then B ∈ D.

(ii) If B is a λ-generator, then λ /∈ pcf(A\B).
(iii) If B ∈ J≤λ and λ /∈ pcf(A\B), then B is a λ-generator.
(iv) If λ = max(pcf(A)), then A is a λ-generator on A.
(v) If B is a λ-generator, then the restrictions to B of any universal sequence for λ

are cofinal in (
∏
B,<J<λ[B]).

(vi) If B is a λ-generator, then tcf(
∏
B,<J<λ[B]) = λ.

(vii) If B is a λ-generator on A, then λ = max(pcf(B)).
(viii) If B is a λ-generator on A and D is an ultrafilter on A, then cf(

∏
A/D) = λ

iff B ∈ D and D ∩ J<λ = ∅.
(ix) If B is a λ-generator on A and B =J<λ C, then C is a λ-generator on A. [Here

X =I Y means that the symmetric difference of X and Y is in I, for any ideal I.]
(x) If B is a λ-generator, then so is B ∩ (λ+ 1).
(xi) If B and C are λ-generators, then B =J<λ C.
(xii) If λ = max(pcf(A)) and B is a λ-generator, then A\B ∈ J<λ.

Proof. (i): By Corollary 34.9(ii), choose C ∈ J≤λ ∩D. Hence C ⊆ X ∪ B for some
X ∈ J<λ. By Corollary 34.9(ii) again, J<λ ∩ D = ∅, so X /∈ D. Thus C\X ⊆ B and
C\X ∈ D, so B ∈ D.

(ii): Clear by (i).
(iii): Assume the hypothesis. We need to show that every member C of J≤λ is a

member of J<λ + B. Now pcf(C) ⊆ λ+. Hence pcf(C\B) ⊆ λ, so C\B ∈ J<λ, and the
desired conclusion follows from Proposition 34.16.

(iv): By (iii).
(v): Suppose not. Let f = 〈fξ : ξ < λ〉 be a universal sequence for λ such that there

is an h ∈
∏
B such that h is not bounded by any fξ ↾ B. Thus ≤ (fξ ↾ B, h) /∈ J<λ[B] for

all ξ < λ. Now suppose that ξ < η < λ. Then

≤ (fη ↾ B, h)\(≤ (fξ ↾ B, h)) = {a ∈ B : fη(a) ≤ h(a) < fξ(a)}

⊆ {a ∈ A : fη(a) < fξ(a)} ∈ J<λ[A].

Hence by Lemma 34.17(i) we have ≤ (fη ↾ B, h)\(≤ (fξ ↾ B, h)) ∈ J<λ[B]. It follows that
if N is a finite subset of λ with largest element less than η, then

(∗) (≤ (fη ↾ B, h))\
⋂

ξ∈N

(≤ (fξ ↾ B, h)) ∈ J<λ[B].

We claim now that
M

def
= {≤ (fξ ↾ B, h) : ξ < λ} ∪ (J<λ[B])∗
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has fip. Otherwise, there is a finite subset N of λ and a set C ∈ J<λ[B] such that




⋂

ξ∈N

≤ (fξ ↾ B, h)



 ∩ (B\C) = ∅;

hence if ξ is the largest member of N we get ≤ (fξ ↾ B, h) ∈ J<λ[B] by (∗), contradiction.
So we extend the set M to an ultrafilter D on B, then to an ultrafilter E on A. Note
that B ∈ E. Also, E ∩ J<λ[A] = ∅. In fact, if X ∈ E ∩ J<λ[A], then X ∩ B ∈ J<λ[A],
so X ∩ B ∈ D ∩ J<λ[B] by Lemma 34.17(i). But D ∩ J<λ[B] = ∅ by construction. Now
B ∈ E∩J≤λ[A], so cf(

∏
A/E) = λ, and h bounds all fξ in this ultraproduct, contradicting

the universality of f .
(vi): By Lemma 34.17 and (v).
(vii): By (i) we have λ ∈ pcf(B). Now B ∈ J≤λ[A], so pcf(B) ⊆ λ+. The desired

conclusion follows.
(viii): For ⇒, suppose that cf(

∏
A/D) = λ. Then B ∈ D by (i), and obviously

D ∩ J<λ = ∅. For ⇐, assume that B ∈ D and D ∩ J<λ = ∅. Now B ∈ J≤λ, so
cf(
∏
A/D) = λ by Corollary 34.9(ii).

(ix): We have B ∈ J≤λ and C = (C\B) ∪ (C ∩ B), so C ∈ J≤λ. Suppose that
λ ∈ pcf(A\C). Let D be an ultrafilter on A such that cf(

∏
A/D) = λ and A\C ∈ D. Now

B ∈ D by (i), so B\C ∈ D. This contradicts B\C ∈ J<λ. So λ /∈ pcf(A\C). Hence C is a
λ-generator, by (iii).

(x): Let B′ = B ∩ (λ + 1). Clearly B′ ∈ J≤λ. Suppose that λ ∈ pcf(A\B′). Say
λ = cf(

∏
A/D) with A\B′ ∈ D. Also A ∩ (λ+ 1) ∈ D, since A\(λ+ 1) ∈ D would imply

that cf(
∏
A/D) > λ by Proposition 34.1(vii). Since clearly

(A\B′) ∩ (A ∩ (λ+ 1)) ⊆ A\B,

this yields A\B ∈ D, contradicting (ii). Therefore, λ /∈ pcf(A\B′). So B′ is a λ-generator,
by (iii).

(xi): This is clear from Proposition 34.16.
(xii): Clear by (iv) and (xi).

Lemma 34.26. Suppose that A is a progressive set, F is a proper filter over A, and λ is
a cardinal. Then the following are equivalent.

(i) tcf(
∏
A/F ) = λ.

(ii) λ ∈ pcf(A), F has a λ-generator on A as an element, and J∗
<λ ⊆ F .

(iii) cf(
∏
A/D) = λ for every ultrafilter D extending F .

Proof. (i)⇒(iii): obvious.
(iii)⇒(ii): Obviously λ ∈ pcf(A). Let B be a λ-generator on A. Suppose that

B /∈ F . Then there is an ultrafilter D on A such that A\B ∈ D and D extends F . Then
cf(
∏
A/D) = λ by (iii), and this contradicts Lemma 34.25(i).

(ii)⇒(i): Let B ∈ F be a λ-generator. By Lemma 34.25(vi) we have tcf(
∏
B/J<λ) =

λ, and hence tcf(
∏
A/F ) = λ since B ∈ F and J∗

<λ ⊆ F .
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Proposition 34.27. Suppose that A is a progressive set of regular cardinals, and λ is any
cardinal. Then the following conditions are equivalent:

(i) λ = max(pcf(A)).
(ii) λ = tcf(

∏
A/J<λ[A]).

(iii) λ = cf(
∏
A/J<λ[A]).

Proof. (i)⇒(ii): By Lemma 34.25(iv),(vi).
(ii)⇒(iii): Obvious.
(iii)⇒(ii): Assume (iii). Let µ = max(pcf(A)). By (i)⇒(iii) we have λ = µ.

Lemma 34.28. Suppose that A is progressive, A0 ⊆ A, and λ ∈ pcf(A0). Suppose that B
is a λ-generator on A. Then B ∩ A0 is a λ-generator on A0.

Proof. Since B ∈ J≤λ[A], we have pcf(B) ⊆ λ+ and hence pcf(B ∩ A0) ⊆ λ+ and
so B ∩ A0 ∈ J≤λ[A0]. If λ ∈ pcf(A0\B), then also λ ∈ pcf(A\B), and this contradicts
Lemma 34.25(ii). Hence λ /∈ pcf(A0\B), and hence B ∩ A0 is a λ-generator for A0 by
Lemma 34.25(iii).

Definition. If A is progressive, a generating sequence for A is a sequence 〈Bλ : λ ∈ pcf(A)〉
such that Bλ is a λ-generator on A for each λ ∈ pcf(A).

Theorem 34.29. Suppose that A is progressive, 〈Bλ : λ ∈ pcf(A)〉 is a generating sequence
for A, and X ⊆ A. Then there is a finite subset N of pcf(X) such that X ⊆

⋃

µ∈N Bµ.

Proof. We show that for all X ⊆ A, if λ = max(pcf(X)), then there is a finite subset
N as indicated, using induction on λ. So, suppose that this is true for every cardinal µ < λ,
and now suppose that X ⊆ A and max(pcf(X)) = λ. Then λ /∈ pcf(X\Bλ) by Lemma
34.25(ii), and so pcf(X\Bλ) ⊆ λ. Hence max(pcf(X\Bλ)) < λ. Hence by the inductive
hypothesis there is a finite subset N of pcf(X\Bλ) such that X\Bλ ⊆

⋃

µ∈N Bµ. Hence

X ⊆ Bλ ∪
⋃

µ∈N

Bµ,

and {λ} ∪N ⊆ pcf(X).

Corollary 34.30. Suppose that A is progressive, 〈Bλ : λ ∈ pcf(A)〉 is a generating
sequence for A, and X ⊆ A. Suppose that λ is any infinite cardinal. Then X ∈ J<λ[A] iff
X ⊆

⋃

µ∈N Bµ for some finite subset N of λ ∩ pcf(A).

Proof. ⇒: Assume that X ∈ J<λ[A]. Thus pcf(X) ⊆ λ, and Theorem 34.29 gives
the desired conclusion.
⇐: Assume that a set N is given as indicated. Suppose that ρ ∈ pcf(X). Say

ρ = cf(
∏
A/D) with X ∈ D. Then Bµ ∈ D for some µ ∈ N . By the definition of

generator, Bµ ∈ J≤µ[A], and hence ρ ≤ µ < λ. Thus we have shown that pcf(X) ⊆ λ, so
X ∈ J<λ[A].

Lemma 34.31. Suppose that A is progressive and 〈Bλ : λ ∈ pcf(A)〉 is a generating
sequence for A. Suppose that D is an ultrafilter on A. Then there is a λ ∈ pcf(A) such
that Bλ ∈ D, and if λ is minimum with this property, then λ = cf(

∏
A/D).
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Proof. Let µ = cf(
∏
A/D). Then µ ∈ pcf(A) and Bµ ∈ D by Lemma 34.25(i).

Suppose that Bλ ∈ D with λ < µ. Now Bλ ∈ J≤λ ⊆ J<µ, contradicting Lemma 34.25(viii),
applied to µ.

Lemma 34.32. If A is progressive and also pcf(A) is progressive, and if λ ∈ pcf(A) and
B is a λ-generator for A, then pcf(B) is a λ-generator for pcf(A).

Proof. Note by Theorem 34.15 that pcf(pcf(B)) = pcf(B) and pcf(pcf(A\B)) =
pcf(A\B). Since B ∈ J≤λ[A], we have pcf(B) ⊆ λ+, and hence pcf(pcf(B)) ⊆ λ+ and
so pcf(B) ∈ J≤λ[pcf(A)]. Now suppose that λ ∈ pcf(pcf(A)\pcf(B)). Then by Lemma
34.1(iv) we have λ ∈ pcf(pcf(A\B)) = pcf(A\B), contradicting Lemma 34.25(ii). So
λ /∈ pcf(pcf(A)\pcf(B)). It now follows by Lemma 34.25(iii) that pcf(B) is a λ-generator
for pcf(A).

The following result is relevant to Theorem 34.44. Let µ be a singular cardinal, C a club
of µ, and suppose that X ∈ J<µ[C(+)]. Now pcf(X) has a maximal element, and so there
is an α < µ such that X ⊆ pcf(X) ⊆ α. Thus J<µ[C(+)] ⊆ Jbd.

Lemma 34.33. If µ is a singular cardinal of uncountable cofinality, then there is a club
C ⊆ µ such that tcf(

∏
C(+)/J<µ[C(+)]) = µ+.

Proof. Let C0 be a club in µ such that such that µ+ = tcf(
∏
C

(+)
0 /Jbd), by Theorem

34.44. Let C1 ⊆ C0 be such that the order type of C1 is cf(µ), C1 is cofinal in µ, and

∀κ ∈ C1[cf(µ) < κ]. Hence C
(+)
1 is progressive. Now µ+ ∈ pcf(C

(+)
1 ) by Lemma 34.26.

Let B be a µ+-generator for C
(+)
1 . Define C = {δ ∈ C1 : δ+ ∈ B}. Now C1\C is

bounded. Otherwise, let X = C
(+)
1 \B = (C1\C)(+). So X is unbounded, and hence

clearly µ+ = tcf(
∏
X/Jbd). Hence µ+ ∈ pcf(X). This contradicts Lemma 34.25(ii).

So, choose ε < µ such that C1\C ⊆ ε. Hence C1\ε ⊆ C\ε ⊆ C1\ε, so C1\ε =
C\ε. Clearly µ+ = tcf(

∏
(C1\ε)

(+)/Jbd), so µ+ ∈ pcf((C1\ε)
(+)). We claim that

tcf(
∏

(C1\ε)(+)/J<µ+ [(C1\ε)(+)]) = µ+. To show this, we apply Lemma 34.26. Sup-

pose that D is any ultrafilter on (C1\ε)(+) such that J<µ+ [(C1\ε)(+)] ∩ D = ∅. Now

by Lemma 34.28, B ∩ (C1\ε)(+) is a µ+-generator for (C1\ε)(+). Note that C+ ⊆ B.
Now B ∩ (C1\ε)(+) = B ∩ (C\ε)(+) = (C\ε)(+). It follows by Lemma 34.25(viii) that
cf(
∏

(C1\ε)(+)/D) = µ+. This proves that tcf(
∏

(C0\ε)(+)/J<µ+ [(C1\ε)(+)]) = µ+. Now

we claim that J<µ+ [(C1\ε)
(+)] = J<µ[(C1\ε)

(+)]. For, suppose that X ∈ J<µ+ [(C1\ε)
(+)].

So pcf(X) ⊆ µ+. Since X is progressive (because C1\ε)(+) is), we have max(pcf(X)) < µ,
hence pcf(X) ⊆ µ.

By essentially the same proof as for Lemma 34.33 we get

Lemma 34.34. If µ is a singular cardinal of countable cofinality, then there is an un-
bounded subset C of µ consisting of regular cardinals such that tcf(

∏
C/J<µ[C]) = µ+.

Proof. Let C0 be an unbounded collection of regular cardinals in µ such that µ+ =
tcf(

∏
C0/J

bd), by Theorem 34.45. Let C1 ⊆ C0 be such that the order type of C1 is cf(µ),
C1 is cofinal in µ, and ∀κ ∈ C1[ω < κ]. Hence C1 is progressive. Now µ+ ∈ pcf(C1)
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by Lemma 34.26. Let B be a µ+-generator for C1. Define C = B ∩ C1. Now C1\C is
bounded. Otherwise, let X = C1\B = C1\C. So X is unbounded, and hence clearly
µ+ = tcf(

∏
X/Jbd). Hence µ+ ∈ pcf(X). This contradicts Lemma 34.25(ii).

So, choose ε < µ such that C1\C ⊆ ε. Hence C1\ε ⊆ C\ε ⊆ C1\ε, so
C1\ε = C\ε. Clearly µ+ = tcf(

∏
(C1\ε)/Jbd), so µ+ ∈ pcf(C1\ε). We claim that

tcf(
∏

(C1\ε)/J<µ+ [C1\ε] = µ+. To show this, we apply Lemma 34.26. Suppose that
D is any ultrafilter on C1\ε such that J<µ+ [C1\ε] ∩ D = ∅. Now by Lemma 34.28,
B ∩ (C1\ε) is a µ+-generator for C1\ε. Note that C ⊆ B. Now B ∩ (C1\ε) = B ∩ (C\ε) =
(C\ε). It follows by Lemma 34.25(viii) that cf(

∏
(C1\ε)/D) = µ+. This proves that

tcf(
∏

(C0\ε)/J<µ+ [C1\ε]) = µ+. Now we claim that J<µ+ [C1\ε] = J<µ[C1\ε]. For, sup-
pose that X ∈ J<µ+ [C1\ε]. So pcf(X) ⊆ µ+. Since X is progressive (because C1\ε is), we
have max(pcf(X)) < µ, hence pcf(X) ⊆ µ.

Proposition 34.35. Suppose that F is a proper filter over a progressive set A of regular
cardinals. Define

pcfF (A) =
{

cf
(∏

A/D
)

: D is an ultrafilter extending F
}

.

Then:
(i) max(pcfF (A)) exists.
(ii) cf(

∏
A/F ) = max(pcfF (A)).

(iii) If B ⊆ pcfF (A) is progressive, then pcf(B) ⊆ pcfF (A).
(iv) If A is a progressive interval of regular cardinals with no largest element, and

F = {X ⊆ A : A\X is bounded}

is the filter of co-bounded subsets of A, then pcfF (A) is an interval of regular cardinals.

Proof. (i): Clearly pcfF (A) ⊆ pcf(A), and so if λ = max(pcf(A)), then A ∈ F ∩
J<λ+ [A]. Hence we can choose µ minimum such that F ∩J<µ[A] 6= ∅. By Corollary 34.12,
µ is not a limit cardinal; write µ = λ+. Then F ∩ J<λ = ∅, and so F ∪ J∗

<λ has fip; let D
be an ultrafilter containing this set. Then D ∩ J≤λ ⊇ F ∩ J≤λ 6= ∅, while D ∩ J<λ = ∅.
Hence cf(

∏
A/D) = λ by Corollary 34.9. On the other hand, since F ∩ J≤λ[A] 6= ∅, any

ultrafilter E containing F must be such that cf(
∏
A/E) ≤ λ.

(ii): Cf. the proof of Theorem 34.20. Let λ = max(pcfF (A)), and let D be an
ultrafilter extending F such that λ = cf(

∏
A/D). Let 〈fα : α < λ〉 be strictly increasing

and cofinal mod D. Now if g < h mod F , then also g < h mod D. So a cofinal subset of
∏
A mod F is also a cofinal subset mod D, so λ ≤ cf(

∏
A/F ). Hence it suffices to exhibit

a cofinal subset of
∏
A mod F of size λ. For every µ ∈ pcfF (A) fix a universal sequence

fµ = 〈fµi : i < µ〉 for µ, by Theorem 34.18. Let G be the set of all functions of the form

sup{fµ1

i1
, fµ2

i2
, . . . , fµnin },

where µ1, µ2, . . . , µn is a finite sequence of members of pcfF (A), possibly with repetitions,
and ik < µk for each k = 1, . . . , n. We claim that G is cofinal in (

∏
A,<F ); this will

complete the proof of (ii).
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To prove this claim, let g ∈
∏
A. Suppose that g 6< f mod F for all f ∈ G. Then, we

claim, the set

(∗) F ∪ {{a ∈ A : f(a) ≤ g(a)} : f ∈ G}

has fip. For, suppose not. Then there is a finite subset G′ of G such that
⋃

g∈G′{a ∈ A :
g(a) < f(a)} ∈ F . Let h = supf∈G′ f . Then g < h mod F and h ∈ G, contradiction.
Thus (∗) has fip, and we let D be an ultrafilter containing it. Let µ = cf(

∏
A/D). Then

µ ∈ pcfF (A), and f ≤ g mod D for all f ∈ G. Since the members of a universal sequence
for µ are in G, this is a contradiction. This completes the proof of (ii).

For (iii), we look at the proof of Theorem 34.15. Let F ′ be the ultrafilter named F at
the beginning of that proof. Since B ⊆ pcfF (A), each b ∈ B is in pcfF (A), and hence the
ultrafilters Db can be taken to extend F . Hence F ⊆ F ′, and so µ ∈ pcfF (A), as desired
in (iii).

Finally, we prove (iv). Let λ0 = min(pcfF (A)) and λ1 = max(pcfF (A)), and suppose
that µ is a regular cardinal such that λ0 < µ < λ1. Let D be an ultrafilter such that
F ⊆ D and cf(

∏
A/D) = λ1. Then by Corollary 34.9(ii), D∩J<λ1

= ∅, so J∗
λ1
⊆ D. Thus

F ∪ J∗
<µ ⊆ F ∪ J∗

<λ1
⊆ D, so F ∪ J+

<µ generates a proper filter G. Since (
∏
A,<J<µ) is

µ-directed by Theorem 34.8, so is (
∏
A,<G). Note that if a ∈ A, then {b ∈ A : a < b} ∈ F .

It follows that sup(A) ≤ λ0 < µ. Hence we can apply Theorem 34.4 and get a subset A′

of A (since A is an interval of regular cardinals) and a proper ideal K over A′ such that
A′ is cofinal in A, K contains all proper initial segments of A′, and tcf(

∏
A,<K) = µ.

Let 〈fα : α < µ〉 be strictly increasing and cofinal mod K. Extend K∗ to a filter L on A,
and extend each function fα to a function f+

α on A. Then clearly 〈f+
α : α < µ〉 is strictly

increasing and cofinal mod L, and L contains F . This shows that µ ∈ pcfF (A).
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35. Main cofinality theorems

The sets HΨ

We will shortly give several proofs involving the important general idea of making elemen-
tary chains inside the sets HΨ. Recall that HΨ, for an infinite cardinal Ψ, is the collection
of all sets hereditarily of size less than Ψ, i.e., with transitive closure of size less than Ψ.
We consider HΨ as a structure with ∈ together with a well-ordering <∗ of it, possibly with
other relations or functions, and consider elementary substructures of such structures.

Recall that A is an elementary substructure of B iff A is a subset of B, and for
every formula ϕ(x0, . . . , xm−1) and all a0, . . . , am−1 ∈ A, A |= ϕ(a0, . . . , am−1) iff B |=
ϕ(a0, . . . , am−1).

The basic downward Löwenheim-Skolem theorem will be used a lot. This theorem
depends on the following lemma.

Lemma 35.1. (Tarski) Suppose that A and B are first-order structures in the same
language, with A a substructure of B. Then the following conditions are equivalent:

(i) A is an elementary substructure of B.
(ii) For every formula of the form ∃yϕ(x0, . . . , xm−1, y) and all a0, . . . , am−1 ∈ A, if

B |= ∃yϕ(a0, . . . , am−1, y) then there is a b ∈ A such that B |= ϕ(a0, . . . , am−1, b).

Proof. (i)⇒(ii): Assume (i) and the hypotheses of (ii). Then by (i) we see that
A |= ∃yϕ(a0, . . . , am−1, y), so we can choose b ∈ A such that A |= ϕ(a0, . . . , am−1, b).
Hence B |= ϕ(a0, . . . , am−1, b), as desired.

(ii)⇒(i): Assume (ii). We show that for any formula ϕ(x0, . . . , xm−1) and any elements
a0, . . . , am−1 ∈ A, A |= ϕ(a0, . . . , am−1) iff B |= ϕ(a0, . . . , am−1), by induction on ϕ. It
is true for ϕ atomic by our assumption that A is a substructure of B. The induction
steps involving ¬ and ∨ are clear. Now suppose that A |= ∃yϕ(a0, . . . , am−1, y), with
a0, . . . , am−1 ∈ A. Choose b ∈ A such that A |= ϕ(a0, . . . , am−1, b). By the inductive
assumption, B |= ϕ(a0, . . . , am−1, b). Hence B |= ∃yϕ(a0, . . . , am−1, y), as desired.

Conversely, suppose that B |= ∃yϕ(a0, . . . , am−1, y). By (ii), choose b ∈ A such that
B |= ϕ(a0, . . . , am−1, b). By the inductive assumption, A |= ϕ(a0, . . . , am−1, b). Hence
A |= ∃yϕ(a0, . . . , am−1, y), as desired.

Theorem 35.2. Suppose that A is an L-structure, X is a subset of A, κ is an infinite
cardinal, and κ is ≥ both |X | and the number of formulas of L , while κ ≤ |A|. Then A
has an elementary substructure B such that X ⊆ B and |B| = κ.

Proof. Let a well-order ≺ of A be given. We define 〈Cn : n ∈ ω〉 by recursion. Let C0

be a subset of A of size κ with X ⊆ C0. Now suppose that Cn has been defined. Let Mn

be the collection of all pairs of the form (∃yϕ(x0, . . . , xm−1, y), a) such that a is a sequence
of elements of Cn of length m. For each such pair we define f(∃yϕ(x0, . . . , xm−1, y), a) to
be the ≺-least element b of A such that A |= ϕ(a0, . . . , am−1, b), if there is such an element,
and otherwise let it be the least element of Cn. Then we define

Cn+1 = Cn ∪ {f(∃yϕ(x0, . . . , xm−1, y), a) : (∃yϕ(x0, . . . , xm−1, y), a) ∈Mn}.
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Finally, let B =
⋃

n∈ω Cn.
By induction it is clear that |Cn| = κ for all n ∈ ω, and so also |B| = κ.
Now to show that B is an elementary substructure of A we apply Lemma 35.1. First

we show that B is a substructure of A; this amounts to showing that B is closed under
each fundamental operation FA. Say F is m-ary, and b0, . . . , bm−1 ∈ B. Then there is
an n such that b0, . . . , bm−1 ∈ Cn. Now (∃y[Fx0 . . . xm−1 = y], 〈b0, . . . , bm−1〉) ∈ Mn. Let
c = FA(b0, . . . , bm−1); so f((∃y[Fx0 . . . xm−1 = y], 〈b0, . . . , bm−1〉) = c ∈ Cn+1 ⊆ B.

Now suppose that we are given a formula of the form ∃yϕ(x0, . . . , xm−1, y) and
elements a0, . . . , am−1 of B, and A |= ∃yϕ(a0, . . . , am−1, y). Clearly there is an
n ∈ ω such that a0, . . . , am−1 ∈ Cn. Then (∃yϕ(x0, . . . , xm−1, y), a) ∈ Mn, and
f(∃yϕ(x0, . . . , xm−1, y), a) is an element b of Cn+1 ⊆ B such that A |= ϕ(a0, . . . , am−1, b).
This is as desired in Lemma 35.1.

Given an elementary substructure A of a set HΨ, we will frequently use an argument of
the following kind. A set theoretic formula holds in the real world, and involves only sets
in A. By absoluteness, it holds in HΨ, and hence it holds in A. Thus we can transfer a
statement to A even though A may not be transitive; and the procedure can be reversed.

To carry this out, we need some facts about transitive closures first of all.

Lemma 35.3. (i) If X ⊆ A, then tr cl(X) ⊆ tr cl(A).
(ii) tr cl(P(A)) = P(A) ∪ tr cl(A).
(iii) If tr cl(A) is infinite, then |tr cl(P(A))| ≤ 2|tr cl(A)|.
(iv) tr cl(A ∪B) = tr cl(A) ∪ tr cl(B).
(v) tr cl(A×B) = (A×B)∪{{a} : a ∈ A}∪{{a, b} : a ∈ A, b ∈ B}∪tr cl(A)∪tr cl(B).
(vi) If tr cl(A) or tr cl(B) is infinite, then |tr cl(A×B)| ≤ max(tr cl(A), tr cl(B).
(vii) tr cl(AB) ⊆ (AB) ∪ tr cl(A×B).
(viii) If tr cl(A) or tr cl(B) is infinite, then |tr cl(AB)| ≤ 2max(|tr cl(A)|,|tr cl(A)|).
(ix) If tr cl(A) is infinite, then |tr cl(

∏
A)| ≤ 2|tr cl(A)|.

(x) If tr cl(A) or tr cl(B) is infinite, then |tr cl(A(
∏
B))| ≤ 22max(|tr cl(A)|,|tr cl(B)|)

.
(xi) If A is an infinite set of regular cardinals, then |tr cl(pcf(A))| ≤ 2|tr cl(A)|.

Proof. (i)–(viii) are clear. For (ix), note that
∏
A ⊆ A

⋃
A, so (ix) follow from (viii).

For (x),

|tr cl
(
A
(∏

B
))

| ≤ 2max(|tr cl(A),|tr cl(
∏

B)|) by (viii)

≤ 2max(|tr cl(A),2|tr cl(B)|)

≤ 22max(|tr cl(A)|,|tr cl(B)|)

.

Finally, for (xi), note that tr cl(pcf(A)) = pcf(A) ∪
⋃

pcf(A). Now |pcf(A)| ≤ 2|A| ≤
2|tr cl(A)| by Theorem 34.10.

We also need the fact that some rather complicated formulas and functions are absolute
for sets HΨ. Note that HΨ is transitive. Many of the indicated formulas are not absolute
for HΨ in general, but only under the assumptions given that Ψ is much larger than the
sets in question.
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Lemma 35.4. Suppose that Ψ is an uncountable regular cardinal. Then the following
formulas (as detailed in the proof) are absolute for HΨ.

(i) B = P(A).

(ii) “D is an ultrafilter on A”.

(iii) κ is a cardinal.

(iv) κ is a regular cardinal.

(v) “κ and λ are cardinals, and λ = κ+”.

(vi) κ = |A|.
(vii) B =

∏
A.

(viii) A = BC.

(ix) “A is infinite”, if Ψ is uncountable.

(x) “A is an infinite set of regular cardinals and D is an ultrafilter on A and λ is a
regular cardinal and f ∈ λ

∏
A and f is strictly increasing and cofinal modulo D”, provided

that 2|tr cl(A)| < Ψ.

(xi) “A is an infinite set of regular cardinals, and B = pcf(A)”, if 2|tr cl(A)| < Ψ.

(xii) “A is an infinite set of regular cardinals and f = 〈J<λ[A] : λ ∈ pcf(A)〉”, provided
that 2|tr cl(A)| < Ψ.

(xiii) “A is an infinite set of regular cardinals and B = 〈Bλ : λ ∈ pcf(A)〉 and

∀λ ∈ pcf(A)(Bλ is a λ-generator)”, if 22|tr cl(A)|

< Ψ.

Proof. Absoluteness follows by easy arguments upon producing suitable formulas, as
follows.

(i): Suppose that A,B ∈ HΨ. We may take the formula B = P(A) to be

∀x ∈ B[∀y ∈ x(y ∈ A)] ∧ ∀x[∀y ∈ x(y ∈ A)→ x ∈ B].

The first part is obviously absolute for HΨ. If the second part holds in V it clearly holds in
HΨ. Now suppose that the second part holds in HΨ. Suppose that x ⊆ A. Hence x ∈ HΨ

and it follows that x ∈ B.

(ii): Assume that A,D ∈ HΨ. We can take the statement “D is an ultrafilter on A”
to be the following statement:

∀X ∈ D(X ⊆ A) ∧ A ∈ D ∧ ∀X, Y ∈ D(X ∩ Y ∈ D) ∧ ∅ /∈ D

∧ ∀Y ∀X ∈ D[X ⊆ Y ∧ Y ⊆ A→ Y ∈ D] ∧ ∀Y [Y ⊆ A→ Y ∈ D ∨ (A\Y ) ∈ D].

Again this is absolute because Y ⊆ A implies that Y ∈ HΨ.

(iii): Suppose that κ ∈ HΨ. Then

κ is a cardinal iff κ is an ordinal and ∀f [f is a function and

dmn(f) = κ and rng(f) ∈ κ→ f is not one-to-one].

Note here that if f is a function with dmn(f) = κ and rng(f) ⊆ κ, then f ⊆ κ × κ, and
hence f ∈ HΨ.
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(iv): Assume that κ ∈ HΨ. Then

κ is a regular cardinal iff κ is a cardinal, 1 < κ, and ∀f [f is a function

and dmn(f) ∈ κ and rng(f) ⊆ κ and

∀α, β ∈ dmn(f)(α < β → f(α) < f(β))

→ ∃γ < κ∀α ∈ dmn(f)(f(α) ∈ γ)].

(v): Assume that κ, λ ∈ HΨ. Then (κ and λ are cardinals and λ = κ+) iff

κ is a cardinal and λ is a cardinal and κ < λ

and ∀α < λ[κ < α→ ∃f [f is a function and dmn(f) = κ

and rng(f) = α and f is one-one and rng(f) = α]].

(vi): Suppose that κ,A ∈ HΨ. Then

κ = |A| iff κ is a cardinal and ∃f [f is a function

and dmn(f) = κ and rng(f) = A and f is one-to-one]

(vii): Assume that A,B ∈ HΨ. Then

B =
∏

A iff ∀f ∈ B[f is a function and dmn(f) = A and

∀x ∈ A[f(x) ∈ x]] and ∀f [f is a function and

dmn(f) = A and ∀x ∈ A[f(x) ∈ x]→ f ∈ B].

Note that if f is a function with domain A and f(x) ∈ x for all x ∈ A, then f ⊆ A×
⋃
A,

and hence f ∈ HΨ.
(viii): Suppose that A,B,C ∈ HΨ. Then

A = BC iff ∀f ∈ A[f is a function and dmn(f) = B

and rng(f) ⊆ C] and ∀f [f is a function

and dmn(f) = B and rng(f) ⊆ C → f ∈ A].

(ix): “A is infinite” iff ∃f(f is a one-one function, dmn(f) = ω, and rng(f) ⊆ A).
(x): Suppose that A,D, λ, f ∈ HΨ, and 2|tr cl(A)| < Ψ. Then

∏
A ∈ HΨ by Lemma

35.3(ix). Now

A is an infinite set of regular cardinals and D is an ultrafilter on A

and λ is a regular cardinal and f ∈ λ
∏

A and f is strictly

increasing and cofinal modulo D

iff
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A is infinite and ∀x ∈ A[x is a regular cardinal] and D is an ultrafilter on A and

λ is a regular cardinal and ∃B

[

B =
∏

A and f is a function

and dmn(f) = λ and rng(f) ⊆ B and

∀ξ, η < λ∀X ⊆ A[∀a ∈ A[a ∈ X ⇔ fξ(a) < fη(a)]→ X ∈ D]

and ∀g ∈ B∃ξ < λ∀X ⊆ A[∀a ∈ A[a ∈ X ⇔ g(a) < fξ(a)]→ X ∈ D]

]

.

(xi): Assume that 2|tr cl(A)|) < Ψ, and A,B ∈ HΨ. Let ϕ(A,D, λ, f) be the statement
of (x). Note:

(1) If ϕ(A,D, λ, f), then D, λ, f ∈ HΨ, and max(λ, |tr cl(A)|) ≤ 2|tr cl(A)|.

In fact, D ⊆ P(A), so tr cl(D) ⊆ tr cl(P(A)) = P(A) ∪ tr cl(A), and so |tr cl(D)| < Ψ
by Lemma 35.3(iii); so D ∈ HΨ. Now f is a one-one function from λ into

∏
A, so

λ ≤ |
∏
A| < Ψ, and hence λ ∈ HΨ and max(λ, |tr cl(A)|) ≤ 2|tr cl(A)|. Finally, f ⊆ λ×

∏
A,

so it follows that f ∈ HΨ.

Thus (1) holds. Hence the following equivalence shows the absoluteness of the state-
ment in (xi):

A is an infinite set of regular cardinals and B = pcf(A)

iff

A is infinite, and ∀µ ∈ A(µ is a regular cardinal) ∧ ∀λ ∈ B∃D∃fϕ(A,D, λ, f)

∧ ∀D∀λ∀f [ϕ(A,D, λ, f)→ λ ∈ B].

(xii): Assume that 2|tr cl(A)|) < Ψ. By Lemma 35.3(xi) we have pcf(A) ∈ HΨ. Hence

A is an infinite set of regular cardinals ∧ f = 〈J<λ[A] : λ ∈ pcf(A)〉

iff

A is infinite and ∀κ ∈ A(κ is a regular cardinal and

f is a function and ∃B[B = pcf(A) ∧B = dmn(f)]

∀λ ∈ dmn(f)∀X ⊆ A[A ∈ f(λ) iff ∃C[C = pcf(X) ∧ C ⊆ λ]]

(xiii): Assume that 22|tr cl(A)|

< Ψ, and A,B ∈ HΨ. Note as above that pcf(A) ∈
HΨ. Note that for any cardinal λ we have J<λ[A] ⊆ P(A) and, with f as in (xi),
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f ⊆ pcf(A)×P(P(A)); so f ∈ HΨ. Let ϕ(f, A) be the formula of (xii). Thus

A is a set of regular cardinals and B = 〈Bλ : λ ∈ pcf(A)〉

and ∀λ ∈ pcf(A)(Bλ is a λ-generator)

iff

B is a function and ∃C[C = pcf(A) ∧ C = dmn(B)] ∧ ∃f [ϕ(f, A)∧

∀λ ∈ dmn(B)∀µ ∈ dmn(B)[λ is a cardinal and µ is a cardinal and

µ = λ+ → Bλ ∈ f(µ) ∧ ∀X ⊆ A[X ∈ f(µ) iff X\Bλ ∈ f(λ)]]]

Now we turn to the consideration of elementary substructures of HΨ. The following lemma
gives basic facts used below.

Lemma 35.5. Suppose that Ψ is an uncountable cardinal, and N is an elementary sub-
structure of HΨ (under ∈ and a well-order of HΨ).

(i) For every ordinal α, α ∈ N iff α+ 1 ∈ N .
(ii) ω ⊆ N .
(iii) If a ∈ N , then {a} ∈ N .
(iv) If a, b ∈ N , then {a, b}, (a, b) ∈ N .
(v) If A,B ∈ N , then A×B ∈ N .
(vi) If A ∈ N then

⋃
A ∈ N .

(vii) If f ∈ N is a function, then dmn(f), rng(f) ∈ N .
(viii) If f ∈ N is a function and a ∈ N ∩ dmn(f), then f(a) ∈ N .
(ix) If X, Y ∈ N , X ⊆ N , and |Y | ≤ |X |, then Y ⊆ N .
(x) If X ∈ N and X 6= ∅, then X ∩N 6= ∅.
(xi) P(A) ∈ N if A ∈ N and 2|tr cl(A)| < Ψ.
(xii) If ρ is an infinite ordinal, |ρ|+ < Ψ, and ρ ∈ N , then |ρ| ∈ N and |ρ|+ ∈ N .
(xiii) If A ∈ N , then

∏
A ∈ N if 2|tr cl(A)| < Ψ.

(xiv) If A ∈ N , A is a set of regular cardinals, and A ⊆ HΨ, then pcf(A) ∈ N if
2|tr cl(A)| < Ψ.

(xv) If A ∈ N , A is a set of regular cardinals, then 〈J<λ[A] : λ ∈ pcf(A)〉 ∈ N if

22|tr cl(A)|

< Ψ.
(xvi) If A ∈ N and A is a set of regular cardinals, then there is a function 〈Bλ : λ ∈

pcf(A)〉 ∈ N , where for each λ ∈ pcf(A), the set Bλ is a λ-generator, if 22|tr cl(A)|

< Ψ.

Proof. (i): Let α be an ordinal, and suppose that α ∈ N . Then α ∈ HΨ, and hence
α ∪ {α} ∈ HΨ. By absoluteness, HΨ |= ∃x(x = α ∪ {α}), so N |= ∃x(x = α ∪ {α}).
Choose b ∈ N such that N |= b = α ∪ {α}. Then HΨ |= b = α ∪ {α}, so by absoluteness,
b = α ∪ {α}. This proves that α ∪ {α} ∈ N .

The method used in proving (i) can be used in the other parts; so it suffices in most
other cases just to indicate a formula which can be used.

(ii): An easy induction, using the formulas ∃x∀y ∈ x(y 6= y) and ∃x[a ⊆ x ∧ a ∈
x ∧ ∀y ∈ x[y ∈ a ∨ y = a]].
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(iii): Use the formula ∃x[∀y ∈ x(y = a) ∧ a ∈ x].
(iv): Similar to (ii).
(v): Use the formula

∃C[∀a ∈ A∀b ∈ B[(a, b) ∈ C] ∧ ∀x ∈ C∃a ∈ A∃b ∈ B[x = (a, b)]].

(vi): Use the formula ∃B[∀x ∈ A[x ⊆ B] ∧ ∀y ∈ B∃x ∈ A(y ∈ x)].
(vii): Use the formula ∃A[∀x∀y[(x, y) ∈ f → x ∈ A] ∧ ∀x ∈ A∃y[(x, y) ∈ f ]]. Note

that this formula is absolute for HΨ for example (x, y) ∈ f ∈ HΨ implies that x, y ∈ HΨ.
(viii): Use the formula ∃x[(a, x) ∈ f ].
(ix): Let f be a function mapping X onto Y (assuming, as we may, that Y 6= ∅).

Then f ∈ HΨ, so by the above method, we get another function g ∈ N which maps X
onto Y . Now (viii) gives the conclusion of (ix).

(x): Use the formula ∃x ∈ X [x = x].
(xi): P(A) ∈ HΨ by Lemma 35.3(iii). Hence we can use the formula

∃B[∀x ∈ B(x ⊆ A) ∧ ∀x[x ⊆ A→ x ∈ B]].

(xii): Assume that ρ is an infinite ordinal and ρ ∈ N . Then

HΨ |= ∃α ≤ ρ[(∃f : ρ→ α, a bijection) ∧ ∀β ≤ ρ[(∃g : ρ→ β, a bijection)→ α ≤ β]].

Hence by the standard argument, there are α, f ∈ N such that

HΨ |= f : ρ→ α is a bijection ∧ ∀β ≤ ρ[(∃g : ρ→ β, a bijection)→ α ≤ β].

Clearly then α = |ρ|.
For |ρ|+, use the formula

∃β∃Γ

[

∀γ ∈ Γ∃f [f is a bijection from ρ onto γ]

∧ ∀γ∀f [f is a bijection from ρ onto γ → γ ∈ Γ]

∧ β =
⋃

Γ

]

.

(xiii): Note that
∏
A ∈ HΨ by Lemma 35.3(ix). Then use the formula

∃B

[

∀f ∈ B(f is a function ∧ dmn(f) = A ∧ ∀a ∈ A(f(a) ∈ a))

∧ ∀f [f is a function ∧ dmn(f) = A ∧ ∀a ∈ A(f(a) ∈ a)→ f ∈ B]

]

.

(xiv): pcf(A) ∈ HΨ by Lemma 35.3(xi), so by Lemma 35.4(xi) we can use the formula
∃B[B = pcf(A)].
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(xv): We have pcf(A) ∈ HΨ and P(P(HΨ)) by Lemma 35.3(iii),(xi). It follows
that 〈J<λ[A] : λ ∈ pcf(A)〉 ∈ HΨ. Hence by Lemma 35.4(xii) we can use the formula
∃f [f = 〈J<λ[A] : λ ∈ pcf(A)〉].

(xvi): By Lemma 35.3(iii),(xi) and Lemma 35.4(xiii) we can use the formula

∃B[B : pcf(A)→P(A) ∧ ∀λ ∈ pcf(A)[Bλ is a λ generator for A]].

Definition. Let κ be a regular cardinal. An elementary substructure N of HΨ is κ-
presentable iff there is an increasing and continuous chain 〈Nα : α < κ〉 of elementary
substructures of HΨ such that:

(1) |N | = κ and κ+ 1 ⊆ N .

(2) N =
⋃

α<κNα.

(3) For every α < κ, the function 〈Nβ : β ≤ α〉 is a member of Nα+1.

It is obvious how to construct a κ-presentable substructure of HΨ.

Lemma 35.6. If N is a κ-presentable substructure of HΨ, with notation as above, and if
α < κ, then α+ ω ⊆ Nα ∈ Nα+1.

Proof. First we show that α ⊆ Nα for all α < κ, by induction. It is trivial for α = 0,
and the successor step is immediate from the induction hypothesis and Lemma 35.5(vii).
The limit step is clear.

Now it follows that α + ω ⊆ Nα by an inductive argument using Lemma 35.5(i).
Finally, Nα ∈ Nα+1 by (3) and Lemma 35.5(viii).

For any set M , we let M be the set of all ordinals α such that α ∈M or M∩α is unbounded
in α.

Lemma 35.7. If N is a κ-presentable substructure of HΨ, with notation as above, then
(i) If α < κ, then Nα ⊆ N .
(ii) If κ < α ∈ N\N , then α is a limit ordinal and cf(α) = κ, and in fact there is a

closed unbounded subset E of α such that E ⊆ N and E has order type κ.

Proof. First we consider (i). Suppose that γ ∈ Nα. We may assume that γ /∈ Nα.
Case 1. γ = sup(Nα ∩On). Then

HΨ |= ∃γ
′[∀δ(δ ∈ Nα → δ ≤ γ′) ∧ ∀ε[∀δ(δ ∈ Nα → δ ≤ ε)→ γ′ ≤ ε]];

in fact, our given γ is the unique γ′ for which this holds. Hence this statement holds in
N , as desired.

Case 2. ∃θ ∈ Nα(γ < θ). We may assume that θ is minimum with this property. Now
for any β ∈ Nα we can let ρ(β) be the supremum of all ordinals in Nα which are less than
β. So ρ(θ) = γ. By absoluteness we get

HΨ |=∀β ∈ Nα∃ρ[∀ε ∈ Nα(ε < β → ε < ρ)

∧ ∀χ[∀ε ∈ Nα(ε < β → ε < χ)→ ρ ≤ χ]];
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Hence N models this formula too; applying it to θ in place of β, we get ρ ∈ N such that

N |=∀ε ∈ Nα(ε < θ → ε < ρ)

∧ ∀χ[∀ε ∈ Nα(ε < θ → ε < χ)→ ρ ≤ χ].

Thus γ = ρ ∈ N , as desired. This proves (i).
For (ii), suppose that κ < α ∈ N\N . Let E = {sup(α ∩ Nξ) : ξ < κ}. Note that if

ξ < κ, then by (i), sup(α∩Nξ) ∈ N . So E ⊆ N . It is clearly closed in α. It is unbounded,
since for any β ∈ α∩N there is a ξ < κ such that β ∈ Nξ, and so β ≤ sup(α∩Nξ) ∈ N .

For any set N we define the characteristic function of N ; it is defined for each regular
cardinal µ as follows:

ChN (µ) = sup(N ∩ µ).

Proposition 35.8. Let κ be a regular cardinal, let N be a κ-presentable substructure of
HΨ, and let µ be a regular cardinal.

(i) If µ ≤ κ, then ChN (µ) = µ ∈ N .
(ii) If κ < µ, then ChN (µ) /∈ N , ChN (µ) < µ, and ChN (µ) has cofinality κ.
(iii) For every α ∈ N ∩ µ we have α ≤ ChN (µ).

Proof. (i): True since κ+ 1 ⊆ N .
(ii): Since |N | = κ < µ and µ is regular, we must have ChN (µ) /∈ N and ChN (µ) < µ.

Then ChN (µ) has cofinality κ by Lemma 35.7.
(iii): clear.

Theorem 35.9. Suppose that M and N are elementary substructures of HΨ and κ < µ
are cardinals, with µ < Ψ.

(i) If M ∩κ ⊆ N ∩κ and sup(M ∩ν+) = sup(M ∩N ∩ν+) for every successor cardinal
ν+ ≤ µ such that ν+ ∈M , then M ∩ µ ⊆ N ∩ µ.

(ii) If M and N are both κ-presentable and if sup(M ∩ ν+) = sup(N ∩ ν+) for every
successor cardinal ν+ ≤ µ such that ν+ ∈M , then M ∩ µ = N ∩ µ.

Proof. (i): Assume the hypothesis. We prove by induction on cardinals δ in the
interval [κ, µ] that M ∩ δ ⊆ N ∩ δ. This is given for δ = κ. If, inductively, δ is a limit
cardinal, then the desired conclusion is clear. So assume now that δ is a cardinal, κ ≤ δ < µ,
and M ∩ δ ⊆ N ∩ δ. If δ+ /∈M , then by Lemma 35.5(xii), [δ, δ+] ∩M = ∅, so the desired
conclusion is immediate from the inductive hypothesis. So, assume that δ+ ∈M . Then the
hypothesis of (i) implies that there are ordinals in [δ, δ+] which are in M ∩N , and hence
by Lemma 35.5(xii) again, δ+ ∈ N . Now to show that M ∩ [δ, δ+] ⊆ N ∩ [δ, δ+], take any
ordinal γ ∈M∩[δ, δ+]. We may assume that γ < δ+. Since sup(M∩δ+) = sup(M∩N∩δ+)
by assumption, we can choose β ∈M ∩N ∩ δ+ such that γ < β. Let f be the <∗-smallest
bijection from β to δ. So f ∈ M ∩ N . Since γ ∈ M , we also have f(γ) ∈ M by Lemma
35.5(viii). Now f(γ) < δ, so by the inductive assumption that M ∩ δ ⊆ N ∩ δ, we have
f(γ) ∈ N . Since f ∈ N , so is f−1, and f−1(f(γ)) = γ ∈ N , as desired. This finishes the
proof of (i).

(ii): Assume the hypothesis. Now we want to check the hypothesis of (i). By the
definition of κ-presentable we have κ = M ∩ κ = N ∩ κ. Now suppose that ν is a cardinal
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and ν+ ≤ µ with ν+ ∈ M . We may assume that κ < ν+. Let γ = ChM (ν+); this is
the same as ChN (ν+) by the hypothesis of (ii). By Lemma 35.8 we have γ /∈ M ∪ N ;
hence by Lemma 35.7 there are clubs P,Q in γ such that P ⊆ M and Q ⊆ N . Hence
sup(M ∩ ν+) = sup(M ∩ ν+) = sup(M ∩N ∩ ν+). This verifies the hypothesis of (i) for
the pair M,N and also for the pair N,M . So our conclusion follows.

Minimally obedient sequences

Suppose that A is progressive, λ ∈ pcf(A), and B is a λ-generator for A. A sequence
〈fξ : ξ < λ〉 of members of

∏
A is called persistently cofinal for λ,B provided that 〈(fξ ↾

B) : ξ < λ〉 is persistently cofinal in (
∏
B,<J<λ[B]). Recall that this means that for all

h ∈
∏
B there is a ξ0 < λ such that for all ξ, if ξ0 ≤ ξ < λ, then h <J<λ[B] (fξ ↾ B).

Lemma 35.10. Suppose that A is progressive, λ ∈ pcf(A), and B and C are λ-generators
for A. A sequence 〈fξ : ξ < λ〉 of members of

∏
A is persistently cofinal for λ,B iff it is

persistently cofinal for λ, C.

Proof. Suppose that 〈fξ : ξ < λ〉 is persistently cofinal for λ,B, and suppose that
h ∈

∏
C. Let k ∈

∏
B be any function such that h ↾ (B ∩ C) = k ↾ (B ∩ C). Choose

ξ0 < λ such that for all ξ ∈ [ξ0, λ) we have k <J<λ[B] (fξ ↾ B). Then for any ξ ∈ [ξ0, λ) we
have

{a ∈ C : h(a) ≥ fξ(a)} = {a ∈ B ∩ C : h(a) ≥ fξ(a)} ∪ {a ∈ C\B : h(a) ≥ fξ(a)}

⊆ {a ∈ B : k(a) ≥ fξ(a)} ∪ (C\B);

Now (C\B) ∈ J<λ[A] by Lemma 34.25(xi), so h <J<λ[C] (fξ ↾ C). By symmetry the
lemma follows.

Because of this lemma we say that f is persistently cofinal for λ iff it is persistently cofinal
for λ,B for some λ-generator B.

Lemma 35.11. Suppose that A is progressive, λ ∈ pcf(A), and f
def
= 〈fξ : ξ < λ〉 is

universal for λ. Then f is persistently cofinal for λ.

Proof. Let B be a λ-generator. Then by Lemma 34.25(vii), λ is the largest member
of pcf(B). By Lemma 34.17, 〈(fξ ↾ B) : ξ < λ〉 is strictly increasing under <J<λ[B], and by
Lemma 34.25(v) it is cofinal in (

∏
B,<J<λ[B]). By Proposition 34.11, it is thus persistently

cofinal in (
∏
B,<J<λ[B]).

Lemma 35.12. Suppose that A is progressive, λ ∈ pcf(A), and A ∈ N , where N is a
κ-presentable elementary substructure of HΨ, with |A| < κ < min(A) and 2|tr cl(A)| < Ψ.
Suppose that f = 〈fξ : ξ < λ〉 is a sequence of functions in

∏
A.

Then for every ξ < λ there is an α < κ such that for any a ∈ A,

fξ(a) < ChN (a) iff fξ(a) < ChNα(a).
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Proof.
ChN (a) = sup(N ∩ a)

=
⋃

(N ∩ a)

=
⋃
(

a ∩
⋃

α<κ

Nα

)

=
⋃

α<κ

⋃

(Nα ∩ a)

=
⋃

α<κ

ChNα(a).

Hence for every a ∈ A for which fξ(a) < ChN (a), there is an αa < κ such that fξ(a) <
ChNαa (a). Hence the existence of α as indicated follows.

Lemma 35.13. Suppose that A is progressive, κ is regular, λ ∈ pcf(A), and A, λ ∈ N ,
where N is a κ-presentable elementary substructure of HΨ, with |A| < κ < min(A) and
Ψ is big. Suppose that f = 〈fξ : ξ < λ〉 ∈ N is a sequence of functions in

∏
A which is

persistently cofinal in λ. Then for every ξ ≥ ChN (λ) the set

{a ∈ A : ChN (a) ≤ fξ(a)}

is a λ-generator for A.

Proof. Assume the hypothesis, including ξ ≥ ChN (λ). Let α be as in Lemma
35.12. We are going to apply Lemma 34.25(ix). Since A, f, λ ∈ N , we may assume that
A, f, λ ∈ N0, by renumbering the elementary chain if necessary. Now κ ⊆ N , and |A| < κ,
so we easily see that there is a bijection f ∈ N mapping an ordinal α < κ onto A; hence
A ⊆ N by Lemma 35.5(viii), and so A ⊆ Nβ for some β < κ. We may assume that A ⊆ N0.
By Lemma 35.5(xvi),(viii), there is a λ-generator B which is in N0.

Now the sequence f is persistently cofinal in
∏
B/J<λ, and hence

HΨ |= ∀h ∈
∏

B∃η < λ∀ρ ≥ η[h ↾ B <J<λ fρ ↾ B]; hence

N |= ∀h ∈
∏

B∃η < λ∀ρ ≥ η[h ↾ B <J<λ fρ ↾ B];

Hence for every h ∈ N , if h ∈
∏
B then there is an η < λ with η ∈ N such that

N |= ∀ρ ≥ η[h ↾ B <J<λ fϕ ↾ B]; going up, we see that really for every h ∈ N ∩
∏
A there

is an ηh ∈ N ∩ λ such that for all ρ with ρ ≥ ηh we have h ↾ B <J<λ fρ ↾ B. Since ξ, as
given in the statement of the Lemma, is ≥ each member of N ∩ λ, hence ≥ ηh for each
h ∈ N ∩

∏
A, we see that

(1) h ↾ B <J<λ fξ ↾ B for every h ∈ N ∩
∏
A.

Now we can apply (1) to h = ChNα , since this function is clearly in N . So ChNα ↾

B <J<λ[B] fξ ↾ B. Hence by the choice of α (see Lemma 35.12)

(2) ChN ↾ B ≤J<λ[B] fξ ↾ B.
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Note that (2) says that B\{a ∈ A : ChN (a) ≤ fξ(a)} ∈ J<λ[A].
Now λ /∈ pcf(A\B) by Lemma 34.25(ii), and hence J<λ[A\B] = J≤λ[A\B]. So by

Theorem 34.8 we see that
∏

(A\B)/J<λ[A\B] is λ+-directed, so 〈fξ ↾ (A\B) : ξ < λ〉 has
an upper bound h ∈

∏
(A\B). We may assume that h ∈ N , by the usual argument. Hence

fξ ↾ (A\B) <J<λ[A\B] h < ChN ↾ (A\B);

hence {a ∈ A\B : ChN (a) ≤ fξ(a)} ∈ J<λ[A], and together with (2) and using Lemma
34.25(ix) this finishes the proof.

Now suppose that A is progressive, δ is a limit ordinal, f = 〈fξ : ξ < δ〉 is a sequence of
members of

∏
A, |A|+ ≤ cf(δ) < min(A), and E is a club of δ of order type cf(δ). Then

we define
hE = sup{fξ : ξ ∈ E}.

We call hE the supremum along E of f . Thus hE ∈
∏
A, since cf(δ) < min(A). Note that

if E1 ⊆ E2 then hE1
≤ hE2

.

Lemma 35.14. Let A, δ, f be as above. Then there is a unique function g in
∏
A such

that the following two conditions hold.
(i) There is a club C of δ of order type cf(δ) such that g = hC .
(ii) If E is any club of C of order type cf(δ), then g ≤ hE .

Proof. Clearly such a function g is unique if it exists.
Now suppose that there is no such function g. Then for every club C of δ of order

type cf(δ) there is a club D of order type cf(δ) such that hC 6≤ hD, hence hC 6≤ hC∩D.
Hence there is a decreasing sequence 〈Eα : α < |A|+〉 of clubs of δ such that for every
α < |A|+ we have hEα 6≤ hEα+1

. Now note that

|A|+ =
⋃

a∈A

{α < |A|+ : hEα(a) > hEα+1
(a)}.

Hence there is an a ∈ A such that M
def
= {α < |A|+ : hEα(a) > hEα+1

(a)} has size |A|+.
Now hEα(a) ≥ hEβ (a) whenever α < β < |A|+, so this gives an infinite decreasing sequence
of ordinals, contradiction.

The function g of this lemma is called the minimal club-obedient bound of f .

Corollary 35.15. Suppose that A is progressive, δ is a limit ordinal, f = 〈fξ : ξ < δ〉
is a sequence of members of

∏
A, |A|+ ≤ cf(δ) < min(A), J is an ideal on A, and f is

<J -increasing. Let g be the minimal club-obedient bound of f . Then g is a ≤J -bound for
f .

Now suppose that A is progressive, λ ∈ pcf(A), and κ is a regular cardinal such that
|A| < κ < min(A). We say that f = 〈fα : α < λ〉 is κ-minimally obedient for λ iff f is a
universal sequence for λ and for every δ < λ of cofinality κ, fδ is the minimal club-obedient
bound of f .
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A sequence f is minimally obedient for λ iff |A|+ < min(A) and f is minimally
obedient for every regular κ such that |A| < κ < min(A).

Lemma 35.16. Suppose that |A|+ < min(A) and λ ∈ pcf(A). Then there is a minimally
obedient sequence for λ.

Proof. By Theorem 34.18, let 〈f0
ξ : ξ < λ〉 be a universal sequence for λ. Now

by induction we define functions fξ for ξ < λ. Let f0 = f0
0 , and choose fξ+1 so that

max(fξ, f
0
ξ ) < fξ+1.

For limit δ < λ such that |A| < cf(δ) < min(A), let fδ be the minimally club-obedient
bound of 〈fξ : ξ < δ〉.

For other limit δ < λ, use the λ-directedness (Theorem 34.8) to get fδ as a <J<λ -bound
of 〈fξ : ξ < δ〉.

Thus we have assured the minimally obedient property, and it is clear that 〈fξ : ξ < λ〉
is universal.

Lemma 35.17. Suppose that A is progressive, and κ is a regular cardinal such that
|A| < κ < min(A). Also assume the following:

(i) λ ∈ pcf(A).
(ii) f = 〈fξ : ξ < λ〉 is a κ-minimally obedient sequence for λ.
(iii) N is a κ-presentable elementary substructure of HΨ, with Ψ large, such that

λ, f, A ∈ N .

Then the following conditions hold:
(iv) For every γ ∈ N ∩ λ\N we have:

(a) cf(γ) = κ.
(b) There is a club C of γ of order type κ such that fγ = sup{fξ : ξ ∈ C} and

C ⊆ N .
(c) fγ(a) ∈ N ∩ a for every a ∈ A.

(v) If γ = ChN (λ), then:
(a) γ ∈ N ∩ λ\N ; hence we let C be as in (iv)(b), with fγ = sup{fξ : ξ ∈ C}.
(b) fξ ∈ N for each ξ ∈ C.
(c) fγ ≤ (ChN ↾ A).

(vi) γ = ChN (λ) and C is as in (iv)(b), with fγ = sup{fξ : ξ ∈ C}, and B is a λ
generator, then for every h ∈ N ∩

∏
A there is a ξ ∈ C such that (h ↾ B) <J<λ (fξ ↾ B).

Proof. Assume (i)–(iii). Note that A ⊆ N , by Lemma 35.5(ix).
For (iv), suppose also that γ ∈ N ∩ λ\N . Then by Lemma 35.7 we have cf(γ) = κ,

and there is a club E in γ of order type κ such that E ⊆ N . By (ii), we have fγ = fC for
some club C of γ of order type κ. By the minimally obedient property we have fC = fC∩E,
and thus we may assume that C ⊆ E. For any ξ ∈ C and a ∈ A we have fξ(a) ∈ N by
Lemma 35.5(viii). So (iv) holds.

For (v), suppose that γ = ChN (λ). Then γ ∈ N∩λ\N because |N | = κ < min(A) ≤ λ.
For each ξ ∈ C we have fξ ∈ N by Lemma 35.5(viii). For (c), if a ∈ A, then fγ(a) =
supξ∈C fξ(a) ≤ ChN (a), since fξ(a) ∈ N ∩ a for all ξ ∈ C.
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Next, assume the hypotheses of (vi). By Lemma 35.11, f is persistently cofinal in λ,
so by Lemma 35.13, B′ is a λ-generator. By Lemma 34.25(v) there is a ξ ∈ C such that
h ↾ B′ <J<λ fξ ↾ B′. Now B =J<λ[A] B

′ by Lemma 34.25(xi), so

{a ∈ B : h(a) ≥ fξ(b)} ⊆ (B\B′) ∪ {a ∈ B′ : h(a) ≥ fξ(b)} ∈ J<λ[A].

We now define some abbreviations.

H1(A, κ,N,Ψ) abbreviates

A is a progressive set of regular cardinals, κ is a regular cardinal such that |A| < κ <
min(A), and N is a κ-presentable elementary substructure of HΨ, with Ψ big and A ∈ N .

H2(A, κ,N,Ψ, λ, f, γ) abbreviates

H1(A, κ,N,Ψ), λ ∈ pcf(A), f = 〈fξ : ξ < λ〉 is a sequence of members of
∏
A, f ∈ N ,

and γ = ChN (λ).

P1(A, κ,N,Ψ, λ, f, γ) abbreviates

H2(A, κ,N,Ψ, λ, f, γ) and {a ∈ A : ChN (a) ≤ fγ(a)} is a λ-generator.

P2(A, κ,N,Ψ, λ, f, γ) abbreviates

H2(A, κ,N,Ψ, λ, f, γ) and the following hold:
(i) fγ ≤ (ChN ↾ A).
(ii) For every h ∈ N ∩

∏
A there is a d ∈ N ∩

∏
A such that for any λ-generator B,

(h ↾ B) <J<λ (d ↾ B) and d ≤ fγ .

Thus H1(A, κ,N,Ψ) is part of the hypothesis of Lemma 35.17, and H2(A, κ,N,Ψ, λ, f, γ)
is a part of the hypotheses of Lemma 35.17(v).

Lemma 35.18. If H2(A, κ,N,Ψ, λ, f, γ) holds and f is persistently cofinal for λ, then
P1(A, κ,N,Ψ, λ, f, γ) holds.

Proof. This follows immediately from Lemma 35.13.

Lemma 35.19. If H2(A, κ,N,Ψ, λ, f, γ) holds and f is κ-minimally obedient for λ, then
both P1(A, κ,N,Ψ, λ, f, γ) and P2(A, κ,N,Ψ, λ, f, γ) hold.

Proof. Since f is κ-minimally obedient for λ, it is a universal sequence for λ, by
definition. Hence by Lemma 35.11 f is persistently cofinal for λ, and so property P1

follows from Lemma 35.18.
For P2, note that λ,A ∈ N since f ∈ N , by Lemma 35.5(vii),(ix). Hence the hypothe-

ses of Lemma 35.17(v) hold. So (i) in P2 holds by Lemma 35.17(v)(c). For condition (ii),
suppose that h ∈ N ∩

∏
A. Take B and C as in Lemma 35.17(vi), and choose ξ ∈ C such

that h ↾ B <J<λ fξ ↾ B. Let d = fξ. Clearly this proves condition (ii).

The following obvious extension of Lemma 35.19 will be useful below.
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Lemma 35.20. Assume H1(A, κ,N,Ψ), and also assume that γ = ChN (λ) and

(i) f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences 〈fλξ : ξ < λ〉 each of which is a

κ-minimally obedient for λ.

Then for each λ ∈ N ∩ pcf(A), P1(A, κ,N,Ψ, λ, fλ, γ) and P2(A, κ,N,Ψ, λ, fλ, γ) hold.

Lemma 35.21. Suppose that P1(A, κ,N,Ψ, λ, f, γ) and P2(A, κ,N,Ψ, λ, f, γ) hold. Then
(i) {a ∈ A : ChN (a) = fγ(a)} is a λ-generator.
(ii) If λ = max(pcf(A)), then

< (fγ,ChN ↾ A) = {a ∈ A : fγ(a) < ChN (a)} ∈ J<λ[A].

Proof. By (i) of P2(A, κ,N,Ψ, λ, f, γ) we have fγ ≤ (ChN ↾ A), so (i) holds by
P1(A, κ,N,Ψ, λ, f, γ). (ii) follows from P1(A, κ,N,Ψ, λ, f, γ) and Lemma 34.25(xii).

Lemma 35.22. Assume that P1(A, κ,N,Ψ, λ, f, γ) and P2(A, κ,N,Ψ, λ, f, γ) hold. Let

b = {a ∈ A : ChN (a) = fγ(a)}.

Then
(i) b is a λ-generator.
(ii) There is a set b′ ⊆ b such that:

(a) b′ ∈ N ;
(b) b\b′ ∈ J<λ[A];
(c) b′ is a λ-generator.

Proof. (i) holds by Lemma 35.21(i). For (ii), by Lemma 35.12 choose α < κ such
that, for every a ∈ A,

(1) fγ(a) < ChN (a) iff fγ(a) < ChNα(a).

Now by (i) of P2(A, κ,N,Ψ, λ, f, γ) we have fγ ≤ (ChN ↾ A). Hence by (1) we see that for
every a ∈ A,

(2) a ∈ b iff ChNα(a) ≤ fγ(a).

Now by (ii) of P2(A, κ,N,Ψ, λ, f, γ) applied to h = ChNα ↾ A, there is a d ∈ N ∩
∏
A such

that the following conditions hold:

(3) (ChNα ↾ b) <J<λ (d ↾ b).

(4) d ≤ fγ .

Now we define

b′ = {a ∈ A : ChNα(a) ≤ d(a)}.
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Clearly b′ ∈ N . Also, by (3),

b\b′ = {a ∈ b : d(a) < ChNα(a)} ∈ J<λ,

and so (ii)(b) holds. Thus b ⊆J<λ b
′. If a ∈ b′, then ChNα(a) ≤ d(a) ≤ fγ(a) by (4), so

a ∈ b by (2). Thus b′ ⊆ b. Now (ii)(c) holds by Lemma 34.25(ix).

Lemma 35.23. Assume H1(A, κ,N,Ψ) and A ∈ N . Suppose that 〈fλ : λ ∈ pcf(A)〉 ∈ N
is an array of sequences 〈fλξ : ξ < λ〉 with each fλξ ∈

∏
A. Also assume that for every

λ ∈ N ∩ pcf(A), both P1(A, κ,N,Ψ, λ, fλ, γ(λ)) and P2(A, κ,N,Ψ, λ, fλ, γ(λ)) hold.
Then there exist cardinals λ0 > λ1 > · · · > λn in pcf(A) ∩N such that

(ChN ↾ A) = sup{fλ0

γ(λ0)
, . . . , fλnγ(λn)}.

Proof. We will define by induction a descending sequence of cardinals λi ∈ pcf(A)∩N
and sets Ai ∈P(A)∩N (strictly decreasing under inclusion as i grows) such that if Ai 6= ∅
then λi = max(pcf(Ai)) and

(1) (ChN ↾ (A\Ai+1)) = sup{(fλ0

γ(λ0)
↾ (A\Ai+1)), . . . , (fλiγ(λi) ↾ (A\Ai+1))}.

Since the cardinals are decreasing, there is a first i such that Ai+1 = ∅, and then the lemma
is proved. To start, A0 = A and λ0 = max(pcf(A)). Clearly λ0 ∈ N . Now suppose that
λi and Ai are defined, with Ai 6= 0. By Lemma 35.22(i) and Lemma 34.25(x), the set

{a ∈ A ∩ (λi + 1) : ChN (a) = fλiγ(λi)(a)}

is a λi-generator. Hence by Lemma 35.22(ii) we get another λi-generator b′λi such that

(2) b′λi ∈ N .

(3) b′λi ⊆ {a ∈ A ∩ (λi + 1) : ChN (a) = fλiγ(λi)(a)}.

Note that b′λi 6= ∅. Let Ai+1 = Ai\b′λi . Thus Ai+1 ∈ N . Furthermore,

(4) A\Ai+1 = (A\Ai) ∪ b
′
λ1

.

Now by Lemma 9.25(ii) and λi = max(pcf(Ai)) we have λi /∈ pcf(Ai+1). If Ai+1 6= ∅, we
let λi+1 = max(pcf(Ai+1)). Now by (i) of P2(A, κ,N,Ψ, λ, fλj , γ(λj)) we have

(5) f
λj
γ(λj)

≤ (ChN ↾ A) for all j ≤ i.

Now suppose that a ∈ A\Ai+1. If a ∈ Ai, then by (4), a ∈ b′λ1
, and so by (3), ChN (a) =

fλiγ(λ1)
(a), and (1) holds for a. If a /∈ Ai, then A 6= Ai, so i 6= 0. Hence by the inductive

hypothesis for (1),

ChN (a) = sup{fλ0

γ(λ0)
(a), . . . , f

λi−1

γ(λi−1)
(a)},

and (1) for a follows by (5).
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The cofinality of ([µ]κ,⊆)

First we give some simple properties of the sets [µ]κ, not involving pcf theory.

Proposition 35.24. If κ ≤ µ are infinite cardinals, then

(∗) |[µ]κ| = cf([µ]κ,⊆) · 2κ.

Proof. Let λ = cf([µ]κ,⊆), and let 〈Yi : i < λ〉 be an enumeration of a cofinal subset
of cf([µ]κ,⊆). For each i < λ let fi be a bijection from Yi to κ. Now the inequality ≥ in (∗)
is clear. For the other direction, we define an injection g of [µ]κ into λ×P(κ), as follows.
Given E ∈ [µ]κ, let i < λ be minimum such that E ⊆ Yi, and define g(E) = (i, fi[E]).
Clearly g is one-one.

Proposition 35.25. (i) If κ1 < κ2 ≤ µ, then

cf([µ]κ1,⊆) ≤ cf([µ]κ2 ,⊆) · cf([κ2]κ1 ,⊆).

(ii) cf([κ+]κ,⊆) = κ+.

(iii) If κ+ ≤ µ, then cf([µ]κ,⊆) ≤ cf([µ]κ
+

,⊆) · κ+.
(iv) If κ ≤ µ1 < µ2, then cf([µ1]κ,⊆) ≤ cf([µ2]κ,⊆).
(v) If κ ≤ µ, then cf([µ+]κ,⊆) ≤ cf([µ]κ,⊆) · µ+.
(vi) cf([ℵ0]ℵ0 ,⊆) = 1, while for m ∈ ω\1, cf([ℵm]ℵ0) = ℵm.
(vii) cf([µ]≤κ,⊆) = cf([µ]κ,⊆).

Proof. (i): Let M ⊆ [µ]κ2 be cofinal in ([µ]κ2 ,⊆) of size cf([µ]κ2 ,⊆), and let N ⊆
([κ2]κ1 ,⊆) be cofinal in ([κ2]κ1 ,⊆) of size cf([κ2]κ1 ,⊆). For each X ∈M let fX : κ2 → X
be a bijection. It suffices now to show that {fX [Y ] : X ∈M,Y ∈ N} is cofinal in ([µ]κ1 ,⊆).
Suppose that W ∈ [µ]κ1 . Choose X ∈ M such that W ⊆ X . Then f−1

X [W ] ∈ [κ2]κ1 , so
there is a Y ∈ N such that f−1

X [W ] ⊆ Y . Then W ⊆ fX [Y ], as desired.
(ii): The set {γ < κ+ : |γ\κ| = κ} is clearly cofinal in ([κ+]κ. If M is a nonempty

subset of [κ+]κ of size less than κ+, then |
⋃
M | = κ, and (

⋃
M) + 1 is a member of [κ+]κ

not covered by any member of M . So (ii) holds.
(iii): Immediate from (i) and (ii).
(iv): Let M ⊆ [µ2]κ be cofinal of size cf([µ2]κ,⊆). Let N = {X∩µ1 : X ∈M}\[µ1]<κ.

It suffices to show that N is cofinal in cf([µ1]κ,⊆). Suppose that X ∈ [µ1]κ. Then also
X ∈ [µ2]κ, so we can choose Y ∈ M such that X ⊆ Y . Clearly X ⊆ Y ∩ µ1 ∈ N , as
desired.

(v): For each γ ∈ [µ, µ+) let fγ be a bijection from γ to µ. Let E ⊆ [µ]κ be cofinal in
([µ]κ,⊆) and of size cf([µ]κ,⊆). It suffices to show that {f−1

γ [X ] : γ ∈ [µ, µ+), X ∈ E} is
cofinal in ([µ+]κ,⊆). So, take any Y ∈ [µ+]κ. Choose γ ∈ [µ, µ+) such that Y ⊆ γ. Then
fγ [Y ] ∈ [µ]κ, so we can choose X ∈ E such that f [Y ] ⊆ X . Then Y ⊆ f−1

γ [X ], as desired.

(vi): Clearly cf([ℵ0]ℵ0 ,⊆) = 1. By induction it is clear from (v) that cf([ℵm]ℵ0) ≤ ℵm.
For m > 0 equality must hold, since if X ⊆ [ℵm]ℵ0 and |X | < ℵm, then

⋃
X < ℵm, and

no denumerable subset of ℵm\
⋃
X is contained in a member of X .

(vii): Clear.
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The following elementary lemmas will also be needed.

Lemma 35.26. If α < β are limit ordinals, then

|[α, β]| = |{γ : α < γ < β, γ a successor ordinal}|.

Proof. For every δ ∈ [α, β) let f(δ) = δ+ 1. Then f is a one-one function from [α, β)
onto {γ : α < γ < β, γ a successor ordinal}.

Lemma 35.27. If α < θ ≤ β with θ limit, then

|[α, β]| = |{γ : α ≤ γ ≤ β, γ a successor ordinal}|.

Proof. Write β = δ +m with δ limit and m ∈ ω. Then

[α, β] = [α, α+ ω) ∪ [α+ ω, δ] ∪ (δ, β],

and the desired conclusion follows easily from Lemma 35.26.

Theorem 35.28. Suppose that µ is singular and κ < µ is an uncountable regular cardinal

such that A
def
= (κ, µ)reg has size < κ. Then

cf([µ]κ,⊆) = max(pcf(A)).

Proof. Note by the progressiveness of A that every limit cardinal in the interval (κ, µ)
is singular, and hence every member of A is a successor cardinal.

First we prove ≥. Suppose to the contrary that cf([µ]κ,⊆) < max(pcf(A)). For
brevity write max(pcf(A)) = λ. let {Xi : i ∈ I} ⊆ [µ]κ be cofinal and of cardinality less
than λ. Pick a universal sequence 〈fξ : ξ < λ〉 for λ by Theorem 34.18. For every ξ < λ,
rng(fξ) is a subset of µ of size ≤ |A| ≤ κ, and hence rng(fξ) is covered by some Xi. Thus
λ =

⋃

i∈I{ξ < λ : rng(fξ) ⊆ Xi}, so by |I| < λ and the regularity of λ we get an i ∈ I such
that |{ξ < λ : rng(fξ) ⊆ Xi}| = λ. Now define for any a ∈ A,

h(a) = sup(a ∩Xi).

Since κ < a for each a ∈ A, we have h ∈
∏
A. Now the sequence 〈fξ : ξ < λ〉 is cofinal in

∏
A under <J<λ by Lemma 34.25(v),(iv). So there is a ξ < λ such that h <J<λ fξ. Thus

there is an a ∈ A such that h(a) < fξ(a) ∈ Xi, contradicting the definition of h.
Second we prove ≤, by exhibiting a cofinal subset of [µ]κ of size at most max(pcf(A)).

Take N and Ψ so that H1(A, κ,N,Ψ). Let M be the set of all κ-presented elementary
substructures M of HΨ such that A ⊆M , and let

F = {M ∩ µ : M ∈M }\[µ]<κ.
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Since |M | = κ, we have |M ∩ µ| ≤ κ, and so ∀M ∈ F (|M ∩ µ| = κ).

(1) F is cofinal in [µ]κ.

In fact, for any X ∈ [µ]κ we can find M ∈M such that X ⊆M , and (1) follows.
By (1) it suffices to prove that |F | ≤ max(pcf(A)).

Claim. If M,N ∈M are such that ChM ↾ A = ChN ↾ A, then M ∩ µ = N ∩ µ.

For, if ν+ is a successor cardinal ≤ µ, then sup(M ∩ ν+) = ChM (ν+) = ChN (ν+) =
sup(N ∩ ν+). So the claim holds by Theorem 35.9.

Now for each M ∈ M , let g(M) be the sequence 〈(λ0, γ0), . . . , (λn, γn)〉 given by
Lemma 35.23. Clearly the range of g has size ≤ max(pcf(A)). Now for each X ∈ F ,
choose MX ∈ M such that X = MX ∩ µ. Then for X, Y ∈ F and X 6= Y we have
MX ∩ µ 6= MY ∩ µ, hence by the claim ChMX

↾ A 6= ChMY
↾ A, and hence by Lemma

35.23, g(MX) 6= g(MY ). This proves that |F | ≤ max(pcf(A)).

Corollary 35.29. Let A = {ℵm : 0 < m < ω}. Then for any m ∈ ω we have cf([ℵω]ℵm) =
max(pcf(A)).

Elevations and transitive generators

We start with some simple general notions about cardinals. If B is a set of cardinals, then
a walk in B is a sequence λ0 > λ1 > · · · > λn of members of B. Such a walk is necessarily
finite. Given cardinals λ0 > λ in B, a walk from λ0 to λ is a walk as above with λn = λ.
We denote by Fλ0,λ(B) the set of all walks from λ0 to λ.

Now suppose that A is progressive and λ0 ∈ pcf(A). A special walk from λ0 to λn in
pcf(A) is a walk λ0 > · · · > λn in pcf(A) such that λi ∈ A for all i > 0. We denote by
F ′
λ0,λ

(A) the collection of all special walks from λ0 to λ in pcf(A).

Next, suppose in addition that f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences,

where each fλ is a sequence 〈fλξ : ξ < λ〉 of members of
∏
A. If λ0 > · · · > λn is a special

walk in pcf(A), and γ0 ∈ λ0, then we define an associated sequence of ordinals by setting

γi+1 = fλiγi (λi+1)

for all i < n. Note that γi < λi for all i = 0, . . . , n. Then we define

Elλ0,...,λn(γ0) = γn.

Now we define the elevation of the sequence f , denoted by fe
def
= 〈fλ,e : λ ∈ pcf(A)〉, by

setting, for any λ0 ∈ pcf(A), any γ0 ∈ λ0, and any λ ∈ A,

fλ0,e
γ0

(λ) =







fλ0
γ0

(λ) if λ0 ≤ λ,

max({Elλ0,...,λn(γ0) : (λ0, . . . , λn) ∈ F ′
λ0,λ
}) if λ < λ0,

and this maximum exists,

fλ0
γ0 (λ) if λ < λ0, otherwise.

861



Note here that the superscript e is only notational, standing for “elevated”.

Lemma 35.30. Assume the above notation. Then fλ0
γ0
≤ fλ0,e

γ0
for all λ0 ∈ pcf(A) and all

γ0 ∈ λ0.

Proof. Take any γ0 ∈ λ0 and any λ ∈ A. If λ0 ≤ λ, then fλ0,e
γ0 (λ) = fλ0

γ0 (λ). Suppose

that λ < λ0. If the above maximum does not exist, then again fλ0,e
γ0

(λ) = fλ0
γ0

(λ). Suppose
the maximum exists. Now (λ0, λ) ∈ F ′

λ0,λ
(A), so

fλ0
γ0 (λ) = Elλ0,λ(γ0) ≤ max({Elλ0,...,λn(γ0) : (λ0, . . . , λn) ∈ F ′

λ0,λ}) = fλ0,e
γ0 (λ).

Lemma 35.31. Suppose that A is progressive, κ is a regular cardinal such that |A| <

κ < min(A), and f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences fλ such that fλ is

κ-minimally obedient for λ. Assume also H1(A, κ,N,Ψ) and f ∈ N .
Then also fe ∈ N .

Proof. The proof is a more complicated instance of our standard procedure for going
from V to HΨ to N and then back. We sketch the details.

Assume the hypotheses. In particular, A ∈ N . Hence also pcf(A) ∈ N . Also, |A| < κ,
so A ⊆ N . Now clearly F ′ ∈ N . Also, El ∈ N . (Note that El depends upon A.) Then by
absoluteness,

HΨ |= ∃g g is a function, dmn(g) = pcf(A) ∧ ∀λ0 ∈ pcf(A)∀γ0 ∈ λ0∀λ ∈ A

g(λ) =







fλ0
γ0

(λ) if λ0 ≤ λ,

max({Elλ0,...,λn(γ0) : (λ0, . . . , λn) ∈ F ′
λ0,λ
}) if λ < λ0,

and this maximum exists,

fλ0
γ0 (λ) if λ < λ0, otherwise.

Now the usual procedure can be applied.

Lemma 35.32. Suppose that A is progressive, κ is a regular cardinal such that |A| <

κ < min(A), and f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences fλ such that fλ is

κ-minimally obedient for λ. Assume H1(A, κ,N,Ψ) and f ∈ N .
Suppose that λ0 ∈ pcf(A) ∩N , and let γ0 = ChN (λ0).
(i) If λ0 > · · · > λn is a special walk in pcf(A), and γ1, . . . , γn are formed as above,

then γi ∈ N for all i = 0, . . . , n.
(ii) For every λ ∈ A ∩ λ0 we have fλ0,e

γ0 (λ) ∈ N .

Proof. (i): By Lemma 35.17(iv)(c), fλ0
γ0

(λ) ∈ N , and (i) follows by induction using
Lemma 35.17(iv)(c).

(ii): immediate from (i).

Lemma 35.33. Assume the hypotheses of Lemma 35.35. Then
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(i) For any special walk λ0 > · · · > λn = λ in F ′
λ0,λ

, we have

Elλ0,...,λn(γ0) ≤ ChN (λ).

(ii) fλ0,e
γ0 ≤ ChN ↾ A for every γ0 < λ0.

(iii) If there is a special walk λ0 > · · · > λn = λ in F ′
λ0,λ

such that

Elλ0,...,λn(γ0) = ChN (λ),

then
ChN (λ) = fλ0,e

γ0 (λ).

(iv) Suppose that ChN (λ) = fλ0,e
γ0 (λ) = γ. If there is an a ∈ A∩λ such that fλ,eγ (a) =

ChN (a), then also fλ0,e
γ0

(a) = ChN (a).

Proof. (i) is immediate from Lemma 35.32(i) and Lemma 35.8(iii). (ii) and (iii) follow
from (i). For (iv), by Lemma 35.32(i) and (i) there are special walks λ0 > · · · > λn = λ
and λ = λ′0 > · · · > λ′m = a such that

fλ0,e
γ0

(λ) = ChN (λ) = Elλ0,...,λn(γ0) and

fλ,eγ (a) = ChN (a) = Elλ′
0,...,λ

′
m

(a).

It follows that
Elλ0,...,λn,λ′

1,...,a
(γ0) = ChN (a),

and (iii) then gives fλ0,e
γ0

(a) = ChN (a).

Definition. Suppose that A is progressive and A ⊆ P ⊆ pcf(A). A system 〈bλ : λ ∈ P 〉
of subsets of A is transitive iff for all λ ∈ P and all µ ∈ bλ we have bµ ⊆ bλ.

Theorem 35.34. Suppose that H1(A, κ,N,Ψ), and f = 〈fλ : λ ∈ pcf(A)〉 is a system of
functions, and each fλ is κ-minimally obedient for λ. Let fe be the derived elevated array.
For every λ0 ∈ pcf(A) ∩N put γ0 = ChN (λ0) and define

bλ0
= {a ∈ A : ChN (a) = fλ0,e

γ0 (a)}.

Then the following hold for each λ0 ∈ pcf(A) ∩N :
(i) bλ0

is a λ0-generator.
(ii) There is a b′λ0

⊆ bλ0
such that

(a) bλ0
\b′λ0

∈ J<λ0
[A].

(b) b′λ0
∈ N (each one individually, not the sequence).

(c) b′λ0
is a λ0-generator.

(iii) The system 〈bλ : λ ∈ pcf(A) ∩N〉 is transitive.

Proof. Note that H2(A, κ,N,Ψ, λ0, f
λ0,e, γ0) holds by Lemma 35.34. By definition,

minimally obedient implies universal, so fλ0 is persistently cofinal by Lemma 35.11. Hence
by Lemma 35.24, fλ0,e is persistently cofinal, and so P1(A, κ,N,Ψ, λ0, f

λ0,e, γ0) holds by
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Lemma 35.18. Also, by Lemma 35.19 P2(A, κ,N,Ψ, λ0, f
λ0 , γ0) holds, so the condition

P2(A, κ,N,Ψ, λ0, f
λ0,e, γ0) holds by Lemmas 35.30 and 35.33(ii). Now (i) and (ii) hold by

Lemma 35.22.

Now suppose that λ0 ∈ pcf(A) ∩N and λ ∈ bλ0
. Thus

ChN (λ) = fλ0,e
γ0

(λ),

where γ0 = ChN (λ0). Write γ = ChN (λ). We want to show that bλ ⊆ bλ0
. Take any

a ∈ bλ. So ChN (a) = fλ,eγ (a). By Lemma 35.33(iv) we get fλ0,e
γ0

(a) = ChN (a), so a ∈ bλ0
,

as desired.

Localization

Theorem 35.35. Suppose that A is a progressive set. Then there is no subset B ⊆ pcf(A)
such that |B| = |A|+ and, for every b ∈ B, b > max(pcf(B ∩ b)).

Proof. Assume the contrary. We may assume that |A|+ < min(A). In fact, if we
know the result under this assumption, and now |A|+ = min(A), suppose that B ⊆ pcf(A)
with |B| = |A|+ and ∀b ∈ B[b > max(pcf(B ∩ b))]. Let A′ = A\{|A|+}. Then let
B′ = B\{|A|+}. Hence we have B′ ⊆ pcf(A′). Clearly |B′| = |A′|+ and ∀b ∈ B′[b >
max(pcf(B′ ∩ b))], contradiction.

Also, clearly we may assume that B has order type |A|+.

Let E = A ∪ B. Then |E| < min(E). Let κ = |E|. By Lemma 35.16, we get an
array 〈fλ : λ ∈ pcf(E)〉, with each fλ κ-minimally obedient for λ. Choose N and Ψ so
that H1(A, κ,N,Ψ), with N containing A,B,E, 〈fλ : λ ∈ pcf(E)〉. Now let 〈bλ : λ ∈
pcf(E) ∩ N〉 be the set of transitive generators as guaranteed by Theorem 35.34. Let
b′λ ∈ N be such that b′λ ⊆ bλ and bλ\b′λ ∈ J<λ.

Now let F be the function with domain {a ∈ A : ∃β ∈ B(a ∈ bβ)} such that for each
such a, F (a) is the least β ∈ B such that a ∈ bβ . Define B0 = {γ ∈ B : ∃a ∈ dmn(F )(γ ≤
F (a)}. Thus B0 is an initial segment of B of size at most |A|. Clearly B0 ∈ N . We let
β0 = min(B\B0); so B0 = B ∩ β0.

Now we claim

(1) There exists a finite descending sequence λ0 > · · · > λn of cardinals in N ∩ pcf(B0)
such that B0 ⊆ bλ0

∪ . . . ∪ bλn .

We prove more: we find a finite descending sequence λ0 > · · · > λn of cardinals in
N ∩ pcf(B0) such that B0 ⊆ b′λ0

∪ . . . ∪ b′λn . Let λ0 = max(pcf(B0)). Since B0 ∈ N ,

we clearly have λ0 ∈ N and hence b′λ0
∈ N . So B1

def
= B0\b′λ0

∈ N . Now suppose that
Bk ⊆ B0 has been defined so that Bk ∈ N . If Bk = ∅, the construction stops. Suppose that

Bk 6= ∅. Let λk = max(pcf(Bk)). Clearly λk ∈ N , so b′λk ∈ N and Bκ+1
def
= Bk\b′λk ∈ N .

Since Bκ+1 = Bk\b′λk and b′λk is a λk-generator, from Lemma 9.25(xii) it follows that
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λ0 > λ1 > · · ·. So the construction eventually stops; say that Bn+1 = ∅. So Bn ⊆ b
′
λn

. So

B0 ⊆ b
′
λ0
∪ (B0\b

′
λ0

)

= b′λ0
∪B1

⊆ b′λ0
∪ b′λ1

∪B2

. . . . . . . . .

⊆ b′λ0
∪ b′λ1

∪ . . . ∪Bn

⊆ b′λ0
∪ b′λ1

∪ . . . ∪ b′λn .

This proves (1).
Note that β0 > max(pcf(B ∩ β0) = max(pcf(B0)) ≥ λ0, . . . , λn by the initial assump-

tion of the proof. Next, we claim

(2) bβ0
⊆ bλ0

∪ . . . ∪ bλn .

To prove this, first note that bβ0
⊆ A ∪ B0. For, bβ0

⊆ E by definition, and E = A ∪ B;
bβ0
∩ B = B0, so indeed bβ0

⊆ A ∪ B0. Also, B0 ⊆ bλ0
∪ . . . ∪ bλn . So it suffices to prove

that bβ0
∩A ⊆ bλ0

∪ . . . ∪ bλn .
Consider any cardinal a ∈ bβ0

∩ A. Since β0 ∈ B, we have a ∈ dmn(F ), and since
β0 /∈ B0 we have F (a) < β0. Let β = F (a). So a ∈ bβ , and β < β0, so by the minimality
of β0, β ∈ B0. Since B0 ⊆ bλ0

∪ . . .∪ bλn , it follows that β ∈ bλi for some i = 0, . . . , n. But
transitivity implies that bβ ⊆ bλi , and hence a ∈ bλi , as desired. So (2) holds.

By (2) we have
pcf(bβ0

) ⊆ pcf(bλ0
) ∪ . . . ∪ pcf(bλn),

and hence by Lemma 34.25(vii) we get β0 = max(pcf(bβ0
)) ≤ max{λi : i = 0, . . . , n} < β0,

contradiction.

Theorem 35.36. (Localization) Suppose that A is a progressive set of regular cardinals.
Suppose that B ⊆ pcf(A) is also progressive. Then for every λ ∈ pcf(B) there is a B0 ⊆ B
such that |B0| ≤ |A| and λ ∈ pcf(B0).

Proof. We prove by induction on λ that if A and B satisfy the hypotheses of the
theorem, then the conclusion holds. Let C be a λ-generator over B. Thus C ⊆ B and
λ = max(pcf(C)) by Lemma 34.25(vii). Now C ⊆ pcf(A) and C is progressive. It suffices
to find B0 ⊆ C with |B0| ≤ |A| and λ ∈ pcf(B0).

Let C0 = C and λ0 = λ. Suppose that C0 ⊇ · · · ⊇ Ci and λ0 > · · · > λi have
been constructed so that λ = max(pcf(Ci)) and Ci is a λ-generator over B. If there
is no maximal element of λ ∩ pcf(Ci) we stop the construction. Otherwise, let λi+1 be
that maximum element, let Di+1 be a λi+1-generator over B, and let Ci+1 = Ci\Di+1.
Now Di+1 ∈ J≤λi+1

[B] ⊆ J<λ[B], so Ci+1 is still a λ-generator of B by Lemma 9.25(ix),
and λ = max(pcf(Ci+1)) by Lemma 34.25(vii). Note that λi+1 /∈ pcf(Ci+1), by Lemma
34.25(ii).

This construction must eventually stop, when λ∩Ci does not have a maximal element;
we fix the index i.
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(1) There is an E ⊆ λ ∩ pcf(Ci) such that |E| ≤ |A| and λ ∈ pcf(E).

In fact, suppose that no such E exists. We now construct a strictly increasing sequence
〈γj : j < |A|+〉 of elements of pcf(Ci) such that γk > max(pcf({γj : j < k}〉 for all
k < |A|+. (This contradicts Theorem 35.35.) Suppose that {γj : j < k} = E has been
defined. Now λ /∈ pcf(E) by the supposition after (1), and λ < max(pcf(E)) is impossible
since pcf(E) ⊆ pcf(Ci) and λ = max(pcf(Ci)). So λ > max(pcf(E)). Hence, because λ∩Ci
does not have a maximal element, we can choose γk ∈ λ∩Ci such that γk > max(pcf(E)),
as desired. Hence (1) holds.

We take E as in (1). Apply the inductive hypothesis to each γ ∈ E and to A,E in place
of A,B; we get a set Gγ ⊆ E such that |Gγ | ≤ |A| and γ ∈ pcf(Gγ). Let H =

⋃

γ∈E Gγ .
Note that |H| ≤ |A|. Thus E ⊆ pcf(H). Since pcf(E) ⊆ pcf(H) by Theorem 9.15, we
have λ ∈ pcf(H), completing the inductive proof.

The size of pcf(A)

Theorem 35.37. If A is a progressive interval of regular cardinals, then |pcf(A)| < |A|+4.

Proof. Assume that A is a progressive interval of regular cardinals but |pcf(A)| ≥
|A|+4. Let ρ = |A|. We will define a set B of size ρ+ consisting of cardinals in pcf(A) such
that each cardinal in B is greater than max(pcf(B ∩ b)). This will contradict Theorem
35.35.

Let S = Sρ
+3

ρ+
; so S is a stationary subset of ρ+3. By Theorem 34.40 let 〈Ck : k ∈ S〉

be a club guessing sequence. Thus

(1) Ck is a club in k of order type ρ+, for each k ∈ S.

(2) If D is a club in ρ+3, then there is a k ∈ D ∩ S such that Ck ⊆ D.

Let σ be the ordinal such that ℵσ = sup(A). Now pcf(A) is an interval of regular cardinals
by Theorem 34.13. So pcf(A) contains all regular cardinals in the set {ℵσ+α : α < ρ+4}.

Now we are going to define a strictly increasing continuous sequence 〈αi : i < ρ+3〉 of
ordinals less than ρ+4.

1. Let α0 = ρ+3.
2. For i limit let αi =

⋃

j<i αj .
3. Now suppose that αj has been defined for all j ≤ i; we define αi+1. For each k ∈ S

let ek = {ℵσ+αj : j ∈ Ck ∩ (i+ 1)}. Thus e
(+)
k is a subset of pcf(A). If max(pcf(e

(+)
k )) <

ℵσ+ρ+4 , let βk be an ordinal such that max(pcf(e
(+)
k )) < ℵσ+βk and βk < ρ+4; otherwise

let βk = 0. Let αi+1 be greater than αi and all βk for k ∈ S, with αi+1 < ρ+4. This is
possible because |S| = ρ+3. Thus

(3) For every k ∈ S, if max(pcf(e
(+)
k )) < ℵσ+ρ+4 , then max(pcf(e

(+)
k )) < ℵσ+αi+1

.

This finishes the definition of the sequence 〈αi : i < ρ+3〉. Let D = {αi : i < ρ+3}, and
let δ = sup(D). Then D is club in δ. Let µ = ℵσ+δ. Thus µ has cofinality ρ+3, and
it is singular since δ > α0 = ρ+3. Now we apply Corollary 9.35: there is a club C0 in

µ such that µ+ = max(pcf(C
(+)
0 )). We may assume that C0 ⊆ [ℵσ, µ). so we can write

C0 = {ℵσ+i : i ∈ D0} for some club D0 in δ. Let D1 = D0 ∩D. So D1 is a club of δ. Let
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E = {i ∈ ρ+3 : αi ∈ D1}. It is clear that E is a club in ρ+3. So by (2) choose k ∈ E ∩ S
such that Ck ⊆ E. Let C′

k = {β ∈ Ck : there is a largest γ ∈ Ck such that γ < β}. Set
B = {ℵ+

σ+αi
: i ∈ C′

k}. We claim that B is as desired. Clearly |B| = ρ+.
Take any j ∈ C′

k. We want to show that

(∗) ℵ+
σ+αj

> max(pcf(B ∩ ℵ+
σ+αj

)).

Let i ∈ Ck be largest such that i < j. So i+ 1 ≤ j. We consider the definition given above
of αi+1. We defined ek = {ℵσ+αl : l ∈ Ck ∩ (i+ 1)}. Now

(4) B ∩ ℵ+
σ+αj

⊆ e(+)
k .

For, if b ∈ B ∩ ℵ+
σ+αj

, we can write b = ℵ+
σ+αl

with l ∈ C′
k and l < j. Hence l ≤ i and so

b = ℵ+
σ+αl

∈ e
(+)
k . So (4) holds.

Now if l ∈ Ck ∩ (i + 1), then l ∈ E, and so αl ∈ D1 ⊆ D0. Hence ℵσ+αl ∈ C0. This

shows that e
(+)
k ⊆ C

(+)
0 . So max(pcf(e

(+)
k )) ≤ max(pcf(C

(+)
0 )) = µ+ < ℵσ+ρ+4 . Hence by

(3) we get max(pcf(e
(+)
k )) < ℵσ+αi+1

. So

max(pcf(B ∩ ℵ+
σ+αj

)) ≤ max(pcf(e
(+)
k )) by (4)

< ℵ+
σ+αi+1

≤ ℵ+
σ+αj ,

which proves (∗).

Theorem 35.38. If ℵδ is a singular cardinal such that δ < ℵδ, then

cf([ℵδ]
|δ|,⊆) < ℵ|δ|+4 .

Proof. Let κ = |δ|+ and A = (κ,ℵδ)reg. By Lemma 35.25(iii) and Lemma 35.28,

cf([ℵδ]
|δ|,⊆) ≤ max(|δ|+, cf([ℵδ]

|δ|+ ,⊆))

≤ max(|δ|+,max(pcf(A))).

Hence it suffices to show that max(pcf(A)) < ℵ|δ|+4 .
By Theorem 35.37, |pcf(A)| < |A|+4. Write max(pcf(A)) = ℵα and κ = ℵβ . We want

to show that α < |δ|+4. Now pcf(A) = (κ,max(pcf(A))]reg = (ℵβ,ℵα]reg. By Lemma
35.27, |(β, α)| = |pcf(A)| < |A|+4 ≤ |δ|+4. Also, β ≤ ℵβ = κ = |δ|+ < |δ|+4. So
|α| < |δ|+4, and hence α < |δ|+4.

Theorem 35.39. If δ is a limit ordinal, then

ℵ
cf(δ)
δ < max

((

|δ|cf(δ)
)+

,ℵ|δ|+4

)

.
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Proof. If δ = ℵδ, then |δ| = ℵδ and the conclusion is obvious. So assume that δ < ℵδ.
Now

(1) ℵ
cf(δ)
δ ≤ |δ|cf(δ) · cf([ℵδ]

|δ|,⊆).

In fact, let B ⊆ [ℵδ]|δ| be cofinal and of size cf([ℵδ]|δ|,⊆). Now cf(δ) ≤ |δ|, so

[ℵδ]
cf(δ) =

⋃

Y ∈B

[Y ]cf(δ),

and (1) follows. Hence the theorem follows by Theorem 35.38.

Corollary 35.40. ℵℵ0
ω < max

(
(2ℵ0)+,ℵω4

)
.
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ADDITIONAL CHAPTERS

36. Various forcing orders

In this section we briefly survey various forcing orders which have been used. Many of
them give rise to new real numbers, i.e., new subsets of ω. (It is customary to identify
real numbers with subsets of ω, since these are simpler objects than Dedekind cuts; and
a bijection in the ground model between R and P(ω) transfers the newness to “real” real
numbers.) For each kind of forcing we give a reference for further results concerning it. Of
course our list of forcing orders is not complete, but we hope the treatment here can be a
guide to further study.

Cohen forcing

The forcing used in Chapter 16 is, as indicated there, called Cohen forcing. If M is a
c.t.m. of ZFC, P is Fin(ω, 2), and G is P-generic over M , then

⋃
G is a Cohen real. More

generally, if N is a c.t.m. of ZFC and M ⊆ N , then a Cohen real in N is a function
f : ω → 2 in N such that there is a P-generic filter G over M such that M [G] ⊆ N and
f =

⋃
G.

Theorem 36.1. Suppose that M is a c.t.m. of ZFC, I ∈M , I = J0∪J1 with J0∩J1 = ∅,
and G is Fin(I, 2)-generic over M .

(i) Let H0 = G ∩ Fin(J0, 2). Then H0 is Fin(J0, 2)-generic over M .
(ii) Let H1 = G ∩ Fin(J1, 2). Then H1 is Fin(J1, 2)-generic over M [H0].
(iii) M [G] = M [H0][H1].

Proof. We are going to use Theorem 25.13. Let P be the partial order Fin(J0, 2)
and Q the partial order Fin(J1, 2). We claim that Fin(I, 2) is isomorphic to P×Q. Define
f(p) = (p ↾ J0, p ↾ J1). Clearly this is an isomorphism. We claim that f [G] = H0 ×H1.
For, suppose that p ∈ G. then p ↾ J0 ⊆ p, so p ↾ J0 ∈ G, and hence p ↾ J0 ∈ H0. Similarly,
p ↾ J1 ∈ H1. So f(p) ∈ H0×H1. Conversely, if (p, q) ∈ H0×H1, then p ∈ G and q ∈ G, so
there is an r ∈ G such that p, q ⊆ r. Now p∪ q ⊆ r, so p∪ q ∈ G. Clearly f(p∪ q) = (p, q).
So this proves that f [G] = H0 ×H1.

Now it follows from Lemma 25.9 that H0 ×H1 is P×Q-generic over M , and M [G] =
M [H0 ×H1]. Now we can apply Theorem 25.13 to get:

(1) H0 is P-generic over M .

(2) H1 is Q-generic over M [H0].

(3) M [G] = M [H0][H1].

This proves our theorem.

It follows that all of the subsets of ω given in the proof of Theorem 16.1 are Cohen reals:

Corollary 36.2. Let M be a c.t.m. of ZFC and let κ be a cardinal of M such that κω = κ.
Let P = Fin(κ, 2) in M , and let G be P-generic over M , and let g =

⋃
G. Let h : κ×ω → κ
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be a bijection in M . Then for each α < κ, the set {m ∈ ω : g(h(α,m)) = 1} is a Cohen
real.

Proof. Remember that subsets of ω and their characteristic functions are both con-
sidered as reals. Implicitly, one is a Cohen real iff the other is, by definition. So we will

show that the function l
def
= 〈g(h(α,m)) : m ∈ ω〉 is a Cohen real.

Fix α < κ, and let J = {β < κ : h−1(β) has the form (α,m) for some m ∈ ω}. Let
k(m) = h(α,m) for all m ∈ ω. Then k is a bijection from ω onto J . By 36.1, G∩Fin(J, 2)
is Fin(J, 2)-generic over M . Define k′ : Fin(J, 2) → Fin(ω, 2) by setting k′(p) = p ◦ k for
any p ∈ Fin(J, 2). So k′ is an isomorphism from Fin(J, 2) onto Fin(ω, 2). Clearly then
k′[G ∩ Fin(J, 2)] is Fin(ω, 2)-generic over M . So the proof is completed by checking that
⋃
k′[G ∩ Fin(J, 2)] = l. Take any m ∈ ω. Then

(m, ε) ∈
⋃

k′[G ∩ Fin(J, 2)] iff there is a p ∈ k′[G ∩ Fin(J, 2)]

such that (m, ε) ∈ p

iff there is a q ∈ G ∩ Fin(J, 2)

such that (m, ε) ∈ k′(q)

iff there is a q ∈ G ∩ Fin(J, 2)

such that (m, ε) ∈ q ◦ k

iff g(k(m)) = ε

iff g(h(α,m)) = ε

iff (m, ε) ∈ l

Theorem 36.3. Suppose that M is a c.t.m. of ZFC and G is Fin(ω, 2)-generic over M .
Let g =

⋃
G (so that g is a Cohen real). Then for any f ∈ ω2 which is in M , the set

{m ∈ ω : f(m) < g(m)} is infinite.

Proof. For each n ∈ ω let in M

Dn = {h ∈ Fin(ω, 2) : there is an m > n such that m ∈ dmn(h) and f(m) < h(m)}.

Clearly Dn is dense. Hence the desired result follows.

Thus if g is a Cohen real, then there is no f in the ground model such that {m ∈ ω :
g(m) ≤ f(m)} is finite. Put another way, if A ⊆ ω is a Cohen real, then there is no B ⊆ ω
in the ground model such that A\B is finite.

Let 〈Pi : i ∈ I〉 be a system of forcing orders. We define the product of these orders to be
the set

w∏

i∈I

Pi =

{

f ∈
∏

i∈I

Pi : {j ∈ I : f(j) 6= 1} is finite

}

with the order
f ≤ g iff ∀i ∈ I[fi ≤ gi].
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Theorem 36.4. For any infinite cardinal κ, Fin(κ, 2) is isomorphic to
∏

α<κ Fin(ω, 2).

Proof. Let k : κ→ κ× ω be a bijection. For each f ∈
∏

α<κ Fin(ω, 2) let

dmn(F (f)) = {α < κ : 2nd(k(α)) ∈ dmn(f(1st(k(α))) and

(F (f))(α) = (f(1st(k(α))))(2nd(k(α))).

Clearly F maps
∏

α<κ Fin(ω, 2) into Fin(κ, 2). To show that F is one-one, suppose that
f, g ∈

∏

α<κ Fin(ω, 2) and f 6= g; say f(α) 6= g(α). Say (n, ε) ∈ f(α)\g(α). Let β =
k−1(α, n). Thus β ∈ dmn(F (f)). We may assume that β ∈ dmn(F (g)). It follows that
(F (f))(β) 6= (F (g))(β). So F (f) 6= F (g).

To show that F maps onto, let h ∈ Fin(κ, 2). Define f ∈
∏

α<κ Fin(ω, 2) by setting

dmn(f(α)) = {n ∈ ω : k−1(α, n) ∈ dmn(h)}

(f(α))(n) = h(k−1(α, n)) if k−1(α, n) ∈ dmn(h).

Clearly F (f) = h.
Clearly f ≤ g iff F (f) ⊆ F (g).

Cohen reals are widely used in set theory.

Roitman, J. Adding a random or a Cohen real. Fund. Math. 103 (1979), 47–60.

Random forcing

The general idea of random forcing is to take a σ-algebra of measurable sets with respect
to some measure, divide by the ideal of sets of measure zero, obtaining a complete Boolean
algebra, and use it as the forcing algebra; the partially ordered set of nonzero elements is
the forcing partial order.

We give fairly complete details for the case of the product measure on κ2, for any
infinite cardinal κ. To make our treatment self-contained we give a standard development
of this measure, following

Fremlin, D. Measure theory, vol. 1.

Let κ be an infinite cardinal. For each f ∈ Fn(κ, 2, ω) let Uf = {g ∈ κ2 : f ⊆ g}. Hence
U∅ = κ2. Note that the function taking f to Uf is one-one. For each f ∈ Fn(κ, 2, ω) let
θ0(Uf ) = 1/2|dmn(f)|. Thus θ0(U∅) = 1. Let C = {Uf : f ∈ Fn(κ, 2, ω)}. Note that κ2 ∈ C.
For any A ⊆ κ2 let

θ(A) = inf

{
∑

n∈ω

θ0(Cn) : C ∈ ωC and A ⊆
⋃

n∈ω

Cn

}

.

An outer measure on a set X is a function µ : P(X) → [0,∞] satisfying the following
conditions:

(1) µ(∅) = 0.
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(2) If A ⊆ B ⊆ X , then µ(A) ≤ µ(B).

(3) For every A ∈ ωP(X), µ(
⋃

n∈ω An) ≤
∑

n∈ω µ(An).

Proposition 36.4. θ is an outer measure on κ2.

Proof. For (1), for any m ∈ ω let f ∈ Fn(κ, 2, ω) have domain of size m. Then
∅ ⊆ Uf and θ0(Uf ) = 1

m . Hence θ(∅) = 0.
For (2), if A ⊆ B ⊆ κ2, then

{

C ∈ ωC : B ⊆
⋃

n∈ω

Cn

}

⊆

{

C ∈ ωC : A ⊆
⋃

n∈ω

Cn

}

,

and hence µ(A) ≤ µ(B).
For (3), assume that A ∈ ωP(κ2). We may assume that

∑

n∈ω θ(An) < ∞. Let
ε > 0; we show that θ(

⋃

n∈ω An) ≤
∑

n∈ω θ(An) + ε, and the arbitrariness of ε then
gives the desired result. For each n ∈ ω choose Cn ∈ ωC such that An ⊆

⋃

m∈ω C
n
m and

∑

m∈ω θ0(Cnm) ≤ θ(An) + ε
2n . Then

⋃

n∈ω An ⊆
⋃

n∈ω

⋃

m∈ω C
n
m and

θ

(
⋃

n∈ω

An

)

≤
∑

n∈ω

∑

n∈ω

θ0(Cnm) ≤
∑

n∈ω

θ(An) + ε,

as desired.

If A is a σ-algebra of subsets of X , then a measure on A is a function µ : A→ [0,∞] such
that µ(∅) = 0 and µ(

⋃

i∈ω ai) =
∑

i∈ω µ(ai) if a ∈ ωA and ai ∩ aj = ∅ for all i 6= j. Note
that ai = ∅ is possible for some i ∈ ω.

We give some important properties of measures:

Proposition 36.5. Suppose that µ is a measure on a σ-algebra A of subsets of X. Then:
(i) If Y, Z ∈ A and Y ⊆ Z, then µ(Y ) ≤ µ(Z).
(ii) If Y ∈ ωA, then µ(

⋃

n∈ω Yn) ≤
∑

n∈ω µ(Yn).
(iii) If Y ∈ ωA and Yn ⊆ Yn+1 for all n ∈ ω, then µ(

⋃

n∈ω Yn) = supn∈ω µ(Yn).

Proof. (i): We have µ(Z) = µ(Y ) + µ(Z\Y ) ≥ µ(Y ).
(ii): Let Zn = Yn\

⋃

m<n Ym. By induction,
⋃

m≤n Zm =
⋃

m≤n Ym, and hence
⋃

m∈ω Zm =
⋃

m∈ω Ym. Now

µ

(
⋃

m∈ω

Ym

)

= µ

(
⋃

m∈ω

Zm

)

=
∑

m∈ω

µ(Zm) ≤
∑

m∈ω

µ(Ym).

(iii): Again let Zn = Yn\
⋃

m<n Ym. By induction, Yn =
⋃

m≤n Zm. Hence

µ

(
⋃

n∈ω

Yn

)

= µ

(
⋃

n∈ω

Zn

)
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=
∑

n∈ω

µ(Zn)

= lim
n→∞

∑

m≤n

µ(Zm)

= lim
n→∞

µ




⋃

m≤n

Zm





= lim
n→∞

µ(Yn)

= sup
n∈ω

µ(Yn).

Proposition 36.6. Let

A = {E ⊆ κ2 : ∀X ⊆ κ2[θ(X) = θ(X ∩ E) + θ(X\E)]}.

Then A is a σ-algebra of subsets of κ2, and θ ↾ A is a measure on A.

Proof. ∅ ∈ A since for any X ⊆ κ2 we have

θ(X ∩ ∅) + θ(X\∅) = θ(∅) + θ(X) = 0 + θ(X) = θ(X).

If E ∈ A, obviously also κ2\E ∈ A.
Next we show that if E1, E2 ∈ A then E1 ∪ E2 ∈ A. For any X ⊆ κ2,

θ(X ∩ (E1 ∪E2)) + θ(X\(E1 ∪ E2))

= θ(X ∩ (E1 ∪ E2) ∩ E1) + θ(X ∩ (E1 ∪E2)\E1) + θ(X\(E1 ∪ E2))

= θ(X ∩E1) + θ((X\E1) ∩ E2) + θ((X\E1)\E2)

= θ(X ∩E1) + θ(X\E1)

= θ(X).

Now suppose that E ∈ ωA. Let F =
⋃

i∈ω Ei; we want to show that F ∈ A. For
each n ∈ ω let Gn =

⋃

i≤nEi. So Gn ∈ A by the binary case already considered. Let
H0 = G0 and Hn+1 = Gn+1\Gn for all n ∈ ω. Hence H0 = E0 and Hn+1 = En+1\Gn
for all n ∈ ω. Moreover, by induction

⋃

i≤nHi =
⋃

i≤nGi for all n ∈ ω, and hence
⋃

i∈ωHi =
⋃

i∈ω Gi =
⋃

i∈ω Ei = F .
Now suppose that n ≥ 1 and X ⊆ κ2. Then

θ(X ∩Gn) = θ(X ∩Gn ∩Gn−1) + θ(X ∩Gn\Gn−1)

= θ(X ∩Gn−1) + θ(X ∩Hn).

Hence by induction we get

(1) θ(X ∩Gn) =
∑

m≤n

θ(X ∩Hm) for all n ∈ ω.
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Now X = (X ∩ F ) ∪ (X\F ), so by the outer measure property we have

(2) θ(X) ≤ θ(X ∩ F ) + θ(X\F ).

Now X ∩ F =
⋃

n∈ω(X ∩Hn), so by the outer measure property we have

θ(X ∩ F ) ≤
∑

n∈ω

θ(X ∩Hn)

= lim
m→∞

∑

n≤m

θ(X ∩Hn)

= lim
m→∞

θ(Gm) by (1)

Thus

(3) θ(X ∩ F ) ≤ lim
m→∞

θ(X ∩Gm)

Next, note that Gn ⊆
⋃

m∈ω Gm and hence X\
⋃

m∈ω Gm ⊆ X\Gn. Also Gm ⊆ Gn for
m ≤ n, and hence X\Gn ⊆ X\Gm. Thus by (2) in the definition of outer measure we
have

θ(X\F ) = θ

(

X\
⋃

m∈ω

Gm

)

≤ inf
m∈ω

θ(X\Gm) = lim
m→ω

θ(X\Gm).

Together with (3) it then follows that

θ(X ∩ F ) + θ(X\F ) ≤ lim
m→ω

(θ(X ∩Gm) + θ(X\Gm)) = θ(X).

Together with (2) this implies that F ∈ A.
Thus A is a σ-algebra of subsets of κ2.
Now suppose that En ∩Em = ∅ for n 6= m. Then

θ(Gn+1) = θ(Gn+1 ∩ En+1) + θ(Gn+1\En+1) = θ(En+1) + θ(Gn).

It follows by induction that θ(Gn) =
∑

m≤n θ(Em) for every n ∈ ω. Hence

(4) θ(F ) ≤
∑

m∈ω

θ(Em) since θ is an outer measure

and
θ(F ) ≥ θ(

⋃

m≤n

Em) = θ(Gn) =
∑

m≤n

θ(Em)

for each n, and hence θ(F ) ≥
∑

m∈ω Em. Now (4) gives θ(F ) =
∑

m∈ω θ(Em).

Proposition 36.7. If ε ∈ 2 and α < κ, then {f ∈ κ2 : f(α) = ε} ∈ A.

874



Proof. Let E = {f ∈ κ2 : f(α) = ε}, and let X ⊆ κ2; we want to show that
θ(X) = θ(X ∩ E) + θ(X\E). ≤ holds by the definition of outer measure. Now suppose
that δ > 0. Choose C ∈ ωC such that X ⊆

⋃

n∈ω Cn and
∑

n∈ω θ0(Cn) < θ(X) + δ. For
each n ∈ ω let Cn = Ufn with fn ∈ Fn(κ, 2, ω). For each n ∈ ω, if α /∈ dmn(fn), replace
Cn by Ug and Uh, where g = f ∪ {(α, 0)} and h = f ∪ {(α, 1)}; let the new sequence be
C′ ∈ ωC. Then

∑

n∈ω θ(Cn) =
∑

n∈ω θ(C
′
n) and X ⊆

⋃

n∈ω C
′
n. Then there is a partition

M,N of ω such that X ∩E ⊆
⋃

n∈M C′
n and X\E ⊆

⋃

n∈N C
′
n. Hence

θ(X ∩E) + θ(X\E) ≤
∑

n∈M

θ(C′
n) +

∑

n∈N

θ(C′
n) =

∑

n∈ω

θ(C′
n) < θ(X) + δ.

Since δ is arbitrary, it follows that θ(X) = θ(X ∩E) + θ(X\E).

For f : 2→ R we define
∫
f = 1

2f(0) + 1
2f(1).

Proposition 36.8. If fn : 2 → [0,∞) for each n ∈ ω and ∀t < 2[
∑

n∈ω fn(t) <∞], then
∑

n∈ω

∫
fn <∞, and

∑

n∈ω

∫
fn =

∫ ∑

n∈ω fn.

Proof.
∫
∑

n∈ω

fn =
1

2

∑

n∈ω

fn(0) +
1

2

∑

n∈ω

fn(1) =
∑

n∈ω

(
1

2
fn(0) +

1

2
fn(1)

)

=
∑

n∈ω

∫

fn.

Proposition 36.9. θ(κ2) = 1.

Proof. It is obvious that κ2 ∈ A, and that θ(κ2) ≤ θ0(κ2) = 1. Suppose that
θ(κ2) < 1. Choose C ∈ ωC such that 2κ =

⋃

n∈ω Cn and
∑

n∈ω θ0(Cn) < 1. For each n ∈ ω
let Cn = Ufn , where fn ∈ Fn(κ, 2, ω).

(1) ∀g ∈ Fn(κ, 2, ω)∃n ∈ ω[fn ⊆ g or g ⊆ fn].

In fact, let g ∈ Fn(κ, 2, ω). Let h ∈ κ2 with g ⊆ h. Choose n such that h ∈ Cn. Then
fn ⊆ h. So fn ⊆ g or g ⊆ fn.

(2) Let M = {n ∈ ω : ∀m 6= n[fm 6⊆ fn]}. Then κ2 ⊆
⋃

n∈M Ufn .

For, given g ∈ κ2 choose n ∈ ω such that g ∈ Cn. Thus fn ⊆ g. Let m ∈ ω with fm ⊆ fn
and |dmn(fm)| minimum. Then fm ⊆ g and m ∈M , as desired.

(3) |M | ≥ 2.

In fact, obviously M 6= ∅. Suppose that M = {n}. Since
∑

n∈M θ0(Cn) < 1, we have
fn 6= ∅. Then κ2 ⊆ Ufn , contradiction.

(4) M is infinite.

In fact, suppose that M is finite, and let m = sup{|dmn(fn)| : n ∈M}. Let g ∈ Fn(κ, 2, ω)
be such that |dmn(g)| = m + 1. Then by (1), fn ⊆ g for all n ∈ M . Because of (3), this
contradicts (2).

Let J =
⋃

n∈M dmn(fn).
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(5) J is infinite.

For, suppose that J is finite. Now M =
⋃

G⊆J{n ∈M : dmn(fn) = G}, so there is a G ⊆ J

such that {n ∈M : dmn(fn) = G} is infinite. But clearly |{n ∈M : dmn(fn) = G}| ≤ 2|G|,
contradiction.

Let i : ω → J be a bijection. For n, k ∈ ω let f ′
nk be the restriction of fn to the

domain {α ∈ dmn(fn) : ∀j < k[α 6= ij ]}, and let

αnk =
1

2|dmn(f ′
nk

)|
.

Now for n, k ∈ ω and t < 2 we define

fnk(t) =

{
αn,k+1 if ik /∈ dmn(fn),
αn,k+1 if ik ∈ dmn(fn) and fn(ik) = t,
0 otherwise.

(6)
∫
fnk = αnk for all n, k ∈ ω.

In fact,

∫

fnk =
1

2
fnk(0) +

1

2
fnk(1)

=

{
αn,k+1 if ik /∈ dmn(fn),
1
2αn,k+1 if ik ∈ dmn(fn)

= αnk.

Now we define by induction elements tk ∈ 2 and subsets Mk of M . Let M0 = M . Now
suppose that Mk and ti have been defined for all i < k, so that

∑

n∈Mk
αnk < 1. Note

that this holds for k = 0. Now

1 >
∑

n∈Mk

αnk =
∑

n∈Mk

∫

fnk by (6)

=

∫
∑

n∈Mk

fnk by Proposition 1.

It follows that there is a tk < 2 such that
(∑

n∈Mk
fnk
)

(tk) < 1. Let

Mk+1 = {n ∈M : ∀j < k + 1[ij /∈ dmn(fn), or ij ∈ dmn(fn) and fn(ij) = tj ]}.

If n ∈Mk+1, then fnk(tk) = αn,k+1. Hence

∑

n∈Mk+1

αn,k+1 =
∑

n∈Mk+1

fmk(tk) ≤

(
∑

n∈Mk

fnk

)

(tk) < 1.
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Also, Mk+1 6= ∅. For, let g ∈ κ2 such that g(ij) = tj for all j ≤ k. Say g ∈ Cn with n ∈M .
Then fn ⊆ g. Hence ij /∈ dmn(fn), or ij ∈ dmn(fn) and fn(ij) = tj . Thus n ∈Mk+1.

This finishes the construction. Now let g ∈ κ2 be such that g(ij) = tj for all j ∈ ω.
Say g ∈ Cn with n ∈ M . Then fn ⊆ g. The domain of fn is a finite subset of J . Choose
k ∈ ω so that dmn(fn) ⊆ {ij : j < k}. Then n ∈Mk. Hence f ′

nk = ∅ and so αnk = 1. This
contradicts

∑

m∈Mk
αmk < 1.

Let ν be the tiny function with domain 2 which interchanges 0 and 1. For any f ∈ κ2 let
F (f) = ν ◦ f .

Proposition 36.10.
(i) F is a permutation of κ2.
(ii) For any f ∈ Fn(κ, 2, ω) we have F [Uf ] = Uν◦f .
(iii) For any X ⊆ κ2 we have θ(X) = θ(F [X ]).
(iv) ∀E ∈ A[F [E] ∈ A].

Proof. (i): Clearly F is one-one, and F (F (f)) = f for any f ∈ κ2. So (i) holds.
(ii): For any g ∈ κ2,

g ∈ F [Uf ] iff ∃h ∈ Uf [g = F (h)]

iff ∃h ∈ κ2[f ⊆ h and g = ν ◦ h]

iff ∃h ∈ κ2[ν ◦ f ⊆ ν ◦ h and g = ν ◦ h]

iff ν ◦ f ⊆ g

iff g ∈ Uν◦f

(iii): Clearly θ0(Uf ) = θ0(F [Uf ]) for any f ∈ Fn(κ, 2, ω). Also, A ⊆
⋃

n∈ωCn
iff F [A] ⊆

⋃

n∈ω F [Cn]. So (iii) holds.
(iv): Suppose that E ∈ A. Let X ⊆ κ2. Then

θ(X ∩ F [E]) + θ(X\F [E]) = θ(F [F [X ]]∩ F [E]) + θ(F [F [X ]]\F [E])

= θ(F [F [X ] ∩E]) + θ(F [F [X ]\E])

= θ(F [X ] ∩E) + θ(F [X ]\E)

= θ(E) = θ(F [E]).

Proposition 36.11. If α < κ and ε < 2, then θ(U{(α,ε)}) = 1
2
.

Proof. By Proposition 36.10 we have θ(U{(α,ε)}) = θ(U{(α,1−ε)}), so the result follows
from Proposition 36.9.

Proposition 36.12. For each f ∈ Fn(κ, 2, ω) we have Uf ∈ A and θ(Uf ) = 1
2|dmn(f)| .

Proof. We have Uf =
⋂

α∈dmn(f) U{(α,f(α))}, so Uf ∈ A by Proposition 36.7. We

prove that θ(Uf) = 1
2|dmn(f)| by induction on |dmn(f)|. For |dmn(f)| = 1, this holds by

Proposition 36.11. Now assume that it holds for |dmn(f)| = m. For any f with |dmn(f)| =

877



m and α /∈ dmn(f) we have 2−|dmn(f)| = θ(Uf ) = θ(Uf∪{(α,0)}) + θ(Uf∪{(α,1)}). Since

θ(Uf∪{(α,ε)}) ≤ θ0(Uf∪{(α,ε)}) = 2−|dmn(f)|−1 for each ε ∈ 2, it follows that θ(Uf∪{(α,ε)}) =

2−|dmn(f)|−1 for each ε ∈ 2.

Proposition 36.13. If F is a finite subset of κ2, then F ∈ A and θ(F ) = 0.

Proof. This is obvious if |F | ≤ 1, and then the general case follows.

This finishes our development of measure theory. Now we start to see how a forcing order
is obtained.

For any BA A, an ideal of A is a nonempty subset of A such that if a, b ∈ A, a ≤ b,
and b ∈ I, then also a ∈ I; and if a, b ∈ I, then a+ b ∈ I.

Proposition 36.14. Let I be an ideal in a BA A. Define ≡I= {(a, b) : a, b ∈ A and
a△b ∈ I}. Then ≡I is an equivalence relation on A, and the collection of all equivalence
classes can be made into a BA (A/I,+, ·,−, [0]I, [1]I) such that the following conditions
hold for all a, b ∈ A:

(i) [a]I + [b]I = [a+ b]I .
(ii) [a]I · [b]I = [a · b]I .
(iii) −[a]I = [−a]I .

Proof. Clearly ≡I is reflexive on A and symmetric. Now suppose that a ≡I b ≡I c.
Thus a△b ∈ I and b△c ∈ I. Hence a · −c = a · b · −c+ a · −b · −c ≤ b△c+ a△b ∈ I. Hence
a · −c ∈ I. Similarly c · −a ∈ I, so a△c ∈ I; thus a ≡I c.

Suppose that a ≡I a′ and b ≡I b′. Then

(a+ b) · −(a′ + b′) = a · −a′ · −b′ + b · −a′ · −b′ ≤ a△a′ + b△b′ ∈ I.

So (a+ b) · −(a′ + b′) ∈ I. Similarly (a′ + b′) · −(a+ b) ∈ I, so (a+ b)△(a′ + b′) ∈ I. Hence
(a+ b) ≡I (a′ + b′). This shows that (i) is well-defined.

Similarly,

a · b · −(a′ · b′) = a · b · −a′ + a · b · −b′ ≤ a△a′ + b△b′ ∈ I,

so a ·b ·−(a′ ·b′) ∈ I. Similarly a′ ·b′ ·−(a ·b) ∈ I, so (a ·b)△(a′ ·b′) ∈ I, so [a ·b]I = [a′ ·b′]I ,
and (ii) is well-defined.

Also, (−a)△(−a′) = a△a′ ∈ I, so [−a]I = [−a′]I , and (iii) holds.
Now it is straightforward to check that (A/I,+, ·,−, [0]I, [1]I) is a BA.

Now the random forcing order on κ is ((A/I)\{[0]I},≤, [1]I), with A as in the above
material on measure, and I is the ideal of members of A of measure 0. We denote it by
ranκ. For each [a]I in ranκ we define θ([a]I) = θ(a). Clearly this definition is unambiguous.

Proposition 36.15. ranκ has ccc.

Proof. Suppose to the contrary that X ∈ [ranκ]ω1 is pairwise disjoint. Then X =
⋃

n∈ω{x ∈ X : θ(x) ≥ 1
n+1
}, so we can choose X ′ ∈ [X ]ω1 and n such that θ(x) ≥ 1

n+1
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for all x ∈ X ′. Write x = [ax]I for each x ∈ X ′. Let y : n + 2 → X ′ be one-one. For
each i < n + 2 let bi = ayi

∏

j<i−ayj . Then 〈bi : i < n + 2〉 is a system of pairwise

disjoint elements of A, and θ(bi) = θ(aji) ≥
1

n+1 for all i < n + 2. Hence θ(
∑

i<n+2 bi) =
∑

i<n+2 θ(bi) ≥
n+2
n+1 , contradiction.

It follows that forcing with ranκ preserves cofinalities and cardinals. If G is ranκ-generic
over a c.t.m. M , then for each α < κ one of the elements [U{(α,0)}]I , [U{(α,1)}]I is in G
since 〈[U{(α,0)}]I , [U{(α,1)}]I〉 is a maximal antichain. This gives a function f : κ → 2. Its
restriction to ω is a random real.

A BA A is σ-complete iff any countable subset of A has a sum.

Lemma 36.16. If A is a σ-complete BA satisfying ccc, then A is complete.

Proof. Let X be any subset of A; we want to show that it has a sum. By Zorn’s
lemma, let Y be a maximal set subject to the following conditions: Y consists of pairwise
disjoint elements, and for any y ∈ Y there is an x ∈ X such that y ≤ x. By ccc, Y is
countable, and so

∑
Y exists. We claim that

∑
Y is the least upper bound of X .

Suppose that x ∈ X and x 6≤
∑
Y . Then x ·−

∑
Y 6= 0, and Y ∪{x ·−

∑
Y } properly

contains Y and satisfies both of the conditions defining Y , contradiction. Hence x ≤
∑
Y .

So
∑
Y is an upper bound for X .

Suppose that z is any upper bound forX , but suppose that
∑
Y 6≤ z. Thus

∑
Y ·−z 6=

0, so by 2.2 there is a y ∈ Y such that y · −z 6= 0. Choose x ∈ X such that y ≤ x. Now
x ≤ z, so y · −z ≤ z, hence y · −z = 0, contradiction.

Lemma 36.17. A/I is complete.

Proof. By Proposition 36.15 and Lemma 36.16 it suffices to show that it is σ-complete.
So, suppose that X is a countable subset of A/I. We can write X = {[y]I : y ∈ Y } for
some countable subset Y of A. We claim that [

⋃
Y ]I is the least upper bound for X . For,

if x ∈ X , choose y ∈ Y such that x = [y]I . Then y ⊆
⋃
Y , so x ≤ [

⋃
Y ]I . Now suppose

that [z]I is any upper bound of X . Then [y]I ≤ [z]I for any y ∈ Y , so y\z ∈ I, i.e.,
θ(y\z) = 0, for any y ∈ Y . Hence

θ
(⋃

Y \z
)

≤
∑

y∈Y

θ(y\z) = 0;

so [
⋃
Y ]I ≤ [z]I , as desired.

Theorem 36.18. There is an isomorphism f of RO(ranκ) onto A/I such that f(i(a)) = a
for every a ∈ ranκ, where i is as in the definition of RO.

Proof. Define j : ranκ → A/I by setting j(a) = a for all a ∈ ranκ. Then the following
conditions are clear:

(1) j[ranκ] is dense in A/I. (In fact, j[ranκ] consists of all nonzero elements of A/I.)

(2) If a, b ∈ ranκ and a ≤ b, then j(a) ≤ j(b).
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(3) If a, b ∈ ranκ and a ⊥ b, then j(a) · j(b) = 0.

Hence our theorem follows from Theorem 13.22.

We now need the following general result about Boolean values.

Proposition 36.19. [[∃x ∈ Ǎϕ(x)]] =
∑

x∈A[[ϕ(x̌)]].

Proof. Let X = {[[ψ(x̌)]] : x ∈ A}. First we show that [[∃x ∈ Ǎϕ(x)]] is an upper
bound for X . In fact, if x ∈ A then [[x̌ ∈ Ǎ]] = 1 since x̌G = x ∈ A = ǍG for any generic
G, so that 1  x̌ ∈ Ǎ. Hence

[[ϕ(x̌)]] = [[x̌ ∈ Ǎ]] · [[ϕ(x̌)]] = [[x̌ ∈ Ǎ ∧ ϕ(x̌)]] ≤ [[∃x[x ∈ Ǎ ∧ ϕ(x)]]] = [[∃x ∈ Ǎϕ(x)]].

Now suppose that a is an upper bound for X , but [[∃x ∈ Ǎϕ(x)]] 6≤ a. Thus by definition,

(
∑

τ∈V P

[[τ ∈ Ǎ ∧ ϕ(τ)]]

)

· −a 6= 0,

so there is a τ ∈ V P such that [[τ ∈ Ǎ∧ϕ(τ)]] ·−a 6= 0. Hence
(∑

b∈A[[τ = b̌ ∧ ϕ(τ)]]
)
·−a 6=

0, so there is a b ∈ A such that [[τ = b̌ ∧ ϕ(τ)]] · −a 6= 0. But [[τ = b̌ ∧ ϕ(τ)]] ≤ [[ϕ(b̌)]], so
this is a contradiction.

Theorem 36.20. Suppose that M is a c.t.m. of ZFC, and A, I, ranκ are as above, all
in M . Suppose that G is ranκ-generic over M , and f ∈ ωω in M [G]. Then there is an
h ∈M ∩ ωω such that f(n) < h(n) for all n ∈ ω.

Proof. Let σ be a ranκ-name such that σG = f , and let p ∈ ranκ be such that
p  σ : ω → ω. We claim that

E
def
= {q ∈ ranκ : there is an h ∈ ωω such that q  ∀n ∈ ω(σ(n) < ȟ(n))}

is dense below p. Clearly this gives the conclusion of the theorem.
To prove this, take any r ≤ p; we want to find q ∈ E such that q ≤ r. Let k be the

isomorphism from RO(ranκ) to A/I given by Theorem 36.18. Now temporarily fix n ∈ ω.
Let i : ranκ → RO(ranκ) be the mapping from Chapter 9. Then by Proposition 36.19,

i(r) ≤ [[∃m ∈ ω(σ(ň) < m)]] =
∑

m∈ω

[[σ(ň) < m̌]],

Applying k, we get

(1) r ≤
∑

m∈ω

k([[σ(ň) < m̌]]).

Let r · k([[σ(ň) < m̌]]) = [am] for each m ∈ ω. Now clearly if m < p, then r  σ(ň) < m̌→
σ(ň) < p̌, so [am] ≤ [ap]. Let bm =

⋃

p≤m ap for each m ∈ ω. Then [am] = [bm] for each
m.
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(2)
∑

m∈ω[bm] =
[⋃

m∈ω bm
]
.

In fact,
[⋃

m∈ω bm
]

is clearly an upper bound for {[bm] : m ∈ ω}. If [c] is any upper bound,

then µ(bm\c) = 0 for each m, and hence θ
(⋃

m∈ω bm\c
)

= 0, so that
[⋃

m∈ω bm
]
≤ [c]. So

(2) holds.
Note that r =

[⋃

m∈ω bm
]
; so θ(r) = θ

(⋃

m∈ω bm
)
. By Proposition 36.5(iii) we get

θ(r) = sup{θ(bm) : m ∈ ω}. So we can choose m ∈ ω such that θ(bm) ≥ θ(r)− 1
2n+2 θ(r).

Let h(n) be the least such m. Thus

(3) θ(r\bh(n)) = θ(r)− θ(bh(n)) ≤
1

2n+2
θ(r).

Now

θ

(

r\
⋂

n∈ω

bh(n)

)

= θ

(
⋃

n∈ω

(r\bh(n))

)

≤
∑

n∈ω

1

2n+2
θ(r)

=
1

2
θ(r).

It follows that

θ

(
⋂

n∈ω

bh(n)

)

> 0.

Let q =
⋂

n∈ω bh(n). So [q] ∈ ranκ. We claim that [q] ≤ r and [q]  ∀n ∈ ω(σ(n) < ˇh(n)).
For, suppose that [q] ∈ G with G ranκ-generic over M , and suppose that n ∈ ω. Then [q] ≤
[bh(n) = [ah(n) ≤ r. and also [q] ≤ k([[σ(checkn) < ˇh(n)]]). Hence i([q]) ≤ [[σ(checkn) <

ˇh(n)]], hence [q]  σ(ň) < ˇh(n). Thus [q] ∈ E, as desired.

Corollary 36.21. Suppose that M is a c.t.m. of ZFC, and Pr is considered in M . Suppose
that G is Pr-generic over M . Then no f ∈ ωω in M [G] is a Cohen real.

Proof. By Theorem 36.3 and Theorem 36.20.

Thus we may say that adding a random real does not add a Cohen real.

Roitman, J. [79] Adding a random or a Cohen real. . . Fund. Math. 103 (1979), 47–60.

Sacks forcing

Let Seq be the set of all finite sequences of 0’s and 1’s. A perfect tree is a nonempty subset
T of Seq with the following properies:

(1) If t ∈ T and m < dmn(t), then t ↾ m ∈ T .

(2) For any t ∈ T there is an s ∈ T such that t ⊆ s and s⌢〈0〉, s⌢〈1〉 ∈ T .
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Thus Seq itself is a perfect tree. Sacks forcing is the collection Q of all perfect trees,
ordered by ⊆ (not by ⊇).

Note that an intersection of perfect trees does not have to be perfect. For example
(with ε1, ε2, . . . any members of 2):

p = {∅, 〈0〉, 〈0ε1〉, 〈0ε1ε2〉, . . .};

q = {∅, 〈1〉, 〈1ε1〉, 〈1ε1ε2〉, . . .}.

Also, one can have p, q perfect, p ∩ q not perfect, but r ⊆ p ∩ q for some perfect r:

p = {∅, 〈1〉, 〈1ε1〉, 〈1ε1ε2〉, . . .

〈0〉, 〈01〉, 〈01ε2〉, 〈01ε2ε3〉 . . .};

q = {∅, 〈1〉, 〈1ε1〉, 〈1, ε1ε2〉, . . .

〈0〉, 〈00〉, 〈00ε2〉, 〈00ε2ε3〉 . . .};

r = {∅, 〈1〉, 〈1ε1〉, 〈1, ε1ε2〉, . . .}.

Theorem 36.22. Suppose that M is a c.t.m. of ZFC. Consider Q within M , and let G
be Q-generic over M . Then the set

{s ∈ Seq : s ∈ p for all p ∈ G}

is a function from ω into 2.

Proof. For each n ∈ ω let

Dn = {p ∈ Q : there is an s ∈ Seq such that dmn(s) = n and s ⊆ t or t ⊆ s for all t ∈ p}.

Then Dn is dense: if q ∈ Q, choose any s ∈ q such that dmn(s) = n, and let p = {t ∈ q :
s ⊆ t or t ⊆ s}. Clearly p ∈ Dn and p ⊆ q.

Now for each n ∈ ω let p(n) be a member of G ∩Dn, and choose s(n) accordingly.

(1) If m < n, then s(m) ⊆ s(n).

In fact, choose r ∈ G such that r ⊆ p(m) ∩ p(n). Then s(m) ⊆ t and s(n) ⊆ t for all t ∈ r
with dmn(t) ≥ n, so s(m) ⊆ s(n).

(2) s(m) ∈ q for all q ∈ G.

In fact, let q ∈ G, and choose r ∈ G such that r ⊆ q and r ⊆ p(m). Take t ∈ r with
dmn(t) = m. then t = s(m) since r ⊆ p(m). Thus s(m) ∈ q since r ⊆ q.

(3) If t ∈ q for all q ∈ G, then t = s(m) for some m.

For, let dmn(t) = m. Since t ∈ p(m), we have t = s(m).
From (1)–(3) the conclusion of the theorem follows.

The function described in Theorem 36.19 is called a Sacks real.
If p ∈ Q, a member f of p is a branching point iff f⌢〈0〉, f⌢〈1〉 ∈ p.
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Sacks forcing does not satisfy ccc:

Proposition 36.23. There is a family of 2ω pairwise incompatible members of Q.

Proof. Let A be a family of 2ω infinite pairwise almost disjoint subsets of ω. With
each A ∈ A we define a sequence 〈PA,n : n ∈ ω〉 of subsets of Seq, by recursion:

PA,0 = {∅};

PA,n+1 =

{
{f⌢〈0〉 : f ∈ PA,n} if n /∈ A,
{f⌢〈0〉 : f ∈ PA,n} ∪ {f⌢〈1〉 : f ∈ PA,n} if n ∈ A.

Note that all members of PA,n have domain n. We set pA =
⋃

n∈ω PA,n. We claim that
pA is a perfect tree. Condition (1) is clear. For (2), suppose that f ∈ pA; say f ∈ PA,n.
Let m be the least member of A greater than n. If g extends f by adjoining 0’s from n to
m− 1, then g⌢〈0〉, g⌢〈1〉 ∈ pA, as desired in (2).

We claim that if A,B ∈ A and A 6= B, then pA and pB are incompatible. For,
suppose that q is a perfect tree and q ⊆ pA, pB. Now A ∩B is finite. Let m be an integer
greater than each member of A ∩ B. Let f be a branching point of q with dmn(f) ≥ m;
it exists by (2) in the definition of perfect tree. Let dmn(f) = n. Then f ∈ PA,n and
f⌢〈0〉, f⌢〈1〉 ∈ PA,n+1, so n ∈ A by construction. Similarly, n ∈ B, contradiction.

Proposition 36.24. Q is not ω1-closed.

Proof. For each n ∈ ω let

pn = {f ∈ Seq : f(i) = 0 for all i < n}.

Clearly pn is perfect, pn ⊆ pm if n > m, and
⋂

n∈ω Pn is {f} with f(i) = 0 for all i, so
that the descending sequence 〈pn : n ∈ ω〉 does not have any member of Q below it.

By 36.23 and 36.24, the methods of chapters 16 and 24 cannot be used to show that forcing
with Q preserves cardinals, even if we assume CH in the ground model. Nevertheless, we
will show that it does preserve cardinals. To do this we will prove a modified version of
ω1-closure.

If p is a perfect tree, an n-th branching point of p is a branching point f of p such that
there are exactly n branching points g such that g ⊆ f . Thus n > 0. For perfect trees p, q
and n a positive integer, we write p ≤n q iff p ⊆ q and every n-th branching point of q is
a branching point of p. Also we write p ≤0 q iff p ⊆ q.

Lemma 36.25. Suppose that p ⊆ q are perfect trees, and n ∈ ω. Then:
(i) If p ≤n q, then p ≤i q for every i < n.
(ii) If p ≤n q and f is an n-th branching point of q, then f is an n-th branching point

of p.
(iii) For each positive integer n there is an f ∈ p such that f is an n-th branching

point of q.
(iv) The following conditions are equivalent:
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(a) p ≤n q.
(b) For every f ∈ Seq, if f is an n-th branching point of q, then f⌢〈0〉, f⌢〈1〉 ∈ p.

(v) For each positive integer n there are exactly 2n−1 n-th branching points of a perfect
tree p.

(vi) If p and q are perfect trees, then so is p ∪ q.
(vii) If p and q are perfect trees, then {r : r is a perfect tree and r ⊆ p or r ⊆ q} is

dense below p ∪ q.

Proof. (i): Assume that p ≤n q, i < n, and f is an i-th branching point of q.
Then since q is perfect there are n-th branching points g, h of q such that f⌢〈0〉 ⊆ g and
f⌢〈1〉 ⊆ h. So g, h ∈ p, hence f ∈ p. This shows that p ≤i q.

(ii): Suppose that p ≤n q and f is an n-th branching point of q. Let r0, . . . , rn−1 be all
of the branching points g of q such that g ⊆ f . Then by (i), r0, . . . , rn−1 are all branching
points of p. Hence f is an n-th branching point of p.

(iii): Let f be an n-th branching point of p. Then it is an m-th branching point of q
for some m ≥ n. Let r be an n-th branching point of q below f . Then r ∈ p, as desired.
[But r might not be a branching point of p.]

(iv), (v), (vi): Immediate from the definitions.
(vii): Suppose that p, q, t are perfect trees and t ⊆ p ∪ q; we want to find a perfect

tree r ⊆ t such that r ⊆ p or r ⊆ q. If t ⊆ p ∩ q, then r = t works. Otherwise, there is

some member f of t which is not in both p and q; say f ∈ p\q. Then r
def
= {g ∈ t : g ⊆ f

or f ⊆ g} is a perfect tree with r ⊆ t and r ⊆ p.

Lemma 36.26. (Fusion lemma) If 〈pn : n ∈ ω〉 is a sequence of perfect trees and · · · ≤n

pn ≤n−1 · · · ≤2 p2 ≤1 p1 ≤0 p0, then q
def
=
⋂

n∈ω pn is a perfect tree, and q ≤n pn for all
n ∈ ω.

Proof. Let n be a positive integer, and let s be an n-th branching point of pn. If
n ≤ m, then pm ≤n pn, so s is an n-th branching point of pm; hence s, s⌢〈0〉, s⌢〈1〉 ∈ pm.
It follows that s, s⌢〈0〉, s⌢〈1〉 ∈ q, and s is a branching point of q. Thus we just need to
show that q is a perfect tree.

Clearly if t ∈ q and n < dmn(t), then t ↾ n ∈ q. Now suppose that s ∈ q; we want to
find a t ∈ q with s ≤ t and t is a branching point of q. Let n = dmn(s). Now s ∈ pn, and
pn has fewer than n elements less than s, so pn has an n-th branching point t ≥ s. By the
first paragraph, t ∈ q.

Let p be a perfect tree and s ∈ p. We define

p ↾ s = {t ∈ p : t ⊆ s or s ⊆ t}.

Clearly p ↾ s is still a perfect tree. Now for any positive integer n, let t0, . . . , t2n−1 be the
collection of all immediate successors of n-th branching points of p. Suppose that for each
i < 2n we have a perfect tree qi ≤ p ↾ ti. Then we define the amalgamation of {qi : i < 2n}
into p to be the set

⋃

i<2n qi.

Lemma 36.27. Under the above assumptions, the amalgamation r of {qi : i < 2n} into p
has the following properties:
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(i) r is a perfect tree.
(ii) r ≤n p.

Proof. (i): Suppose that f ∈ r, g ∈ Seq, and g ⊆ f . Say f ∈ qi with i < 2n. Then
g ∈ qi, so g ∈ r. Now suppose that f ∈ r; we want to find a branching point of r above f .
Say f ∈ qi. Let g be a branching point of qi with f ⊆ g. Clearly g is a branching point of
r.

(ii): Suppose that f is an n-th branching point of p. Then there exist i, j < 2n such
that f⌢〈0〉 = ti and f⌢〈1〉 = tj . So f⌢〈0〉 ∈ qi ⊆ r and f⌢〈1〉 = tj ∈ qj ⊆ r, and so f is
a branching point of r.

Lemma 36.28. Suppose that M is a c.t.m. of ZFC and we consider the Sacks partial
order Q within M . Suppose that B ∈M , τ ∈MQ, p ∈ Q, and p  τ : ω̌ → B̌. Then there
is a q ≤ p and a function F : ω → [B]<ω in M such that q  τ(ň) ∈ F̌n for every n ∈ ω.

Proof. We work entirely within M , except as indicated. We construct two sequences
〈qn : n ∈ ω〉 and 〈Fn : n ∈ ω〉 by recursion. Let q0 = p. Suppose that qn has been
defined; we define Fn and qn+1. Assume that qn ≤ p. Then qn  τ : α̌ → B̌, so
qn  ∃x ∈ B̌τ(ň) = x). Let t0, . . . , t2n−1 list all of the functions f⌢〈0〉 and f⌢〈1〉 such
that f is an n-th branching point of qn. Then for each i < 2n we have qn ↾ ti ⊆ qn, and
so qn ↾ ti  ∃x ∈ B̌τ(ň) = x). Hence there exist an ri ⊆ qn ↾ ti and a bi ∈ B such
that ri  τ(ň) = b̌i. Let qn+1 be the amalgamation of {ri : i < 2n} into qn, and let
Fn = {bi : i < 2n}. Thus qn+1 ≤n qn by 36.27. Moreover:

(1) qn+1  τ(ň) ∈ F̌n.

In fact, let G be Q-generic over M with qn+1 ∈ G. By 36.22(vii), there is an i such that
ri ∈ G. Since ri  τ(ň) = b̌i, it follows that τG(n) ∈ Fn, as desired in (1).

Now with (1) the construction is complete.
By the fusion lemma 36.26 we get s ≤n qn for each n. Hence the conclusion of the

lemma follows.

Theorem 36.29. If M is a c.t.m. of ZFC +CH and Q ∈M is the Sacks forcing partial
order, and if G is Q-generic over M , then cofinalities and cardinals are preserved in M [G].

Proof. Since |Q| ≤ 2ω = ω1 by CH, the poset Q satisfies the ω2-chain condition, and
so preserves cofinalities and cardinals ≥ ω2. Hence it suffices to show that ωM1 remains
regular in M [G]. Suppose not: then there is a function f : ω → ωM1 in M [G] such that
rng(f) is cofinal in ωM1 . Hence there is a name τ such that f = τG, and hence there is a
p ∈ G such that p  τ : ω̌ → ω̌M1 . By Lemma 36.28, choose q ≤ p and F : ω → [ωM1 ]<ω in
M such that q  τ(ň) ∈ F̌n for every n ∈ ω. Take β < ωM1 such that

⋃

n∈ω Fn < β. Now

q  ∃n ∈ ω(β̌ < τ(ň), so there exist an r ≤ q and an n ∈ ω such that r  β̌ < τ(ň). So we
have:

(2) r  τ(ň) ∈ F̌n;

(3)
⋃

n∈ω Fn < β;
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(4) r  β̌ < τ(ň).

These three conditions give the contradiction r  τ(ň) < τ(ň).

Baumgartner, J.; Laver, R. [79] Iterated perfect-set forcing. Ann. Math. Logic 17 (1979),
271–288.

Hechler MAD forcing

A family A of infinite subsets of ω is maximal almost disjoint (MAD) iff any two members
of A are almost disjoint, and A is maximal with this property. By Theorem 20.1, there
is a MAD family of size 2ω. (Apply Zorn’s lemma.)

Theorem 36.30. Every infinite MAD family of infinite subsets of ω is uncountable.

Proof. Suppose that A is a denumerable pairwise almost disjoint family of infinite
subsets of ω; we want to extend it. Write A = {An : n ∈ ω}, the An’s distinct. We
define 〈an : n ∈ ω〉 by recursion. Suppose that am has been defined for all m < n. Now
⋃

m<n(Am ∩ An) is finite, so we can choose

an ∈ An\

(

{am : m < n} ∪
⋃

m<n

(Am ∩ An)

)

.

Note that then an /∈ Am for any m < n. Let B = {an : n ∈ ω}. Then B is infinite, and
B ∩An ⊆ {am : m ≤ n}.

Also recall that Martin’s axiom implies that every MAD family has size 2ω; see Theorem
21.7. We now want to introduce a forcing which will make a MAD family of size ω1, with
¬CH.

The members of our partial order H will be certain pairs (p, q); we define (p, q) ∈ H

iff the following conditions hold:

(1) p is a function from a finite subset of ω1 into n2 for some n ∈ ω. We write n = np.

(2) q is a function with domain contained in [dmn(p)]2 and range contained in np.

(3) If {α, β} ∈ dmn(q) and q({α, β}) = m, then for every i with m ≤ i < np we have
(p(α))(i) = 0 or (p(β))(i) = 0.

Furthermore, for (p1, q1), (p2, q2) ∈ H we define (p1, q1) ≤ (p2, q2) iff the following condi-
tions hold:

(4) dmn(p1) ⊇ dmn(p2).

(5) p1(α) ⊇ p2(α) for all α ∈ dmn(p2).

(6) q1 ⊇ q2.

Note that (5) implies that np2 ≤ np1 .
The idea here is to produce almost disjoint sets aα for α < ω1; p(α) is the characteristic

function of aα ∩ np, and aα ∩ aβ ⊆ q({α, β}).
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Lemma 36.31. Suppose that (p3, q3) ≤ (p1, q1), (p2, q2). Then (p3, q1 ∪ q2) ∈ H, and
(p3, q3) ≤ (p3, q1 ∪ q2) ≤ (p1, q1), (p2, q2).

Proof. Condition (1) clearly holds for (p3, q1 ∪ q2), since it only involves p3. Clearly
q1 ∪ q2 is a relation with domain ⊆ [dmn(p1)]2 ∪ [dmn(p2)]2 ⊆ [dmn(p3)]2. To show that it
is a function, suppose that {α, β} ∈ dmn(q1) ∩ dmn(q2). Then q1({α, β}) = q3({α, β}) =
q2({α, β}). So q1 ∪ q2 is a function, and it clearly maps into max(np1 , np2) ≤ np3 . Hence
(2) holds for (p3, q1 ∪ q2). Finally, suppose that {α, β} ∈ dmn(q1 ∪ q2). By symmetry,
say {α, β} ∈ dmn(q1). Let q1({α, β}) = m, and suppose that m ≤ i < np3 . Then
q3({α, β}) = q1({α, β}) = m, so (p3(α))(i) = 0 or (p3(β))(i) = 0. So (3) holds. The final
inequalities are clear.

Lemma 36.32. H satisfies ccc.

Proof. Suppose that N is an uncountable subset of H; we want to find two compatible
members of N . Now 〈dmn(p) : (p, q) ∈ N〉 is an uncountable system of finite sets, so there
exist an uncountable N ′ ⊆ N and a finite subset H of ω1 such that 〈dmn(p) : (p, q) ∈ N ′〉
is a ∆-system with root H. Next,

N ′ =
⋃

(f,g)∈J

{(p, q) ∈ N ′ : p ↾ H = f and q ↾ [H]2 = g}, where

J = {(f, g) : f : H → ω, g is a function,

dmn(g) ⊆ [H]2, and rng(g) ⊆ ω}.

Since J is countable, let (f, g) ∈ J be such that N ′′ def
= {(p, q) ∈ N ′ : p ↾ H = f and

q ↾ [H]2 = g} is uncountable. Now we claim that any two members (p1, q1) and (p2, q2) of
N ′′ are compatible. Since p1 ↾ H = p2 ↾ H and dmn(p1)∩dmn(p2) = H, the relation p1∪p2

is a function. Say np1 ≤ np2 . We now define a function p3 with domain dmn(p1)∪dmn(p2).
Let α ∈ dmn(p1) ∪ dmn(p2). Then we define p3(α) : np2 → 2 by setting, for any i < np2 ,

(p3(α))(i) =

{
(p2(α))(i) if α ∈ dmn(p2),
(p1(α))(i) if α ∈ dmn(p1)\dmn(p2) and i < np1 ,
0 otherwise.

To check that (p3, q1∪q2) ∈ H, first note that (1) is clear. To show that q1∪q2 is a function,
suppose that {α, β} ∈ dmn(q1) ∩ dmn(q2). Then dmn(q1) ∩ dmn(q2) ⊆ [dmn(p1)]2 ∩
[dmn(p2)]2 = [H]2, and it follows that q1({α, β}) = q2({α, β}). Thus q1 ∪ q2 is a function.
Furthermore,

dmn(q1 ∪ q2) = dmn(q1) ∪ dmn(q2)

⊆ [dmn(p1)]2 ∪ [dmn(p2)]2

⊆ [dmn(p1) ∪ dmn(p2)]2

= [dmn(p3)]2.

The range of q1 ∪ q2 is clearly contained in np2 . So we have checked (2). For (3), suppose
that {α, β} ∈ dmn(q1 ∪ q2), (q1 ∪ q2)({α, β}) = m, and m ≤ i < np2 . We consider some
cases:
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Case 1. {α, β} ∈ dmn(q2). Then α, β ∈ dmn(p2), so p3(α) = p2(α) and p3(β) = p2(β).
Hence (p3(α))(i) = 0 or (p3(β))(i) = 0, as desired.

Case 2. {α, β} ∈ dmn(q1)\dmn(q2) and i < np1 . Thus α, β ∈ dmn(p1). If α ∈
dmn(p2), then p1(α) = p2(α), and so (p3(α))(i) = (p1(α))(i). If α /∈ dmn(p2), still
(p3(α))(i) = (p1(α))(i). Similarly for β, so the desired conclusion follows.

Case 3. {α, β} ∈ dmn(q1)\dmn(q2) and np1 ≤ i. Thus again α, β ∈ dmn(p1). If one
of α, β is not in dmn(p2), it follows that one of (p3(α))(i) or (p3(β))(i) is 0, as desired.
Suppose that both are in dmn(p2). Then {α, β} ⊆ dmn(p1) ∩ dmn(p2) = H, and hence
{α, β} ∈ dmn(q2), contradiction.

Theorem 36.33. Let M be a c.t.m. of ZFC, and consider H in M . Let G be H-generic
over M . Then cofinalities and cardinals are preserved in M [G], and in M [G] there is a
MAD family of size ω1.

Proof. Cofinalities and cardinals are preserved by 36.32. For each α < ω1, let

xα =
⋃

{p(α) : (p, q) ∈ G for some q, and α ∈ dmn(p)}.

We claim that xα is a function. For, suppose that (a, b), (a, c) ∈ xα. By the definition,
choose (p1, q1), (p2, q2) ∈ G such that α ∈ dmn(p1), α ∈ dmn(p2), (a, b) ∈ p1(α), and
(a, c) ∈ p2(α). Then choose (p3, q3) ∈ G such that (p3, q3) ≤ (p1, q1), (p2, q2). By (4) in the
definition of H we have α ∈ dmn(p3), and by (5) we have (a, b), (a, c) ∈ p3(α), so a = c.

Next we claim that in fact xα has domain ω. (Its domain is clearly a subset of ω.)
For, take any m ∈ ω. It suffices to show that the set

Dαm
def
= {(p, q) ∈ H : α ∈ dmn(p) and m ∈ dmn(p(α))}

is dense. So, suppose that (r, s) ∈ H. If α ∈ dmn(r), let t = r. Suppose that α /∈ dmn(r).
Extend r to t by adding the ordered pair (α, 〈0 : i < nr〉). Clearly (t, s) ∈ H and
(t, s) ≤ (r, s). If m < nt, then (t, s) ∈ Dαm, as desired. Suppose that nt ≤ m. We now
define

p = {(β, g) : β ∈ dmn(t), g ∈ m+12, t(β) ⊆ g, and

g(i) = 0 for all i ∈ [nt, m]}.

Clearly (p, s) ∈H , in fact (p, s) ∈ Dαm, and (p, s) ≤ (t, s) ≤ (r, s), as desired.
So Dαm is dense, and hence each xα is a function mapping ω into 2. We define

aα = {m ∈ ω : xα(m) = 1}. We claim that 〈aα : α < ω1 is our desired MAD family.
Now we show that each aα is infinite. For each m ∈ ω let

Em = {(p, q) ∈ H : α ∈ dmn(p), m < np, and there is

an i ∈ [m,np) such that (p(α))(i) = 1}.

Clearly in order to show that aα is infinite it suffices to show that each set Em is dense.
So, suppose that (r, s) ∈ H. First choose (t, u) ≤ (r, s) with (t, u) ∈ Dα0. This is done just
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to make sure that α is in the domain of t. Let k be the maximum of nt + 1 and m + 1.
Define the function p as follows. dmn(p) = dmn(t). For any γ ∈ dmn(t) and any i < k, let

(p(γ))(i) =







(t(γ))(i) if i < nt,
0 if nt ≤ i and γ 6= α,
1 if nt ≤ i and γ = α.

It is easy to check that (p, u) ∈ H, in fact (p, u) ∈ Em, and (p, u) ≤ (r, s), as desired. So
each aα is infinite.

Next we show that distinct aα, aβ are almost disjoint. Suppose that α, β < ω1 with
α 6= β. Since Dα0 and Dβ0 are dense, there are (p1, q1), (p2, q2) ∈ G with α ∈ dmn(p1)
and β ∈ dmn(p2). Choose (p3, q3) ∈ G such that (p3, q3) ≤ (p1, q1), (p2, q2). Thus α, β ∈
dmn(p3). Next we claim:

F
def
= {(r, s) : {α, β} ∈ dmn(s)}

is dense below (p3, q3). In fact, suppose that (t, u) ≤ (p3, q3). We may assume that {α, β} /∈
dmn(u). Let dmn(r) = dmn(t), and for any γ ∈ dmn(r) let r(γ) be the function with
domain nt+1 such that t(γ) ⊆ r(γ) and (r(γ))(nt) = 0. Let dmn(s) = dmn(u)∪{{α, β}},
with u ⊆ s and s({α, β}) = nt. It is easily checked that (r, s) ∈ H, in fact (r, s) ∈ F , and
(r, s) ≤ (t, u). So, as claimed, F is dense below (p3, q3). Choose (p4, q4) ∈ F ∩G.

We claim that aα ∩ aβ ⊆ q4({α, β}). To prove this, assume that m ∈ aα ∩ aβ , but
suppose that q4({α, β}) ≤ m. Thus xα(m) = 1 = xβ(m), so there are (e, b), (c, d) ∈ G such
that α ∈ dmn(e), m ∈ dmn(e(α)), (e(α))(m) = 1, and β ∈ dmn(c), m ∈ dmn(c(β)),
and (c(β))(m) = 1. Choose (p5, q5) ∈ G with (p5, q5) ≤ (p4, q4), (a, b), (c, d). Then
{α, β} ∈ dmn(q5), q5({α, β}) = q4({α, β}) ≤ m < np5 , (p5(α))(m) = (e(α))(m) = 1,
and (p5(β))(m) = (c(β))(m) = 1, contradiction. So we have shown that 〈aα : α < ω1〉 is
an almost disjoint family.

To show that 〈aα : α < ω1〉 is MAD, suppose to the contrary that b is an infinite
subset of ω such that b ∩ aα is finite for all α < ω1. Let σ be a name such that σG = b.
For each α < ω1 let

τα = {(̌i, (p, q)) : i ∈ ω, (p, q) ∈ H, α ∈ dmn(p),

i ∈ dmn(p(α)), and (p(α))(i) = 1}.

Cleary ταG = aα. For each n ∈ ω let An be maximal subject to the following conditions:

(1) An is a collection of pairwise incompatible members of H.

(2) For each (p, q) ∈ An, (p, q)  ň ∈ σ or (p, q)  ň /∈ σ.

Then

(3) An is maximal pairwise incompatible.

In fact, suppose that (r, s) ⊥ (p, q) for all (p, q) ∈ An. Now (r, s)  ň ∈ σ ∨ ň /∈ σ, so
there is a (t, u) ≤ (r, s) such that (t, u)  ň ∈ σ or (t, u)  ň /∈ σ. Then An ∪ {(t, u)} still
satisfies (1) and (2), and (t, u) /∈ An, contradiction.
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Now choose
α ∈ ω1\

⋃

n∈ω,
(p,q)∈An

dmn(p).

Let m ∈ ω be such that b ∩ aα ⊆ m. Choose (p1, q1) ∈ G such that (p1, q1)  σ ∩ τα ⊆ m̌.
Using Dα0, we may assume that α ∈ dmn(p1). Choose n ∈ b with n > m and n ≥ np1 .
Then take (p2, q2) ∈ G∩An. Then (p2, q2)  ň ∈ σ, since n ∈ b = σG. Choose (p3, q3) ∈ G
with (p3, q3) ≤ (p1, q1), (p2, q2). Then by 36.32 we have (p3, q1∪q2) ∈ H and (p3, q1∪q2) ≤
(p1, q1), (p2, q2).

Now choose k > max(np3 , n), and define p4 as follows. The domain of p4 is dmn(p3).
For each β ∈ dmn(p3) we define p4(β) : k → 2 by setting, for each i < k,

(p4(β))(i) =







(p3(β))(i) if i < np3 ,
0 if np3 ≤ i and β 6= α,
0 if np3 ≤ i, β = α, and i 6= n,
1 if β = α and i = n.

We check that (p4, q1 ∪ q2) ∈ H. Conditions (1) and (2) are clear. For (3), suppose that
{β, γ} ∈ dmn(q1 ∪ q2), and (q1 ∪ q2)({β, γ}) ≤ i < np4 . Remember that np4 is k. If
i < np3 , then the desired conclusion follows since (p3, q1 ∪ q2) ∈ H. If np3 ≤ i, then the
desired conclusion follows since at least one of β, γ is different from α. Hence, indeed,
(p4, q1 ∪ q2) ∈ H.

Clearly (p4, q1 ∪ q2) ≤ (p2, q2), and so (p4, q1 ∪ q2)  ň ∈ σ. It is also clear that
(p4, q1 ∪ q2) ≤ (p1, q1), so (p4, q1 ∪ q2)  σ ∩ τα ⊆ m̌. Since m < n, it follows that
(p4, q1∪q2)  ň /∈ τα. But (ň, (p4, q1∪q2)) is clearly a member of τα, and hence (p4, q1∪q2) 
ň ∈ τα, contradiction.

Miller, A. [03] A MAD Q-set. Fund. Math. 178 (2003), 271–281.

Collapsing to ω1

Theorem 36.34. Let M be a c.t.m. of ZFC, and in M let λ be an infinite cardinal, and
set κ = λ+ in M . Let P be Fn(ω, λ, ω), and let G be P -generic over M . Then cardinals

≥ κ are preserved in going to M [G], but ω
M [G]
1 = κ.

Thus we may say that all cardinals µ such that ω < µ < κ become countable ordinals in
M [G].

Proof. Let g =
⋃
G. Clearly g is a function with domain contained in ω and range

contained in λ. We claim that actually its domain is ω and its range is λ. For, let m ∈ ω
and α ∈ λ. Let

D = {f ∈ P : m ∈ dmn(f) and α ∈ rng(f)}.

Clearly D is dense. Hence m ∈ dmn(g) and α ∈ rng(g), as desired. It follows that in
M [G], |λ| = ω, and so the same is true for every ordinal α such that ω ≤ α ≤ λ.

Now we can finish the proof by showing in M that P has the κ-cc. Let X ⊆ P with
|X | = κ. Then 〈dmn(f) : f ∈ X〉 is a system of κ many finite sets, so by the ∆-system
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lemma 10.1 with κ, λ replaced by ω, κ, there is a N ∈ [X ]κ such that 〈dmn(f) : f ∈M〉 is
a ∆-system, say with root r. Since |rλ| ≤ λ < κ, there are two members f, g of M such
that f ↾ r = g ↾ r. So f and g are compatible, as desired.

We now want to do the same thing for regular limit cardinals κ. We introduce the Lévy
collapsing order:

Lvκ = {p : p is a finite function, dmn(p) ⊆ κ× ω, and

for all (α, n) ∈ dmn(p), p(α, n) ∈ α}.

Again this set is ordered by ⊇.

Lemma 36.35. For κ regular uncountable, Lvκ has the κ-cc.

Proof. Very similar to part of the proof of 36.34.

Theorem 36.36. Let M be a c.t.m. of ZFC, and suppose that in M κ is regular and
uncountable. Let G be Lvκ-generic over M . Then cardinals ≥ κ are preserved in M [G],

and ω
M [G]
1 = κ.

Proof. Cardinals ≥ κ are preserved by 36.35. Suppose that 0 < α < κ; we will find a
function mapping ω onto α in M [G]. Let g =

⋃
G. Clearly G is a function. Now for each

α < κ, and m ∈ ω let
Dαm = {p ∈ Lvκ : (α,m) ∈ dmn(p)}.

Clearly Dαm is dense, so (α,m) ∈ dmn(g). Thus dmn(g) = κ × ω. Now suppose that
α < κ and ξ < α. Let

Eαξ = {p ∈ Lvκ : there is an m ∈ ω such that (α,m) ∈ dmn(p) and p(α,m) = ξ}.

We claim that Eαξ is dense. For, suppose that α < κ and ξ < α. Take any q ∈ Lvκ.
Choose m ∈ ω such that (α,m) /∈ dmn(q), and let p = q ∪ {((α,m), ξ)}. Clearly p ∈ Eαξ,
as desired.

It follows that 〈g(α,m) : m ∈ ω〉 maps ω onto α.
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37. More examples of iterated forcing

We give some more examples of iterated forcing. These are concerned with a certain partial
order of functions. For any regular cardinal κ we define

f <κ g iff f, g ∈ κκ and there is an α < κ such that f(β) < g(β) for all β ∈ [α, κ).

This is clearly a partial order on κκ. We say that F ⊆ κκ is almost unbounded iff there is
no g ∈ κκ such that f <κ g for all f ∈ F . Clearly κκ itself is almost unbounded; it has
size 2κ.

Theorem 37.1. Let κ be a regular cardinal. Then any almost unbounded subset of κκ has
size at least κ+.

Proof. Let F ⊆ κκ have size ≤ κ; we want to find an almost bound for it. We may
assume that F 6= ∅. Write F = {fα : α < κ}, possibly with repetitions. (Since maybe
|F | < κ.) Define g ∈ κκ by setting, for each α < κ,

g(α) =

(

sup
β≤α

fβ(α)

)

+ 1.

If β < κ, then {α < κ : g(α) ≤ fβ(α)} ⊆ β, and so fβ <κ g.

Thus under GCH the size of almost unbounded sets has been determined. We are interested
in what happens in the absence of GCH, more specifically, under ¬CH.

Theorem 37.2. Suppose that κ is an infinite cardinal and MA(κ) holds. Suppose that
F ⊆ ωω and |F | = κ. Then there is a g ∈ ωω such that f <ω g for all f ∈ F .

Proof. Let P = {(p, F ) : p ∈ Fn(ω, ω, ω) and F ∈ [F ]<ω}. We partially order P by
setting (p, F ) ≤ (q, G) iff the following conditions hold:

(1) p ⊇ q.

(2) F ⊇ G.

(3) For all f ∈ G and all n ∈ (dmn(p)\dmn(q)), p(n) > f(n).

To check that this really is a partial order, suppose that (p, F ) ≤ (q, G) ≤ (h,H). Obvi-
ously p ⊇ h and F ⊇ H. Suppose that f ∈ H and n ∈ (dmn(p)\dmn(h). If n ∈ dmn(q),
then p(n) = q(n) > f(n). If n /∈ dmn(q), then p(n) > f(n) since f ∈ G.

To show that P has ccc, suppose that X ⊆ P is uncountable. Since Fn(ω, ω, ω) is
countable, there are (p, F ), (q, G) ∈ X with p = q. Then (p, F ∪G) ∈ P and (p, F ∪G) ≤
(p, F ), (p,G), as desired.

For each h ∈ F let Dh = {(p, F ) ∈ P : h ∈ F}. Then Dh is dense. In fact, let
(q, G) ∈ P be given. Then (q, G ∪ {h}) ∈ P and (q, G ∪ {h}) ≤ (q, G), as desired.

For each n ∈ ω let En = {(p, F ) : n ∈ dmn(f)}. Then En is dense. In fact, let
(q, G) ∈ P be given. We may assume that n /∈ dmn(q). Choose m > f(n) for each f ∈ G,
and let p = q ∪ {(n,m)}. Clearly (p,G) ∈ En and (p,G) ≤ (q, G), as desired.
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Now we apply MA(κ) to get a filter G on P intersecting all of these dense sets. Since G

is a filter, the relation g
def
=
⋃

(p,F )∈G p is a function. Since G∩En 6= ∅ for each n ∈ ω, g has

domain ω. Let f ∈ F . Choose (p, F ) ∈ G ∩Df . Let m ∈ ω be greater than each member
of dmn(p). We claim that f(n) < g(n) for all n ≥ m. For, suppose that n ≥ m. Choose
(q,H) ∈ G such that n ∈ dmn(q), and choose (r,K) ∈ G such that (r,K) ≤ (p, F ), (q,H).
Then f ∈ K since F ⊆ K. Also, n ∈ dmn(r) since q ⊆ r. So n ∈ dmn(r)\dmn(p). Hence
from (r,K) ≤ (p, F ) we get g(n) = r(n) > f(n).

As another illustration of iterated forcing, we now show that it is relatively consistent that
every almost unbounded subset of ωω has size 2ω, while ¬MA holds. This follows from the
following theorem, using the fact that MA implies that 2κ = 2ω for every infinite cardinal
κ < 2ω.

Theorem 37.3. There is a c.t.m. of ZFC with the following properties:
(i) 2ω = ω2.
(ii) 2ω1 = ω3.
(iii) Every almost unbounded set of functions from ω to ω has size 2ω.

Proof. Applying Theorem 24.15 to a model N of GCH, with λ = ω1 and κ = ω3, we
get a c.t.m. M of ZFC such that in M , 2ω = ω1 and 2ω1 = ω3. We are going to iterate
within M , and iterate ω2 times. At each successor step we will introduce a function almost
greater than each member of ωω at that stage. In the end, any subset of ωω of size less
than ω2 appears at an earlier stage, and is almost bounded.

(1) If Q is a ccc forcing order in M of size ≤ ω1, then there are at most ω1 nice Q-names
for subsets of (ω × ω)̌ .

To prove (1), recall that a nice Q-name for a subset of (ω × ω)̌ is a set of the form

⋃

{{ǎ} ×Aα : a ∈ ω × ω}

where for each a ∈ ω×ω, Aa is an antichain in Q. Now by ccc the number of antichains in
Q is at most

∑

µ<ω1
|Q|µ ≤ ω1 by CH in M . So the number of sets of the indicated form

is at most ωω1 = ω1. Hence (1) holds.

Now we are going to define by recursion functions P, π, and σ with domain ω2.
Let P0 be the trivial partial order ({0}, 0, 0).
Now suppose that Pα has been defined, so that it is a ccc forcing order in M of size

at most ω1. We now define πα, σα, and Pα+1. By (1), the set of all nice Pα-names for
subsets of (ω × ω)̌ has size at most ω1. We let {ταγ : γ < ω1} enumerate all of them.

(2) For every γ < ω1 there is a Pα-name σαγ such that

1Pα Pα σ
α
γ : ω̌ → ω̌ and [ταγ : ω̌ → ω̌ implies that σαγ = ταγ ].

In fact, clearly

1Pα Pα ∃W [W : ω̌ → ω̌ and [ταγ : ω̌ → ω̌ implies that W = ταγ ]],
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and so (2) follows from the maximal principle.
This defines σα.
Now for each H ∈ [ω1]<ω we define ραH = {(σαγ , 1Pα) : γ ∈ H}. So ραH is a Pα-name.
We now define

π0
α = {(op(p̌, ραH), 1) : p ∈ Fn(ω, ω, ω) and H ∈ [ω1]<ω}.

Let G be Pα-generic over M . Then

(3) (π0
α)G = {(p,K) : p ∈ Fn(ω, ω, ω) and K ∈ [ωω]<ω}.

In fact, first suppose that x ∈ (π0
α)G. Then there exist p ∈ Fn(ω, ω, ω) and H ∈ [ω1]<ω

such that x = (p, (ραH)G). Now (ραH)G = {(σαγ )G : γ ∈ H}, and (σαγ )G ∈ ωω for each γ by
(2). Thus x is in the right side of (3).

Second, suppose that p ∈ Fn(ω, ω, ω) and K ∈ [ωω]<ω. For each f ∈ K there is a
γ(f) < ω1 such that f = (ταγ(f))G. Let H = {γ(f) : f ∈ K}. So H is a finite subset of ω1,

and hence is in N . By (1) we have f = (σαγ(f))G for each f ∈ K. Now (ραH)G = K, and so

(p,K) ∈ (π0
α)G, as desired. So (3) holds.

Next, we define

π1
α = {(op(op(p̌, ραH), op(p̌′, ραH′)), q) : p, p′ ∈ fin(ω, ω),

H,H ′ ∈ [ω1]<ω, p′ ⊆ p, H ′ ⊆ H, q ∈ Pα, and for all γ ∈ H ′

and all n ∈ dmn(p)\dmn(p′), q Pα σ
α
γ (ň) < (p(n))ˇ}.

Again, suppose that G is Pα-generic over M . Then

(π1
α)G = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0

α)G, p
′ ⊆ p, K ′ ⊆ K,(4)

and for all f ∈ K ′ and all n ∈ dmn(p)\dmn(p′), f(n) < p(n)}.

To prove this, first suppose that x ∈ (π1
α)G. Then there are q ∈ G, p, p′ ∈ Fn(ω, ω, ω)

and H,H ′ ∈ [ω1]<ω such that x = ((p, (ραH)G), (p′, (ραH′))G), p′ ⊆ p, H ′ ⊆ H, and for all
γ ∈ H ′ and all n ∈ dmn(p)\dmn(p′), q  σαγ (ň) < (p(n))̌ . Then with K = (ραH)G and
K ′ = (ραH′))G, the desired conditions clearly hold.

Second, suppose that p, p′, K,K ′ exist as on the right side of (4). Then by the def-
inition of π0

α, there are H,H ′ ∈ [ω1]<ω such that K = (ραH)G and K ′ = (ραH′)G. Then
K ′ = {(σαγ )G : γ ∈ H ′}. Hence for every γ ∈ H ′ and all n ∈ dmn(p)\dmn(p′) we have
(σαγ )G(n) < p(n). Since H ′ and dmn(p)\dmn(p′) are finite, there is a q ∈ G such that for
every γ ∈ H ′ and all n ∈ dmn(p)\dmn(p′) we have q Pα (σαγ )(ň) < p(n)̌ . It follows now
that ((p,K), (p′, K ′)) ∈ (p1

α)G, as desired.
Next, we let π2

α = {(op(0, 0), 1Pα)}. Then for any generic G, (π2
α)G = (0, 0). Finally,

let πα = op(op(π0
α, π

1
α), π2

α). This finishes the definition of πα.
By the argument in the proof of 37.2 we have

(5) 1Pα Pα πα is ω̌1 − cc.
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Now Pα+1 is determined by (I7) and (I8).
At limit stages we take direct limits, so that ccc is maintained. So the construction is

finished, and Pκ is ccc.
Let G be Pκ-generic over M .

(6) In N [G], if F ⊆ ωω and |F | < ω2, then there is a g ∈ ωω such that f <ω g for all
f ∈ F .

For, let F = {fξ : ξ < ω1}, possibly with repetitions. Let

F
′ = {(ξ, i, j) : ξ < ω1, i, j ∈ ω, and fξ(i) = j}.

Now there is an α < ω2 such that F ′ ∈ N [i−1
αω2

[G]], and hence also F ∈ N [i−1
αω2

[G]]. For

brevity write Gξ = i−1
ξω2

[G] for every ξ < ω2. Let

Hα = {ηGα : η ∈ dmn(π0
α) and p⌢〈η〉 ∈ Gα+1 for some p}.

Let Qα = (πα)Gα . Thus by (3) and (4),

Qα = {(p,K) : p ∈ fin(ω, ω) and K ∈ [ωω]<ω};(7)

≤Qα = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0
α)G, p

′ ⊆ p, K ′ ⊆ K,(8)

and for all f ∈ K ′ and all n ∈ dmn(p)\dmn(p′), f(n) < p(n)}.

Hence Gα is P-generic over N , Hα ∈ N [Gα+1], and Hα is Qα-generic over N [Gα]. Let
g =

⋃

(p,F )∈Hα
p. Clearly g is a function. For each m ∈ ω, let

Em = {(p,K) :∈ Qα : m ∈ dmn(p)}.

Then Em is dense. (See the proof of 37.2.) It follows that g ∈ ωω.

Now take any f ∈ ωω (in N [Gα]). The set D
def
= {(p,K) ∈ Qα : f ∈ K} is dense, by

the proof of 37.2. Hence we can choose (p,K) ∈ D ∩Hα. We claim that f(m) < g(m) for
all m such that m > n for each n ∈ dmn(p). For, suppose that such an m is given. Choose
(p′, K ′) ∈ Em ∩Hα, and then choose (p′′, K ′′) ∈ Hα with (p′′, K ′′) ≤ (p,K), (p′, K ′). Now
m ∈ dmn(p′) ⊆ dmn(p′′), and f ∈ K. so from (p′′, K ′′) ≤ (p,K) and m /∈ dmn(p) we get
f(m) < p′′(m) = g(m), as desired. This finishes the proof of (6).

By (6) we have ω2 ≤ 2ω.

(9) |Pα| ≤ ω1 for all α < ω2.

We prove this by induction on α. It is clear for α = 0. Assume that |Pα| ≤ ω1. Clearly
|π0
α| = ω1, so by (I7), |Pα+1| ≤ ω1. Suppose that α is limit, and |Pβ | ≤ ω1 for all β < α.

Since Pα is the direct limit of previous Pβs, clearly |Pα| ≤ ω1.

(10) |Pω2
| ≤ ω2.

This is clear from (8), since Pω2
is the direct limit of earlier Pβs.
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Now by Proposition 24.3, replacing κ, λ, µ there by ω2, ω1, ω, we get 2ω ≤ ω2. So by
the above, 2ω = ω2 in N [G]. By Proposition 24.3, replacing κ, λ, µ there by ω2, ω1, ω1, we
get 2ω1 ≤ ω3. Since 2ω1 = ω3 in N , it follows that 2ω1 = ω3 in N [G].

We want to generalize 37.3 to higher cardinals. This requires some preparation.

Lemma 37.4. Suppose that M is a c.t.m. of ZFC, and in M θ is a regular cardinal,
2<θ = θ, and 2θ = θ+. We define a partial order P in M as follows:

P = {(p, F ) : p ∈ Fn(θ, θ, θ), F ∈
[
θθ
]<θ
}

(p, F ) ≤ (q, G) iff q ⊆ p, G ⊆ F, and ∀f ∈ G∀β ∈ dmn(p)\dmn(g)(p(β) > f(β));

1P = (0, 0).

Then the following conditions hold.
(i) |P | ≤ θ+.
(ii) P is θ-closed.
(iii) P has the θ+-cc.
(iv) P preserves cofinalities and cardinals.
(v) If G is P-generic over M , then there is a function g ∈ θθ in M [G] such that f <θ g

for all f ∈ (θθ)M .

Proof. Clearly (i) holds.
P satisfies the θ+-c.c.: Suppose that B ⊆ P with |B| ≥ θ+. Then since |Fn(θ, θ, θ)| =

θ, wlog there is a q such that p = q for all (p, F ) ∈ B, and so θ+-c.c. is clear.

P is θ-closed: Suppose that 〈(pα, Fα) : α < β〉 is decreasing, with β < θ. Let q =
⋃

α<β pα
and G =

⋃

α<β Fα. Suppose that α < β; we claim that (q, G) ≤ (pα, Fα). Suppose that
f ∈ Fα and δ ∈ dmn(q)\dmn(pα). Then there is a γ < β such that δ ∈ dmn(pγ). We may
assume that α < γ. Hence (pγ , Fγ) ≤ (pα, Fα), so q(δ) = pγ(δ) > f(δ), as desired.

Now it follows that (iv) holds.
Now suppose that G is P-generic over M . Define

g =
⋃

(p,F )∈G

p.

Clearly g is a function with domain and range included in θ. To show that g has domain
θ, take any α < θ. Let D = {(p, F ) : α ∈ dmn(p)}. Then D is dense. In fact, suppose
that (q,H) ∈ P. Wlog α /∈ dmn(q). Let p be the extension of g by adding α to its domain
and defining p(α) to be any ordinal less than θ which is greater than each f(α) for f ∈ H.
Clearly (p,H) ≤ (q,H) and (p,H) ∈ D. So g has domain θ.

Finally, we claim that f <∗ g for all f ∈ θθ∩M . In fact, clearly E
def
= {(p, F ) ∈ P : f ∈

F} is dense, and so we can choose (p, F ) ∈ E∩G. Take α < θ such that sup(dmn(p)) < α.
Take any β ∈ (α, θ). Choose (q,H) such that β ∈ dmn(q). Then choose (r,K) ∈ G such
that (r,K) ≤ (p, F ), (q,H). Then β ∈ dmn(r)\dmn(p), and f ∈ F , so g(β) = r(β) > f(β).
This shows that f <∗ g.
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If π is a P-name for a p.o., then we say that π is full for ↓θ-sequences iff the following
conditions (a)–(d) imply condition (e):

(a) p ∈ P.

(b) α < θ.

(c) ρξ ∈ dmn(π0) for each ξ < α.

(d) for all ξ, η < α, if ξ < η, then p  (ρξ ∈ π0) ∧ (ρη ∈ π0) ∧ (ρη ≤ ρξ).

(e) There is a σ ∈ dmn(π0) such that p  σ ∈ π and p  σ ≤ ρξ for each ξ < α.

Lemma 37.5. Let M be a c.t.m. of ZFC, and θ an infinite cardinal in M . Let I be
the ideal in P(θ) consisting of all sets of size less than θ. In M , let (P, π) be an α-stage
iterated forcing construction with supports in I (Kunen’s sense). Suppose that for each
ξ < α, the Pξ-name πξ is full for ↓θ-sequences. Then Pα is θ-closed.

Proof. Let 〈pν : ν < σ〉 be a sequence of elements of Pα such that pν ≤ pµ if
µ < ν < σ, and σ < θ. We will define pσ = 〈pσξ : ξ < α〉 by recursion so that the following
condition holds:

For all ξ < α, pσ ↾ ξ = 〈pση : η < ξ〉 ∈ Pξ and ∀µ < σ(pσ ↾ ξ ≤ pµ ↾ ξ) and

supp(pσ) =
⋃

ν<σ

supp(pν).

The induction step to a limit ordinal ξ is clear, as is the case ξ = 0. Now we define pσξ ,

given pσ ↾ ξ. By fullness we get ρσξ ∈ dmn(π0) such that

pσ ↾ ξ  ρσξ ∈ π and pσ ↾ ξ  ρσξ ≤ ρ
σ
η for each η < ξ.

Clearly pσ is as desired.

Here is our generalization of 37.3.

Theorem 37.6. Let M be a c.t.m. of GCH, and let θ be an uncountable regular cardinal
in M . Then there is a generic extension N of M preserving cofinalities and cardinals such
that in N the following hold:

(i) 2θ = θ++.

(ii) 2(θ+) = θ+++.
(iii) Every subset of θθ of size less than 2θ is almost unbounded.

Proof. First we apply Corollary 24.16 with λ = θ+ and κ = θ+++ to get a generic
extension M ′ of M preserving cofinalities and cardinals in which 2<θ = θ, 2θ = θ+, and
2θ

+

= θ+++.
We are going to iterate within M ′, and iterate θ++ times. At each successor step we

will introduce a function almost greater than each member of θθ at that stage. In the end,
any subset of θθ of size less than θ++ appears at an earlier stage, and is almost bounded.
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(1) If Q is a θ+-cc forcing order in M ′ of size less ≤ θ+, then there are at most θ+ nice
Q-names for subsets of (θ × θ)̌ .

To prove (1), recall that a nice Q-name for a subset of (θ × θ)̌ is a set of the form

⋃

{{ǎ} ×Aα : a ∈ θ × θ}

where for each a ∈ θ× θ, Aa is an antichain in Q. Now by θ+-cc, the number of antichains
in Q is at most

∑

µ<θ+ |Q|
µ ≤ θ+ by 2θ = θ+. So the number of sets of the indicated form

is at most (θ+)θ = θ+. Hence (1) holds.

Now we are going to define by recursion functions P, π, and σ with domain θ++.
Let P0 be the trivial partial order ({0}, 0, 0).
Now suppose that Pα has been defined, so that it is a θ+-cc forcing order in M ′ of

size at most θ+, it is θ-closed, and every element has support of size less than θ. Also we
assume that πξ has been defined for every ξ < α so that πξ is a Pξ-name for a forcing
order, and it is full for ↓θ-sequences. We now define πα, σα, and Pα+1. By (1), the set
of all nice Pα-names for subsets of (θ × θ)̌ has size at most θ+. We let {ταγ : γ < θ+}
enumerate all of them.

(2) For every γ < θ1 there is a Pα-name σαγ such that

1Pα Pα σ
α
γ : θ̌ → θ̌ and [ταγ : θ̌ → θ̌ implies that σαγ = ταγ ].

In fact, clearly

1Pα Pα ∃W [W : θ̌ → θ̌ and [ταγ : θ̌ → θ̌ implies that W = ταγ ]],

and so (2) follows from the maximal principle.
This defines σα.
Now for each H ∈ [θ+]<θ we define ραH = {(σαγ , 1Pα) : γ ∈ H}. So ραH is a Pα-name.
We now define

π0
α = {(op(p̌, ραH), 1) : p ∈ Fn(θ, θ, θ) and H ∈ [θ+]<θ}.

Let G be Pα-generic over M ′. Then

(3) ([θ+]<θ)M
′

= ([θ+]<θ)M
′[G].

In fact, ⊆ is clear. Now suppose that L ∈ ([θ+]<θ)M
′[G]. Then there exist an ordinal α < θ

and a bijection f from α onto L. Since Pα is θ-closed, by 11.1 we have f ∈M ′, and hence
L ∈M ′, as desired in (3). Similarly,

(4) (Fn(θ, θ, θ))M
′

= (Fn(θ, θ, θ))M
′[G].

(5) (π0
α)G = {(p,K) : p ∈ Fn(θ, θ, θ) and K ∈ [θθ]<θ}.
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In fact, first suppose that x ∈ (π0
α)G. Then there exist p ∈ Fn(θ, θ, θ) and H ∈ [θ+]<θ such

that x = (p, (ραH)G). Now (ραH)G = {(σαγ )G : γ ∈ H}, and (σαγ )G ∈ θθ for each γ by (2).
Thus x is in the right side of (3).

Second, suppose that p ∈ Fn(θ, θ, θ) and K ∈ [θθ]<θ. For each f ∈ K there is a
γ(f) < θ+ such that f = (ταγ(f))G. Let H = {γ(f) : f ∈ K}. So H is a subset of θ+ of

size less than θ. By (2) we have f = (σαγ(f))G for each f ∈ K. Now (ραH)G = K, and so

(p,K) ∈ (π0
α)G, as desired. So (5) holds.

Next, we define

π1
α = {(op(op(p̌, ραH), op(p̌′, ραH′)), q) : p, p′ ∈ Fn(θ, θ, θ),

H,H ′ ∈ [θ+]<θ, p′ ⊆ p,H ′ ⊆ H, q ∈ Pα, and for all γ ∈ H ′

and all ξ ∈ dmn(p)\dmn(p′), q Pα σ
α
γ (ξ̌) < (p(ξ))ˇ}.

Again, suppose that G is Pα-generic over M ′. Then

(π1
α)G = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0

α)G, p
′ ⊆ p, K ′ ⊆ K,(6)

and for all f ∈ K ′ and all ξ ∈ dmn(p)\dmn(p′), f(ξ) < p(ξ)}.

To prove this, first suppose that x ∈ (π1
α)G. Then there are q ∈ G, p, p′ ∈ Fn(θ, θ, θ)

and H,H ′ ∈ [θ+]<θ such that x = ((p, (ραH)G), (p′, (ραH′))G), p′ ⊆ p, H ′ ⊆ H, and for all
γ ∈ H ′ and all n ∈ dmn(p)\dmn(p′), q  σαγ (ξ̌) < (p(ξ))̌ . Then with K = (ραH)G and
K ′ = (ραH′))G, the desired conditions clearly hold.

Second, suppose that p, p′, K,K ′ exist as on the right side of (4). Then by the
definition of π0

α, there are H,H ′ ∈ [θ+]<θ such that K = (ραH)G and K ′ = (ραH′)G.
Then K ′ = {(σαγ )G : γ ∈ H ′}. Hence for every γ ∈ H ′ and all ξ ∈ dmn(p)\dmn(p′)
we have (σαγ )G(ξ) < p(ξ). Let 〈(ξν , ψν) : ν < γ〉 enumerate all pairs (ξ, γ) such that
ξ ∈ dmn(p)\dmn(p′) and γ ∈ H ′, with β < θ, β limit. Now we define a system 〈qν : ν ≤ β〉
of members of Pα by recursion. Let q0 = 1. Suppose that qν has been defined so that
qν ∈ G. Now there is an r ∈ G such that r  σαγν (ξ̂ν) < (p(ξν))̌ . Let qν+1 ∈ G be such
that qν+1 ≤ r, qν . At limit stages ≤ β we use that θ-closed property of Pα to continue.
Clearly qβ is as desired, showing that ((p,K), (p′, K ′)) ∈ (p1

α)G.
Next, we let π2

α = {(op(0, 0), 1Pα)}. Then for any generic G, (π2
α)G = (0, 0). Finally,

let πα = op(op(π0
α, π

1
α), π2

α). This finishes the definition of πα.
Using (5) and (6) it is clear that πα is a Pα-name for a forcing order. To verify that

it is full for ↓θ-sequences, suppose that

p ∈ Pα, β < θ, ϕξ ∈ dmn(π0
α) for each ξ < β,(7)

and if ξ, η < β and ξ < η, then p Pα (ϕξ ∈ π
0
α) ∧ (ϕη ∈ π

0
α) ∧ (ϕη ≤πα ϕξ).(8)

We want to find ψ ∈ dmn(π0
α) such that

(9) p  ψ ∈ π0
α and p  ψ ≤πα ϕξ for each ξ < β.

Since ϕξ ∈ dmn(π0
α), there exist a qξ ∈ Fn(θ, θ, θ) and an Hξ ∈ [θ+]<θ such that ϕξ =

op(q̌ξ, ρ
α
Hξ

). Now if ξ < η < β, then p  ϕη ≤πα ϕξ; hence qξ ⊆ qη. Let r =
⋃

ξ<β ϕξ
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and K =
⋃

ξ<β Hξ. Thus r ∈ Fn(θ, θ, θ) and K ∈ [θ+]<θ. Let ψ = op(ř, ραK). Clearly

ψ ∈ dmn(π0
α). Suppose that ξ < β. To show that p  ψ ≤πα qξ, suppose that p ∈ G with

G Pα-generic over M ′. Then ψG = (r, (ραK)G), and clearly (ραK)G) = K. Suppose that
γ ∈ Hξ and ν ∈ dmn(r)\dmn(qξ). Say ν ∈ dmn(qη) with η < β. Clearly ξ < η. Since
(ϕη)G ≤ (ϕξ)G by (8), we have r(ν) = qη(ν) > (σαγ )G(ν). This proves that ψG ≤ (ϕξ)G,
and so (9) holds.

Now Pα+1 is defined by (I7) and (I8) in the definition of iteration. We now want to
show that Pα+1 is θ+-cc, and for this we will apply 15.10. we are assuming that Pα is
θ+-cc, so it suffices to prove that 1 Pα πα − cc. So, let G be Pα-generic over M ′. As
above, 2<θ = θ in M ′[G]. Now |Pα| ≤ θ+ by assumption. Hence 2θ = θ+ in M ′[G] by 9.6
(with κ, λ, µ replaced by θ+, θ+, θ respectively). Hence παG is θ+-cc by (5) and (6). So
Pα+1 is θ+-cc by 15.10.

Pα+1 is θ-closed by 37.5, since we have proved that πα is full for ↓θ-sequences. This
finishes the recursion step from α to α+ 1.

Now suppose that α is a limit ordinal ≤ θ++. We let

Pα = {p :p is a function with domain α, pξ ∈ Pξ for all ξ < α

and |{ξ < α : pξ 6= 1}| < θ}.

and for p, q ∈ Pα, p ≤ q iff pξ ≤ qξ for all ξ < α.

Now we show that Pα has the θ+-cc. Suppose that 〈pγ : γ < θ+〉 is a system of
members of Pα. Then we can apply the ∆-system theorem 10.1 to the system 〈supp(pγ) :

γ < θ+〉, with κ, λ replaced by θ, θ+ respectively. This gives us a set L ∈ [θ+]θ
+

and a
set K such that for all distinct ϕ, γ ∈ L, supp(pγ) ∩ supp(pδ) = K. For γ ∈ L and ξ ∈ K
we have pγ(ξ) 6= 1, so we can write pγ(ξ) = op(q̌γξ , ϕξ) with qγξ ∈ Fn(θ, θ, θ). Now for any

γ ∈ L, the function 〈aγξ : ξ ∈ K〉 is a member of
∏

ξ∈K Fn(θ, θ, θ), which has size at most

θ. So there exist L′ ∈ [L]θ+ and r such that 〈qγξ : ξ ∈ K〉 = 〈rξ : ξ ∈ K〉 for all γ ∈ L′.

Now it is clear that pγ and pδ are compatible for all γ, δ ∈ L′, as desired.

By 37.5, Pα is θ-closed. Clearly, for α < θ++ Pα has size at most θ+.

This finishes the construction. For brevity let R = Pθ++ .

Let G be R-generic over M ′.

(10) In M ′[G], if F ⊆ θθ and |F | < θ++, then there is a g ∈ θθ such that f <θ g for all
f ∈ F .

For, let F = {fξ : ξ < θ+}, possibly with repetitions. Let

F
′ = {(ξ, i, j) : ξ < θ1, i, j ∈ θ, and fξ(i) = j}.

By 26.14 there is an α < θ++ such that F ′ ∈ M ′[i−1
αθ++ [G]], and hence also F ∈

M ′[i−1
αθ++ [G]]. For brevity write Gξ = i−1

ξθ++ [G] for every ξ < θ++. Let

Hα = {ηGα : η ∈ dmn(π0
α) and p⌢〈η〉 ∈ Gα+1 for some p}.
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Let Qα = (πα)Gα . Thus by (5) and (6),

Qα = {(p,K) : p ∈ fin(θ, θ) and K ∈ [θθ]<θ};(11)

≤Qα = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0
α)G, p

′ ⊆ p, K ′ ⊆ K,(12)

and for all f ∈ K ′ and all ξ ∈ dmn(p)\dmn(p′), f(ξ) < p(ξ)}.

Now (10) follows from 37.4.
Replacing κ, λ, µ in 24.3 by θ++, θ+, θ respectively, we get 2θ ≤ θ++ in M ′[G]. Hence

by (10), 2θ = θ++ in M ′[G].

Replacing κ, λ, µ in 24.3 by θ++, θ+, θ+ respectively, we get 2θ
+

≤ θ+++ in M ′[G].

Since 2θ
+

= θ+++ in M ′, it follows that 2θ
+

= θ+++ in M ′[G].
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38. Consistency results concerning P(ω)/fin

We give relative consistency theorems which show that consistently most of the functions
described in the diagram in chapter 20 can be less than 2ω. For the first consistency result,
concerning a, we need to go into the theory of products of forcing orders.

If P0 and P1 are forcing orders, their product is the cartesian product P0 × P1 with
the order relation

(p0, p1) ≤ (q0, q1) iff p0 ≤ q0 and p1 ≤ q1.

We define i0 : P0 → P0 × P1 and i0 : P0 → P0 × P1 by i0(p) = (p, 1) and i1(p) = (1, p).

Proposition 38.1. i0 and i1 are complete embeddings.

Proof. See the definition of complete embedding just before Proposition 26.2. Only
(4) needs thought. For i0, given (p0, p1) ∈ P0×P1 we take p0 to be the reduction. Suppose
that p′ ∈ P0 and p′ ≤ p0. Then i(p′) = (p′, 1) is compatible with (p0, p1); namely, (p′, p1)
is below both of them. Similarly for i1.

Proposition 38.2. Suppose that G is (P0×P1)-generic over M . Then i−1
0 [G] is P0-generic

over M , and G = (i−1
0 [G]× i−1

1 [G]).

Proof. The first assertion follows from Theorem 26.3. For the second assertion, ⊆ is
obvious. Now suppose that (p0, p1) ∈ (i−1

0 [G]× i−1
1 [G]). Then (p0, 1) ∈ G and (1, p1) ∈ G.

Choose (q0, q1) ∈ G below both of these. Then (q0, q1) ≤ (p0, p1), so (p0, p1) ∈ G.

Theorem 38.3. Suppose that G0 ⊆ P0 ∈ M and G1 ⊆ P1 ∈ M . Then the following
conditions are equivalent:

(i) G0 ×G1 is (P0 × P1)-generic over M .
(ii) G0 is P0-generic over M and G1 is P1-generic over M [G0].
(iii) G1 is P1-generic over M and G0 is P0-generic over M [G1].

Proof. By symmetry it suffices to show that (i) and (ii) are equivalent. First suppose
that G0 ×G1 is (P0 × P1)-generic over M . Clearly i−1

0 [G0 ×G1] = G0, so G0 is P0-generic
over M by Proposition 38.2. To show that G1 is P1-generic over M [G0], take any dense
D ⊆ P1, in M [G0]. Let τ be a P0-name such that D = τG0

. Choose p0 ∈ G0 such that

p0  (τ is dense in P1).

Let
D′ = {(q0, q1) ∈ (P0 × P1) : q0 ≤ p0 and q0  (q̌1 ∈ τ)}.

(1) D′ is dense below (p0, 1).

For, suppose that (r0, r1) ≤ (p0, 1). Since r0 ≤ p0 we have

r0  ∃x ∈ P̌1[x ∈ τ and x ≤ ř1].

Hence by Proposition 16.16 there exist q0 ≤ r0 and q1 ∈ P1 such that

q0  (q̌1 ∈ τ and q̌1 ≤ ř1).
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By Theorem 16.14 we then get q1 ∈ r1. Hence (q0, q1) ≤ (r0, r1) and (q0, q1) ∈ D′. So (1)
holds.

By (1), choose (q0, q1) ∈ (G0 × G1) ∩ D′. Then q0  q̌1 ∈ τ , and q0 ∈ G0, so
q1 ∈ τG0

= D. Also q1 ∈ G1. This proves (ii).
Conversely, assume (ii).

(2) G0 ×G1 is a filter on P0 × P1.

For, clearly G0 × G1 is closed upwards. Now suppose that (p0, p1), (q0, q1) ∈ (G0 × G1).
Choose s0 ∈ G0 with s0 ≤ p0, q0, and choose s1 ∈ G1 so that s1 ≤ p1, q1. Then (s0, s1) ∈
(G0 ×G1) and (s0, s1) ≤ (p0, p1), (q0, q1). so (2) holds.

To show that G0 ×G1 is generic, suppose that D ∈M , D ⊆ (P0 × P1), D dense. Let

D∗ = {p1 ∈ P1 : ∃p0 ∈ G0[(p0, p1) ∈ D]}.

(3) D∗ is dense in P1.

For, take r1 ∈ P1. Let

D0 = {p0 ∈ P0 : ∃p1 ≤ r1[(p0, p1) ∈ D]}.

Then D0 is dense in P0, for if s ∈ P0 then there is a (p0, p1) ∈ D with (p0, p1) ≤ (s, r1),
and then p0 ≤ s and p0 ∈ D0. It follows that there is a p0 ∈ D0 ∩ G0. Take p1 ≤ r1 such
that (p0, p1) ∈ D. Then p1 ∈ D∗ and p1 ≤ r1. This proves (3).

Choose r1 ∈ D∗ ∩ G1; then take p0 ∈ G0 such that (p0, p1) ∈ D. So (p0, p1) ∈
D ∩ (G0 ×G1).

Theorem 38.4. Suppose that G0 ⊆ P0 ∈M and G1 ⊆ P1 ∈M . Also suppose that G0×G1

is (P0 × P1)-generic over M . (See Theorem 38.3.)
Then M [G0 ×G1] = M [G0][G1] = M [G1][G0].

Proof. We have M ⊆M [G0][G1] and (G0 ×G1) ∈M [G0][G1]. Hence M [G0 ×G1] ⊆
M [G0][G1] by Lemma 15.8. Also, M ⊆ M [G0 × G1] and G0 ∈ M [G0 × G1], so M [G0] ⊆
M [G0×G1]. Next, G1 ∈M [G0×G1], so by Lemma 15.8, M [G0][G1] ⊆M [G0×G1]. This
proves that M [G0][G1] = M [G0 ×G1]. Similarly, M [G1][G0] = M [G0 ×G1].

Theorem 38.5. Suppose that I = I0 ∪ I1 with I0, I1 ∈ M . Let G be Fn(I, 2, ω)-generic
over M . Let G0 = G ∩ Fn(I0, 2, ω) and G1 = G ∩ Fn(I1, 2, ω). Then:

(i) G0 is Fn(I0, 2, ω)-generic over M .
(ii) G1 is Fn(I1, 2, ω)-generic over M [G0].
(iii) M [G] = M [G0][G1].

Proof. Define f : Fn(I0, 2, ω) × Fn(I1, 2, ω) by setting f(p, q) = p ∪ q for any p ∈
Fn(I0, 2, ω) and q ∈ Fn(I1, 2, ω). Clearly f is an isomorphism. Note that f−1(r) =
(r∩Fn(I0, 2, ω), r∩Fn(I1, 2, ω)). By Lemma 25.9, M [G] = M [f−1[G]] = M [Fn(I0, 2, ω)×
Fn(I1, 2, ω)]. Now (i) and (ii) hold by Theorem 38.3(ii). (iii) holds by Theorem 38.4.

903



Lemma 38.6. Let M be a c.t.m. and let I, S ∈M . Let G be Fn(I, 2, ω)-generic over M .
Suppose that X ∈M [G] and X ⊆ S. Then X ∈M [G ∩ Fn(I0, 2, ω)] for some I0 ⊆ I such
that I0 ∈M and |I0| ≤ |S|)M .

Proof. If S is finite, then X ∈ M ; so assume that S is infinite. By Proposition 24.2
let τ be a nice name for a subset of Š such that X = τG. Say τ =

⋃

s∈S(š × As), where
each As is an antichain in Fn(I, 2, ω). Let

I0 =
⋃

{dmn(p) : ∃s ∈ S[p ∈ As]}.

Let G0 = G ∩ Fn(I0, 2, ω). Thus X ∈ M [G ∩ Fn(I0, 2, ω)]. Now by ccc in M (see Lemma
16.7), each As is countable. Hence |I0| ≤ |S|)M .

Theorem 38.7. Suppose that M satisfies CH. and I ∈ M . Let G be Fn(I, 2, ω)-generic
over M . Then in M [G] there is a mad family of size ω1.

Proof. For a while we work with P
def
= Fn(ω, 2, ω). Note that if A is an antichain in

P then |A| ≤ |P| = ω. Hence there are at most ω1 pairs (p, τ) such that p ∈ P and τ is a
nice name for a subset of ω̌. Let 〈(pξ, τξ) : ξ < ω1〉 list all such pairs.

Now we define A ∈ ω1([ω]ω) by recursion. Let 〈An : n ∈ ω〉 be a system of infinite
pairwise disjoint subsets of ω. Now suppose that ξ ∈ [ω, ω1) and Aη has been defined for
all η < ξ. Then:

(1) There is a B ∈ [ω]ω such that the following conditions hold:
(i) ∀η < ξ[|Aη ∩B| < ω].
(ii) If

(I) pξ  (|τξ| = ω) and ∀η < ξ[pξ  |τξ ∩ Ǎη| < ω], then
(II) ∀n ∈ ω∀q ≤ pξ∃r ≤ q∃m ≥ n[m ∈ B and r  m̌ ∈ τξ].

To prove (1), first note that if (1)(ii)(I) fails to hold, then we can use the proof described
after Proposition 33.20 to construct B satisfying (i). So we may assume that (1)(ii)(I)
holds. Now let 〈Ci : i ∈ ω〉 enumerate {Aη : η < ξ} without repetitions, and let 〈(ni, qi) :
i ∈ ω〉 enumerate ω×{q : q ≤ pξ}. Clearly for all i ∈ ω we have pξ  (|τξ\(Č0∪ . . .∪ Či)| =
ω̌); hence each qi also forces this. So

qi  ∃m ≥ ňi[m ∈ τξ and m /∈ (Č0 ∪ . . . ∪ Či)].

By Theorems 16.14 and 16.15 there exist ri ≤ qi and mi ≥ ni such that mi /∈ (C0∪ . . .∪Ci)
and ri  (m̌i ∈ τξ). Let B = {mi : i ∈ ω}. Clearly (i) and (ii)(II) hold. Let Aξ = B. This
finishes the construction.

Let A = {Aξ : ξ < ω1}.

(2) If G is P-generic over M , then A is mad in M [G].

In fact, otherwise there is a ξ < ω1 such that pξ  |τξ| = ω and pξ  ∀X ∈ A [|τξ∩X | < ω].
So (1)(i)(I) holds, and also pξ  |τξ ∩ Ǎξ| < ω. So there exist a q ≤ p and an n ∈ ω such
that q  [τξ ∩ Aξ ⊆ ň]. This contradicts (1)(ii)(II). Thus (2) holds.
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Now suppose that G os Fn(I, 2, ω)-generic over M , X ∈ M [G], |X | = ω, and ∀Y ∈
A [|X ∩ Y | < ω]. By Lemma 38.6, X ∈ M [G ∩ Fn(I0, 2, ω)]for some I0 ⊆ I with |I0| = ω.
Now Fn(I0, 2, ω) ∼= Fn(ω, 2, ω), so by Lemma 25.9 M [G ∩ Fn(I0, 2, ω)] = M [H] for some
H which is P-generic over M . This contradicts (2).

Corollary 38.8. It is relatively consistent that a < 2ω.

Theorem 38.9. It is relatively consistent that u < 2ω.

Proof. Let M be a c.t.m. such that 2ω > ω1 in M . Let U a nonprincipal ultrafilter
on ω in M . Define

P = {(F,H) : F ∈ [U ]<ω, H ∈ [ω]<ω};

(F,H) ≤ (F ′, H ′) iff F ⊇ F ′, H ⊇ H ′, ∀x ∈ F∀m ∈ H\H ′[m ∈ x].

Clearly P is ccc, by considering second coordinates.
For each x ∈ U let

Dx = {(F,H) : x ∈ F}.

Clearly Dx is dense. For each m ∈ ω let

Em = {(F,H) : ∃n ≥ m[n ∈ H]}.

This is dense too: given (F,H) ∈ P, choose n ∈
⋂
F\m; then (F,H ∪ {m}) ≤ (F,H).

Now let G be generic over M for P. Define

a =
⋃

(F,H)∈G

H.

By the density of the Em’s, a is infinite. Now suppose that x ∈ U . Choose (F,H) ∈ G
such that x ∈ F . We claim that a\x ⊆ H. For, suppose that m ∈ a\H. Say m ∈ H ′

with (F ′, H ′) ∈ G. Choose (F ′′, H ′′) ∈ G such that (F ′′, H ′′) ≤ (F,H), (F ′, H ′). Then
m ∈ H ′ ⊆ H ′′, m /∈ H, and x ∈ F , so m ∈ x, as desired.

Now we do an iterated forcing, using the above construction at successor steps, ob-
taining:

(1) an increasing sequence 〈Mα : α ≤ ω1〉 of c.t.m., with M0 = M ;

(2) a sequence 〈aα : α < ω1〉 with each aα an infinite subset of ω in Mα;

(3) an increasing sequence 〈Uα : α < ω1〉 of ultrafilters on ω, each Uα ∈Mα;

(4) for each α < ω1 we have ∀x ∈ Uα[aα ≤ x];

(5) {aβ : β < α} ⊆ Uα for all α < ω1.

Then we let Uω1
be the filter generated by {aα : α < ω1} in Mω1

. It is an ultrafilter, since
each subset of ω in Mω1

is in some Mα with α < ω1, by Lemma 26.14.
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Lemma 38.10. Let M be a c.t.m. of ZFC, and suppose that I is an ideal in P(ω)M

containing all singletons. Define

P = {(b, y) : b ∈ I, y ∈ [ω]<ω};

(b, y) ≤ (b′, y′) iff b ⊇ b′, y ⊇ y′, y ∩ b′ ⊆ y′.

Then P is ccc. Let G be P -generic over M , and define d =
⋃

(b,y)∈G y. Then the following
conditions hold:

(i) If c ⊆ ω and c /∈ I, then c ∩ d is infinite.
(ii) If c ⊆ ω and c /∈ I then c\d is infinite.
(iii) If b ∈ I, then b ∩ d is finite.

Proof. Assume the hypotheses. Clearly P is ccc. For (i) and (ii), suppose that c ⊆ ω
and c /∈ I. For each n ∈ ω let

En = {(b, y) : ∃m > n[m ∈ c ∩ y}.

To show that En is dense, let (b, y) ∈ P . Then c\b is infinite, as otherwise c ⊆ b∪(c\b) ∈ I.
Choose m > n with m ∈ c\b. Then (b, y ∪ {m}) ∈ En and (b, y ∪ {m}) ≤ (b, y), showing
that En is dense.

The denseness of each set En clearly implies (i).
Next, define for any n ∈ ω

Hn = {(b, y) ∈ P : ∃m > n[m ∈ b ∩ c\y]}.

To show that Hn is dense, let (b, y) ∈ P be given. Since every finite subset of ω is in
I, the set c is infinite. Choose m ∈ c\y with m > n. Then (b ∪ {m}, y) ∈ Hn and
(b ∪ {m}, y) ≤ (b, y). This shows that Hn is dense.

Now given n ∈ ω, choose (b, y) ∈ Hn∩G, and then choose m > n such that m ∈ b∩c\y.
We claim that m /∈ d. For, suppose that m ∈ d; say m ∈ y′ with (b′, y′) ∈ G. Choose
(b′′, y′′) ∈ G such that (b′′, y′′) ≤ (b, y), (b′, y′). Thus y′′ ∩ b ⊆ y and y′′ ∩ b′ ⊆ y′. Now
m ∈ y′, so m ∈ y′′; also m ∈ b, so m ∈ y, contradiction. This finishes the proof of (ii).

For (iii), suppose that b ∈ I. Now the set {(c, y) ∈ P : b ⊆ c} is clearly dense, so
choose (c, y) ∈ G such that b ⊆ c. We claim that b∩d ⊆ y. In fact, suppose that m ∈ b∩d.
Say (e, z) ∈ G with m ∈ z. Choose (u, v) ∈ G such that (u, v) ≤ (c, y), (e, z). So v ∩ c ⊆ y
and v ∩ e ⊆ z. Now m ∈ z ⊆ v, and m ∈ b ⊆ c, so m ∈ v ∩ c ⊆ y, as desired; (iii)
holds.

Lemma 38.11. We work within a c.t.m. M . Suppose that κ is an infinite cardinal, and
〈aξ : ξ < κ〉 is a system of infinite subsets of ω which is an independent system. Let
A = {aξ : ξ < κ}. Thus 〈[aξ] : ξ < κ〉 is a system of independent elements of P(ω)/fin.
Let A be the completion of Fr(κ), and let 〈xξ : ξ < κ〉 be the free generators of Fr(κ).
Then by Sikorski’s extension theorem, there is a homomorphism f from P(ω)/fin into
A such that f([aξ]) = xξ for every ξ < κ. Let h(b) = f([b]) for any b ⊆ ω. So h is a
homomorphism from P(ω) into A such that h(aξ) = xξ for every ξ < κ. Also, h(M) = 0
for every finite M ⊆ ω.
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Apply Lemma 38.10 to the ideal ker(h), obtaining P,G, d as indicated there. Then:

(i) If R is a finite subset of κ and ε ∈ R2, then
⋂

α∈R a
ε(α)
α ∩ d is infinite.

(ii) If R is a finite subset of κ and ε ∈ R2, then
⋂

α∈R a
ε(α)
α \d is infinite.

(iii) If b ∈ ker(h), then b ∩ d is finite.
(iv) If x ∈P(ω) ∩M\A , then A ∪ {x, d} is not independent.

Proof.

(i) Let R and ε be as in (i). Then
⋂

α∈R a
ε(α)
α /∈ I by assumption, so the desired conclusion

follows from (i) of Lemma 38.10.
(ii) is proved similarly, and (iii) follows from (iii) of Lemma 38.10.
Finally, for (iv), we show that if x ∈ P(ω) ∩ M\A , then A ∪ {x, d} is not an

independent family.
Case 1. h(x) = 0. Then x ∩ d is finite by (iii).
Case 2. h(x) 6= 0. Then there is a finite subset R of κ and a ε ∈ R2 such that

⋂

α∈R x
ε(α)
α ≤ h(x). It follows that

⋂

α∈R a
ε(α)
α \x is in the kernel of h, and so

⋂

α∈R a
ε(α)
α \x∩

d is finite.

Theorem 38.12. It is relatively consistent to have i < 2ω.

Proof. We start with a c.t.m. M such that 2ω > ω1 in M and with an independent
family 〈an : n ∈ ω〉 in P(ω) in M . Then we do an iteration of length ω1, applying Lemma
38.11 at successor steps, building an independent sequence 〈aα : α < ω1〉. The final model
is as desired, using Lemma 26.14.

Lemma 38.13. Let M be a c.t.m. of ZFC. Suppose that κ is an infinite cardinal and
〈ai : i < κ〉 is a system of infinite subsets of ω such that 〈[ai] : i < κ〉 is ideal independent,
where [x] denotes the equivalence class of x modulo the ideal fin of P(ω). Then there is a
generic extension M [G] of M using a ccc partial order such that in M [G] there is a d ⊆ ω
with the following two properties:

(i) 〈[ai] : i < κ〉⌢〈[ω\d]〉 is ideal independent.
(ii) If x ∈ (P(ω) ∩M)\({ai : i < κ} ∪ {ω\d}), then 〈[ai] : i < κ〉⌢〈[ω\d], [x]〉 is not

ideal independent.

Proof. Let I be the ideal on P(ω) generated by

{{m} : m ∈ ω} ∪ {ai ∩ aj : i, j < κ, i 6= j},

and let f be the natural homomorphism from P(ω) onto P(ω)/I. Note that f(ai) 6= 0
for all i < κ, by ideal independence. Let B be the subalgebra of P(ω)/I generated by
{f(ai) : i < κ}. Thus B is an atomic BA, with {f(ai) : i < κ} its set of atoms. Thus f is
a homomorphism from P(ω) onto B.

Now we apply Lemma 38.10 to the ideal ker(f), obtaining P , G, d as indicated there.

(1) If R is a finite subset of κ and i ∈ κ\R, then ai ∩
⋂

j∈R(ω\aj) ∩ d is infinite.

In fact, ai ∩
⋂

j∈R(ω\aj) is clearly not in the kernel of f , so (1) follows from (i) of Lemma
38.10.
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(2) If R is a finite subset of κ, then ω\
(
d ∪

⋃

i∈R ai
)

is infinite.

In fact, ω\
⋃

i∈R ai is clearly not in the kernel of f , so (2) follows from (ii) of Lemma 38.10.
Now we can show that 〈[ai] : i < κ〉⌢〈[ω\d]〉 is ideal independent. Suppose not. Then

there are two possibilities.
Case 1. There exist a finite R ⊆ κ and an i ∈ κ\R such that [ai] ≤ [ω\d] +

∑

j∈R[aj ].
This contradicts (1).

Case 2. There is a finite R ⊆ κ such that [ω\d] ≤
∑

i∈R[ai]. This contradicts (2).
This proves ideal independence.
It remains only to prove (ii). So, assume that x ∈ (P(ω)∩M)\({ai : i < κ}∪{ω\d}).
Case 1. x ∈ ker(f). Then [x] ≤ [ω\d] by (iii) of Lemma 1, as desired.
Case 2. x /∈ ker(f). Choose i < κ such that f(ai) ≤ f(x). Thus ai\x ∈ ker(f), Hence

by (iii) of Lemma 1, (ai\x) ∩ d is finite. So [ai] ≤ [x] + [ω\d], as desired.

Theorem 38.14. It is relatively consistent that smm < 2ω.

Lemma 38.15. Let M be a c.t.m. of ZFC. Suppose that α is an infinite ordinal, and
〈aξ : ξ < α〉 is a system of infinite subsets of ω such that 〈[aξ] : ξ < α〉 is a free sequence
in P(ω)/fin, where [aξ] denotes the equivalence class of aξ modulo the ideal fin.

Then there is a generic extension M [G] of M using a ccc partial order such that in
M [G] there exist infinite d, e ⊆ ω with the following properties:

(i) 〈[aξ] : ξ < α〉⌢〈[ω\d], [e]〉 is a free sequence.
(ii) If x ∈ (P(ω) ∩M)\({aξ : ξ < α} ∪ {ω\d, e}), then 〈[aξ] : ξ < α〉⌢〈[ω\d], [e], [x]〉

is not a free sequence.

Proof. For each ξ ≤ α, the set {[aη] : η < ξ}∪{−[aη] : ξ ≤ η < α} has the fip, by the
free sequence property, and we let Fξ be an ultrafilter on P(ω)/fin containing this set.
Let I = {x : −[x] ∈ Fξ for all ξ ≤ α}. Clearly I is an ideal on P(ω) and {m} ∈ I for all
m ∈ ω.

(1) If ξ < η < α, then [aη]I < [aξ]I .

In fact, suppose that ξ < η < α. If ν ≤ α and [aη]·−[aξ] ∈ Fν , then η < ν, hence ξ < ν and
so [aξ] ∈ Fν , contradiction. Hence −([aη] · −[aξ]) ∈ Fν for all ν ≤ α, and so [aη]I ≤ [aξ]I .
Now suppose that [aη]I = [aξ]. Then aξ · −aη ∈ I, so in particular −[aξ] + [aη] ∈ Fξ+1.
Since also [aξ] ∈ Fξ+1, it follows that [aη] ∈ Fξ+1. But ξ < η, contradiction. So (1) holds.

(2) [a0]I 6= 1.

This holds since −[a0] ∈ F0, and hence (ω\a0) /∈ I.

(3) If α = β + 1, then [aβ]I 6= 0.

This is true since [aβ] ∈ Fα, and hence [aβ] /∈ I.
Now let J be an ideal in P(ω) which is maximal subject to the following conditions:

(4) I ⊆ J .

(5) If ξ < η < α, then aξ\aη /∈ J .
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(6) ω\a0 /∈ J .

(7) If α = β + 1, then aβ /∈ J .

Clearly then we have:

(8) For any x ⊆ ω one of the following conditions holds.
(a) x ∈ J .
(b) There exist ξ < η < α such that aξ · −aη · −x ∈ J .
(c) −a0 · −x ∈ J .
(d) α = β + 1 and aβ · −x ∈ J .

Also we have

(9) If F,K ∈ [α]<ω and F < K, then
⋂

ξ∈F aξ ∩
⋂

η∈K −aη /∈ J .

Now we apply Lemma 1 to the ideal J to obtain a generic extension M [G] such that, with
d =

⋃

(b,y)∈G y, the following conditions hold:

(10) If c ⊆ ω and c /∈ J , then c ∩ d is infinite.

(11) If c ⊆ ω and c /∈ J then c\d is infinite.

(12) If b ∈ J , then b ∩ d is finite.

Hence by (9) we get

(13) If F,K ∈ [α]<ω and F < K, then
⋂

ξ∈F aξ ∩
⋂

η∈K −aη ∩ d is infinite.

(14) If F,K ∈ [α]<ω and F < K, then
⋂

ξ∈F aξ ∩
⋂

η∈K −aη\d is infinite.

Now let K be the ideal in P(ω)M [G] generated by J .

(15) If F is a finite subset of α, then
⋂

ξ∈F aξ ∩ (ω\d) /∈ K.

In fact, otherwise we get a c ∈ J such that
⋂

ξ∈F aξ ∩ (ω\d) ⊆ c, and so
(
⋂

ξ∈F aξ\c
)

∩

(ω\d) = ∅. But clearly
(
⋂

ξ∈F Aξ\c
)

/∈ J , so this contradicts (11). Similarly,

(16) If F, L ∈ [α]<ω and F < L, then
⋂

ξ∈F aξ ∩
⋂

η∈L−aη ∩ d /∈ K.

Now we apply Lemma 1 with I replaced by K to obtain a generic extension M [G][H] and
an infinite subset e of ω such that 〈[aξ : ξ < α〉⌢〈[ω\d], [e]〉 is a free sequence and the
following condition holds:

(16) If b ∈ K, then b ∩ e is finite.

(17) If x ∈ (P(ω)∩M)\({aξ : ξ < α} ∪ {ω\d, e}, then 〈[aξ] : ξ < α〉⌢〈[ω\d], [e], [x]〉 is not
a free sequence.

To prove this, we consider cases.
Case 1. x ∈ K. Then x ∩ e is finite by (16), as desired.
Case 2. x /∈ K. Then x /∈ J , and so by (8) we have three subcases.

Subcase 2.1. There exist ξ < η < α such that aξ · −aη · −x ∈ J . Then by (12),
aξ · −aη · −x · d is finite, as desired.
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Subcase 2.2. −a0 · −x ∈ J . Then by (12), −a0 · −x · d is finite, as desired.
Subcase 2.3. α = β + 1 and aβ · −x ∈ J . Then by (12), aβ · −x · d is finite, as

desired.

Theorem 38.16. It is relatively consistent that f < 2ω.
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REAL NUMBERS

39. The integers

In this appendix we define and develop the main properties of the integers. The develop-
ment is based upon Chapter 6, in which properties of natural numbers were given. At the
end of that chapter a sketch of the construction of integers was given, and we now give full
details.

Let A = ω × ω. We define a relation ∼ on A by setting, for any m,n, p, q ∈ ω,

(m,n) ∼ (p, q) iff m+ q = n+ p.

This definition is motivated by thinking of (m,n) as representing, in some sense, m− n.

Lemma 39.1. ∼ is an equivalence relation on A.

Proof. For reflexivity, given m,n ∈ ω we want to show that (m,n) ∼ (m,n). By
definition, this means that we want to show that m+n = n+m. This is given by 6.14(iv).

For symmetry, assume that (m,n) ∼ (p, q); we want to show that (p, q) ∼ (m,n). The
assumption means, by definition, that m + q = n + p. Hence p + n = q + m by 6.14(iv)
again. Hence (p, q) ∼ (m,n). [In the definition, replace m,n, p, q by p, q,m, n respectively.]

For transitivity, assume that (m,n) ∼ (p, q) ∼ (r, s). Thus m + q = n + p and
p + s = q + r. Hence m + q + s = n + p + s = n + q + r, so using 6.15(iii) we get
m+ s = n+ r, so that (m,n) ∼ (r, s).

We now let Z′ be the collection of all equivalence classes under ∼. Elements of Z′ are
denoted by [(m,n)] with m,n ∈ ω.

For the purposes of this appendix, we treat binary operations on Z′ as functions
mapping Z′ × Z′ into Z′.

Proposition 39.2. There is a binary operation + on Z′ such that for any m,n, p, q ∈ ω,
[(m,n)] + [(p, q)] = [(m+ p, n+ q)].

Proof. Let

R = {(x, y) : there exist m,n, p, q ∈ ω such that

x = ([(m,n)], [(p, q)]) and y = [(m+ p, n+ q)]}.

We claim that R is a function. For, assume that (x, y), (x, z) ∈ R. Then we can choose
m,n, p, q,m′, n′, p′, q′ ∈ ω such that the following conditions hold:

x = ([(m,n)], [(p, q)]);(1)

y = [(m+ p, n+ q)];(2)

x = ([(m′, n′)], [(p′, q′)]);(3)

z = [(m′ + p′, n′ + q′)].(4)
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From (1) and (3) we get [(m,n)] = [(m′, n′)] and [(p, q)] = [(p′, q′)], hence (m,n) ∼ (m′, n′)
and (p, q) ∼ (p′, q′), hence m+ n′ = n+m′ and p+ q′ = q + p′. Hence

m+ p+ n′ + q′ = m+ n′ + p+ q′ = n+m′ + q + p′ = n+ q +m′ + p′,

from which it follows that (m + p, n + q) ∼ (m′ + p′, n′ + q′), hence [(m + p, n + q)] =
[(m′ + p′, n′ + q′)], hence y = z by (2) and (4). This shows that R is a function.

Knowing that R is a function, the definition of R then says that for any m,n, p, q ∈ ω,
([(m,n)], [(p, q)]) is in the domain of R, and R(([(m,n)], [(p, q)])) = [(m+ p, n+ q)]. This
is as desired in the proposition.

Proposition 39.3. The operation + on Z′ is associative and commutative. That is, if
x, y, z ∈ Z′, then x+ (y + z) = (x+ y) + z and x+ y = y + x.

Proof. For any a, b, c, d, e, f ∈ ω we have

[(a, b)] + ([(c, d)] + [(e, f)]) = [(a, b)] + [(c+ e, d+ f)]

= [(a+ c+ e, b+ d+ f)]

= [(a+ c, b+ d)] + [(e, f)]

= ([(a, b)] + [(c, d)]) + [(e, f)];

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]

= [(c+ a, d+ b)]

= [(c, d)] + [(a, b)].

Now we define 0′ = [(0, 0)].

Proposition 39.4. For any a, b ∈ ω, [(a, b)] + 0′ = [(a, b)].

Proposition 39.5. For any x ∈ Z′ there is a y ∈ Z′ such that x+ y = 0′.

Proof. Let x ∈ Z′; hence there are a, b ∈ ω such that x = [(a, b)]. Let y = [(b, a)].
Then x+ y = [(a, b)] + [(b, a)] = [(a+ b, b+ a)] = [(0, 0)] = 0′.

There are little group-theoretic facts that say that 0′ and y above are unique:

Proposition 39.6. If z is an element of Z′ such that x+z = x for all x ∈ Z′, then z = 0′.

Proof. z = 0′ + z (by 39.4) = 0′ (by assumption).

Proposition 39.7. If x, y, z ∈ Z′ and x+ y = 0′ = x+ z, then y = z.

Proof. y = 0′ + y = x+ z + y = z + x+ y = z + 0′ = z.

These are all of the properties of + that we need.

Proposition 39.8. There is a binary operation · on Z′ such that for all m,n, p, q ∈ ω,
[(m,n)] · [(p, q)] = [(m · p+ n · q,m · q + n · p)].
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Proof. Let

R = {(x, y) : there exist m,n, p, q ∈ ω such that

x = ([(m,n)], [(p, q)]) and y = [(m · p+ n · q,m · q + n · p)]}.

We claim that R is a function. For, assume that (x, y), (x, z) ∈ R. Then we can choose
m,n, p, q,m′, n′, p′, q′ ∈ ω such that the following conditions hold:

x = ([(m,n)], [(p, q)]);(1)

y = [(m · p+ n · q,m · q + n · p)];(2)

x = ([(m′, n′)], [(p′, q′)]);(3)

z = [(m′ · p′ + n′ · q′, m′ · q′ + n′ · p′)].(4)

From (1) and (3) we get [(m,n)] = [(m′, n′)] and [(p, q)] = [(p′, q′)], hence (m,n) ∼ (m′, n′)
and (p, q) ∼ (p′, q′), hence m+ n′ = n+m′ and p+ q′ = q + p′. Hence

(1) m · p+m · q′ + n · q + n · p′ = m · q +m · p′ + n · p+ n · q′.

Also,

(2) m · p′ + n′ · p′ + n · q′ +m′ · q′ = n · p′ +m′ · p′ +m · q′ + n′ · q′.

Hence

m · p+ n · q +m′ · q′ + n′ · p′ +m · p′ + n · q′

= m · p+ n · q +m · p′ + n′ · p′ + n · q′ +m′ · q′

= m · p+ n · q + n · p′ +m′ · p′ +m · q′ + n′ · q′ by (2)

= m · p+m · q′ + n · q + n · p′ +m′ · p′ + n′ · q′

= m · q +m · p′ + n · p+ n · q′ +m′ · p′ + n′ · q′ by (1)

Considering the first side of the top equation and the last part, we can cancel m · p′ and
n · q′ by 6.15(iii), and we get

m · p+ n · q +m′ · q′ + n′ · p′ = m · q + n · p+m′ · p′ + n′ · q′,

which easily yields y = z.
Thus R is a function, and this clearly proves the proposition.

Proposition 39.9. Let x, y, z ∈ Z′. Then
(i) x · y = y · x.
(ii) x · (y · z) = (x · y) · z.
(iii) x · (y + z) = x · y + x · z.
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Proof. Write x = [(m,n)], y = [(p, q), and z = [(r, s)]. Then

x · y = [(m,n)] · [(p, q)]

= [(m · p+ n · q,m · q + n · p)]

= [(p ·m+ q · n, p · n+ q ·m)]

= [(p, q)] · [(m,n)]

= y · x;

x · (y · z) = [(m,n)] · ([(p, q)] · [(r, s)])

= [(m,n)] · [(p · r + q · s, p · s+ q · r)]

= [(m · p · r +m · q · s+ n · p · s+ n · q · r,

m · p · s+m · q · r + n · p · r + n · q · s)];

(x · y) · z = ([(m,n)] · [(p, q)]) · [(r, s)]

= [(m · p+ n · q,m · q + n · p)] · [(r, s)]

= [(m · p · r + n · q · r +m · q · s+ n · p · s,

m · p · s+ n · q · s+m · q · r + n · p · r)]

= x · (y · z) by the above;

x · (y + z) = [(m,n)] · ([(p, q)] + [(r, s)])

= [(m,n)] · [(p+ r, q + s)]

= [(m · p+m · r + n · q + n · s,m · q +m · s+ n · p+ n · r)];

x · y + x · z = [(m,n)] · [(p, q)] + [(m,n)] · [(r, s)]

= [(m · p+ n · q,m · q + n · p)] + [(m · r + n · s,m · s+ n · r)]

= [(m · p+ n · q +m · r + n · s,m · q + n · p+m · s+ n · r)]

= x · (y + z) by the above.

Now we define 1′ = [(1, 0)].

Proposition 39.10. 1′ · x = x and 0′ · x = 0′ for all x ∈ Z′.

Proof. Take any x ∈ Z; say that x = [(m,n)]. Then

1′ · x = [(1, 0)] · [(m,n)] = [(1 ·m+ 0 ·m, 1 · n+ 0 ·m)] = [(m,n)] = x,

as desired.
For the second statement, note that x · 0′ +x = x · 0′ +x · 1′ = x · (0′ + 1′) = x · 1′ = x,

so x · 0′ = 0′.

Proposition 39.11. If x, y ∈ Z′ and x · y = 0′, then x = 0′ or y = 0′.

Proof. Write x = [(m,n)] and y = [(p, q)]. Now x · y = [(m,n)] · [(p, q)] = [m · p+ n ·
q,m · q + n · p)] and also x · y = 0′ = [0, 0)], so (m · p+ n · q,m · q + n · p) ∼ (0, 0), so

(1) m · p+ n · q = m · q + n · p.

914



Suppose that x 6= 0′; we will show that y = 0′, which will prove the proposition. Thus
[(m,n)] = x 6= 0′ = [(0, 0)], so m 6= n. Hence m < n or n < m.

Case 1. m < n. Then there is a nonzero natural number s such that m + s = n.
Substituting this into (1) we get

m · p+ n · q = m · p+ (m+ s) · q

= m · p+m · q + s · q and

m · q + n · p = m · q + (m+ s) · p

= m · q +m · p+ s · p,

and hence
m · p+m · q + s · q = m · q +m · p+ s · p.

Then by 6.15(iii) we get s · q = s · p, and 6.20(viii) yields q = p. Hence (p, q) ∼ (0, 0), so
y = [(p, q)] = [(0, 0)] = 0′.

Case 2. n < m. This is very similar to case 1. There is a nonzero natural number s
such that n+ s = m. Substituting this into (1) we get

m · p+ n · q = (n+ s) · p+ n · q

= n · p+ s · p+ n · q;

m · q + n · p = (n+ s) · q + n · p

= n · q + s · q + n · p,

and hence
n · p+ s · p+ n · q = n · q + s · q + n · p.

Then by 6.15(iii) we get s · p = s · q, and 6.20(viii) yields p = q. Hence (p, q) ∼ (0, 0), so
y = [(p, q)] = [(0, 0)] = 0′.

This is all of the arithmetic properties of Z′ that is needed. Now we introduce the order.
First we only define the collection of positive elements:

P = {[(m,n)] : m,n ∈ ω and m > n}.

Note that this really means

P = {x : there exist m,n ∈ ω such that x = [(m,n)] and m > n}.

Proposition 39.12. For any m,n ∈ ω, [(m,n)] ∈ P iff m > n.

Proof. ⇐: true by definition. ⇒: Suppose that [(m,n)] ∈ P . Choose p, q ∈ ω such
that p > q and [(m,n)] = [(p, q)]. Thus (m,n) ∼ (p, q), so m + q = n + p. If m ≤ n, then
by 6.17,

m+ q ≤ n+ q < n+ p = m+ q,

contradiction. Hence m < n.
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Proposition 39.13. For any a, b ∈ Z′ we have:
(i) If a 6= 0′, then a ∈ P or −a ∈ P , but not both.
(ii) If a, b ∈ P , then a+ b ∈ P .
(iii) If a, b ∈ P , then a · b ∈ P .

Proof. Let a = [(m,n)] and b = [(p, q)]. For (i), since 0′ = [(0, 0)] we see that if
a 6= [(0, 0)] then (m,n) 6∼ (0, 0) and so m 6= n. If m < n, then −a = [(n,m)] ∈ P . If
m > n, then a ∈ P . If a,−a ∈ P , then by 39.12, m < n and n < m, contradiction.

(ii): Assume that a, b ∈ P . Then by 39.12, m > n and p > q. Clearly thenm+p > n+q
by 6.17, so a+ b = [(m+ p, n+ q)] ∈ P .

(iii): Assume that a, b ∈ P . Then by 39.12, m > n and p > q. Write n + s = m and
q + t = p, with s, t 6= 0. Hence s · t 6= 0. Now

(∗) a · b = [(m,n)] · [(p, q)] = [(m · p+ n · q,m · q + n · p)].

Now

m · q + n · p+ s · t = m · q + n · (q + t) + s · t

= m · q + n · q + n · t+ s · t

= m · q + n · q + (n+ s) · t

= m · q + n · q +m · t

= m · (q + t) + n · q

= m · p+ n · q,

and so m · q + n · p < m · p+ n · q, so that a · b ∈ P by (∗) and 39.12.

Now we can define the order: a < b iff b − a ∈ P . The main properties of < are given in
the following proposition.

Proposition 39.14. Let x, y, z ∈ Z′. Then
(i) x 6< x.
(ii) If x < y < z, then x < z.
(iii) x < y, x = y, or y < x.
(iv) x < y iff x+ z < y + z.
(v) If 0′ < x and 0′ < y, then 0′ < x · y.
(vi) If 0′ < z, then x < y implies that x · z < y · z.

Proof. (i): x− x = 0′, so (i) follows from 39.13(i).
(ii): Assume that x < y < z. So y − x ∈ P and z − y ∈ P . Hence z − x =

(z − y) + y − x) ∈ P by 6.13(ii), so x < z.
(iii): We have x = y or x− y ∈ P or y − x ∈ P , so (iii) follows.
(iv): x < y iff y − x ∈ P iff (y + z)− (x+ z) ∈ P iff x+ z < y + z.
(v): This is immediate from 39.13(iii).
(vi): Assume that 0′ < z and x < y. So z, y − x ∈ P , so by 39.13(iii), y · z − x · z =

z · (y − x) ∈ P , and so x · z < y · z.
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This finishes our treatment of Z′. Now we need to relate it to ω, and define our final
version Z of the integers.

For any m ∈ ω let f(m) = [(m, 0)].

Proposition 39.15. f is a one-one function mapping ω into Z. Moreover, for any
m,n ∈ ω we have

(i) f(m+ n) = f(m) + f(n).
(ii) f(m · n) = f(m) · f(n).
(iii) m < n iff f(m) < f(n).

Proof. Suppose that f(m) = f(n). Thus [(m, 0)] = [(n, 0)], so (m, 0) ∼ (n, 0), hence
m+ 0 = 0 + n, hence m = n. So f is one-one. Next,

f(m+ n) = [(m+ n, 0)] = [(m, 0)] + [(n, 0)] = f(m) + f(n);

f(m · n) = [(m · n, 0)] = [(m · n+ 0 · 0, m · 0 + 0 · n)] = [(m, 0)] · [(n, 0)] = f(m) · f(n)

f(m) < f(n) iff [(m, 0)] < [(n, 0)]

iff m+ 0 < 0 + n

iff m < n.

We have now identified a part of Z′ which acts like the natural numbers. We now want to
apply the replacement process to officially define Z.

Proposition 39.16. ω ∩ Z′ = ∅.

Proof. Suppose that m ∈ ω∩Z′. Choose n, p ∈ ω such that m = [(n, p)]. But [(n, p)]
is an infinite set, since it contains all of the pairs (n, p), (n + 1, p + 1), (n + 2, p + 2), . . .,
contradiction.

Now we define Z = (Z′\rng(f)) ∪ ω. There is a one-one function g : Z → Z′, defined by
g([(m,n)]) = [(m,n)] if [(m,n)] ∈ Z′\rng(f), and g(m) = f(m) for m ∈ ω. Clearly g is a
bijection. Now the operations +′ and ·′ are defined on Z as follows. For any a, b ∈ Z,

a+′ b = g−1(g(a) + g(b));

a ·′ b = g−1(g(a) · g(b)).

moreover, we define a <′ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of Z onto Z′. Namely, if a, b ∈ Z, then

g(a+′ b) = g(g−1(g(a) + g(b))) = g(a) + g(b);

g(a ·′ b) = g(g−1(g(a) · g(b))) = g(a) · g(b);

a <′ b iff g(a) < g(b).

Moreover, the operations +′ and ·′ on ω coincide with the ones defined in Chapter 6, since
if m,n ∈ ω, then

m+′ n = g−1(g(m) + g(n)) = g−1(f(m) + f(n)) = g−1(f(m+ n)) = m+ n;

m ·′ n = g−1(g(m) · g(n)) = g−1(f(m) · f(n)) = g−1(f(m · n)) = m · n;

m <′ n iff g(m) < g(n)

iff f(m) < f(n)

iff m < n.
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All of the properties above, like the associative, commutative, and distributive laws, hold
for Z since g is an isomorphism. Of course we use +, ·, < now rather than +′, ·′, <′.
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40. The rationals

Here we define the rational numbers and give their fundamental properties. For brevity
we denote multiplication of integers by justaposition, as is usually done.

Let A = Z× (Z\{0}). We define a relation ∼ on A as follows:

(a, b) ∼ (c, d) iff ad = bc

This definition and succeeding ones are well-motivated if you think of (a, b) as being a
b

intuitively.

Lemma 40.1. ∼ is an equivalence relation on A.

Proof. Reflexivity: If (a, b) ∈ A, then ab = ba, so (a, b) ∼ (a, b).
Symmetry: Assume that (a, b) ∼ (c, d). Thus ad = bc, so cb = da, and hence (c, d) ∼

(a, b).
Transitivity: Assume that (a, b) ∼ (c, d) ∼ (e, f). Thus ad = bc and cf = de. Hence

adf = bcf = bde, so 0 = adf − bde = d(af − be). Since d 6= 0, it follows that af − be = 0,
and hence af = be. This shows that (a, b) = (e, f).

We let Q′ be the set of all equivalence classes under ∼.

Proposition 40.2. There is a binary operation + on Q′ such that for any (a, b), (c, d) ∈ A,
[(a, b)] + [(c, d)] = [(ad+ bc, bd)].

Proof. First note that if (a, b), (c, d) ∈ A, then bd 6= 0, so that at least the pair
(ad+ bc, bd) is in A. Now let

R = {(x, y) : there exist (a, b), (c, d) ∈ A such that

x = ([(a, b)], [(c, d)]) and y = [(ad+ bc, bd)]}.

We claim that R is a function. For, suppose that (x, y), (x, z) ∈ R. Then we can choose
(a, b), (c, d), (a′, b′), (c′, d′) ∈ A such that x = ([(a, b)], [(c, d)]), y = [(ad + bc, bd)], x =
([(a′, b′)], [(c′, d′)]), and y = [(a′d′ + b′c′, b′d′)]. so ([(a, b)], [(c, d)]) = ([(a′, b′)], [(c′, d′)]),
hence [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d′)], hence (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′),
hence

ab′ = ba′(1)

cd′ = dc′(2)

Hence

(ad+ bc)b′d′ = adb′d′ + bcb′d′

= ab′dd′ + cd′bb′

= ba′dd′ + dc′bb′ by (1), (2)

= a′d′bd+ b′c′bd

= (a′d′ + b′c′)bd,
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and hence (ad+bc, bd) ∼ (a′d′+b′c′, b′d′). Thus y = [(ad+bc, bd)] = [(a′d′+b′c′, b′d′)] = y′.
This proves that R is a function. The proposition is now clear.

Proposition 40.3. If x, y, z ∈ Q′, then
(i) x+ (y + z) = (x+ y) + z.
(ii) x+ y = y + x.

Proof. Let x = [(a, b)], y = [(c, d)], and z = [(e, f)]. Then

x+ (y + z) = [(a, b)] + ([(c, d)] + [(e, f)])

= [(a, b)] + [(cf + de, df)]

= [(adf + b(cf + de), bdf)];

(x+ y) + z = ([(a, b)] + [(c, d)]) + [(e, f)]

= [(ad+ bc, bd)] + [(e, f)]

= [((ad+ bc)f + bde, bdf)]

= [(adf + bcf + bde, bdf)]

= x+ (y + z);

x+ y = [(a, b)] + [(c, d)]

= [(ad+ bc, bd)]

= [(cb+ da, db)]

= [(c, d)] + [(a, b)]

= y + x.

Now we define 0′ = [(0, 1)].

Proposition 40.4. x+ 0′ = x for any x ∈ Q. Moreover, for any x ∈ Q′ there is a y ∈ Q′

such that x+ y = 0′.

Proof. Let x = [(a, b)]. Then

x+ 0′ = [(a, b)] + [(0, 1)]

= [(a · 1 + b · 0, b · 1)]

= [(a, b)]

= x.

Next, let y = [(−a, b)]. Then

x+ y = [(a, b)] + [(−a, b)] = [(ab+ b(−a), bb)] = [(0, bb)] = [(0, 1)].

Here the last equality holds because 0 · 1 = 0 = bb · 0.

The following two facts are proved as in appendix B, proof of B6 and B7.

Proposition 40.5. If r is an element of Q′ such that x+r = x for all x ∈ Q′, then r = 0′.
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Proposition 40.6. If x, y, z ∈ Q′ and x+ y = 0′ = x+ z, then y = z.

These are all of the properties of + that we need.

Proposition 40.7. There is a binary operation · on Q′ such that for all (a, b), (c, d) ∈ A,
[(a, b)] · [(c, d)] = [(ac, bd)].

Proof. First note that if (a, b), (c, d) ∈ A, then bd 6= 0, so that (ac, bd) ∈ A. Now let

R = {(x, y) : there exist (a, b), (c, d) ∈ A such that

x = ([(a, b)], y = [(c, d)]), and z = [(ac, bd)]}.

We claim that R is a function. For, suppose that (x, y), (x, z) ∈ R. Then we can
choose (a, b), (c, d), (a′, b′), (c′, d′) ∈ A such that x = ([(a, b)], [(c, d)]), y = [(ac, bd)],
x = ([(a′, b′)], [(c′, d′)]), and z = [(a′c′, b′d′)]. So ([(a, b)], [(c, d)]) = ([(a′, b′)], [(c′, d′)]), and
hence [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d′)], hence (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′),
hence ab′ = ba′ and cd′ = dc′. Hence

acb′d′ = ab′cd′ = ba′dc′ = bda′c′,

hence (ac, bd) ∼ (a′c′, b′d′),

hence y = [(ac, bd)] = [(a′c′, b′d′)] = z.

So R is a function, and the conclusion is clear.

Proposition 40.8. For any x, y, z ∈ Q′ we have
(i) x · (y · z) = (x · y) · z.
(ii) x · y = y · x.
(iii) x · (y + z) = x · y + x · z.

Proof. Write x = [(a, b)], y = [(c, d), and z = [(e, f)]. Then

x · (y · z) = [(a, b)] · ([(c, d)] · [(e, f)])

= [(a, b)] · [(ce, df)]

= [(ace, bdf)]

= [(ac, bd)] · [(e, f)]

= ([(a, b)] · [(c, d)]) · [(e, f)]

= (x · y) · z;

x · y = [(a, b)] · [(c, d)]

= [(ac, bd)]

= [(ca, db)]

= [(c, d)] · [(a, b)]

= y · x;

x · (y + z) = [(a, b)] · ([(c, d)] + [(e, f)])
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= [(a, b)] · [(cf + de, df)]

= [(a(cf + de), bdf)]

= [(acf + ade, bdf)];

x · y + x · z = [(a, b)] · [(c, d)] + [(a, b)] · [(e, f)]

= [(ac, bd)] + [(ae, bf)]

= [(acbf + bdae, bdbf)].

Thus for the distributive law (iii) we just need to show that [(acf + ade, bdf)] = [(acbf +
bdae, bdbf)], or equivalently that (acf + ade, bdf) ∼ (acbf + bdae, bdbf), or equivalently
that (acf + ade)bdbf = bdf(acbf + bdae). This last statement is proved as follows:

(acf + ade)bdbf = abbcdff + abbddef and bdf(acbf + bdae) = abbcdff + abbddef.

Next, we define 1′ = [(1, 1)].

Proposition 40.9. Let x ∈ Q′.
(i) x · 1′ = x.
(ii) If x 6= 0′ then there is a unique y ∈ Q′ such that x · y = 1′.

Proof. Write x = [(a, b)]. Then x · 1′ = [(a, b)] · [(1, 1)] = [(a, b)] = x. For (ii), assume
that x 6= 0′. Thus [(a, b)] 6= [(0, 1)], so a · 1 6= b · 0, i.e., a 6= 0. Let y = [(b, a)]. Then
x ·y = [(a, b)] · [(b, a)] = [(ab, ba)], and this is equal to [(1, 1)] = 1′ since ab1 = ba1. Suppose
that also x · z = 1′. Write z = [(c, d)]. then [(1, 1)] = x · z = [(a, b)] · [(c, d)] = [ac, bd), and
so ac = bd, and hence y = [(b, a)] = [(c, d)] = z.

We turn to the order of the rationals. In general outline, we follow the procedure used for
the integers.

First we define the set P of positive rationals:

P = {[(a, b)] ∈ Q′ : ab > 0}.

As for the similar definition for integers, this definition says that if ab > 0 then [(a, b)] ∈ P ,
but does not say anything about the converse, so we prove this converse:

Proposition 40.10. [(a, b)] ∈ P iff ab > 0.

Proof. As mentioned, ⇐ holds by definition. Now assume that [(a, b)] ∈ P . This
means that there is a [(c, d)] ∈ Q′ such that [(a, b)] = [(c, d)] and cd > 0. So (a, b) ∼ (c, d),
and hence ad = bc. Hence adbd = bcbd. Now we need the following little general fact:

(1) If x ∈ Z and x 6= 0, then xx > 0.

In fact, we have x > 0 or −x > 0 by B13(i) and the definition of < for integers, so by
B14(v), xx > 0 or xx = (−x)(−x) > 0, as desired in (1).

Now by (1) and B14(v) we have abdd = bcbd > 0. In particular, ab 6= 0. If ab < 0,
then abdd < 0dd = 0, contradiction. So ab > 0.
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Proposition 40.11. Suppose that r, s ∈ Q′.
(i) If r 6= 0′, then r ∈ P or −r ∈ P , but not both.
(ii) If r, s ∈ P , then r + s ∈ P .
(iii) If r, s ∈ P , then r · s ∈ P .

Proof. Let r = [(a, b)] and s = [(c, d)].
(i): Assume that r 6= 0′. Then ab 6= 0, since ab = 0 would imply that a = 0 (since

b 6= 0), and so (a, b) = (0, b) ∼ (0, 0) and hence r = [(a, b)] = [(0, 0)] = 0′, contradiction. If
ab > 0, then r ∈ P , and if −(ab) > 0, then (−a)b > 0, so −r = [(−a, b)] ∈ P . Thus r ∈ P
or −r ∈ P . Suppose that r ∈ P and −r ∈ P . Thus ab > 0 and (−a)b > 0, contradiction.

(ii): Suppose that r, s ∈ P . Then ab > 0 and cd > 0. Now r + s = [(ad + bc, bd)],
and (ad+ bc)bd = abdd+ bbcd. By (1) in the proof of 40.10, dd > 0 and bb > 0. Hence by
properties of integers, abdd+ bbcd > 0.

(iii): Suppose that r, s ∈ P . Then ab > 0 and cd > 0. Now rs = [(ac, bd)] and
acbd = abcd > 0.

Now we can define the order: a < b iff b − a ∈ P . The main properties of < are given in
the following proposition.

Proposition 40.12. Let x, y, z ∈ Q′. Then
(i) x 6< x.
(ii) If x < y < z, then x < z.
(iii) x < y, x = y, or y < x.
(iv) x < y iff x+ z < y + z.
(v) If 0′ < x and 0′ < y, then 0′ < x · y.
(vi) If 0′ < z, then x < y implies that x · z < y · z.

Proof. (i): x− x = 0′, so (i) follows from 40.11(i).
(ii): Assume that x < y < z. So y − x ∈ P and z − y ∈ P . Hence z − x =

(z − y) + y − x) ∈ P by 40.11(ii), so x < z.
(iii): We have x = y or x− y ∈ P or y − x ∈ P , so (iii) follows.
(iv): x < y iff y − x ∈ P iff (y + z)− (x+ z) ∈ P iff x+ z < y + z.
(v): This is immediate from 40.11(iii).
(vi): Assume that 0′ < z and x < y. So z, y − x ∈ P , so by 40.11(iii), y · z − x · z =

z · (y − x) ∈ P , and so x · z < y · z.

This finishes the main construction of the rational numbers. There are still two things to
do, though: identify the integers among the rationals, and make a replacement so that the
integers are a subset of the rationals.

For every integer a we define f(a) = [(a, 1)].

Proposition 40.13. f is an isomorphism of Z into Q′. That is, f is an injection, and
for any a, b ∈ Z we have f(a+ b) = f(a) + f(b) and f(a · b) = f(a) · f(b).

Proof. Suppose that f(a) = f(b). Thus [(a, 1)] = [(b, 1)], hence (a, 1) ∼ (b, 1), hence
a = a1 = 1b = b. So f is an injection.
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Now suppose that a, b ∈ Z. Then

f(a) + f(b) = [(a, 1)] + [(b, 1)] = [(a1 + 1b, 1)] = [(a+ b, 1)] = f(a+ b);

f(a) · f(b) = [(a, 1)] · [(b, 1)] = [(ab, 1)] = f(ab).

Proposition 40.14. Z ∩Q′ = ∅.

Proof. To show that ω∩Q′ = ∅ it suffices to show that each element of Q′ is infinite.
If [(a, b)] ∈ Q′, then (ca, cb) ∈ [(a, b)] for every c ∈ Z, and cb 6= db for c 6= d, and so
(ca, cb) 6= (da, db) for c 6= d; hence [(a, b)] is infinite.

Now suppose that x ∈ Z∩Q′ with x /∈ ω. Temporarily denote the equivalence relation
used to define Z′ by ≡. Then there exist m,n ∈ ω such that x = [(m,n)]≡, and there exists
(a, b) ∈ A such that x = [(a, b)]∼. Then (a, b) ∼ (2a, 2b), so also [(2a, 2b)]∼ = [(a, b)]∼ =
x = [(m,n)]≡. Hence (a, b), (2a, 2b) ∈ [(m,n)]≡, and it follows that (a, b) ≡ (2a, 2b). So
a+ 2b = b+ 2a, and hence a = b. Then (0, 0) ≡ (a, b), so (0, 0) ∈ [(a, b)]≡ = [(a, b)]∼, and
we infer that (0, 0) ∈ A, contradiction.

We can now proceed very much like for Z and Z′. We define Q = (Q′\rng(f)) ∪ Z. There
is a one-one function g : Q→ Q′, defined by g([(a, b)]) = [(a, b)] if [(a, b)] ∈ Q′\rng(f), and
g(a) = f(a) for a ∈ Z. Clearly g is a bijection. Now the operations +′ and ·′ are defined
on Q as follows. For any a, b ∈ Q,

a+′ b = g−1(g(a) + g(b));

a ·′ b = g−1(g(a) · g(b)).

moreover, we define a <′ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of Q onto Q′. Namely, if a, b ∈ Q, then

g(a+′ b) = g(g−1(g(a) + g(b))) = g(a) + g(b);

g(a ·′ b) = g(g−1(g(a) · g(b))) = g(a) · g(b);

a <′ b iff g(a) < g(b).

Moreover, the operations +′ and ·′ on Z coincide with the ones defined previously, since if
a, b ∈ Z, then

a+′ b = g−1(g(a) + g(b)) = g−1(f(a) + f(b)) = g−1(f(a+ b)) = a+ b;

a ·′ b = g−1(g(a) · g(b)) = g−1(f(a) · f(b)) = g−1(f(a · b)) = a · b;

a <′ b iff g(a) < g(b)

iff f(a) < f(b)

iff a < b.

All of the properties above, like the associative, commutative, and distributive laws, hold
for Z since g is an isomorphism. Of course we use +, ·, < now rather than +′, ·′, <′.
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41. The reals

A subset A of Q is a Dedekind cut provided the following conditions hold:

(1) Q 6= A 6= ∅;
(2) For all r, s ∈ Q, if r < s and s ∈ A, then r ∈ A.
(3) A has no largest element.

Let R′ be the set of all Dedekind cuts.
If A and B are Dedekind cuts, then we define

A+B = {x : there are a ∈ A and b ∈ B such that x = a+ b}.

Proposition 41.1. If A and B are Dedekind cuts, then so is A+B.

Proof. Since A and B are both nonempty, clearly A + B is nonempty. Now take
r ∈ Q\A and s ∈ Q\B. So t < r for all t ∈ A, and u < s for all u ∈ B. Then a+ b < r+ s
for all a ∈ A and b ∈ B, so that x < r+ s for all x ∈ A+B. In particular, r+ s /∈ A+B,
by the irreflexivity of <. So we have shown that (1) holds for A+B.

Now suppose that r < s ∈ A + B. Write s = a + b with a ∈ A and b ∈ B. Then
r < s = a+ b, so r−a < b, and hence r−a ∈ B by (2) for B. Hence r = a+ (r−a) shows
that r ∈ A+B. So (2) holds for A+B.

Suppose that x ∈ A + B. Write x = a + b with a ∈ A and b ∈ B. Since a is not the
greatest element of A, by (3) choose a′ ∈ A such that a < a′. Then x = a + b < a′ + b ∈
A+B, proving (3) for A+B.

Proposition 41.2. Let A,B,C be Dedekind cuts. Then
(i) A+B = B +A.
(ii) A+ (B + C) = (A+B) + C.

Proof. (i): obvious. (ii): Suppose that x ∈ A+ (B + C). Then there are a ∈ A and
y ∈ (B + C) such that x = a + y; and there are b ∈ B and c ∈ C such that y = b + c.
So x = a + b + c. Now a + b ∈ (A + B), so x ∈ ((A + B) + C). This shows that
A+ (B +C) ⊆ (A+B) +C. Since this is generally true for all Dedekind cuts A,B,C, we
also have (A+B) + C = C + (B +A) ⊆ (C +B) +A = A+ (B + C).

Now we define, following Chapter 6,

Z = {r ∈ Q : r < 0}.

Clearly Z is a Dedekind cut.

Proposition 41.3. A+ Z = A for every Dedekind cut A.

Proof. Let a ∈ A. Since A does not have a largest element, choose b ∈ A such that
a < b. Then a− b < 0, hence a− b ∈ Z, and so a = b+ (a− b) shows that a ∈ A+ Z.

Conversely, suppose that x ∈ A + Z. Then there exist a ∈ A and b ∈ Z such that
x = a+ b. Since b < 0, we have x < a, and so x ∈ A, as desired.
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It is easy to check that Z is the only element of R′ such that A+ Z = A for all A.
Next, for any Dedekind cut A we define

−A = {r ∈ Q : there is an s ∈ Q such that r < s and − s /∈ A}.

Proposition 41.4. A+−A = Z for any Dedekind cut A.

Proof. First we show that −A is itself a Dedekind cut. Since A 6= Q, choose r ∈ Q\A.
Then also r+1 /∈ A. so −(r+1) < −r and −(−r) = r /∈ A. It follows that −(r+1) ∈ −A.
Hence −A 6= ∅. Next, choose r ∈ A. Then −r /∈ −A, as otherwise there is an s such
that −r < s and −s /∈ A; but −s < r, contradiction. So −A 6= Q. Finally, suppose that
r ∈ −A; we want to find a larger element in A. Choose s such that r < s and −s /∈ A.
Take t ∈ Q such that r < t < s; for example, take t = (r + s)/2. Clearly then t ∈ −A, as
desired. This checks that −A is a Dedekind cut.

Now suppose that x ∈ A+−A. Then there are a ∈ A and b ∈ −A such that x = a+b.
Choose c ∈ Q such that b < c and −c /∈ A. Suppose that 0 ≤ x. Then x = a + b < a + c,
and so −c < a+−x ≤ a, and hence −c ∈ A, contradiction. Hence x < 0, so that x ∈ Z.

Second suppose that r ∈ Z. Fix b /∈ A.

(1) There is a positive integer p such that b+ pr
2 ∈ A.

In fact, to prove (1), also fix a ∈ A. Then a < b, as otherwise we would have b ∈ A. Hence
there are positive integers s, t such that b − a = s

t . Since r
2 < 0, there are also positive

integers u, v such that r
2 = −uv . Then b − a = s

t ≤ s ≤ su = sv(− r2 ). Hence b+ sv r2 ≤ a,
and so b+ sv r2 ∈ A, proving (1).

Let p be the smallest positive integer such that b+p r2 ∈ A. Recall that b /∈ A, so that
even if p = 1 we can assert that b+ (p− 1) r

2
/∈ A. Now

r = b+ pr + (−b+ (−p+ 1)
r

2
+
r

2
),

and (−b+ (−p+ 1) r
2

+ r
2
) < (−b+ (−p+ 1) r

2
, and −(−b+ (−p+ 1) r

2
) = b+ (p− 1) r

2
/∈ A.

This shows that r ∈ A+−A.

The element −A is unique: if A+B = Z, then B = −A. In particular, −Z = Z.
Next, we call a Dedekind cut A positive iff if has at least one positive member.

Proposition 41.5. For any Dedekind cut A, exactly one of the following holds:
(i) A is positive;
(ii) A = Z;
(iii) −A is positive.

Proof. Suppose that A is not positive, and A 6= Z. Since A is not positive, all its
members are negative or zero; since it has no largest element, 0 /∈ A. Thus A ⊆ Z. Since
A 6= Z, we actually have A ⊂ Z. Choose r ∈ Z\A. Now r + r < 0 + r = r < 0, and so
r < r

2 < 0. Hence 0 < − r2 < −r. So − r2 ∈ −A, since −(−r) = r /∈ A. This shows that −A
is positive.

So we have shown that one of (i)–(iii) holds.
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Obviously (i) and (ii) do not simultaneously hold. Suppose that both A and −A are
positive. Hence there is a positive element r ∈ A, and a positive element s ∈ −A. By the
definition of −A, choose t such that s < t and −t /∈ A. Then −t < −s < 0 < r, so −t ∈ A,
contradiction. Thus (i) and (iii) do not simultaneously hold. Finally, suppose that −Z is
positive. Let r be a positive element of −Z. Then by definition there is an s such that
r < s and −s /∈ Z. So 0 ≤ −s < −r, contradicting r being positive.

On the basis of Proposition 41.5, the following definition makes sense. For any Dedekind
cut A,

|A| =

{
A if A = Z or A is positive,
−A if −A is positive.

Now we repeat the definition of product from Chapter 6. Let A and B be Dedekind cuts.

A ·B = {r ∈ Q : there are s ∈ A and t ∈ B such that 0 < s

and 0 < t and r < s · t} if A and B are positive,(a)

A ·B = Z if A = Z or B = Z,(b)

A ·B = −(|A| · |B|) if A 6= Z 6= B and exactly one of A,B is positive(c)

A ·B = (−A) · (−B) if −A and −B are both positive.(d)

Proposition 41.6. Let A,B,C be Dedekind cuts.
(i) A ·B = B ·A.
(ii) (−A) ·B = −(A ·B) = A · (−B).
(iii) A · (B · C) = (A ·B) · C.
(iv) A · (B + C) = A ·B +A · C.

Proof. (i): this is clear if both A and B are positive, or if one of them is Z. If both
are different from Z and exactly one of them is positive, then |A| and |B| are both positive,
and

A ·B = −(|A| · |B|) = −(|B| · |A|) = B ·A.

If −A and −B are both positive, then

A ·B = (−A) · (−B) = (−B) · (−A) = B ·A.

Thus (i) holds.
(ii): First we prove that (−A) ·B = −(A ·B). This is true by (b) if one of A,B is Z,

since −Z = Z. If A and B are positive, then

(−A) ·B = −(A ·B) by (c).
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If −A and B are positive, then

−(A ·B) = −(−((−A) ·B)) by (c)

= (−A) ·B.

If A and −B are positive, then

(−A) ·B = B · (−A) by (i)

= −(B ·A) by the previous case

= −(A ·B) by (i).

Finally, if −A and −B are positive, then

(−A) ·B = −((−A) · (−B)) by (c)

= −(A ·B) by (d).

Thus (−A) ·B = −(A ·B) in general. The other part of (ii) follows from (i).
(iii):

(1) If A,B,C are all positive, then A · (B ·C) ⊆ (A ·B) · C.

For, assume that A,B,C are all positive. Clearly then A ·B and B · C are positive. Now
let x ∈ A · (B · C). Then there exist s, t such that x < s · t, 0 < s ∈ A, and 0 < t ∈ B · C.
Since t ∈ B · C, there exist u, v such that t < u · v, 0 < u ∈ B, and 0 < v ∈ C. Choose
s′ ∈ A such that s < s′. Then s · u < s′ · u, 0 < s′ ∈ A, and 0 < u ∈ B, so s · u ∈ A · B.
Then x < s · u · v, 0 < s · u ∈ A ·B, and 0 < v ∈ C, so x ∈ (A ·B) ·C. This proves (1).

(2) If one of A,B,C is equal to Z, then A · (B ·C) = Z = (A ·B) · C.

This is clear.

(3) If A,B,C are all positive, then A · (B ·C) = (A ·B) · C.

In fact,

A · (B · C) ⊆ (A ·B) · C by (1)

= C · (B ·A) by (i)

⊆ (C ·B) ·A by (1)

= A · (B · C) by (i).

So (3) holds.

Now we can use (ii) to finish (iii):

A,B,−C positive: A · (B · C) = A · −(B · −C)

= −(A · (B · −C)

= −((A ·B) · −C)
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= (A ·B) · C;

A,−B,C positive: A · (B · C) = A · −(−B · C)

= −(A · (−B · C))

= −((A · −B) ·C)

= (A ·B) · C;

A,−B,−C positive: A · (B · C) = A · ((−B) · (−C))

= (A · −B) · −C

= (A ·B) · C;

C positive: (A ·B) · C = C · (B ·A)

= (C ·B) ·A

= A · (B · C);

−A,B,−C positive: A · (B · C) = A · −(B · −C)

= −((−A) · −(B · −C))

= (−A) · (B · −C)

= ((−A) ·B) · −C

= (A ·B) · C;

−A,−B,−C positive: A · (B · C) = A · ((−B) · (−C))

= −((−A) · ((−B) · (−C)))

= −(((−A) · (−B)) · −C)

= (A ·B) · C.

(iv): Clearly

(4) If one of A,B,C is Z, then A · (B + C) = A ·B +A · C.

(5) If A,B,C are positive, then A · (B + C) = A ·B + A ·C.

For, first suppose that x ∈ A · (B + C). Then we can choose s, t so that 0 < s ∈ A,
0 < t ∈ B + C, and x < s · t. Since t ∈ B + C, there are b ∈ B and c ∈ C such that
t = b + c. Now choose b′ ∈ B with b ≤ b′ and 0 < b′, and choose c′ ∈ C such that c ≤ c′

and 0 < c′. Now x = s · b′ + (x− s · b′), and clearly s · b′ ∈ A ·B, while

x− s · b′ < s · (b′ + c′)− s · b′ = s · c′,

and clearly s · c′ ∈ A ·C. This proves ⊆ in (5).

Now suppose that y ∈ A · B + A · C. Then we can write y = u + v with u ∈ A · B
and v ∈ A · C. Say u < s · t with 0 < s ∈ A and 0 < t ∈ B, and v < a · c with 0 < a ∈ A
and 0 < c ∈ C. Let s′ be the maximum of s and a. Then y < s′ · (t+ c), 0 < s′ ∈ A, and
t+ c ∈ B + C. So y ∈ A · (B + C). This proves ⊇ in (5).

(6) If A,B,−C are positive, and also B +C is positive, then A · (B +C) = A ·B +A ·C.
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For,

A ·B = A · (B + C +−C)

= A · (B + C) + A · (−C) by (5)

= A · (B + C) +−(A · C), by (ii)

and (6) follows.

(7) If A,B,−C are positive, and B + C is negative, then A · (B + C) = A ·B + A · C.

For,

−(A · (B + C)) = A · (−(B + C)) by (ii)

= A · (−B +−C)

= A · (−B) + A · (−C) by (6)

= −(A ·B) +−(A · C), by (ii)

and (7) follows.

(8) If A,B,−C are positive, and B + C = Z, then A · (B + C) = A ·B +A · C.

For, under these hypotheses, C = −B, and so

A · (B + C) = A · Z = Z = A ·B +−(A ·B) = A ·B + A · (−B) = A ·B + A · C.

(9) If A,−B,C are positive, then A · (B + C) = A ·B +A · C.

This follows from (6)–(8) since + is commutative.

(10) If A,−B,−C are positive, then A · (B + C) = A ·B + A · C.

For,

A · (B + C) = −(A · (−B +−C)) by (ii)

= −(A · (−B) +A · (−C)) by (5)

= −(−(A ·B) +−(A · C)) by (ii)

= A ·B + A · C.

(11) If A is positive, then A · (B + C) = A ·B + A · C.

This is true by (6)–(10).

(12) If −A is positive, then A · (B + C) = A ·B +A · C.

In fact, (−A) · (B + C) = (−A) ·B + (−A) · C by (11), and (12) follows, using (ii).

Now we define
I = {r ∈ Q : r < 1}.

Clearly I is a Dedekind cut.
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Proposition 41.7. A · I = A for any Dedekind cut A.

Proof. This is clear if A = Z. Now suppose that A is positive. Suppose that r ∈ A ·I.
Then there are s, t ∈ Q such that 0 < s ∈ A, 0 < t ∈ I, and r < s · t. Clearly then r < s,
so r ∈ A by the definition of Dedekind cut.

Conversely, suppose that r ∈ A. Choose r′, r′′ ∈ A such that r < r′ < r′′ and 0 < r′.
Let s = r′

r′′
. Then 0 < s < 1, so s ∈ I. Since r < r′ = r′′ · s, it follows that r ∈ A · I. Thus

we have shown that A · I = A for A positive.
If −A is positive, then A · I = −((−A) · I) = −(−A) = A, using D6(ii).

Proposition 41.8. If A is a Dedekind cut and A 6= Z, then there is a Dedekind cut B
such that A ·B = I.

Proof. First suppose that A is positive. Let

B = {r ∈ Q : r < 0, or 0 ≤ r and r · s < 1 for every s ∈ A for which 0 < s}.

Then B 6= ∅, since clearly 0 ∈ B. Clearly if r′ < r ∈ B, then also r′ ∈ B. If 0 < s ∈ A,
then 1

s /∈ B. So B is a Dedekind cut.
We claim that A · B = I. Suppose that r ∈ A · B. Choose s, t so that 0 < s ∈ A,

0 < t ∈ B, and r < s · t. Then by the definition of B, s · t < 1, so r < 1. Hence r ∈ I.
Conversely, suppose that r ∈ I, so that r < 1. Choose r′, r′′, r′′′ so that 0, r < r′ <

r′′ < r′′′ < 1. Let C = {s ∈ Q : s < r′′′}. Clearly C is a Dedekind cut.

(1) (A · C) ⊂ A.

In fact, clearly (A · C) ⊆ A. Suppose that A · C = A. Now

A = A · I = (A · C) + (A · (I − C)) = A+ (A · (I − C)),

so A · (I − C) = Z. Choose s, t so that r′′′ < s < t < 1. Then −s < −r′′′ and r′′′ /∈ C,
so −s ∈ −C. Hence 0 < t− s ∈ (I − C). So I − C is positive. Since A is also positive, it
follows that A · (I − C) is positive, contradiction. Hence (1) holds.

By (1), choose s ∈ A\(A · C). We may assume that 0 < s. Thus

(2) For all a, c, if 0 < a ∈ A and 0 < c ∈ C, then a · c ≤ s.

Now let v = r′

s
. Thus s · v = r′ > r. Hence we will get r ∈ A · B as soon as we show that

v ∈ B. Suppose that 0 < a ∈ A. Now 0 < r′′ ∈ C, so by (2) we have a · r′′ ≤ s. Hence

a · v = a ·
r′

s
< a ·

r′′

s
≤ 1,

so that a · v < 1, as desired.
Thus we have finished the proof in the case that A is positive. If −A is positive, then

choose B so that (−A) ·B = I. Then (A · (−B)) = (−A) ·B = I, using 41.7(ii).

This finishes the purely arithmetic part of the construction of the real numbers. Now we
discuss ordering. We define A < B iff B − A is positive. Elementary properties of < are
given in the following proposition.
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Proposition 41.9. Let A,B,C ∈ R′. Then
(i) A 6< A.
(ii) If A < B < C, then A < C.
(iii) A < B, A = B, or B < A.
(iv) A < B iff A+ C < B + C.
(v) Z < I.
(vi) If Z < A and Z < B, then Z < A ·B.
(vii) If Z < C, then A < B implies that A · C < B · C.
(viii) A < B iff A ⊂ B.

Proof. (i): A−A = Z, so A 6< A by 41.5.
(ii) Suppose that A < B < C. Thus B − A and C − B are positive. Hence clearly

also C − A = C −B +B −A is positive.
(iii): Given A,B, by 41.5 we have A−B positive, A−B = Z, or −(A−B) = B −A

is positive. By definition this gives A < B, A = B, or B < A.
(iv): First suppose that A < B. Thus B−A is positive. Since B+C−(A+C) = B−A,

it follows that A+ C < B + C.
Second, suppose that A+C < B +C. Thus B −A = B +C − (A+C) is positive, so

A < B.
(v): Obviously I is positive.
(vi): Assume that Z < A and Z < B. Thus A and B are positive. Clearly then A ·B

is positive. So Z < A ·B.
(vii): Assume that Z < C and A < B. Then C and B − A are positive, so also

C · (B −A) = C ·B − (A · C) is positive, and so A · C < B · C.
(viii): Suppose that A < B. Thus B−A is positive. Choose x so that 0 < x ∈ B−A.

Then we can write x = b + a with b ∈ B and a ∈ −A. By the definition of −A, choose
s ∈ Q so that a < s and −s /∈ A. Then −s < −a, so also −a /∈ A. Also b + a > 0, so
b > −a, and it follows that b /∈ A. Now if y ∈ A, then y < b, as otherwise b ≤ y would
imply that b ∈ A. But then y ∈ B. So A ⊆ B, and since b ∈ B\A, even A ⊂ B.

Conversely, suppose that A ⊂ B. Choose b ∈ B\A. Choose c, d such that b < c <
d ∈ B. Now −c < −b and b /∈ A, so −c ∈ −A. Thus d− c is a positive element of B − A,
hence B − A is positive and A < B.

The following theorem expresses the essential new property of the reals as opposed to the
rationals.

Theorem 41.10. Every nonempty subset of R′ which is bounded above has a least upper
bound. That is, if ∅ 6= X ⊆ R′, and there is a Dedekind cut D such that A ≤ D for all
A ∈ R′, then there is a Dedekind cut B such that the following two conditions hold:

(i) A ≤ B for every A ∈X .
(ii) For any Dedekind cut C, if A ≤ C for every A ∈X , then B ≤ C.

Proof. Let B =
⋃

A∈X
A. Since X is nonempty, and each Dedekind cut is nonempty,

it follows that B is nonempty. To show that B does not consist of all rationals, we use the
assumption that X has an upper bound. Let D be an upper bound for X . Thus A ≤ D
for all A ∈X . By 41.9(viii), A ⊆ D for all A ∈X , and hence B ⊆ D. Since D 6= Q, also
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B 6= Q. If x < y ∈ B, then y ∈ A for some A ∈ X , hence x ∈ A, hence x ∈ B. Thus B is
a Dedekind cut.

For any A ∈X we have A ⊆ B, and hence A ≤ B by D9(viii).
Now suppose that A ⊆ C for all A ∈ X , where C is a Dedekind cut. Then B ⊆ C,

hence B ≤ C by 41.9(viii).

Next we want to embed the rationals into R′. For every rational r we define f(r) = {q ∈
Q : q < r}. Clearly f(r) is a Dedekind cut.

Proposition 41.11. (i) f is one-one.
(ii) f(r + s) = f(r) + f(s) for any r, s ∈ Q.
(iii) f(r · s) = f(r) · f(s) for any r, s ∈ Q.

Proof. (i): Suppose that r, s ∈ Q; say r < s. Then r ∈ f(s)\f(r), so f(r) 6= f(s).
(ii): First suppose that x ∈ f(r+s). Thus x < r+s, so x−s < r. Let r′ be a rational

number such that x−s < r′ < r. Then x = r′ +(x−r′), and x−r′ < s, so x ∈ f(r)+f(s).
Conversely, suppose that x ∈ f(r) + f(s). Choose a ∈ f(r) and b ∈ f(s) so that

x = a+ b. Then a < r and b < s, so x < r + s, and so x ∈ f(r + s).
(iii): Note that f(0) = Z; hence (iii) is clear if r = 0 or s = 0. Suppose that r, s > 0.

Suppose that x ∈ f(r · s). So x < r · s. Hence x
s < r. Choose r′ ∈ Q such that x

s < r′ < r
and 0 < r′. Hence x

r′ < s. Choose s′ ∈ Q such that x
r′ < s′ < s and 0 < s′. Then x < r′ ·s′,

0 < r′ ∈ f(r), and 0 < s′ ∈ f(s), so x ∈ f(r) · f(s).
Conversely, suppose that x ∈ f(r) · f(s). Then there are r′ ∈ f(r) and s′ ∈ f(s) such

that 0 < r′, 0 < s′, and x < r′ · s′. Hence x < r · s, so x ∈ f(r · s), as desired. This finishes
the case in which r, s > 0.

To continue we need the following little fact:

(1) −f(r) = {q ∈ Q : q < −r} for any rational number r.

In fact, suppose that q ∈ −f(r). Then there is a rational t such that q < t and −t /∈ f(r).
thus −t 6< r, so r ≤ −t. Hence t ≤ −r, so q < −r. Conversely, suppose that q < −r. Now
r /∈ f(r), so q ∈ −f(r). Thus (1) holds.

Now suppose that r < 0 < s. Then, using (1),

f(r) · f(s) = −((−f(r)) · f(s)) = −(f(−r) · f(s)) = −f((−r) · s) = f(r · s).

Similarly if s < 0 < r. If r, s < 0, then

(f(r) · f(s) = (−f(r)) · (−f(s)) = f(−r) · f(−s) = f((−r) · (−s)) = f(r · s).

Proposition 41.12. Q ∩ R′ = ∅.

Proof. First, ω ∩R′ = ∅, since the members of ω are all finite, while the members of
R′ are all infinite.

Now suppose that a ∈ Z∩R′. Then a /∈ ω by the preceding paragraph, so a = [(m,n)]
for some m,n ∈ ω. But also a ∈ R′, so a is a set of rationals. In particular, (m,n) is a
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rational. Now (m,n) has either one or two elements; the only rationals with only one or
two elements are 1 and 2. Since ∅ ∈ 1 and ∅ ∈ 2, we get ∅ ∈ (m,n), contradiction.

A similar argument shows that a ∈ Q ∩ R′ leads to a contradiction.

We can now proceed very much like in previous appendices. We define R = (R′\rng(f))∪Q.
There is a one-one function g : R → R′, defined by g(A) = A if A ∈ R′\rng(f), and
g(A) = f(A) for A ∈ Q. Clearly g is a bijection. Now the operations +′ and ·′ are defined
on R as follows. For any a, b ∈ R,

a+′ b = g−1(g(a) + g(b));

a ·′ b = g−1(g(a) · g(b)).

moreover, we define a <′ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of R onto R′. Namely, if a, b ∈ R, then

g(a+′ b) = g(g−1(g(a) + g(b))) = g(a) + g(b);

g(a ·′ b) = g(g−1(g(a) · g(b))) = g(a) · g(b);

a <′ b iff g(a) < g(b).

Moreover, the operations +′ and ·′ on Q coincide with the ones defined in appendix C,
since if a, b ∈ Q, then

a+′ b = g−1(g(a) + g(b)) = g−1(f(a) + f(b)) = g−1(f(a+ b)) = a+ b;

a ·′ b = g−1(g(a) · g(b)) = g−1(f(a) · f(b)) = g−1(f(a · b)) = a · b;

a <′ b iff g(a) < g(b)

iff f(a) < f(b)

iff a < b.

All of the properties above, like the associative, commutative, and distributive laws, hold
for R since g is an isomorphism. Of course we use +, ·, < now rather than +′, ·′, <′.
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