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Abstract. Several authors have considered the analogue of space-time codes over finite
fields, usually taking the distance between two matrices as the rank of their difference.
We introduce a weight enumerator for these “finite rank codes,” and show that there is
a MacWilliams-type identity connecting the weight enumerator of a linear finite rank
code to that of its dual. We do so with a proof of sufficient generality that it simul-
taneously derives the classical MacWilliams identity for linear block codes. Finally, we
demonstrate a close relationship between the MacWilliams identity for linear finite rank
codes and that for linear block codes.

Introduction

A space-time code S is a finite subset of the M × T complex matrices MatM×T (C)
used to describe the amplitude-phase modulation of a radio frequency carrier signal in a
frame of T symbols received over each of the M transmit antennas. We call the set of
entries of the matrices in S its alphabet.

The main design criterion in the construction of space-time codes is the error correcting
capability of the code, so we seek to minimize the pair-error probability of decoding one
codeword C1 into another C2. For quasi-static Rayleigh fading channels with Gaussian
noise, one can bound this probability by an asymptotic in the inverse of the signal-to-
noise ratio ρ, whose lead term is a multiple of (1/ρ)d, where d = d(C1, C2) is the rank of
C1 − C2. The minimum value dS for d(C1, C2) over all C1 6= C2, C1, C2 ∈ S is called the
diversity order of S. Hence one seeks to maximize dS .

We note that:

I) This diversity order makes sense for matrices over a finite field.

II) Each space-time code whose alphabet lies in the set of algebraic integers is an
appropriately-defined lift from a corresponding space-time code over a finite field.

III) There is an appropriately-defined notion of equivalence of space-time codes such
that each space-time codes is arbitrarily well approximated by an equivalent one whose
alphabet lies in the set of algebraic integers.
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Mailaender, and Judy Walker for continued encouragement. This work was partially supported by
NSF grant CCF 0434410.



In a forthcoming paper [3], we make the notions in (II) and (III) precise and prove
these assertions. Roughly speaking, what we prove in [3] is that the alphabet of S can
be perturbed by an arbitrarily small amount such that it lies in the ring of integers O of
some number field, and that this perturbation does not change the rank of the difference
of any two codewords. Then there exists a prime ideal p of O such that when the entries
of the codewords are reduced mod p, the rank of the difference of any two codewords
does not change. This set of reduced matrices now has entries in the finite field O/p.

We conclude that each space-time code is in essence derived from one over a finite field.
Thus the study of such codes over finite fields becomes a central object of investigation.

The main result of this paper is that these space-time codes have a rich theory over
finite fields: in particular, each such linear code has a notion of a dual, and a weight enu-
merator that satisfies a MacWilliams-type identity relating it to the weight enumerator
of its dual.

In section 1, we discuss previous work on space-time rank codes over finite fields
and define the dual of a linear code. In section 2 we outline a quite general proof of
MacWilliams-type identities for space-time codes with certain weights over finite fields.
In section 3 we use this to give a proof of the classical MacWilliams identity for linear
block codes. In section 4 we use the results of section 2 to show that the linear “finite
rank codes” have appropriately defined weight enumerators that satisfy a MacWilliams-
type identity, and give some examples in section 5. In the final section 6 we explain how
these two duality relations are closely related.

1. Duality Theory for linear space-time codes over finite fields

Let q be a power of a prime, and Fq denote the field with q elements. Let M,T ≥ 1,
and C ⊆ MatM×T (Fq). We call C a finite matrix code over Fq. If in addition C is
an Fq-vector space, we call it a linear finite matrix code. We define a code structure
d(C1, C2) on C to be any translation-invariant metric on MatM×T (Fq), i.e., one such that
d(C1 + C3, C2 + C3) = d(C1, C2) for all C1, C2, C3 ∈ MatM×T (Fq). Note that each code
structure defines a weight w(C1) = d(C1, 0), and that a code structure can be recovered
from the weight via d(C1, C2) = w(C1 − C2). So we will also think of the weight as the
code structure.

Here we will only consider two code structures (others are detailed in [2]). The first
is where d(C1, C2) = rk(C1 − C2), and we will call a finite matrix code endowed with
this metric a finite rank code. The second is where d(C1, C2) is the Hamming weight of
C1−C2 (i.e., the number of non-zero entries of C1−C2), and we will call a finite matrix
code endowed with this metric a finite matrix Hamming code. Concatenating rows or
columns of these matrices shows that such codes are nothing more than block codes of
length MT under the Hamming metric.

The structure of finite rank codes was studied long before the advent of space-time
codes, by Gabidulin some 30 years ago in studying criss-cross errors in storage [1]. We
are indebted to Eric Moorhouse for pointing out to us that a finite rank code C with
T = M that satisfies d(C1, C2) = M for all distinct non-trivial C1, C2 ∈ C, is also nothing
more than an “matrix spread set” studied in discrete geometry under a different guise
(and that if in addition C is linear, then it is a semifield, i.e., a non-associative division
algebra over Fq.) The theory of finite rank codes as they relate to space-time codes was
initiated in [4], [5], [6], [7], and [8].

Let C be a finite linear M × T code over Fq of dimension k and coding structure w.
We define its minimal distance as d = minA∈C, A6=0 w(A), and say that C has parameters
[M,T, k, d].



There is a notion of a dual of any linear finite matrix code C. On MatM×T (Fq) we
define the symmetric bilinear “inner product” `(A,B) = tr(ABT ), and then set

C⊥ = {B ∈ MatM×T (Fq)| `(A,B) = 0, ∀A ∈ C}.
Remark. This choice of product mirrors the standard inner product on real matrices.

It is also the standard dot product of A and B thought of as vectors by concatenating
their rows (or columns).

If C is a linear [M,T, k, d]-code, then (C⊥)⊥ = C, and C⊥ is an [M,T, k′, d′]-code, where
k + k′ = MT . The main result of this paper is that a finite rank code has a generating
function that serves as a weight enumerator, and that there is a functional equation
relating the weight enumerator of a linear finite rank code to that of its dual that is
analogous to the MacWilliams identity for linear block codes.

2. The general argument

We can now give an argument which simultaneously provides generalized MacWilliams-
type identities for several classes of finite linear matrix codes over Fq.

Let P = {Pi|1 ≤ i ≤ n} be a partition of MatM×T (Fq), so that MatM×T (Fq) = ∪ni=1Pi,
each Pi 6= ∅, and Pi ∩ Pj = ∅ for i 6= j. We say P has length n. For B ∈ MatM×T (Fq)
we will write P(B) for the r such that B ∈ Pr. Since one way to partition MatM×T (Fq)
is by having a code structure w and taking each Pi to be the matrices of a fixed weight,
by abuse of language, for any partition P , if P(B) = r, we will also refer to r as the
weight of B. We assume throughout that each Pr is fixed by the multiplication of its
elements by non-zero scalars in Fq, and say in this case that P is preserved by F∗q. Let
CM×T denote the set of linear M × T matrix codes over Fq, and for any C ∈ CM×T and
1 ≤ r ≤ n, define

ar(C) = #(C ∩ Pr).
Then we define a : CM×T → Q

n by a(C) = (a1(C), ..., an(C)). For any A ∈ MatM×T (Fq),
let [A] be the linear code generated by A. Let yr denote the integer-valued vector of
length n consisting of a 1 in the rth-entry and a 0 in every other entry.

Lemma 1. a(CM×T ) is a spanning set of Qn as a Q-vector space.

Proof. Suppose that P(0) = s. Then a([0]) = ys. For every 1 ≤ r ≤ n, r 6= s, choose
a matrix Cr ∈ Pr. Then a([Cr]) = (q − 1)yr + ys. Hence a([0]) and the a([Cr]) form a
spanning set.

We will say that C1, C2 ∈ CM×T are formally equivalent if a(C1) = a(C2). We will let
Q(t) denote the field of rational function in t, that is, the field of ratios of polynomials
in t with rational coefficients.

Let F = {fr|1 ≤ r ≤ n} be elements of Q(t) which are linearly independent over Q.
Fix a C ∈ CM×T and let ar = ar(C). Then we define a P-enumerator of C with respect
to F to be

φF (t)(C) =
n∑
r=1

arfr.

Consider the double sum

S =
∑

B∈MatM×T (Fq)

(
∑
A∈C

χ(`(A,B)))fP(B),

where χ is a non-trivial character on Fq. Recall that this means that χ is a non-trivial
homomorphism from Fq to C∗, so the sum

∑
x∈Fq χ(xy) is q if y = 0 but vanishes oth-

erwise. Since ` is bilinear the inner sum in S is |C| if B ∈ C⊥, and vanishes if B /∈ C⊥.



Hence

S = |C|
∑
B∈C⊥

fP(B) = |C|
n∑
s=1

bsfs = |C|φF (t)(C⊥),

where bs = as(C⊥).
On the other hand, exchanging the order of summation,

S =
∑
A∈C

(
∑

B∈MatM×T (Fq)

χ(`(A,B))fP(B)).

Assumption 1.
∑

B∈MatM×T (Fq)
χ(`(A,B))fP(B) depends only on P(A).

We now assume that Assumption 1 holds. So then we can write∑
B∈MatM×T (Fq)

χ(`(A,B))fP(B) =
n∑
s=1

αrsfs,

for some αrs, where r = P(A). Since P is preserved by F∗q and ` is bilinear, we get that
αrs ∈ Z.

As a result, we get

S =
n∑

r,s=1

arαrsfs,

so since the fs are Q-linearly independent,

|C|bs =
n∑
r=1

arαrs, (1)

for all 1 ≤ s ≤ n. Note that applying (1) to every C and its dual, Lemma 1 shows that
[αrs] is an invertible matrix, whose square is qMT times the n× n identity matrix.

We now define a dualizing sequence Ck ∈ CM×T , 1 ≤ k ≤ n to be one such that:

i) C⊥k is formally equivalent to Cn+1−k.

ii) If pkr = ar(Ck), then [pkr] is invertible.

We will call [prk] the associated matrix of the dualizing sequence. Suppose that the
dimension of Ck is ek. We will call {ek|1 ≤ k ≤ n}, the associated dimensions of the
dualizing sequence.

Now suppose we have a dualizing sequence. Applying (1) to every Ck we have

qekpn−k,s = |Ck|as(Cn−k) = |Ck|as(C⊥k ) = |Ck|bs =
n∑
r=1

αrspkr.

So as matrices

antidiag(qe1 , ..., qen)[pks] = [pkr][αrs],

where antidiag(qe1 , ..., qen) is the n×n matrix N = [nij] such that nij = qei if j = n+1−i
and vanishes otherwise. Hence:

[αrs] = [pkr]
−1antidiag(qe1 , ..., qen)[pkr]. (2)

In order to replicate a functional equation for a P-enumerator that resembles the
classical MacWilliams identity, we take ∗ to be any involutary automorphism of Q(t)
(i.e., an automorphism ∗ of Q(t) of order 2) and ψ to be any element of Q(t) such that
ψψ∗ = qMT . Then we want a relation of the form

|C|φF (t)(C⊥) = ψφF (t∗)(C), (3)



to hold for every C ∈ CM×T . Again, by Lemma 1, from (1), (3) holds if and only if,

ψf ∗r =
n∑
s=1

αrsfs,

so by (2), if and only if

ψg∗k = qekgn+1−k, (4)

where gk =
∑n

r=1 pkrfr for 1 ≤ k ≤ n. Therefore if we have Q-linearly independent
gk, 1 ≤ k ≤ n, that satisfy (4), and if we find some dualizing sequence with associated
matrix [pkr] and degrees {ek}, and then define [fr] = [pkr]

−1[gk], then φF (t) will satisfy
the functional equation (3).

In summary, we have proved:

Theorem 1. Let P be a partition of length n of MatM×T (Fq) preserved by F∗q. Suppose
χ is a non-trivial character of Fq such that Assumption 1 holds. Let ∗ be an involu-
tary automorphism of Q(t) and ψ ∈ Q(t) be such that ψψ∗ = qMT . Suppose we have
a dualizing sequence for P with associated matrix [pkr] and dimensions {ek}. Further
suppose that we have a set of Q-linearly independent functions g1, ..., gn ∈ Q(t) such that
ψg∗k = qekgn+1−k. Set [fr] = [pkr]

−1[gk]. Then we have

|C|φF (t)(C⊥) = ψφF (t∗)(C).

The partitions which apply in the theorem will often be the orbits under a group action.
In this case, we can prove the following.

Theorem 2. Let G be a group that acts on MatM×T (Fq). We assume that G contains a
subgroup H isomorphic to F∗q, and that identifying H and F∗q, the action restricted to F∗q
is just scalar multiplication. We also assume that G has an automorphism ρ of order 2,
such that ρ is adjoint for `(A,B), i.e.,

`(gA,B) = `(A, ρ(g)B),

for all g ∈ G and A,B ∈ MatM×T (Fq). Suppose that we have a dualizing sequence for the
partition P consisting of the orbits under the action of G, with associated matrix [pkr]
and dimensions {ek}. Let n be the length of P. Let ∗ be an involutary automorphism
of Q(t) and ψ ∈ Q(t) be such that ψψ∗ = qMT . Suppose we have a set of Q-linearly
independent functions g1, ..., gn ∈ Q(t), such that ψg∗k = qekgn+1−k. Set [fr] = [pkr]

−1[gk].
Then we have

|C|φF (t)(C⊥) = ψφF (t∗)(C).

Proof. All we have to check is that Assumption 1 holds for P and some non-trivial
character χ. For each 1 ≤ r ≤ n, let γr be a chosen element in Pr. Take A ∈ MatM×T (Fq)
and suppose P(A) = r. Then there is a g ∈ G such that A = gγr. Note that for
every B, `(A,B) = `(gγr, B) = `(γr, ρ(g)B), and the map B → ρ(g)B is a bijection of
MatM×T (Fq) that preserves orbits under G. Hence we can rewrite the sum∑

B∈MatM×T (Fq)

χ(`(A,B))fP(B) =
∑

B∈MatM×T (Fq)

χ(`(γr, ρ(g)B))fP(B) =

∑
B∈MatM×T (Fq)

χ(`(γr, ρ(B)))fP(ρ(B)) =
∑

B∈MatM×T (Fq)

χ(`(γr, B))fP(B),

which depends only on P(A). Hence Assumption 1 holds, and the proof follows from
Theorem 1.



Remark. At the core of a duality relation is the necessity that the enumerator of a
linear code completely determine the enumerator of its dual code. We can see then that
Assumption 1 is necessary for any sort of duality relation to hold. Indeed,∑

B∈MatM×T (Fq)

χ(`(A,B))fP(B) =
∑

B∈[A]⊥

fP(B) −
∑

(B/∈[A]⊥)/F∗q

fP(B)

=
1

q − 1

( ∑
B∈[A]⊥

(q − 1)fP(B) −
∑

B/∈[A]⊥

fP(B)

)
=

1

q − 1

( ∑
B∈[A]⊥

qfP(B) −
∑

B∈MatM×T (Fq)

fP(B)

)
,

which if an enumerator is determined by that of a dual, must only depend on the enu-
merator of [A], which is to say, it must only depends on P(A). In fact, if (3) does hold,
we get that

1

q − 1

( ∑
B∈[A]⊥

qfP(B) −
∑

B∈MatM×T (Fq)

fP(B)

)
=

1

q − 1
(qφF (t)([A]⊥)− φF (t)([0]⊥))

=
1

q − 1
(ψφF (t∗)([A])− ψφF (t∗)([0])) = ψfP(A)(t

∗),

which quite clearly depends only on P(A).

3. The classical MacWilliams identity

We can recover a proof of the classical MacWilliams identity by applying Theorem
2. We consider finite linear Hamming matrix codes and take M = 1, so these are just
traditional linear block codes of length T under the Hamming metric. Let GLT (Fq)
denote the general linear group of invertible T × T matrix with entries in Fq. We apply
Theorem 2 by taking G = DP , where D is the subgroup of diagonal matrices in GLT (Fq),
P is the subgroup generated by permutation matrices, G acts via matrix multiplication
on the right of (Fq)

T , and ρ consists of taking transposes. We get a partition of FTq of
length T + 1, with each orbit consisting of vectors of a fixed Hamming weight.

The main task before us to find a dualizing sequence. We claim that

Ck = {(x1, ..., xk, 0, ..., 0)|xi ∈ Fq},
0 ≤ k ≤ n, is a dualizing sequence.

Indeed, the dimension of Ck is k, and C⊥k is equivalent to Cn−k. Now let us set pkr =
ar(Ck), and show that [pkr] is invertible. A computation shows for k ≥ r,

pkr = (
k

r
)(q − 1)r,

and otherwise is 0. If srj = (−1)r−j( r
j
)/(q − 1)r for r ≥ j and is otherwise 0, then

n∑
r=0

pkrsrj =
k∑
r=j

(
k

r
)(
r

j
)(−1)r−j =

k∑
r=j

(
k − j
r − j

)(
k

k − j
)(−1)r−j =

(
k

j
)

k∑
r=j

(
k − j
r − j

)(−1)r−j = (
k

j
)(1 + (−1))k−j = (

k

j
)δkj = δkj,

where δkj is the Kronecker delta. Hence [pkr] is invertible with inverse [srj], and Ck forms
a dualizing sequence with associated matrix [pkr] and associated dimensions ek = k.



We now take t→ q/t as the involutary automorphism ofQ(t). Then taking ψ = tT , and
gk = tk, 0 ≤ k ≤ n, we have ψ(t∗)k = qktn−k, so setting fr =

∑n
j=0 srjt

j = ((1−t)/(1−q))r
and applying Theorem 2 we get:

Theorem 3. (MacWilliams) Let C be a linear block code of length T over Fq, let ar be

the number of codewords of C of Hamming weight r, and set φC(t) =
∑T

r=0 ar(
1−t
1−q )

r. Then

φC⊥(t) =
1

|C|
tTφC(q/t).

This is equivalent to the usual statement of the MacWilliams identity for linear block
codes. Indeed letting u = (1− t)/(1− q), then t = 1 + (q− 1)u, and the map ∗ : t→ q/t
corresponds to u → (1 − u)/(1 + (q − 1)u). So (3) holds with ψ = (1 + (q − 1)u)n and
fr = ur, which is the typical statement of the MacWilliams identity [10].

4. A MacWilliams-type identity for weight enumerators of finite rank

codes

We now prove a MacWilliams-type identity for what we will call the rank enumerator
of a finite rank code, which is to say, the weight enumerator where the weight of a matrix
is its rank. In terms of the language of section 2, the rank enumerator of a code is the
P-enumerator when Pr consists of the M × T matrices with entries in Fq of rank r, for
0 ≤ r ≤ min (M,T ). Let n = min (M,T ), so the partition P has length n+ 1.

We can proceed by using Theorem 2 since P is the set of orbits under a group action.
Indeed, let G = GLM(Fq) × GLT (Fq), where the second factor acts as multiplication
on the right of MatM×T (Fq) and the first factor acts on the left via multiplication by
the transpose. Then the orbits under G give rise to P , G has a subgroup isomorphic
to F∗q which acts as scalar multiplication, and if ρ consists of taking transposes of each
factor, then it is an automorphism of order 2 which is an adjoint for `. The main task
for applying Theorem 2 is to compute [pkr] for some dualizing sequence.

Let Ck be the collection of partitioned matrices (N |0M,T−k) where N ∈ MatM×k(Fq) if
M ≥ T , and the transpose of this collection if M ≤ T . In either case, we have 0 ≤ k ≤ n.
Then it is clear that C⊥k is formally equivalent to Cn−k. To see that Ck forms a dualizing
sequence, we resort to the known calculation of the number of matrices over Fq of fixed

size and rank [11], which shows that pkr = ar(Ck) = [k
r
][m
r

]φr(−1)rq( r
2

), for r ≤ k, where:

φr = (1− q) · · · (1− qr), [
k

r
] = φk/φrφk−r, (5)

and m = max (M,T ). Here [k
r
] is the classical generalized binomial coefficient or q-

binomial coefficient. For any N it satisfies the Newton identity [9]

N−1∏
i=0

(1 + qix) =
N∑
i=0

[
N

i
]q( i

2
)xi. (6)

Note pkr = 0 if r > k. If srj = (−1)r−j[ r
j
]q( r−j

2
)/ φm
φm−r

(−1)rq( r
2

), for r ≥ j, and srj = 0 for

r < j, then by (5) and (6),

n∑
r=0

pkrsrj =
k∑
r=j

[
k

r
][
r

j
]q( r−j

2
)(−1)r−j =

k∑
r=j

[
k − j
r − j

][
k

k − j
]q( r−j

2
)(−1)r−j =

[
k

j
]

k∑
r=j

[
k − j
r − j

]q( r−j
2

)(−1)r−j = [
k

j
]

k−j−1∏
i=0

(1 + qi(−1)) = [
k

j
]δkj = δkj.



So [pkr] is invertible, and [srj] is its inverse, and Ck is a dualizing sequence with associ-
ated matrix [pkr] and associated dimensions ek = qkm. Let ∗ : t→ qm/t be an involutary
automorphism of Q(t), ψ = tn, and gk = tk for 0 ≤ k ≤ n. Then ψψ∗ = qmn = qMT , and
ψg∗k = tkmgn−k. Hence Theorem 2 applies, so if we set [fr] = [pkr]

−1gk, then by (6),

fr =
n∑
j=0

srjt
j =

φm−r
φm

r∑
j=0

[
r

j
]q( j

2
)(−q1−rt)j =

φm−r
φm

r−1∏
j=0

(1− q−jt) =
r−1∏
j=0

(
t− qj

qm − qj
).

This motivates the following:

Definition 1. Let C be an M × T finite linear rank code over Fq. For any 0 ≤ r ≤
min (M,T ), let fr =

∏r−1
j=0( t−qj

qmax (M,T )−qj ), and define the rank enumerator of C to be

φC(t) =

min (M,T )∑
r=0

arfr,

where ar is the number of elements of C of rank r.

Finally, Theorem 2 gives us:

Theorem 4. Let C be a M × T linear finite rank code over Fq. Then

φC⊥(t) =
1

|C|
tmin (M,T )φC(q

max (M,T )/t).

5. Some examples.

I) Typically the best space-time codes are those whose diversity order is maximal. The
corresponding property for linear M × T finite rank codes is that their minimal distance
be maximal, that is, equal to n = min (M,T ). For such codes, the Singleton bound ([1],
[7]) constrains k to be at most n. This leads one to consider [M,T, n, n]-codes where
n = min (M,T ). Let’s consider the case M = T = 2.

i) q is odd. Take e ∈ Fq to be a non-square. Then

C = {
(
a b
be a

)
|a, b ∈ Fq}

is a [2, 2, 2, 2]-code (constructed in [1] and [7]). Its dual is

C⊥ = {
(
c de
−d −c

)
|c, d ∈ Fq},

which is also a [2, 2, 2, 2]-code. Let ar and br denote respectively the number of elements
of C and C⊥ of rank r. Then a0 = b0 = 1, a1 = b1 = 0, and a2 = b2 = q2− 1, so C and C⊥
are formally self dual. We get

φC(t) = φC⊥(t) = 1 + 0 · t− 1

q2 − 1
+ (q2 − 1)

(t− 1)(t− q)
(q2 − 1)(q2 − q)

=
t2 − (q + 1)t+ q2

q2 − q
.

One easily checks that t2φC(q
2/t)/q2 = φC⊥(t).

ii) q is even. Take e ∈ Fq such that x2 + x+ e is an irreducible polynomial. Then

C = {
(
a b
be a+ b

)
|a, b ∈ Fq}, C⊥ = {

(
c c+ de
d c

)
|c, d ∈ Fq},

are both [2, 2, 2, 2]-codes. Again φC(t) = φC⊥(t) = t2−(q+1)t+q2

q2−q .

II) Theorem 4 gives a nice recursive relation for Ut,m, the number of m × m upper-
triangular matrices with entries in Fq of rank t. For example, let C be the vector space
of all 3 × 3 lower-triangular matrices with entries in Fq whose diagonal entries are all



0, which is a [3, 3, 3, 1]-code. Then C⊥ is the vector space of all 3 × 3 upper-triangular
matrices with entries in Fq, which is a [3, 3, 6, 1]-code. Then

φC(t) = U0,2 + U1,2
t− 1

q3 − 1
+ U2,2

(t− 1)(t− q)
(q3 − 1)(q3 − q)

,

φC⊥(t) = U0,3 + U1,3
t− 1

q3 − 1
+ U2,3

(t− 1)(t− q)
(q3 − 1)(q3 − q)

+ U3,3
(t− 1)(t− q)(t− q2)

(q3 − 1)(q3 − q)(q3 − q2)
.

The fact that t3φC(q
3/t)/q3 = φC⊥(t) implies, for instance, that

U1,3 = (φC⊥(q)− U0,3)(q2 + q + 1) = (φC(q
2)− U0,2)(q2 + q + 1) =

(q2 + q + 1)(U1,2
q2 − 1

q3 − 1
+ U2,2

(q2 − 1)(q2 − q)
(q3 − 1)(q3 − q)

) = U1,2(q + 1) + U2,2,

since U0,3 = U0,2 = 1. Noting that U2,2 = (q − 1)2q gives U1,2 = q3 − U0,2 − U2,2 =
(q − 1)(2q + 1). Hence by the above, U1,3 = (q − 1)(3q2 + 2q + 1).

6. Relationship between the duality relations for linear block codes

and linear finite rank codes.

From the point of view of Theorem 1 and its proof, it becomes apparent that there are
two requirements for our derivation of a MacWilliams-type identity (3) for a partition P
of MatM×T (Fq) that is preserved by F∗q. The first is that P satisfies Assumption 1, which
gives rise to the integer matrix [αrs]. The second is the existence of a dualizing sequence,
which produces the associated matrix [pkr] and associated dimensions {ek}, which give
the factorization (2). Of course, given the factorization (2) without a dualizing sequence,
one could still use it to write down the MacWilliams-type identity (3).

So in a sense, the matrix [αrs] is the more fundamental object, in that it gives the
relationship between the weights of a linear matrix code and that of its dual without
requiring the existence of an enumerator that satisfies a MacWilliams-type identity. We
will call the matrix [αrs] the duality matrix of P .

We now compare the duality matrices for linear block codes of length n under the
Hamming metric (which is given by values of Krawtchouk polynomials [10]) and for
finite linear M × T rank codes. We show that taking M = T = n, one duality matrix is
similar to a constant multiple of the other. This follows from the results of section 3 and
4, but we will give a more conceptual and precise approach.

Let Cn = C1×n. We define a map φ : Cn → Cn×n by defining φ(C) for C ∈ Cn to
be the set up all upper-triangular matrices whose vector of diagonal entries consists of
codewords in C. We will let C̃ denote φ(C). It is not hard to see that if the dimension of

C is k, then the dimension of C̃ is k+ q(n
2

). It is also clear that C̃⊥ ⊆ ((C̃)⊥)T . Since they

both have dimension n− k + (n
2
) = n2 − (k + (n

2
)), we have that C̃⊥ = ((C̃)⊥)T .

Now for any C ∈ Cn, let ar = ar(C), br = ar(C⊥), ãr = ar(C̃), b̃r = ar(C̃⊥) = ar(C̃⊥),
where the first two weights denote the number of codewords of Hamming weight r and
the latter weights denote the number of codewords of rank r. Then from (1) we have

|C|[b0, ..., bn] = [a0, ..., an][αrs], |C̃|[b̃0, ..., b̃n] = [ã0, ..., ãn][α̃rs], (7)

where [αrs] and [α̃rs] are respectively the duality matrices for Cn and Cn×n.
Let Ut,m denote the number of upper-triangular matrices of rank t and size m×m de-

fined over Fq (which can be calculated recursively, as in example (II) of section 5). Let M
be an n×n upper-triangular matrix which has u non-zero diagonal entries dj1,j1 , ..., dju,ju .
Let M ′ denote the (n − u) × (n − u) upper-triangular matrix gotten by removing the
jst1 , ..., j

th
u rows and columns of M . Note that all the diagonal entries of M ′ are 0, so its



rank is the same as that of the (n − u − 1) × (n − u − 1) upper-triangular matrix M ′′

gotten by removing the diagonal and principal subdiagonal of M ′. Then the rank of M
is u plus the rank of M ′′. Note that the rank of M is independent of its (n

2
) − (n−u−1

2
)

non-diagonal entries that lie in its jst1 , ..., j
th
u rows and columns. Hence

ãr =
r∑

k=0

akq
(n

2
)−(n−k−1

2
)Ur−k,n−k−1.

Now let Vkr = q(n
2

)−(n−k−1
2

)Ur−k,n−k−1. Then we have that

[ã0, ..., ãn] = [a0, ..., an][Vkr], and [b̃0, ..., b̃n] = [b0, ..., bn][Vkr]. (8)

Putting (7) and (8) together we have

[a0, ..., an][Vkr][α̃rs] = [ã0, ..., ãn][α̃rs] = |C̃|[b̃0, ..., b̃n] =

|C|q(n
2

)[b0, ..., bn][Vkr] = q(n
2

)[a0, ..., an][αrs][Vkr]. (9)

Let wr be the vector of length n whose first r entries are 1 and whose remaining entries
are 0. Now considering φ([wr]) for each 0 ≤ r ≤ n, shows, as in the proof of Lemma 1,
that [ã0, ..., ãn] is a spanning set of Qn+1 as C varies. Hence from (9) we have that

[Vkr][α̃rs] = q(n
2

)[αrs][Vkr],

and from (8) that [Vkr] is invertible. Therefore we have shown:

Theorem 5. Let [αrs] denote the duality matrix for linear block codes of length n over
Fq under the Hamming metric, and [α̃rs] the duality matrix for n × n finite linear rank
codes over Fq. Then

[αrs] = q−(n
2

)[Vkr][α̃rs][Vkr]
−1.

This implies that the classical MacWilliams identity for linear block codes can be
derived from the MacWilliams-type identity for finite linear rank codes, so the latter can
be considered a generalization of the former.
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