
SPACE-TIME--TIMEHomer G. EllisAbstra
t. Spa
e-time--time is a natural hybrid of Kaluza's �ve-dimensional geometry andWeyl's 
onformal spa
e-time geometry. Translations along the se
ondary time dimension pro-du
e the ele
tromagneti
 gauge transformations of Kaluza{Klein theory and the metri
 gaugetransformations of Weyl theory, quantitatively related as Weyl postulated. Geometri
ally, thisphenomenon resides in an exponential-expansion produ
ing \
onformality 
onstraint", whi
hrepla
es Kaluza's \
ylinder 
ondition" and is appli
able to metri
s of all dimensionalities andsignatures. The de Sitter spa
e-time metri
 is prototypi
ally 
onformally 
onstrained; its hyper-de Sitter analogs of signatures + + + � + and + + + � � des
ribe spa
e-time--time va
ua.The 
urvature tensors exhibit in spa
e-time--time a wealth of \intera
tions" among geomet-ri
al entities with physi
al interpretations. Unique to the 
onformally 
onstrained geometryis a se
tionally isotropi
, ultralo
ally determined \residual 
urvature", useful in 
onstru
tionof an a
tion density for �eld equations. A spa
e-time--time geodesi
 des
ribes a test parti-
le whose rest mass �m and ele
tri
 
harge q evolve a

ording to de�nite laws. Its motionis governed by four apparent for
es: the Einstein gravitational for
e proportional to �m, theLorentz ele
tromagneti
 for
e proportional to q, a for
e proportional to �m and to the ele
tro-magneti
 four-potential, and a for
e proportional to q2=�m and to the gradient of ln �, wherethe s
alar �eld � is essentially the spa
e-time--time residual radius of 
urvature. The parti
leappears suddenly at an event E1 with q = ��(E1) and vanishes suddenly at an event E2 withq = �(E2). At E1 and E2 the �-for
e in�nitely dominates the others, 
ausing E1 and E2 too

ur near where � has an extreme value; appli
ation to the modeling of orbital transitionsof atomi
 ele
trons suggests itself. The equivalen
e of a test parti
le's inertial mass and itspassive gravitational mass is a 
onsequen
e of the gravitational for
e's proportionality to �m.No 
onne
tion is apparent between �m and a
tive gravitational mass or between q and a
tiveele
tri
 
harge, nor does the theory seem to require any. Justi�
ation for applying the name\spa
e-time--time" whether the signature be + + + � + or + + + � � lies in a 
onstru
tionwhi
h, applied to Eu
lidean spheres, produ
es the de Sitter manifold and its time 
oordinate t(\spa
e's time"), and, when applied to Minkowskian spheres, produ
es the hyper-de Sittermanifolds and their new 
oordinate � (\spa
e-time's time"). If spa
e-time--time metri
s of thetwo signatures are pla
ed on equal footing by 
omplexi�
ation of �, the expanded geometrypresents new elements whi
h beg to be linked to quantum me
hani
al phase phenomena. Theforging of su
h a link will allow one ultimately to say, not that geometry has been quantized,but that the quantum has been geometrized.I. Introdu
tionImpelled by 
onvi
tions about the nature of time [1℄, I have pursued the prospe
t thatmanifolds bearing \
onformally 
onstrained" metri
s 
an serve as realisti
 models of physi
alsystems in whi
h gravity, ele
tromagnetism, and other phenomena manifest themselves.This paper presents some of the produ
ts of that ongoing pursuit.Roughly, a 
onformally 
onstrained metri
 is one for whi
h there is a ve
tor �eld � su
hthat the lengths of ve
tors Lie transported by � are 
onformally expanded if those ve
torsare orthogonal to �, but are left un
hanged if those ve
tors are parallel to � [2℄; the deSitter metri
 is the prototype. The geometry of �ve-dimensional manifolds 
arrying su
hmetri
s is a natural hybrid of the �ve-dimensional Kaluza geometry, with its distinguishedTypeset by AMS-TEX1



2 HOMER G. ELLISKilling ve
tor �eld that \isometri
ally 
onstrains" the metri
 [3℄, and the four-dimensionalWeyl geometry, with its multipli
ity of 
onformally related metri
s and the asso
iated gaugeforms [4℄. This Kaluza{Weyl o�spring is an evolutionary improvement in that it retainsand enhan
es the most useful 
hara
ters of its progenitors while attenuating to benign anduseful form those that have 
aused diÆ
ulty. Most notably, it retains both the Kaluzauni�
ation of gravity with ele
tromagnetism and the Weyl asso
iation of metri
al gauge
hanges (multipli
ations of the metri
 by 
onformal fa
tors) with ele
tromagneti
 gauge
hanges (additions of gradients to the ele
tromagneti
 potential). Also, it 
onverts theobje
tionable nonintegrability of length transferen
e in the Weyl geometry to integrabilitywithout sa
ri�
ing the prin
iple that length, be
ause it is a 
omparative measure, dependson designation of a standard at ea
h point, that is, on 
hoi
e of a gauge. In the pro
essit lends to the �fth dimension an essential signi�
an
e that the Kaluza geometry fails toprovide.The pi
ture that emerges from appli
ation of this hybrid geometry to the modeling ofphysi
al systems has in it some rather unexpe
ted representations of elementary physi
alphenomena, quantum phenomena in
luded. Be
ause the models are 
learly de�ned, with lit-tle room for ambiguity in their interpretations, these representations appear to be es
apableonly by denial of the whole enterprise. Taken on their own terms they will, I believe, add toour image of the world a 
ertain 
oheren
y not present in existing representations. Whetherthey are a

urate will be, of 
ourse, a matter for investigation.In this paper I de�ne and exemplify 
onformally 
onstrained metri
s and introdu
e theterm \spa
e-time--time" in Se
. II, exhibit 
anoni
al de
ompositions of su
h metri
s in Se
.III, show in Se
. IV how they in
orporate and relate metri
al and ele
tromagneti
 gaugetransformations, and exhibit in Se
s. V and VI their 
onne
tion forms and their geodesi
equations in frame systems adapted to the ve
tor �eld � of the 
onstraint. In Se
. VII,a
ting on the assumption that the geodesi
s of spa
e-time--time des
ribe histories of testparti
les, I de�ne the spa
e-time--time momentum 
ove
tor of su
h a parti
le and use it tomake a physi
al interpretation of the spa
e-time--time geometry, identifying 
ertain s
alars,ve
tors, and 
ove
tors along a geodesi
 as ele
tri
 
harge, rest mass, spa
e-time proper time,and spa
e-time momentum of the test parti
le in question, and 
ertain geometri
al �eldsas gravitational, ele
tromagneti
 potential, ele
tromagneti
 bive
tor, and s
alar gradient�elds exerting apparent for
es on test parti
les in pre
isely determined ways. Se
tion VIIIexamines how the spa
e-time--time model distinguishes and to what extent it relates the
on
epts of inertial mass, passive gravitational mass, a
tive gravitational mass, passiveele
tri
 
harge, and a
tive ele
tri
 
harge. Se
tion IX and the Appendix display the various
urvature �elds of a 
onformally 
onstrained metri
: 
urvature tensor, 
ontra
ted 
urvaturetensor, 
urvature s
alar, and Einstein tensor. In Se
. X I de�ne and 
ompute \residual
urvature", an important 
on
ept pe
uliar to 
onformally 
onstrained metri
s. Lastly, Se
.XI dis
usses the rationale for the term \spa
e-time--time" and the need for extension of the
onformally 
onstrained geometry that 
onsistent appli
ation of that rationale implies.II. Conformally Constrained Metri
sLet M be a manifold and Ĝ a (symmetri
 and nondegenerate) metri
 on M. That Ĝis 
onformally 
onstrained will mean that it meets the following 
ondition, in whi
h L�denotes Lie di�erentiation along �.Conformality Constraint. There exists onM a ve
tor �eld � su
h that L�Ĝ = 2G, whereG := Ĝ� (Ĝ��)�1(Ĝ� 
 Ĝ�).



SPACE-TIME--TIME 3(The metri
 Ĝ is understood to be a \
o
otensor" �eld: if P is a point ofM, then Ĝ(P ) is anelement of TP 
 TP , that is, a linear mapping of the tangent spa
e TP of M at P into TP ,the 
otangent spa
e of M at P , regarded as the dual spa
e of TP . Thus Ĝ� is a 
ove
tor�eld on M, and Ĝ�� is a s
alar �eld on M, the \square length" of � under Ĝ. Impli
itin the 
onformality 
onstraint is that Ĝ�� vanishes nowhere, that, to put it di�erently,� is nowhere null with respe
t to Ĝ; a 
onsequen
e is that � itself vanishes nowhere. Thesymmetri
 
o
otensor �eld G is just the orthogonal proje
tion of Ĝ along �, so the 
onditionL�Ĝ = 2G 
auses the lengths of ve
tors orthogonal to and Lie transported by � to expand.)The prototype of 
onformally 
onstrained metri
s is the de Sitter spa
e-time metri
,whi
h in the Lemâ�tre 
oordinate system takes the formĜ = e2t(dx
 dx+ dy 
 dy + dz 
 dz)�R2(dt
 dt); (1)where R is the (uniform) spa
e-time radius of 
urvature [1, 5℄. Here � = �=�t, Ĝ� = �R2dt,Ĝ�� = �R2, and G = e2t(dx 
 dx + dy 
 dy + dz 
 dz). The manifold M 
overed by theLemâ�tre 
oordinate system is (together with Ĝ) only half of the 
omplete de Sitter spa
e-time, whi
h is a single-sheeted hyperboloidal \sphere"H of radius R in the Minkowski spa
eM(4; 1). Though not geodesi
ally 
omplete, M is �-
omplete in that on every �-path (thatis, on every maximally extended integral path of �) the integration parameter runs from�1 to 1. Be
ause H is homogeneous, it is a union of open \hemispheres" like M, on ea
hof whi
h the metri
 of H is 
onformally 
onstrained and �-
omplete.Two additional examples of 
onformally 
onstrained metri
s are the hyper-de Sittermetri
s Ĝ� given byĜ� = e2�(dx
 dx+ dy 
 dy + dz 
 dz � dt
 dt)�R2(d� 
 d�); (2)de�ned on manifolds M� that (with Ĝ�) are open halves of the two kinds of \spheres" ofradius R found in M(4; 2). For both metri
s � = �=�� and G = e2�(dx 
 dx + dy 
 dy +dz 
 dz � dt
 dt); but Ĝ+�� = R2, whereas Ĝ��� = �R2, whi
h of 
ourse re
e
ts the fa
tthat Ĝ+ has diagonal signature + + +�+ and Ĝ� has it + + +��. Both M+ and M�are �-
omplete.With these examples in mind let us agree to des
ribe Ĝ as �-
ompletely 
onformally
onstrained if Ĝ is 
onformally 
onstrained andM is �-
omplete (with respe
t to the ve
tor�eld � of the 
onstraint), and as lo
ally (�-
ompletely) 
onformally 
onstrained if Mis a union of open submanifolds on ea
h of whi
h the restri
tion of Ĝ is (�-
ompletely)
onformally 
onstrained. Then the metri
 of the de Sitter sphere H is lo
ally, �-
ompletely
onformally 
onstrained, as are the hyper-de Sitter sphere metri
s that extend Ĝ+ and Ĝ�.The �ve-dimensional Kaluza metri
s are 
hara
terized by the \
ylinder 
ondition"L�Ĝ = 0 [3℄, whi
h makes � a Killing ve
tor �eld of, hen
e \isometri
ally 
onstrains",Ĝ [6℄. Also, as readily follows, L�G = 0, so G is Lie-
onstant along every �-path. Thisproje
tion G of the metri
 Ĝ, de�ned on the �ve-dimensional manifold of Ĝ, is essentiallyfour-dimensional, being degenerate in the dire
tion of �. It was intended (by Klein [3a℄ andby Einstein [3b℄, ea
h of whom adopted it in preferen
e to Kaluza's noninvariant alternative)to supplant the four-dimensional metri
 of spa
e-time, and was therefore supposed to havediagonal signature +++� for its nondegenerate part. Having to 
hoose between +++�+and +++�� for the signature of the full metri
 Ĝ, Kaluza apparently opted for +++�+[7℄. As the �rst three +'s refer to spatial dimensions, one naturally is tempted to say (andmany do say) that this 
auses Kaluza's extra dimension to be spatial also, and to 
all aKaluza manifold a \spa
e-time--spa
e". But that is mere verbal analogy | it la
ks any real



4 HOMER G. ELLISjusti�
ation in the form of a 
onne
tion between the �fth 
oordinate, generated along �,and the three dimensions of physi
al spa
e represented by the �rst three 
oordinates.Rather than settle on one of these signatures for Ĝ, I shall pro
eed as if either may bethe 
ase, and shall apply the des
riptive term spa
e-time--time to every �ve-dimensionalmanifold M bearing a lo
ally, �-
ompletely 
onformally 
onstrained metri
 Ĝ, of diagonalsignature + + + � + (equivalently, � � � + �) or of signature + + + � � (equivalently,� �� + +), whose orthogonal proje
tion along � has a spa
e-time signature [8℄. I intendin a subsequent paper to pla
e the two kinds of spa
e-time--time metri
 on equal footing asproje
tions of a single, higher dimensional, 
onformally 
onstrained metri
. Physi
al inter-pretations aside, all the 
omputations that follow will be valid whatever the dimensionalityof M or the signature of Ĝ.III. Standard Forms of a Conformally Constrained Metri
Let Ĝ be a metri
 that is 
onformally 
onstrained, and let M be its 
arrying manifold.One sees easily that Ĝ = G+ �̂�2(A
A); (3)where � := jĜ��j 12 , A := (Ĝ��)�1Ĝ�, and �̂ := 1 if Ĝ�� > 0, but �1 if Ĝ�� < 0. Theproje
ted metri
 G, the s
alar �eld �, and the 
ove
tor �eld A behave in the followingways under Lie di�erentiation along �: L�� = 0, L�A = 0, and L�G = 2G. This isdemonstrable by a few simple 
al
ulations. First, G� = Ĝ� � (Ĝ��)�1(Ĝ� 
 Ĝ�)� = Ĝ� �(Ĝ��)�1(Ĝ��)Ĝ� = 0. Next, be
ause L�� = 0, one has that L�(Ĝ�) = (L�Ĝ)� = 2G� = 0,and L�(Ĝ��) = (L�(Ĝ�))� = 0, so that 
learly L�� = 0 and L�A = 0. From Eq. (3) it thenfollows that L�G = L�Ĝ, when
e L�G = 2G.A de
omposition of G 
omes about from solving the di�erential equation L�G = 2G.Spe
i�
ally, if C is a s
alar �eld on M, then L�(e�2CG) = e�2C [�2(L�C)G + L�G℄ =�2e�2C(L�C � 1)G. If L�C = 1, then L��G = 0, where �G := e�2CG. Thus G = e2C�G, andĜ = e2C�G+ �̂�2(A
A); (4)where C is a s
alar �eld, L�C = 1, �G is a metri
 onM of the same signature and degenera
yas G, and L��G = 0. Appli
ation of L� to both sides of Eq. (4) shows that this representationfor Ĝ, under the 
onditions that L�C = 1 and the Lie derivatives along � of �G, �, and A allvanish, is suÆ
ient to make Ĝ satisfy the 
onformality 
onstraint (with respe
t to �). Withthese 
onditions the representation therefore 
onstitutes a 
hara
terization of 
onformally
onstrained metri
s.Continuing, let us introdu
e (by a standard 
onstru
tion) a 
oordinate system [[x�; �℄℄adapted to � so that � = �=��. (Here � and other Greek letter indi
es will range, if d > 1,from 1 to d � 1, where d := dim M; if d = 1, then the only 
oordinate is �, so � does notenter the game.) As a 
ove
tor �eld, A has in [[x�; �℄℄ the expansion A = A�dx� + A�d�.But A� = A(�=��) = A� = (Ĝ��)�1Ĝ�� = 1, so A = A�dx� + d�. Further, 0 = L�A =L�=��A = (�A�=��)dx�, so �A�=�� = 0; thus the A� depend on the 
oordinates x� alone,and not on �. Also, ��=�� = L�� = 0, so � is a fun
tion of the x� only. The proje
tedmetri
 G has the expansion G = dx� 
 g��dx� + dx� 
 g��d� + d� 
 g��dx� + d� 
 g��d�.But 0 = G� = G(�=��) = g��dx� + g��d�, so g�� = g�� = 0. Be
ause G is symmetri
,g�� vanishes also, and therefore G = dx� 
 g��dx� . The 
ondition L�G = 2G translates to�g��=�� = 2g�� . In this way we arrive at the adapted 
oordinates version of Eq. (3), viz.Ĝ = dx� 
 g��dx� + �̂�2(A�dx� + d�)
 (A�dx� + d�); (30)



SPACE-TIME--TIME 5with ��=�� = �A�=�� = 0 and �g��=�� = 2g�� .To do the same for Eq. (4), let us now sele
t the s
alar �eldC. Be
ause �C=�� = L�C =1, the possibilities are C = � + �, thus e2C = e2�e2�, with ��=�� = 0. But the fa
tor e2�
an be absorbed by rede�ning �G, so let us take C = �. Then �G = e�2�G = dx� 
�g��dx� ,where �g�� := e�2�g�� ; 
onsequently, G = e2��G, g�� = e2��g�� , and, be
ause L��G = 0,��g��=�� = 0. Let us also introdu
e the 
ove
tor �eld �A := A� d�, for whi
h A = �A+ d�,�A = �A�dx�, �A� = A�, L��A = L�A = 0, and ��A�=�� = �A�=�� = 0. Then Eq. (4) takesthe forms Ĝ = e2��G+ �̂�2��A+ d��
 ��A+ d��= e2�(dx� 
�g��dx�) + �̂�2��A�dx� + d��
 ��A�dx� + d��; (40)with ��=�� = ��A�=�� = ��g��=�� = 0.The ability of a metri
 Ĝ to assume the standard forms (30) and (40) with the stated
onditions on �, A�, �A�, g�� , and�g�� satis�ed is ne
essary and suÆ
ient for the restri
tionsof Ĝ to the domains of all su
h adapted 
oordinate systems [[x�; �℄℄ to be 
onformally
onstrained, thus for Ĝ to be lo
ally 
onformally 
onstrained.IV. Gauge TransformationsCoordinate systems adapted to � su
h as [[x�; �℄℄ of the pre
eding se
tion may be 
on-stru
ted in the following well-known way. Pi
k a hypersurfa
e S of M that is transverse to�, and a 
oordinate system [[y�℄℄ of S, and suppose that no �-path 
rosses dom[[y�℄℄ twi
e [9℄.For ea
h point P of M that lies on a traje
tory of � (that is, in some �-path's range) whoseinterse
tion with S is a point Q in the domain of [[y�℄℄, let x�(P ) = y�(Q) and let �(P ) bethe value attained at P by the integration parameter of � that starts with the value 0 atQ. Then [[x�; �℄℄ is a 
oordinate system of M whose domain is the set of all su
h points P .It is adapted to � in the sense that � = �=��, and to S in that �jS = 0.The only arbitrary elements in this 
onstru
tion are the hypersurfa
e S and the 
oor-dinate system [[y�℄℄ of S. When one pi
ks a di�erent hypersurfa
e S0 transverse to �, and�-transfers [[y�℄℄ to S0 to use as the 
oordinate system [[y�0 ℄℄ of S0, so that y�0(Q0) = y�(Q) ifQ in S and Q0 in S0 belong to the same traje
tory of �, then the 
oordinate system [[x�0 ; � 0℄℄produ
ed by the 
onstru
tion is related to [[x�; �℄℄ by x�0 = x� and � 0 = � � �, where� := � � � 0. The s
alar �eld � is 
onstant on ea
h traje
tory of � traversing its domain,hen
e is independent of �, for if Q and Q0 are the points where the �-traje
tory interse
tsS and S0, respe
tively, then �(P ) = �(Q0) = �� 0(Q) for every point P on the traje
tory.From � 0 = � � � it follows that d� = d� + d� 0 = (��=�x�)dx� + d� 0, hen
e that the
ove
tor �eld A, whi
h has in [[x�; �℄℄ the expansion A = �A + d� = �A�dx� + d�, has in[[x�; � 0℄℄ the expansion A = �A0 + d� 0 = �A0�dx� + d� 0 with �A0 = �A + d� and, 
onsequently,�A� + ��=�x�. In the event that Ĝ is a spa
e-time--time metri
, the negative of twi
e theexterior di�erential of A will 
ome to be identi�ed as the ele
tromagneti
 �eld tensor F . Weshall have then that F = �2d^A = �2d^��A + d�� = �2d^�A, hen
e that �A plays the roleof ele
tromagneti
 four-ve
tor potential. But we shall have also that F = �2d^�A0, so that�A0 plays the same role, but in a di�erent gauge. This tells us that the transformation fromthe adapted 
oordinate system [[x�; �℄℄ to the adapted 
oordinate system [[x�; � 0℄℄ generatesa gauge transformation �A ! �A + d� of the ele
tromagneti
 four-ve
tor potential. The
onverse likewise is true: every gauge transformation �A ! �A + d� with � a s
alar �eldindependent of � determines a transformation from the adapted 
oordinate system [[x�; �℄℄



6 HOMER G. ELLISto an adapted 
oordinate system [[x�; � 0℄℄ with � 0 = � � �.The dis
ussion up to this point only re
apitulates what Klein [3a℄ and Einstein [3b℄worked out long ago for the Kaluza ({Klein) geometry. Their identi�
ation of ele
tromag-neti
 four-potential gauge transformations with adapted-
oordinates transformations in �vedimensions was the �rst step on the road to the gauge theories that 
urrently permeate the-oreti
al physi
s. Missing from Kaluza{Klein theory and from these gauge theories, however,is any remembran
e of Weyl's earlier asso
iation of ele
tromagneti
 gauge transformationswith (
onformal) gauge transformations of the metri
 of spa
e-time [10℄. In spa
e-time--timethis asso
iation is preserved, as we are now in position to see.It is really quite simple. When Ĝ is a spa
e-time--time metri
, it is �G that takes the roleof spa
e-time metri
. But there is not just one �G, there are many, ea
h 
orresponding to aparti
ular 
hoi
e of the hypersurfa
e S in the 
onstru
tion of the adapted 
oordinates. If, asbefore, S and S0 are two su
h 
hoi
es, then G = e2��G = e2�0 �G0, where �G0 = e2��G. Thus thesame 
oordinate transformation that generates the ele
tromagneti
 gauge transformation�A! �A+ d� generates Weyl's metri
al gauge transformation �G! e2��G.The 
oordinate transformations that generate the ele
tromagneti
 and the metri
algauge transformations, being 
oordinate transformations, alter only the representation ofthe spa
e-time--time metri
, not the metri
 itself. This is a prin
ipal advantage that thespa
e-time--time geometry has over the Weyl geometry. Weyl, working before Kaluza �rstproposed using �ve dimensions to unify gravity and ele
tromagnetism, impressed his in�ni-tude of 
onformally related spa
e-time metri
s onto one four-dimensional manifold. That isvery mu
h like drawing all the maps of the world on a single sheet of paper, a pra
ti
e thatwould 
onserve paper but 
onfound navigators. In e�e
t, the spa
e-time--time geometrye
onomizes on paper but avoids the 
onfusion of maps on maps, by drawing a sele
tion ofthe maps on individual sheets, then sta
king the sheets so that ea
h of the remaining maps
an be generated on 
ommand by sli
ing through the sta
k in a parti
ular way. Nothing islost thereby, and mu
h is gained, as we shall see.V. Conne
tion Forms and Covariant Di�erentiationsFurther study of the geometry of the 
onformally 
onstrained metri
 Ĝ will be fa-
ilitated if we work in a frame system that on the one hand takes full advantage of theorthogonality between G and Ĝ�G and on the other hand is Lie 
onstant along �, but thatelsewise is unrestri
ted. To a

omplish this, let us ba
k up a little and relabel the 
oordi-nate system [[x�; �℄℄ adapted to � as [[x�0 ; �℄℄. Then A = A�0dx�0 + d�, G = dx�0
 g�0�0dx�0 ,�A = �A�0dx�0 , and �G = dx�0 
�g�0�0dx�0 . Now let !d := �A (re
all that d := dim M),and let f!�g be any pointwise linearly independent ordered set of d � 1 
ove
tor �eldsthat are smooth linear 
ombinations of the dx�0 with 
oeÆ
ients independent of �. Then!� = dx�0J�0� and dx�0 = !�J��0 , where [J�0�℄ and [J��0 ℄ are re
ipro
al matrix �eldsand satisfy �J�0�=�� = �J��0=�� = 0. The ordered set f!�; !dg is also pointwise linearlyindependent; it therefore is a 
oframe system ofM, de�ned on the domain of the 
oordinatesystem [[x�0 ; �℄℄. In this 
oframe system one has that A = ��1!d, G = !� 
 g��!� , and�G = !� 
�g��!� , hen
e that Ĝ = !� 
 g��!� + �̂(!d 
 !d) (300)and Ĝ = e2�(!� 
�g��!�) + �̂(!d 
 !d); (400)



SPACE-TIME--TIME 7where g�� = J��0g�0�0J��0 and �g�� = J��0�g�0�0J��0 , with the 
onsequen
es that �g��=�� =2g�� and ��g��=�� = 0. Also, �A = �A�!�, where �A� = J��0 �A�0 , �A�0 = A�0 , and, 
on-sequently, ��A�=�� = 0 (note that in general �A� 6= A�, even though A has the mixedexpansion A = �A�!� + d�; in fa
t A� = 0 and Ad = ��1).Upon identifying the frame system fe�; edg to whi
h f!�; !dg is dual, one hase� = J��0(�=�x�0 )� �A�(�=��) and ed = ��1� = ��1(�=��); (5)to go with !� = dx�0J�0� and !d = �A = �(A�0dx�0 + d�) = �(�A�!� + d�): (6)The ve
tor �eld ed is the unit normalization of � and is orthogonal to ea
h of the ve
tor�elds e�. It is not diÆ
ult to see that L�e� = L�ed = 0 and L�!� = L�!d = 0. Thus wehave a frame system and its dual 
oframe system that are Lie 
onstant along �, but with thefurther property that ed has length 1 and is orthogonal to ea
h e�. Their 
onstan
y along� makes them gauge invariant: the adapted 
oordinates transformation [[x�0 ; �℄℄! [[x�0 ; � 0℄℄has no e�e
t on them. This is what we sought. Borrowing terminology from �bre bundletheory we may 
all the e� and the tangent subspa
e they span at a point \horizontal",and ed and the subspa
e it spans at a point \verti
al", as determined with referen
e to the
ove
tor �eld A, standing in for a bundle 
onne
tion 1-form.To identify di�erentiations of a s
alar �eld f by the various frame operators, let usadopt the abbreviations f:�0 := �f=�x�0 , f:� := �f=��, f;� := e�f , and f;d := edf ; also, letf:� := J��0f:�0 . Then from Eqs. (5) followf;� = J��0f:�0 � �A�f:� = f:� � �A�f:� and f;d = ��1f:� : (7)When f is independent of �, then f;d = 0 and f;� = f:�. In parti
ular�:� = �A�:� =�g��:� = J�0�:� = J��0:� = 0; (8)so �A�;d =�g��;d = J�0�;d = J��0;d = 0 (9)and �;� = �:�; �A�;� = �A�:� ; �g��;� =�g��:�;J�0�;� = J�0�:� ; and J��0;� = J��0:� : (10)On the other hand, g��:� = 2g�� ; (11)so g��;d = 2��1g�� (12)and g��;� = g��:� � 2g�� �A�: (13)



8 HOMER G. ELLISFor the exterior di�erential of !� we have d^!� = C���!�^ !�, with C��� skew-symmetri
 in � and � and independent of �, so thatC���:� = 0; C���;d = 0; and C���;� = C���:� (14)(in terms of J�0� and J��0 , C��� = J[��0J�0�:�℄ [11℄). From !d = �A it follows thatd^!d = �(1=2)�F + d� ^A, whereF := �2d^A = �2d^�A= F��!�^ !� = F��!� 
 !� (15)with F�� = �2��A[�:�℄ + �A�C����= �A�:� � �A�:� � 2�A�C���; (16)in 
onsequen
e of whi
hF��:� = 0; F��;d = 0; and F��;� = F��:�: (17)Thus d^!� = C���!�^ !�; (18)and d^!d = �(1=2)�F��!�^ !� + ��1�:�!�^ !d: (19)By use of Eqs. (18) and (19), and the fa
t that, for K;L;M = 1; : : : ; d, [eK ; eL℄ = CKML eMif d^!M = CKML !L
!K , the nonvanishing 
ommutators of the frame system fe�; edg arereadily expressed [12℄: [e�; e�℄ = C���e� � (1=2)�F��ed (20)and [e�; ed℄ = �(1=2)��1�:�ed = �[ed; e�℄: (21)Let us denote by d̂ the torsionless 
ovariant di�erentiation on M that is 
ompatiblewith Ĝ, and by !̂��, !̂�d, !̂d�, and !̂dd the 
onne
tion forms of d̂ in the frame systemfe�; edg, so that d̂Ĝ = 0 and d̂e� = !̂�� 
 e� + !̂�d 
 ed;d̂ed = !̂d� 
 e� + !̂dd 
 ed; (22)d̂!� = �!̂�� 
 !� � !̂d� 
 !d;and d̂!d = �!̂�d 
 !� � !̂dd 
 !d:



SPACE-TIME--TIME 9By standard methods these 
onne
tion forms 
an be expressed in terms of the metri
 
om-ponents in Eq. (300) and the exterior di�erential 
oeÆ
ients in Eqs. (18) and (19). Theresult is that !̂�� = !�� + ���1g�� + �̂(1=2)�F���!d;!̂�d = ���̂��1g�� � (1=2)�F���!� + ��1�:�!d;!̂d� = ���1g�� � �̂(1=2)�F���!� � �̂��1�:�!d (23)= ��̂g��!̂�d;and !̂dd = 0;in these equations !�� := ����!�;���� := f���g � (C��� + C��� +C���);f���g := (1=2)(g��;� + g��;� � g��;�)g��;C��� := g��C���g��; �:� := �:�g��;F�� := F��g��; F�� := g��F��;g�� := g��g�� = Æ��; and g�� := g��g�� = Æ��; (24)
[g��℄ being the matrix �eld inverse to [g�� ℄.An alternate 
ovariant di�erentiation d on M is �xed by the stipulations that de� =!�� 
 e� and ded = 0, or, equivalently, that d!� = �!�� 
 !� and d!d = 0. It hasthe properties i) dG = 2A 
 G, ii) Tor d = d^!d 
 ed = (d^A + ��1d� ^ A) 
 � =[�(1=2)F+��1d�^A℄
�, and iii) dA = ���1d�
A. Be
ause G is degenerate, properties (i)and (ii) do not alone determine d; but properties (i), (ii), and (iii) do. These properties aregauge invariant, and so, therefore, is d. Property (iii), a reformulation of d!d = 0, impliesthat dĜ = dG, hen
e that dĜ = 2A
G, in light of property (i). Although G has no inverse,it is useful to let G�1 := e� 
 g��e� , and then one sees that G�1Ĝ = G�1G = !� 
 e�,ĜG�1 = GG�1 = e� 
 !�, and dĜ�1 = dG�1 = �2A 
 G�1. All 
onne
tion forms and
oeÆ
ients of d other than the !�� and the ����, that is, all with d as a suÆx, vanish.This 
ovariant di�erentiation is an analog in the 
onformally 
onstrained geometry of the
ovariant di�erentiation (aÆne 
onne
tion) in Weyl's geometry, the prin
ipal 
hara
teristi
of whi
h is that it satis�es the equation in property (i) above, properly interpreted.Bringing into play Eq. (13) we 
an express the Christo�el symbols f���g in the moreexpanded form f���g = (1=2)(g��:� + g��:� � g��:�)g��� �g���A� + g�� �A� � g���A��g��: (25)A further breaking out arises from repla
ing g�� by e2��g�� and, a

ordingly, g�� by e�2��g��,where [�g��℄ is the inverse of [�g�� ℄. That results inf���g = f���g�+ �����; (26)



10 HOMER G. ELLISin whi
h f���g�:= (1=2)(�g��:� +�g��:� ��g��:�)�g��;����� := ���A��g�� +�g���A� +�g���A��;�A� := �A��g��;�g�� :=�g���g�� = Æ��; and �g�� :=�g���g�� = Æ��: (27)This in turn gives !�� = �!�� + ����and (28)���� =����� + �����;where �!�� := �����!�; ���� := �����!�;����� := f���g�� �C��� + �C��� + �C����; (29)and �C��� :=�g��C����g�� (= C���; as well):Yet another 
ovariant di�erentiation �d on M is �xed by the stipulations that �de� =�!��
 e� and �ded = 0, whi
h are equivalent to �d!� = ��!��
!� and �d!d = 0. It possessesand is determined by the properties i) �d�G = 0, ii) Tor �d = Tor d, and iii) �dA = dA, butlike d it is not determined by (i) and (ii) alone. If �G�1 := e�
�g��e� , then �G�1�G = !�
e�,�G�G�1 = e� 
!�, and �d�G�1 = 0. All 
onne
tion forms and 
oeÆ
ients of �d other than the�!�� and the ����� vanish. Unlike d, whi
h, being determined by gauge invariant properties,is itself gauge invariant, �d is not gauge invariant. That is to say, ea
h new 
hoi
e of a gaugebrings with it a new �G, and with that 
omes a (usually) new �d 
ompatible with the new �G.This 
ovariant di�erentiation is, in the spa
e-time--time 
ase, a generalized analog of theusual spa
e-time 
ovariant di�erentiation.The formulas displayed above will enable us to write out in reasonably 
omprehensibleform the geodesi
 equations and the various 
urvature tensor �elds of the 
onformally
onstrained geometry. Some of their terms disappear in the 
orresponding formulas for theKaluza geometry, whi
h is des
ribed by the metri
 of Eq. (40) with the fa
tor e2� removed;in the Kaluza{Klein geometry, whi
h has in addition � = 
onstant, the terms involvingderivatives of � disappear as well. Thus in the 
onformally 
onstrained geometry there aremore hooks to hang physi
al interpretations on than in the Kaluza geometry, and even moreyet than in the Kaluza{Klein geometry.One aspe
t of the Kaluza and the Kaluza{Klein geometries that persists in the 
on-formally 
onstrained geometry is that the vanishing of the 2-form F is ne
essary (andsuÆ
ient) for the possibility of gauging away to zero the potential �eld �A. Spe
i�
ally, ifF = 0, then d^�A = 0, so (lo
ally) there exists a s
alar �eld � su
h that �A = �d�, hen
esu
h that �A�!� = ��;�!� � �;d!d. But then �;d = 0, so �:� = 0, and if � 0 = � � �, then�A0 = �A + d� = 0. An important distin
tion, however, is that, whereas in the Kaluza andthe Kaluza{Klein geometries �A may be thus gauged away without disturbing the metri
�G, in the 
onformally 
onstrained geometry the gauging away of �A is inevitably a

ompa-nied by a 
onformal alteration of �G (�G0 = e2��G). This foretells that in spa
e-time--time



SPACE-TIME--TIME 11physi
s a nonvanishing ele
tromagneti
 potential �eld will produ
e real e�e
ts even in re-gions where the ele
tromagneti
 �eld tensor vanishes, a phenomenon already predi
ted byquantum me
hani
s [13, 14℄.VI. Geodesi
 EquationsLet p : I !M be a path inM, with parameter interval I, and let the 
omponents of thevelo
ity of p in the adapted frame system fe�; edg be f _p�; _pdg, so that _p = _p�e�(p)+ _pded(p).Then the a

eleration �p generated by the 
ovariant di�erentiation d̂ is determined by the
onne
tion forms of d̂, through use of Eqs. (22), in the following way:�p := ( _p�)_e�(p) + _p�d̂e�(p) _p+ � _pd�_ed(p) + _pdd̂ed(p) _p (30)= �p�e�(p) + �pded(p);where �p� = ( _p�)_ + _p�!̂��(p) _p+ _pd!̂d�(p) _p (31)and �pd = � _pd�_ + _p�!̂�d(p) _p+ _pd!̂dd(p) _p: (32)The 
ondition that p be an aÆnely parametrized geodesi
 path of d̂ is that �p = 0, whi
h isequivalent to �p� = �pd = 0. From Eqs. (31), (32), (23), and (24), the fa
t that !�(p) _p = _p�and !d(p) _p = _pd, and the skew-symmetry of F�� it follows that these geodesi
 equationsare equivalent, respe
tively, to( _p�)_ + _p����� _p� = �̂� _pdF�� _p� � 2��1 _pd _p� + �̂ _pd _pd��1�:� (33)and � _pd�_ + ��1 _pd�:� _p� = �̂��1 _p�g�� _p�; (34)in whi
h for brevity the 
ompositions with p of the various s
alar �elds are impli
it ratherthan express.Utilizing Eqs. (28) to break up ����, and remembering that g�� = e2��g�� and g�� =e�2��g��, we �nd that Eqs. (33) and (34) are equivalent, respe
tively, to( _p�)_ + _p������ _p� = �̂e�2�� _pd�F�� _p� + 2��A� _p� � ��1 _pd� _p�� _p��g�� _p��A� + �̂e�2� _pd _pd��1��:� (330)and � _pd�_ + ��1 _pd�:� _p� = �̂e2���1 _p��g�� _p�; (340)where �F�� :=�g��F�� and ��:� := �:��g��. These equations display expli
itly all o

urren
esof � ex
ept those implied by _pd = !d(p) _p = ��(�A�!� + d�)�(p) _p = �(�A� _p� + _�), where



12 HOMER G. ELLIS_� := [�(p)℄_ = d�(p) _p. If we take this de
omposition of _pd partially into a

ount, then wesee that Eq. (330) is equivalent to�e2� _p��_ + e2� _p������ _p� = �̂� _pd�F�� _p� � e2� _p��g�� _p��A� + �̂ _pd _pd��1��:�: (3300)Noting further that _� = �:� _p�, we �nd that Eq. (340) is equivalent to��̂� _pd�_ = e2� _p��g�� _p�: (3400)As one knows, these geodesi
 equations entail that Ĝ(p) _p _p is 
onstant. This integraltakes either of the equivalent forms _p�g�� _p� + �̂ _pd _pd = � (35)and e2� _p��g�� _p� + �̂ _pd _pd = �; (350)where � := sgn�Ĝ(p) _p _p� = 1, 0, or �1, provided that the aÆne parametrization of p isnormal, that is, that ar
length is the parameter when Ĝ(p) _p _p 6= 0.VII. Momentum, Rest Mass, Ele
tri
 Charge, Proper Time, and Equations ofMotion of a Test Parti
le in Spa
e-Time--TimeThus far it has been 
onvenient to leave unspe
i�ed both the dimensionality d of themanifold M and the diagonal signature of the 
onformally 
onstrained metri
 Ĝ 
arried byM. Let us now restri
t our attention to the 
ase in whi
h d = 5 and Ĝ is a spa
e-time--timemetri
, with a view toward establishing a physi
al interpretation of the spa
e-time--timegeometry beyond that suggested by 
omparison of it with its Weyl and Kaluza ante
edents.For this purpose it is advantageous to have the signature of the spa
e-time part of the metri
be ���+; this 
auses the signature of Ĝ to be ���++ if �̂ = 1, and to be ���+�if �̂ = �1.The pro
edure to be used here to e�e
t a physi
al interpretation of the geometry isa natural extension of the familiar spa
e-time pro
edure. One assumes that an elemen-tary test parti
le's journey through life is des
ribed, in whole or in part, by an aÆnelyparametrized geodesi
 path p in spa
e-time--time. One breaks the geodesi
 equation �p = 0,or some equivalent thereof, into its 
omponent equations in a perspi
uously appropriateframe system and 
ompares these equations to the equations of motion of a test parti
le inthe spe
ial theory of relativity, or, more 
losely, to the analogous equations of motion in the
urved spa
e-time of general relativity theory. Out of this 
omparison one identi�es as faras possible the various geometri
 parameters of the path p with the 
lassi
al physi
al pa-rameters of the parti
le. In the same stroke one identi�es terms in the geodesi
 
omponentequations as representing for
es due to 
lassi
al physi
al �elds, thus identi�es the physi
al�elds themselves with various of the geometri
al �elds derived from the spa
e-time--timemetri
 Ĝ. As this amounts to solving a puzzle in whi
h no pie
e is seen to �t until everypie
e is seen to do so, I shall dispense with many of the details and go as qui
kly as possibleto the 
on
lusions.To begin, let us de�ne the spa
e-time--time momentum 
ove
tor P of the testparti
le to be the metri
 dual of its spa
e-time--time velo
ity, that is, P := Ĝ(p) _p. Be
ause
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ovariantly 
onstant, _P = Ĝ(p)�p, and therefore the geodesi
 equation �p = 0 isequivalent to _P = 0. This latter equation will provide the most immediate 
omparison to
lassi
al equations of motion. In the adapted 
oframe system f!�; !dg the spa
e-time--timemomentum P has the expansion P = P�!�(p) + Pd!d(p), whereP� = _p�g�� = e2� _p��g�� (36)and Pd = �̂ _pd: (37)The 
ovariant derivative of P has the expansion _P = _P�!�(p) + _Pd!d(p), where_P� = (P�)_ � P����� _p� � �PdF�� _p� � �̂PdPd��1�:� (38)and _Pd = (Pd)_ + Pd��1�:� _p� � ��1P�g��P� (39)(
ompositions of s
alar �elds with p being suppressed in the notation), as follows fromappli
ation of Eqs. (22) and (23) to _P = (P�)_!�(p)+P�d̂!�(p) _p+(Pd)_!d(p)+Pdd̂!d(p) _p.Let �m := ��G�1(p)PP � 12 = �P��g��P�� 12 (40)= e2���G(p) _p _p� 12 = e2�( _p��g�� _p�) 12and q := P�(p) = �Pd (41)= �̂� _pd = �̂�2A(p) _p = �̂�2��A� _p� + _��:Then the equations _P� = 0 and _Pd = 0, equivalent jointly to _P = 0, are equivalentrespe
tively to(P�)_ = P������ _p� + qF�� _p� � e�2��m2�A� + �̂(q=�)2��1�:� (42)= e�2�P������P��g�� + e�2�qF��P��g�� � e�2��m2�A� + �̂(q=�)2��1�:�and _q = e�2��m2: (43)These equations have, if the aÆne parametrization of p is normal, the integral Ĝ�1(p)PP =�. This is, of 
ourse, the same as Ĝ(p) _p _p = �, and therefore the same as Eq. (350), whi
h isequivalent in terms of �m and q to e�2��m2 + �̂(q=�)2 = �: (44)Substitution of this integral into Eq. (43) yields_q = �� �̂(q=�)2: (45)



14 HOMER G. ELLISEquations (44), (41), and (43) imply that��m2�_ = 2���m2�A� + �̂e2�(q=�)2��1�:�� _p� (46)= 2��e�2��m2�A� + �̂(q=�)2��1�:��P��g��:The s
alar �G(p) _p _p, otherwise identi�able as _p��g�� _p� and as e�4��m2, may be positive,zero, or negative on di�erent geodesi
s and, generally, on di�erent portions of the samegeodesi
. It is the square length of the \spa
e-time part" _p�e�(p) of the velo
ity _p, asmeasured by the degenerate metri
 �G, whose spa
e-time part has diagonal signature���+.Wherever on p this s
alar is positive, that is, wherever the spa
e-time part of _p is timelike,we 
an introdu
e a real parameter �� su
h that�� := Z ��G(p) _p _p� 12 d�̂ = Z ( _p��g�� _p�) 12 d�̂ (47)= Z e�2��md�̂ = Z �m�1 dq(�̂ denoting the spa
e-time--time aÆne parameter of p), and with it de�ne spa
e-time ve-lo
ity 
omponents u� by u� := dp�=d�� := _p�=(�� )_. Equations (42), (43), and (46) then areequivalent, wherever �m2 > 0, todP�d�� = P������u� + qF��u� � �m�A� + �̂e2��m�1(q=�)2��1�:�; (420)dqd�� = �m; (430)and d(�m2)d�� = 2���m2�A� + �̂e2�(q=�)2��1�:��u�: (460)Upon 
omparing these equations with the 
lassi
al relativisti
 equations of motion foran ele
tri
ally 
harged parti
le, and remembering the various de�nitions that have goneinto them, one arrives at the following identi�
ations and 
on
lusions:1. The s
alar parameter �� is a (spa
e-time) proper time parameter of the parti
le.2. The u� are the 
omponents of the spa
e-time proper velo
ity ve
tor of the parti
le.3. The P� are the 
omponents of the spa
e-time momentum 
ove
tor of the parti
le.4. The s
alar parameter �m is the rest mass of the parti
le.5. The s
alar parameter q is the ele
tri
 
harge of the parti
le.6. The F�� are the 
omponents of the spa
e-time ele
tromagneti
 �eld tensor.7. The �A� are the 
omponents of a spa
e-time 
ove
tor potential �eld for the ele
tromag-neti
 �eld.8. The apparent for
es to whi
h the parti
le is subje
t, in that they 
ontribute, a

ordingto Eq. (420), additively to the spa
e-time momentum rates dP�=d�� , 
onsist ofa. the gravitational and other for
es attributable to spa
e-time geometry that arein
luded in the term P������u�, familiar from general relativity theory;b. the Lorentz for
e of the ele
tromagneti
 �eld, expressed by the term qF��u�;
. a rest-mass proportional for
e in the dire
tion of the ele
tromagneti
 potential,expressed by the term ��m�A�; andd. a for
e proportional to the square of the ele
tri
 
harge, inversely proportional tothe rest mass, and in the dire
tion of the gradient of the s
alar �eld �, expressedby the term �̂e2��m�1(q=�)2��1�:�.



SPACE-TIME--TIME 159. Neither the ele
tri
 
harge q nor the rest mass �m 
an be expe
ted in general to remain
onstant, as they will evolve in a

ordan
e with Eqs. (430) and (460) while maintaininga kind of joint 
onservation, des
ribed by Eq. (44).To go one step further, let �P� := P��g��. Then �P� = e2� _p�, and �P� = �mu� wherever�m2 > 0, in 
onsequen
e of whi
h we may identify the �P� as the 
omponents of the spa
e-time momentum ve
tor of the parti
le. Consistent with this identi�
ation is the observationthat �m2 = �P��g���P � . In terms of �P�, q, and �m, the geodesi
 equation (3300) reads��P��_ + e�2��P �������P � = e�2�q�F���P � � e�2��m2�A� + �̂(q=�)2��1��:�: (48)And this is equivalent, wherever �m2 > 0, tod(�mu�)d�� + �mu������u� = q�F��u� � �m�A� + �̂e2��m�1(q=�)2��1��:�; (480)an equation whi
h helps to 
ement the identi�
ations and 
on
lusions outlined above.As one knows, the nonnull geodesi
 paths of d̂ are the paths that make stationary thear
length integral R �̂2�̂1 j _pj d�̂ , in whi
h j _pj := jĜ(p) _p _pj 12 . The 
anoni
al momentum 
ove
torM whose 
omponents appear in the Euler equations for this variational problem 
an beexpressed by M := (�j _pj=� _p�)!�(p) + (�j _pj=� _pd)!d(p)= sgn�Ĝ(p) _p _p�j _pj�1Ĝ(p) _p= �j _pj�1P = �j _pj�1[P�!�(p) + Pd!d(p)℄: (49)From this it follows that P� = �j _pjM� = (1=2)(�L=� _p�) and Pd = �j _pjMd = (1=2)(�L=� _pd),where L := �j _pj2 = Ĝ(p) _p _p, and that the equations of motion (42) and (43) (whi
h, beingequivalent to �p = 0, hold only for aÆne parametrizations of p) 
an be derived from ana
tion prin
iple with L as the Lagrangian [15℄. In terms of �m and q this Lagrangian 
an beformulated thus: L = e�2��m2 + �̂(q=�)2= �m(v��g��v�) 12 + q�A�v� + q _�; (50)here v� := _p� and Eqs. (40) and (41) have been invoked. But for the extra term q _�, whi
hrefers to progression along the se
ondary time dimension and therefore has no spa
e-timeanalog, this spa
e-time--time Lagrangian would dupli
ate in appearan
e a standard spa
e-time Lagrangian for the equations of motion of a 
harged parti
le in the spe
ial theory ofrelativity [16℄ and, by simple extension, in the general theory as well. In assessing this
orresponden
e, however, one should bear in mind that in spa
e-time--time �m and q aregeometri
 parameters of the geodesi
, not, as in spa
e-time theories, mere hand
rafted
onstants of no geometri
al signi�
an
e.It is 
lear that the Lagrangian L, the geodesi
 equation �p = 0, and its equivalent _P = 0are all gauge invariant, inasmu
h as gauge transformations are just 
oordinate transforma-tions (of the type [[x�0 ; �℄℄ ! [[x�0 ; � � �℄℄), whi
h do not a�e
t Ĝ, _p, �p, P , or _P. What isnot so apparent is that ea
h 
omponent equation of motion is individually gauge invariant.This 
omes about be
ause f!�; !dg, 
onsequently fe�; edg, and therefore _P�, _Pd, �p�, and�pd, stay �xed when the gauge 
hanges (as, likewise, do P�, Pd, _p�, and _pd). Thus, everyone of Eqs. (42), (43), (420), (430), (48), and (480) is individually gauge invariant (up to
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 equivalen
e). Also gauge invariant is the ele
tri
 
harge q, as follows fromthe fa
t that q = �̂�2A(p) _p, no part of whi
h is altered by a 
hange of gauge. Not gaugeinvariant, however, are the rest mass �m and the proper time �� , whi
h when � ! � � � be-have so: �m! e���m and d��=d�̂ ! e�(d��=d�̂ ). Nor are the 
omponents �P� (= �mu�) of thespa
e-time momentum ve
tor gauge invariant, for �P� ! e�2��P�. The produ
t �m(d��=d�̂),however, is gauge invariant, as is sgn(�m2). The la
k of invarian
e for �m, �� , and �P� of 
oursere
e
ts the fa
t that in the new gauge it is e2��G instead of �G that is 
onsidered to be themetri
 of spa
e-time.Test parti
les obeying the equations of motion here detailed exhibit a 
omplexity ofbehavior far beyond that of test parti
les in Einstein's spa
e-time theory or in its extensionsby Weyl, Kaluza, Klein, and others. This is owed in large measure to the unpre
edentedmanner in whi
h the ele
tri
 
harge q evolves and the equally unpre
edented nature of the
oupling of momentum rates to the gradient of �. These have among their e�e
ts that a testparti
le 
an appear (seemingly out of nowhere) at a spa
e-time event E1 with q = ��(E1)and vanish at a later event E2 with q = �(E2), and that at E1 and at E2 the �-gradient for
ewill, be
ause of the growth of the 
oupling fa
tor e2� in Eq. (420), in�nitely dominate theother for
es and thereby draw the parti
le irresistibly into the depths of one of the potentialwells of �̂�. These potential wells thus are the most probable lo
ations for the o

urren
e ofsu
h \
reation" and \annihilation" events. The thought that su
h behavior might be usedto model orbital transitions (\quantum jumps") of ele
trons in atoms 
annot be suppressed.Be
ause of its 
omplexity I shall not here attempt further to des
ribe spa
e-time--timetest parti
le behavior. Instead, I shall, in the next se
tion, dis
uss subtleties in the 
on
eptsof mass and of 
harge that 
ow from these equations of motion, subtleties involving distin
-tions often unmade or negle
ted | to the detriment of s
ien
e, for to fail to distinguish isto fail to know.VIII. The Inertial-Passive Equivalen
e and the Passive-A
tive Distin
tionIn Newton's theory of gravity the assumption that a test parti
le's inertial massmi andits passive gravitational mass mp are equal (and 
onstant) redu
es the equation of motion(mi _r)_ + (mpM=r2)(r=r) = 0 to the equation �r + (M=r2)(r=r) = 0, in whi
h neither ofthose masses appears. Einstein's theory of gravity in
orporates that same equivalen
e byadmitting only spa
e-time geodesi
s as worldlines of test parti
les. It thereby adopts as itsequation of motion a generalization of the redu
ed Newtonian equation, thus avoids evenintrodu
ing mi and mp as 
on
epts of signi�
an
e for gravity. Be
ause test parti
les inspa
e-time--time must deal with the ele
tromagneti
 �eld alongside the gravitational �eld,this theory 
annot ex
lude those 
on
epts. It introdu
es them e�ortlessly, however, andin su
h a way as to maintain the numeri
al equivalen
e of mi and mp and to make themignorable in the absen
e of nongravitational �elds. Spe
i�
ally, the same mass parameter �mthat appears in the �rst term of Eq. (480) in the role of inertial (rest) mass mi appears alsoin the se
ond term in the role of passive gravitational mass mp; thus in spa
e-time--timemi := �m =: mp. And when the nongravitational �elds �:�, �A�, and F�� are all zero, thenthe horizontal subspa
es are (spa
e-time) hypersurfa
e-forming, and �m has to be 
onstantto satisfy Eq. (460), whereupon Eq. (480) redu
es to du�=d�� +u������u� = 0, whi
h impliesthat the parti
le's spa
e-time traje
tory is geodesi
, just as in Einstein's theory.The 
onstant M in the Newtonian equations of motion tells the strength of the gravi-tational �eld a
ting on the test parti
le; it is properly 
alled the a
tive gravitational massof the parti
le 
onsidered to be produ
ing that �eld, whi
h of 
ourse is not the test par-ti
le. Newtonian theory treats every parti
le as both a test parti
le with mi = mp and a



SPACE-TIME--TIME 17�eld-generating parti
le with an a
tive gravitational mass ma. Although ma and mp referto entirely di�erent 
on
epts, Newton's law of a
tion and rea
tion, applied instantaneouslyat a distan
e, allows the inferen
e that ma = mp.In Einstein's theory the analog of M is the S
hwarzs
hild mass parameter MS , whi
halso is properly 
alled the a
tive gravitational mass of the \parti
le" whose gravitational�eld the S
hwarzs
hild metri
 represents. Although as noted that theory has no 
on
ept ofpassive gravitational mass, one 
an insert mp and its equal mi into the radial equation ofgeodesi
 motion for a S
hwarzs
hild metri
 at the expe
ted pla
es to obtain an equivalentequation generalizing the unredu
ed Newtonian equation, with MS in pla
e of M . Thisdone, however, one yet �nds it impossible to establish by the Newtonian argument anyequivalen
e between a
tive and passive mass parameters. Even if the logi
ally 
himeri
alnotion of a test parti
le with an a
tive gravitational mass ma as well as a passive gravita-tional massmp be entertained, the Newtonian argument that ma = mp founders on the la
kof any \instantaneous gravitational a
tion and rea
tion at a distan
e" in Einstein's theory.In spa
e-time--time theory the situation is the same: there is no 
on
ept of an a
tivegravitational mass of a test parti
le; an analog of the Newtonian M and the S
hwarzs
hild-ean MS 
an exist in a parti
ular spa
e-time--time, but it is a parameter of the gravitational�eld of that spa
e-time--time, not of any test parti
le that the �eld a
ts upon; if parti
leswith both a
tive and passive gravitational masses be imagined, then the �niteness of thespeed of propagation of gravitational e�e
ts pre
ludes establishment of any relationshipbetween the two masses. But in this theory a further, similar dis
rimination is unavoidable.The ele
tri
 
harge parameter q of a spa
e-time--time test parti
le measures, in its initialappearan
e in Eq. (480), the response of the parti
le to the ele
tromagneti
 �eld F��. Thusit plays there the role of a passive ele
tri
 
harge, just as �m takes the role of a passivegravitational mass in its se
ond appearan
e in that equation. If F�� should have a form likethat of a Coulomb �eld of strength Q, then Q would properly be 
alled the a
tive ele
tri

harge of the parti
le 
onsidered to be generating that �eld, but that parti
le 
ould notstri
tly be treated as a test parti
le at all, still less as a test parti
le with passive ele
tri

harge Q. Between these 
on
epts of a
tive and of passive ele
tri
 
harge, just as betweenthe 
on
epts of a
tive and of passive gravitational mass, lies a broad gulf, a
ross whi
hno bridge is apparent. Essentially the same gulf is present already in Maxwell{Lorentzele
trodynami
s. Attempts to bridge it there, by supposing test parti
les to have a
tive (orat least semi-a
tive) 
harge as well as passive 
harge, have produ
ed among other odditiesan equation of motion with an _�r term that lets in self-a

elerated \runaway" solutions. Thespa
e-time--time equation of motion (480) has no 
omparable term and no su
h solution.Spa
e-time--time theory seems to require no bridge a
ross the a
tive-passive ele
tri
 
hargegulf, or for that matter a
ross the a
tive-passive gravitational mass gulf. It is 
on
eivable,however, that some su
h 
onne
tions lie hidden in the theory, to be exposed by futureinvestigation [17℄.In its third appearan
e in Eq. (480) �m helps to measure the response of the test parti
leto the �eld �A�, and in the last term q and �m 
ombine to help determine the parti
le'sresponse to the �eld �:�. The apparent for
es involved are pe
uliar to spa
e-time--time, sothere are no names like \passive gravitational mass" and \passive ele
tri
 
harge" readyat hand to signify the roles played here by �m and q2=�m. This is perhaps fortunate, forsu
h names tend to mislead by putting attention on the apparent for
es themselves, ratherthan on the underlying geometry they spring from. It is this geometry that is presumedto model reality; the apparent for
es and the test parti
les following geodesi
s are just
onvenient �
tions to help us 
onne
t the geometry to our per
eptions.



18 HOMER G. ELLISIX. CurvatureA full physi
al interpretation of the geometry of spa
e-time--time must rest ultimatelynot only on delineation of the me
hani
s of test parti
les, but also on establishment of�eld equations for the evolution and intera
tions of �, �A, F , and �G, analysis of the �elddynami
s those equations imply, and arrival at an understanding of the physi
al importof the unfamiliar s
alar �eld �. In preparation for a subsequent paper deriving su
h �eldequations I shall exhibit here and in the Appendix both 
on
ise and not so 
on
ise formsof the 
urvature tensor �eld �̂ of the 
onformally 
onstrained metri
 Ĝ, its 
ontra
ted
urvature tensor �eld �̂, its 
urvature s
alar �eld 	̂, and its Einstein tensor �eld Ê. Theadapted frame system fe�; edg and its dual f!�; !dg are best suited to this purpose. Asearlier, no restri
tion is pla
ed on the dimensionality of M or the signature of Ĝ.If we adopt the 
onvention that K, L, M , N , et
. range from 1 to d (retaining for�, �, �, �, et
. the range 1 to d � 1), then we have that �̂ = !K
 �̂KM
 eM , with the
urvature 2-forms �̂KM 
omputed from the 
onne
tion 1-forms of Eqs. (23) by means of thestru
tural equation �̂KM = 2(d^!̂KM � !̂KP^ !̂PM ). Upon performing the 
omputationsone �nds that [11℄�̂�� = ��� � ��̂�2F�(�F�)� + �̂2��2g��g���!�^ !�+ ��̂��F��;� + 2F(���:�) + 2F�(��:�)�+ 4��2�:[�g�℄��!�^ !d;�̂�d = ��F��;� � 2�:(�F�)� + �̂2��2g���:��!�^ !� (51)� �2��1�:�;� + �̂(1=2)�2F��F�� + �̂2��2g���!d^ !�;�̂d� = ��̂g���̂�and �̂dd = 0:In the �rst of these equations��� := [2(����;� + �������� + ����C���)� (g��F�� � F��g�� � g��F��)℄!�^ !�: (52)The other abbreviations introdu
ed in them are�:�;� := �:�;� � �:�����;F��;� := F��;� � F������ � F������ ; (53)and F��;� := F��;� + F������ � F������ :The \;" operation of Eqs. (53) harks ba
k to the 
ovariant di�erentiation d de�nedin Se
. V, for whi
h de� = !�� 
 e�, ded = 0, d!� = �!�� 
 !�, and d!d = 0, with!�� = ����!�. Thus, � being independent of �, d� = �;�!� = �:�!� and d�:� = �:�;�!�,so d(d�) = d�:� 
 !� + �:�d!� = (d�:� � �:�!��) 
 !� = �:�;�!� 
 !�. A similar
al
ulation �nds that dF = F��;�!� 
!�
!�. On the other hand F�� is not independentof �, so d(FG�1) = d(F��e� 
 !�) � (F��;�!� + F��;d!d) 
 e� 
 !�, where, be
auseall of d's 
onne
tion 
oeÆ
ients other than the ���� vanish, F��;d := F��;d. It is easyto see that g��;� = g�� ;� = 0 and that F��;� = g��F��;� . Should the need arise, Eqs.(53) 
an be re�gured by use of the equivalen
es �:�;� = �:�:� =: �:��, F��;� = F��:� , and



SPACE-TIME--TIME 19F��;� = F��:� + 2F���A� . The notation ��� notwithstanding, the 2-forms of Eq. (52) arenot 
urvature forms of d, nor would they be if only the terms involving � were present.By taking a

ount of the skew-symmetries involved, one 
an extra
t from Eqs. (51) the
urvature 
omponents �̂KMLN that appear in �̂KM = �̂KMLN!N^!L = �̂KMLN!N
!L.This is done in the Appendix.The 
ontra
ted 
urvature tensor �eld �̂ 
an be 
omputed dire
tly from Eqs. (51) byuse of �̂ := !R�̂(�)eR = !K
 !R(�̂KM
 eM )eR = !K
 �̂KReR, or, by referring to Eqs.(A.1) in the Appendix, from �̂ = !K
 �̂KRLR!L. The result is that �̂ = !K
 �̂KL!L,where �̂�� = ��� � ��1�:�;� + �̂(1=2)�2F��F�� � �̂(d� 1)��2g��;�̂�d = �̂(1=2)(�F��;� + 3F���:�) + (d� 2)��2�:�;�̂d� = �̂�d; (54)and �̂dd = ��̂��1�:�;� � (1=4)�2F ��F �� � (d� 1)��2:In the �rst of these equations��� := ���e�e� = ����� (55)= 2 ����[�;�℄ + ��� [�����℄ + ����C����+ (1=2)(d � 1)F��;and in the last�:�;� := �:�;� + �:����� = �:�;�g��: (56)Be
ause Ĝ�1 = e�
 g��e� + �̂ed
 ed, we have that Ĝ�1�̂ = !�
 �̂��e� +!d
 �̂�̂dded,with �̂�� := �̂��g�� , hen
e that 	̂ := !P �Ĝ�1�̂�eP = �̂�� + �̂�̂dd. Applying this to Eqs.(54) one �nds that̂	 = 	� 2��1�:�;� + �̂(1=4)�2F��F�� � �̂(d� 1)d��2; (57)where 	 := ��� and ��� := ���g�� : (58)It then follows from Ê := �̂� (1=2)	̂Ĝ that Ê = !K
 ÊKL!L, whereÊ�� = E�� � ��1(�:�;� � �:�;�g��)+ �̂(1=2)�2[F��F�� � (1=4)F��F��g��℄+ �̂(1=2)(d � 2)(d � 1)��2g��;Ê�d = �̂(1=2)(�F��;� + 3F���:�) + (d� 2)��2�:�; (59)Êd� = Ê�d;and Êdd = ��̂(1=2)	 � (3=8)�2F��F�� + (1=2)(d � 2)(d � 1)��2:The abbreviation E�� := ��� � (1=2)	g�� (60)is used in the �rst of Eqs. (59).



20 HOMER G. ELLISHidden within these relatively 
on
ise expressions of �̂, �̂, 	̂, and Ê is a wealth of\intera
tions" among the �elds �, �A�, F�� , and �g�� . To bring them to visibility we shallhave to \deteles
ope" the expressions with the aid of the expansions set out in Eqs. (25){(29). The pro
edure is straightforward, but the produ
t will o

upy a 
onsiderable spa
e.To redu
e 
ongestion the deteles
oped expressions for �̂ and �̂ will be displayed in theAppendix, leaving here only those for 	̂ and Ê. In both pla
es will appear additionalabbreviations whi
h 
an be des
ribed in the following way: The pra
ti
e of inserting a \�"to indi
ate raising of an index with the �g�� rather than the g�� (as in ��:� := �:��g��) is
ontinued, and is sharpened by the stipulations that if a \�" is already present, then only the�g�� 
an raise an index, and that �A� := �A��g��, not A��g��). Further, it is understood thatthe \�" travels with a raised index involved in a symmetrization or an antisymmetrization;thus �F�(��:�) = (1=2)��F���:�+F����:��. Next, appli
ation of the 
ovariant di�erentiation �dde�ned in Se
. V, whose only nonvanishing 
onne
tion 
oeÆ
ients are the ����� of Eqs. (29),is signi�ed by use of a \ : " and insertion of a \�" if none is already present, provided that the�eld being di�erentiated is representable in terms of the e�, the !�, and their tensor produ
tsalone, with 
oeÆ
ients independent of � (a representability that passes on to the di�erential�eld). As examples, �d(d�) = �d(�:�!�) = ��:�:�!� 
 !�, �d�A = �d��A�!�� = �A�:�!� 
 !�,�d��G�1�A� = �d��A�e�� = �A�:�!� 
 e�, and �dF = �d(F��!� 
 !�) = �F��:�!� 
 !� 
 !�,where ��:�:� = �:�� � �:������;�A�:� = �A�:� � �A������;�A�:� = �A�:� + �A������; (61)and �F��:� = F��:� � F������� � F������� :Be
ause �d�G�1 = 0, the raising of an index with the �g�� 
ommutes with the \�:" operation;for example, �A�:� = �A�:��g�� be
ause �d��G�1�A� = �G�1�d�A. Finally, ��, ��, �	, and �E standfor 
urvature �elds built from �d with the help of �G and �G�1. Spe
i�
ally, �� = !�
����e�,���� = 2(d^�!�� � �!�� ^ �!��) = ������!� 
 !�, �	 = !� 
 ����!�, �	 = �	, and �E =!� 
 �E��!�, where ������ = 2�����[�:�℄ +���� [������℄ +�����C����;���� = ������;�	 = ����; (62)and �E�� = ���� � (1=2)�	�g��:Be
ause �!�d = �!d� = �!dd = 0 and �����;d = 0, the only nonvanishing 
urvature 2-forms of�d are the ����, so �� as given is the 
urvature tensor �eld of �d. In spa
e-time--time �� is the
urvature tensor �eld for the spa
e-time metri
 �G pi
ked out by the gauge sele
tion of thehypersurfa
e S on whi
h to have � = 0.With these abbreviations all in pla
e the deteles
oped versions of �̂ and �̂ are as shownin the Appendix. From them one 
omputes that	̂ = e�2��	+ (d� 2)e�2��2�A�:� � (d� 3)�A��A��� 2e�2���1���:�:� � (d� 3)�A��:��+ �̂(1=4)e�4��2�F���F�� � �̂(d� 1)d��2; (63)



SPACE-TIME--TIME 21and then thatÊ�� = �E�� + (d� 3)��A(�:�) � �A�:��g���+ (d� 3)��A��A� + (1=2)(d � 4)�A��A��g���� ��1���:�:� � ��:�:��g���� ��1�2�A(��:�) + (d� 4)�A��:��g���+ �̂(1=2)e�2��2��F��F�� � (1=4)�F���F���g���+ �̂(1=2)(d � 2)(d� 1)e2���2�g��; (64)Ê�d = �̂(1=2)e�2����F��:� � (d� 5)��F���A� + 3�F���:��+ (d� 2)��2�:�;Êd� = Ê�d;and Êdd = ��̂(1=2)e�2��	� �̂(d� 2)e�2���A�:� � (1=2)(d � 3)�A��A��� (3=8)e�4��2�F���F�� + (1=2)(d � 2)(d � 1)��2:In the an
estral Kaluza geometry mu
h of the 
omplexity in these expressions goesaway, taking with it many of the possibilities for intera
tions among the various �elds. (Forthe sake of 
omparison the 
orresponding expressions for the Kaluza geometry are presentedat the end of the Appendix.)X. Residual CurvatureAn important 
on
ept spe
i�
 to the geometry of 
onformally 
onstrained metri
s isthat of residual 
urvature. Loosely, the residual 
urvature is what remains of the usual 
ur-vature when the instruments used to measure it shrink to in�nitesimal size | the 
urvatureseen by a vanishingly small observer, so to speak. A little less loosely, it is the limiting 
ur-vature at the ends of the traje
tories of � where the 
onformal fa
tor in G = e2��G be
omesin�nite. The notion of residual 
urvature does not apply to Kaluza metri
s, whi
h, beingisometri
ally 
onstrained, have no fa
tor e2� and therefore 
annot have e2� !1. It requiresfor its de�nition that translations along � generate a
tual expansion of the metri
 G. More-over, M needs to be �-
omplete, in order that along ea
h �-path the integration-parameter
oordinate � might in
rease without bound [18℄.Consider on M the frame system fe �Mg for whi
h e�� = e��e� and e �d = ed, with dualf! �Mg given by !�� = e�!� and ! �d = !d. Referring to Eq. (400) one sees that in this framesystem Ĝ = !�� 
�g����!�� + �̂! �d 
 ! �d; (65)where �g���� = �g�� . From this it follows that L��Ĝe��e��� = ��g����=�� = 0, L��Ĝe��e �d� =�0=�� = 0, and L��Ĝe �de �d� = ��̂=�� = 0, in other words that all metri
al relationshipsdetermined by Ĝ among the ve
tor �elds e �M remain �xed under translation along �. Thesame of 
ourse holds true for the 
ove
tor �elds ! �M . Beyond the normality of ed and theorthogonality between the e� and ed the 
ontrolling fa
t here is that the e� are Lie 
onstantalong �, whi
h entails that L�e�� = �e��, hen
e that L��Ĝe��e��� = �L�Ĝ�e��e��+Ĝ�L�e���e��+Ĝe���L�e��� = 2Ge��e�� � 2Ĝe��e�� = 2e�2��Ge�e� � Ĝe�e�� = 0.If T is a tensor �eld of M, we 
an expand T in terms of the e �M and the ! �M , then 
anask whether the 
omponents of T in this expansion have limits as � ! 1. If all do, then



22 HOMER G. ELLISthe tensor �eld T1 whose 
omponents in fe �Mg are these limits is to be 
alled the \residual"of T . More pre
isely, suppose that T is a tensor �eld of M, that �t is a 
omponent of Tin fe �Mg (and f! �Mg), and that P is a point in the domain of T . Let Q be a point lyingon the traje
tory of � through P and free to move along it. Let �t1(P ) := lim �t(Q) if thislimit exists as Q moves along the traje
tory so that �(Q)!1; if the limit does not exist,then assign no meaning to �t1(P ). If �t1(P ) thus de�ned exists for ea
h su
h 
omponent �tand point P , then the tensor �eld whose 
omponents in fe �Mg are the 
orresponding s
alar�elds �t1 is 
alled the residual of T and is denoted by T1. Brie
y put, if, for example,T = !K
TKML!L
 eM = ! �K
T �K �M�L! �L
 e �M , then T1 := ! �K
 �lim�!1 T �K �M�L�! �L
 e �M .As an illustration, Ĝ = !�� 
 ĝ����!�� + �̂! �d 
 ! �d, where ĝ���� = e�2�g�� = �g�� , andtherefore Ĝ1 = Ĝ, inasmu
h as lim�!1 ĝ���� = lim�!1�g�� =�g�� = ĝ���� and lim�!1 �̂ = �̂.Similarly, �Ĝ�1�1 = Ĝ�1 = �Ĝ1��1 and A1 = A. On the other hand �G = !�� 
�g����!��with �g���� = e�2��g�� , and lim�!1�e�2��g��� = 0, so �G1 = 0. By the same token �A1 = 0and F1 = 0. But �G�1 = e�� 
�g����e�� , where �g���� = e2��g�� , and if �g�� 6= 0, then e2��g�� hasno limit as � !1, so ��G�1�1 is not de�ned.Several observations 
an be made: 1) The 
omponent �t of T in fe �Mg is related tothe 
orresponding 
omponent t of T in feMg by �t = e(���)� t, where � is the number of
ontravariant, � the number of 
ovariant indi
es of t that di�er from d; thus lim�!1 �t 
anequally well be 
al
ulated as lim�!1�e(���)� t�. 2) The residual of T , though de�ned in aparti
ular gauge, is in fa
t gauge invariant: if � 0 = � � � with ��=�� = 0, e��0 = e��0e�,e �d0 = ed, !��0 = e�0!�, ! �d0 = !d, and, for example again, T = !K
 TKML!L
 eM , thenT��0 ��0��0 = e��0T��� = e�e��T��� = e�T������, so !��0
 �lim�0!1 T��0 ��0��0 �!��0
 e��0 = !�� 
e���lim�0!1 T��0 ��0��0 �!�� 
 e�� = !�� 
 �lim�!1 T�������!�� 
 e��; this together with analogousresults for the other 
omponents of T expresses the gauge invarian
e of T1. 3) The de�nitionof T1 is also independent of the 
hoi
e of the adapted frame system fe�; edg, a 
onsequen
eof the fa
t that if fe�00 ; ed00g is another su
h system, then ed00 = ed and e�00 = J�00�e� withJ�00� = J�00�0J�0�, whi
h is independent of � (
f. Se
. V). 4) The 
omponents of T1 in theframe system fe �Mg are 
onstant on ea
h traje
tory of �. 5) If the metri
 is 
onformally
onstrained in two dire
tions (two �'s, with L�Ĝ = 2G for ea
h), then ea
h 
onstraintprodu
es a residual of T , and these 
an di�er; stri
tly, then one should qualify the residualof T by 
iting the generating ve
tor �eld �. 6) Algebrai
 symmetries of T are preserved inT1. 7) Residuals of algebrai
 derivates of tensor �elds (sums, produ
ts, 
ontra
tions, andthe like) are the 
orresponding derivates of the residuals of the 
onstituents.Now let us see what the residual of the 
urvature tensor �eld �̂ is. Noting that �̂����has one 
ontravariant and three 
ovariant indi
es distin
t from d, we 
on
lude in light ofobservation (1) above that �̂�������� = e�2��̂���� . Then, referring to the �rst of Eqs. (A.3)in the Appendix and multiplying both its members by e�2� , we see that as � !1 the onlyterm on the right that is not extinguished by an exponential fa
tor is the last, and fromthis it follows that ��̂1��������� = ��̂2��2�g�[��g��℄: (66)Similar 
onsiderations show that��̂1��� �d�� �d = ��̂��2�g�� = ���̂1��� �d �d�� (67)and ��̂1� �d �� �d�� = ���2�g�� = ���̂1� �d���� �d; (68)
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omponents of �̂1 vanish. We �nd, therefore, that�̂1 = 2��2�!� 
 ��̂g��!�^ !��
 e�+ !� 
 ��̂g��!�^ !d�
 ed + !d 
 �!d^ !��
 e��; (69)whi
h redu
es to simply�̂1 = �̂2��2�!K
 �ĝKL!L^ !M�
 eM � (70)= �̂��2�!K
 ĝKL�!L
 !M � !M
 !L�
 eM �:This, then, is the residual of the 
urvature tensor �eld of Ĝ, or, a little more su

in
tly, theresidual 
urvature tensor �eld of Ĝ.One 
omputes easily the residual (of the) 
ontra
ted 
urvature tensor �eld of Ĝby 
omputing the 
orresponding 
ontra
tion of �̂1:�̂1 = ��̂(d� 1)��2Ĝ; (71)the residual (of the) 
urvature s
alar �eld of Ĝ by 
omputing the tra
e of Ĝ�1�̂1:	̂1 = ��̂(d� 1)d ��2; (72)and the residual (of the) Einstein tensor �eld of Ĝ by 
omputing �̂1 � (1=2)	̂1Ĝ1:Ê1 = �̂(1=2)(d � 2)(d � 1)��2Ĝ: (73)It is also easy to learn that the residuals ��1 and ��1 of the 
urvature �elds �� and �� of �dboth vanish, that ��G�1���1 = �G�1�� and �	1 = �	, and that �E1 vanishes.Comparing Eq. (69) and Eqs. (A.3), we see that the 
omponents of �̂1 in fe�; edg arejust those additive 
ontributions to the 
omponents of �̂ that do not depend on �A� or onany derivative of �, �A�, or �g�� . In the 
ase of the prototypi
ally 
onformally 
onstrainedde Sitter and hyper-de Sitter metri
s of Eqs. (1) and (2) the latter quantities all vanish,leaving only the 
onstants �, and �g�� to determine the 
urvature �elds. Consequently, forthese metri
s �̂ = �̂1 as it is expressed in Eqs. (69) and (70), but parti
ularized by thespe
ialization of the�g�� and by the fa
t that ��2 = 1=R2. The manifolds with these metri
sare, as previously remarked, open submanifolds of hyperboloidal \spheres" of radius R; theyhave, therefore, uniform se
tional 
urvature of magnitude 1=R2, uniform at ea
h point withrespe
t to 
hoi
e of se
tion (isotropi
, in other words), and uniform from point to point.In the general 
ase there is no su
h uniformity of ordinary se
tional 
urvature. Residualse
tional 
urvature, however, is always isotropi
, and is uniform if � is 
onstant. If a andb are a pair of tangent ve
tors at the point P of M, then from Eq. (70) it follows readilythat, at P , �Ĝ�̂1�abab = ��̂��2 h�Ĝaa��Ĝbb�� �Ĝab�2i : (74)This equation implies that if the square �Ĝ(P )aa��Ĝ(P )bb� � �Ĝ(P )ab�2 of the area ofthe bive
tor a ^ b is not 0, then the residual se
tional 
urvature of Ĝ at P in thedire
tion of a ^ b, de�ned in 
omplete analogy with the ordinary se
tional 
urvature asthe fra
tion of that square that the number �Ĝ�̂1�(P )abab 
omes to, is ��̂��2(P ). Asthis is independent of a and b, the residual se
tional 
urvature is isotropi
 at P ; 
learly itis uniform from point to point only if � is 
onstant. Even when not uniform, however, it
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onstant on ea
h traje
tory of �, simply be
ause L�� = 0. A shorter way of stating thefa
ts is to say that Ĝ is residually spheri
al at ea
h point of M, with verti
ally uniformresidual radius of 
urvature � and residual 
urvature ��̂��2.We have seen that the Ĝ lengths of the horizontal ve
tors e�� in the referen
e framefe �Mg used in 
al
ulating residual 
urvature stay �xed as we push these ve
tors verti
allyalong a traje
tory of �. The other side of this is that their lengths as spe
i�ed by the metri
�G do not stay �xed as we push them along. In fa
t, �Ge��e�� = e�2��Ge�e� = e�2��g��, so�Ge��e�� ! 0 as � ! 1. Also, �Ge �de �d = �Geded = 0. Thus the residual 
urvatures are limitsof ordinary 
urvatures measured against frames of vanishingly small �G dimensions.When Ĝ is a spa
e-time--time metri
, the �G lengths are the usual dimensions of spa
eand time, and it is in terms of these familiar dimensions that the frame ve
tors e�� shrink toin�nitesimal size as � !1. If we think of those frame ve
tors as abstra
t measuring instru-ments belonging to a family of in
reasingly mi
ros
opi
 observers stationed at a spa
e-timeevent E, then the e�e
t of their shrinking is that the observers at the extreme mi
ros
opi
end of the family are able to per
eive and to measure the 
urvatures of only their mostimmediate surroundings, whi
h to them are indistinguishable from a 
at spa
e-time regionembedded in a hyper-de Sitter, spa
e-time--time sphere of radius �(E). Thus the residual
urvatures, depending only on �, represent an aspe
t of the geometry more in�nitesimalin s
ale than that represented by the nonresidual portions of 
urvatures embodied in thetensor �eld �̂� �̂1 and depending on �A� and the derivatives of �, �A�, and �g�� as well ason � and �g�� | an ultralo
al, as opposed to a merely lo
al, aspe
t, one 
ould say. Thisdistin
tion between the lo
al and the ultralo
al aspe
ts 
omes into play when �eld equa-tions for spa
e-time--time are to be derived from an a
tion prin
iple. By adopting for thea
tion density the nonresidual portion 	̂� 	̂1 of the 
urvature s
alar �eld, one 
an favorspa
e-time--times that extremize not total 
urvature, but the total deviation of 
urvaturefrom the isotropi
, ultralo
al, va
uum emulating residual 
urvature [19℄.XI. Spa
e-Time--TimeThe de Sitter metri
 Ĝ of Eq. (1) and the manifold M on whi
h it is de�ned arise outof ordinary three-dimensional Eu
lidean spa
e through the following 
onstru
tion [1℄: thepoint of M whose address is [[x; y; z; t℄℄ is (identi�ed with) the Eu
lidean sphere of radius r
entered at [[x; y; z℄℄, where t := � ln(r=R); if this sphere and an in�nitesimally neighboringsphere of radius r+dr 
entered at [[x+dx; y+dy; z+dz℄℄ miss being tangent to one anotherby the angular amount d� (the radian measure of their angle of interse
tion if the spheresmeet), then the squared distan
e between the 
orresponding points ofM is (and this de�nesĜ) the number R2d�2.The same 
onstru
tion applied to Minkowski spa
e-time (whi
h for present purposesis inter
hangeable with de Sitter spa
e-time, being 
onformally equivalent to it and there-fore having mat
hing spheres and angles of interse
tion) yields both of the hyper-de Sittermetri
s Ĝ� and Ĝ+ of Eq. (2). The metri
 Ĝ� results when the Minkowski spheres (three-dimensional hyper-hyperboloids of revolution, in the Eu
lidean sense) are of the one-sheetedvariety, their points lying in spa
elike dire
tions from their 
enters. When the spheres arethose of the two-sheeted variety, whose points lie in timelike dire
tions from their 
enters,Ĝ+ results. In either 
ase the sphere of radius s 
entered at [[x; y; z; t℄℄ 
orresponds to thepoint (ofM� or ofM+) with address [[x; y; z; t; �℄℄, where � := � ln(s=R). And in either 
asethe squared distan
e between neighboring points is R2d�2, where d� is the angular amountby whi
h the 
orresponding neighboring spheres fall short of tangen
y [20℄.
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ause of this shared 
onstru
tion, whi
h in the iterated appli
ation de�nes thenew 
oordinate � in terms of the radius s pre
isely in the manner that when �rst appliedit de�nes the new, temporal 
oordinate t in terms of the radius r, and on no other ground,that I have atta
hed the label spa
e-time--time to manifolds with 
onformally 
onstrainedmetri
s modeled on Ĝ� or on Ĝ+. That the signature + ++�� of Ĝ� appears to �t thelabel and the signature + ++�+ of Ĝ+ appears not to do so is of no 
onsequen
e, for ineither 
ase the 
oordinate � represents a geometri
al entity thoroughly 
omparable to theentity that the 
oordinate t represents, justi�ably 
alled a \time" | but a time of a higherorder, of 
ourse. A fair des
ription of the situation would be that t is \spa
e's time" and �is \spa
e-time's time" [21℄.There being no geometri
al reason to prefer the one kind of Minkowski sphere to theother, it seems a half-measure to model physi
al systems by use of 
onformally 
onstrainedmetri
s bearing either one of these signatures, to the ex
lusion of those bearing the other,or to use one today and the other tomorrow. Expansion of the geometry to in
lude the twosignatures on equal footing urges itself as an essential further step. One way to e�e
t su
han expansion is to 
omplexify the se
ondary time 
oordinate �, and along with it the s
alar�eld � and the ele
tromagneti
 potential �eld �A. When that is done, new elements be
omeavailable for physi
al interpretation. Conspi
uous among them are 1) a re
ipro
al 
ouplingbetween pure imaginary gauge transformations of �A and 
omplex phase shifts of �, and2) an investing of ea
h geodesi
 with a varying 
omplex phase rotation whose frequen
yparameter adjusts to the environs of the geodesi
. These parti
ular elements beg to belinked up with quantum me
hani
al phase phenomena, and that rather 
learly demands theforging of a link between the geometri
al �eld � and the ele
tron wave �eld (S
hr�odinger's ) of quantum theory. The forging of su
h a link will, I believe, allow one ultimately to say,not that geometry has been quantized, but that the quantum has been geometrized.APPENDIX. Curvature ComponentsFrom the 
urvature 2-forms �̂KM as expressed in Eqs. (51) one readily extra
ts the
urvature 
omponents �̂KMLN that o

ur in �̂KM = �̂KMLN !N^!L = �̂KMLN !N
!L.Those that do not vanish identi
ally are given by�̂���� = ����� � �̂�2F�(�F[�)�℄ � �̂2��2g�[�g��℄;�̂��d� = �̂(1=2)��F��;� + 2F(���:�) + 2F�(��:�)�+ 2��2�:[�g�℄� ;�̂�d�� = �F�[�;�℄ � 2�:(�F[�)�℄ + �̂2��2g�[��:�℄;�̂d��� = ��̂g���̂�d�� ; (A.1)�̂�d�d = ���1�;�;� � �̂(1=4)�2F��F�� � �̂��2g��;and �̂d�d� = �̂g���̂�d�d;and the antisymmetry �̂KMNL = ��̂KMLN . Here, in a

ordan
e with Eq. (52),����� := 2 ����[�;�℄ + ���[�����℄ + ����C������g��F�� � F�[�g��℄ � g�[�F��℄� : (A.2)



26 HOMER G. ELLISWhen the righthand members of Eqs. (A.1) are \deteles
oped" by use of Eqs. (25){(29),there results that�̂���� = ������ + 2��A(�:[�)�g��℄ +�g�[��A(�:�)℄�+ 2��A��A[��g��℄ +�g�[��A��A�℄ � �A��A��g�[��g��℄�� �̂e�2��2�F�(�F[�)�℄ � �̂2e2���2�g�[��g��℄;�̂��d� = �̂(1=2)e�2� h��F��:� + 2�F(���:�) + 2�F�(��:�)+2���F(���A�) + �F�(��A�) � �F[���A��g�℄��i+ 2��2�:[��g�℄� ;�̂�d�� = ��F�[�:�℄ � 2�:(�F[�)�℄ � 2���A(�F[�)�℄ ��g�[��A�F��℄� (A.3)+ �̂2e2���2�g�[��:�℄;�̂d��� = ��̂e�2��g���̂�d�� ;�̂�d�d = ���1h��:�:� +�2�A(��:�) ��g���A��:��i� �̂(1=4)e�2��2�F��F�� � �̂e2���2�g��;and �̂d�d� = �̂e�2��g���̂�d�d:The abbreviations that appear in these expressions are explained in Se
. IX.From Eqs. (A.3) and the relation �̂KL = �̂KRLR it now follows that�̂�� = ���� +h(d� 3)�A(�:�) + �A�:��g�� + (d� 3)��A��A� + �A��A��g���i� ��1��:�:� � 2��1h�A(��:�) � (1=2)�A��:��g��i+ �̂(1=2)e�2��2�F��F�� � �̂(d� 1)e2���2�g��;�̂�d = �̂(1=2)e�2�h��F��:� � (d� 5)��F���A� + 3�F���:�i+ (d� 2)��2�:�; (A.4)�̂d� = �̂�d;and �̂dd = ��̂e�2���1h��:�:� � (d� 3)�A��:�)i� (1=4)e�4��2�F���F�� � (d� 1)��2;where ���� = ������, as said in Se
. IX.Here, for the sake of 
omparison with Eqs. (63) and (64), are the forms that 	̂, Ê��,Ê�d, Êd�, and Êdd would take for the Kaluza geometry, whose metri
 is obtained fromEqs. (40) by the repla
ement e2� ! 1:	̂ = �	� 2��1��:�:� + �̂(1=4)�2�F���F��; (A.5)



SPACE-TIME--TIME 27Ê�� = �E�� � ��1���:�:� ���:�:��g���+ �̂(1=2)�2��F��F�� � (1=4)�F���F���g���;Ê�d = �̂(1=2)���F��:� + 3�F���:��;Êd� = Ê�d; (A.6)and Êdd = ��̂(1=2)�	� (3=8)�2�F���F��:The further repla
ement � ! 1 yields the forms of 	̂, Ê��, Ê�d, Êd�, and Êdd for theKaluza{Klein geometry.
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es1. H. G. Ellis, Found. Phys. 4 (1974), 311{319; Erratum: 5 (1975), p. 193; partially reprised in Se
. XIof the present paper. N.B. In several pla
es the editor of the journal substituted \de
laration" for theword \manifesto" used in the manus
ript. I would have preferred \
redo" as a 
ompromise.2. H. G. Ellis, Abstra
ts of Contributed Papers, 8th International Conferen
e on General Relativity andGravitation, Univ. of Waterloo, Waterloo, Ont., Canada, 1977, p. 138. In this abstra
t both a \weakform" and a \strong form" 
onformality 
onstraint are de�ned. The present dis
ussion refers to a yetstronger form (to be de�ned in Se
. II), whi
h will be identi�ed simply as the 
onformality 
onstraint,the earlier versions being no longer in use.3. Th. Kaluza, S.{B. Preuss. Akad. Wiss. 1921, 966{972. The referen
e here is to the geometry with the\
ylinder 
ondition" as Kaluza intended it, without the additional restri
tion that the Killing ve
tor�eld have 
onstant length, appended later by Klein [a℄ and by Einstein [b℄. This restri
tion 
on
eivablylies impli
it in Kaluza's stated and unstated assumptions; if so, he did not re
ognize it.a. O. Klein, Z. Physik 37 (1926), 895{906; 46 (1927), 188{208.b. A. Einstein, S.{B. Preuss. Akad. Wiss., Phys.{math. Kl. 1927, 23{30.The Kaluza paper and the �rst Klein paper appear in English translation in Modern Kaluza{KleinTheories (vol. 65 in the series Frontiers in Physi
s), T. Appelquist, A. Chodos, and P. G. O. Freund,eds. (Addison{Wesley, Menlo Park, California, 1987); a fa
simile of the Kaluza paper also is in
luded.4. H. Weyl, S.{B. Preuss. Akad. Wiss. 1918, 465{480; Ann. d. Physik 59 (1919), 101{133.5. E. S
hr�odinger, Expanding Universes, Cambridge Univ. Press, Cambridge, U.K., 1956, pp. 28{33.6. Stri
t adheren
e to the meaning of \
onformal" would 
lassify metri
s Ĝ for whi
h L�Ĝ = 0 as \iso-metri
ally 
onformally 
onstrained" if L�Ĝ = 0 and those for whi
h L�Ĝ = 2G as \nonisometri
ally
onformally 
onstrained"; the less a

urate \isometri
ally 
onstrained" and \
onformally 
onstrained"have the advantage of brevity.7. Th. Kaluza, lo
. 
it. Kaluza was not adamant about this 
hoi
e, indeed seemed willing to let it go theother way if by so doing he 
ould over
ome a \very large" diÆ
ulty pointed out to him by Einstein (p.971, last paragraph).8. My reasons for 
alling M a spa
e-time-time manifold 
an be found in Ref. 1; they are dis
ussed here inSe
. XI.9. This supposition, introdu
ed here to simplify the 
onstru
tion, is not essentially restri
tive, as 
ases inwhi
h it is false 
an be brought under it by judi
ious use of 
overing manifolds.10. Weyl himself was mainly responsible for this amnesia, through his dis
overy of the tie between ele
-tromagneti
 gauge transformations and ele
tron wave �eld phase shifts (
f. Spa
e-Time-Matter (Dover,New York, 1950), Prefa
e to the First Ameri
an Printing, p. v, and referen
es 
ited there).11. All skew-symmetrizations signi�ed by [ ℄ and symmetrizations signi�ed by ( ) are to be 
arried out ontwo indi
es only, namely the leftmost and the rightmost indi
es en
losed.12. These 
ommutators in
lude the fa
tor 1/2, viz., [u; v℄ := (1=2)(uv� vu).13. W. Ehrenberg and R. Siday, Pro
. Phys. So
. (London) B62 (1949), 8{21.14. Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959), 485{491.15. The derivation is not quite straightforward, be
ause the 
oframe system f!�; !dg is not required to beholonomi
. The Euler equations turn out to be, after division by 2, (ĝKL _pL)_ � (1=2) _pM ĝMN;K _pN +CKML _pLĝMN _pN = 0, where K;L;M;N = 1; : : : ; d and CKML = (d^!M )eLeK = !M [eK ; eL℄.16. See for example Eq. (2.41), p. 62, in Ele
trodynami
s and Classi
al Theory of Fields and Parti
les, A.O. Barut (Ma
millan, New York, 1964).17. D. M. Chase, Phys. Rev. 95 (1954), 243{246, obtained results that seem to imply some 
onne
tionin Einstein{Maxwell theory between the ratio of a
tive 
harge to a
tive mass and the ratio of passive
harge to passive mass.18. A weaker 
ondition would suÆ
e, merely that M be �-forwardly 
omplete, in other words that on ea
h�-path the integration parameter run to 1.19. The restri
ted �eld equations of Ref. 2 are derived from su
h an a
tion prin
iple. N.B. The equationthere labeled Æ ) is wrong, and should be repla
ed by �A�:� � 3�A�A� = (1=2)�R� (3=4)K 2�F���F ��.These equations, derived in a gauge 
hosen to simplify des
ription of the integration region D5, are notfully gauge invariant, nor are they intended to be.20. See Ref. 1; Eq. (4) there needs a minus sign before the d�2. See also R. L. Ingraham, Nuovo Cimento46 B (1978), 16{32.21. A point to be emphasized is that, irrespe
tive of any label applied to it, the dimension 
oordinatizedby � di�ers so radi
ally in 
hara
ter from the three spatial dimensions that no attempt to make it\unobservable" is demanded. Making it periodi
 by rolling up the traje
tories of � into 
ir
les (after the
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ti
e of Kaluza{Klein theorists) would be in fa
t in
ompatible with the 
onformality 
onstraint andtherefore impossible. Cases in whi
h the �-traje
tories return repeatedly to the same spa
e-time 
rossse
tion, ea
h return o

urring at a new event, might usefully be 
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