
Quantum e�e
ts from a purely geometri
al relativitytheory1 Homer G EllisDepartment of Mathemati
s, University of Colorado at Boulder, 395 UCB, Boulder, Colorado80309, USAE-mail: Homer.Ellis�Colorado.EDUAbstra
t. A purely geometri
al relativity theory results from a 
onstru
tion that produ
esfrom three-dimensional spa
e a happy uni�
ation of Kaluza's �ve-dimensional theory andWeyl's 
onformal theory. The theory 
an provide geometri
al explanations for the followingobserved phenomena, among others: (a) lifetimes of elementary parti
les of lengths inverselyproportional to their rest masses; (b) the equality of 
harge magnitude among all 
hargedparti
les intera
ting at an event; (
) the propensity of ele
trons in atoms to be seen in dis
retelyspa
ed orbits; and (d) `quantum jumps' between those orbits. This suggests the possibility thatthe theory 
an provide a deterministi
 underpinning of quantum me
hani
s like that providedto thermodynami
s by the mole
ular theory of gases.This presentation is intended to show that some of the phenomena thought to be explainableonly through the pro
ess of `quantizing' a 
lassi
al relativisti
 theory 
an be explained,qualitatively and to some degree quantitatively, by a purely geometri
al relativity theory basedon and derived solely from the geometry of three-dimensional spa
e.2 A simple geometri

onstru
tion applied iteratively generates new dimensions beyond the basi
 three of spa
e. The�rst appli
ation produ
es spa
e-time, the se
ond produ
es spa
e-time{time, and so on. Spa
e-time is a generalized de Sitter spa
e. Spa
e-time{time, in whi
h quantum e�e
ts show up, is ahappy hybrid of two notable attempts at a uni�ed theory of gravity and ele
tromagnetism: theKaluza �ve-dimensional geometry [3℄ and the Weyl 
onformal geometry [4℄. Brought together inthis way those theories lose their undesirable properties while retaining their useful ones. Thatthe spa
e-time{time geometry both indu
es quantum e�e
ts and in
ludes gravity (along withother �elds) 
alls into question the rationale behind the sear
h for a quantum theory of gravity.This presentation and its author might therefore be regarded as intruders from a s
hool devotedto \Es
apes from Quantum Gravity", 
ondu
ted in a parallel universe.The geometri
 
onstru
tion in question 
an be understood initially by referen
e to Fig. 1,whi
h shows in 
ross se
tion two neighboring spheres S and S0 in eu
lidean 3-spa
e E 3 with
enters C and C 0 the distan
e ds apart, and with radii R and R + dR. The angle d� in whi
hthey interse
t is found, by appli
ation of Pythagoras' theorem to the in�nitesimal right trianglein the middle, to be given by d�2 = (1=R2)(ds2 � dR2), whi
h shows d� to be the line elementof a metri
 of diagonal signature + + + � on the four-dimensional manifold M4 whose points1 Presented at the VI Mexi
an S
hool on Gravitation and Mathemati
al Physi
s \Approa
hes to QuantumGravity", Playa del Carmen, Quintana Roo, Mexi
o, November 21{27, 2005.2 An early, imperfe
t des
ription of the theory 
an be found in [1℄, later, detailed des
riptions in [2℄.
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Figure 1. The `angle' line element.
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dR+ dsR=R̂ � dR� dsR=R̂= R̂2�dR2 � ds2R2 �Figure 2. The `displa
ement' line element.are the 2-spheres of E 3 . Note that d� is invariant under 
onformal transformations of E3 .A more general version of the 
onstru
tion is exhibited in Fig. 2. Here, instead of E3 there isa three-dimensional manifoldM3 with a positive-de�nite riemannian metri
 G, whose geodesi
2-spheres are the points of M4; S and S0 are two su
h spheres, Q0QCC 0PP 0 is the geodesi
through their 
enters C and C 0, and the line element is generated as the produ
t of the distan
es(relative to a s
aled radius R=R̂) by whi
h P and Q are displa
ed when S is magni�ed radiallyby the fa
tor 1+ dR=R and its 
enter C is shifted a distan
e ds along the geodesi
 to C 0, whi
hin e�e
t 
onverts S to S0. The line element that results is given by d�2 = (R̂=R)2(dR2 � ds2).De�ning a new 
oordinate t by t := � ln(R=R̂) makesd�2 = R̂2dt2 � e2tds2; (1)a generalization of the de Sitter spa
e-time metri
 for an empty expanding universe of uniformradius of 
urvature R̂, to whi
h metri
 it redu
es when M3 = E 3 . Thus, by means of a simplegeometri
 
onstru
tion we have produ
ed from (more aptly, dis
overed within) the geometry ofthree-dimensional spa
e the geometry of a four-dimensional spa
e-time.The tensor produ
t version of the metri
 spe
i�ed by equation (1) isĜ = R̂2(dt
 dt)� e2tG = R̂2(dt
 dt)� e2t(dxm 
 gmndxn); (2)where G is the metri
 of M3. For this spa
e-time metri
 �t is a `
onformal semi-Killing' ve
tor�eld, in the sense that L�tĜ = �2 e2tG, where L�t denotes Lie di�erentiation along �t. Observingthat �e2tG = Ĝ� (Ĝ�t�t)�1(Ĝ�t
 Ĝ�t), one sees that to 
apture least restri
tively in a generi
spa
e-time metri
 Ĝ on a manifold M4 the essen
e of the geometri
al 
onstru
tion in questionit is suÆ
ient to subje
t Ĝ to the 
onstraint that there exist on M4 a time-like ve
tor �eld �su
h that L�Ĝ = 2 [Ĝ� (Ĝ��)�1(Ĝ� 
 Ĝ�)℄. It is then easy to see that, in a 
oordinate system[[ xm; t ℄℄ adapted to � so that � = �t, Ĝ takes the formĜ = �2(A+ dt)
 (A+ dt)� e2tG= �2(Amdxm + dt)
 (Andxn + dt)� e2t(dxm 
 gmndxn); (3)with �, Am, and gmn independent of t.



Quantum e�e
ts from a purely geometri
al relativity theory 3Having arrived at the spa
e-time geometry des
ribed by the metri
 Ĝ on the manifoldM4, we 
an repeat the 
onstru
tion, applying it this time to the geodesi
 3-spheres of M4to produ
e a metri
 on the �ve-dimensional manifold M5 whose points are those geodesi
3-spheres. Generalizing that metri
 in the manner that produ
ed (3) we obtainĜ = e2�G+ �̂�2(A+ d�)
 (A+ d�)= e2�(dx� 
 g�� dx�) + �̂�2(A� dx� + d�)
 (A� dx� + d�); (4)referred to a 
oordinate system [[ x�; � ℄℄ su
h that � = �� , where now G is the spa
e-time metri
and �, A�, and g�� , the 
ounterparts of the previous �, Am, and gmn, are independent of �.The fa
tor �̂ enters be
ause there are two kinds of spheres (hyper-hyperboloids, a
tually) inspa
e-time. Those whose points lie in spa
elike dire
tions from their 
enters require that �̂ = 1,those whose points lie in timelike dire
tions from their 
enters require �̂ = �1. In either 
ase,be
ause the 
onstru
tion that produ
ed Ĝ from spa
e-time is the same one that produ
ed spa
e-time from spa
e, it is justi�ed, indeed unavoidable, to label the manifold M5 with the metri
Ĝ a spa
e-time{time, and to identify � as a temporal 
oordinate, albeit of a se
ondary naturedistin
t from that of the primary time 
oordinate t. Ultimately the �̂ = �1 distin
tion shouldbe resolved by allowing � to be a 
omplex 
oordinate. For present purposes, however, � will bekept real and �̂ will be 1, the points of M5 being therefore the spa
elike spheres of M4.The geometry of spa
e-time{time is the previously mentioned happy hybrid of the Kaluzaand the Weyl geometries. As in Kaluza's theory, A is the spa
e-time 
ove
tor potential ofthe ele
tromagneti
 �eld 2-form F de�ned by F := �2 d^A. The 
oordinate transformation� 0 = � � �, with � independent of �, generates in one stroke both the ele
tromagneti
 gaugetransformation A0 = A + d� and the Weyl 
onformal transformation G0 = e2�G. The geodesi
paths of Ĝ are taken to be the histories of test parti
les. To analyze these histories for physi
al
ontent one introdu
es the frame system fe�; e5g := f�� � A� �� ; ��1��g and its dual 
oframesystem f!�; !5g := fdx�; �(A� dx� + d�)g, for whi
h Ĝ = e2�(!� 
 g�� !�) + !5 
 !5 and e5 isorthogonal to the e�. The velo
ity _p of a path p : R !M5 then is expressed by _p = _p�e�+ _p5e5,and one 
an introdu
e the following de�nitions for a test parti
le whose history is p:P := Ĝ _p = (e2� _p�g��)!� + _p5!5 =: P�!� + P5!5 (momentum), (5)�m := (P� g��P�)1=2 = e2�( _p�g�� _p�)1=2 (rest mass), (6)q := �P 5 = � _p5 = �2(A� _p� + _�) (ele
tri
 
harge), (7)� := R ( _p�g�� _p�)1=2 = R e�2��m (proper time), (8)u� := dp�d� := _p�_� (proper velo
ity). (9)Of these P and q are gauge-invariant and the others are not, although the 
ondition �m = 0 isgauge-invariant.Taking p to be a se
ondarily timelike geodesi
 parametrized by ar
length, that also isprimarily timelike in that _p�g�� _p� > 0, one has that j _pj2 = Ĝ(p) _p _p = e2�( _p�g�� _p�) + ( _p5)2 =e�2��m2 + (q=�)2 = 1 and that �p = �p�e� + �p5e5 = 0. The equation �p� = 0 is equivalent tod(�mu�)d� + (�mu�)����u� = qF ��u� � �mA� + e2� (q=�)2�m (ln�):�; (10)and �p5 = 0 is equivalent to_q = e�2��m2 = 1� (q=�)2; also to dqd� = �m = e� [1� (q=�)2℄1=2: (11)



4 Quantum e�e
ts from a purely geometri
al relativity theoryEquations (11) and (7), together with e�2��m2 + (q=�)2 = 1, entail that(�m2)_ = 2[��m2A� + e2�(q=�)2(ln�):�℄ _p�: (12)Equation (10) shows the rate of 
hange of the parti
le's spa
e-time momentum �mu�with respe
t to its proper time to be governed by four `for
es': the Einstein{Newton for
e�(�mu�)����u�, the Lorentz for
e qF ��u�, the `Weyl for
e' ��mA�, and the `Kaluza for
e'(�m)�1(q=�)2(ln�):�. Equation (11) produ
es generi
 behavior of q that is exempli�ed inthe solution q(�̂) = � tanh(�̂ =�), where �̂ is se
ondary proper time and � is taken to be
onstant. From e�2��m2 + (q=�)2 = 1 follows �(�̂) = ln(�m(�̂ ) 
osh(�̂ =�)). If also A� = 0, thenequation (12) tells that �m is 
onstant, and (8) yields �(�̂) = �m R e�2�(�̂ ) d�̂ = (�=�m) tanh(�̂ =�),whi
h shows the parti
le's proper lifetime to be 
on�ned to the open interval (�(�1); �(1))(= (��=�m;�=�m)), thus asso
iates longer lifetimes with smaller rest masses, shorter lifetimes withlarger rest masses. Noting in passing the equivalen
e of inertial mass and passive gravitationalmass implied by the two appearan
es of �m in the lefthand member of (10), one divides by �m toobtain du�=d� + u�����u� = 0, whi
h says that the parti
le's spa
e-time tra
k is a geodesi
 ofthe Einstein geometry. The parti
le's 
oordinates x� will in general have �̂ dependen
e similarto that of � , in 
onsequen
e of whi
h the parti
le's spa
e-time tra
k will have an endpoint eventE1 at whi
h it appears suddenly, traveling with velo
ity (dxm=dt)(�1) (if dt=d� > 0), and anendpoint event E2 at whi
h it disappears just as suddenly, traveling with velo
ity (dxm=dt)(1).Essential features of this behavior will persist in the generi
 
ase where � and A� are notrestri
ted. In parti
ular, the spa
e-time tra
k will end at events E1 and E2, and q will grow from��(E1) to 0 and on to �(E2) and � will depart from and return to 1, as �̂ goes from �1 to 1.Figure 3 is a s
hemati
 representation of a geodesi
 exhibiting su
h behavior.
Spa
e-time{timegeodesi
 path p

Spa
e-time proje
tion of p
Timeofspa

e-time(�)

Spa
e-time 
ross se
tion of spa
e-time{time
E1 q = �� (E1) q = 0 E2 q = � (E2)

Figure 3. A spa
e-time{time geodesi
 and its spa
e-time proje
tion.



Quantum e�e
ts from a purely geometri
al relativity theory 5The variational prin
iple 0 = Æ RD�[a;b℄(	̂ � 	̂1) dV̂ , where 	̂ is the 
urvature s
alar of Ĝ,given by 	̂ = e�2�	+ 6e�2� [A�:� �A�A�℄� 2e�2���1 [�:�:� � 2A��:�℄ + (1=4)e�4��2F��F�� � 20��2; (13)	̂1 := lim�!1 	̂ = �20��2, and D is a region of spa
e-time, produ
es the following �eldequations, obtained by varying � and A�, respe
tively, where k := 2(b� a)=(e2b � e2a):A�:� � 3A�A� = �(3=8)k�2F��F�� � (1=2)	 (14)and F ��:� + 3F ��(ln�):� = �2k�1��2 [(ln�):� + 6A�℄ : (15)In [5℄ the analogous equations for spa
e-time are shown to have spheri
ally symmetri
solutions of the `traversable wormhole' type, similar to those in [6℄. In the spa
e-time{time
ase, with G des
ribing a nongravitating, stati
, spheri
ally symmetri
, traversable wormhole,with A = V (r) dt, and with ln� = U(r), numeri
al integration yields a variety of solutions forwhi
h, as r !1, V (r) is asymptoti
 to a Coulomb potential Q=r. For one of these, typi
al ofa large 
lass, U(r) has, for r � 0, the shape shown in Fig. 4. The spa
ing of su

essive bottomsof the potential wells of U(r), lo
ated at r = rn, n = 1; 2; 3; � � �, is asymptoti
 to 2n, 
onsistentwith rn's growing asymptoti
ally as n2. Figure 5 is a graph of an arti�
ial version �U(r) of ln�with rn = n2 and potential wells of uniform depth, to be used for illustrative purposes.
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Figure 5. An arti�
ial potential.Now 
omes a most remarkable aspe
t of a test parti
le's spa
e-time behavior: both as�̂ ! �1 and as �̂ ! 1 the fa
tor e2� that in equation (10) 
ouples the Kaluza for
e to themomentum rate be
omes in�nite, whi
h 
auses that for
e to in�nitely dominate the other three,and to push ea
h of the terminal events E1 and E2 toward a bottom of one of the potential wells ofln�. Thus a s
atter plot of E1 and E2 generated by random 
hoi
es of initial 
onditions p(0) and_p(0) for the test parti
le's path p would show high densities near those potential well bottoms,low densities elsewhere. Figure 6 illustrates this behavior, whi
h 
learly suggests the possibilityof a (for the present, only qualitative) deterministi
 underpinning of quantum me
hani
s likethat provided to thermodynami
s by the mole
ular theory of gases.As illustrated in Fig. 3, neither of the events E1 and E2 is a proje
tion of a point on thegeodesi
 path p: they are only limits of su
h proje
tions as �̂ ! �1 and � !1. This suggeststhat the parti
le whose spa
e-time tra
k the proje
tion is exists neither at or before E1 nor at orafter E2, rather exists only between E1 and E2. Think ba
k, however, to the original 
on
eptionof events in spa
e-time as 2-spheres in spa
e, with t = � ln(R=R̂). Under this interpretation theproje
tion of p is a one-parameter family of spheres whi
h 
onverges at either of these events E
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Figure 6. Sample tra
ks of test parti
les following spa
e-time{time geodesi
s governed by thearti�
ial potential ln� = �U(r) of Fig. 5 and a Coulomb potential �V (r) = Q=r. The parti
lesappear at E1, follow the tra
k in the 
ounter
lo
kwise dire
tion, and disappear at E2. In ea
h
ase E1 is at r = 1, ' = 0, with q = ��(E1) = �1 and �m = 1. The initial angular velo
itiesd'=dt are: (a) 0.0050; (b) 0.0101; (
) 0.0151; (d) 0.0352; (e) 0.0502; (f) 0.0602. The numbersof 
omplete revolutions in the orbits, and the lo
ations of E2, are (a) 1, r = 0:995545, ' = 212�;(b) 3, r = 0:992591, ' = 51�; (
) 4, r = 0:993775, ' = 240�; (d) 5, r = 4:00752, ' = 204�;(e) 7, r = 3:97478, ' = 224�; (f) 8, r = 9:09021, ' = 170�. In ea
h 
ase at the end q = �(E2) � 1.Su
h deterministi
 geodesi
s of spa
e-time{time 
an model (qualitatively, at least) quantumbehavior of ele
trons in atoms, of `quantum jumps' between ele
tron orbits in parti
ular.to the sphere S(E) 
entered at the spatial lo
ation of E and with the nonzero radius R̂e�t(E).By de�nition E = S(E), and therefore every test parti
le tra
k that has E as one of its endpointswould in
lude S(E) by 
ontinuity. What is more, the full geodesi
 path is itself a one-parameterfamily of spa
e-time{time points, thus of (hyper-hyperboloidal) `spheres' of spa
e-time. The3-`sphere' S� that is the point at [[x�; � ℄℄ has as its 
enter the spatial 2-sphere that is the eventat [[ x� ℄℄ in spa
e-time. The radius of S� is R̂e�� , whi
h goes to zero at E . A

ording to thespa
e-time metri
 
onstru
ted in Fig. 1, S� is the set of all 2-spheres that lie an angular distan
eR̂e�� from the 
entral 2-sphere. This set is a union of disjoint subsets ea
h of whi
h is a one-parameter family of 2-spheres all mutually tangent to one another at a single point of the 
entral2-sphere, whi
h they all interse
t in an angle of radian measure R̂e�� . These families, whi
hin the 
onventional sense are null generators of the hyper-hyperboloid that is the 3-sphere S� ,are null geodesi
s of spa
e-time whi
h broad
ast the lo
ation and size of the 
entral 2-sphere,both forward in time and ba
kward. As � !1 the 2-spheres all be
ome tangent to the 
entralsphere. Conventionally put, the hyperboloid S� 
ollapses to a null 
one, whose vertex is the
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al relativity theory 7event 
orresponding to (i. e., equal to by de�nition) the limiting 
entral sphere S(E). The eventson or interior to the past null 
one of E1 and the future null 
one of E2 re
eive no informationabout the parti
le, but every other event is noti�ed of the parti
le's existen
e (by being an eventon a null generator of one of the hyperboloids S� in the spa
e-time{time geodesi
, thus by beinga 2-sphere in one of the families of mutually tangent 2-spheres whose union is S�). If we now
onsider the test parti
le following the path p to in fa
t be a 2-sphere in spa
e, going forwardin (primary) time by shrinking, then, be
ause it has nonzero spatial radius at E1 and E2, theparti
le 
an be deemed to exist there, even though it is visible only between E1 and E2.A se
ond test parti
le whose tra
k shared with that of the �rst an endpoint E would havein 
ommon with the �rst the 2-sphere S(E), thus would be, for an instant at least, the sameparti
le. The two parti
les 
ould be thought of as extensions of one another, as well as of allother parti
les that shared the endpoint E . Su
h an event would be an `intera
tion' event, notunlike a vertex in a quantum me
hani
al Feynman diagram. Built in to the intera
tion wouldbe that all parti
ipating 
harged parti
les have the same 
harge magnitude jqj = �(E).There is mu
h left unreported here, but I trust that what has been reported is suÆ
ientto lend 
reden
e to the proposition that some measure of the physi
s of quantum phenomena
an be extra
ted, qualitatively and to some degree quantitatively, from the geometry of three-dimensional spa
e.Referen
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er than bla
kholes | with a bright side, too Preprint gr-q
/0003024[6℄ Ellis H G 1973 Ether 
ow through a drainhole: a parti
le model in general relativity J. Math. Phys. 14 104{18;Errata: 1974 15 520


