
AN EXPANDING UNIVERSE OF SPINNING SPHERESHomer G. EllisAbstrat. A novel but elementary geometri onstrution produes on the seven-dimensionalmanifold of rotated spheres in Eulidean three-spae a �nslerian geometry whose geodesisare interpreted as the paths of free, spinning, spherial partiles moving through de Sitter'sexpanding universe. A partile of nonzero inertial rest mass typially follows a helial trakand exhibits behavior remindful of the phenomenon of \Zitterbewegung" of spinning eletrons�rst dedued by Shr�odinger from Dira's relativisti wave equation. Its veloity vetor andits spin vetor preess about the axial diretion of the helix, with their projetions onto thatdiretion at all times parallel or at all times antiparallel. Partiles of zero rest mass followstraight traks at the speed of light with their spin vetors parallel or antiparallel to theirveloity vetors, thereby repliating behavior of spinning photons predited by the quantumtheory of light.The four-dimensional manifold whose points are the spheres of Eulidean three-spaeE 3 an be oordinatized by [[R; s ℄℄, this designating the sphere S of radius R with its enterC at position s. If [[R + dR; s + ds ℄℄ designates a neighboring sphere S0, and d� is theradian measure of the angle in whih S and S0 interset, thend�2 = (ds2 � dR2)=R2= e2tds2 � dt2; (1)where ds := jdsj and t := � lnR (see Fig. 1). As this is preisely the metri of de Sitter'sexpanding universe, one an onsider that universe to be this manifold of spheres, the eventat [[ t; s ℄℄ in de Sitter's universe being then the two-sphere of radius e�t entered at positions in E3 . One gains thereby the advantage of reduing the ever mysterious notion of time(t) to a purely spatial onept (� lnR), along with the satisfation of produing a spae-time osmologial model out of the whole loth of Eulidean spae.(1) This satisfation istempered, however, by the apparent absene of a way to extend the onstrution to a metrifor spheres that are \spinning" in a sense that makes sense. The diÆulty lies in the fatthat neighboring spheres will interset in the same angle whether spinning or not.A plan of esape from this ul-de-sa grows out of the realization that radian measureof an angle is simply a ratio of ar lengths, whih suggests that some alternative hara-terization of d� as a ratio of distanes might admit the needed extension. Of several suhharaterizations, the one that does the job is this: If eah point P of the sphere S ismoved radially, to produe a magni�ation of S by the fator 1 + dR=R, and subsequentlyis translated by the vetor ds, then P arrives at a point P 0 on the neighboring sphere S0.Generially, there are only two suh points P for whih the displaement vetor ��!PP 0 isorthogonal to S, namely, the two points where the line through C and the enter C 0 of S0intersets S. Of these two points P one has moved a distane dR + ds in the diretion of�!CP , the other a distane dR�ds in the diretion of �!CP . The produt of the ratios of thesedistanes to R is exatly the negative of the d�2 of Eq. (1), even when, as in Fig. 2, S andS0 fail to interset, so that there is no angle to measure.1
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S S0C C 0R dRRd�d� ds(Rd�)2 + dR2 = ds2) d�2 = ds2 � dR2R2

Fig. 1. Interseting neighboring spheres S and S0 in Eu-lidean three-spae, with angular separation d� | shownin ross setion through their enters.Now the means of esape is at hand. It is to inlude a rotation with the magni�ationand the translation, �nd the points P of S for whih ��!PP 0 is orthogonal to S, omputethe ratios to R of distanes moved, as before, and use these to de�ne a measure of theseparation of S0 from S. A hurdle or two remain, however. The �rst is the need to speifythe manifold that will take the role played by the sphere manifold in the nonrotating ase.Clearly, this will be the manifold of rotated spheres, a point of whih is a sphere with aenter, a radius, and a rotational position relative to some standard position for all sphereswith the same enter. This seven-dimensional manifoldM, di�eomorphi to R�E 3�SO(3),an be oordinatized by [[R; s; �; �;  ℄℄, where �, �, and  are Euler angles that togetherspeify the rotational position of the sphere with respet to the standard referene frameat s. With t := � lnR as before, a path in this manifold an be taken to represent aspherial partile, moving through spae and time, spinning as it goes.Let the rotated sphere S designated by [[R; s; �; �;  ℄℄ undergo the ombined in�nites-imal rotation, expansion, and translation represented by [[ dR;ds; d�; d�; d ℄℄. Let P bea point of S, and let u = �!CP , the position vetor of P relative to the enter C of S.Then the rotation moves P to a point whose position vetor relative to C is u + Æ � u,where Æ := [[ (os �)d� + (sin�)(sin �)d ; (sin�)d� � (os�)(sin �)d ; d� + (os �)d ℄℄. Themagni�ation multiplies this vetor by 1 + dR=R, and the translation adds ds. Thus therequirement that the �nal position P 0 of P be ollinear with C and P , equivalent to therequirement that ��!PP 0 be orthogonal to S, redues to the equation(1 + dR=R)(u + Æ � u) + ds = (1 + �)u; (2)for some number �. When the term of seond order in the in�nitesimals is disarded, thisequation simpli�es to (�� dR=R)u = Æ � u+ ds: (3)In the generi ase that � := (��dR=R)[(��dR=R)2+Æ2℄ 6= 0, the solution of this equationis u = [(�� dR=R)2ds+ (�� dR=R)(Æ � ds) + (Æ � ds)Æ℄=�: (4)



AN EXPANDING UNIVERSE OF SPINNING SPHERES 3Beause P lies on S, u�u = R2, whih is equivalent to(�� dR=R)4 + [Æ2 � (ds=R)2℄(�� dR=R)2 � [Æ � (ds=R)℄2 = 0: (5)The numbers � that satisfy this equation are the distane ratios with whih to build aseparation measure on M and make good our esape. Generially, there are four suhnumbers, two of them real, the others omplex. The remaining hurdle is to deide how bestto use them.
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Fig. 2. Noninterseting neighboring spheres S and S0 in Eu-lidean three-spae, separated by the \two-point" distanep(dR2 � ds2)=R2 | shown in entered ross setion.Inasmuh as only the two real roots of Eq. (5) orrespond to real points of S, one mightthink it best to onstrut the separation measure from their produt. Investigation shows,however, that this yields a measure with an inurable degeneray. If on the other hand onehooses to build the separation measure from the produt of all four of these ratios, thensmooth sailing lies ahead, but no longer on the broad Sea of Riemann, rather on the vasterOean of �nslerian Geometry.A �nslerian geometry on a manifold suh as M assigns to eah smooth path p : [a; b℄!M an integrated length I(p) := R ba L(p; _p), subjet for present purposes essentially only tothe restritions that L be positively homogeneous of degree one in the veloity _p (so that I(p)will be independent of path parametrization) and that the metri tensor G, loosely desribedas dxM 
 gMNdxN , where gMN (x; v) := �2[(1=2)L2(x; v)℄=�vM�vN if x = [[ xK ℄℄ and v =vK(�=�xK ), be nondegenerate. The homogeneity allows the �nslerian metri funtion Lto be reonstruted from G via the equation L2(x; v) = vMgMN (x; v)vN . Riemanniangeometries are those �nslerian geometries for whih gMN (x; v) is independent of v.(2;3)



4 HOMER G. ELLISThe produt of the four roots of Eq. (5) is expressible both asdt2(dt2 � e2tds2 + Æ2)� e2t(ds � Æ)2 (6)and as (dt2 + Æ2)(dt2 � e2tds2) + e2tjds� Æj2; (7)where again t := � lnR. With this produt we an now impress uponM a �nslerian geome-try by de�ning L as follows: Let [[ pK ℄℄ := [[ xK(p) ℄℄, = [[ t; s; �; �;  ℄℄ for short, and [[ _pK ℄℄ :=[[ dxK(p) _p ℄℄ = [[ (pK)_ ℄℄, = [[ _t; _s; _�; _�; _ ℄℄ for short. Let � := [[ (os�) _� + (sin�)(sin �) _ ;(sin�) _� � (os�)(sin �) _ ; _�+ (os �) _ ℄℄. ThenL(p; _p) := �� _t2( _t2 � e2t _s2 + �2)� e2t(_s � �)2��1=4= ��( _t2 + �2)( _t2 � e2t _s2) + e2tj _s� �j2��1=4: (8)As is seen most learly in (7) above, this �nslerian geometry inorporates the geometriallyderived de Sitter spae-time metri of Eqs. (1) and envelops it in additonal struture in-volving the rotations of the spheres. The geodesi paths of the �nslerian geometry will betaken to represent freely spinning spherial partiles moving through de Sitter's universeunder the inuene only of the gravitational e�ets attributable to the osmi expansion.Computing the Euler{Lagrange equations for stationary paths of I, and applying tothem the inverse of the metri tensor G to isolate the derivatives, one arrives at the followingequations for aÆnely parametrized geodesis:_E = C0; (9)_v = C1v + C2� + C3(v � �); (10)_� = C4v + C5� + C6(v � �); (11)in whih E := _t;v := et _s, andC0 = �(E2v2 �B2)=D;C1 = �E[(E4 +B2)(E2 � v2) + (E4 �B2)(E2 � �2)℄=D(E4 +B2);C2 = �2BE(E2v2 �B2)=D(E4 +B2);C3 = �B2=(E4 +B2);C4 = �2BE[(E4 +B2) +E2(E2 � �2)℄=D(E4 +B2);C5 = 2E3(E2v2 �B2)=D(E4 +B2);C6 = BE2=(E4 +B2); (12)
with B = v�� and D = 2E2 + v2 � �2.It is straightforward to show that �, d, and  de�ned as follows are onstants of themotion: � := E2(E2 � v2 + �2)�B2= (E2 + �2)(E2 � v2) + jv � �j2; (13)d := etB; (14) := et(E2v +B�): (15)



AN EXPANDING UNIVERSE OF SPINNING SPHERES 5(Choosing ar length for the path parameter when � 6= 0 restrits the values of � to 1, 0,and �1.) If d = 0, then the partile's saled veloity vetor v and spin vetor � are atall times orthogonal to one another. Eah, if not 0, maintains a �xed diretion in spae,v's diretion being that of the vetor . The partile's trak through spae is, therefore, astraight line in its own, unwavering equatorial plane. If  = 0, then v = 0, so the partilesits in one plae spinning (or not, if � = 0) and shrinking as time moves on (indeed, movingtime onward by shrinking). If d 6= 0, then  is a nonzero vetor around whih both v and� preess, with, as in Fig. 3, v and either � or �� keeping  between them at all times(exept, of ourse, when v, � or ��, and  are all parallel). We shall see that in fat thepartile in question moves on a helial trak whose axis is aligned with .c cv v�

�B = v�� > 0 B = v�� < 0Fig. 3. Geodesially spinning spheres with their saled ve-loity vetors v and their spin vetors � preessing aroundthe fixed vetor . Beause etB is a onstant of the motion,the ases B > 0 and B < 0 do not mix on a single geodesi.Resolving s, _s, and v into their omponents sk, _sk, and vk parallel to , and s?, _s?,and v? perpendiular to  allows us to express the urvature �? of the projetion of thepartile's trak onto the plane through the origin perpendiular to  as follows:�? = j _s? � (_s?).jj _s?j3 = etjv? � _v?jjv?j3 : (16)Some alulating then shows thatR? := 1�? = (E4 +B2)jv � j2jBj ; (17)and further that (R?)_ = 0. Thus the projetion, having onstant radius of urvature R?,is a irle, and the trak lies, therefore, on a right irular ylinder whose axis is parallel to. The enter of that irle, through whih the axis of the ylinder must pass, is loated bythe vetor C := s? +R? � _s?j� _s?j sgn(B); (18)another onstant of the motion.



6 HOMER G. ELLISWhen E2� v2 > 0; = 0; < 0 the partile is onventionally said to be traveling \slowerthan light, at the same speed as light, faster than light." In de Sitter's as in every ordinaryspae-time no free partile an be in one of these states now and another later. Here thatis not the ase: a single geodesi with � = 1, for example, an have E2 � v2 > 0 now, = 0later, and < 0 even later. The seond of Eqs. (13) learly implies, however, that if at anytime the partile is traveling \slower than light," then � must be positive. For this reasonthe geodesis on whih � > 0 will be taken to represent partiles of nonzero inertial restmass. A piture of suh a partile's helial trak in E 3 , produed by numerial integrationof the geodesi equations, is shown in Fig. 4.
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Fig. 4. A portion of a typial helial trak of a free spin-ning partile of nonzero inertial rest mass. The parameterinterval is [0; 70℄, sampled at intervals of .05. The partilemoves from lower left to upper right on a ylinder of ra-dius R? = 50, whose axis vetor  � :00045 � [[ 1; 1; 1 ℄℄. Someinitial onditions are t � �8:78, E � :13, v � [[:086;�:009; :038 ℄℄,� � [[ 5:000; 5:003; 5:001 ℄℄, vk=E = :5, v?=E = :5, and v=E = p:5 �:707 (speed of light = 1).The visible ompression of the oils of the helix reets the well-known phenomenonthat in de Sitter's universe all freely moving test partiles ome asymptotially to rest ata point in spae (though ontinuing to spread apart as spae itself expands).(4) The mereexistene of these oils, owed spei�ally to the inlusion of spin by way of the �nsleriangeometry, brings to mind the quantum mehanial phenomenon of \Zitterbewegung" of aspinning eletron. This \jitter motion," whose existene Shr�odinger dedued from Dira'srelativisti wave equation,(5;6) is a \mirosopi" osillatory perturbation of the \maro-sopi" propagation motion of the eletron. The mirosopi \zitterspeed" equals the speedof light, but the \marospeed" is less. In one of the manifestations of Zitterbewegung theeletron appears to follow a helial path that winds around a line representing its maro-sopi path of propagation through spae.(7) In the present development the quantitiesvk=E (marospeed) and v?=E (mirospeed), saled so that lightspeed = 1, play roles some-what analogous to the marosopi speed and the mirosopi (zitter)speed of the helial



AN EXPANDING UNIVERSE OF SPINNING SPHERES 7Zitterbewegung manifestation. The de Sitter phenomenon a�ets both the marospeed,ausing the ompression of the oils, and the mirospeed, ausing the irulatory motion(but not the spinning) to stop. Figure 5 displays these e�ets expliitly, along with thevariations of the angles that the veloity v and the spin vetor � make with the axis vetor of the helix, and of the partile's spinrate (2�)�1(�=E) (in revolutions per unit of time t).
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Fig. 5. Graphs of speeds, spinrate, and angles for the spin-ning partile following the helial trak of Fig. 4. Afterfalling to a loal minimum just above .1, the marospeedrises to a maximum just under 2.4 as the mirospeed traversesits peak near 11.6 (lightspeed = 1). Initially the angles thatv and � make with  are 45�and approximately :01�, respe-tively; at the end, approximately 71:5�and 18:4�. Their sum,the angle between v and �, tends asymptotially to 90�.The falling of the marospeed to a loal minimum produes the ompression of thehelial oils seen in Fig. 4. Its subsequent rise to a maximum while the mirospeed istraversing its peak and the spinrate is dereasing is responsible for the expansion of theoils after the ompression. This interplay among kinematial variables an be interpretedas a subtle transfer of spin inertia and orbital (miro)inertia to linear (maro)inertia as theangle from  to � inreases and the angle from  to v dereases. For a lear understandingof these unusual behaviors it is essential to remember that we are not examining motion of apointlike partile. Instead, we are looking at eentri motion of a enter of a spinning spherewhose radius, aording to the relation R = e�t, is about 6495 initially, when t � �8:78, andabout 1.47 at the end, when t � �:38. Moreover, the \four-point" derivation of the �nslerianmetri funtion of Eqs. (8) makes evident that the di�erential interation of this spinningsphere with itself, aptured in the \stationarizing" of the �nslerian ar length integral, isan interation taking plae on the sphere itself, far from its helially moving enter.If a helial trak and preessing spin and veloity are typial for a free spinning partileof nonzero rest mass, what is typial for a free spinning partile of zero rest mass, de�nedas one traveling \at the same speed as light," thus on a geodesi on whih E2 � v2 = 0 atall times? For suh a partile � must be 0 (one an show), and then the seond of Eqs. (13)implies that v � � = 0, hene that � must be parallel or antiparallel to v. Equations (15)and (17) then entail that R? = 0, thus that the trak is straight. This behavior repliatessome of the behavior of spinning photons predited by the quantum theory of light, anddoes so without the aid of a Hilbert spae, an operator, a bra, or a ket.



8 HOMER G. ELLISIt is both remarkable and highly suggestive that, departing from the very elementaryonstrution on Eulidean spheres presented here, we an a) arrive at a purely geometrialtheory of the kinematis of free, spinning partiles in an expanding universe, b) upon arrival,look about and �nd that we have somewhat unintentionally modeled ertain exoti behaviorsof suh partiles, behaviors �rst enountered in the quantum mehanial study of spinningeletrons and photons, and ) looking bak, ome to suspet that we have peered a littledeeper into the mystery of time. This short trip is perhaps in itself a good day's journey,but it only foreshadows the labor, the pleasure, and the satisfation of many (maybe evenin�nitely many) days beyond to be spent sailing the high seas of the Oean of FinslerianGeometry. For just as the onstrution of the Riemannian angle, or \two-point," metriof Eq. (1) an be extended from the manifold of spheres in Eulid's spae to the manifoldof hyperspheres in Minkowski's spae-time to produe a theory of \spae-time{time" (as Ioutlined in Ref. 1 and have elaborated in Ref. 8), the onstrution of the �nslerian \four-point" metri funtion of Eqs. (8) an in diret analogy be extended from the manifold ofrotated Eulidean spheres to the manifold of Lorentz rotated Minkowskian hyperspheresto make a theory of spinning partiles in spae-time-time, then further to the manifold ofrotated hyperspheres of spae-time-time, and extended yet again | time after time aftertime . . .IN MEMORIAM. Throughout the writing of this paper ame often to mind fond memoriesof Asim Orhan Barut (1926{1994), a kind and gentle spirit ever seeking the light.Referenes1. H. G. Ellis, Time, the grand illusion, Found. Phys. 4 (1974), 311{319; Erratum: 5 (1975), 193.2. G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel, Dordreht, 1985, pp. 20{25.3. H. Rund, The Di�erential Geometry of Finsler Spaes, Die Grundlehren der mathematishen Wis-senshaften in Einzeldarstellungen mit besonderer Beruksihtigung der Anwendungsgebiete, Bd. 101,Springer, Berlin, 1959, pp. 1{18.4. E. Shr�odinger, Expanding Universes, Cambridge University Press, Cambridge, 1956, pp. 32{35.5. E. Shr�odinger, �Uber die kr�aftefreie Bewegung in der relativistishen Quantenmehanik, S.-B. Preuss.Akad. Wiss., Phys.-math. Kl. (1930), 418{428; Zur Quantenmehanik des Elektrons (1931), 63{72.6. A. O. Barut and A. J. Braken, Zitterbewegung and the internal geometry of the eletron, Phys. Rev.D 23 (1981), 2454{2463.7. H. H�onl and A. Papapetrou, �Uber die innere Bewegung des Elektrons. III., Z. Phys. 116 (1940), 153{183.8. H. G. Ellis, Spae-time-time: �ve-dimensional Kaluza{Weyl spae, http://arxiv.org/gr-q/0107023.First version: Marh, 1995Revised: September, 1995Revised: Otober, 1995Revised: Otober, 1996Homer G. EllisDepartment of MathematisUniversity of Colorado at Boulder395 UCBBoulder, Colorado 80309-0395Telephone: (303) 492-7754 (oÆe); (303) 499-4027 (home)Email: ellis�eulid.olorado.eduFax: (303) 492-7707


