
Darkholes: Ni
er than bla
kholes | with a bright side, too�(Does energy produ
e gravity?)Homer G. EllisDepartment of Mathemati
s, University of Colorado at Boulder, Boulder, Colorado 80309(February 23, 2000)The geometry of three-dimensional spa
e guides the sear
h for a better model than the bla
kholewith its unwel
ome singularity. An elementary 
onstru
tion produ
es on the 4-manifold of 2-spheresin a Riemannian 3-spa
e a spa
e-time metri
 invariant under uniform 
onformal transformations ofthe 3-spa
e. When the 3-spa
e is Eu
lidean, the metri
 redu
es to de Sitter's expanding universemetri
. Generalization yields a spa
e-time metri
 that retains the `exponential expansion property' ofthe de Sitter metri
. A stri
tly geometri
 a
tion prin
iple gives �eld equations whi
h, be
ause they donot adhere to Einstein's early 
onfounding of energy and inertial mass with gravitating mass, admitsolutions that es
ape the Penrose{Hawking singularity theorems. A spheri
ally symmetri
 solutionthat is asymptoti
 to the S
hwarzs
hild bla
khole metri
 has, in pla
e of a horizon and a singularity,an Einstein{Rosen `bridge', or `tunnel', 
onne
ting two asymptoti
ally Eu
lidean regions. On oneside the gravitational 
enter attra
ts, and is dark but not bla
k; on the other side it repels, and isbright. Travel and signaling from either side to the other via the tunnel are possible. Analysis of theEinstein tensor of this `darkhole' (or `darkhole{brighthole') suggests that not all energy produ
esgravity, and that 
alling energy `negative', or its relationship to geometry `exoti
', is unjusti�ed.PACS numbers: 04.70.Bw, 04.50.+h, 04.20.Cv, 02.40.KyBla
kholes with singularities are not satisfa
tory mod-els of real things, for at the singularities they lose theirpredi
tive powers, 
ausing one to throw up the handsand mutter some su
h in
antation as \Quantum e�e
tstake over." It is easy to 
onstru
t a bla
khole without asingularity: if, for �1 < � <1,Ĝ = dt2 � [d�� u(�) dt℄2 � r2(�) d
2; (1)where d
2 := d#2 + (sin#)2d'2, then Ĝ has no singu-larity, provided that neither u(�) nor r(�) has, that u(�)and r(�)=� are bounded at �1 and at 1, and that r(�)is bounded away from 0. Bla
kness o

urs if there is aregion in whi
h ju(�)j > 1, bounded by a sphere (or twospheres) on whi
h ju(�)j = 1 | for the following reasons:Photon orbits are 
hara
terized by the equationsd�dt = u(�)�s1� r2(�)�d
dt �2: (2)In a region where ju(�)j > 1, either u(�) > 1 throughoutor u(�) < �1 throughout. In the �rst 
ase d�=dt > 0,in the se
ond, d�=dt < 0. In either 
ase all photons inthat region are going in the same dire
tion radially. None
an have entered the region through a bounding spherethat all are approa
hing, and none 
an leave it througha bounding sphere from whi
h all are retreating. In ea
h
ase the sphere is a horizon for light, thus also for testparti
les moving slower than light.�Revision and ampli�
ation of Darkholes: Bla
kholes' Bet-ter Behaved Cousins, sele
ted for honorable mention in theGravity Resear
h Foundation 1999 Awards for Essays onGravitation.

The 
oordinate transformation T = t + R u(�) [1 �u2(�)℄�1 d� 
hanges the expression of Ĝ toĜ = �1� u2(�)� dT 2� �1� u2(�)��1 d�2 � r2(�) d
2: (3)If r(�) � � and u2(�) � 2m=� as � ! 1, the metri
behaves like the S
hwarzs
hild metri
 of mass parameterm, so it 
an model the far �eld of a spheri
ally symmet-ri
 gravitating obje
t. Be
ause r2(�) stays away from0, any region interior to a horizon is spa
ious: it doesnot squeeze down to a point at whi
h a singularity 
oulddevelop, as the S
hwarzs
hild inner region does. A 
on-stru
tion analogous to the Kruskal{Fronsdal extension ofthe S
hwarzs
hild metri
 would show that ea
h horizonserves as a ne
k of a wormhole 
onne
ting two or moreregions in whi
h ju(�)j < 1.Su
h a singularity-free bla
khole 
annot, of 
ourse, bea solution of the Einstein �eld equations. It must in fa
tes
ape in some way the Penrose{Hawking singularity the-orems [1℄, and this it 
an do only by violating one of thehypotheses of those theorems. Among those hypothesessuspi
ion atta
hes most readily to the requirement thatthe Ri

i tensor be everywhere nonnegative de�nite withrespe
t to null or timelike ve
tors. This so-
alled `en-ergy 
ondition' is 
onventionally taken to mean that thedensity of energy, in whatever form, that `produ
es' agravitational �eld must be nowhere on balan
e negative.As `negative energy' is believed to be an attribute only ofnever observed `exoti
' matter, the energy 
ondition is al-most universally a

epted as realisti
. That a

eptan
e,however, rests ultimately on a questionable identi�
ationthat tra
es all the way ba
k to Einstein's 1916 paper DieGrundlage der allgemeinen Relativit�atstheorie [2℄.1



In that paper's x16, titled in translation The Gen-eral Form of the Field Equations of Gravitation, Einsteinseeks a tensorial equation to 
orrespond to the Poissonequation r2� = 4���, where � denotes the \densityof matter". Drawing on the spe
ial theory of relativ-ity's identi�
ation of \inert mass" with \energy, whi
h�nds its 
omplete mathemati
al expression in . . . theenergy-tensor", he 
on
ludes that \we must introdu
e a
orresponding energy-tensor of matter T�� ". Further de-s
ribing this energy-tensor as \
orresponding to the den-sity � in Poisson's equation", he goes on to invent the�eld equations E�� = �T�� that bear his name and havethe built-in 
onsequen
e that, wherever energy density isnonnegative for all observers, the Ri

i tensor is nonneg-ative de�nite with respe
t to null and timelike ve
tors(here E is the Einstein tensor �� 12	G, where G is themetri
 tensor, � is the Ri

i tensor, and 	 is the 
urva-ture s
alar; see Appendix for de�nitional 
onventions).The questionable identi�
ation referred to is the 
on-founding of `gravitating mass', whi
h is the sole 
on-tributor to the \density of matter" in Poisson's equa-tion, with \inert mass", thus with energy by way ofE = m
2. That all bodies respond alike to a gravitational�eld establishes the equivalen
e of `passive' (gravitated)mass with `inertial' (inert) mass, but an equivalen
e be-tween `a
tive' (gravitating) mass and passive({inertial)mass is in no way implied. The distin
tion between a
-tive mass and passive mass, well expli
ated by Bondi[3℄, is present already in Newton's gravitational equationminertial a = �GMa
tivempassive=r2, where Ma
tive andmpassive are properties of entirely di�erent bodies, onedoing the a
ting, the other re
eiving the a
tion.1If a
tive mass is not equivalent to passive mass, it is notequivalent to inertial mass, thus is not equivalent to en-ergy. Unresolved, therefore, is whether all 
onstituentsof matter and energy gravitate, and of those that do,whether they attra
t or repel gravitationally. In an ex-periment by Kreuzer [4℄, two 
ongruent, homogeneousbodies, di�erently 
onstituted but weighing the same,were seen to exert the same gravitational attra
tion ontest parti
les (within experimental pre
ision). This indi-
ates equality of the ratio of a
tive to passive mass forthe two ma
ros
opi
 bodies, but it says nothing aboutthe gravitational e�e
ts of energy, or of any parti
ularspe
ies of the parti
les that make up matter. It is 
onsis-tent with this observation to suppose, for example, thatonly nu
leons produ
e gravitational e�e
ts, that energyand other parti
les su
h as ele
trons and neutrinos do notgravitate at all. To see this, 
onsider an idealized Kreuzer1That Einstein 
onfounded a
tive mass with passive{inertialmass, knowingly or unknowingly, is borne out further by thestatement in his x16 that for a \
omplete system (e.g. the solarsystem), the total mass of the system, and therefore its totalgravitating a
tion as well, will depend on the total energy ofthe system, and therefore on the ponderable energy togetherwith the gravitational energy." (Emphasis added.)

experiment in whi
h body A is is made of a single isotopeof one element, ea
h of whose atoms has pA protons, thesame number of ele
trons, and nA neutrons, and body Bis made of a single isotope of another element, ea
h atomof whi
h has pB protons and ele
trons, and nB neutrons,with pA+ nA = pB + nB, and pA > pB. Next, performthe thought experiment of reversing beta de
ay in ea
hatom of body A by stuÆng pA � pB of its atomi
 ele
-trons, along with as many antineutrinos, into its nu
learprotons, thus turning the protons into neutrons and theA atoms into B atoms, maintaining 
ongruen
e all thewhile. Now the bodies are identi
al, and their weights arestill the same | but so are their a
tive masses, despitethat antineutrinos have been added and binding energieshave 
hanged. It is 
on
eivable that the binding energiesand the antineutrinos have in
reased A's a
tive gravi-tational mass, and that this in
rease is exa
tly 
ompen-sated by a de
rease owed to a loss of mole
ular kineti
 en-ergy ne
essary to maintain A's size and weight. It is also
on
eivable that they have de
reased A's a
tive mass,and that this is 
ompensated by an in
rease of kineti
energy. It is, however, equally 
on
eivable (and from aprobabilisti
 standpoint even more likely) that the bind-ing energies, the antineutrinos, and the kineti
 energyprodu
e no gravity | that only the nu
leons and per-haps (but perhaps not) the ele
trons have nonzero a
tivegravitational mass. Any 
ontradi
tion of this in the formof a measurement of the gravity of an isolated ele
tron,antineutrino, or quantum of energy would seem a distantprospe
t at best. Absent su
h a measurement, the `en-ergy 
ondition' is an unproven hypothesis, nothing more.In what rational way might one repla
e the Einstein�eld equations with others that allow violations of the`energy 
ondition'? Geometry should be the guide, a
-
ording to Einstein, who likened his equations to a build-ing with two wings, one made of �ne marble (the geomet-ri
al tensor), the other of low-grade wood (the mattertensor) [5℄. All the better, a purist says, if it is the ge-ometry of real three-dimensional spa
e, not the pseudo-geometry of spa
e-time in whi
h `time' is a fourth dimen-sion, independent of and unrelated to the three spatialdimensions. Pre
isely that geometry is the guide for the
onstru
tion that follows.Let �G be a positive de�nite Riemannian metri
 on athree-dimensional manifold M that is geodesi
ally 
om-plete with respe
t to �G. The 2-sphere in M of radiusR 
entered at the point C is the set of all points whosedistan
e from C along a geodesi
 is R. The set of all su
hspheres is itself a four-dimensional manifold M̂. Let Sand S0 be neighboring spheres in M, 
entered at C andC 0, of radii R and R+ dR. Starting at C and following ageodesi
 through C 0 one arrives at a point P on S and apoint P 0 on S0 separated by a (dire
ted) geodesi
 distan
edR+ ds, where ds is the geodesi
 distan
e from C to C 0(see Fig. 1). Going in the other dire
tion one arrives atpoints Q on S and Q0 on S0 separated by dR � ds. Theprodu
t of these separations, ea
h normalized by divisionby R=R̂, where R̂ is a positive 
onstant, provides a nor-mal hyperboli
 metri
 Ĝ on M̂ that is invariant under all2



uniform 
onformal transformations of �G (�G ! k�G withk a positive 
onstant), viz.,Ĝ = R̂2�dR2 � ds2R2 � : (4)Assigning to ea
h 2-sphere inM a time t related to itsradius R by t := � ln(R=R̂) gives Ĝ the formĜ = R̂2 dt2 � e2t ds2: (5)Upon parti
ularization of �G to be the metri
 of Eu
lidean3-spa
e, Ĝ redu
es to the metri
 of de Sitter's expandinguniverse model [6℄, a solution of the Einstein va
uumequation Ê := �̂� 12 	̂Ĝ = �Ĝ (6)with 
osmologi
al 
onstant � = 3=R̂2; R̂ is the uniformspa
e-time radius of 
urvature of this empty universe.

S S0
C C 0QQ0 P P 0R R dR

dsdR� ds dR+ ds
dR+ dsR=R̂ � dR� dsR=R̂= R̂2�dR2 � ds2R2 �

FIG. 1. Neighboring 2-spheres S and S0 in the Rieman-nian 3-spa
e fM; �Gg, shown in 
ross se
tion through thegeodesi
 Q0QCC0PP 0, separated by the `two-point' distan
eR̂p(dR2 � ds2)=R2.In tensor produ
t formĜ = R̂2(dt
 dt)� e2t �G (7a)= R̂2(dt
 dt)� e2t(dxm 
�gmn dxn): (7b)There is on M̂ a ve
tor �eld �, namely, � := �=�t,with respe
t to whi
h Ĝ has the following `exponen-tial expansion property': L�Ĝ = 2G, where G := Ĝ �(Ĝ��)�1(Ĝ�
 Ĝ�), L� denoting Lie di�erentiation along�. (Note that Ĝ� = R̂2dt, Ĝ�� = R̂2, and G = �e2t �G.)Generalizing, let Ĝ now be any spa
e-time metri
 of sig-nature +��� de�ned on a manifold M̂ on whi
h thereis a time-like ve
tor �eld � with respe
t to whi
h Ĝ has

the exponential expansion property. One 
an show that(lo
ally, at least) there exist on M̂ 
oordinate systems[[t; xm℄℄ for whi
h � = �=�t and Ĝ takes the formĜ = �2�dt+ �A�
 �dt+ �A�� e2t �G (8a)= �2�dt+ �Am dxm�
 �dt+ �An dxn�� e2t�dxm 
�gmn dxn�; (8b)with �, �Am, and �gmn independent of t.The Ri

i tensor �̂ and 
urvature s
alar 	̂ of Ĝ are ex-pressible in terms of those of �G and 
ovariant derivativesof � and �A with respe
t to �G. One 
an de�ne `residuals'�̂1 and 	̂1 of �̂ and 	̂ (roughly, �̂1 := limt!1(e�2t�̂),and, exa
tly, 	̂1 := limt!1 	̂). One then �nds that�̂1 = �3��2Ĝ and 	̂1 = �12��2, thus that�̂1 � 12 	̂1Ĝ = �Ĝ; (9)where � := 3=�2. Comparison with the de Sitter modelshows that the s
alar �eld � 
ould be termed the `resid-ual 
osmologi
al (non)
onstant', and the s
alar �eld � the`residual (nonuniform) radius of 
urvature', of the gen-eralized model. In the de Sitter model �̂vv = ��Ĝvv,whi
h vanishes if v is a null ve
tor, and is negative if v istimelike. Here the same is true of �̂1.Field equations are obtained from the stri
tly geomet-ri
 a
tion prin
iple ÆA = 0, whereA(�; �Am) := ZD̂�	̂� 	̂1� dV̂ (10a)= ZD Z ba �	̂� 	̂1� dt dV; (10b)the region D̂ having the 
ylindri
al form D̂ = [a; b℄�D,where D is a bounded region of a 
ross se
tion of M̂transverse to �. The variations of � and �Am are to vanishon [a; b℄ � �D. The spatial metri
 �G is treated as givena priori on D, and extended to D̂ by translations along�. Variation of � yields the equation�Ak:k � �Ak�Ak = 38�2�Fkl�Flk � 12�	; (11)variation of �Am yields�Fmk:k + 3��1�Fmk�:k = 2��2���1��:m + 2�Am�: (12)Here ( ):m := �( )=�xm, Fmn := �An:m � �Am:n, andinsertion of a � indi
ates raising of an index by �gmn.The 
ovariant di�erentiations indi
ated by a : are withrespe
t to �G. A 
onstant fa
tor e�(a+b)=2 arising fromthe t integration has been absorbed into �; this leaves inthe equations no arbitrary 
oupling 
onstant with whi
hto �nesse the `energy 
ondition' question.Examining these �eld equations for a metri
 of thespheri
ally symmetri
 formĜ = e2U(�)�dt+ V (�) d��2� e2te�3U(�) �d�2 + r2(�) d
2� ; (13)3



one �nds them to be satis�ed ifU 0 = �2V = mR̂r2 ; r00 = 1� r022r � 78m2R̂2r3 ; (14a)U (1) = ln R̂; r(0) = r0; and r0(0) = 0; (14b)where ea
h of m, R̂, and r0 is a 
onstant, R̂ > 0, and0 � m < m
rit := �2=p7 ��r0=R̂�.The 
oordinate 
hanges T := R̂ �t+ R V (�) d�� =R̂ �t� 12U(�)� and �� := �=R̂ makeĜ = e2 �U(��)dT 2 � e2T=R̂�e�2 �U(��)d��2 + �r2(��) d
2�; (15)where �U(��) := U(�)� ln R̂ and �r(��) := e�U(�)r(�).On a human time s
ale the 
osmologi
al expansion fa
-tor e2T=R̂ 
an be treated as a 
onstant, say e2T0=R̂, andabsorbed into the spatial metri
 by the transformations~� := eT0=R̂�� and ~r(~�) := eT0=R̂ �r(��), to produ
eĜ � ĜT0 := e2 ~U(~�)dT 2 � e�2 ~U(~�)d~�2 � ~r2(~�) d
2 (16a)= �1� u2(~�)� dT 2� �1� u2(~�)��1 d~�2 � ~r2(~�) d
2 (16b)= d~t 2 � �d~�� u(~�) d~t �2 � ~r2(~�) d
2; (16
)where ~U(~�) := �U(��), u(~�) := �p1� e2 ~U(~�), and ~t :=T�R u(~�)�1�u2(~�)��1 d~�. Be
ause Eqs. (16b) and (16
)repli
ate Eqs. (3) and (1), the previous dis
ussion of hori-zons, bla
kness, and singularities applies dire
tly to themetri
 ĜT0 .Numeri
al integration produ
es the plots shown inFigs. (2{5), for whi
h r0 = 1, R̂ = 106,m
rit � 7:6�10�7,m = 0:5m
rit, and T0 = 0. The minimum of r = r(0) =r0 = 1, whereas ~rmin � ~r(9:3� 10�7) � 1:93� 10�6.Equations (14) 
an also be integrated by hand (seeAppendix). The result is thatsgn(r0(�)) � =p(r � r0)(r � 
2r0)+ (1 + 
2)r0 ln pr � r0 +pr � 
2r0p(1� 
2)r0 ! ; (17)where 
 := m=m
rit < 1, andU(�) = ln R̂+ 4p7 ln pr � 
2r0 + sgn(�)
pr � r0(1 + 
)pr ! : (18)Equation (17) impli
itly de�nes r as a fun
tion of � onthe interval �1 < � < 1, with minimum value r(0) =r0, and with sgn(r0(�)) = sgn(�). It is 
lear from thisequation that, as �! �1, r(�) � 1, �=r(�) � �1, and,
onsequently, r(�) � ��. From this and U 0 = mR̂=r2 itfollows that, as �!1,

U(�) = U(1) + Z �1 mR̂r2(�) d� (19a)� U(1) + Z �1 mR̂�2 d� = ln R̂� mR̂� ; (19b)and, as �! �1,U(�) = U(�1) + Z ��1 mR̂r2(�) d� (20a)� U(�1) + Z ��1 mR̂�2 d�= ln R̂+ 4p7 ln�1� 
1 + 
�� mR̂� : (20b)Further,~r(~�)~� = �r(��)�� = R̂e�U(�) r(�)�� 8<: 1 as �!1,��1 + 
1� 
�4=p7 as �! �1. (21)
r(�)
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FIG. 2. Plot of the spatial geometri
 des
riptor r(�) on theinterval �100 < � < 100.~r(~�)
�� 10�6 = ~�!
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FIG. 3. Plot of the spatial geometri
 des
riptor ~r(~�), forT0 = 0, on the interval �2� 107 < � < 108.4



Also,u2(~�) = 1� e2 ~U(~�) = 1� e2 �U(��) = 1� e2[U(�)�ln R̂℄�8>><>>: 2mT0~� as �!1,1��1� 
1 + 
�8=p7�1� 2mT0~� � as �! �1, (22)where mT0 := meT0=R̂, and� = 3e�2U(�)�8>>>><>>>>: 3̂R2 �1 + 2mT0~� � as �!1,3̂R2 �1 + 
1� 
�8=p7�1 + 2mT0~� � as �! �1. (23)On ea
h time-sli
e of 
onstant ~t the line element in-du
ed by ĜT0 is d~�2 + ~r2(~�) d
2 (see Eq. (16
)). Thefa
t that in the numeri
al solution ~r(~�) (
onsequently,also �r(��)) has a positive minimum value and is asymp-toti
ally in�nite at �1 tells that in the universe de-s
ribed approximately by ĜT0 and exa
tly by Ĝ thereju(~�)j
�� 10�6 = ~�!
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FIG. 4. Plot of the test-parti
le free-fall speed ju(~�)j, forT0 = 0, on the interval �100 < � < 100.� (� 1012)
�� 10�6 = ~�!
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FIG. 5. Plot of the `residual 
osmologi
al (non)
onstant'� versus ~�, for T0 = 0, on the interval �100 < � < 100(� := 3=�2 = 3e�2U(�)).

is an ever present Einstein{Rosen `tunnel' 
onne
tingtwo regions of asymptoti
ally Eu
lidean topology [7℄.2Is this a one-way tunnel, or 
an it a

ommodate two-way traÆ
? The answer lies in the behavior of u. Ifju(~�)j � 1 somewhere, the traÆ
 is one-way only andthere is a bla
khole in the vi
inity. If ju(~�)j < 1 ev-erywhere, then traÆ
 is two-way and there is no bla
k-hole. Figure 4 says, \Two-way traÆ
, no bla
khole."The existen
e of this two-way tunnel with no bla
kholeis generi
 for 
 < 1, inasmu
h as ~r(~�) has a positiveminimum value (see Appendix) and, in view of (22) andthe monotoni
ity of U(�) (U 0 = mR̂=r2 > 0), u2(~�)rises monotoni
ally with de
reasing � from u2(1) = 0to u2(�1) = 1� [(1� 
)=(1 + 
)℄8=p7 < 1.An immediate 
onsequen
e of (21) and (22) is thatĜT0 is asymptoti
 to the S
hwarzs
hild metri
 of (a
tive)mass parameter mT0 as � ! 1. Additionally, from � =eU(�) � eU(1) = R̂ and � = 3=�2 � 3=R̂2 as �!1, wesee that, far from the 
enter of gravitation in the positive� dire
tion, the residual radius of 
urvature � and theresidual 
osmologi
al (non)
onstant � are asymptoti
 tothe radius of 
urvature and the 
osmologi
al 
onstant ofthe de Sitter universe.The ve
tor �eld �~t + u(~�) �~� is geodesi
 for ĜT0 ; it isthe velo
ity �eld of a 
loud of test parti
les free-fallingdownward from rest at 1. The speed ju(~�)j of su
h afree-falling parti
le in
reases monotoni
ally with de
reas-ing ~� right through the tunnel, out the other side, andon to �1. This entails that the parti
le, on
e past thenarrowest part, the `throat', of the tunnel, behaves as ifpushed away from it | that the gravitating 
enter is re-pulsive on the other, low side of the throat. Moreover,the repulsion is stronger than the attra
tion, by a ra-tio of mass parameters equal to [(1 + 
)=(1 � 
)℄4=p7,whi
h ratio in
reases to1 as m! m
rit (see Appendix).Be
ause, however, ju(�1)j < 1, an observer free-fallingfrom rest at 1 never rea
hes light speed. With a suf-�
ient means of propulsion the observer 
ould, at anypoint, turn ba
k and join a 
ohort of test parti
les free-falling upward to rest at 1, 
owing with the geodesi
velo
ity �eld [1 + u2(~�)℄[1� u2(~�)℄�1 �~t � u(~�) �~�. If thepropulsion failed, he 
ould at least shine a light whosephotons would eventually arrive at 1, redshifted by anamount that is the greater the 
loser ju(�1)j is to 1,whi
h, in view of (22), is the 
loser that 
 is to 1, thusthe 
loser that m is to m
rit. A topologi
al hole in spa
egravitating in su
h a way is to an observer on the highside a `darkhole', as dark as you like, but never bla
k. Toan observer on the low side it would be a `brighthole', em-anating blue-shifted light that 
ame through the tunnelfrom the high side.32Einstein and Rosen spoke of a `bridge', but `tunnel' seemsto des
ribe the topology better.3For the full 
osmologi
al metri
 Ĝ there would 
ome intoplay the phenomenon, �rst seen in the de Sitter universe, that5



In Newtonian terms, the 
loud of test parti
les fallingwith velo
ity �~t+u(~�) �~� would have `spe
i�
 kineti
 en-ergy' (kineti
 energy per unit of inertial mass) KE =12u2(~�). On the other hand � 12u2(~�) 
an be identi�ed asthe Newtonian `spe
i�
 gravitational potential' V , in thesense that ��V=�~� = �mT0=~r2(~�), whi
h is, one 
an see,the a

eleration of the test parti
les in the 
loud. It thenis automati
 that KE + V = 0.The shape-mirroring between the graphs of ju(~�)jand � in Figs. 4 and 5 is not a

idental, inasmu
h as� = 3=R̂2�1� u2(~�)� = 3=R̂2�1� 2jVj�. This relation-ship says that, in the spa
e-time des
ribed by the metri
Ĝ, not only is the analog of the 
osmologi
al 
onstantnot 
onstant, it is determined by the spe
i�
 gravita-tional potential V , and is smallest where jVj is smallest,largest where jVj is largest.A point to noti
e is that there is no upper bound onthe mass parameter m. The inequality m < m
rit :=�2=p7 ��r0=R̂� merely 
orrelates m and the hole-sizingparameter r0; m 
an grow to any size, but r0 mustgrow along with it. Moreover, no matter how smallor how large the positive mass m (or, equivalently,the asymptoti
 mass parameter mT0), there 
an bedarkholes of that strength that are wide, with a slow
ow, be
ause r0 � �p7=2�mR̂ (so that 
 � 0 andju(�1)j � 1), and darkholes that are narrow, witha fast 
ow, be
ause r0 � �p7=2�mR̂ (so that 
 � 1and ju(�1)j � 1). The a
tual size of the hole is de-termined by the minimum value ~rmin of ~r, the area ofits smallest spheri
al 
ross se
tion being 4�~r2min. Thisminimum radius is proportional to r0, the relation beingsu
h that ~rmin rises monotoni
ally from eT0=R̂ r0=R̂ to�2=p7 ��1 +p7=2�1+2=p7 eT0=R̂ r0=R̂ � 3:32 eT0=R̂ r0=R̂as mT0 is in
reased from 0 to eT0=R̂m
rit (
on
ur-rently, the value of ~� at whi
h the minimum o

ursin
reases from 0 to �2=p7 + ln �4=p7 �� eT0=R̂ r0=R̂ �1:17 eT0=R̂ r0=R̂; see Appendix). Thus the radius of thehole is of the order of magnitude of eT0=R̂ r0=R̂ for alladmissible values of its asymptoti
 mass parameter mT0 .That ~rmin grows larger with mT0 one 
an `explain' as fol-lows: to make room for the in
reasing gravitational 
ux,the tunnel from the dark side to the bright side expandsas if the spa
e it is made of possessed elasti
ity in the di-re
tions transversal to the 
ow. As well, the bright side
an be said to grow in�nitely more `roomy' in 
ompari-son to the dark side as mT0 ! eT0=R̂m
rit, a 
onsequen
eof the asymptoti
 behavior of ~r(~�)=~� for � ! �1 (and
 ! 1) displayed in (21).Further to be noti
ed is that althoughm was restri
tedto nonnegative values, this restri
tion is not di
tated bythe mathemati
s. Nothing essential is lost by retainingit, however, for every solution of Eqs. (14) with m < 0all nonta
hyoni
 test parti
les 
ome asymptoti
ally to rest ata point in spa
e as T !1 [6℄.

has a 
ompanion solution with m > 0 su
h that their re-spe
tive human time-s
ale metri
s ĜT0 are mirror imagesof one another under an isometry that reverses the senseof � and maps the asymptoti
 regions � � �1 of oneof the spa
e-time manifolds to the opposite asymptoti
regions of the other (see Appendix). The darkhole andthe brighthole make an indivisible, organi
 whole, nota�e
ted by any pretense that its `mass' is negative.Finally, 
onsider the question of `negative energy' and`exoti
 matter'. To a high-side observer at a reasonabledistan
e from the 
enter the darkhole is just a normalgravitational attra
tor, able to exhibit all of the visiblefeatures of a bla
khole. To a low-side observer the bright-hole is repulsive, and thus popularly termed `exoti
'. Isthe energy density therefore positive on the dark side andnegative on the bright side? In a stri
t sense the questionis not meaningful, inasmu
h as Einstein's assumed rela-tionship between energy and geometry has been expli
-itly disallowed here, with no substitute put in its pla
e.If one admits, however, that the Einstein tensor Ê, whi
his 
onserved (that is, has 
ovariant divergen
e zero), rep-resents in some fashion a 
onne
tion between energy andgeometry, then examination of Ê is in order. That tensorde
omposes naturally into three parts, as follows:Ê = Êexpansion + Êgravity + Êspa
e: (24)In terms of the orthonormal 
oframe system f!̂�g, properto the 
lass of (generally noninertial) observers at rest inthe 
oordinate system [[�; #; '℄℄, de�ned by!̂0 := eU(�) dT=R̂; (25a)!̂1 := eT=R̂e�U(�) d�; (25b)!̂2 := eT=R̂e�U(�)r(�) d#; (25
)!̂3 := eT=R̂e�U(�)r(�)(sin #) d'; (25d)su
h thatĜ = !̂0 
 !̂0 � !̂1 
 !̂1 � !̂2 
 !̂2 � !̂3 
 !̂3; (26)these parts are expressed by (see Appendix)Êexpansion= �Ĝ+ e�T=R̂ 2mR̂r2(�) �!̂0 
 !̂1 + !̂1 
 !̂0� ; (27)Êgravity= e�2T=R̂e2U(�) 3m2R̂2r4(�)� �!̂0 
 !̂0 + !̂1 
 !̂1 � !̂2 
 !̂2 � !̂3 
 !̂3� ; (28)Êspa
e= e�2T=R̂e2U(�) 4r02 + 7m2R̂28r0r3(�)� ��2(!̂1 
 !̂1) + !̂2 
 !̂2 + !̂3 
 !̂3� : (29)6



Ea
h of these parts is, one 
an show, individually 
on-served in the same sense that their sum Ê is 
onserved;thus ea
h may be taken as des
riptive of a parti
ular, sep-arate aspe
t of the spa
e-time. The part Êexpansion arisesprimarily from the exponential expansion property of themetri
, with some modi�
ation owed to the presen
e ofthe gravitational attra
tor{repeller. To the extent thatenergy 
an be said to reside in that expansion, its den-sity as it appears to the observers at rest would presum-ably be the 
oeÆ
ient of !̂0 
 !̂0 in Êexpansion, whi
h is3e�2U(�) (= �), a positive quantity. By way of 
ompar-ison, the Einstein tensor ÊT0 of the metri
 ĜT0 has no
ounterpart to Êexpansion; it redu
es to Êgravity + Êspa
e,but with eT0=R̂ in pla
e of eT=R̂, and e�2T0=R̂ in pla
e ofe�2T=R̂.There is a 
lear separation of the primary sour
esof the energies, momenta, stresses, strains, and pres-sures that the tensors Êgravity and Êspa
e presumablydisplay. For Êgravity that sour
e is the gravity of theattra
tor{repeller: Êgravity is proportional to the squareof the mass parameter m (and inversely proportional tor4(�)). For Êspa
e the primary sour
e is the 
urvatureof spa
e: the three 
omponents of Êspa
e are the partsof the se
tional 
urvatures of the metri
 d�2 + r2(�) d
2that are inversely proportional to r3(�), modi�ed by thefa
tors e�2T=R̂ and e2U(�).If the 
oeÆ
ient of !̂0 
 !̂0 in Êgravity is taken tobe the energy density of the gravitational �eld of theattra
tor{repeller, then that energy density is positiveeverywhere, on the repulsive side as well as on the at-tra
tive side. Moreover, it remains so for all observersmoving subluminally, there being no Lorentz boost fromthe 
oframe system f!̂�g to a moving 
oframe systemin whi
h the 00 
omponent of Êgravity is not positive (aproperty shared by the 00 
omponent of Êexpansion).It is instru
tive to study the m = 0 
ase. The metri
redu
es tôG = dT 2 � e2T=R̂�d��2 + �r2(��) d
2�; (30)where now �� = �=R̂ and �r(��) = r(�)=R̂. There isno 
enter of attra
tion or repulsion, there is just thetunnel 
onne
ting the two asymptoti
ally Eu
lidean re-gions. An observer 
an sit at rest wherever and forso long as he pleases and experien
e as a (nominally)gravitational e�e
t only the ongoing 
osmi
 expansion ofthe spa
e around him. The Einstein tensor redu
es toÊexpansion + Êspa
e, with Êexpansion = (3=R̂2)Ĝ andÊspa
e = e�2T=R̂ �r02�r3(��)� ��2(!̂1 
 !̂1) + !̂2 
 !̂2 + !̂3 
 !̂3� ; (31)where �r0 := r0=R̂. The only nonzero energy densitypresent is the 3=R̂2 
ontributed by Êexpansion. An al-ternate way of expressing Êspa
e is

Êspa
e = e�2T=R̂ ���#'(!̂1 
 !̂1)� ��'(!̂2 
 !̂2)� ��#(!̂3 
 !̂3)� ; (32)where �#', ��', and ��# are the se
tional 
urvatures ofthe spatial metri
 d��2+�r2(��) d
2 referred to the tangentsubspa
es spanned by f�#; �'g, f��; �'g, and f��; �#g,respe
tively, given by�#' = 1� (�r0)2(��)�r2(��) = �r0�r3(��) (33)and ��' = ��# = � �r00(��)�r(��) = � �r02�r3(��) : (34)Thus the 
omponents of Êspa
e are just the 
urvaturesof spa
e diluted by the fa
tor e�2T=R̂ indu
ed by the on-going 
osmi
 expansion. If there is energy bound up inthese 
omponents, it has nothing to do with any gravityin the sense of attra
tion or repulsion, but only to do withstresses and strains asso
iated with the 
urvature of spa
e(not spa
e-time). It exists and 
ontributes to the inertialmass of the tunnel, but it does not gravitate, so it has noa
tive gravitational mass equivalent. Its manifestation asinertial mass 
ould be thought of as the resistan
e pre-sented by these stresses and strains to the deformations ofspa
e that would be required if the tunnel were to move.That two of these stresses and strains are asso
iated withnegative se
tional 
urvatures should 
ause no alarm, es-pe
ially in light of the fa
t that the �eld equations thatprodu
ed Ĝ are va
uum �eld equations, deriving as theydo from the a
tion prin
iple Æ R �	̂� 	̂1� dV̂ = 0, whi
his no less geometri
al in 
on
ept than the a
tion prin
ipleÆ R 	 dV = 0 that yields the Einstein va
uum �eld equa-tions. To hold that su
h 
urvatures are rare and are tobe found only in exoti
 
ir
umstan
es, to hold, in otherwords, that Nature abhors a negatively 
urved va
uum,is to presume to know more about Nature than Natureknows about itself.Taken together, these 
onsiderations suggest that someenergy 
an be asso
iated with gravity and some 
annot,thus that not all energy `produ
es' gravity (a 
onsequen
eof whi
h might be that the `
osmologi
al 
onstant prob-lem' [9℄ does not exist). Do they support in any waythe widely held belief that there are `exoti
' relation-ships between energy and geometry that justify 
allingthe energy `negative'? No! They do not. Their lessonis 
lear: Energy relates to geometry as it will | not assome uninvited adje
tives say it must.Note. The metri
 ĜT0 and the spa
e-time it des
ribesare in all qualitative aspe
ts identi
al with those derivedand extensively analyzed under Case III in my 1973 pa-per Ether 
ow through a drainhole: a parti
le model ingeneral relativity [8℄.4 What I there 
alled a `drainhole'4A 
omparison of Ref. [8℄ with the present paper should takeinto a

ount that the Ri

i and Einstein tensors of [8℄ are thenegatives of those used here.7



I would in the present 
ontext 
all a darkhole, or, morea

urately, a `darkhole{brighthole'. The 
owless (thatis, the massless, nongravitating) drainhole, whose metri
has the form dt2 � �d�2 + ��2 + n2� d
2�, was later rein-vented and put on exhibit by Morris and Thorne as anexample of a `traversible wormhole' [10,11℄.APPENDIXThe de�nitional 
onventions used for the 
urvatures
alar 	, Ri

i tensor �, and Riemann tensor � of a met-ri
 G are the following, in whi
h !� = dx�, e� = �=�x�,and ( ):� := e�( ) = �( )=�x�:G = !� 
 g�� !�; (A1)G�1 = e� 
 g�� e�; (A2)	 = ��� = ���g��; (A3)� = !� 
 ��� !� = !� 
����� !�; (A4)� = !� 
 2 (d^!�� � !�� ^ !��)
 e� (A5)= !� 
����� !� 
 !� 
 e�; (A6)����� = ����:� � ����:�+ �������� � �������� ; (A7)where, with d denoting the torsionless 
ovariant dif-ferentiation 
onsistent with G, the 
onne
tion 1-forms!�� and 
onne
tion 
oeÆ
ients ���� are determined byde� = !�� 
 e� = ���� !� 
 e� = f���g!� 
 e� =12 (g��:� + g��:� � g��:�)g�� !� 
 e�.The se
ond of Eqs. (14a) implies that �r�r02� � r �7m2R̂2=4r�0 = 0, thus thatr02 = 1� 
r + 74m2R̂2r2 (A8)= (r � r0)(r � 
2r0)r2 ; (A9)where 
 = �r20 + 7m2R̂2=4�Ær0, as determined by theinitial 
onditions r(0) = r0 and r0(0) = 0, and 
 :=m=m
rit < 1, with m
rit := �2=p7 � (r0=R̂). (Solutionswith 
 � 1 exist, but are not 
onsidered here.) The latterof Eqs. (14a) be
omesr00 = r02r3 �(1 + 
2)(r � r0) + (1� 
2)r0� ; (A10)from whi
h follows that r00(0) = (1 � 
2)=2r0 > 0,thus that r has the minimum value r0 at 0, and thatsgn(r0(�)) = sgn(�). Equation (A9) implies that rr0 =sgn(r0)p(r � r0)(r � 
2r0), whi
h in turn implies thatZ �0 rp(r � r0)(r � 
2r0) dr = Z �0 sgn(r0(�)) d�: (A11)Computation of these integrals yields Eq. (17).Determination of U(�) pro
eeds as follows:

U(�)� U(1) = Z �1 U 0(�) d� = Z �1 mR̂r2(�) d�= mR̂ Z �1 sgn(r0)rp(r � r0)(r � 
2r0) dr (A12)
= mR̂8>>>>>>>>>><>>>>>>>>>>:

Z �1 1rp(r � r0)(r � 
2r0) dr if � � 0,Z 01 1rp(r � r0)(r � 
2r0) dr� Z �0 1rp(r � r0)(r � 
2r0) dr if � � 0, (A13)
= 2mR̂
 r0 8>>>>>>>>><>>>>>>>>>:

� ln pr(�) � 
2r0 � 
pr(�)� r0(1� 
)pr(�) !if � � 0,ln pr(�)� 
2r0 � 
pr(�) � r0(1 + 
)pr(�) !if � � 0, (A14)
= 4p7 ln pr(�)� 
2r0 + sgn(�)
pr(�) � r0(1 + 
)pr(�) !: (A15)Upon repla
ement of U(�1) by ln R̂, Eq. (18) follows.From ~r(~�) := eT0=R̂ �r(��) := eT0=R̂e�U(�)r(�) and ~� :=eT0=R̂�� := eT0=R̂�=R̂ one sees that ~r0(~�) = �r0(��) =R̂ e�U(�) [r0(�)� r(�)U 0(�)℄, thus that ~r0(~��) = 0 if andonly if r0(��)=r(��) = U 0(��), where �� := R̂ e�T0=R̂ ~��.Be
ause U 0 = mR̂=r2, this 
ondition is equivalent tor2(��)r02(��) = m2R̂2 = 4
2r20=7, whi
h in view ofEq. (A9) is equivalent tor2(��)� (1 + 
2)r0r(��) + 37 
2r20 = 0: (A16)This, together with r � r0, entails thatr(��) = 12 "(1 + 
2) +r(1� 
2)2 + 167 
2 # r0: (A17)As 
 goes from 0 to 1, r(��) in
reases steadily from r0 to�1 + 2=p7 � r0.Equations (17) and (A17) imply�� = � 2p7 
 + 12 �1 + 
2�� ln0�q(1� 
2)2 + 167 
2 + 4p7 
1 + 
2 1A35 r0: (A18)From this it follows that ~�� in
reases steadily from 0 to�2=p7 + ln�4=p7 �� eT0=R̂ r0=R̂ as 
 goes from 0 to 1.By 
ombining ~r(~�) = eT0=R̂e�U(�)r(�) with Eqs. (A15)and (A17), one �nds that the minimum radius ~r(~��)8



(=: ~rmin) in
reases monotoni
ally from eT0=R̂ r0=R̂ to�2=p7 ��1 + p7=2�1+2=p7eT0=R̂ r0=R̂ as 
 goes from 0to 1, thus as m is in
reased from 0 to m
rit, and mT0from 0 to eT0=R̂m
rit.Applying the 
oordinate 
hange T := R̂ �t� 12U(�)�alters Eq. (13) toĜ = e2U(�)R̂2 dT 2 � e2T=R̂ e�2U(�) �d�2 + r2(�) d
2� ;(A19)whi
h makesĜT0 = e2U(�)R̂2 dT 2 � e2T0=R̂ e�2U(�) �d�2 + r2(�) d
2� :(A20)Consider now a se
ond solution of Eqs. (14) in the formof a metri
 �G, de�ned on the same manifold M̂ that Ĝ isde�ned on, but with respe
t to its own 
oordinate system[[�t; ��; #; '℄℄, and having its own parameters �m and �r0 (R̂,#, and ' being the same as for Ĝ), with 0 � �m > �m
rit :=��2=p7 ���r0=R̂�. Just as for Ĝ, the 
oordinate 
hange�T := R̂ ��t� 12 �U(��)� and the 
ondition �U 0 = �2 �V make�G = e2 �U(��)R̂2 d �T 2 � e2 �T=R̂ e�2 �U(��) �d��2 + �r2(��) d
2�(A21)and�G �T0 = e2 �U(��)R̂2 d �T 2 � e2 �T0=R̂ e�2 �U(��) �d��2 + �r2(��) d
2� :(A22)Next suppose that �T and T are related by�T = T �1� 
1 + 
�4=p7 ; (A23)and �� and �, by �� = ���1 + 
1� 
�4=p7 ; (A24)and let F be the di�eomorphism of M̂ that maps thepoint P with 
oordinates [[T; �; #; '℄℄ to the point F(P )with 
oordinates [[ �T ; ��; #; '℄℄, that is, F = �X�1X , whereX : M̂ ! R4 is the 
oordinate system [[T; �; #; '℄℄ and�X : M̂ ! R4 is the 
oordinate system [[ �T ; ��; #; '℄℄. ForF to be an isometry with respe
t to ĜT0 and �G �T0 it isne
essary and suÆ
ient that the pullba
k of �G �T0 by Fbe equal to ĜT0 , that is, �G �T0(F)(dF)(dF) = ĜT0 . Thiswill be true if and only if the expressione2 �U(��)R̂2 �1� 
1 + 
�8=p7 dT 2� e2 �T0=R̂ e�2 �U(��) "�1 + 
1� 
�8=p7d�2 + �r2(��) d
2# (A25)

for �G �T0 derived from Eq. (A22) agrees with the expres-sion of ĜT0 in Eq. (A20). This in turn will be true if andonly if �T0 = T0,�U(��) := U(�) + ln�1 + 
1� 
�4=p7 ; (A26)and �r(��) := �1 + 
1� 
�4=p7 r(�): (A27)(Note that �r(��)=�� = �r(�)=� ! �1 as � ! 1, thusas �� ! �1.) Are these 
onsistent with the suppositionthat �U and �r satisfy Eqs. (14)? One has that�U 0(��) = d�d��U 0(�) = d�d�� mR̂r2(�) = ��1 + 
1� 
�4=p7 mR̂�r2(��) ;(A28)thus that �U 0(��) = ( �mR̂)=�r2(��) provided only that�m = �m�1 + 
1� 
�4=p7 : (A29)It is straightforward to 
he
k that this same 
onditionguarantees that �r will satisfy the se
ond of Eqs. (14a).Satisfa
tion of Eqs. (14b) demands only the further stip-ulation that �r0 = r0 [(1 + 
)=(1� 
)℄4=p7.From these 
al
ulations the following inferen
es maybe drawn:1. For every spa
e-time metri
 Ĝ of the assumed form(Eq. (13)) that satis�es the initial-value problem ofEqs. (14) with a positive mass parameter m thereis one with a negative mass parameter �m whosehuman time-s
ale approximant spa
e-time metri
�GT0 is, at ea
h era T0 of 
osmi
 time, isometri
 toĜT0 | and vi
e versa. Consequently, there is onthe human time-s
ale no useful distin
tion to bemade between the metri
s with m > 0 and thosewith m < 0.2. Ea
h human time-s
ale approximant ĜT0 of themetri
 Ĝ is self-isometri
 under an isometry that re-verses the dire
tion of in
rease of � (
f. Eq. (A24)),therefore maps the asymptoti
 region � � 1onto the opposite asymptoti
 region � � �1.Moreover, the details of that isometry make 
learthat, whereas ĜT0 is asymptoti
 as � ! 1 to aS
hwarzs
hild metri
 with positive mass parametermT0 �:= meT0=R̂�, it is asymptoti
 as �! �1 to aS
hwarzs
hild metri
 with negative mass parameter�mT0 �:= �meT0=R̂� su
h that� �mT0mT0 = � �mm = �1 + 
1� 
�4=p7 > 1: (A30)9



Introdu
tion of the 
oordinate T̂ := t+R V (�) d� givesthe metri
 of Eq. (13) the (tensor produ
t) formĜ = e2U(�)(dT̂ 
 dT̂ )� e2T̂ e�2 R V (�) d�e�3U(�)� �!1 
 !1 + !2 
 !2 + !3 
 !3� ; (A31)where !1 := d�, !2 := r(�)d#, and !3 := r(�)(sin #)d'.A standard 
al
ulation of the Einstein tensor Ê, followedby appli
ation of Eqs. (14a), yields the following equa-tion, provided that C = 0 is 
hosen when the antidi�er-entiation R V (�) d� = � 12 R U 0(�) d� = � 12U(�) + C isperformed:Ê := �̂� 12 	̂Ĝ= 3e�2U(�)Ĝ+ e�2T̂ e4U(�) "34m2R̂2r4(�) #�dT̂ 
 dT̂�+ 2mR̂r2(�) �dT̂ 
 !1 + !1 
 dT̂�+ "�1� r02(�)r2(�) � m2R̂2r4(�) # �!1 
 !1�+ "1� r02(�)2r2(�) + 18m2R̂2r4(�) # �!2 
 !2 + !3 
 !3� :(A32)Using the de�nitions of Eqs. (25) in this equation, aswell as Eq. (A8), one arrives at the de
omposition of Êexpressed in Eqs. (24) and (27{29).
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