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I. TOPOLOGICAL SPACES AND HOMEOMORPHISMS

If S is a nonempty set, then by a topology for S is meant a collection T of subsets of

S such that (i) S is in T , (ii) the empty set ∅ is in T , (iii) if A and B are sets in T , then A ∩ B

is in T , and (iv) if T ′ is a subcollection of T , then
⋃

A∈T ′ A is in T . By a base for T is meant a

subcollection B of T such that every nonempty set in T is a union of one or more of the sets in B.

By a topological space Σ is meant a set S together with a topology T for S. The elements of S

are called the points of Σ. The sets in T are called the open sets of Σ; their complements (in S)

are called the closed sets of Σ. Each of ∅ and S is both open and closed.

Example. S is a line, B is the collection of all intervals of S that include neither end point, and

T is the collection of all unions of subcollections of B.

Example. S is a plane, B is the collection of all interiors of circles in S, and T is the collection of

all unions of subcollections of B. Another base for the same topology T for S is the collection of

all interiors of convex polygons in S. Yet another is the collection of all interiors of rectangles in

S with one side horizontal. One other is the collection of all interiors of circles in S of radius less

than ǫ, where ǫ is some positive number, the same for all the circles in question. Call this space Π.

Example. S is a sphere, B is the collection of all subsets of S “sliced off” by a plane that intersects

S in a circle (a slice lying on one side of the plane only; the circle of intersection not included in

the slice), and T is the collection of all unions of subcollections of B.

Example. S is a “punctured sphere” (a sphere with one point removed), B is the collection of

all subsets of S “sliced off” by a plane that intersects S in a circle or a “punctured circle” (a slice

lying one side of the plane only; the circle or punctured circle of intersection not included in the

slice), and T is the collection of all unions of subcollections of B. Call this space Σ⋆.

If each of Σ and Σ′ is a topological space, and F is a mapping of a subset of Σ into Σ′,

then F is continuous at P means that (i) P is a point of domF , and (ii) if U ′ is an open set

of Σ′ that has F (P ) in it, then there is an open set U of Σ that has P in it and is such that

F (U) is a subset of U ′; F is continuous means that F is continuous at each point of its domain.

By a homeomorphism of Σ onto Σ′ is meant a one-to-one mapping F of Σ onto Σ′ such that

both F and F−1 are continuous. If such a homeomorphism exists, then Σ and Σ′ are said to be

homeomorphic and to be topologically equivalent (to one another). Topological equivalence

is an equivalence relation (reflexive, symmetric, and transitive) on the set of all topological spaces.

Example. The plane Π and the punctured sphere Σ⋆ described above are topologically equivalent.

Clearly Π is homeomorphic to the plane Π′ tangent to Σ⋆ at the point opposite the puncture point.

A homeomorphism F of Π′ onto Σ⋆ is produced by “stereographic projection”, described as follows:

for each point P of Π′, F (P ) is the point of Σ⋆ that lies on the line through P and the puncture point.



2



3

II. FINITE-DIMENSIONAL MANIFOLDS

By a local coordinate system, of dimensionality M , for the set S is meant a one-to-

one mapping X of a subset of S onto an open set in R
M ; R

M is called the coordinate space of X,

and domX is called the coordinate patch of X. The mapping X−1 is called an M-dimensional

parametrization of domX. The coordinate functions of X are denoted by xm, m = 1, . . . ,M ,

so that X = [[x1, . . . , xM ]] (in other words, if P ∈ domX, then X(P ) = [[x1(P ), . . . , xM (P ) ]], a

vector in R
M). If, to distinguish it from X, a local coordinate system of dimensionality M is

labeled X ′, then its coordinate functions are denoted both by x′m and by xm′

, m = 1, . . . ,M ; X ′′,

X ′′′, and so on are treated similarly. If the coordinate patch of X is all of S, then X is called

a global coordinate system for S. “Coordinate system” used alone means “local coordinate

system”. If P ∈ domX, then X is said to be a coordinate system around P . A synonym for

“coordinate system” is “chart”.

If f is a mapping of a subset of S into R, then f is CK (resp., C∞) with respect

to X means that X(dom f) is open in R
M and either X(dom f) is empty or else the function

f ◦X−1: X(dom f)→ R is, if K ≥ 0, continuous, and has, if K ≥ 1, continuous partial derivatives

of all mixtures of order K or less (resp., of all orders). These partial derivatives, composed with

X, will be denoted by ∂f/∂xm, ∂2f/∂xm2∂xm1 , ∂3f/∂xm3∂xm2∂xm1 , and so on. In a different

notation these would read ∂m(f ◦X−1)(X), ∂m2(∂m1(f ◦X
−1))(X), and so on. That f is analytic

with respect to X means that X(dom f) is open and either X(dom f) is empty or else the

function f ◦X−1 has, about each point of X(dom f), a real power series representation. If F is a

mapping of a subset of S into R
N , then F is CK (C∞, analytic) with respect to X means that

for n = 1, . . . , N the nth component function of the mapping F ◦ X−1 : X(domF ) → R
N is CK

(C∞, analytic). Clearly, if f or F is analytic with respect to X, then it is C∞ with respect to X,

and if it is CL with respect to X, and L ≤ ∞, then it is CK with respect to X if K ≤ L.

If each of X and X ′ is a coordinate system for the set S, then X ′ is CK-compatible

(resp., C∞-compatible, analytically compatible) with X means that each of X and X ′ is CK

(resp., C∞, analytic) with respect to the other. This relation is almost an equivalence relation on

the set of all coordinate systems for S, as the following theorem indicates.

Theorem 1. CK-compatibility, C∞-compatibility, and analytic compatibility are reflexive and

symmetric as relations among all local coordinate systems for the set S; if S′ ⊂ S, then they

are transitive among those local coordinate systems for S that are global for S′.

Henceforth, statements that are made about CK-compatibility will be understood to gen-

erate by replacement analogous statements about C∞-compatibility and analytic compatibility.

By a CK atlas for the set S is meant a collection of one or more local coordinate systems

for S whose coordinate patches collectively cover S, and each two of which are CK-compatible. If

each coordinate patch has in it a point of S not in any of the other patches, then this is a minimal

CK atlas for S. If the CK atlas omits no coordinate system for S that is CK-compatible with

every other coordinate system in it, then it is called a maximal CK atlas for S. Every CK atlas

for S that has a minimal CK atlas for S as a subatlas (i. e., as a subset that is an atlas) is itself
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a subatlas of a maximal CK atlas for S, viz. {X | X is a local coordinate system for S that is

CK-compatible with every coordinate system in that minimal CK atlas for S }, and is a subatlas

of no other maximal CK atlas for S, however arrived at.

Definition. By a CK (resp., C∞, analytic) manifold is meant a set S, distinct from R, and

from R
M for M = 1, 2, . . . , together with a maximal CK (resp., C∞, analytic) atlas for S. By

a manifold is meant a CK , a C∞, or an analytic manifold. The elements of the underlying set

S are called the points of the manifold. The elements of the maximal atlas of the manifold are

called the coordinate systems of the manifold and their domains are called the coordinate

patches of the manifold. If a manifold is CK with K ≥ 1, is C∞, or is analytic, it is said

to be K-smooth (smooth if K ≥ 1, doubly smooth if K ≥ 2, triply smooth if K ≥ 3).

Theorem 2. If M is a manifold, then there is a unique topology for M with respect to which

each coordinate system of M is a homeomorphism. This topology has as a base the set of all

coordinate patches of M.

If S′ is an open subset of the CK manifold M, then S′ together with the atlas whose

coordinate systems are the restrictions to S′ of the coordinate systems of M is a CK manifold

M′. This manifold M′ is referred to as the (open) submanifold M′ of M, and M is called an

extension of M′. The components (maximal connected subsets) of a manifold M are open, hence

can be considered connected open submanifolds of M.

Theorem 3. If the manifold M is connected, then all coordinate systems of M have the same

dimensionality.

A proof of this theorem relies on the “invariance of domain” theorem that if an open set in

R
M is homeomorphic to an open set in R

N , then M = N . Henceforth every manifold considered

will be supposed connected, and the common dimensionality of its coordinate systems will be called

the dimensionality of the manifold.
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III. DIFFERENTIABLE MAPPINGS BETWEEN SMOOTH MANIFOLDS

Henceforth M will denote an M -dimensional, and N an N -dimensional smooth manifold,

unless otherwise indicated. For the present let F be a mapping of a subset of M into N.

Definition. The statement that F is Y -differentiable with respect to X at P means that

i. X is a coordinate system of M around P ,

ii. Y is a coordinate system of N around F (P ),

iii. P is an interior point of domX ∩ F−1(domY ), and

iv. there exist a linear mapping L : R
M → R

N and a function η : domX ∩ F−1(domY ) → R
N

such that if Q ∈ domX ∩ F−1(domY ), then

a. Y (F (Q))− Y (F (P )) = L(X(Q) −X(P )) + η(Q)|X(Q) −X(P )|, and

b. |η(Q)| → 0 as |X(Q) −X(P )| → 0.

(Here the choice of norms for R
M and R

N is immaterial, inasmuch as all norms on R
K are uniformly

equivalent to one another.)

Theorem 1. If F is Y -differentiable with respect to X at P , then the linear mapping L and the

function η are uniquely determined by the conditions (iv.a) and (iv.b).

Theorem 2. If F is the identity mapping of M onto itself, P is a point of M, and each of X

and X ′ is a coordinate system of M around P , then F is X ′-differentiable with respect to X

at P ; if X ′ = X, then L = IM , the identity mapping of R
M onto itself.

If F is Y -differentiable with respect to X at P , then the linear mapping L is called the

Y -differential of F with respect to X at P . The function whose domain is the set of all such

points P and which assigns to each such point P the Y -differential of F with respect to X at P

is called the Y -differential of F with respect to X and is denoted by d(Y F )/dX. If F is the

identity mapping of M onto itself, and X ′ is a coordinate system of M whose domain intersects

that of X, then d(X ′F )/dX is called the differential of X ′ with respect to X and is denoted

by dX ′/dX.

Theorem 3. If F is Y -differentiable with respect to X at P , then each of the partial derivatives

∂(ynF )

∂xm
(P ) ( := ∂m(Y FX−1)n(X(P ))) (1)

exists, and the matrix that represents (d(Y F )/dX)(P ) with respect to the standard bases in

R
M and R

N is given by

[

d(Y F )

dX
(P )

]

=
m

↓

n−→
[

∂(ynF )

∂xm
(P )

]

:=













∂(y1F )

∂x1
(P ) . . .

∂(yNF )

∂x1
(P )

...
. . .

...

∂(y1F )

∂xM
(P ) . . .

∂(yNF )

∂xM
(P )













. (2)
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Thus if u ∈ R
M , then

[

d(Y F )

dX
(P )u

]

= [u]

[

d(Y F )

dX
(P )

]

=
m−→

[um]

n−→
[

∂(ynF )

∂xm
(P )

]

m

↓ =

n−→
[

um ∂(ynF )

∂xm
(P )

]

. (3)

Corollary. If each of X and X ′ is a coordinate system of M around P , then

[

dX ′

dX
(P )

]

=
m

↓

m′−→
[

∂xm′

∂xm
(P )

]

:=















∂x1′

∂x1
(P ) . . .

∂xM ′

∂x1
(P )

...
. . .

...

∂x1′

∂xM
(P ) . . .

∂xM ′

∂xM
(P )















, (4)

where (∂xm′

/∂xm)(P ) := ∂m(X ′FX−1)m
′

(X(P )), with F the identity mapping of M onto

itself. In particular,

[

dX

dX
(P )

]

=
m

↓

n−→
[

∂xn

∂xm
(P )

]

= [δm
n], (5)

where δm
n := 0 if m 6= n, 1 if m = n.

Theorem 4. If P ∈ domF , X is a coordinate system of M around P , Y is a coordinate system

of N around F (P ), and Y F is C1 with respect to X, then F is Y -differentiable with respect

to X at P .

Theorem 5. If P ∈ domF , each of X and X ′ is a coordinate system of M around P , and each

of Y and Y ′ is a coordinate system of N around F (P ), then F is Y ′-differentiable with respect

to X ′ at P if and only if F is Y -differentiable with respect to X at P , and

d(Y ′F )

dX ′
(P ) =

dY ′

dY
(F (P ))

d(Y F )

dX
(P )

dX

dX ′
(P ), (6)

which in terms of the entries in the representing matrices is equivalent to

∂(yn′

F )

∂xm′
(P ) =

∂xm

∂xm′
(P )

∂(ynF )

∂xm
(P )

∂yn′

∂yn
(F (P )). (7)

Corollary. (Coordinate Chain Rule) If each of X, X ′, and X ′′ is a coordinate system of M

around P , then

dX ′′

dX ′
(P )

dX ′

dX
(P ) =

dX ′′

dX
(P ); (8)

equivalently,

∂xm′

∂xm
(P )

∂xm′′

∂xm′
(P ) =

∂xm′′

∂xm
(P ). (9)

In particular

dX

dX ′
(P )

dX ′

dX
(P ) =

dX

dX
(P ) = IM ; (10)
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equivalently,

∂xm′

∂xm
(P )

∂xn

∂xm′
(P ) =

∂xn

∂xm
(P ) = (11)

Definition. The statement that F is differentiable at P means that F is Y -differentiable

with respect to X at P for every coordinate system X of M around P and every coordinate

system Y of N around F (P ); that F is differentiable means that if P ∈ domF , then F is

differentiable at P .

According to this definition, differentiability of F is a property not of F alone, but of F

and the maximal atlases of M and N. If, for example, N′ is a smooth manifold whose points are

the same as those of N, but whose maximal atlas is distinct from N’s, then it might well be that

F is differentiable as a mapping into N, but not as a mapping into N′. Strictly, then, each of the

phrases “F is differentiable at P” and “F is differentiable” must be understood as followed by the

qualifying phrase “as a mapping from the manifold M to the manifold N”. The same qualification

must be applied to all other phrases describing a kind of differentiability or of continuity of F , such

as “F is CK” (to be defined), and “F is continuous at P” (to be defined).

Theorem 6. F is differentiable at P if and only if there exist a coordinate system X of M and

a coordinate system Y of N such that F is Y -differentiable with respect to X at P .

Definition. F is CK (C∞, analytic) means that Y F is CK (C∞, analytic) with respect

to X for each coordinate system X of M and each coordinate system Y of N such that

domX ∩ F−1(dom Y ) 6= ∅. (If K = 0, this definition applies also to the case where either M

or N is C0, as well as to the case where each is smooth.)

Theorem 7. When each of M and N is CK (C∞, analytic) or smoother, then F is CK (C∞,

analytic) if and only if there exist a subatlas of M’s maximal atlas and a subatlas of N’s

maximal atlas such that Y F is CK (C∞, analytic) with respect to X whenever X is in the

former subatlas, Y is in the latter subatlas, and domX ∩ F−1(domY ) 6= ∅.

Theorem 8. Each of these implications holds: F is analytic =⇒ F is CK for K = 1, 2, . . . =⇒

F is CL for L = 1, . . . ,K =⇒ F is differentiable =⇒ F is C0.

Definition. The statement that F is Y -continuous with respect to X at P means that

i. P ∈ domF ,

ii. X is a coordinate system of M around P ,

iii. Y is a coordinate system of N around F (P ), and

iv. if Q ∈ domX ∩F−1(dom Y ), then |(Y F )(Q)− (Y F )(P )| → 0 as |X(Q)−X(P )| → 0. That

F is continuous at P means that F is Y -continuous with respect to X at P for every

coordinate system X of M around P and every coordinate system Y of N around F (P ).

That F is continuous means that if P ∈ domF , then F is continuous at P .
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This definition and the next three propositions are sensible if either M or N is merely C0,

and the propositions are theorems in those cases as well as when M and N are both smooth.

Theorem 9. F is continuous at P if and only if there exist a coordinate system X of M and a

coordinate system Y of N such that F is Y -continuous with respect to X at P .

Theorem 10. If domF is open, then F is continuous if and only if F is C0. F is continuous

at P (resp., continuous) if and only if F is continuous at P (resp., continuous) as a mapping

from the topological space M to the topological space N.

Theorem 11. F is continuous at P if and only if F is continuous at P as a mapping of Σ into

Σ′, where Σ is M with the topology that has as a base the set of all coordinate patches of M

and Σ′ is N with the topology that has as a base the set of all coordinate patches of N. F is

continuous if and only if F is continuous as a mapping of Σ into Σ′.

Theorem 12. If F is differentiable at P , then F is continuous at P . If F is differentiable, then

F is continuous.

That F is a diffeomorphism of M onto N means that F is a one-to-one mapping

of M onto N and both F and F−1 are differentiable. If F is such a diffeomorphism, then M

and N are said to be diffeomorphic and to be differentiably equivalent (to one another).

Differentiable equivalence is an equivalence relation (reflexive, symmetric, and transitive) on the

set of all differentiable manifolds.

Theorem 13. If M and N are diffeomorphic, then Σ and Σ′ are homeomorphic, where Σ is M

with the topology that has as a base the set of all coordinate patches of M and Σ′ is N with

the topology that has as a base the set of all coordinate patches of N.
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IV. DIFFERENTIABLE PATHS IN AND SCALAR FIELDS ON A SMOOTH

MANIFOLD

By a path in M is meant a mapping p : I →M, where I is a nondegenerate interval of R.

By a scalar field on M is meant a mapping f : U → R, where U is a nonempty subset of M. Let

p be a path in M, and f a scalar field on M.

Definition. The statement that p is X-differentiable at t means that

i. t is a number in dom p,

ii. X is a coordinate system of M around p(t), and

iii. there exist a linear mapping L : R→ R
M and a function η : p−1(domX)→ R

M such that if

t̄ ∈ p−1(domX), then

a. X(p(t̄))−X(p(t)) = L(t̄− t) + η(t̄)|t̄− t)|, and

b. |η(t̄)| → 0 as |t̄− t| → 0.

Theorem 1. If p is X-differentiable at t, then the linear mapping L and the function η are

uniquely determined by the conditions (iii.a) and (iii.b).

If p is X-differentiable at t, then the linear mapping L is called the X-differential of p

at t. The function whose domain is the set of all such numbers t and which assigns to each such

number t the X-differential of p at t is called the X-differential of p and is denoted by d(Xp).

The function d(Xp)(·)(1) is called the X-derivative of p, and is denoted by D(Xp); its value at

t, D(Xp)(t) (a vector in R
M ), is called the X-derivative of p at t.

Theorem 2. The path p is X-differentiable at t if and only if each of the functions xmp is

differentiable at t, in which event D(Xp)(t) = [[ (xmp)˙(t) ]] = [[ (x1p)˙(t), · · · , (xMp)˙(t) ]], and

the row matrix that represents d(Xp)(t) with respect to the standard bases of R and R
M , as

well as the vector D(Xp)(t) with respect to the standard basis of R
M , is given by

[D(Xp)(t)] = [d(Xp)(t)] =
m−→

[(xmp)˙(t)]. (12)

Definition. The statement that f is X-differentiable at P means that

i. X is a coordinate system of M around P ,

ii. P is an interior point of domX ∩ dom f , and

iii. there exist a linear mapping L : R
M → R and a function η : domX ∩ dom f → R such that

if Q ∈ domX ∩ dom f , then

a. f(Q)− f(P ) = L(X(Q) −X(P )) + η(Q)|X(Q) −X(P )|, and

b. |η(Q)| → 0 as |X(Q) −X(P )| → 0.

Theorem 3. If f is X-differentiable at P , then the linear mapping L and the function η are

uniquely determined by the conditions (iii.a) and (iii.b).
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If f is X-differentiable at P , then the linear mapping L is called the X-differential of f

at P . The function whose domain is the set of all such points P and which assigns to each such

point P the X-differential of f at P is called the X-differential of f and is denoted by df/dX.

Theorem 4. If f is X-differentiable at P , then each of the partial derivatives

∂f

∂xm
(P ) ( := ∂m(fX−1)(X(P ))) (13)

exists, and the column matrix that represents (df/dX)(P ) with respect to the standard bases

in R
M and R is given by

[

df

dX
(P )

]

=
m

↓

[

∂f

∂xm
(P )

]

. (14)

Thus if u ∈ R
M , then
[

df

dX
(P )u

]

= [u]

[

df

dX
(P )

]

=
m−→

[um]

[

∂f

∂xm
(P )

]

m

↓ =

[

um ∂f

∂xm
(P )

]

. (15)

Definition. The statement that p is differentiable at t means that p is X-differentiable at t for

every coordinate system X of M around p(t); that p is differentiable means that if t ∈ dom p,

then p is differentiable at t. The statement that f is differentiable at P means that f is

X-differentiable at P for every coordinate system X of M around P ; that f is differentiable

means that if P ∈ dom f , then f is differentiable at P .

Theorem 5. The path p is differentiable at t if and only if there is a coordinate system X of M

such that p is X-differentiable at t. The scalar field f is differentiable at P if and only if there

is a coordinate system X of M such that f is X-differentiable at P .

Theorem 6. (Contravariant Chain Rule) If p is differentiable at t, and each of X and X ′ is

a coordinate system of M around p(t), then

D(X ′p)(t) =
dX ′

dX
(p(t))D(Xp)(t); (16)

equivalently,

D(xn′

p)(t) = D(xnp)(t)
∂xn′

∂xn
(p(t)). (17)

Theorem 7. (Covariant Chain Rule) If f is differentiable at P , and each of X and X ′ is a

coordinate system of M around P , then

df

dX ′
(P ) =

df

dX
(P )

dX

dX ′
(P ); (18)

equivalently,

∂f

∂xm′
(P ) =

∂xm

∂xm′
(P )

∂f

∂xm
(P ). (19)

For p and f there are definitions and theorems analogous to those at the end of Chapter

III having to do with F ’s being CK, C∞, analytic, or continuous.
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V. DUAL VECTOR SPACES

Let U be a finite-dimensional vector space over R, and let M = dimU . By a linear

functional on U is meant a (homogeneous) linear mapping of U into R. With respect to the

usual addition of and multiplication by real numbers of real-valued functions the set of all linear

functionals on U is itself a vector space over R; it is called the dual space of U and is denoted

by U∗. In case U = R
M this dual space is also denoted by RM . It can be identified with RM (the

vector space of all M -rowed column matrices over R, denoted alternatively by R1
M ) by identifying

the linear functional u∗ in RM with the column matrix [u∗m] in RM if and only if u∗m = u∗em,

where {em} is the standard basis for R
M . That the numbers u∗em determine u∗ is a consequence

of the linearity of u∗: if u = umem, then u∗u = u∗(umem) = um(u∗em) = umu∗m (in terms of

matrix multiplication [u∗u] = [umu∗m] = [um][u∗m] = [u][u∗], where [u] = [um], the row matrix that

represents u in the standard basis, and [u∗] = [u∗m] = [u∗em], the column matrix identified with u∗).

More generally, if {am} is a basis for U , then to know an element u∗ of U∗ it is sufficient

to know the numbers u∗am, for if u = umam, then u∗u = umu∗m, where u∗m = u∗am. In particular,

for n = 1, . . . ,M an element an of U∗ is determined by the stipulation that anam = δm
n, which

is equivalent to the stipulation that if u = umam, then anu = un. The set {am} is a basis for

U∗, called the basis dual to {am}. From this it follows that dimU∗ = M = dimU . If u∗ ∈ U∗,

and u = umam, then u∗u = u∗(umam) = um(u∗am) = (amu)u∗m = (u∗ma
m)u, so u∗ = u∗ma

m =

(u∗am)am.

An isomorphism i of U onto U∗ is determined by the formula iu = umδmna
n if u = umam.

Equivalent requirements that determine the same isomorphism are that iuv = umδmnv
n if u =

umam and v = vnan, that iam = δmna
n, and that iaman = δmn. This isomorphism, which maps

the (ordered) basis {am} onto the (ordered) dual basis {am} (that is, iam = am) can change with a

change of the basis {am}, consequently does not identify vectors in the dual space U∗ with vectors

in U in a “basis-free” manner. Likewise, the isomorphism j of U∗ onto U∗∗ (the dual of the dual

of U) determined with regard to the basis {am} of U∗ in the same way that i is determined with

regard to the basis {am} of U is not independent of the choice of {am}, hence not independent

of the choice of {am}. The isomorphism ji of U onto U∗∗, however, is basis-free. It assigns

to each vector u in U the linear functional lu : U∗ → R defined by the formula luu
∗ = u∗u if

u∗ ∈ U∗, which makes no reference to any basis. This isomorphism is called the natural (also, the

canonical) isomorphism of U onto U∗∗ and is used to identify the vectors of U∗∗ with those

of U , whereupon j becomes identified with i−1, inasmuch as (ji)u is identified with u. When the

basis vector am is thus identified with the element (ji)am, one has that amu
∗ = u∗am = u∗m, in

particular that ama
n = anam = δm

n, so that {am} is identified with the dual basis of its own dual

basis. By inductive extension each of U∗∗, U∗∗∗∗, and so on is identified with U . Similarly, each of

U∗∗∗, U∗∗∗∗∗, and so on is identified with U∗.

If U = R
M , so that U∗ = RM , then in the same way that U∗ is identified with RM , the

second dual U∗∗ can be identified with RM (the vector space of all M -columned row matrices over

R, denoted alternatively by RM
1 ). Specifically, if {em} is the basis of RM dual to the standard

basis {em} of R
M , and l ∈ (RM )∗, then l is identified with the row matrix [lm], where lm = lem.

Combined with this identification, the identification of vectors in U with vectors in U∗∗ becomes
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simply the correspondence between vectors in R
M and the row matrices that represent them in the

standard basis.

If V is a finite-dimensional vector space over R (of dimensionality N , say), and L is

a (homogeneous) linear mapping of U into V , then there is a (homogeneous) linear mapping

L∗ : V ∗ → U∗ defined as follows: if v∗ ∈ V ∗, then, for each vector u in U , (L∗v∗)u := v∗(Lu),

which is to say, L∗v∗ := v∗L. This mapping L∗ is called the dual of L. If {am} is a basis for U ,

{am} is the basis for U∗ dual to {am}, {bn} is a basis for V , and {bn} is the basis for V ∗ dual to

{bn}, then Lam = Lm
nbn, where Lm

n = bnLam, and L∗bn = L∗n
ma

m, where L∗n
m = amL

∗bn =

(L∗bn)am = bn(Lam) = Lm
n. Thus if u = umam, then Lu = (umLm

n)bn, and if v∗ = v∗nb
n, then

L∗v∗ = (v∗nL
∗n

m)am = (Lm
nv∗n)am.

When U∗∗ and V ∗∗ are canonically identified with U and V , L∗∗ becomes identified with a

(homogeneous) linear mapping of U into V . If u ∈ U and v∗ ∈ V ∗, then, under these identifications,

(L∗∗u)v∗ := u(L∗v∗) = (L∗v∗)u := v∗(Lu) = (Lu)v∗, so L∗∗ = L.

Because Lu = (umLm
n)bn, the row matrix [(Lu)n] that represents Lu in the basis {bn}

is [umLm
n], which factors into [um][Lm

n], where [um] is the row matrix that represents u in the

basis {am}, and, consequently, [Lm
n] is the matrix in RN

M (the vector space of all M -rowed, N -

columned matrices over R) that represents L in the bases {am} and {bn}; thus [(Lu)n] = [um][Lm
n].

Similarly, [(L∗v∗)m] = [Lm
n][v∗n] where [(L∗v∗)m] is the column matrix that represents L∗v∗ in the

dual basis {am}, and [v∗n] is the column matrix that represents v∗ in the dual basis {bn}. Thus L∗

is represented in the dual bases {am} and {bn} by the same matrix, [Lm
n], that represents L in

the bases {am} and {bn}. For L∗, however, this matrix multiplies from the left, whereas for L it

multiplies from the right.
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VI. TANGENT VECTORS AND TANGENT COVECTORS

For each point P of the smooth manifold M let AP denote the set of all coordinate systems

of M around P .

Classical Definition of Tangent Vector. By a contravariant tangent vector of M (tan-

gent vector or simply vector for short) at P is meant a mapping u : AP → R
M such that if

X ∈ AP and X ′ ∈ AP , then

u(X ′) =
dX ′

dX
(P )u(X), (20)

which in component form reads

um′

= um ∂x
m′

∂xm
(P ), (21)

provided [um] = [u(X)] in RM and [um′

] = [u(X ′)] in RM .

The coordinate chain rule ensures the consistency of this definition, for if also X ′′ ∈ AP , then

u(X ′′) =
dX ′′

dX
(P )u(X) =

dX ′′

dX ′
(P )

dX ′

dX
(P )u(X) =

dX ′′

dX ′
(P )u(X ′). (22)

Each tangent vector at P is determined by its representation in (i. e., its value at) a single coordinate

system. This permits the following assertion.

Theorem 1. Under the usual addition and multiplication by scalars of mappings into a vector

space the set of all tangent vectors at P is a real vector space. If X is any coordinate system in

AP , then an isomorphism of this space onto R
M is created by assigning to each tangent vector

at P its representation in X.

Definition. The vector space of all tangent vectors at P is called the tangent space (of M) at

P and is denoted by TP (M) and by TP (if M is implicit from the context). The isomorphism

described in Theorem 1 is denoted by X̂P ; thus if u ∈ TP , then X̂Pu = u(X), so [X̂Pu] = [um]

in RM .

Theorem and Definition. If p is a path in M that is differentiable at t, then there is a

unique tangent vector at p(t) whose representation in each coordinate system X around p(t)

is D(Xp)(t). This tangent vector is called the velocity of p at t as well as the derivative

of p at t. The function on { t | p is differentiable at t } whose value at each “time” t is the

velocity of p at t is called the velocity of p and the derivative of p, and is denoted by ṗ, by

p′, and by Dp. If pm := xmp, then (ṗ(·)(X))m = (D(Xp))m = D(xmp) = Dpm ; this function

is denoted by ṗm. Thus ṗm := Dpm = (pm)′ = (pm)̇ .

Classical Definition of Tangent Covector. By a covariant tangent vector of M (tangent

covector or simply covector for short) at P is meant a mapping v : AP → RM (the dual

space of R
M ) such that if X ∈ AP and X ′ ∈ AP , then

v(X ′) = v(X)
dX

dX ′
(P ), (23)



14

which in component form reads

vm′ =
∂xm

∂xm′
(P )vm, (24)

where [vm] = [v(X)] in RM and [vm′ ] = [v(X ′)] in RM .

As before, the coordinate chain rule ensures the consistency of the definition. Also as before,

each tangent covector is determined by its representation in a single coordinate system, hence the

following theorem holds.

Theorem 2. Under the usual addition and multiplication by scalars of mappings into a vector

space the set of all tangent covectors at P is a real vector space. If X is any coordinate system

around P , then an isomorphism of this space onto RM is created by assigning to each tangent

covector at P its representation in X.

Definition. The vector space of all tangent covectors at P is called the cotangent space (of

M) at P and is denoted by TP (M) and by TP (if M is understood from the context). The

isomorphism described in Theorem 2 is denoted by X̂P ; thus if v ∈ TP , then X̂P v = v(X), so

[X̂P v] = [vm] in RM .

Theorem and Definition. If f is a scalar field on a subset of M, and f is differentiable at P ,

then there is a unique tangent covector at P whose representation in each coordinate system X

around P is (df/dX)(P ). This tangent covector is called the cogradient of f at P as well as

the differential of f at P . The function on {P | f is differentiable at P } whose value at each

point P is the cogradient of f at P is called the cogradient of f and the differential of f ,

and is denoted by df . From the definition of ∂f/∂xm it follows that (df(·)(X))m = ∂f/∂xm.

Classical Definition of (Tangent) Scalar. By a (tangent) scalar of M (scalar for short)

at P is meant a mapping φ : AP → R that is constant, in other words is such that if X ∈ AP

and X ′ ∈ AP , then φ(X ′) = φ(X).

Theorem 3. If u is a tangent vector at P , and v is a tangent covector at P , then the relation

φ(X) = v(X)u(X) if X ∈ AP determines a tangent scalar φ at P .

The tangent scalar φ at P is called the contraction of v with u (also the inner product of v

with u) and is denoted by vu. (Note that, according to Theorem 3, (vu)(X) = umvm for each

coordinate system X in AP .)

Let D1(P ) denote the set of all scalar fields on M that are differentiable at P . Then with

respect to the usual addition and multiplication by scalars D1(P ) is a vector space over R. Further,

if each of f and g is in D1(P ), then so is fg. Moreover, if f ∈ D1(P ), f(P ) = 0, g is a scalar field

on M, P is an interior point of dom g, and g is continuous at P , then fg ∈ D1(P ). These follow

readily from the definition of fg and the identity

f(Q)g(Q)−f(P )g(P ) = (f(Q)−f(P ))g(P )+f(P )(g(Q)−g(P ))+(f(Q)−f(P ))(g(Q)−g(P )). (25)
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Modern Definition of Tangent Vector. By a tangent vector of M at P is meant a mapping

L : D1(P )→ R that is linear and treats products in the following way:

i. L(fg) = (Lf)g(P ) + f(P )(Lg) if f ∈ D1(P ) and g ∈ D1(P );

ii. L(fg) = (Lf)g(P ) if f ∈ D1(P ), f(P ) = 0, g is a scalar field on M, P is an interior point of

dom g, and g is continuous at P .

Examples of tangent vectors at P in the modern sense are afforded by the operators (∂/∂xm)(P )

on D1(P ) associated with the coordinate system X around P . In fact these constitute a basis for

the tangent space at P according to the following theorem.

Theorem 4. Under the usual addition and multiplication by real numbers of real-valued map-

pings the set of all tangent vectors of M at P in the modern sense is a real vector space. If

X is any coordinate system around P , then the set {(∂/∂xm)(P )} of operators on D1(P ) is a

basis for this space, and an isomorphism is established, via R
M and RM , between the tangent

space at P in the classical sense and the tangent space at P in the modern sense by the scheme

Classical Cartesian Matrix Modern

Spaces: TP ←→ R
M ←→ RM ←→ TP

Vectors: u ←→ u(X) ←→ [um] ←→ um(∂/∂xm)(P ) .

(26)

This isomorphism is the same for all choices of X.

Henceforth let the tangent spaces at P in the two senses be identified through the iso-

morphism described in this theorem. Then for each differentiable path p in M one has that

ṗ = ṗm(∂/∂xm)(p) on p−1(domX).

Modern Definition of Tangent Covector. By a tangent covector of M at P is meant an

element of the dual space of the tangent space at P .

According to this definition the cotangent space at P in the modern sense is simply the dual space

of TP . If X is a coordinate system of M around P , then the coordinate differentials dxm(P ),

defined as linear functionals on TP by

dxm(P )

(

un ∂

∂xn
(P )

)

= um, (27)

are tangent covectors in the modern sense. In fact {dxm(P )} is the basis dual to {(∂/∂xm)(P )},

for dxm(P )(∂/∂xn)(P ) = δn
m.

Theorem 5. If X is any coordinate system of M around P , then an isomorphism is established,

via RM and RM , between the cotangent space at P in the classical sense and the cotangent
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space at P in the modern sense by the scheme

Classical Cartesian Matrix Modern

Spaces: TP ←→ RM ←→ RM ←→ TP

Covectors: v ←→ v(X) ←→ [vm] ←→ vmdx
m(P ) .

(28)

This isomorphism is the same for all choices of X; it is the dual of the isomorphism of Theorem

4, provided the classical cotangent space at P is identified with the dual of the classical tangent

space at P in a way suggested by Theorem 3.

The two cotangent spaces at P will henceforth be identified by means of this isomorphism.

It follows that if f is a differentiable scalar field on M, then df = (∂f/∂xm)dxm on domX∩dom f .

Definition. The basis {(∂/∂xm)(P )} and its dual basis {dxm(P )} are called, respectively, the

(coordinate) frame (or basis) at P determined by X and the (coordinate) coframe (or

cobasis) at P determined by X.

Finally, in the spirit of these modern definitions a tangent scalar of M at P is sim-

ply a real number (the constant value of the corresponding classical tangent scalar), and if u =

um(∂/∂xm)(P ) and v = vmdx
m(P ), the contraction of v with u is the scalar (real number) umvm,

because

vu = (vmdx
m(P ))

(

un ∂

∂xn
(P )

)

= unvm

(

dxm(P )
∂

∂xn
(P )

)

= unδn
mvm = umvm. (29)

In particular, df(P )u = um(∂f/∂xm)(P ) = uf if f ∈ D1(P ). This number is called the derivative

of f along u, as well as the u-derivative of f , and is denoted by Duf ; thus, Duf = uf = df(P )u.

Theorem and Definition. If U ⊂M and P ∈ U , then

{u ∈ TP | Duf = 0 if f ∈ D
1(P ) and f |U is constant} (30)

is a subspace of TP . It is called the subspace of TP tangent to U and is denoted by TUP .

Its vectors are said to be tangent to U at P .

Theorem and Definition. If U ⊂M and P ∈ U , then

{v ∈ TP | vu = 0 if u is tangent to U at P} (31)

is a subspace of TP . It is called the subspace of TP cotangent to U and is denoted by TUP .

Its covectors are said to be cotangent to U at P .

Theorem 6. If U ⊂ M and P ∈ U , then dimTUP + dimTUP = M . If U = {P}, then

TUP = {0} and TUP = TP . If P is an interior point of U , then TUP = TP and TUP = {0}.
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VII. TENSOR PRODUCTS

Let each of U and V be a finite-dimensional vector space over R, and let M = dimU and

N = dimV . Let {am} be a basis for U , and {bn} a basis for V , with {am} and {bn} their dual

bases in U∗ and V ∗. Let L(U, V ) denote the vector space of all (homogeneous) linear mappings of

U into V . If L ∈ L(U, V ) and u ∈ U , then Lu = umLm
nbn, where um = amu and Lm

n = bnLam

(implying that u = umam and Lam = Lm
nbn). In terms of the following definition umLm

nbn can

be expressed as (am ⊗ Lm
nbn)u, hence L = am ⊗ Lm

nbn.

Definition. If u∗ ∈ U∗ and v ∈ V , then by the tensor product of u∗ with v is meant the

mapping u∗ ⊗ v : U → V such that if u ∈ U , then (u∗ ⊗ v)u = (u∗u)v.

Theorem 1. If u∗, ū∗ ∈ U∗, and v, v̄ ∈ V , and α ∈ R, then

i. (u∗ + ū∗)⊗ v = u∗ ⊗ v + ū∗ ⊗ v,

ii. u∗ ⊗ (v + v̄) = u∗ ⊗ v + u∗ ⊗ v̄, and

iii. (αu∗)⊗ v = α(u∗ ⊗ v) = u∗ ⊗ (αv).

Theorem 2. The set S of all tensor products u∗ ⊗ v with u∗ in U∗ and v in V is a spanning

subset of L(U, V ), the subset {am ⊗ bn} of S is a basis for L(U, V ), and dimL(U, V ) = MN .

S = L(U, V ) if and only if M = 1 or N = 1. If L ∈ L(U, V ), then L = am⊗Lm
nbn = amLm

n⊗

bn = Lm
n(am ⊗ bn), where Lm

n = bnLam. If u∗ ∈ U∗ and v ∈ V , then bn(u∗ ⊗ v)am = u∗mv
n,

where u∗m = u∗am and vn = bnv.

Partly because of and partly in spite of this theorem the space L(U, V ) is called the tensor

product of U∗ with V and is denoted U∗ ⊗ V . In view of the previously adopted identification

of the second duals U∗∗ and V ∗∗ with U and V themselves the spaces L(U∗, V ), L(U∗, V ∗), and

L(U, V ∗) are, respectively, U⊗V , U⊗V ∗, and U∗⊗V ∗. In particular U∗ = U∗⊗R and U = U⊗R.

Theorem 3. The mapping i : U∗ ⊗ V ∗ → (U ⊗ V )∗ obtained by linear extension from the basic

defining relations i(am ⊗ bn)(ak ⊗ bl) = (amak)(b
nbl) = δk

mδl
n is an isomorphism of U∗ ⊗ V ∗

onto (U ⊗ V )∗ which maps the basis {am ⊗ bn} of U∗ ⊗ V ∗ onto the basis of (U ⊗ V )∗ dual to

the basis {am ⊗ bn} of U ⊗ V . This isomorphism is the same for all choices of the bases {am}

and {bn}.

Henceforth the spaces U∗⊗V ∗ and (U⊗V )∗ will be identified by means of the isomorphism

of Theorem 3. Thus (U ⊗ V )∗ = U∗ ⊗ V ∗, and, by implication, (U∗ ⊗ V ∗)∗ = U ⊗ V , (U∗ ⊗ V )∗ =

U ⊗ V ∗, and (U ⊗ V ∗)∗ = U∗ ⊗ V . Also, just as the bases {am ⊗ bn} and {am ⊗ bn} are dual to

one another, so, by implication, are {am ⊗ bn} and {am ⊗ b
n}.

Let W be a finite-dimensional vector space over R, with {cp} a basis for W . Then U∗ ⊗

(V ∗ ⊗W ) = L(U,L(V,W )), whereas (U∗ ⊗ V ∗)⊗W = (U ⊗ V )∗ ⊗W = L(L(U∗, V ),W ).

Theorem 4. For each element S of U∗ ⊗ (V ∗⊗W ) let iS be the mapping T : U ⊗ V →W such

that if L = am ⊗ L
mnbn, then TL = LmnSambn. Then i(am ⊗ (bn ⊗ cp)) = (am ⊗ bn) ⊗ cp,
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and i is an isomorphism of U∗ ⊗ (V ∗ ⊗W ) onto (U∗ ⊗ V ∗)⊗W . Also, i is independent of the

choice of the bases {am}, {bn}, and {cp}.

The spaces U∗ ⊗ (V ∗ ⊗W ) and (U∗ ⊗ V ∗)⊗W will be identified from now on by agency

of the isomorphism of Theorem 4. Under this identification the tensor product is associative, as a

product of vectors as well as a product of spaces, for, as follows readily, if u∗ ∈ U∗, v∗ ∈ V ∗, and

w ∈W , then u∗⊗ (v∗⊗w) = (u∗⊗ v∗)⊗w. Notations such as u∗⊗ v∗⊗w can now be used, being

no longer ambiguous. Theorem 4 and these subsequent identifications apply equally well to other

spaces: for example, U ⊗ (V ∗ ⊗W ∗) = (U ⊗ V ∗)⊗W ∗.

Although R⊗ V has been identified with (R∗)∗ ⊗ V , it has not been defined as a space in

its own right. It is useful to define it in the following way.

Definition and Theorem. If r ∈ R and v ∈ V , then r⊗ v := rv. The product R⊗V is defined

to be the vector space spanned by the set of all such products; consequently R⊗ V = V .

This definition is reconcilable with the previous identification through use of the usual

identification of a function f in R
∗ with the number f(1) in R.
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VIII. DIFFERENTIALS OF MAPPINGS BETWEEN SMOOTH MANIFOLDS

As earlier, each of M and N is a smooth manifold, and F is a mapping of a subset of M

into N.

Theorem 1. Suppose that F is differentiable at P . If h ∈ D1(F (P )), then hF ∈ D1(P ). For

each tangent vector u of M at P , let Lu : D1(F (P ))→ R be defined by (Lu)h := u(hF ). Then

L is a linear mapping of TP (M), the tangent space of M at P , into TF (P )(N), the tangent

space of N at F (P ); that is to say, L ∈ TP (M)⊗ TF (P )(N).

Definition. The linear mapping L is called the differential of F at P . The function whose

domain is the set of all points at which F is differentiable, and which assigns to each such

point P the differential of F at P , is called the differential of F and is denoted by dF . Thus

dF (P ) ∈ TP (M)⊗TF (P )(N), and if u ∈ TP (M) and h ∈ D1(F (P )), then (dF (P )u)h = u(hF ).

The function whose domain is the set of all points at which F is differentiable, and which

assigns to each such point P the dual of the differential of F at P , is called the dual of the

differential of F and is denoted by (dF )∗. Thus (dF )∗(P ) = dF (P )∗, a linear mapping of

TF (P )(N), the cotangent space of N at F (P ), into TP , the cotangent space of M at P , that is to

say, (dF )∗(P ) ∈ TF (P )(N)⊗TP (M) and if v ∈ TF (P )(N), then (dF )∗(P ) v := v dF (P ) ∈ TP (M).

Theorem 2. If F is differentiable at P , and U is a subset of M that has P in it, then dF (P )(TUP )

is a subspace of TF (U)F (P ), the subspace of TF (P )(N) tangent to F (U) at F (P ). On the other

hand (dF )∗(P )(TF (U)F (P )) is a subspace of TUP , the subspace of TP (M) cotangent to U at P .

Theorem 3. If F is constant on a set of which P is an interior point, then F is differentiable at

P , and dF (P ) = 0 (the zero element of TP (M)⊗ TF (P )(N)).

Theorem 4. If F is differentiable at P , X is a coordinate system of M around P , and Y is a

coordinate system of N around F (P ), then

dF (P ) = dxm(P )⊗
∂(ynF )

∂xm
(P )

∂

∂yn
(F (P )). (32)

Let O be a smooth manifold and G a mapping of a subset of N into O.

Theorem 5. (Chain Rule for Manifolds) If F is differentiable at P , and G is differentiable

at F (P ), then GF is differentiable at P , and d(GF )(P ) = dG(F (P ))dF (P ).

Theorem 6. (Chain Rules for Velocities) If p is a path in M, p is differentiable at t,

F is differentiable at p(t), and q = F (p), then q is a path in N differentiable at t, and

q̇(t) = dF (p(t))ṗ(t); if p is differentiable and F is differentiable, then q is differentiable, and

q̇ = dF (p)ṗ. If p is differentiable, φ is a differentiable mapping of an interval of R into dom p,

and q = p(φ), then q is a differentiable path in M, and q̇ = ṗ(φ)φ̇.

Theorem 7. (Chain Rules for Cogradients) If g is a scalar field on N, F is differentiable at

P , g is differentiable at F (P ), and h = gF , then h is a scalar field on M differentiable at P , and
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dh(P ) = dg(F (P ))dF (P ); if F is differentiable and g is differentiable, then h is differentiable,

and dh = dg(F )dF . If g is differentiable, φ is a differentiable mapping of a subset of R into R,

ran g ∩ domφ 6= ∅, and h = φ(g), then h is differentiable, and dh = dφ(g)dg.

Theorem 8. If P ∈ M, u ∈ TP , and f ∈ D1(P ), then uf = df(P )u = um(∂f/∂xm)(P ) =

(uxm)(∂f/∂xm)(P ) for each coordinate system X of M around P .

Theorem 9. If P ∈M, f ∈ D1(P ), g ∈ D1(P ), and c ∈ R, then

i. d(f + g)(P ) = df(P ) + dg(P ),

ii. d(cf)(P ) = c df(P ), and

iii. d(fg)(P ) = g(P ) df(P ) + f(P ) dg(P ).
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IX. VECTOR FIELDS, COVECTOR FIELDS, AND TENSOR FIELDS

At each point P of the smooth manifold M there are the tangent space TP , the cotangent

space TP , and the various tensor product spaces that can be built from them, such as TP ⊗ T
P ,

TP ⊗TP , TP ⊗TP ⊗T
P , TP ⊗T

P ⊗TP , and TP ⊗TP ⊗TP ⊗T
P . The elements of the tensor product

spaces are called tangent tensors at P and, for short, tensors at P . The type of such a tensor

at P is determined by the space to which it belongs, and is indicated by addition of one or more

prefixes co- or con- to the word tensor (“co-” from covariant vector, i. e., tangent covector, and

“con-” from contravariant vector, i. e., tangent vector). The tensors in the product spaces listed

above, for example, are called, respectively, (tangent) cocontensors, cocotensors, cococontensors,

coconcotensors, and cocococontensors at P . The elements of TP and TP are also called tensors;

contensor and cotensor are the applicable terms. The term “contravector” for an element of TP

is used also, to parallel “covector”, but the shorter word “convector” is not, as it already has a

meaning in ordinary discourse. Every tangent scalar at P is also called a tensor at P ; no prefix is

applied.

By a vector (or contensor) field of M is meant a function u on a subset U of M

such that if P is a point of U , then u(P ) is a tangent vector at P ; u is said to be a vector (or

contensor) field on U . If X is a coordinate system of M, then, for each m, ∂/∂xm is a vector

field (of M) on domX; if U intersects domX, then on their intersection u = um(∂/∂xm), that is,

u(P ) = um(P )(∂/∂xm)(P ) if P ∈ U ∩ domX, where each component um of u in X is a scalar

field on the intersection, given by um(P ) = u(P )xm if P ∈ U ∩ domX.

Definition. If u is a vector field of M on U , then u is said to be differentiable (resp., contin-

uous) at P if and only if P is a point of U and, for every coordinate system X of M around

P , each of the components um of u in X is differentiable (resp., continuous) at P ; u is said to

be differentiable (resp., continuous) if and only if u is differentiable (resp., continuous) at

every point of U . To say that u is CK (C∞, analytic) is to say that, for every coordinate

system X of M such that U ∩ domX 6= ∅, each of the components um is CK (C∞, analytic).

If X ′ is a coordinate system of M whose domain intersects U ∩domX, then on U ∩domX∩domX ′

the components of u in X and of u in X ′ are related through the “contravariant transformation

law” expressed by the equations

um′

= um ∂x
m′

∂xm
and um = um′ ∂xm

∂xm′
. (33)

If M is CL (C∞, analytic), then the partial derivatives ∂xm′

/∂xm and ∂xm/∂xm′

are all CL−1

(C∞, analytic). Consequently, much as in the case of mappings between manifolds, to determine

whether u is CK, C∞, or analytic it is sufficient (because products and sums of CK , C∞, or analytic

scalar fields are themselves CK , C∞, or analytic) to make that determination for the components

of u in all (relevant) coordinate systems of some subatlas of M’s maximal atlas, so long as M is at

least (K + 1)-smooth. In particular, M being smooth, that is to say, 1-smooth, u will be C0 if its

components in all (relevant) coordinate systems of some minimal atlas of M are C0. Also, if M is

doubly smooth, then u will be differentiable at P if and only if its components in some coordinate
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system around P are so. It is clear that the smoothness hierarchy holds for vector fields — that

if u is analytic, then it is C∞, if u is C∞, then it is CK for K = 1, 2, . . . , and so on. Coordinate

vector fields ∂/∂xm are always CK−1 if M is CK , C∞ if M is C∞, and analytic if M is analytic.

The definitions of covector (or cotensor) field of M and of what it means for a covector

field of M to be differentiable at P , differentiable, CK , C∞, or analytic are entirely analogous to

those for vector fields, as are the remarks one could make of the nature of those in the paragraph

just above. The only differences are that the components in X of the covector field v on U

are the scalar fields vm, given by vm(P ) = v(P )(∂/∂xm)(P ), such that v = vmdx
m on U ∩ domX,

and that the components in X ′ are related to those in X through the “covariant transformation

law” expressed by

vm′ =
∂xm

∂xm′
vm and vm =

∂xm′

∂xm
vm′ . (34)

It is clear that the coordinate covector fields dxm will be CK−1 (C∞, analytic) if M is CK (C∞,

analytic). It is also clear that, for each vector field u whose domain intersects that of v, the scalar

field vu, defined by (vu)(P ) := v(P )u(P ) if P ∈ domu∩ dom v, and having in a coordinate system

X the representation umvm, will be differentiable at P (differentiable, CK , C∞, analytic) if u and

v individually are.

Tensor fields of M of other types are defined in the same manner as vector fields and

covector fields of M, and the definitions of the various degrees of differentiability of these tensor

fields are analogous to those for vector fields and for covector fields. The values of the tensor field

at different points are required to be all of the same type, and the tensor field itself is said to be of

that type. For example, if at each point P in domL the value of the tensor field L is in TP ⊗ T
P ,

then L is called a cocontensor field.

Negatives of tensor fields, sums of tensor fields of the same type, products of scalar fields

with tensor fields, and tensor products of tensor fields with tensor fields are all defined in the

obvious pointwise fashion. For example, if u is a vector field of M, and v is a covector field of M

whose domain intersects that of u, then the tensor product v ⊗ u of v with u is defined by

(v⊗u)(P ) := v(P )⊗u(P ) if P ∈ domu∩ dom v. If f is a scalar field on M whose domain overlaps

that of u, then (f ⊗ u)(P ) := f(P ) ⊗ u(P ) := f(P )u(P ), so f ⊗ u = fu. It is also the case that

u⊗ f = fu, not to be confused with uf , which is defined by (uf)(P ) := u(P )f .

In accordance with these definitions the cocontensor field L would have, in coordinate

systems X and X ′, representations L = dxm⊗Lm
n(∂/∂xn) and L = dxm′

⊗Lm′
n′

(∂/∂xn′

). If the

coordinate patches and domL have an overlap, then on that overlap

Lm′
n′

=
∂xm

∂xm′
Lm

n∂x
n′

∂xn
and Lm

n =
∂xm′

∂xm
Lm′

n′ ∂xn

∂xn′
, (35)

so that if the components Lm
n of L in X are CK (C∞, analytic) on the overlap, then so are the

components of L in X ′, and vice versa, provided that M is (K + 1)-smooth.
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If u is a vector field of M, and v is a covector field of M whose domain intersects that of

u, then, in each coordinate system X for which domu∩ dom v ∩ domX 6= ∅, the tensor field v⊗u

has the representation

v ⊗ u = (vmdx
m)⊗

(

un ∂

∂xn

)

= dxm ⊗ (vmu
n)

∂

∂xn
= (unvm)

(

dxm ⊗
∂

∂xn

)

. (36)

From this it follows that if each of u and v is CK (C∞, analytic) on domu ∩ dom v, then so is

v ⊗ u. For all other products of tensor fields, for sums and differences of tensor fields of the same

type, and for products of scalar fields with tensor fields analogous conclusions can be drawn.

For suitable pairs of tensor fields u and v there are various “contractions” of the tensor

product v ⊗ u, analogous to the composition vu in the case where u is a vector field and v is a

covector field; these contractions are themselves scalar fields, vector fields, covector fields, or tensor

fields, and they, too, are CK (C∞, analytic) if each of u and v is. If u = un(∂/∂xn) and v = vmdx
m,

then v ⊗ u has just the one contraction mentioned:

(v ⊗ u)

(

∂

∂xp

)

(dxp) =

(

vmdx
m ⊗ un ∂

∂xn

)(

∂

∂xp

)

(dxp) (37)

=

(

vmdx
m ∂

∂xp

)

⊗

(

un ∂

∂xn
dxp

)

(38)

= (vmδ
m

p)⊗ (unδn
p) = (vmδ

m
p)(u

nδn
p) (39)

= vpu
p = upvp = vu. (40)

If, however, u = um∂/∂xm and v = dxk ⊗ vkldx
l, then the product has the representation

v ⊗ u = (dxk ⊗ vkldx
l)⊗

(

um ∂

∂xm

)

(41)

= (umvkl)

(

dxk ⊗ dxl ⊗
∂

∂xm

)

, (42)

and it has two distinct contractions, represented in X by

(v ⊗ u)

(

∂

∂xp

)

(·)(dxp) =

(

dxk ∂

∂xp

)

⊗ vkldx
l ⊗

(

um ∂

∂xm
dxp

)

(43)

= δk
p ⊗ vkldx

l ⊗ umδm
p (44)

= δk
pvkl ⊗ dx

l ⊗ umδm
p (45)

= vpl ⊗ dx
l ⊗ up (46)

= (upvpl)dx
l (47)

and



24

(v ⊗ u)(·)

(

∂

∂xp

)

(dxp) = dxk ⊗

(

vkldx
l ∂

∂xp

)

⊗

(

um ∂

∂xm
dxp

)

(48)

= dxk ⊗ vklδ
l
p ⊗ u

mδm
p (49)

= dxk ⊗ vkp ⊗ u
p (50)

= (upvkp)dx
k. (51)
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X. FRAMES, COFRAMES, FRAME SYSTEMS, AND COFRAME SYSTEMS

By a frame (coframe) at the point P of the smooth manifold M is meant an ordered

basis of the tangent (cotangent) space of M at P . By a frame (coframe) system (or field) of M

is meant a function E (Ω) on a subset U of M such that if P is a point of U , then E(P ) (Ω(P )) is

a frame (coframe) at P ; E (Ω) is said to be a frame (coframe) system (or field) on U and, if P

is an interior point of U , around P . By the mth vector (covector) field of E (Ω) is meant the

vector (covector) field em (ωm) of M on U whose value at P is the mth vector (covector) in E(P )

(Ω(P )). It is conventional to write E = {em} and Ω = {ωm}; then E(P ) = {em}(P ) = {em(P )}

and Ω(P ) = {ωm}(P ) = {ωm(P )}, if P ∈ U . If dom Ω and domE intersect, and for each point

P in their intersection Ω(P ) is the basis of TP dual to the basis E(P ) of TP , then Ω is said to be

dual to E on domE ∩ dom Ω; in that event ωmen = δm
n (as a scalar field on domE ∩ dom Ω). If

in fact dom Ω = domE, then Ω is called the dual of E. For every frame system E there is just one

coframe system Ω that is the dual of E; it is determined by the requirements that dom Ω = domE

and ωmen = δm
n.

The frame (coframe) system E (Ω) is said to be differentiable at P if and only if each

vector (covector) field em (ωm) is differentiable at P , to be differentiable if and only each em

(ωm) is differentiable, and to be smooth if and only if each em (ωm) is CK−1 (C∞, analytic) if

M is CK (C∞, analytic). These cannot occur unless M is doubly smooth, in which case if X is a

coordinate system of M, then {∂/∂xm} and {dxm} are, respectively, a smooth frame system and

a smooth coframe system of M on domX, and {dxm} is the dual of {∂/∂xm}; they are called

the frame system and the coframe system determined by X. By a coordinate frame

(coframe) system of M is meant a frame (coframe) system that for some coordinate system X

of M is the frame (coframe) system determined by X.

Every vector field u whose domain intersects that of the frame system E and its dual Ω

has on the intersection the representation u = umem, where the components um of u in E are

the scalar fields ωmu. Similarly, every such covector field v has the representation v = vmω
m, the

components vm of v in E being the scalar fields vem. In particular, if E′ is a frame system of M

whose domain intersects that of E, and Ω′ is its dual, then each em′ has the components ωmem′ in

E, each ωm′

has the components ωm′

em in Ω, each em has the components ωm′

em in E′, and each

ωm has the components ωmem′ in Ω′. Thus

em′ = (em′)mem = (ωmem′)em, (52)

ωm′

= (ωm′

)mω
m = (ωm′

em)ωm, (53)

em = (em)m
′

em′ = (ωm′

em)em′ , (54)

and

ωm = (ωm)m′ωm′

= (ωmem′)ωm′

. (55)

To make formulas such as these easier to read, the notations Am′
m and Am

m′

are introduced to
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stand for the scalar fields ωmem′ and ωm′

em, so that

em′ = Am′
mem, ωm′

= ωmAm
m′

, em = Am
m′

em′ , and ωm = ωm′

Am′
m. (56)

If P ∈ domE ∩ domE′, then the matrices
m′

↓
m−→

[Am′
m(P )] and

m

↓
m′−→

[Am
m′

(P )] are, respectively, the

transition matrix from the basis {em(P )} of TP to the basis {em′(P )} of TP and the transition

matrix from the basis {ωm(P )} of TP to the basis {ωm′

(P )} of TP ; they are also, respectively, the

transition matrix from {ωm′

(P )} to {ωm(P )} and the transition matrix from {em′(P )} to {em(P )}.

As such, they are reciprocal matrices, and therefore Am
m′

Am′
n = δm

n and Am′
mAm

n′

= δm′
n′

. If

each of E and E′ is a coordinate frame system, say E = {∂/∂xm} and E′ = {∂/∂xm′

}, then

Am
m′

= ∂xm′

/∂xm and Am′
m = ∂xm/∂xm′

.

If E′ is a coordinate frame system, and the frame system E is smooth, then the scalar fields

Am
m′

, being the components of em in E′, hence in X ′, are CK−1 (C∞, analytic) if M is CK (C∞,

analytic). Conversely, if the Am
m′

satisfy the latter condition for every coordinate frame system

E′ whose domain intersects that of E, then E is smooth. Inasmuch as the entries of the reciprocal

matrix [Am′
m(P )] are analytic functions of the entries of the matrix [Am

m′

(P )], and the Am′
m are

the components of ωm in the coframe system dual to E′, hence are the components of ωm in X ′,

the coframe system Ω dual to E is smooth whenever E itself is smooth. The converse also is true:

E is smooth if Ω is smooth.

If u is a vector field of M whose domain has an overlap with the domain of the frame

system E and the domain of the frame system E′, then on the overlap u = umem = umAm
m′

em′ ,

and therefore um′

= umAm
m′

. From this it follows (by taking E′ to be a coordinate frame system)

that u will be differentiable at P , differentiable, or smooth if and only if in every smooth frame

system E whose domain intersects that of u the components um are so. A similar propositon is true

for covector fields v and their components vm in E, and in both instances to know that the field is

differentiable at P , differentiable, or smooth it sufffices to test the components of the field in every

frame system of a set of smooth frame systems whose domains all contain P (for differentiability at

P ) or else overlap the domain of the field and together cover it. Application of these observations

to the vector fields of a frame system (or to the covector fields of its dual coframe system) yields

the conclusion that a frame system E and its dual are differentiable at P , differentiable, or smooth

if and only if, for every frame system E′ in a set of smooth frame systems whose domains contain

P (for differentiability at P ) or overlap and jointly cover domE, the scalar fields Am
m′

(or, equally

well, the scalar fields Am′
m) are so.

For scalar fields f a useful notation is f.m to stand for emf , which makes f.m = ∂f/∂xm if

em = ∂/∂xm. In this notation f.m = Am
m′

f.m′ , and if em′ = ∂/∂xm′

, then df = (∂f/∂xm′

)dxm′

=

f.m′dxm′

= f.m′ωmAm
m′

= Am
m′

f.m′ωm = f.mω
m = (emf)ωm. Also, if u is a vector field, then

uf = um′

∂f/∂xm′

= um′

f.m′ = umAm
m′

f.m′ = umf.m = umemf = (df)u.

Tensor fields of the various types all have their representations in frame systems, and

their components in frame systems with overlapping domains are related by “transformation laws”

involving the transition matrices [Am
m′

] and [Am′
m]. If, for example, T is a cococontensor field
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whose components in E and E′ are Tm
kl and Tm′

k′l′ , then

T = Tm
kl(ω

l ⊗ ωk ⊗ em) (57)

= Tm
kl(ω

l′Al′
l ⊗ ωk′

Ak′
k ⊗Am

m′

em′) (58)

= (Al′
lAk′

kTm
klAm

m′

)(ωl′ ⊗ ωk′

⊗ em′) (59)

= Tm′

k′l′(ω
l′ ⊗ ωk′

⊗ em′), (60)

so that Tm′

k′l′ = Al′
lAk′

kTm
klAm

m′

. Specialization of E′ to a coordinate frame system shows that,

just as for vector fields and covector fields, differentiability at P , differentiability, and smoothness

of T can be determined by examination of its components Tm
kl in smooth frame systems E.

The notion of “contraction” is not confined to tensor fields that happen to be tensor

products of other tensor fields. All that is necessary is that the tensor field to be contracted have

a covariant slot and a contravariant slot, and then for each pair of its slots, one covariant, the

other contravariant, there is a contraction in that pair of slots. Each such contraction is a tensor

field with the same domain as, but with one fewer covariant slots and one fewer contravariant slots

than the original field. If, for example, T is, as above, a cococontensor field, represented in E by

T = Tm
kl(ω

l ⊗ ωk ⊗ em), then T has the two contractions given in E by

T (ep)(·)(ω
p) = Tm

kl(ω
lep ⊗ ω

k ⊗ emω
p) (61)

= Tm
kl(δ

l
p ⊗ ω

k ⊗ δm
p) (62)

= (δm
pTm

klδ
l
p)ω

k (63)

= (T p
kp)ω

k (64)

and

T (·)(ep)(ω
p) = Tm

kl(ω
l ⊗ ωkep ⊗ emω

p) (65)

= Tm
kl(ω

l ⊗ δk
p ⊗ δm

p) (66)

= (δm
pTm

klδ
k
p)ω

l (67)

= (T p
pl)ω

l. (68)

These contractions of T , which ostensibly depend on the choice of the frame system E in which

they are expressed, are in fact independent of it, and the same is true of all contractions of tensor
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fields of whatever (contractible) types. For example, starting from the frame system E′ one has

T (ep′)(·)(ω
p′) = (Ap′

lAk′
kTm

klAm
p′)ωk′

(69)

= Tm
kl(Am

p′Ap′
l)(ωk′

Ak′
k) (70)

= (Tm
klδm

l)ωk (71)

= (Tm
km)ωk (72)

= (T p
kp)ω

k (73)

= T (ep)(·)(ω
p). (74)

The frame-system–independent notation T b
a will be adopted to stand for the contraction

of the tensor field T in the covariant slot numbered a and the contravariant slot numbered b (in the

consecutive numbering of all of T ’s slots from left to right). Thus, in the example above, T 3
1 stands

for the contraction represented in E by T (ep)(·)(ω
p), and T 3

2 is represented in E by T (·)(ep)(ω
p).

One has, therefore, that

T 3
1 = (T 3

1)k ω
k = (T p

kp)ω
k (75)

and

T 3
2 = (T 3

2)l ω
l = (T p

pl)ω
l. (76)

When the tensor field to be contracted has only one contravariant slot, its contractions

can be generated in a slightly different manner. In the case of T above, for example,

ωpTep = ωp(Tm
kl(ω

l ⊗ ωk ⊗ em))ep (77)

= Tm
kl(ω

lep ⊗ ω
k ⊗ ωpem) (78)

= Tm
kl(δ

l
p ⊗ ω

k ⊗ δp
m) (79)

= T p
kpω

k (80)

= T 3
1 (81)

and, similarly,

ωpT (·)ep = T 3
2 . (82)

The combinations ωpT , Tep, (ωpT )ep, ω
p(Tep), T (·)ep, (ωpT )(·)ep, and ωp(T (·)ep) that

are implicit in these formulas are instances of more general compositions of tensor fields, as is the

simplest composition of all, the contracted tensor product vu where u is a vector field and v is a

covector field. To illustrate, consider in addition to the cococontensor field T a cocontensor field

S. Then TS is to stand for a cococontensor field whose first covariant slot corresponds to the
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covariant slot of S, whose second covariant slot corresponds to the second covariant covariant slot

of T , and whose contravariant slot corresponds to the contravariant slot of T ; the two remaining

slots, the first covariant slot of T and the contravariant slot of of S, are “composed” with one

another and are thereby eliminated in TS. The field TS can be defined by telling, for each point P

in its domain, each tangent vector u at P , and each tangent vector ū at P , what the tangent vector

(TS)(P )uū is. The rule is that (TS)(P )uū = (T (P )(S(P )u))ū, the righthand member of this

equation being interpreted as follows: the cocontensor S(P ) operates on the vector u to give the

vector S(P )u; the cococontensor T (P ) operates on S(P )u to give the cocontensor T (P )(S(P )u),

which then operates on the vector ū to produce the vector (T (P )(S(P )u))ū. Linearity in u and in

ū being apparent, the operator (TS)(P ) clearly is in L(TP ,L(TP , TP )), i. e., is in TP ⊗ TP ⊗ T
P ,

so TS is a cococontensor field. Equally well, one could define TS by specifying that for each vector

field u and each vector field ū the vector field (TS)uū is to be the result of applying at each point

P of domT ∩ domS ∩ domu ∩ dom ū the rule given above, so that (TS)uū = (T (Su))ū. This

defines the composition TS in terms of elementary compositions of co. . . tensor fields with vector

fields, which, pointwise, are just the operations of tangent co. . . tensors on tangent vectors.

The composition TS thus defined is nothing other than the contraction in the second and

third slots (which come from the contravariant slot of S and the first covariant slot of T ) of the

tensor product S ⊗ T — for, on the one hand

(TS)u = T (Su) (83)

= T ((Sq
p ω

p ⊗ eq)(u
rer)) (84)

= T (Sq
pu

r(ωper)⊗ eq) (85)

= (Tm
kl ω

l ⊗ ωk ⊗ em)(Sq
pu

peq) (86)

= Tm
klS

q
pu

p(ωleq)⊗ ω
k ⊗ em (87)

= Tm
klS

l
pu

p ωk ⊗ em (88)

= (Tm
klS

l
p ω

p ⊗ ωk ⊗ em)u, (89)

so that TS = Tm
klS

l
p ω

p ⊗ ωk ⊗ em, and on the other hand

S ⊗ T = Sq
pT

m
kl ω

p ⊗ eq ⊗ ω
l ⊗ ωk ⊗ em, (90)

so that (S ⊗ T )23 = Sn
pT

m
kn ω

p ⊗ ωk ⊗ em = TS.

A different composition of T with S is T (·)S, in which the (·) indicates that the first

covariant slot of T is held open and it is the second covariant slot of T that is “composed” with

the contravariant slot of S. Thus (T (·)S)uū = (T ū)(Su), where now the cococontensor field T

acts first on ū and then on Su, whereas in (TS)uū it acts first on Su and then on ū. In both

compositions the covariant slot of S is filled by the first vector acted upon, before the covariant

slots of T come into play; if S had additional slots, these also would take precedence over those of

T . Just as TS is the contraction of S ⊗ T in the second and third slots, T (·)S is the contraction

of S ⊗ T in the second and fourth slots (those that arise from the contravariant slot of S and the

second covariant slot of T ); thus T (·)S = (S ⊗ T )24.
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In an analogous manner every contraction of a product S ⊗ T in a pair of slots of which

one comes from S and the other from T gives rise to a composition of T with S. In more complex

cases an unambiguous yet clean notation comparable to TS and T (·)S can be difficult to come by,

but in every case the contraction notation (S ⊗ T ) b
a will be available.

In every frame system each component of a contraction of a tensor field is a sum of

components of the uncontracted tensor field, hence the contraction is at least as smooth as the

uncontracted field. In particular, every contraction of a product S⊗T is at least as smooth as the

less smooth of S and T ; the same is true, therefore, of the various compositions of T with S.

It is true, but not obviously so, that not every frame system is a coordinate frame system.

A test that can be applied to a frame system to determine whether it is a coordinate frame system

will be developed later.
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XI. SYMMETRY, ANTISYMMETRY, AND EXTERIOR ALGEBRA

Let U be a finite-dimensional vector space over R, let {am} be a basis for U , and let {bm}

be a basis for U∗. If p is a positive integer, then (U∗)p will denote the space U∗ ⊗ · · · ⊗ U∗ with p

factors U∗.

Theorem 1. If ϕ ∈ (U∗)p (resp., (U∗)p ⊗ U), and π is a permutation of {1, . . . , p}, then there

is just one element ϕπ of (U∗)p (resp., (U∗)p ⊗ U) such that if u1, . . . , up ∈ U , then

ϕπu1 . . . up = ϕuπ−1(1) . . . uπ−1(p). (91)

If σ is a permutation of {1, . . . , p}, then (ϕπ)σ = ϕσπ. If ϕ = bm1 ⊗ · · · ⊗ bmp , then ϕπ =

bmπ(1) ⊗ · · · ⊗ bmπ(p) ; if ϕ = bm1 ⊗ · · · ⊗ bmp ⊗ am, then ϕπ = bmπ(1) ⊗ · · · ⊗ bmπ(p) ⊗ am.

Definition. If ϕ ∈ (U∗)p or ϕ ∈ (U∗)p ⊗ U , then

Sym ϕ :=
1

p!

∑

π

ϕπ and Sk ϕ :=
1

p!

∑

π

(sgnπ)ϕπ, (92)

where the sums are over all permutations π of {1, . . . , p}, and sgnπ = 1 or −1, according as π

is even or odd.

Theorem 2. If ϕ, ϑ ∈ (U∗)p or ϕ, ϑ ∈ (U∗)p ⊗ U , and α ∈ R, then

i. Sym (ϕ+ ϑ) = Sym ϕ+ Sym ϑ,

ii. Sk (ϕ+ ϑ) = Sk ϕ+ Sk ϑ,

iii. Sym (αϕ) = α(Sym ϕ), and

iv. Sk (αϕ) = α(Sk ϕ).

Theorem 3. If ϕ ∈ (U∗)p (resp., (U∗)p⊗U), then Sym ϕ and Sk ϕ are in (U∗)p (resp., (U∗)p⊗U),

and Sym (Sym ϕ) = Sym ϕ and Sk (Sk ϕ) = Sk ϕ.

Definition. If ϕ ∈ (U∗)p or ϕ ∈ (U∗)p ⊗ U , then ϕ is symmetric means that ϕπ = ϕ for

every transposition π of {1, . . . , p}, and ϕ is skew-symmetric (antisymmetric, alternating)

means that ϕπ = −ϕ for every transposition π of {1, . . . , p}.

Theorem 4. Such a ϕ is symmetric if and only if ϕπ = ϕ for every permutation π of {1, . . . , p},

and is skew-symmetric if and only if ϕπ = −ϕ for every odd permutation π of {1, . . . , p}; also,

such a ϕ is symmetric if and only if Sym ϕ = ϕ and is skew-symmetric if and only if Sk ϕ = ϕ.

Sym ϕ is called the symmetrization of ϕ and the symmetric part of ϕ, and Sk ϕ is called the

skew-symmetrization of ϕ and the skew-symmetric (antisymmetric, alternating) part

of ϕ.

If, for each integer sequence {m1, . . . ,mp} such that 1 ≤ mi ≤ M , ϕmp...m1 is a real

number, then for each such sequence {m1, . . . ,mp} the real number ϕ(mp...m1) and the real number
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ϕ[mp...m1] are defined by

ϕ(mp ...m1) :=
1

p!

∑

π

ϕm
π−1(p)...mπ−1(1)

and ϕ[mp...m1] :=
1

p!

∑

π

(sgn π)ϕm
π−1(p)...mπ−1(1)

. (93)

Theorem 5. If ϕ ∈ (U∗)p, and ϕ = ϕmp...m1b
m1 ⊗ · · · ⊗ bmp , then

Sym ϕ = ϕ(mp ...m1)b
m1 ⊗ · · · ⊗ bmp (94)

and

Sk ϕ = ϕ [mp...m1]b
m1 ⊗ · · · ⊗ bmp ; (95)

ϕ is symmetric if and only if ϕ(mp...m1) = ϕmp...m1 , and skew-symmetric if and only if

ϕ [mp...m1] = ϕmp...m1 . If ϕ ∈ (U∗)p ⊗ U , and ϕ = ϕm
mp...m1b

m1 ⊗ · · · ⊗ bmp ⊗ am, then

Sym ϕ = ϕm
(mp...m1)b

m1 ⊗ · · · ⊗ bmp ⊗ am (96)

and

Sk ϕ = ϕm
[mp...m1]b

m1 ⊗ · · · ⊗ bmp ⊗ am; (97)

ϕ is symmetric if and only if ϕm
(mp...m1) = ϕm

mp...m1 , and skew-symmetric if and only if

ϕ [mp...m1] = ϕm
mp...m1 .

Theorem 6. If ϕ ∈ (U∗)2 or ϕ ∈ (U∗)2 ⊗ U , then ϕ = Sym ϕ+ Sk ϕ.

Definition. If ϕ ∈ (U∗)p, and ϑ ∈ (U∗)q or ϑ ∈ (U∗)q ⊗U , then ϕ ∧ ϑ := Sk (ϕ⊗ ϑ), and ϕ ∧ ϑ

is called the exterior, the alternating, and the wedge product of ϕ with ϑ.

Theorem 7. If ϕ, ϕ̄ ∈ (U∗)p, and ϑ, ϑ̄ ∈ (U∗)q or ϑ, ϑ̄ ∈ (U∗)q ⊗ U , and α ∈ R, then

i. (ϕ+ ϕ̄) ∧ ϑ = ϕ ∧ ϑ+ ϕ̄ ∧ ϑ,

ii. ϕ ∧ (ϑ+ ϑ̄) = ϕ ∧ ϑ+ ϕ ∧ ϑ̄, and

iii. (αϕ) ∧ ϑ = α(ϕ ∧ ϑ) = ϕ ∧ (αϑ).

Theorem 8. If ϕ ∈ (U∗)p, ϑ ∈ (U∗)q, and ψ ∈ (U∗)r or ψ ∈ (U∗)r ⊗ U , then

(ϕ ∧ ϑ) ∧ ψ = (ϕ⊗ ϑ) ∧ ψ = ϕ ∧ (ϑ ⊗ ψ) = ϕ ∧ (ϑ ∧ ψ). (98)

This theorem permits an unambiguous interpretation of ϕ ∧ ϑ ∧ ψ and, by extension, of such

products as ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕp.

Definition. If p is a positive integer, then by a p -form on U is meant a skew-symmetric

element of (U∗)p, and by a vector-valued p -form on U is meant a skew-symmetric element

of (U∗)p⊗U . By a 0 -form on U is meant an element of R, and by a vector-valued 0 -form
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on U is meant an element of R⊗U . A p -form ϕ on U is called simple if there exist 1-form(s)

ϕ1, ϕ2, . . . , ϕp such that ϕ = ϕ1∧ϕ2∧· · ·∧ϕp, and compound if there do not. A vector-valued

p -form ϕ on U is called simple if there exist 1-form(s) ϕ1, ϕ2, . . . , ϕp, with ϕp vector-valued,

such that ϕ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕp, and compound if there do not.

Definition. The set of all p -forms on U is denoted by
∧p U∗, that is,

∧p U∗ := {ϕ ∈ (U∗)p |

ϕ is skew-symmetric}.

Theorem 9. If p > 0,
∧p U∗ is a subspace of (U∗)p.

Theorem 10. The set of all vector-valued p -forms on U is
∧p U∗ ⊗ U , that is,

∧p U∗ ⊗ U =

{ϕ ∈ (U∗)p ⊗ U | ϕ is skew-symmetric}. If p > 0,
∧p U∗ ⊗ U is a subspace of (U∗)p ⊗ U .

Theorem 11. If ϕ ∈ (U∗)p, and ϕ = ϕmp...m1b
m1 ⊗ · · · ⊗ bmp , then

Sk ϕ = ϕ [mp...m1]b
m1 ⊗ · · · ⊗ bmp (99)

= ϕmp...m1b
m1 ∧ · · · ∧ bmp (100)

= ϕ [mp...m1]b
m1 ∧ · · · ∧ bmp , (101)

= ϕ if ϕ ∈
∧p U∗. (102)

If ϕ ∈ (U∗)p ⊗ U , and ϕ = ϕm
mp...m1b

m1 ⊗ · · · ⊗ bmp ⊗ am, then

Sk ϕ = ϕm
[mp...m1]b

m1 ⊗ · · · ⊗ bmp ⊗ am (103)

= ϕm
mp...m1b

m1 ∧ · · · ∧ bmp ⊗ am (104)

= ϕm
[mp...m1]b

m1 ∧ · · · ∧ bmp ⊗ am, (105)

= ϕ if ϕ ∈
∧p U∗ ⊗ U. (106)

Theorem 12. If ϕ ∈ (U∗)p and ϑ ∈ (U∗)q, then ϑ ∧ ϕ = (−1)pq(ϕ ∧ ϑ); also,

ϕ ∧ ϑ = Sk ϕ ∧ ϑ = ϕ ∧ Sk ϑ = Sk ϕ ∧ Sk ϑ. (107)

If ϕ is simple, then ϕ ∧ ϕ = 0. If p is odd, then ϕ ∧ ϕ = 0.

Theorem 13. If 1 ≤ p ≤ dimU , then {bm1 ∧ · · · ∧ bmp | m1 < · · · < mp} is a basis for
∧pU∗,

and {bm1 ∧ · · · ∧ bmp ⊗ am | m1 < · · · < mp} is a basis for
∧p U∗ ⊗ U . If ϕ ∈ (U∗)p, and

ϕ = ϕmp...m1b
m1 ⊗ · · · ⊗ bmp , then

ϕ =
∑

m1<···<mp

p!ϕ [mp...m1]b
m1 ∧ · · · ∧ bmp , (108)

=
∑

m1<···<mp

p!ϕmp...m1b
m1 ∧ · · · ∧ bmp if ϕ ∈

∧p U∗. (109)
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If ϕ ∈ (U∗)p ⊗ U , and ϕ = ϕm
mp...m1b

m1 ⊗ · · · ⊗ bmp ⊗ am, then

ϕ =
∑

m1<···<mp

p!ϕm
[mp...m1]b

m1 ∧ · · · ∧ bmp ⊗ am, (110)

=
∑

m1<···<mp

p!ϕm
mp...m1b

m1 ∧ · · · ∧ bmp ⊗ am if ϕ ∈
∧pU∗ ⊗ U. (111)

Theorem 14. If M = dimU , then dim
∧p U∗ =

(

M
p

)

, and dim
∧pU∗⊗U =

(

M
p

)

·M , where
(

M
p

)

is the binomial coefficient M !
p!(M−p)! if p ≤M , and is 0 if p > M .

If φ is a co. . . co- or a co. . . cocontensor field of the smooth manifold M, then there is a

positive integer p such that φ(P ) ∈ (TP )p for every point P in domφ or φ(P ) ∈ (TP )p⊗TP for every

such point P . Because TP = (TP )∗, all the preceding definitions apply to φ(P ) as an element of

(U∗)p or of (U∗)p⊗U , with U = TP . They can be applied to φ itself by applying them at each point

P in domφ to φ(P ). Specifically, the tensor fields φπ (where π is a permutation of {1, . . . , p}),

Sym φ, and Sk φ are given by φπ(P ) = (φ(P ))π, (Sym φ)(P ) = Sym (φ(P )), and (Sk φ(P ) =

Sk (φ(P )), and the latter two are called the symmetrization of φ and the symmetric part of φ,

and the skew-symmetrization of φ and the skew-symmetric (antisymmetric, alternating)

part of φ. Also, φ is symmetric means that φ(P ) is symmetric if P ∈ domφ, which is equivalent

to φπ = φ for every transposition π of {1, . . . , p}, and φ is skew-symmetric (antisymmetric,

alternating) means that φ(P ) is skew-symmetric if P ∈ domφ, which is equivalent to φπ = −φ

for every transposition π of {1, . . . , p}.

In the same vein, if φ is a co. . . cotensor field of M, and θ is a co. . . co- or a co. . . cocontensor

field of M, and domφ∩ dom θ 6= ∅, then φ∧ θ, the exterior, alternating, or wedge product of

φ with θ, is defined by (φ∧ θ)(P ) = φ(P )∧ θ(P ), and this is equivalent to φ∧ θ = Sk (φ⊗ θ). The

various special properties of this product carry over. For example, if φ is a p -cotensor field (that

is, φ(P ) ∈ (TP )p for each point P in domφ), and θ is a q -cotensor field, then θ∧φ = (−1)pq(φ∧θ).

If φ is a skew-symmetric p -cotensor field of M, then φ(P ) ∈
∧p TP =

∧p(TP )∗, so φ(P )

is a p -form on the tangent space of M at P ; in this case φ itself is called a p -form of M and also

a differential p -form of M. If φ is a skew-symmetric p -cocontensor field of M, then φ(P ) ∈
∧p TP⊗T

P ; in this case φ is referred to as a (differential) vector-valued p -form of M. Thus the

1-forms are just the covector fields of M, and the vector-valued 1-forms are the cocontensor fields.

By a 0 -form of M is meant a scalar field of M, and by a vector-valued 0 -form of M is meant a

vector field of M. A p -form φ of M is called simple if there exist 1-form(s) φ1, φ2, . . . , φp such that

φ = φ1 ∧ φ2 ∧ · · · ∧ φp, and compound if there do not. A vector-valued p -form φ of M is called

simple if there exist 1-form(s) φ1, φ2, . . . , φp, with φp vector-valued, such that φ = φ1∧φ2∧· · ·∧φp,

and compound if there do not.
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XII. DIFFERENTIATION IN FRAME SYSTEMS

AND EXTERIOR DIFFERENTIATION

From this point onward the manifold M will be presumed to be doubly smooth unless

the contrary is stated. If T is a tensor field of M, then {P | T is differentiable at P} will be

called the domain of differentiability of T and denoted by ddomT . The same terminology

and notation will be applied to scalar fields f . Clearly, ddom f ⊂ dom f , ddomT ⊂ domT ,

and (ddom f ∩ ddomT ) ⊂ ddom(fT ). If E is a frame system of M, then ddomT ∩ domE is

the intersection of the domains of differentiability of the components of T in E. If each of S

and T is a tensor field of M, then (ddomS ∩ ddomT ) ⊂ ddom(S ⊗ T ) and, if S and T are of

the same type, then (ddomS ∩ ddomT ) ⊂ ddom(S + T ), and ddom(−T ) = ddomT , so that

(ddomS ∩ ddomT ) ⊂ ddom (S − T ).

Definition. If E is a smooth frame system of M, Ω is the dual of E, T is a tensor field of M,

and ddomT ∩ domE 6= ∅, then by the E-differential of T is meant

dTm ⊗ em if T = Tmem on domT ∩ domE, (112)

dTm ⊗ ω
m if T = Tmω

m on domT ∩ domE, (113)

dTm
n ⊗ ω

n ⊗ em if T = Tm
n(ωn ⊗ em) on domT ∩ domE, (114)

dTmn ⊗ ω
n ⊗ ωm if T = Tmn(ωn ⊗ ωm) on domT ∩ domE, (115)

dTm
n ⊗ en ⊗ ω

m if T = Tm
n(en ⊗ ω

m) on domT ∩ domE, (116)

dTmn ⊗ en ⊗ em if T = Tmn(en ⊗ em) on domT ∩ domE, (117)

dTm
nk ⊗ ω

k ⊗ ωn ⊗ em if T = Tm
nk(ω

k ⊗ ωn ⊗ em) on domT ∩ domE, (118)

and so on. The E-differential of T is denoted by dET . If P ∈ (ddomT ∩ domE), then dET (P ) is

called the E-differential of T at P . If u is a vector field whose domain intersects ddomT ∩ domE,

then (dET )u is called the E-derivative of T along u.

Thus dET is a tensor field whose type is that of T augmented by an initial covariant slot, into

which the vector field u is inserted to produce the E-derivative of T along u.

Theorem 1. If P is a point of M, and each of E and E′ is a frame system of M differentiable at

P , then in order that Sk dE′φ(P ) = Sk dEφ(P ) for every covector field φ of M differentiable

at P it is necessary and sufficient that A[m
m′

.n](P ) = 0, also that A[m′
m

.n′](P ) = 0, and also

that
(

ωn′

⊗ ωm′

⊗ [em′ , en′ ]
)

(P ) =
(

ωn ⊗ ωm ⊗ [em, en]
)

(P ). If these conditions are satisfied,

then Sk dE′φ(P ) = Sk dEφ(P ) for every p -cotensor field φ of M differentiable at P .

(Here Am
m′

:= ωm′

em, A[m
m′

.n] := 1
2 (Am

m′

.n −An
m′

.m), and [em, en] := 1
2(emen − enem).)

Theorem 2. The relation “≃” defined by E′ ≃ E if and only if A[m
m′

.n](P ) = 0 (hence

if and only if A[m′
m

.n′](P ) = 0, hence, also, if and only if
(

ωn′

⊗ ωm′

⊗ [em′ , en′ ]
)

(P ) =
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(

ωn⊗ωm⊗ [em, en]
)

(P )) is an equivalence relation on the set of all frame systems differentiable

at P , one of whose equivalence classes includes all coordinate frame systems around P .

Corollary. If P is a point of M, and each of E and E′ is a coordinate frame system of M differ-

entiable at P , then Sk dE′φ(P ) = Sk dEφ(P ) for every p -cotensor field φ of M differentiable

at P .

Definition. If φ is a p -cotensor field φ of M, and ddomφ 6= ∅, then by the exterior differential

of φ, denoted d∧φ (and, on occasion, by dφ), is meant the (p+ 1)-cotensor field whose domain

is ddomφ and whose value at each point P of ddomφ is Sk dEφ(P ), where E is any coordinate

frame system around P ; if φ is a scalar field of M, and ddomφ 6= ∅, then d∧φ := dφ. In either

case, d∧φ(P ) is called the exterior differential of φ at P .

Theorem 3. If φ is a scalar field or a p -cotensor field of M, θ is a scalar field or a q -cotensor

field of M, and (ddomφ ∩ ddom θ) 6= ∅, then

i. d∧φ is a (p + 1)-form of M and d∧θ is a (q + 1)-form of M,

ii. d∧(φ+ θ) = d∧φ+ d∧θ if p = q,

iii. d∧(φ⊗ θ) = d∧(φ θ) = d∧φ ∧ θ + φd∧θ if φ is a scalar field,

iv. d∧(φ⊗ θ) = d∧(φ ∧ θ) = d∧φ ∧ θ + (−1)p(φ ∧ d∧θ) if φ is a p -cotensor field,

v. d∧φ = 0 if p ≥M , and

vi. d∧(d∧φ) = 0 if φ is C2.

Definition. If φ is a p -form of M, then φ is closed means that φ is differentiable and d∧φ = 0,

and φ is exact means that p > 0 and φ = d∧θ for some (p− 1)-form θ.

Theorem 4. If φ is a p -form of M, and φ is exact, then φ is closed.

(This theorem has an approximate converse to the effect that if the domain of φ is “simply con-

nected” (a topological requirement) then φ is exact if it is closed.)

Corollary. If E is a frame system of M, and Ω is its dual coframe system, then in order that E

be a coordinate frame system it is necessary that d∧ω
m = 0 and, equivalently, that [em, en] = 0.

(If the domain of E is “simply connected”, then these necessary conditions are also sufficient to

cause E to be a coordinate frame system.)
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XIII. FRAME SYSTEMIZATIONS AND COVARIANT DIFFERENTIATIONS

Definition. By a frame systemization of M is meant a mapping Ē with domain M such that

if P ∈M, then Ē : P 7→ ĒP , a smooth frame system of M around P . By a coordinate frame

systemization of M is meant a frame systemizaton Ē of M such that if P ∈M, then ĒP is

a coordinate frame system.

Note that ĒP is not a frame at P , rather is a frame system of M whose domain has P in it. If Q is

a point in the domain of ĒP , then ĒP (Q) is a frame at Q; in particular, ĒP (P ) is a frame at P .

Definition. If Ē is a frame systemization of M, then by the differentiation generated by Ē

is meant the mapping d̄ such that

i. the domain of d̄ is the set of all tensor fields T of M such that T is differentiable at some

point, and

ii. if T ∈ dom d̄, then d̄T is a tensor field on ddomT , and

iii. if T ∈ dom d̄ and P ∈ ddomT , then d̄T (P ) = dĒP T (P ).

The essence of this definition is that for each point P of M there is a frame system ĒP around

P preferred for differentiating at P , in the sense that to differentiate a tensor field T at P it is

sufficient to differentiate at P the components of T in the preferred frame system ĒP . Another

point Q will have its own preferred frame system ĒQ for differentiation at Q, even if Q happens to

lie in dom ĒP. An immediate consequence is that if ĒP = {em̄}, with dual {ωm̄}, then d̄em̄(P ) = 0

and d̄ωm̄(P ) = 0.

Definition. By a covariant differentiation on M is meant a mapping d such that

i. the domain of d is the set of all tensor fields T of M such that T is differentiable at some

point,

ii. if T ∈ domd, then dT is a tensor field of M whose domain is ddomT , and if P ∈ ddomT

and W is the tensor space that T (P ) is in, then dT (P ) is in TP ⊗W ,

iii. if each of S, T , and S + T is in domd, then d(S + T ) = dS + dT ,

iv. if f is a scalar field on M differentiable at some point, and each of T and fT is in domd,

then d(f ⊗ T ) = d(fT ) = df ⊗ T + fdT = df ⊗ T + f ⊗ dT ,

v. if each of S, T , and S ⊗ T is in domd, then d(S ⊗ T )(·) = dS(·)⊗ T + S ⊗ dT (·), and

vi. If T is the cocontensor field whose value at each point P of M is the identity mapping of TP

onto TP , then dT = 0.

If T ∈ domd, then the tensor field dT is called the covariant differential of T (determined

by d). If u is a vector field whose domain intersects ddomT , then the tensor field DuT on

ddomT ∩ domu defined by DuT := (dT )u, that is, (DuT )(P ) := dT (P )u(P ) if P ∈ ddomT ∩

domu, is called the covariant derivative of T along u (determined by d).
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Theorem 1. If Ē is a frame systemization of M, then the differentiation generated by Ē is a

covariant differentation on M.

Let d be a covariant differentiaton on M. Let E be a smooth frame system of M, with

dual coframe system Ω.

Theorem 2. If u is a vector field of M that is differentiable at some point of domE, then on

ddomu ∩ domE

du = (dum + ukωk
m)⊗ em (119)

= (um
.l + ukΓk

m
l)ω

l ⊗ em, (120)

= (um
.l + ukΓk

m
l)(ω

l ⊗ em), (121)

and in particular

dek = ωk
m ⊗ em (122)

= Γk
m

l ω
l ⊗ em, (123)

= Γk
m

l (ω
l ⊗ em), (124)

where

ωk
m = ωmdek and Γk

m
l = ωk

mel, (125)

in consequence of which ωk
m = Γk

m
l ω

l.

Definition. The covector fields ωk
m and the scalar fields Γk

m
l are called, respectively, the

1-forms and the coefficients in E of d (and of d in E).

Theorem 3. If v is a covector field of M that is differentiable at some point of domE, then on

ddom v ∩ domE

dv = (dvk − vmωk
m)⊗ ωk (126)

= (vk.l − vmΓk
m

l)ω
l ⊗ ωk, (127)

= (vk.l − vmΓk
m

l)(ω
l ⊗ ωk), (128)

and in particular

dωm = −ωk
m ⊗ ωk (129)

= −Γk
m

l ω
l ⊗ ωk, (130)

= −Γk
m

l (ω
l ⊗ ωk). (131)
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Theorem 4. If E′ is a smooth frame system of M whose domain overlaps that of E, then on

the overlap

ωk′
m′

= (dAk′
m)Am

m′

+Ak′
kωk

mAm
m′

(132)

and

Γk′
m′

l′ = Ak′
m

.l′Am
m′

+Ak′
kΓk

m
lAl′

lAm
m′

, (133)

where [Am′
m] is the transition matrix (field) from E to E′.

Theorem 5. If Ē is a frame systemization of M that generates d, and P is a point of M, then

the 1-forms and the coefficients of d in ĒP vanish at P , and if P ∈ domE, then

ωk
m(P ) = dAk

m̄(P )Am̄
m(P ) and Γk

m
l(P ) = Ak

m̄
.l(P )Am̄

m(P ), (134)

where [Am
m̄] is the transition matrix from ĒP to E.

Theorem 6. There is a frame systemization Ē of M that generates d. In order that the frame

systemization ¯̄E of M also generate d it is necessary and sufficient that, at each point P ,

dA ¯̄m
m̄(P ) = 0 and, equivalently, dAm̄

¯̄m(P ) = 0, where [A ¯̄m
m̄] is the transition matrix from

ĒP to ¯̄EP .

Theorem 7. Let T be a tensor field of M that is differentiable at some point of domE.

If

T = Tm
n(ωn ⊗ em) on domT ∩ domE, (135)

then on ddomT ∩ domE

dT = (dTm
n − T

m
p ωn

p + T p
n ωp

m)⊗ (ωn ⊗ em) (136)

= (Tm
n.l − T

m
pΓn

p
l + T p

nΓp
m

l)ω
l ⊗ (ωn ⊗ em) (137)

= (Tm
n.l − T

m
pΓn

p
l + T p

nΓp
m

l)(ω
l ⊗ ωn ⊗ em). (138)

If

T = Tmn(ωn ⊗ ωm) on domT ∩ domE, (139)

then on ddomT ∩ domE

dT = (dTmn − Tmp ωn
p − Tpn ωm

p)⊗ (ωn ⊗ ωm) (140)

= (Tmn.l − TmpΓn
p
l − TpnΓm

p
l)ω

l ⊗ (ωn ⊗ ωm) (141)

= (Tmn.l − TmpΓn
p
l − TpnΓm

p
l)(ω

l ⊗ ωn ⊗ ωm). (142)
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If

T = Tm
n(en ⊗ ω

m) on domT ∩ domE, (143)

then on ddomT ∩ domE

dT = (dTm
n + Tm

p ωp
n − Tp

n ωm
p)⊗ (en ⊗ ω

m) (144)

= (Tm
n

.l + Tm
pΓp

n
l − Tp

nΓm
p
l)ω

l ⊗ (en ⊗ ω
m) (145)

= (Tm
n

.l + Tm
pΓp

n
l − Tp

nΓm
p
l)(ω

l ⊗ en ⊗ ω
m). (146)

If

T = Tmn(en ⊗ em) on domT ∩ domE, (147)

then on ddomT ∩ domE

dT = (dTmn + Tmpωp
n + T pnωp

m)⊗ (en ⊗ em) (148)

= (Tmn
.l + TmpΓp

n
l + T pnΓp

m
l)ω

l ⊗ (en ⊗ em) (149)

= (Tmn
.l + TmpΓp

n
l + T pnΓp

m
l). (150)

If

T = Tm
nk(ω

k ⊗ ωn ⊗ em) on domT ∩ domE, (151)

then on ddomT ∩ domE

dT = (dTm
nk − T

m
np ωk

p − Tm
pk ωn

p + T p
nk ωp

m)⊗ (ωk ⊗ ωn ⊗ em) (152)

= (Tm
nk.l − T

m
npΓk

p
l − T

m
pkΓn

p
l + T p

nkΓp
m

l)ω
l ⊗ (ωk ⊗ ωn ⊗ em) (153)

= (Tm
nk.l − T

m
npΓk

p
l − T

m
pkΓn

p
l + T p

nkΓp
m

l)(ω
l ⊗ ωk ⊗ ωn ⊗ em). (154)

If

T = Tmnk(ω
k ⊗ ωn ⊗ ωm) on domT ∩ domE, (155)

then on ddomT ∩ domE

dT = (dTmnk − Tmnp ωk
p − Tmpk ωn

p − Tpnk ωm
p)⊗ (ωk ⊗ ωn ⊗ ωm) (156)

= (Tmnk.l − TmnpΓk
p
l − TmpkΓn

p
l − TpnkΓm

p
l)ω

l ⊗ (ωk ⊗ ωn ⊗ ωm) (157)

= (Tmnk.l − TmnpΓk
p
l − TmpkΓn

p
l − TpnkΓm

p
l)(ω

l ⊗ ωk ⊗ ωn ⊗ ωm). (158)
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For each component t of T in E the corresponding component in E of Del
T , that

is, of (dT )el, is denoted by t:l. Thus, if T = u = umem, then Del
T = (du)el = (um

.h +

ukΓk
m

h)(ωhel)em = um
:lem, where um

:l = um
.l + ukΓk

m
l, and therefore du = um

:l ω
l ⊗ em. Simi-

larly, if v = vkω
k, then dv = vk:l ω

l⊗ωk, where vk:l = vk.l−vmΓk
m

l. Likewise, if T = Tm
n(ωn⊗em),

then dT = Tm
n:l(ω

l ⊗ ωn ⊗ em), where Tm
n:l = Tm

n.l − T
m

pΓn
p
l + T p

nΓp
m

l, and so on.

Covariant differentiation commutes with the operation of contraction, as the following

calculation illustrates. If T = Tm
kl(ω

l ⊗ ωk ⊗ em), then T 3
1 = vk ω

k, where vk = T p
kp, so

d(T 3
1) = vk:l(ω

l ⊗ ωk), with

vk:l = vk.l − vmΓk
m

l = (T p
kp).l − T

p
mpΓk

m
l. (159)

On the other hand dT = Tm
kl:n ω

n ⊗ (ωl ⊗ ωk ⊗ em), where

Tm
kl:n = Tm

kl.n − T
m

kpΓl
p
n − T

m
plΓk

p
n + T p

klΓp
m

n, (160)

so (dT ) 4
2 = Tm

km:n(ωn ⊗ ωk) = Tm
km:l(ω

l ⊗ ωk), with

Tm
km:l = δm

r(T
r
ks.l)δ

s
m − T

m
kpΓm

p
l − T

m
pmΓk

p
l + T p

kmΓp
m

l (161)

= (δm
rT

r
ksδ

s
m).l − T

m
pmΓk

p
l (162)

= (T p
kp).l − T

p
mpΓk

m
l (163)

= vk:l, (164)

in consequence of which (dT ) 4
2 = d(T 3

1).

Divergence of a vector field, as defined in euclidean spaces, has a covariant analog. If u is

a vector field of M, differentiable at some point, then on ddomu

Div u := Tr du := (du) 2
1 = ωp(du)ep; (165)

if ddomu and domE overlap, then on the overlap

Div u = ωp(um
:l ω

l ⊗ em)ep = um
:l (ω

lep)(ω
pem) = δp

mu
m

:l δ
l
p = up

:p. (166)

More generally, if T is a tensor field with at least one contravariant slot, then for each of its

contravariant slots T has a divergence (dT ) b+1
1 , where b is the position number in T of the

contravariant slot in question. If, for example, T = Tmn
k(ω

k ⊗ en ⊗ em) on domT ∩ domE, then,

on ddomT ∩ domE, (dT ) 2
1 = Tmp

k:p(ω
k ⊗ em) and (dT ) 3

1 = T pn
k:p(ω

k ⊗ en).

Definition. If T is a tensor field of M differentiable at some point, then T is said to be

autoparallel (with respect to d) if and only if there is a covector field λ on ddomT such

that dT = λ⊗ T ; if λ is continuous, then T is said to be continuously autoparallel (with

respect to d); if λ = 0, so that dT = 0, then T is said to be covariantly constant (with

respect to d).
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An alternative approach to covariant differentiation is by way of the notion of a connection.

Definition. By a connection on M (called also an affine connection on M) is meant a

mapping Γ whose domain is the maximal atlas of M and which assigns to each coordinate

system X a cococontensor field Γ(X) on domX in such a way that if domX ∩ domX ′ 6= ∅,

and Γ(X) = Γk
m

l (dx
l ⊗ dxk ⊗ ∂/∂xm) and Γ(X ′) = Γk′

m′

l′(dx
l′⊗ dxk′

⊗ ∂/∂xm′

), then, on

domX ∩ domX ′,

Γk′
m′

l′ =
∂2xm

∂xl′∂xk′

∂xm′

∂xm
+
∂xk

∂xk′
Γk

m
l
∂xl

∂xl′

∂xm′

∂xm
. (167)

The scalar fields Γk
m

l are called the coefficients in X of Γ (and of Γ in X). The covector

fields ωk
m defined by ωk

m := Γk
m

l dx
l are called the 1-forms in X of Γ (and of Γ in X).

Definition. If Γ is a connection on M, X is a coordinate system of M, T is a tensor field of M,

and ddomT ∩ domX 6= ∅, then by the Γ(X)-differential of T is meant

(dTm + T pωp
m)⊗

∂

∂xm
if T = Tm ∂

∂xm
on ddomT ∩ domX,

(168)

(dTm − Tp ωm
p)⊗ dxm if T = Tm dxm on ddomT ∩ domX,

(169)

(dTm
n − T

m
p ωn

p + T p
n ωp

m)⊗

(

dxn ⊗
∂

∂xm

)

if T = Tm
n

(

dxn ⊗
∂

∂xm

)

on ddomT ∩ domX,

(170)

(dTmn − Tmp ωn
p − Tpn ωm

p)⊗ (dxn ⊗ dxm) if T = Tmn (dxn ⊗ dxm) on ddomT ∩ domX,

(171)

(dTm
n − Tm

p ωp
n + Tp

n ωm
p)⊗

(

∂

∂xn
⊗ dxm

)

if T = Tm
n

(

∂

∂xn
⊗ dxm

)

on ddomT ∩ domX,

(172)

(dTmn + Tmpωp
n + T pnωp

m)⊗

(

∂

∂xn
⊗

∂

∂xm

)

if T = Tmn

(

∂

∂xn
⊗

∂

∂xm

)

on ddomT ∩ domX,

(173)

and so on. The Γ(X)-differential of T is denoted by dΓ(X)T .

Theorem 8. If Γ is a connection on M, each of X and X ′ is a coordinate system of M,

T is a tensor field of M, and ddomT ∩ domX ∩ domX ′ 6= ∅, then dΓ(X′)T = dΓ(X)T on

ddomT ∩ domX ∩ domX ′.
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Definition. If Γ is a connection on M, then by the differentiation generated by Γ is meant

the mapping dΓ such that

i. the domain of dΓ is the set of all tensor fields T of M such that T is differentiable at some

point,

ii. if T ∈ dom dΓ, then dΓT is a tensor field on ddomT , and

iii. if T ∈ dom dΓ, X is a coordinate system of M, and ddomT ∩domX 6= ∅, then dΓT = dΓ(X)T

on ddomT ∩ domX.

Theorem 9. If Γ is a connection on M, then dΓ is a covariant differentiation on M, and if X is a

coordinate system of M, then the 1-forms and the coefficients of this covariant differentiation

in the frame system {∂/∂xm} are the 1-forms and coefficients in X of Γ. Conversely, if

d is a covariant differentiation on M, and, for each coordinate system X of M, Γ(X) =

Γk
m

l (dx
l ⊗ dxk ⊗ ∂/∂xm), where the Γk

m
l are the coefficients of d in {∂/∂xm}, then Γ is a

connection on M, and d = dΓ.

The import of this theorem is that every covariant differentiation determines and is determined by

a connection, and every connection determines and is determined by a covariant differentiation.

When d and Γ determine one another, they are said to be associated.



44



45

XIV. TORSION AND CURVATURE

Continue with d a covariant differentiation on M, E a smooth frame system of M, and Ω

its dual.

Definition. By the exterior differentiation of d is meant the mapping d∧ whose domain is

the set of all scalar, p -cotensor, or p -cocontensor fields φ of M that are differentiable at some

point, given by d∧φ := dφ if φ is a scalar field, and d∧φ := Sk dφ if φ is a tensor field.

Theorem 1. There is a unique tensor field T on M with the property that if v is a covector field

of M that is differentiable at P , then d∧v(P ) = d∧v(P ) − v(P )T(P ); T is a skew-symmetric

cococontensor field, and, on domE, T = Tm ⊗ em, where

Tm = d∧ω
m − d∧ω

m (174)

= d∧ω
m − ωk ∧ ωk

m (175)

= d∧ω
m + ωk

m ∧ ωk (176)

= (Ck
m

l + Γk
m

l)(ω
l ∧ ωk) (177)

= (Ck
m

l + Γ[k
m

l])(ω
l ⊗ ωk), (178)

if d∧ω
m = Ck

m
l(ω

l ∧ ωk) = Ck
m

l(ω
l ⊗ ωk).

Definition. The tensor field T is called the torsion of d, and the skew-symmetric cocotensor

fields Tm are called the torsion 2-forms in E of d (and of d in E).

Theorem 2. If d∧v = d∧v for every covector field v of M such that ddom v 6= ∅, then T = 0.

If T = 0, then d∧φ = d∧φ for every p -cotensor field φ of M such that ddomφ 6= ∅.

Theorem 3. If P ∈M, then T(P ) = 0 if and only if d is generated by a frame systemization Ē

such that ĒP is a coordinate frame system.

Theorem 4. There is a unique tensor field Θ on M with the property that if u is a vector

field of M that is twice differentiable at P , then d∧(du)(P ) = 1
2Θ(P )u(P ) − du(P )T(P );

Θ is a cocococontensor field, skew-symmetric in the second and third slots, and, on domE,

Θ = ωk ⊗Θk
m ⊗ em = ωk ⊗Θk

m
ln ω

n ⊗ ωl ⊗ em, where

Θk
m = 2(d∧ωk

m − ωk
p∧ ωp

m) (179)

= Θk
m

ln (ωn ∧ ωl) (180)

= Θk
m

ln (ωn ⊗ ωl), (181)

with

Θk
m

ln = 2(Γk
m

[l.n] + Γk
p
[lΓ|p|

m
n] + Γk

m
pCl

p
n), (182)

if d∧ω
m = Ck

m
l(ω

l ∧ ωk) = Ck
m

l(ω
l ⊗ ωk).
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Definition. The tensor field Θ is called the curvature of d, and the skew-symmetric cocotensor

fields Θk
m are called the curvature 2-forms in E of d (and of d in E). The contraction

Θ 4
2, a cocotensor field on M, is called the contracted curvature of d and is denoted by Φ.

Theorem 5. On domE, Φ = ωk ⊗Θk
mem = ωk ⊗ Φkl ω

l, with Φkl = Θk
memel = Θk

m
lm.

On domE

d∧Tm = d∧(d∧ω
m − d∧ω

m) (183)

= d∧(ωk
m∧ ωk) (184)

= d∧ωk
m∧ ωk − ωk

m∧ d∧ω
k (185)

= (d∧ωk
m − ωk

p∧ ωp
m)∧ ωk + ωk

p∧ ωp
m∧ ωk − ωk

m∧ d∧ω
k (186)

= 1
2Θk

m∧ ωk − ωk
p∧ ωk ∧ ωp

m − d∧ω
k ∧ ωk

m (187)

= 1
2 (ωk ∧Θk

m) + (d∧ω
k − d∧ω

k) ∧ ωk
m (188)

= 1
2 (ωk ∧Θk

m)−Tk ∧ ωk
m, (189)

and therefore

ωk ∧Θk
m = 2(d∧Tm + Tk ∧ ωk

m), (190)

which is equivalent to

Sk Θ = 2
(

(d∧Tm + Tk ∧ ωk
m)⊗ em

)

, (191)

inasmuch as Sk Θ = ωk ∧Θk
m ⊗ em. These reduce, when d∧T + Tk∧ ωk

m = 0, in particular when

T = 0, to ωk∧Θk
m = 0 and Sk Θ = 0, which are equivalent to Θ[k

m
ln] = 0, in turn equivalent to

Θk
m

ln + Θl
m

nk + Θn
m

kl = 0, (192)

the first Bianchi identity.

Also, on domE

d∧Θk
m = 2d∧(d∧ωk

m − ωk
p∧ ωp

m) (193)

= −2(d∧ωk
p∧ ωp

m − ωk
p∧ d∧ωp

m) (194)

= −2
(

(d∧ωk
p− ωk

q∧ ωq
p) ∧ ωp

m − ωk
p∧ (d∧ωp

m − ωp
q∧ ωq

m)
)

, (195)

and therefore

d∧Θk
m = ωk

p∧Θp
m −Θk

p∧ ωp
m. (196)
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From

dΘk
m(·) = d(ωmΘek)(·) (197)

= dωm(·)Θek + ωmdΘ(·)ek + ωmΘdek(·) (198)

= −ωp
m(·)⊗ ωpΘek + ωmdΘ(·)ek + ωmΘ(ωk

p(·)⊗ ep) (199)

= −(ωp
m ⊗Θk

p)(·) + ωmdΘ(·)ek + (ωk
p ⊗Θp

m)(·) (200)

there follows

d∧Θk
m(·) = −ωp

m ∧Θk
p + Sk (ωmdΘ(·)ek) + ωk

p∧Θp
m (201)

= (ωk
p∧Θp

m −Θk
p∧ ωp

m) + Sk (ωmdΘ(·)ek), (202)

in consequence of which

Sk (ωmdΘ(·)ek) = d∧Θk
m − d∧Θk

m. (203)

If d∧Θk
m = d∧Θk

m, which holds if T = 0, then Sk (ωmdΘ(·)ek) = 0. This is equivalent to

Θk
m

[ln:p] = 0, which in turn is equivalent to

Θk
m

ln:p + Θk
m

np:l + Θk
m

pl:n = 0, (204)

the second Bianchi identity.

Definition. If P ∈ M, then d is torsion free (resp., curvature free) at P means that

T(P ) = 0 (resp., Θ(P ) = 0). If U ⊂M, then d is torsion free (resp., curvature free) on U

means that T|U = 0 (resp., Θ|U = 0); d is torsion free (resp., curvature free) means that

d is torsion free (resp., curvature free) on M.

Definition. If U ⊂M, then U is featureless (with respect to d) means that there is a frame

systemization Ē that generates d and is such that if P ∈ U , then ĒP is a coordinate frame

system; that U is flat (with respect to d) means that there a frame systemization of M that

generates d and is constant on U . That M is flat (with respect to d) means that there is a

collection of one or more open flat subsets of M that covers M.

Theorem 6. If U is a featureless subset of M, then d is torsion free on U . If U is a flat subset

of M, then d is curvature free on U . If M is featureless, then d is torsion free. If M is flat,

then d is curvature free.
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XV. COVARIANT DERIVATIVES ON PATHS

Let p : I → M be a smooth path in M, and let u be a vector field on p, that is,

u : I →
⋃

t∈I T
p(t), and u(t) ∈ T p(t) if t ∈ I. Let u be differentiable in the sense that if E is a

smooth frame system of M whose domain intersects the range of p, then each component of u in

E is differentiable (as a mapping from I into R). For each such frame system E let

u̇E = (umem(p))̇
E

:= (um)˙ em(p) + umdem(p)ṗ. (205)
Then

u̇E =
(

(um)˙ + ukωk
m(p)ṗ

)

em(p) (206)

=
(

(um)˙ + ukΓk
m

l(p)ω
l(p)ṗ

)

em(p) (207)

=
(

(um)˙ + ukΓk
m

l(p)ṗ
l
)

em(p). (208)

With these it is straightforward to show that if E′ is a smooth frame system of M, and (ran p ∩

domE ∩ domE′) 6= ∅, then u̇E′ = u̇E on this intersection, thus that it is justified to define the

covariant (or absolute) derivative of u (determined by d) as that vector field u̇ on p such

that u̇ |p−1(dom E) = u̇E for every smooth frame system E of M whose domain intersects the range

of p.

In the event that there is a differentiable vector field w of M such that u = w(p), it is easy

to see that

u̇ = (w(p))˙ = dw(p)ṗ, (209)

a chain rule.

Now let v be a covector field on p, that is, v : I →
⋃

t∈I Tp(t), and v(t) ∈ Tp(t) if t ∈ I. Let

v be differentiable in the sense that if E is a smooth frame system of M whose domain intersects

the range of p, then each component of v in E is differentiable (as a mapping from I into R). For

each such frame system E let

v̇E = (vnω
n(p))̇

E
:= (vn)˙ωn(p) + vndω

n(p)ṗ. (210)
Then

v̇E =
(

(vn)˙ − vk ωn
k(p)ṗ

)

ωn(p) (211)

=
(

(vn)˙ − vkΓn
k
l(p)ω

l(p)ṗ
)

ωn(p) (212)

=
(

(vn)˙ − vkΓn
k
l(p)ṗ

l
)

ωn(p). (213)

As in the case of a vector field, it is justified to define the covariant (or absolute) derivative

of v (determined by d) as that vector field v̇ on p such that v̇ |p−1(dom E) = v̇E for every smooth

frame system E of M whose domain intersects the range of p.

In the event that there is a differentiable covector field w of M such that v = w(p), then,

as above, there is the chain rule

v̇ = (w(p))˙ = dw(p)ṗ. (214)
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In general, if T is any differentiable tensor field on p, and ṪE is defined in the obvious

way, then ṪE′ agrees with ṪE where both are defined. This makes possible the definition of the

covariant (or absolute) derivative of T (determined by d) as that tensor field Ṫ on p with the

property that Ṫ |p−1(dom E) = ṪE for every smooth frame system E of M whose domain intersects

the range of p, and the chain rule

Ṫ = (W (p))˙ = dW (p)ṗ, (215)

if W is a differentiable tensor field of M and T = W (p). To illustrate, if T = Tm
n(ωn(p)⊗ em(p))

on p−1(domE), then on p−1(domE)

Ṫ = ṪE = (Tm
n)˙(ωn(p)⊗ em(p)) + Tm

n (dωn(p)ṗ⊗ em(p)) + Tm
n (ωn(p)⊗ dem(p)ṗ) (216)

=
(

(Tm
n)˙ − Tm

k ωn
k(p)ṗ+ T k

n ωk
m(p)ṗ

)

(ωn(p)⊗ em(p)) (217)

=
(

(Tm
n)˙ − Tm

k Γn
k
l(p)ω

l(p)ṗ + T k
n Γk

m
l(p)ω

l(p)ṗ
)

(ωn(p)⊗ em(p)) (218)

=
(

(Tm
n)˙ − Tm

k Γn
k
l(p) ṗ

l + T k
n Γk

m
l(p) ṗ

l
)

(ωn(p)⊗ em(p)). (219)

Definition. If T is a differentiable tensor field on p, then T is said to be autoparallel (with

respect to d) if and only if there is a mapping λ : I → R such that Ṫ = λT ; if λ is continuous,

then T is said to be continuously autoparallel (with respect to d); if λ = 0, so that

Ṫ = 0, then T is said to be covariantly constant (with respect to d).

Theorem 1. If T is a differentiable tensor field of M, and ran p ⊂ ddomT , then T (p) is a

differentiable tensor field on p. If T is autoparallel (continuously autoparallel) with respect to

d, then T (p) is autoparallel (continuously autoparallel) with respect to d; if T is covariantly

constant with respect to d, then T (p) is covariantly constant with respect to d.
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XVI. AUTOPARALLEL GEODESICS.

A particular vector field on the smooth path p : I → M is the velocity ṗ. If ṗ is differen-

tiable, then the covariant derivative of ṗ is called the covariant (or absolute) acceleration of p

(determined by d), or, for short, just the acceleration of p, and is denoted by p̈.

Definition. The path p is said to be autoparallel (with respect to d), and is called an

autoparallel geodesic path (of d) (an autoparallel geodesic, for short), if and only if

p is doubly smooth and ṗ is continuously autoparallel (with respect to d), that is, there is a

continuous mapping λ : I → R such that p̈ = λṗ. If λ = 0, so that p̈ = 0, and therefore ṗ is

constant (with respect to d), then p is said to be affinely parametrized. By an autoparallel

geodesic curve (of d) is meant a subset C of M for which there is an autoparallel geodesic

path p of d whose range is C and whose velocity ṗ vanishes nowhere.

Definition. If φ is a C1 mapping of an interval J onto I whose derivative vanishes nowhere, and

q := p(φ), then q is said to be a smooth regular reparametrization of p (by φ), sense-

preserving if φ̇ > 0, sense-reversing if φ̇ < 0. If both p and φ are C2, then q is said to be

a doubly smooth regular reparametrization of p (by φ).

Theorem 1. If q is a smooth regular reparametrization of p by φ, then q is a smooth path in

M, and q̇ = ṗ(φ) φ̇. If q is a doubly smooth regular reparametrization of p by φ, then q is a

doubly smooth path in M, and q̈ = p̈(φ) φ̇2 + ṗ(φ) φ̈.

Corollary. If p is autoparallel, then q is autoparallel. If p is affinely parametrized and is not a

constant, then q is affinely parametrized if and only if φ̈ = 0, thus if and only if φ(s) = αs+ β

for some nonzero number α and some number β.

Corollary. If p is autoparallel, with p̈ = λṗ, and θ is any nonconstant solution on I of the linear

differential equation θ̈ = λθ̇, then θ̇ > 0 or θ̇ < 0, θ has an inverse φ, and if q = p(φ), then

i. q is a doubly smooth regular reparametrization of p, so q is autoparallel,

ii. q is affinely parametrized,

iii. q is sense-preserving if θ̇ > 0,

iv. q is sense-reversing if θ̇ < 0.

Every doubly smooth regular reparametrization of p that is affinely parametrized is obtained

in this way.

Theorem 2. If p is an affinely parametrized autoparallel geodesic path, q is an affinely parame-

trized doubly smooth regular reparametrization of p by φ, s1 and s2 are two numbers in domφ,

and s3 and s4 are two numbers in domφ, then

s4 − s3
s2 − s1

=
r4 − r3
r2 − r1

, (220)

where ri = φ(si) for i = 1, 2, 3, 4.
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The import of this theorem is that on each autoparallel geodesic curve C of d there is an invariant

relative measure of the separation of two points P3 and P4 as compared to the separation of two

points P1 and P2, given by the ratio (r4− r3)/(r2− r1), where Pi = p(ri) for i = 1, 2, 3, 4, this ratio

being the same for all affinely parametrized autoparallel geodesic paths p of d with range C.

Definition. That the affinely parametrized autoparallel geodesic path p : I → M is maximal

means that if p̄ : Ī →M is an affinely parametrized autoparallel geodesic path, and I ∩ Ī is a

nondegenerate interval, and p̄ |I ∩ Ī = p |I ∩ Ī , then Ī ⊂ I.

Theorem 3. If P is a point of M, u is a tangent vector at P , and r0 is a number, then there is

just one maximal affinely parametrized autoparallel geodesic path p of d such that p(r0) = P

and ṗ(r0) = u.

Corollary. If c is a nonzero number, and s0 is a number, then the maximal affinely parametrized

autoparallel geodesic path q such that q(s0) = P and q̇(s0) = cu is a doubly smooth regular

reparametrization of p, sense-preserving if c > 0, sense-reversing if c < 0. If each of r1, r2, s1,

and s2 is a number, and p(r1) = q(s1) and p(r2) = q(s2), then r2 − r1 = c(s2 − s1).

Theorem 4. The affinely parametrized autoparallel geodesic path p of d is maximal if and only

every affinely parametrized doubly smooth regular reparametrization of p is maximal.

Definition. That the manifold M is geodesically complete from P (with respect to d)

means that P is a point of M and every maximal affinely parametrized autoparallel geodesic

path of d that has P in its range has R for its domain. That M is geodesically complete

(with respect to d) means that every maximal affinely parametrized autoparallel geodesic

path of d has R for its domain.

Theorem 5. The manifold M is geodesically complete (with respect to d) if and only it is

geodesically complete from each of its points.

Definition. Let P be a point of M. For each tangent vector u at P , let pu denote the maximal

affinely parametrized autoparallel geodesic path p of d such that p(0) = P and ṗ(0) = u.

Let U be the subset of TP consisting of all vectors u for which 1 ∈ dom pu. If u ∈ U , let

F (u) := pu(1). The function F thus defined, whose domain is U and whose range is the set of

all points of M reachable from P by autoparallel geodesics, is called the exponential map of

d at P , and is denoted by ExpP .

Theorem 6. The manifold M is geodesically complete from P if and only if dom ExpP = TP .
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XVII. GEODESIC DEVIATION

Let p be a C2 two-parameter path net in M, that is, p : I × J → M, where each of

I and J is an interval of R, and Xp is C2 for every coordinate system X of M. The range of p

is a (possibly degenerate) surface Σ in M, parametrized by p. For each number s in I and each

number t in J let ṗ(s, t) denote the velocity of p|I×{t} at s, and let
∗

p(s, t) denote the velocity of

p|{s}×J at t. If (s, t) ∈ I × J , then p(s, t) is a point of Σ, and each of ṗ(s, t) and
∗

p(s, t) is a tangent

vector of M at p(s, t) that is tangent to Σ, so each of ṗ and
∗

p is a vector field on p in the obvious

sense. If f : I × J → R, and f is differentiable, let f ˙(s, t) denote the derivative at s of f |I×{t}, and

let f
∗

(s, t) denote the derivative at t of f |{s}×J . Then f
∗

˙ = f ˙
∗

if f is a C2 function.

If u is a differentiable vector field on p, let u˙(s, t) denote the covariant derivative at s of

u|I×{t}, and let u
∗

(s, t) denote the covariant derivative at t of u|{s}×J . Then each of u˙ and u
∗

is

a vector field on p.

If v is a differentiable covector field on p, let v˙(s, t) denote the covariant derivative at s

of v|I×{t}, and let v
∗

(s, t) denote the covariant derivative at t of v|{s}×J . Then each of v˙ and v
∗

is

a covector field on p.

Let X be a coordinate system of M whose domain intersects the range of p. Then, on

p−1(domX), with em = ∂/∂xm and ωm = dxm,

ṗ = ṗmem(p) = (pm)˙em(p) and
∗

p =
∗

p
m
em(p) = (pm)

∗

em(p), (221)

where pm := xmp, so

∗

p˙− ṗ
∗

=
[

(pm)
∗

˙em(p) + (pm)
∗

dem(p)ṗ
]

−
[

(pm)˙
∗

em(p) + (pm)˙dem(p)
∗

p
]

(222)

= (ωm(p)⊗ dem(p)ṗ)
∗

p −
(

ωm(p)⊗ dem(p)
∗

p
)

ṗ, (223)

because (pm)
∗

˙ = (pm)˙
∗

. From d(ωm ⊗ em) = 0 follows

∗

p˙− ṗ
∗

=
(

dωm(p)
∗

p ⊗ em(p)
)

ṗ− (dωm(p)ṗ ⊗ em(p))
∗

p (224)

= 2 (d∧ω
m ⊗ em)(p)

∗

pṗ (225)

= 2 ((d∧ω
m −Tm)⊗ em)(p)

∗

pṗ, (226)

consequently that

∗

p˙− ṗ
∗

= 2T(p)ṗ
∗

p, (227)

because d∧ω
m = d∧(dxm) = 0 and T is skew-symmetric.

Now let u be a C2 vector field on p. On p−1(domX)

u
∗

= (um)
∗

em(p) + umdem(p)
∗

p (228)

and

u˙ = (um)˙em(p) + umdem(p)ṗ, (229)
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from which follow, by a slight extension of previous calculations,

u
∗

˙ = (um)
∗

˙em(p) + (um)
∗

dem(p)ṗ + (um)˙dem(p)
∗

p + umd(dem)(p)ṗ
∗

p + umdem(p)
∗

p˙, (230)

and

u˙
∗

= (um)˙
∗

em(p) + (um)˙dem(p)
∗

p + (um)
∗

dem(p)ṗ + umd(dem)(p)
∗

pṗ+ umdem(p)ṗ
∗

, (231)

in consequence of which

u
∗

˙− u˙
∗

=
(

(um)
∗

˙ − (um)˙
∗
)

em(p) + um
(

d(dem)(p)ṗ
∗

p − d(dem)(p)
∗

pṗ
)

+ umdem(p)(
∗

p˙− ṗ
∗

)

(232)

= 2umd∧(dem)(p)ṗ
∗

p + umdem(p)(
∗

p˙− ṗ
∗

) (233)

= 2um
(

1
2Θem − (dem)T

)

(p)ṗ
∗

p + umdem(p)(2T(p)ṗ
∗

p) (234)

= Θ(p)(umem(p))ṗ
∗

p, (235)

so that

u
∗

˙− u˙
∗

= Θ(p)uṗ
∗

p. (236)

This equation is classical. It is of interest that the torsion of d does not appear explicitly in it.

Finally, suppose that M is triply smooth, that p is C3, and that the paths p |I×{t} are

affinely parametrized autoparallel geodesic paths of d. Let u = ṗ and η =
∗

p. Then

u˙ = ṗ˙ = p̈ = 0 (237)

and

η˙ =
∗

p˙ = ṗ
∗

+ 2T(p)ṗ
∗

p = u
∗

+ 2T(p)uη. (238)

Therefore

η˙˙ = u
∗

˙ + 2 [(T(p))˙uη + T(p)u˙η + T(p)uη˙] (239)

= u˙
∗

+ Θ(p)uṗ
∗

p + 2 [dT(p)ṗuη + T(p)u˙η + T(p)uη˙] (240)

= 0 + Θ(p)uuη + 2 [dT(p)uuη + 0 + T(p)uη˙] . (241)

At last, then,

η̈ − 2T(p)uη̇ − (2dT + Θ)(p)uuη = 0, (242)

and, equivalently,

η̈ − 2T(p)ṗη̇ − (2dT + Θ)(p)ṗṗη = 0. (243)

This is the Equation of Geodesic Deviation, a second order, linear differential equation satisfied

by η, which is a measure of the rate at which the autoparallel geodesics p |I×{t} spread. When

T = 0 and Θ = 0 it reduces to η̈ = 0, which implies that η varies linearly with respect to the affine

parameter along each autoparallel geodesic.
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XVIII. SYMMETRIC INNER PRODUCTS ON VECTOR SPACES

Let U be a finite-dimensional vector space over R, with dual space U∗, and let M =

dimU = dimU∗. By a symmetric inner product on U is meant a mapping 〈· , ·〉 : U × U → R

with the following properties:

i. if each of u, v, and w is a vector in U , then 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉;

ii. if each of u and v is a vector in U , and c is a real number, then 〈u, cv〉 = c〈u, v〉; and

iii. if each of u and v is a vector in U , then 〈u, v〉 = 〈v, u〉.

From (i) and (iii) follows

iv. if each of u, v, and w is a vector in U , then 〈u+ v,w〉 = 〈u,w〉 + 〈v,w〉.

From (ii) and (iii) follows

v. if each of u and v is a vector in U , and c is a real number, then 〈cu, v〉 = c〈u, v〉.

That 〈· , ·〉 is positive (resp., negative) definite means that

vi. if u is a vector in U other than 0U (the zero vector of U), then 〈u, u〉 > 0 (resp., < 0).

That 〈· , ·〉 is positive (resp., negative) semidefinite means that

vii. if u is a vector in U other than 0U (the zero vector of U), then 〈u, u〉 ≥ 0 (resp., ≤ 0).

That 〈· , ·〉 is definite (resp., semidefinite) means that

viii. 〈· , ·〉 is positive definite (resp., semidefinite) or negative definite (resp., semidefinite).

A consequence of (v) is that 〈0U , v〉 = 0 for every vector v in U (in particular, that 〈0U , 0U 〉 = 0).

That 〈· , ·〉 is nondegenerate means that, conversely,

ix. if 〈u, v〉 = 0 for every vector v in U , then u = 0U .

That 〈· , ·〉 is degenerate means that 〈· , ·〉 is not nondegenerate, thus that there is in U a nonzero

vector u such that 〈u, v〉 = 0 for every vector v in U . The set of all such vector(s) u is a subspace

of U , called the nullifying space of 〈· , ·〉; its dimensionality is positive if and only if 〈· , ·〉 is

degenerate, thus is 0 if and only if 〈· , ·〉 is nondegenerate.

If 〈· , ·〉 is a symmetric inner product on U , then u is orthogonal to v (with respect

to 〈· , ·〉) means that each of u and v is a vector in U , and 〈u, v〉 = 0; if u is orthogonal to v

(with respect to 〈· , ·〉), then (iii) implies that v is orthogonal to u. In terms of orthogonality, 〈· , ·〉

is degenerate if and only if some nonzero vector in U is orthogonal to every vector in U , and is

nondegenerate if and only if the only vector in U that is orthogonal to every vector in U is 0U .

With every symmetric inner product 〈· , ·〉 on U is uniquely associated a linear transfor-

mation L : U → U∗ (thus an element L of U∗ ⊗ U∗) such that if each of u and v is a vector in U ,

then 〈u, v〉 = (Lu)v. The definition of L is simply that, for each vector u in U , Lu is the mapping

l : U → R given by l : v 7→ 〈u, v〉; that l is linear, thus is in U∗, follows from (i) and (ii); that L

is linear follows from (iv) and (v). The symmetry property (iii) implies that (Lu)v = (Lv)u. In

terms of L, property (ix) and its converse say that (Lu)v = 0 for every vector v in U if and only
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if u = 0U , in other words that Lu = 0U∗ if and only if u = 0U , another way of saying which is

that the kernel of L is {0U}. From this it follows that 〈· , ·〉 is nondegenerate if and only if L is

one-to-one (equivalently, is invertible, is nonsingular).

Conversely, with every linear transformation L : U → U∗ such that (Lu)v = (Lv)u for

every vector u and every vector v in U is uniquely associated a symmetric inner product 〈· , ·〉 on

U , defined by 〈u, v〉 := (Lu)v. As above, 〈· , ·〉 is nondegenerate if and only if L is one-to-one.

Let 〈· , ·〉 be a symmetric inner product on U , let L be the the associated linear transfor-

mation in U∗ ⊗ U∗, let {am} be a basis for U , and let {am} be the basis for U∗ dual to {am}. If

each of u and v is a vector in U , then

〈u, v〉 = 〈umam, v
nan〉 = um〈am, an〉v

n = um((Lam)an)vn. (244)

But the representation L = ak ⊗ Lkl a
l implies that

Lam = (akam)Lkl a
l = δm

kLkl a
l = Lml a

l, (245)

hence that

(Lam)an = Lml(a
lan) = Lmlδ

l
n = Lmn, (246)

thus that

Lmn = 〈am, an〉 = 〈an, am〉 = Lnm (247)

and

〈u, v〉 = umLmnv
n, (248)

which tells that 〈· , ·〉 is completely determined by the numbers 〈am, an〉, and is equivalent to

[〈u, v〉] = [u][L][v]T =
m−→

[um] [Lmn] [vn]
n

↓=
m−→

[um] [〈am, an〉] [v
n]

n

↓ , (249)

where [u], [v], and [L] are the matrices that represent u, v, and L with respect to the bases {am}

and {am}, and [〈u, v〉] is the 1-by-1 matrix whose sole entry is 〈u, v〉. Briefly, L = ak ⊗ 〈ak, al〉 a
l.

If u is a vector in U , then the nonegative number |〈u, u〉|
1
2 is denoted by |u| and is called

the norm, the length, the magnitude, and the absolute value, of u (with respect to 〈· , ·〉).

The number 〈u, u〉 is called the square length of u (with respect to 〈· , ·〉). That u is null

(resp., positive, negative) (with respect to 〈· , ·〉) means that u 6= 0U and the square length

〈u, u〉 of u is 0 (resp., > 0, < 0). Clearly, |u| = 0 if u is null, and |u| > 0 if u is positive or negative.

Moreover, if u 6= 0U , then u is either positive or negative if 〈· , ·〉 is definite.

Definition. If U ′ is a subspace of U , then

i. U ′ is 〈· , ·〉-positive means that if u is a nonzero vector in U ′, then u is positive;

ii. U ′ is 〈· , ·〉-negative means that if u is a nonzero vector in U ′, then u is negative.

iii. The nonnegative integer max{dimU ′ | U ′ is a 〈· , ·〉-positive subspace of U} is called the

positivity index of 〈· , ·〉, and is denoted by 〈+,+〉.
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iv. The nonnegative integer max{dimU ′ | U ′ is a 〈· , ·〉-negative subspace of U} is called the

negativity index of 〈· , ·〉, and is denoted by 〈−,−〉.

v. The nonnegative integer that is the dimensionality of the nullifying space of U determined

by 〈· , ·〉 is called the nullity of 〈· , ·〉, and is denoted by 〈◦, ◦〉.

Theorem 1. If U+ is a 〈· , ·〉-positive subspace of U whose dimensionality is 〈+,+〉, U− is a

〈· , ·〉-negative subspace of U whose dimensionality is 〈−,−〉, and U◦ is the nullifying space of

〈· , ·〉, then U is the direct sum of U+, U−, and U◦, and therefore 〈+,+〉+ 〈−,−〉+ 〈◦, ◦〉 = M .

Theorem 2. The inner product 〈· , ·〉 is

i. positive definite if and only if 〈+,+〉 6= 0, 〈−,−〉 = 0, and 〈◦, ◦〉 = 0;

ii. negative definite if and only if 〈+,+〉 = 0, 〈−,−〉 6= 0, and 〈◦, ◦〉 = 0;

iii. positive semidefinite if and only if 〈−,−〉 = 0;

iv. negative semidefinite if and only if 〈+,+〉 = 0;

v. nondegenerate if and only if 〈◦, ◦〉 = 0.

That the basis {am} is orthogonal (with respect to 〈· , ·〉) means that am is orthogonal to

an if m 6= n; {am} is null means that each of its vectors is null; {am} is normal means that, for

each m, 〈am, am〉 = 1, 0, or −1 (equivalently, |am| = 1 if am is not null); and {am} is orthonormal

means that {am} is both orthogonal and normal.

Theorem 3. There is a basis for U that is orthogonal. If {am} is such a basis, then {âm}, where

âm = am if am is null, and âm = am/|am| if am is not null, is a basis for U that is orthonormal.

Theorem 4. In every orthogonal basis for U the number of positive vector(s) is 〈+,+〉, the

number of negative vector(s) is 〈−,−〉, and the number of null vector(s) is 〈◦, ◦〉.

Theorem 5. The basis {am} for U is null if and only if the matrix [L] (= [〈am, an〉]) that

represents L with respect to {am} and its dual is symmetric and has no nonzero diagonal

entry; {am} is orthogonal if and only if [L] is diagonal with 〈+,+〉 positive diagonal entries,

〈−,−〉 negative diagonal entries, and 〈◦, ◦〉 diagonal entries that are 0; {am} is orthonormal

if and only if [L] is diagonal and each positive diagonal entry is 1 and each negative diagonal

entry is −1; in every case, the nullity of L ( := dim (kernel of L)) is 〈◦, ◦〉.

Theorem 6. Let {am} be any basis for U , and let each of {am}
+, {am}

−, and {am}
◦ be a

(perhaps empty) subset of {am}, with every vector of {am} in one of them, and no vector of

{am} in two of them. There is on U just one symmetric inner product 〈· , ·〉∗ with respect to

which (i) {am} is orthonormal, (ii) each vector (if any) in {am}
+ is positive, (iii) each vector

(if any) in {am}
− is negative, and (iv) each vector (if any) in {am}

◦ is null. If, with respect to

〈· , ·〉, {am} is orthornormal, each vector (if any) in {am}
+ is positive, each vector (if any) in

{am}
− is negative, and each vector (if any) in {am}

◦ is null, then 〈· , ·〉∗ = 〈· , ·〉.
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The import of this theorem is that to specify on U a symmetric inner product with given

positivity index, negativity index, and nullity is tantamount to selecting some basis for U , decreeing

that it should be orthonormal, and designating which of its vectors should be positive, which should

be negative, and which should be null, in the prescribed numbers.

Suppose now that 〈· , ·〉 is nondegenerate. Then L, which maps U linearly onto U∗, has

an inverse L−1, which maps U∗ linearly onto U . Moreover, if each of u∗ and v∗ is in U∗, and

u = L−1u∗ and v = L−1v∗, then (L−1u∗)v∗ = (L−1v∗)u∗, because

(L−1u∗)v∗ = v∗(L−1u∗) = (Lv)(L−1(Lu)) = (Lv)u (250)

and (L−1v∗)u∗ = (Lu)v = (Lv)u. Consequently, with L−1 is associated a nondegenerate symmetric

inner product 〈· , ·〉∗ on the dual space U∗ of U such that, if each of u∗ and v∗ is in U∗, then

〈u∗, v∗〉∗ = (L−1u∗)v∗ = (Lv)u = 〈v, u〉 = 〈u, v〉 (251)

where u = L−1u∗ and v = L−1v∗. Briefly put, 〈u∗, v∗〉∗ = 〈L−1u∗, L−1v∗〉, and, equivalently,

〈u, v〉 = 〈Lu,Lv〉∗. The inner product 〈· , ·〉∗ is called the dual of 〈· , ·〉.

As an element of U∗∗ ⊗U∗∗, thus, by identification, of U ⊗U , L−1 has the representation

L−1 = am ⊗ L
mnan, where

Lmn := (L−1)mn = (L−1am)an = 〈am, an〉∗ = 〈an, am〉∗ = Lnm, (252)

in terms of which 〈u∗, v∗〉∗ = u∗mL
mnv∗n. The mapping L−1L has the representation

L−1L = (al ⊗ L
lnan)(am ⊗ Lmka

k) (253)

= am ⊗ Lmk(ala
k)Llnan (254)

= am ⊗ Lmk(a
kal)L

lnan (255)

= am ⊗ Lmkδ
k
lL

lnan (256)

= am ⊗ LmkL
knan. (257)

But L−1L is the identity mapping of U onto U , which has the representation am ⊗ δm
nan, and

therefore LmkL
kn = δm

n. Similarly, because LL−1 is the identity mapping of U∗ onto U∗, LmkLkn =

δm
n (which also follows from LmkLkn = LkmLnk = LnkL

km = δn
m = δm

n).

Theorem 7. The positivity index, the negativity index, and the nullity of 〈· , ·〉∗ are the same

as those of 〈· , ·〉: 〈+,+〉∗ = 〈+,+〉, 〈−,−〉∗ = 〈−,−〉, and 〈◦, ◦〉∗ = 〈◦, ◦〉 = 0.

Let bm = δmnLan = Lam, for m = 1, . . . ,M . Then {bm} is a basis for U∗, and 〈bm, bn〉∗ =

〈Lam, Lan〉
∗ = 〈am, an〉.

Theorem 8. The basis {bm} is null with respect to 〈· , ·〉∗ if and only if the basis {am} is null

with respect to 〈· , ·〉; {bm} is orthogonal with respect to 〈· , ·〉∗ if and only if {am} is orthogonal

with respect to 〈· , ·〉; for each m, bm is positive (resp., negative) with respect to 〈· , ·〉∗ if and

only if am is positive (resp., negative) with respect to 〈· , ·〉. Also, {bm} is normal with respect

to 〈· , ·〉∗ if and only if {am} is normal with respect to 〈· , ·〉; for each m, 〈bm, bm〉∗ = 1 (resp.,

−1) if and only if 〈am, am〉 = 1 (resp., −1).
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XIX. METRICS AND INNER PRODUCTS ON SMOOTH MANIFOLDS

In this chapter and the next M need be only smooth, not doubly smooth.

Definition. By a metric on M is meant a smooth, symmetric cocotensor field G of M, globally

defined on M (domG = M), whose nullity is constant (the kernel of G(P ) has the same dimen-

sionality at every point P ). If G is a metric on M, the tangent inner product associated

with G is the mapping 〈· , ·〉G :
⋃

P∈M
(TP × TP ) → R defined by 〈u, v〉G := G(P )uv if each

of u and v is in TP ; the mapping | · |G :
⋃

P∈M
TP → R is defined by |u|G := |〈u, u〉G|

1
2 . By a

tangent inner product on M is meant a mapping of
⋃

P∈M
(TP × TP ) into R that is 〈· , ·〉G

for some metric G on M.

Let G be a metric on M, and let 〈· , ·〉G be the tangent inner product associated with G.

Theorem and Definition. At each point P of M the restriction of 〈· , ·〉G to TP × TP is a

symmetric inner product 〈· , ·〉P on TP whose nullity 〈◦, ◦〉P is the nullity of G(P ). The metric

G and the tangent inner product 〈· , ·〉G are said to be positive definite (resp., negative

definite, definite, positive semidefinite, negative semidefinite, semidefinite, nonde-

generate, degenerate) if and only if, for each point P of M, 〈· , ·〉P is positive definite (resp.,

negative definite, definite, positive semidefinite, negative semidefinite, semidefinite, nondegen-

erate, degenerate).

Theorem 1. Each of 〈+,+〉P , 〈−,−〉P , and 〈◦, ◦〉P is independent of the choice of P .

Definition. The nonnegative integers 〈+,+〉P , 〈−,−〉P , and 〈◦, ◦〉P that are independent of

P are called, respectively, the positivity index, the negativity index, and the nullity, of

〈· , ·〉G, and are denoted, respectively, by 〈+,+〉G, 〈−,−〉G, and 〈◦, ◦〉G.

Theorem 2. The metric G and the tangent inner product 〈· , ·〉G are

i. positive definite if and only if 〈+,+〉G 6= 0, 〈−,−〉G = 0, and 〈◦, ◦〉G = 0;

ii. negative definite if and only if 〈+,+〉G = 0, 〈−,−〉G 6= 0, and 〈◦, ◦〉G = 0;

iii. positive semidefinite if and only if 〈−,−〉G = 0;

iv. negative semidefinite if and only if 〈+,+〉G = 0;

v. nondegenerate if and only if 〈◦, ◦〉G = 0.

Definition. If E is a smooth frame system of M, then E is orthogonal (resp., null, normal,

orthonormal) with respect to G and 〈· , ·〉G means that if P ∈ domE, then E(P ) is

orthogonal (resp., null, normal, orthonormal) with respect to 〈· , ·〉P .

Theorem 3. If the smooth frame system E is orthogonal, and P ∈ domE, then the number of

positive vectors in E(P ) is 〈+,+〉G, the number of negative vectors in E(P ) is 〈−,−〉G, and

the number of null vectors in E(P ) is 〈◦, ◦〉G.
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Theorem 4. If X is a coordinate system of M, then there is on domX a smooth frame system E

that is orthogonal. If E is such a frame system, then the frame system Ê defined by êm = em

if em is null, and êm = em/|em|G if em is not null, is orthonormal.

Let E be a smooth frame system of M, with dual coframe system Ω; let U = domE =

dom Ω. Then, on U ,

G = ωm ⊗ gmnω
n, (258)

where gmn = Gemen. Also, if each of u and v is a vector field of M, and U ∩ domu ∩ dom v 6= ∅,

then, on the intersection,

〈u, v〉G = Guv = (ωm ⊗ gmnω
n)(ukek)(v

lel) = uk(ωmek)gmnv
l(ωnel) = umgmnv

n. (259)

Suppose now that G is nondegenerate. At each point P of M, G(P ) (an element of

L(TP , TP ), thus of TP ⊗ TP ) has an inverse G(P )−1, which is an element of L(TP , T
P ), thus of

TP ⊗ TP . The concontensor field G−1 defined globally on M by G−1(P ) := G(P )−1 is called the

inverse metric of G. If u is a tangent vector at P , then the cotangent vector G(P )u is called

the metric dual of u (with respect to G); if u is a vector field of M, then the covector field Gu

is called the the metric dual of u. If u∗ is a cotangent vector at P , then the tangent vector

G−1(P )u∗ is called the inverse metric dual of u∗; if u∗ is a covector field of M, then the vector

field G−1u∗ is called the inverse metric dual of u∗. Clearly, the inverse metric dual of the metric

dual of u is u itself, and the metric dual of the inverse metric dual of u∗ is u∗.

The cotangent inner product associated with G is the mapping 〈· , ·〉∗G :
⋃

P∈M
(Tp ×

TP )→ R defined by 〈· , ·〉∗Gu
∗v∗ := G−1(P )u∗v∗ if each of u∗ and v∗ is in TP . Clearly, at each point

P of M the restriction of 〈· , ·〉∗G to TP × TP is the symmetric inner product 〈· , ·〉P on TP that is

the dual of the inner product 〈· , ·〉P on TP .

Theorem 5. Each of 〈+,+〉P , 〈−,−〉P , and 〈◦, ◦〉P is independent of the choice of P .

Definition. The nonnegative integers 〈+,+〉P , 〈−,−〉P , and 〈◦, ◦〉P that are independent of

P are called, respectively, the positivity index, the negativity index, and the nullity, of

〈· , ·〉∗G, and are denoted, respectively, by 〈+,+〉∗G, 〈−,−〉∗G, and 〈◦, ◦〉∗G.

Theorem 6. The positivity index, the negativity index, and the nullity of 〈· , ·〉∗G are the same

as those of 〈· , ·〉G (〈+,+〉∗G = 〈+,+〉G, 〈−,−〉∗G = 〈−,−〉G, and 〈◦, ◦〉∗G = 〈◦, ◦〉G = 0).

Definition. If Ω̃ is a smooth coframe system of M, then Ω̃ is orthogonal (resp., null, normal,

orthonormal) with respect to G and 〈· , ·〉∗G means that if P ∈ dom Ω̃, then Ω̃(P ) is

orthogonal (resp., null, normal, orthonormal) with respect to 〈· , ·〉P .

Let Ω̃ be the metric dual of E, defined by ω̃m := δmnGen = Gem, for m = 1, . . . ,M . Then

Ω̃ is a smooth coframe system of M on U , and 〈ω̃m, ω̃n〉∗G = 〈Gem, Gen〉
∗
G = G−1(Gem)(Gen) =

em(Gen) = Gemen = 〈em, en〉G.

Theorem 7. The coframe system Ω̃ is null with respect to G and 〈· , ·〉∗G if and only if the frame

system E is null with respect to G and 〈· , ·〉G; Ω̃ is orthogonal with respect to G and 〈· , ·〉∗G if
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and only if E is orthogonal with respect to G and 〈· , ·〉G; Ω̃ is normal with respect to G and

〈· , ·〉∗G if and only if E is normal with respect to G and 〈· , ·〉G. For each m, 〈ω̃m, ω̃m〉∗G = 0

(resp., < 0, > 0, = 1, = −1) on U if and only if 〈em, em〉G = 0 (resp., < 0, > 0, = 1, = −1) on

U .

If u is a vector field of M, then

Gu = (ωm ⊗ gmnω
n)(ukek) = uk(ωmek)gmnω

n = ukgknω
n, (260)

so the metric dual of u has the representation Gu = umω
m, where um := ukgkm. The latter

relation is often referred to as “lowering of the index of u by G”. (Note the distinction between

this representation and the representation Gu = G(umem) = umGem = umδmnω̃
n =

∑

m umω̃m.)

In terms of the lowered index, one has that 〈u, v〉G = umv
m.

On U, the inverse metric has the representation

G−1 = em ⊗ g
mnen, (261)

where gmn = G−1ωmωn, related to gmn by gmkg
kn = δm

n and gmkgkn = δm
n. From this follows

that if each of u∗ and v∗ is a covector field of M, and U ∩ domu∗ ∩ dom v∗ 6= ∅, then, on the

intersection,

〈u∗, v∗〉∗ = G−1u∗v∗ = (em ⊗ g
mnen)(u∗kω

k)(v∗l ω
l) = u∗k(emω

k)gmnv∗l (enω
l) = u∗mg

mnv∗n. (262)

Intermediately,

G−1u∗ = (em ⊗ g
mnen)(u∗kω

k) = u∗k(emω
k)gmnen = u∗kg

knen, (263)

so the inverse metric dual of u∗ has the representation G−1u∗ = u∗mem, where u∗m := u∗kg
km. The

latter relation is referred to as “raising of the index of u∗ by G−1”. In terms of the raised index,

〈u∗, v∗〉∗G = u∗mv∗m.

The lowering and the raising of an index are inverse operations: if um = ukgkm, then

ulg
lm = ukgklg

lm = ukδk
m = um, which corresponds to G−1Gu = u, and if u∗m = u∗kg

km, then

u∗lglm = u∗kg
klglm = u∗kδ

k
m = u∗m, which corresponds to GG−1u∗ = u∗. Also, these operations

are not confined to vector and covector fields. If, for example, T is a coconconcotensor field of

M, say T = Tk
mn

l (ω
l ⊗ en ⊗ em ⊗ ω

k), then, because Gep = (ep)
kgkqω

q = δp
kgkqω

q = gpqω
q and

G−1ωp = (ωp)kg
kqeq = δp

kg
kqeq = gpqeq,
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GT = Tk
pn

l (ω
l ⊗ en ⊗Gep ⊗ ω

k) = Tk
pn

l (ω
l ⊗ en ⊗ gpmω

m ⊗ ωk) (264)

= Tk
pn

l gpm (ωl ⊗ en ⊗ ω
m ⊗ ωk) = Tkm

n
l (ω

l ⊗ en ⊗ ω
m ⊗ ωk), (265)

G(·)T = Tk
mp

l (ω
l ⊗Gep ⊗ em ⊗ ω

k) = Tk
mp

l (ω
l ⊗ gpnω

n ⊗ em ⊗ ω
k) (266)

= Tk
mp

l gpn (ωl ⊗ ωn ⊗ em ⊗ ω
k) = Tk

m
nl (ω

l ⊗ ωn ⊗ em ⊗ ω
k), (267)

G−1T = Tp
mn

l (ω
l ⊗ en ⊗ em ⊗G

−1ωp) = Tp
mn

l (ω
l ⊗ en ⊗ em ⊗ g

pkek) (268)

= Tp
mn

l g
pk (ωl ⊗ en ⊗ em ⊗ ek) = T kmn

l (ω
l ⊗ en ⊗ em ⊗ ek), (269)

and

G−1(·)T = Tk
mn

p (G−1ωp ⊗ en ⊗ em ⊗ ω
k) = Tk

mn
p (gplel ⊗ en ⊗ em ⊗ ω

k) (270)

= Tk
mn

p g
pl (el ⊗ en ⊗ em ⊗ ω

k) = Tk
mnl (el ⊗ en ⊗ em ⊗ ω

k). (271)

These various metric and inverse metric duals of T have contractions that T has no counterpart

to, and lack counterparts to contractions that T has. For instance, there is no contraction T 3
2, but

there is the contraction (GT ) 3
2, namely,

(GT ) 3
2 = ωp(GT )(·)ep = Tkm

n
l (ω

l ⊗ ωpen ⊗ ω
mep ⊗ ω

k) (272)

= Tkm
n

l (ω
l ⊗ δp

n ⊗ δ
m

p ⊗ ω
k) (273)

= Tkp
p
l (ω

l ⊗ ωk). (274)

On the other hand, there is the contraction T 2
1 = Tk

mp
p (em ⊗ ω

k), but there is no contraction

(G−1(·)T ) 2
1. There is, however, the contraction (G(·)T ) 2

3, namely, Tk
p
pl (ω

l ⊗ ωk), which, because

Tk
p
pl = Tkr

s
lg

rpgsp = Tkr
s
lg

rpgps = Tkr
s
lδ

r
s = Tkr

r
l = Tkp

p
l, is the same as (GT ) 3

2.

A case of interest occurs when the tensor field in question is the contracted curvature Φ

of a covariant differentiation d on M. As a cocotensor field, Φ itself has no contraction, but G−1Φ

does. This permits the following definition, which is not available in the absence of a nondegenerate

metric.

Definition. If d is a covariant differentiation on M, then by the twice contracted curvature

of d (with respect to G) (the curvature scalar of d, for short) is meant the scalar field

Ψ defined by Ψ := (G−1Φ) 2
1, where Φ is the contracted curvature of d.

Theorem 8. In a frame system E,

Ψ := Tr (G−1Φ) := (G−1Φ) 2
1 = Φk

k = Θk
mk

m, (275)

and also

Ψ = Tr (ΦG−1) = (ΦG−1) 1
2 = Φk

k = Θkm
km. (276)
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XX. LENGTHS OF PATHS AND CURVES IN METRIC MANIFOLDS

Let G be a metric on the smooth manifold M. Call the pair {M, G} a metric manifold.

Definition. If p : I →M is a smooth path in the metric manifold {M, G}, and t is a number in

I, then the nonnegative number |ṗ(t)|G is called the speed of p at t (with respect to G).

The function on I whose value at each “time” t is the speed of p at t is called the speed of

p (with respect to G) and is denoted by |ṗ|G. If I = [a, b], then by the length of p (with

respect to G) is meant the nonnegative number ℓ(p) defined by

ℓ(p) :=

∫ b

a

|ṗ|G =

∫ b

a

|〈ṗ, ṗ〉G|
1
2 =

∫ b

a

|G(p)ṗṗ|
1
2 . (277)

Theorem 1. If p is constant, then ℓ(p) = 0. If p is not constant, then ℓ(p) > 0 if G is definite,

and ℓ(p) = 0 if and only if G is indefinite and, for each number t in [a, b], the velocity of p at

t is either the zero vector or a null vector.

Definition. That the path p : I → M is nonstop means that p is smooth and the velocity ṗ

of p vanishes nowhere on I. If I = [a, b], and A = p(a) and B = p(b), then p is said to be a

path from A to B in M. By a smooth (doubly smooth, triply smooth) curve in M

is meant a subset C of M for which there is a (doubly smooth, triply smooth) nonstop path

p in M whose range is C; every such path p is said to be a parametrization of C, and is

said to parametrize C. If p is a nonstop path from A to B in M, and p parametrizes C,

then C is said to be a smooth (doubly smooth, triply smooth) curve from A to B in

M. By an arc of C is meant a smooth (doubly smooth, triply smooth) curve C̄ in M that is

parametrized by a path p̄ such that p̄ = p|[a,b], where p : I ∈ M is a parametrization of C and

[a, b] is a nondegenerate subinterval of I; if p(a) = A and p(b) = B, then C̄ is called the arc

of C from A to B, also the arc AB of C.

If p : [a, b]→M is a smooth path in M, and q = p(φ), a smooth regular reparametrization of p by

φ : [c, d]→ [a, b], then q̇ = ṗ(φ)φ̇. Because φ̇ vanishes nowhere, if either of p and q is nonstop, so is

the other. Also,

〈q̇, q̇〉G = 〈ṗ(φ)φ̇, ṗ(φ)φ̇〉G = 〈ṗ(φ), ṗ(φ)〉Gφ̇
2, (278)

from which it follows that if p is nonstop, then the velocity of p and the velocity of q at corresponding

times t and φ−1(t) are both positive, both negative, or both null.

Definition. The nonstop path p in M is said to be null (resp., positive, negative) (with

respect to G) if and only if at each “time” t in its interval the velocity of p at t is null

(resp., positive, negative) with respect to G. The smooth curve C in M is said to be null

(resp., positive, negative) (with respect to G) if and only if there is a nonstop null (resp.,

positive, negative) path p in M that parametrizes C.
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Continuing, if, as above, p : [a, b] → M is a smooth path in M, and q = p(φ), a smooth regular

reparametrization of p by φ : [c, d]→ [a, b], then

ℓ(q) =

∫ d

c

|〈q̇, q̇〉G|
1
2 =

∫ d

c

|〈ṗ(φ), ṗ(φ)〉Gφ̇
2|

1
2 (279)

=

∫ d

c

|〈ṗ(φ), ṗ(φ)〉G|
1
2 |φ̇| =

∫ d

c

|〈ṗ, ṗ〉G|
1
2 (φ) sgn(φ̇)φ̇ (280)

= sgn(φ̇(c))

∫ φ(d)

φ(c)
|〈ṗ, ṗ〉G|

1
2 =

∫ b

a

|〈ṗ, ṗ〉G|
1
2 = ℓ(p), (281)

which justifies the following definition.

Definition. If each of A and B is a point of M, and C is a smooth curve from A to B in M,

then by the length of C (with respect to G), denoted by ℓ(C), is meant ℓ(p), where p is

any nonstop path from A to B in M that parametrizes C.

Theorem 2. If C is a smooth curve in M, then ℓ(C) > 0 if G is definite, and ℓ(C) = 0 if and

only if G is indefinite and C is null.

Definition. If C is a smooth curve in M, and p : I →M is a smooth path in M that parametrizes

C, then p is said to be an arclength-proportional parametrization of C if and only

if there is a positive number k such that if [a, b] is a nondegenerate subinterval of I, then

b − a = k ℓ
(

p|[a,b]

)

= k ℓ(C̄), where C̄ is the arc of C from p(a) to p(b); if k = 1, thus if

b−a = ℓ
(

p|[a,b]

)

= ℓ(C̄), then p is said to be an arclength parametrization of C, and is said

to parametrize C by arclength. Also, p is said to be a constant-speed parametrization

of C if and only if the speed |ṗ|G of p is constant, a unit-speed parametrization of C if

and only if |ṗ|G = 1.

Theorem 3. If C is a smooth curve in M, then p : I → M is an arclength-proportional

parametrization of C if and only if p is a constant-speed parametrization of C whose speed is

positive, in which event if [a, b] is a nondegenerate subinterval of I, then ℓ
(

p|[a,b]

)

= |ṗ(a)|G (b−

a), a consequence of which is that p parametrizes C by arclength if and only if p is a unit-speed

parametrization of C.

Theorem 4. Let p : I → M be a parametrization of the positive or negative smooth curve

C in M. Let a be any number in I, let c be any number, let k be any nonzero number,

and let θ : I → R be defined by θ(t) := c + (1/k)
∫ t

a
|ṗ|G. Then θ has an inverse φ, and if

q = p(φ), then q is an arclength-proportional parametrization of C with constant speed |k|,

which is an arclength parametrization of C if and only if |k| = 1. If p itself is a constant-speed

(thus arclength-proportional) parametrization of C, then θ(t) = c + (|ṗ(a)|G/k)(t − a) and

φ(s) = a+ (k/|ṗ(a)|G)(s− c). If p is a unit-speed parametrization, then θ(t) = c+ (1/k)(t− a)

and φ(s) = a+ k (s− c).
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XXI. METRIC GEODESICS

Let {M, G} be a doubly smooth metric manifold, and let C be a smooth curve in M that

is either positive or negative.

Definition. The positive or negative curve C is said to be geodesic (with respect to G), and is

called a geodesic curve (of G) (a geodesic, for short), if and only if C is doubly smooth and,

for each arc C̄ of C from a point A to a point B that lies entirely in a domain of some coordinate

system of M, the length ℓ(C̄) of C̄ (with respect to G) is stationary under comparison with

the lengths of all smooth curves from A to B in M that are “near” C̄. (That the smooth curve
¯̄C from A to B in M is “near” C̄ means here that there is a coordinate system X of M whose

domain incorporates both C̄ and ¯̄C, and there are parametrizations p̄ : [a, b] → M of C̄ and

¯̄p : [a, b]→M of ¯̄C such that supt∈[a,b](|X ¯̄p(t)−Xp̄(t)|+ |X̂ ˙̄̄p(t)− X̂ ˙̄p(t)|) is small.)

Suppose C is doubly smooth. Let p : I → M be a doubly smooth parametrization of

C, let C̄ be an arc of C from a point A to a point B, parametrized by a restriction of p to an

interval [a, b] such that p(a) = A and p(b) = B. Suppose further that C̄ lies entirely in the domain

of the coordinate system X of M. Then ℓ
(

C̄
)

= ℓ
(

p|[a,b]

)

=
∫ b

a
|G(p)ṗṗ|

1
2 =

∫ b

a
|ṗmgmn(p)ṗn|

1
2 =

∫ b

a
L (Xp, (Xp)˙) , where, with pm = xmp and ṗm = (pm)˙,

L (Xp, (Xp)˙) = L
(

p1, · · · , pM , ṗ1, · · · , ṗM
)

:=
∣

∣

∣
ṗkgkl

(

X−1
(

[[ p1, · · · , pM ]]
))

ṗl
∣

∣

∣

1
2

=
∣

∣

∣
ṗkgkl(p)ṗ

l
∣

∣

∣

1
2
.

(282)

The Euler–Lagrange equations for p that are necessary and sufficient for ℓ(C̄) to be stationary

under comparison with the lengths of all smooth curves from A to B in M that are “near” C̄ are,

for m = 1, . . . ,M ,

0 =
∂L

∂pm
(Xp, (Xp)˙)−

(

∂L

∂ṗm
(Xp, (Xp)˙)

)·

(283)

=
1

2L(Xp, (Xp)˙)

∂L2

∂pm
(Xp, (Xp)˙)−

(

1

2L(Xp, (Xp)˙)

∂L2

∂ṗm
(Xp, (Xp)˙)

)·

(284)

=
1

2L(Xp, (Xp)˙)

[

∂L2

∂pm
(Xp, (Xp)˙)−

(

∂L2

∂ṗm
(Xp, (Xp)˙)

)·

+
(L(Xp, (Xp)˙))·

L(Xp, (Xp)˙)

∂L2

∂ṗm
(Xp, (Xp)˙)

]

, (285)

which are equivalent to

(

∂L2

∂ṗm
(Xp, (Xp)˙)

)·

−
∂L2

∂pm
(Xp, (Xp)˙) =

(L(Xp, (Xp)˙))·

L(Xp, (Xp)˙)

∂L2

∂ṗm
(Xp, (Xp)˙) . (286)
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Now

L
2 (Xp, (Xp)˙) =

∣

∣

∣
ṗkgkl(p)ṗ

l
∣

∣

∣
= sgn

(

ṗkgkl(p)ṗ
l
) (

ṗkgkl(p)ṗ
l
)

(287)

= sgn
(

ṗkgkl(p)ṗ
l
) (

ṗkgkl

(

X−1
(

[[ p1, · · · , pM ]]
))

ṗl
)

(288)

= sgn(C)
(

ṗkgkl

(

X−1
(

[[ p1, · · · , pM ]]
))

ṗl
)

= sgn(C)
(

ṗkgkl(p)ṗ
l
)

, (289)

where sgn(C) = 1 or −1, according as C is positive or negative. Consequently,

∂L2

∂pm
(Xp, (Xp)˙) = sgn(C)

(

ṗk ∂

∂pm

(

gkl

(

X−1
(

[[ p1, · · · , pM ]]
)))

ṗl

)

(290)

= sgn(C)

(

ṗk ∂gkl

∂xm
(p)ṗl

)

= sgn(C)
(

ṗkgkl.m(p)ṗl
)

, (291)

and

∂L2

∂ṗm
(Xp, (Xp)˙) = sgn(C)

(

∂ṗk

∂ṗm
gkl(p)ṗ

l + ṗkgkl(p)
∂ṗl

∂ṗm

)

(292)

= sgn(C)
(

δm
k gkl(p)ṗ

l + ṗkgkl(p)δ
l
m

)

(293)

= sgn(C)
(

gml(p)ṗ
l + ṗkgkm(p)

)

= sgn(C)
(

2 ṗkgkm(p)
)

, (294)

from which follows
(

∂L2

∂ṗm
(Xp, (Xp)˙)

)·

= sgn(C)
(

gml.k(p)ṗ
kṗl + gml(p)(ṗ

l)˙ + (ṗk)˙gkm(p) + ṗkgkm.l(p)ṗ
l
)

(295)

= sgn(C)
(

2 (ṗk)˙gkm(p) + ṗk (gml.k(p) + gkm.l(p)) ṗ
l
)

. (296)

The Euler–Lagrange equations are therefore equivalent to

(ṗk)˙gkm(p) + ṗk [k l .m](p) ṗl = λ ṗkgkm(p), (297)

where λ = (L(Xp, (Xp)˙))·/L(Xp, (Xp)˙) and

[k l .m] :=
1

2
[gml.k + gkm.l − gkl.m], (298)

the Christoffel symbol of the first kind. If G is nondegenerate, then raising of the index m in

these equations by G−1 produces the equivalent equations

(ṗm)˙ + ṗk{k
m

l}(p) ṗ
l = λ ṗk, (299)

where

{k
m

l} := [k l . n] gnm =
1

2
[gnl.k + gkn.l − gkl.n] gnm, (300)

the Christoffel symbol of the second kind. These calculations establish the following theorem.

Theorem 1. In order that the positive or negative doubly smooth curve C in M be geodesic

with respect to G it is necessary and sufficient that, for each doubly smooth parametrization
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p of C, and each coordinate system X of M such that domX ∩ C 6= ∅, the components in X

of p and of ṗ satisfy the differential equations

(ṗk)˙gkm(p) + ṗk [k l .m](p) ṗl = λ ṗkgkm(p), (301)

and, if G is nondegenerate, the equivalent differential equations

(ṗm)˙ + ṗk{k
m

l}(p) ṗ
l = λ ṗk, (302)

where λ = (ln |ṗ|G)˙.

If p is an arclength-proportional parametrization of C, then |ṗ|G is constant, and vice versa, so this

theorem has the following corollary.

Theorem 2. In order that the positive or negative doubly smooth curve C in M be geodesic with

respect to G it is necessary and sufficient that, for each doubly smooth arclength-proportional

parametrization p of C, and each coordinate system X of M such that domX ∩ C 6= ∅, the

components in X of p and of ṗ satisfy the differential equations

(ṗk)˙gkm(p) + ṗk [k l .m](p) ṗl = 0, (303)

and, if G is nondegenerate, the equivalent differential equations

(ṗm)˙ + ṗk{k
m

l}(p) ṗ
l = 0. (304)

Definition. The smooth path p in M is said to be geodesic (with respect to G), and is

called a geodesic path (of G) (a geodesic, for short), if and only if p is a doubly smooth

parametrization of a geodesic curve of G.

Definition. That the geodesic curve C is maximal means that C is not a subset of any other

geodesic curve.

Theorem 3. If P is a point of M, u is a nonnull tangent vector at P , and r0 is a number,

then there is just one geodesic path p such that p(r0) = P , ṗ(r0) = u, and p is an arclength-

proportional parametrization of a maximal geodesic curve C; if u is positive, then C is positive;

if u is negative, then C is negative; if |u|G = 1, then p is an arclength parametrization of C.

If the metric G is indefinite, then there are doubly smooth curves C in M that are null. If

C̄ is an arc of such a curve from a point A to a point B, then C̄ is null and ℓ(C̄) = 0, so ℓ(C̄) is an

absolute minimum with respect to the lengths of all smooth curves from A to B in M. Because,

however, the arclength function ℓ on the space of paths in M is not differentiable at any path

that is null (for essentially the same reasons that the real function |x2|
1
2 , that is to say |x|, is not

differentiable at 0), the preceding definition and theorems cannot be extended to encompass “null

geodesic”. If P is a point of M, then according to the preceding theorem every nonnull tangent

vector u at P generates by way of a parametrization p a geodesic curve that passes through P in
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the direction determined by u. The following definition causes this property to extend to the null

tangent vectors at P .

Definition. The null curve C is said to be geodesic (with respect to G), and is called a

geodesic curve (of G) (a geodesic, for short), if and only if C is doubly smooth and, for

each doubly smooth parametrization p of C, and each coordinate system X of M such that

domX ∩C 6= ∅, the components in X of p and of ṗ satisfy the differential equations

(ṗk)˙gkm(p) + ṗk [k l .m](p) ṗl = λ ṗkgkm(p), (305)

and, if G is nondegenerate, the equivalent differential equations

(ṗm)˙ + ṗk{k
m

l}(p) ṗ
l = λ ṗk, (306)

for some continuous mapping λ : domX ∩ C → R. If, for each such coordinate system X,

λ = 0, then p is said to be a pseudo–arclength-proportional parametrization of C.

With appropriate modifications all the preceding definitions and theorems now extend to null

geodesics.
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XXII. METRIC CONNECTIONS

Continue with {M, G} a doubly smooth metric manifold, and with G nondegenerate.

Theorem 1. For each coordinate system X of M let Γ(X) = Γk
m

l (dx
l ⊗ dxk ⊗ ∂/∂xm), with

Γk
m

l := {k
m

l} =
1

2
[gnl.k + gkn.l − gkl.n] gnm, (307)

Then

i. Γ is a connection on M,

ii. the covariant differentiation d associated with Γ is torsion free,

iii. dG = 0,

iv. the autoparallel geodesic paths and curves of d are the geodesic paths and curves of the

metric G, and

v. if the doubly smooth path p is a parametrization of the geodesic curve C of G, then p is an

arclength-proportional or pseudo–arclength-proportional parametrization of C if and only if

p is affinely parametrized as an autoparallel geodesic path of d, in which case C is maximal

if and only if p is maximal.

Definition. If d is a covariant differentiation on M, then d is said to be compatible (also to be

consistent) with G if and only if dG = 0. By a metric connection is meant a connection

on a doubly smooth manifold whose associated covariant differentiation is compatible with

some metric on that manifold.

Theorem 2. The covariant differentiation d is compatible with G if and only if dG−1 = 0.

Theorem 3. Suppose the covariant differentiation d is compatible with G. If each of u and v is a

differentiable vector field that is covariantly constant with respect to d, and domu∩ dom v 6= ∅,

then 〈u, v〉G is constant. If p is a differentiable path in M, and each of u and v is a differentiable

vector field on p that is covariantly constant with respect to d, then 〈u, v〉G is constant.

The following proposition is referred to as the Fundamental Theorem of Metric Differential

Geometry.

Theorem 4. If T is a skew-symmetric cococontensor field on M, then there is just one covariant

differentiation d on M that is compatible with G and has T for its torsion.

A proof of this theorem proceeds as follows: Suppose that d is such a covariant differentiation. Let

E be a smooth frame system of M, with dual coframe system Ω. Then d∧ω
m = Ck

m
l(ω

l ⊗ ωk),

with coefficients Ck
m

l that are skew-symmetric in k and l. Also, if the torsion T of d is T , then

T = Tm ⊗ em, where Tm = Tk
m

l(ω
l ⊗ ωk), with coefficients Tk

m
l that are skew-symmetric in k

and l. Further, d∧ω
m = −ωk

m∧ωk = ωk∧ωk
m = −Γ[k

m
l](ω

l⊗ωk), where ωk
m are the 1-forms and

Γk
m

l the coefficients of d in E. From Tm = d∧ω
m − d∧ω

m follows that ωk ∧ ωk
m = d∧ω

m −Tm,



70

which is equivalent to Γ[k
m

l] = Tk
m

l − Ck
m

l, in turn equivalent to

Γkml = Γlmk + 2(Tkml − Ckml), (308)

the index m having been lowered by G. On the other hand, if d is compatible with G, then from

G = ωm ⊗ gmnω
n follows that

0 = dG = dωm(·)⊗ gmnω
n + ωm ⊗ dgmn(·)⊗ ωn + ωm ⊗ gmndω

n(·) (309)

= −ωk
m(·)⊗ ωk ⊗ gmnω

n + ωm ⊗ dgmn(·)⊗ ωn − ωm ⊗ gmnωl
n(·)⊗ ωl (310)

= −ωk
m ⊗ ωk ⊗ gmnω

n + dgmn ⊗ ω
m ⊗ ωn − ωl

n ⊗ ωm ⊗ gmnω
l (311)

= −ωk
mgmn ⊗ ω

k ⊗ ωn + dgmn ⊗ ω
m ⊗ ωn − ωl

ngmn ⊗ ω
m ⊗ ωl (312)

= (−ωm
kgkn + dgmn − ωn

lgml)⊗ (ωm ⊗ ωn) (313)

= (−ωm
kgkn + dgmn − ωn

lglm)⊗ (ωm ⊗ ωn), (314)

which is equivalent to dgmn = ωmn + ωnm, thus to gmn.lω
l = Γmnlω

l + Γnmlω
l, in turn equivalent

to Γmnl = −Γnml + gmn.l, and therefore to

Γklm = −Γlkm + gkl.m. (315)

It now follows that

Γkml = Γlmk + 2(Tkml − Ckml) (316)

= −Γmlk + glm.k + 2(Tkml − Ckml) (317)

= −Γklm − 2(Tmlk − Cmlk) + glm.k + 2(Tkml − Ckml) (318)

= Γlkm − gkl.m − 2(Tmlk − Cmlk) + glm.k + 2(Tkml − Ckml) (319)

= Γmkl + 2(Tlkm − Clkm)− gkl.m − 2(Tmlk − Cmlk) + glm.k + 2(Tkml − Ckml) (320)

= −Γkml + gmk.l + 2(Tlkm − Clkm)− gkl.m − 2(Tmlk − Cmlk) + glm.k + 2(Tkml − Ckml),

(321)

thus that

2Γkml = gmk.l + glm.k − gkl.m − 2(Tmlk − Cmlk) + 2(Tlkm − Clkm) + 2(Tkml − Ckml) (322)

so that

Γkml = [k l .m] + 2(Tklm + Tlkm + Tkml)− 2(Cklm +Clkm +Ckml), (323)

and therefore that

Γk
m

l = {k
m

l}+ (Tkl
m + Tlk

m + Tk
m

l)− (Ckl
m + Clk

m + Ck
m

l), (324)
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where

[k l .m] :=
1

2
[gml.k + gkm.l − gkl.m], (325)

and

{k
m

l} := [k l . n] gnm =
1

2
[gnl.k + gkn.l − gkl.n] gnm. (326)

It is straightforward to show that the Γk
m

l given by this formula are the coefficients in E of a

covariant differentiation d that is compatible with G and has the tensor field T for its torsion.

Note that

Γ(k
m

l) = {k
m

l}+ (Tkl
m + Tlk

m)− (Ckl
m + Clk

m) (327)

(328)

and

Γ[k
m

l] = Tk
m

l − Ck
m

l, (329)

thus that Γk
m

l is symmetric in k and l if and only if Tk
m

l = Ck
m

l and Γk
m

l = {k
m

l}. If E is

a coordinate frame system, then Ck
m

l = 0. Consequently, Γk
m

l is symmetric in k and l in every

coordinate frame system if and only if Tk
m

l = 0, thus if and only if T = 0. For this reason

metric connections associated with torsion free covariant differentiations are sometimes said to be

symmetric.

The equations dgmn = ωmn + ωnm and ωk ∧ ωk
m = d∧ω

m −Tm provide an algorithm for

calculating the 1-forms ωk
m that is useful when the frame system E is chosen so that the gmn are

constants, particularly so when E is orthonormal. In that case the matrix [ωk
m] is the solution of

the matrix equation

[ωk] ∧ [ωk
m] = [d∧ω

m −Tm] (= [(Ck
m

l − Tk
m

l)(ω
l ∧ ωk)]) (330)

that has the symmetries implied by [ωk
m] = S[G−1] = [ωkn][gnm], where, because ωmn + ωnm =

dgmn = 0, S is a skew-symmetric matrix. Linearity of the lefthand member allows the solution to

be constructed as a sum of partial solutions, one for each of the entries (Ck
m

l − Tk
m

l)(ω
l ∧ ωk) of

the righthand member.


