I. TOPOLOGICAL SPACES AND HOMEOMORPHISMS

If S is a nonempty set, then by a topology for S is meant a collection T' of subsets of
S such that (i) S is in T, (ii) the empty set @ is in T, (iii) if A and B are sets in T, then AN B
is in 7', and (iv) if 7" is a subcollection of T', then |J4.4v A is in T. By a base for T is meant a
subcollection B of T" such that every nonempty set in 7" is a union of one or more of the sets in B.
By a topological space Y is meant a set S together with a topology T for S. The elements of S
are called the points of ¥. The sets in T" are called the open sets of ¥; their complements (in .S)
are called the closed sets of ¥. Each of @ and S is both open and closed.

Example. S is a line, B is the collection of all intervals of S that include neither end point, and

T is the collection of all unions of subcollections of B.

Example. S is a plane, B is the collection of all interiors of circles in S, and T is the collection of
all unions of subcollections of B. Another base for the same topology T for S is the collection of
all interiors of convex polygons in S. Yet another is the collection of all interiors of rectangles in
S with one side horizontal. One other is the collection of all interiors of circles in S of radius less

than e, where € is some positive number, the same for all the circles in question. Call this space II.

Example. S is a sphere, B is the collection of all subsets of S “sliced off” by a plane that intersects
S in a circle (a slice lying on one side of the plane only; the circle of intersection not included in

the slice), and T is the collection of all unions of subcollections of B.

Example. S is a “punctured sphere” (a sphere with one point removed), B is the collection of
all subsets of S “sliced off” by a plane that intersects S in a circle or a “punctured circle” (a slice
lying one side of the plane only; the circle or punctured circle of intersection not included in the

slice), and T is the collection of all unions of subcollections of B. Call this space ¥*.

If each of ¥ and ¥/ is a topological space, and F' is a mapping of a subset of ¥ into ¥/,
then F is continuous at P means that (i) P is a point of dom F', and (ii) if U’ is an open set
of ¥’ that has F(P) in it, then there is an open set U of ¥ that has P in it and is such that
F(U) is a subset of U’; F is continuous means that F' is continuous at each point of its domain.
By a homeomorphism of ¥ onto ¥’ is meant a one-to-one mapping F' of ¥ onto ¥ such that
both F and F~! are continuous. If such a homeomorphism exists, then ¥ and ¥’ are said to be
homeomorphic and to be topologically equivalent (to one another). Topological equivalence

is an equivalence relation (reflexive, symmetric, and transitive) on the set of all topological spaces.

Example. The plane IT and the punctured sphere ¥* described above are topologically equivalent.
Clearly II is homeomorphic to the plane II' tangent to ¥* at the point opposite the puncture point.
A homeomorphism F of II' onto ¥* is produced by “stereographic projection”, described as follows:
for each point P of I'; F'(P) is the point of 3* that lies on the line through P and the puncture point.






II. FINITE-DIMENSIONAL MANIFOLDS

By a local coordinate system, of dimensionality M, for the set S is meant a one-to-
one mapping X of a subset of S onto an open set in RM; RM ig called the coordinate space of X,
and dom X is called the coordinate patch of X. The mapping X ! is called an M-dimensional
parametrization of dom X. The coordinate functions of X are denoted by 2™, m =1,..., M,
so that X = [z',...,2M] (in other words, if P € dom X, then X (P) = [z(P),...,2M(P)], a
vector in RM). If, to distinguish it from X, a local coordinate system of dimensionality M is
labeled X', then its coordinate functions are denoted both by /™ and by #™, m =1,...,M; X",
X" and so on are treated similarly. If the coordinate patch of X is all of S, then X is called
a global coordinate system for S. “Coordinate system” used alone means “local coordinate
system”. If P € dom X, then X is said to be a coordinate system around P. A synonym for

“coordinate system” is “chart”.

If f is a mapping of a subset of S into R, then f is CX (resp., C>°) with respect
to X means that X(dom f) is open in R and either X (dom f) is empty or else the function
foX~ % X(dom f) — Ris, if K > 0, continuous, and has, if K > 1, continuous partial derivatives
of all mixtures of order K or less (resp., of all orders). These partial derivatives, composed with
X, will be denoted by df/0x™, 0*f/0x™20x™, &3 f/0x™30x™292™ | and so on. In a different
notation these would read 9, (f o X 1) (X), Oy (O, (f o X~ 1))(X), and so on. That f is analytic
with respect to X means that X(dom f) is open and either X (dom f) is empty or else the
function f o X! has, about each point of X (dom f), a real power series representation. If F is a
mapping of a subset of S into RY, then F is CX (C*°, analytic) with respect to X means that
for n = 1,..., N the n'" component function of the mapping F o X~ ': X(dom F) — RV is CK
(C®°, analytic). Clearly, if f or F'is analytic with respect to X, then it is C*° with respect to X,
and if it is C* with respect to X, and L < oo, then it is C¥ with respect to X if K < L.

If each of X and X’ is a coordinate system for the set S, then X’ is C¥-compatible
(resp., C*°-compatible, analytically compatible) with X means that each of X and X’ is C¥
(resp., C*°, analytic) with respect to the other. This relation is almost an equivalence relation on

the set of all coordinate systems for S, as the following theorem indicates.

Theorem 1. C¥-compatibility, C™-compatibility, and analytic compatibility are reflexive and
symmetric as relations among all local coordinate systems for the set S; if S’ C S, then they

are transitive among those local coordinate systems for S that are global for S’.

Henceforth, statements that are made about C¥-compatibility will be understood to gen-

erate by replacement analogous statements about C'°*°-compatibility and analytic compatibility.

By a CX atlas for the set S is meant a collection of one or more local coordinate systems
for S whose coordinate patches collectively cover S, and each two of which are C¥-compatible. If
each coordinate patch has in it a point of S not in any of the other patches, then this is a minimal
CK atlas for S. If the C¥ atlas omits no coordinate system for S that is C¥-compatible with
every other coordinate system in it, then it is called a maximal CX atlas for S. Every CK atlas

for S that has a minimal C¥ atlas for S as a subatlas (i. e., as a subset that is an atlas) is itself



a subatlas of a maximal C¥ atlas for S, viz. {X | X is a local coordinate system for S that is
C*X_compatible with every coordinate system in that minimal C¥ atlas for S}, and is a subatlas

of no other maximal C¥ atlas for S, however arrived at.

Definition. By a C¥ (resp., C*°, analytic) manifold is meant a set S, distinct from R, and
from RM for M =1,2,..., together with a maximal C¥ (resp., C*°, analytic) atlas for S. By
a manifold is meant a C¥, a C*, or an analytic manifold. The elements of the underlying set
S are called the points of the manifold. The elements of the maximal atlas of the manifold are
called the coordinate systems of the manifold and their domains are called the coordinate
patches of the manifold. If a manifold is C* with K > 1, is C™, or is analytic, it is said
to be K-smooth (smooth if K > 1, doubly smooth if K > 2, triply smooth if K > 3).

Theorem 2. If M is a manifold, then there is a unique topology for M with respect to which
each coordinate system of M is a homeomorphism. This topology has as a base the set of all

coordinate patches of M.

If S’ is an open subset of the CX manifold M, then S’ together with the atlas whose
coordinate systems are the restrictions to S’ of the coordinate systems of M is a C* manifold
M’. This manifold M’ is referred to as the (open) submanifold M’ of M, and M is called an
extension of M. The components (maximal connected subsets) of a manifold M are open, hence

can be considered connected open submanifolds of M.

Theorem 3. If the manifold M is connected, then all coordinate systems of M have the same

dimensionality.

A proof of this theorem relies on the “invariance of domain” theorem that if an open set in
RM is homeomorphic to an open set in RY, then M = N. Henceforth every manifold considered
will be supposed connected, and the common dimensionality of its coordinate systems will be called

the dimensionality of the manifold.



III. DIFFERENTIABLE MAPPINGS BETWEEN SMOOTH MANIFOLDS

Henceforth M will denote an M-dimensional, and N an N-dimensional smooth manifold,

unless otherwise indicated. For the present let F' be a mapping of a subset of M into N.

Definition. The statement that F' is Y-differentiable with respect to X at P means that
i. X is a coordinate system of M around P,
ii. Y is a coordinate system of N around F'(P),
iii. P is an interior point of dom X N F~!(domY’), and

iv. there exist a linear mapping L: R® — R and a function 7: dom X N F~!(domY) — R¥Y
such that if Q € dom X N F~1(domY’), then

a. Y(F(Q)) - Y(F(P)) = L(X(Q) — X(P)) + n(Q)|X(Q) — X(P)], and
b. (@) — 0 as [X(Q) — X(P)| — 0.

(Here the choice of norms for R™ and RY is immaterial, inasmuch as all norms on R¥ are uniformly

equivalent to one another.)

Theorem 1. If F' is Y-differentiable with respect to X at P, then the linear mapping L and the

function n are uniquely determined by the conditions (iv.a) and (iv.b).

Theorem 2. If F' is the identity mapping of M onto itself, P is a point of M, and each of X
and X' is a coordinate system of M around P, then F is X’-differentiable with respect to X
at P;if X’ = X, then L = I'M | the identity mapping of RM onto itself.

If F' is Y-differentiable with respect to X at P, then the linear mapping L is called the
Y-differential of F' with respect to X at P. The function whose domain is the set of all such
points P and which assigns to each such point P the Y-differential of ' with respect to X at P
is called the Y-differential of F' with respect to X and is denoted by d(Y F)/dX. If F is the
identity mapping of M onto itself, and X’ is a coordinate system of M whose domain intersects
that of X, then d(X'F)/dX is called the differential of X’ with respect to X and is denoted
by dX'/dX.

Theorem 3. If F' is Y-differentiable with respect to X at P, then each of the partial derivatives

oy"F)

ox™

(P) (= 0m(YFX)"(X(P))) (1)

exists, and the matrix that represents (d(Y F')/dX)(P) with respect to the standard bases in
RM and RY is given by

1 N
d(YF m [O(y"F a(gxf)(m 8(gm1F) )
D) -T2 w)] = | z @)
O(y'F) Oy F)

o (P) o S (P)



Thus if v € RM, then

(D o] =[] W[ LD o= [ ). o

Corollary. If each of X and X’ is a coordinate system of M around P, then

- ol Y _
dx’ m | Qg™ ) . .
)| - [axm <P>] e T ()
ozY oM’
| 5o (P) - g (P) ]

where (9z™ /8z™)(P) = dp(X'FX~1)™ (X (P)), with F the identity mapping of M onto

itself. In particular,

K] =T g )] =B )

where 6,," :=0if m #n, 1 if m =n.

Theorem 4. If P € dom F', X is a coordinate system of M around P, Y is a coordinate system
of N around F(P), and YF is C! with respect to X, then F is Y-differentiable with respect
to X at P.

Theorem 5. If P € dom F, each of X and X’ is a coordinate system of M around P, and each
of Y and Y is a coordinate system of N around F'(P), then F is Y'-differentiable with respect
to X" at P if and only if F is Y-differentiable with respect to X at P, and

dY'F) . dYy’ dYF),  dX
ax’ (P) = Y (F(P))W(P)dX’(P)’ (6)

which in terms of the entries in the representing matrices is equivalent to

Oy F), . 9x™ _ Oy"F)
Ox™ (P)_8a:m/ (P) ox™

(P) = (F(P)). (7)

oy™

Corollary. (Coordinate Chain Rule) If each of X, X', and X" is a coordinate system of M

around P, then

ax" ax’ ax”
W(P)W(P) =X (P); (8)
equivalently,
oz oz oz
P P) = P).
S (P) S (P) = S (P) )
In particular
dX ax’ dX M



equivalently,

oz ox™ ox™
o (P) 2 (P) = o (P) = (1)

Definition. The statement that F' is differentiable at P means that F is Y-differentiable
with respect to X at P for every coordinate system X of M around P and every coordinate
system Y of N around F(P); that F is differentiable means that if P € dom F, then F is
differentiable at P.

According to this definition, differentiability of F' is a property not of F' alone, but of F
and the maximal atlases of M and N. If, for example, N’ is a smooth manifold whose points are
the same as those of N, but whose maximal atlas is distinct from N’s, then it might well be that
F is differentiable as a mapping into N, but not as a mapping into N’. Strictly, then, each of the
phrases “F' is differentiable at P” and “F is differentiable” must be understood as followed by the
qualifying phrase “as a mapping from the manifold M to the manifold N”. The same qualification
must be applied to all other phrases describing a kind of differentiability or of continuity of F, such
as “F is CX” (to be defined), and “F is continuous at P” (to be defined).

Theorem 6. F' is differentiable at P if and only if there exist a coordinate system X of M and
a coordinate system Y of N such that F'is Y-differentiable with respect to X at P.

Definition. F is C¥ (C*, analytic) means that YF is CK (C*, analytic) with respect
to X for each coordinate system X of M and each coordinate system Y of N such that
dom X N F~Y(domY) # @. (If K = 0, this definition applies also to the case where either M

or N is C?, as well as to the case where each is smooth.)

Theorem 7. When each of M and N is CX (C*, analytic) or smoother, then F is CK (C*,
analytic) if and only if there exist a subatlas of M’s maximal atlas and a subatlas of N’s
maximal atlas such that Y I is CX (C, analytic) with respect to X whenever X is in the
former subatlas, Y is in the latter subatlas, and dom X N F~1(domY) # @.

Theorem 8. Each of these implications holds: F is analytic = Fis CK for K =1,2,... =
FisClfor L=1,...,K = F is differentiable = F is C°.

Definition. The statement that F' is Y-continuous with respect to X at P means that

i. PedomkF,
ii. X is a coordinate system of M around P,
iii. Y is a coordinate system of N around F'(P), and

iv. if @ € dom X N F~!(domY), then |(YF)(Q) — (YF)(P)| — 0 as | X(Q) — X(P)| — 0. That
F' is continuous at P means that F' is Y-continuous with respect to X at P for every
coordinate system X of M around P and every coordinate system Y of N around F(P).

That F' is continuous means that if P € dom F, then F' is continuous at P.



This definition and the next three propositions are sensible if either M or N is merely C°,

and the propositions are theorems in those cases as well as when M and N are both smooth.

Theorem 9. F' is continuous at P if and only if there exist a coordinate system X of M and a

coordinate system Y of N such that F' is Y-continuous with respect to X at P.

Theorem 10. If dom F is open, then F is continuous if and only if ' is C°. F is continuous
at P (resp., continuous) if and only if F' is continuous at P (resp., continuous) as a mapping

from the topological space M to the topological space N.

Theorem 11. F is continuous at P if and only if F' is continuous at P as a mapping of ¥ into
Y/, where ¥ is M with the topology that has as a base the set of all coordinate patches of M
and Y’ is N with the topology that has as a base the set of all coordinate patches of N. F is

continuous if and only if F' is continuous as a mapping of ¥ into Y.

Theorem 12. If F' is differentiable at P, then F' is continuous at P. If F' is differentiable, then

F' is continuous.

That F' is a diffeomorphism of M onto N means that F' is a one-to-one mapping
of M onto N and both F and F~! are differentiable. If F is such a diffeomorphism, then M
and N are said to be diffeomorphic and to be differentiably equivalent (to one another).
Differentiable equivalence is an equivalence relation (reflexive, symmetric, and transitive) on the

set of all differentiable manifolds.

Theorem 13. If M and N are diffeomorphic, then ¥ and ¥’ are homeomorphic, where ¥ is M
with the topology that has as a base the set of all coordinate patches of M and ¥ is N with
the topology that has as a base the set of all coordinate patches of N.



IV. DIFFERENTIABLE PATHS IN AND SCALAR FIELDS ON A SMOOTH
MANIFOLD

By a path in M is meant a mapping p: I — M, where [ is a nondegenerate interval of R.
By a scalar field on M is meant a mapping f: U — R, where U is a nonempty subset of M. Let
p be a path in M, and f a scalar field on M.

Definition. The statement that p is X-differentiable at ¢ means that
i. t is a number in dom p,
ii. X is a coordinate system of M around p(t), and

iii. there exist a linear mapping L: R — RM and a function n: p~!(dom X) — RM such that if
t € p~(dom X), then

a. X(p(t)) — X(p(t)) = L(t —t) +n(t)|t — 1)|, and
b. |n(t)] — 0 as |t —t| — 0.

Theorem 1. If p is X-differentiable at ¢, then the linear mapping L and the function 7 are
uniquely determined by the conditions (iii.a) and (iii.b).

If p is X-differentiable at ¢, then the linear mapping L is called the X-differential of p
at t. The function whose domain is the set of all such numbers ¢ and which assigns to each such
number ¢ the X-differential of p at ¢ is called the X-differential of p and is denoted by d(Xp).
The function d(Xp)(-)(1) is called the X-derivative of p, and is denoted by D(Xp); its value at
t, D(Xp)(t) (a vector in RM), is called the X-derivative of p at .

Theorem 2. The path p is X-differentiable at ¢ if and only if each of the functions x™p is
differentiable at ¢, in which event D(Xp)(t) = [(z™p) ()] = [(='p) (t),--- , (@Mp) (t)], and
the row matrix that represents d(Xp)(t) with respect to the standard bases of R and RM | as
well as the vector D(Xp)(t) with respect to the standard basis of R is given by

m—

[D(Xp) ()] = [d(Xp) ()] = [(«™p) ()] (12)

Definition. The statement that f is X-differentiable at P means that
i. X is a coordinate system of M around P,
ii. P is an interior point of dom X Ndom f, and

iii. there exist a linear mapping L: RM — R and a function n: dom X Ndom f — R such that
if Q € dom X Ndom f, then

a. f(Q) = f(P) = L(X(Q) - X(P)) +n(Q)|X(Q) — X(P)], and
b. [n(Q)] — 0 as [X(Q) — X(P)[ — 0.

Theorem 3. If f is X-differentiable at P, then the linear mapping L and the function 7 are
uniquely determined by the conditions (iii.a) and (iii.b).
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If f is X-differentiable at P, then the linear mapping L is called the X-differential of f
at P. The function whose domain is the set of all such points P and which assigns to each such
point P the X-differential of f at P is called the X-differential of f and is denoted by df/dX.

Theorem 4. If f is X-differentiable at P, then each of the partial derivatives
af _
——(P) (=0na(fX ") (X(P))) (13)

ox™

exists, and the column matrix that represents (df/dX)(P) with respect to the standard bases

| =T[2Lp). (14)
)=

oxm

in RM and R is given by

Thus if u € RM| then
i) o [t10] T[] - [ ] s

ox™

Definition. The statement that p is differentiable at ¢ means that p is X-differentiable at t for
every coordinate system X of M around p(t); that p is differentiable means that if ¢ € dom p,
then p is differentiable at . The statement that f is differentiable at P means that f is
X-differentiable at P for every coordinate system X of M around P; that f is differentiable
means that if P € dom f, then f is differentiable at P.

Theorem 5. The path p is differentiable at ¢ if and only if there is a coordinate system X of M
such that p is X-differentiable at t. The scalar field f is differentiable at P if and only if there
is a coordinate system X of M such that f is X-differentiable at P.

Theorem 6. (Contravariant Chain Rule) If p is differentiable at ¢, and each of X and X’ is

a coordinate system of M around p(t), then

DIX'p)(1) = T (p(1) D(Xp) 1) (16)
equivalently,
D D)) = D)0 2 (1), (17)

Theorem 7. (Covariant Chain Rule) If f is differentiable at P, and each of X and X' is a
coordinate system of M around P, then

df o df o dX

S (P) = TL(P) T (P (18)
equivalently,

of _ Ox™ af

L (P) = o (P) o (P). (19)

For p and f there are definitions and theorems analogous to those at the end of Chapter

III having to do with F’s being C¥, C', analytic, or continuous.
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V. DUAL VECTOR SPACES

Let U be a finite-dimensional vector space over R, and let M = dimU. By a linear
functional on U is meant a (homogeneous) linear mapping of U into R. With respect to the
usual addition of and multiplication by real numbers of real-valued functions the set of all linear
functionals on U is itself a vector space over R; it is called the dual space of U and is denoted
by U*. In case U = RM this dual space is also denoted by Rj;. It can be identified with Ry (the
vector space of all M-rowed column matrices over R, denoted alternatively by R},) by identifying

in Ry if and only if u), = u¥ep,

the linear functional u* in Rp; with the column matrix [u}),]

where {e,,} is the standard basis for RM. That the numbers u*e,, determine u* is a consequence

of the linearity of u*: if u = u™e,,, then v*u = u*(uey) = u™(u*ey) = vu, (in terms of

matrix multiplication [u*u] = [u™u),] = [u™][u),] = [u][u*], where [u] = [u™], the row matrix that
represents u in the standard basis, and [u*] = [u},] = [u*e,,], the column matrix identified with u*).

More generally, if {a,,} is a basis for U, then to know an element u* of U* it is sufficient

to know the numbers u*a,,, for if © = u™a,,, then v*u = u™wu),, where u;, = u*a,,. In particular,
forn = 1,...,M an element a" of U* is determined by the stipulation that a"a,, = d,,", which
is equivalent to the stipulation that if v = u™a,,, then a"u = u™. The set {a™} is a basis for
U*, called the basis dual to {a,,}. From this it follows that dimU* = M = dimU. If v* € U*,
and v = u™a,, then v'u = u*(ua,) = (v ay) = (a™uw)u), = (uf,a™)u, so u* = ulad™ =
(u*am,)a™.
An isomorphism ¢ of U onto U* is determined by the formula iu = ©" 0" if © = u"ay,.
Equivalent requirements that determine the same isomorphism are that iuv = u™d,,,v" if u =
u"a,, and v = v"a,, that ia,, = d,a”, and that ia,,a, = dmy,. This isomorphism, which maps
the (ordered) basis {a,} onto the (ordered) dual basis {a™} (that is, ia,, = a") can change with a
change of the basis {a,, }, consequently does not identify vectors in the dual space U* with vectors
in U in a “basis-free” manner. Likewise, the isomorphism j of U* onto U** (the dual of the dual
of U) determined with regard to the basis {a™} of U* in the same way that i is determined with
regard to the basis {a,,} of U is not independent of the choice of {a"}, hence not independent
of the choice of {a,,}. The isomorphism ji of U onto U**, however, is basis-free. It assigns
to each vector u in U the linear functional [,: U* — R defined by the formula [,u* = u*u if
u* € U*, which makes no reference to any basis. This isomorphism is called the natural (also, the
canonical) isomorphism of U onto U** and is used to identify the vectors of U** with those
of U, whereupon j becomes identified with !, inasmuch as (ji)u is identified with . When the
basis vector a,, is thus identified with the element (ji)a,,, one has that apu* = u*a,, = u},, in
particular that a,,a”™ = a"a,, = 0,,", so that {a,,} is identified with the dual basis of its own dual
basis. By inductive extension each of U**, U**** and so on is identified with U. Similarly, each of
U**, U*** and so on is identified with U*.

If U = RM, so that U* = Ry, then in the same way that U* is identified with Ry, the
second dual U** can be identified with RM (the vector space of all M-columned row matrices over
R, denoted alternatively by R}). Specifically, if {¢™} is the basis of Ry; dual to the standard
basis {e,,} of RM and I € (Rys)*, then [ is identified with the row matrix [I™], where I"™ = [e™.

Combined with this identification, the identification of vectors in U with vectors in U** becomes
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simply the correspondence between vectors in RM and the row matrices that represent them in the
standard basis.

If V is a finite-dimensional vector space over R (of dimensionality N, say), and L is
a (homogeneous) linear mapping of U into V, then there is a (homogeneous) linear mapping
L*: V* — U* defined as follows: if v* € V*, then, for each vector u in U, (L*v*)u = v*(Lu),
which is to say, L*v* := v*L. This mapping L* is called the dual of L. If {a,,} is a basis for U,
{a™} is the basis for U* dual to {an,}, {b,} is a basis for V, and {b"} is the basis for V* dual to
{bn}, then La,, = L,,"b,, where L,," = b"La,,, and L*b" = L*",,a™, where L*",, = a,, L*b" =
(L*0™)ay, = b"(Lay,) = Ly™. Thus if u = uay,, then Lu = (u™Ly,")by, and if v* = v}b", then
L*v* = (v L™ ) a™ = (Ly,"v))a™.

When U** and V** are canonically identified with U and V', L** becomes identified with a
(homogeneous) linear mapping of U into V. If u € U and v* € V*, then, under these identifications,
(L*u)v* == u(L*v*) = (L*v*)u == v*(Lu) = (Lu)v*, so L** = L.

Because Lu = (u™Ly,")by, the row matrix [(Lu)"] that represents Lu in the basis {by}
is [u™Ly,"], which factors into [u™][L,,"], where [u™] is the row matrix that represents u in the
basis {an}, and, consequently, [L,,"] is the matrix in R} (the vector space of all M-rowed, N-
columned matrices over R) that represents L in the bases {a,, } and {b,}; thus [(Lu)"] = [u™][L"].
Similarly, [(L*v*).,] = [Ly"][v)] where [(L*v*),,] is the column matrix that represents L*v* in the
dual basis {a™}, and [v}] is the column matrix that represents v* in the dual basis {6"}. Thus L*
is represented in the dual bases {a™} and {b"} by the same matrix, [L,,"], that represents L in
the bases {a,,} and {b,}. For L*, however, this matrix multiplies from the left, whereas for L it

multiplies from the right.
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VI. TANGENT VECTORS AND TANGENT COVECTORS

For each point P of the smooth manifold M let Ap denote the set of all coordinate systems
of M around P.

Classical Definition of Tangent Vector. By a contravariant tangent vector of M (tan-
gent vector or simply vector for short) at P is meant a mapping u: Ap — RM such that if
X € Ap and X' € Ap, then

dx’
X = Pu(X 2
w(X') = —5 (P)u(X), (20)
which in component form reads
’ 81"“/
=M P 21
w =um S (P), (21)

provided [u™] = [u(X)] in RM and [v"] = [u(X")] in RM.

The coordinate chain rule ensures the consistency of this definition, for if also X” € Ap, then
ax” ax” _ dX’ ax"
e (Phu(X) = S (P (Pu(x) = S
Each tangent vector at P is determined by its representation in (i. e., its value at) a single coordinate

(P)u(X"). (22)

u(X//) —

system. This permits the following assertion.

Theorem 1. Under the usual addition and multiplication by scalars of mappings into a vector
space the set of all tangent vectors at P is a real vector space. If X is any coordinate system in
Ap, then an isomorphism of this space onto RM is created by assigning to each tangent vector

at P its representation in X.

Definition. The vector space of all tangent vectors at P is called the tangent space (of M) at
P and is denoted by T¥(M) and by T (if M is implicit from the context). The isomorphism
described in Theorem 1 is denoted by X*; thus if u € TF, then X u = u(X), so [XFu] = [u™]
in RM.

Theorem and Definition. If p is a path in M that is differentiable at ¢, then there is a
unique tangent vector at p(t) whose representation in each coordinate system X around p(t)
is D(Xp)(t). This tangent vector is called the velocity of p at t as well as the derivative
of p at ¢t. The function on {¢ | p is differentiable at ¢ } whose value at each “time” ¢ is the
velocity of p at t is called the velocity of p and the derivative of p, and is denoted by p, by
p', and by Dp. If p™ = a2™p, then (p(-)(X))™ = (D(Xp))™ = D(2™p) = Dp"™; this function
is denoted by p™. Thus p™ = Dp™ = (p™)" = (p™).

Classical Definition of Tangent Covector. By a covariant tangent vector of M (tangent
covector or simply covector for short) at P is meant a mapping v: Ap — Ry (the dual
space of RM) such that if X € Ap and X' € Ap, then

dX

v(X') = 0(X) - (P), (23)
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which in component form reads

B ox™
- 9z

(P)om, (24)

where [v,,] = [v(X)] in Ry and [v,] = [0(X)] in Ryy.

As before, the coordinate chain rule ensures the consistency of the definition. Also as before,
each tangent covector is determined by its representation in a single coordinate system, hence the

following theorem holds.

Theorem 2. Under the usual addition and multiplication by scalars of mappings into a vector
space the set of all tangent covectors at P is a real vector space. If X is any coordinate system
around P, then an isomorphism of this space onto R, is created by assigning to each tangent

covector at P its representation in X.

Definition. The vector space of all tangent covectors at P is called the cotangent space (of
M) at P and is denoted by T»(M) and by Tp (if M is understood from the context). The
isomorphism described in Theorem 2 is denoted by X p; thus if v € Tp, then Xpv = v(X), so
[Xpv] = [v] in Ryy.

Theorem and Definition. If f is a scalar field on a subset of M, and f is differentiable at P,
then there is a unique tangent covector at P whose representation in each coordinate system X
around P is (df/dX)(P). This tangent covector is called the cogradient of f at P as well as
the differential of f at P. The function on { P | f is differentiable at P } whose value at each
point P is the cogradient of f at P is called the cogradient of f and the differential of f,
and is denoted by d f. From the definition of 9f/9z™ it follows that (df(-)(X))m = Of/0x™.

Classical Definition of (Tangent) Scalar. By a (tangent) scalar of M (scalar for short)
at P is meant a mapping ¢: Ap — R that is constant, in other words is such that if X € Ap
and X' € Ap, then ¢(X') = ¢(X).

Theorem 3. If u is a tangent vector at P, and v is a tangent covector at P, then the relation
d(X) =v(X)u(X) if X € Ap determines a tangent scalar ¢ at P.

The tangent scalar ¢ at P is called the contraction of v with u (also the inner product of v
with u) and is denoted by vu. (Note that, according to Theorem 3, (vu)(X) = u™wv,, for each
coordinate system X in Ap.)

Let D!(P) denote the set of all scalar fields on M that are differentiable at P. Then with
respect to the usual addition and multiplication by scalars D*(P) is a vector space over R. Further,
if each of f and g is in D'(P), then so is fg. Moreover, if f € DY(P), f(P) =0, g is a scalar field
on M, P is an interior point of dom g, and g is continuous at P, then fg € D*(P). These follow
readily from the definition of fg and the identity

H@)g9(@Q)—f(P)g(P) = (f(Q)—F(P))g(P)+f(P)(9(Q)—g(P)+(f(Q)—f(P))(9(Q)—g(P)). (25)
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Modern Definition of Tangent Vector. By a tangent vector of M at P is meant a mapping

L: D'(P) — R that is linear and treats products in the following way:
i. L(fg) = (Lf)g(P) + f(P)(Lg) if f € D'(P) and g € D'(P);

ii. L(fg)= (Lf)g(P)if f € DYP), f(P)=0, g is a scalar field on M, P is an interior point of

dom g, and ¢ is continuous at P.

Examples of tangent vectors at P in the modern sense are afforded by the operators (9/9z™)(P)
on DI(P) associated with the coordinate system X around P. In fact these constitute a basis for

the tangent space at P according to the following theorem.

Theorem 4. Under the usual addition and multiplication by real numbers of real-valued map-
pings the set of all tangent vectors of M at P in the modern sense is a real vector space. If
X is any coordinate system around P, then the set {(9/02™)(P)} of operators on D!(P) is a
basis for this space, and an isomorphism is established, via R™ and RM, between the tangent

space at P in the classical sense and the tangent space at P in the modern sense by the scheme

Classical Cartesian Matrix Modern
Spaces: TF — RM — RM TF (26)
Vectors: u — u(X) — " — u™(0/0z™)(P).

This isomorphism is the same for all choices of X.

Henceforth let the tangent spaces at P in the two senses be identified through the iso-
morphism described in this theorem. Then for each differentiable path p in M one has that
p=p"™(0/92™)(p) on p~'(dom X).

Modern Definition of Tangent Covector. By a tangent covector of M at P is meant an

element of the dual space of the tangent space at P.

According to this definition the cotangent space at P in the modern sense is simply the dual space
of TP. If X is a coordinate system of M around P, then the coordinate differentials dz™(P),

defined as linear functionals on T by

dz™ (P) <u”%(13)> = um, (27)

are tangent covectors in the modern sense. In fact {dz™(P)} is the basis dual to {(0/92™)(P)},
for dz™(P)(0/0z™)(P) = §,,".

Theorem 5. If X is any coordinate system of M around P, then an isomorphism is established,

via Rys and Ryy, between the cotangent space at P in the classical sense and the cotangent
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space at P in the modern sense by the scheme

Classical Cartesian Matrix Modern
Spaces: Tp — Ry — Ry — Tp (28)
Covectors: v — v(X) —  [om]  — vpdx™(P).

This isomorphism is the same for all choices of X; it is the dual of the isomorphism of Theorem
4, provided the classical cotangent space at P is identified with the dual of the classical tangent

space at P in a way suggested by Theorem 3.

The two cotangent spaces at P will henceforth be identified by means of this isomorphism.
It follows that if f is a differentiable scalar field on M, then df = (9f/0z™)dz™ on dom X Ndom f.

Definition. The basis {(0/92™)(P)} and its dual basis {dz™(P)} are called, respectively, the
(coordinate) frame (or basis) at P determined by X and the (coordinate) coframe (or
cobasis) at P determined by X.

Finally, in the spirit of these modern definitions a tangent scalar of M at P is sim-
ply a real number (the constant value of the corresponding classical tangent scalar), and if u =
u™(0/0x™)(P) and v = vy, dx™(P), the contraction of v with w is the scalar (real number) u™v,,,

because

u —_—
ox™

vu = (Upda™(P)) ( n_0 (P)) = UM, (dﬂ(P)%(P)) = U0, O = U . (29)

In particular, df (P)u = u™(0f /0z™)(P) = uf if f € D'(P). This number is called the derivative
of f along u, as well as the u-derivative of f, and is denoted by D,, f; thus, D, f = uf = df (P)u.

Theorem and Definition. If U C M and P € U, then
{ueT? | D,f =0if f € D'(P) and f|y is constant} (30)

is a subspace of T, It is called the subspace of T* tangent to U and is denoted by TU”.

Its vectors are said to be tangent to U at P.
Theorem and Definition. If U C M and P € U, then
{veTp|vu=0Iif uis tangent to U at P} (31)

is a subspace of Tp. It is called the subspace of Tp cotangent to U and is denoted by TUp.

Its covectors are said to be cotangent to U at P.

Theorem 6. If U ¢ M and P € U, then dimTU” + dimTUp = M. If U = {P}, then
TUP = {0} and TUp = Tp. If P is an interior point of U, then TU" = T and TUp = {0}.
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VII. TENSOR PRODUCTS

Let each of U and V be a finite-dimensional vector space over R, and let M = dim U and
N = dimV. Let {a,,} be a basis for U, and {b,} a basis for V, with {a™} and {b"} their dual
bases in U* and V*. Let L(U, V) denote the vector space of all (homogeneous) linear mappings of
Uinto V. If L € L(U,V) and u € U, then Lu = ™ L;,"b,, where u™ = a"u and L,," = b"La,,
(implying that v = u™a,, and La,, = L;,"b,). In terms of the following definition v L,,"b,, can

be expressed as (a™ & Ly,"b,)u, hence L = o™ ® L;,"by,.

Definition. If v* € U* and v € V, then by the tensor product of «v* with v is meant the
mapping u* ® v: U — V such that if u € U, then (v* ®@ v)u = (u*u)v.

Theorem 1. If u*,u* € U*, and v,v € V, and a € R, then
i (W+a)@u=u" Qv+ Qu,
i v ®@@w+7)=v"®@v+u*®0, and

iii. (au*) @ v =a(u* ®v) =u*® (aw).

Theorem 2. The set S of all tensor products v* ® v with v* in U* and v in V' is a spanning
subset of L(U, V'), the subset {a" ® b,} of S is a basis for L(U, V), and dimL(U,V) = MN.
S=LU,V)ifandonlyif M =1lor N=1. If L € L(U,V), then L = a™® L;,"b,, = a™L,," ®
b, = Ly, (™ ® by), where L, = b"La,,. If v* € U* and v € V, then b"(u* ® v)a,, = u},0",

where u;, = u*a,, and v" = b"v.

Partly because of and partly in spite of this theorem the space L(U, V') is called the tensor
product of U* with V and is denoted U* ® V. In view of the previously adopted identification
of the second duals U** and V** with U and V themselves the spaces L(U*, V), L(U*,V*), and
L(U,V*) are, respectively, UV, U@ V*, and U*®@V*. In particular U* = U*®R and U = U @ R.

Theorem 3. The mapping i: U* @ V* — (U ® V)* obtained by linear extension from the basic
defining relations i(a™ ® b")(ar ® b;) = (a™ax)(b"b;) = 6™6[* is an isomorphism of U* @ V*
onto (U ® V')* which maps the basis {a™ ® b"} of U* ® V* onto the basis of (U ® V)* dual to
the basis {a;, ® by} of U ® V. This isomorphism is the same for all choices of the bases {a,}
and {b, }.

Henceforth the spaces U*®@V* and (U®V)* will be identified by means of the isomorphism
of Theorem 3. Thus (U ® V)* = U* ® V*, and, by implication, (U* @ V*)* =UQV, (U*QV)* =
U V* and (U@ V*)* =U*®@ V. Also, just as the bases {a,, ® b,} and {a™ ® b"} are dual to
one another, so, by implication, are {a™ & b,} and {a,, ® b"}.

Let W be a finite-dimensional vector space over R, with {c,} a basis for W. Then U* ®
(V*e@W) = LU, L(V,W)), whereas (U* @ V)@ W = U V) @ W =L(LU*V),W).

Theorem 4. For each element S of U* @ (V*® W) let S be the mapping T: U ® V. — W such
that if L = a,, @ L™"by,, then TL = L™ Sapb,. Then i(a™ ® (b" ® ¢p)) = (a™ @ ") @ ¢p,
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and i is an isomorphism of U* @ (V* @ W) onto (U* @ V*) @ W. Also, i is independent of the
choice of the bases {an, }, {b,}, and {c,}.

The spaces U* @ (V* @ W) and (U* ® V*) @ W will be identified from now on by agency
of the isomorphism of Theorem 4. Under this identification the tensor product is associative, as a
product of vectors as well as a product of spaces, for, as follows readily, if u* € U*, v* € V*, and
w € W, then v* ® (v @w) = (v* ®v*) ®w. Notations such as u* ® v* ® w can now be used, being
no longer ambiguous. Theorem 4 and these subsequent identifications apply equally well to other
spaces: for example, U @ (V* @ W*) = (U@ V*) @ W*.

Although R ® V has been identified with (R*)* ® V, it has not been defined as a space in

its own right. It is useful to define it in the following way.

Definition and Theorem. If r € R and v € V, then r ® v := rv. The product R® V is defined
to be the vector space spanned by the set of all such products; consequently R V =1V.

This definition is reconcilable with the previous identification through use of the usual
identification of a function f in R* with the number f(1) in R.
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VIII. DIFFERENTIALS OF MAPPINGS BETWEEN SMOOTH MANIFOLDS

As earlier, each of M and N is a smooth manifold, and F' is a mapping of a subset of M
into N.

Theorem 1. Suppose that F is differentiable at P. If h € D' (F(P)), then hF € D'(P). For
each tangent vector u of M at P, let Lu: D!(F(P)) — R be defined by (Lu)h := u(hF). Then
L is a linear mapping of TF (M), the tangent space of M at P, into TF(P)(N), the tangent
space of N at F(P); that is to say, L € Tp(M) @ TFP)(N).

Definition. The linear mapping L is called the differential of F' at P. The function whose
domain is the set of all points at which F' is differentiable, and which assigns to each such
point P the differential of F' at P, is called the differential of F' and is denoted by dF. Thus
dF(P) € Tp(M) @ TF(P)(N), and if u € TP (M) and h € D' (F(P)), then (dF(P)u)h = u(hF).
The function whose domain is the set of all points at which F' is differentiable, and which
assigns to each such point P the dual of the differential of F' at P, is called the dual of the
differential of F' and is denoted by (dF')*. Thus (dF)*(P) = dF(P)*, a linear mapping of
Tr(py(N), the cotangent space of N at F'(P), into Tp, the cotangent space of M at P, that is to
say, (dF)*(P) € TFP)(N)@Tp(M) and if v € Tppy(N), then (dF)*(P) v := vdF(P) € Tp(M).

Theorem 2. If F is differentiable at P, and U is a subset of M that has P in it, then dF (P)(TUT)
is a subspace of TF(U)¥(P)| the subspace of T*()(N) tangent to F(U) at F(P). On the other
hand (dF)*(P)(TF(U)ppy) is a subspace of TUp, the subspace of Tp(M) cotangent to U at P.

Theorem 3. If F' is constant on a set of which P is an interior point, then F' is differentiable at
P, and dF(P) = 0 (the zero element of Tp(M) @ TFF)(N)).

Theorem 4. If F' is differentiable at P, X is a coordinate system of M around P, and Y is a
coordinate system of N around F'(P), then

WD () L)) (32)

dF(P) = dz™(P) ®

Let O be a smooth manifold and G a mapping of a subset of N into O.

Theorem 5. (Chain Rule for Manifolds) If F' is differentiable at P, and G is differentiable
at F(P), then GF is differentiable at P, and d(GF)(P) = dG(F(P))dF(P).

Theorem 6. (Chain Rules for Velocities) If p is a path in M, p is differentiable at t,
F is differentiable at p(t), and ¢ = F(p), then ¢ is a path in N differentiable at ¢, and
q(t) = dF(p(t))p(t); if p is differentiable and F' is differentiable, then ¢ is differentiable, and
G = dF(p)p. If p is differentiable, ¢ is a differentiable mapping of an interval of R into dom p,
and ¢ = p(¢), then ¢ is a differentiable path in M, and ¢ = p(¢)¢.

Theorem 7. (Chain Rules for Cogradients) If g is a scalar field on N, F' is differentiable at
P, g is differentiable at F'(P), and h = gF, then h is a scalar field on M differentiable at P, and
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dh(P) = dg(F(P))dF(P); if F is differentiable and g is differentiable, then h is differentiable,
and dh = dg(F)dF. If g is differentiable, ¢ is a differentiable mapping of a subset of R into R,
rang Ndom ¢ # &, and h = ¢(g), then h is differentiable, and dh = d¢(g)dyg.

Theorem 8. If P € M, u € TP, and f € DY(P), then uf = df(P)u = u™(df/0x™)(P) =
(uz™)(0f /0z™)(P) for each coordinate system X of M around P.
Theorem 9. If P € M, f € D'(P), g € D(P), and ¢ € R, then
Lod(f+g)(P) =df(P) + dg(P),
ii. d(cf)(P)=cdf(P), and
iii. d(fg)(P) = g(P)df(P)+ f(P)dg(P).



21

IX. VECTOR FIELDS, COVECTOR FIELDS, AND TENSOR FIELDS

At each point P of the smooth manifold M there are the tangent space T, the cotangent
space Tp, and the various tensor product spaces that can be built from them, such as Tp @ TF,
TpRTp, TpRTpRTF, TpRTF @Tp, and Tp@Tp@Tp@TF. The elements of the tensor product
spaces are called tangent tensors at P and, for short, tensors at P. The type of such a tensor
at P is determined by the space to which it belongs, and is indicated by addition of one or more
prefixes co- or con- to the word tensor (“co-” from covariant vector, i. e., tangent covector, and
“con-” from contravariant vector, i. e., tangent vector). The tensors in the product spaces listed
above, for example, are called, respectively, (tangent) cocontensors, cocotensors, cococontensors,
coconcotensors, and cocococontensors at P. The elements of TP and Tp are also called tensors;
contensor and cotensor are the applicable terms. The term “contravector” for an element of T'F
is used also, to parallel “covector”, but the shorter word “convector” is not, as it already has a
meaning in ordinary discourse. Every tangent scalar at P is also called a tensor at P; no prefix is
applied.

By a vector (or contensor) field of M is meant a function v on a subset U of M
such that if P is a point of U, then u(P) is a tangent vector at P; u is said to be a vector (or
contensor) field on U. If X is a coordinate system of M, then, for each m, 9/0x™ is a vector
field (of M) on dom X; if U intersects dom X, then on their intersection u = u™(9/dx™), that is,
u(P) = u™(P)(0/0x™)(P) if P € UNdom X, where each component u" of u in X is a scalar
field on the intersection, given by u™(P) = u(P)z™ if P € U Ndom X.

Definition. If u is a vector field of M on U, then w is said to be differentiable (resp., contin-
uous) at P if and only if P is a point of U and, for every coordinate system X of M around
P, each of the components u"™ of u in X is differentiable (resp., continuous) at P; u is said to
be differentiable (resp., continuous) if and only if u is differentiable (resp., continuous) at
every point of U. To say that u is CX (C*, analytic) is to say that, for every coordinate
system X of M such that U Ndom X # @, each of the components u™ is CX (C*, analytic).

If X’ is a coordinate system of M whose domain intersects U Ndom X, then on U Ndom X Ndom X’
the components of u in X and of u in X’ are related through the “contravariant transformation
law” expressed by the equations

’ m 81"”

m
’ 81‘
u™ =u and u" =u" —.
oz oz

(33)

If M is CF (O, analytic), then the partial derivatives dz™ /dz™ and 9z /0z™ are all C*~1
(C*°, analytic). Consequently, much as in the case of mappings between manifolds, to determine
whether u is C, C®°, or analytic it is sufficient (because products and sums of C¥ | C*, or analytic
scalar fields are themselves C, C, or analytic) to make that determination for the components
of w in all (relevant) coordinate systems of some subatlas of M’s maximal atlas, so long as M is at
least (K + 1)-smooth. In particular, M being smooth, that is to say, 1-smooth, u will be C? if its
components in all (relevant) coordinate systems of some minimal atlas of M are C°. Also, if M is

doubly smooth, then u will be differentiable at P if and only if its components in some coordinate
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system around P are so. It is clear that the smoothness hierarchy holds for vector fields — that
if u is analytic, then it is C™, if u is C*°, then it is C¥ for K = 1,2,..., and so on. Coordinate
vector fields 9/0x™ are always CE—1 if M is CK, C™ if M is C*, and analytic if M is analytic.

The definitions of covector (or cotensor) field of M and of what it means for a covector
field of M to be differentiable at P, differentiable, C*, C*, or analytic are entirely analogous to
those for vector fields, as are the remarks one could make of the nature of those in the paragraph
just above. The only differences are that the components in X of the covector field v on U
are the scalar fields vy, given by v,,(P) = v(P)(0/0x™)(P), such that v = v, dz™ on U Ndom X,
and that the components in X’ are related to those in X through the “covariant transformation

law” expressed by

/
oz™ ox™
W Um and Um = &p—m Um! -

(34)

Uy =

It is clear that the coordinate covector fields dz™ will be CK~1 (C*, analytic) if M is CK (C*°,
analytic). It is also clear that, for each vector field u whose domain intersects that of v, the scalar
field vu, defined by (vu)(P) := v(P)u(P) if P € domuNdom v, and having in a coordinate system
X the representation u™v,,, will be differentiable at P (differentiable, C*, C*, analytic) if u and

v individually are.

Tensor fields of M of other types are defined in the same manner as vector fields and
covector fields of M, and the definitions of the various degrees of differentiability of these tensor
fields are analogous to those for vector fields and for covector fields. The values of the tensor field
at different points are required to be all of the same type, and the tensor field itself is said to be of
that type. For example, if at each point P in dom L the value of the tensor field L is in Tp @ TT,

then L is called a cocontensor field.

Negatives of tensor fields, sums of tensor fields of the same type, products of scalar fields
with tensor fields, and tensor products of tensor fields with tensor fields are all defined in the
obvious pointwise fashion. For example, if w is a vector field of M, and v is a covector field of M
whose domain intersects that of u, then the tensor product v ® u of v with w is defined by
(v@u)(P) =v(P)®@u(P)if P € domundomuw. If fis a scalar field on M whose domain overlaps
that of u, then (f @ u)(P) = f(P) @ u(P) := f(P)u(P), so f ® u = fu. It is also the case that
u® f = fu, not to be confused with uf, which is defined by (uf)(P) := u(P)f.

In accordance with these definitions the cocontensor field L would have, in coordinate
systems X and X', representations L = dz™ ® L,,"(9/0z") and L = dz"™ & Ly,y™ (9/8z™). If the

coordinate patches and dom L have an overlap, then on that overlap

/ /

ox™ ox™
= m p and L," = gy L,

n ox™
oz’

(35)

so that if the components L,,” of L in X are C¥ (C®, analytic) on the overlap, then so are the

components of L in X', and vice versa, provided that M is (K + 1)-smooth.
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If u is a vector field of M, and v is a covector field of M whose domain intersects that of
u, then, in each coordinate system X for which domuNdom v Ndom X # &, the tensor field v ® u

has the representation

VR U= (Vpdz™) ® (u”%) =dz™ ® (vmu”)a;zn = (u"vp,) (da:m ® %) . (36)
From this it follows that if each of u and v is C¥ (C, analytic) on domwu N domw, then so is
v ® u. For all other products of tensor fields, for sums and differences of tensor fields of the same
type, and for products of scalar fields with tensor fields analogous conclusions can be drawn.

For suitable pairs of tensor fields u and v there are various “contractions” of the tensor
product v ® u, analogous to the composition vu in the case where u is a vector field and v is a
covector field; these contractions are themselves scalar fields, vector fields, covector fields, or tensor
fields, and they, too, are CX (C>| analytic) if each of u and v is. If u = u"(9/0z") and v = v,,dx™,

then v ® u has just the one contraction mentioned:

(v ® u) (%) (da?) = <vmdacm ® u”%) <%) (dzP) (37)

0 0
_ m_Y n_Y g.p
= <vmda: 81;10) ® <u pe dx > (38)
= (umd"p) @ (u"6n") = (V6™ p)(u"6n") (39)
= vpu? = uPv, = vu. (40)

If, however, u = u™9/0x™ and v = dz* ® vyda!, then the product has the representation

0
= (™) (da”* ® da' 0 (42)
kl oxm |’

and it has two distinct contractions, represented in X by

d d d
(v ®u) <@> (-)(dzP) = <dxk@> ® vpdr' ® (wagc—mdxp) (43)
=6 @ vpdat @ u™6,,P 44
p
= "y @ dot @ u™5,,P (45)
= vy ® da! @ uP 46
p
= (uPvy)da’ (47)

and
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0 0 0
. v P\ _ k I m_Y
(v@u)(:) <83:p> (dz?) =dz" ® (vkldac 83:p> ® (u 8:1:mdxp>
= dazk & Uklélp & umémp
= do* @ vy ® uP

= (uPvgy)da”.
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X. FRAMES, COFRAMES, FRAME SYSTEMS, AND COFRAME SYSTEMS

By a frame (coframe) at the point P of the smooth manifold M is meant an ordered
basis of the tangent (cotangent) space of M at P. By a frame (coframe) system (or field) of M
is meant a function E (2) on a subset U of M such that if P is a point of U, then E(P) (Q2(P)) is
a frame (coframe) at P; E () is said to be a frame (coframe) system (or field) on U and, if P

is an interior point of U, around P. By the m'"

vector (covector) field of E (2) is meant the
vector (covector) field e, (w™) of M on U whose value at P is the m'™ vector (covector) in E(P)
(Q(P)). It is conventional to write £ = {e,,} and Q = {w™}; then E(P) = {e,}(P) = {em(P)}
and Q(P) = {w™}HP) = {w™(P)}, if P € U. If dom$) and dom F intersect, and for each point
P in their intersection ©(P) is the basis of Tp dual to the basis F(P) of T, then € is said to be
dual to £ on dom £ Ndom¢; in that event w™e,, = ¢, (as a scalar field on dom £ Ndom ). If
in fact dom Q2 = dom FE, then  is called the dual of E. For every frame system E there is just one
coframe system () that is the dual of E; it is determined by the requirements that dom {2 = dom E
and w™e, = 0,.

The frame (coframe) system F (2) is said to be differentiable at P if and only if each
vector (covector) field e, (w™) is differentiable at P, to be differentiable if and only each e,
(w™) is differentiable, and to be smooth if and only if each e,, (w™) is CK~1 (C>, analytic) if
M is CK (C*, analytic). These cannot occur unless M is doubly smooth, in which case if X is a
coordinate system of M, then {0/0z™} and {dz™} are, respectively, a smooth frame system and
a smooth coframe system of M on dom X, and {dz™} is the dual of {0/02™}; they are called
the frame system and the coframe system determined by X. By a coordinate frame
(coframe) system of M is meant a frame (coframe) system that for some coordinate system X
of M is the frame (coframe) system determined by X.

Every vector field u whose domain intersects that of the frame system F and its dual 2
has on the intersection the representation v = ue,,, where the components v of u in FE are
the scalar fields w™wu. Similarly, every such covector field v has the representation v = v,w™, the
components v, of v in E being the scalar fields ve,,. In particular, if E’ is a frame system of M
whose domain intersects that of F, and €' is its dual, then each e,, has the components w™e,,  in
E, each w™ has the components w™ e, in Q, each e, has the components w™ e, in E’, and each

w™ has the components w™e,, in . Thus

em = (em) " em = (W"en)em, (52)
W = (W™ )™ = (W™ e )™, (53)
em = (em)™ ey = (W™ em)em, (54)
and
W = (W)™ = (W e )™ . (55)

To make formulas such as these easier to read, the notations A,,™ and Amm/ are introduced to
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stand for the scalar fields w™e,, and wm,em, so that

! ! ! !
emt = Ay em, W =wWm"AR", em=An"en, and W =w" A" (56)

m' m— m —

If P € dom E NdomE’, then the matrices | [A,™(P)] and 711[Amml(P)] are, respectively, the
transition matrix from the basis {e,(P)} of T to the basis {e,(P)} of TT and the transition
matrix from the basis {w™(P)} of Tp to the basis {w™ (P)} of Tp; they are also, respectively, the
transition matrix from {w™ (P)} to {w™(P)} and the transition matrix from {e, (P)} to {e,(P)}.
As such, they are reciprocal matrices, and therefore A, A,y = 8, and A,y™ A" = 8,y . If
each of E and F' is a coordinate frame system, say E = {9/8z™} and E' = {8/dz™}, then
Ay = 82 /9™ and A,y = 0z /0x™ .

If £ is a coordinate frame system, and the frame system E is smooth, then the scalar fields
A, being the components of e, in E’, hence in X', are C¥~1 (C, analytic) if M is CK (C*°,
analytic). Conversely, if the A, satisfy the latter condition for every coordinate frame system
E’ whose domain intersects that of F, then F is smooth. Inasmuch as the entries of the reciprocal
matrix [A,,™(P)] are analytic functions of the entries of the matrix [A,,™ (P)], and the A,,™ are
the components of w™ in the coframe system dual to E’, hence are the components of w™ in X',
the coframe system {2 dual to E is smooth whenever F itself is smooth. The converse also is true:

FE is smooth if € is smooth.

If w is a vector field of M whose domain has an overlap with the domain of the frame
system F and the domain of the frame system E’, then on the overlap u = u™e,, = u A ™ e
and therefore v = u™A,,™ . From this it follows (by taking E’ to be a coordinate frame system)
that u will be differentiable at P, differentiable, or smooth if and only if in every smooth frame
system E whose domain intersects that of v the components u™ are so. A similar propositon is true
for covector fields v and their components v,, in E, and in both instances to know that the field is
differentiable at P, differentiable, or smooth it sufffices to test the components of the field in every
frame system of a set of smooth frame systems whose domains all contain P (for differentiability at
P) or else overlap the domain of the field and together cover it. Application of these observations
to the vector fields of a frame system (or to the covector fields of its dual coframe system) yields
the conclusion that a frame system E and its dual are differentiable at P, differentiable, or smooth
if and only if, for every frame system E’ in a set of smooth frame systems whose domains contain
P (for differentiability at P) or overlap and jointly cover dom F, the scalar fields A (or, equally

well, the scalar fields A,,,/"") are so.

For scalar fields f a useful notation is f,, to stand for e, f, which makes f,, = df/0z™ if
em = 0/0x™. In this notation f,, = A™ For, and if e,y = 8/63:7”,, then df = (8f/8xm,)dxm, =
Fodz™ = fow™Ap™ = Ap™ frow™ = frw™ = (emf)w™. Also, if u is a vector field, then
wf =u™0f /0™ =" oy = U Ap™ for = U fon = e f = (df )u.

Tensor fields of the various types all have their representations in frame systems, and
their components in frame systems with overlapping domains are related by “transformation laws”

involving the transition matrices [A,,”] and [A,»"™]. If, for example, T is a cococontensor field
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whose components in E and E’ are T™},; and T™ 1y, then

T=T"4u(w @ " @en) (57)

=T"u (wllAl/l & wk/Ak/k ® Ammlem/) (58)

— (Al/lAk/kkalAmm/)(wll ® wk/ ® em/) (59)

— Tm/k/l/ (wl/ ® wk/ 2 @m/)7 (60)

so that T™ iy = Apl A FT™ L A, Specialization of E’ to a coordinate frame system shows that,

just as for vector fields and covector fields, differentiability at P, differentiability, and smoothness

of T' can be determined by examination of its components 7""; in smooth frame systems E.

The notion of “contraction” is not confined to tensor fields that happen to be tensor
products of other tensor fields. All that is necessary is that the tensor field to be contracted have
a covariant slot and a contravariant slot, and then for each pair of its slots, one covariant, the
other contravariant, there is a contraction in that pair of slots. Each such contraction is a tensor
field with the same domain as, but with one fewer covariant slots and one fewer contravariant slots
than the original field. If, for example, T is, as above, a cococontensor field, represented in E by

T =T"(w' ®w* ®ep), then T has the two contractions given in E by

T(ep)()(WP) = T (wle, @ Wk @ epwP) (61)
=T (6" ® w* @ §,,7) (62)
= (O PT™ 0" )k (63)
= (TPpp)” (64)
and
T()(ep)(wP) = T (W' @ wFe, @ epwP) (65)
= ka;l(wl ® 5kp ® m”) (66)
= (0T 10" ) (67)
= (TP ). (68)

These contractions of T', which ostensibly depend on the choice of the frame system E in which

they are expressed, are in fact independent of it, and the same is true of all contractions of tensor
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fields of whatever (contractible) types. For example, starting from the frame system E’ one has

T(ey) ()W) = (Ap' ApF T Ap? ) (69)
= T" (AP A" (WM A7) (70)
= (T 416m )" (71)
= (T )" (72)
= (TPgp)" (73)

= T(ep)(-)(w"). (74)

The frame-system-independent notation 7'° will be adopted to stand for the contraction
of the tensor field T" in the covariant slot numbered a and the contravariant slot numbered b (in the
consecutive numbering of all of T”s slots from left to right). Thus, in the example above, T'$ stands
for the contraction represented in E by T'(ep)(-)(wP), and T3 is represented in E by T'(-)(ep)(wP).
One has, therefore, that

T3 = (T3rw" = (TP (75)
and
T3 =(T3)w' = (TPy)u'. (76)

When the tensor field to be contracted has only one contravariant slot, its contractions

can be generated in a slightly different manner. In the case of T" above, for example,

WTep = P (T (W' @ 0 ® em))ep (77)
=T u(wle, @ WF @ wPey,) (78)
=T (8" @ wh @ 6P,,) (79)
= TP},w" (80)
=73 (81)
and, similarly,
WwPT (e, =T . (82)

The combinations wPT, Te,, (WPT)e,, wP(Tep), T(-)ep, (WPT)(-)ep, and wP(T'(-)e,) that
are implicit in these formulas are instances of more general compositions of tensor fields, as is the
simplest composition of all, the contracted tensor product vu where u is a vector field and v is a
covector field. To illustrate, consider in addition to the cococontensor field T a cocontensor field

S. Then TS is to stand for a cococontensor field whose first covariant slot corresponds to the



29

covariant slot of S, whose second covariant slot corresponds to the second covariant covariant slot
of T', and whose contravariant slot corresponds to the contravariant slot of T'; the two remaining
slots, the first covariant slot of T' and the contravariant slot of of S, are “composed” with one
another and are thereby eliminated in T'S. The field T'S can be defined by telling, for each point P
in its domain, each tangent vector v at P, and each tangent vector u at P, what the tangent vector
(T'S)(P)uw is. The rule is that (T'S)(P)uu = (T'(P)(S(P)u))u, the righthand member of this
equation being interpreted as follows: the cocontensor S(P) operates on the vector u to give the
vector S(P)u; the cococontensor T'(P) operates on S(P)u to give the cocontensor T'(P)(S(P)u),
which then operates on the vector @ to produce the vector (7'(P)(S(P)u))u. Linearity in v and in
@ being apparent, the operator (T'S)(P) clearly is in L(TF,L(TF,TF)),i.e.,isin Tp @ Tp @ TT,
so T'S is a cococontensor field. Equally well, one could define T'S by specifying that for each vector
field u and each vector field u the vector field (T'S)uu is to be the result of applying at each point
P of domT Nndom S Ndomu N domu the rule given above, so that (T'S)uu = (T'(Su))u. This
defines the composition 7'S in terms of elementary compositions of co...tensor fields with vector
fields, which, pointwise, are just the operations of tangent co...tensors on tangent vectors.

The composition T'S thus defined is nothing other than the contraction in the second and
third slots (which come from the contravariant slot of S and the first covariant slot of T") of the

tensor product S ® T'— for, on the one hand

(TS)u = T(Su) (83)
=T((S%pw” @eq)(u"er)) (84)
= T(S%u" (WPe,) © eg) (85)
= (T w' ® Wk @ en)(STpuPey) (86)
= TSP (Wley) @ WF @ e, (87)
=TSP Wk ® e, (88)
— (kalSlp WP @ Wk @ em)u, (89)

so that T'S = kalSlp wP ® wF ® ey, and on the other hand
ST = qukal wP ® €q ® wl ® wk & em, (90)

so that (S ® T)2 = S", Tk, wP @ Wk @ e, = TS.

A different composition of 7" with S is 7'(-)S, in which the (-) indicates that the first
covariant slot of T is held open and it is the second covariant slot of 7' that is “composed” with
the contravariant slot of S. Thus (T'(-)S)uu = (Tw)(Su), where now the cococontensor field 7'
acts first on @ and then on Swu, whereas in (T'S)uu it acts first on Su and then on @. In both
compositions the covariant slot of S is filled by the first vector acted upon, before the covariant
slots of T come into play; if S had additional slots, these also would take precedence over those of
T. Just as T'S is the contraction of S ® T in the second and third slots, T'(-)S is the contraction
of S ® T in the second and fourth slots (those that arise from the contravariant slot of S and the
second covariant slot of T'); thus T'(-)S = (S ® T)3.
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In an analogous manner every contraction of a product S ® T' in a pair of slots of which
one comes from S and the other from 7" gives rise to a composition of 7" with .S. In more complex
cases an unambiguous yet clean notation comparable to T'S and T'(-)S can be difficult to come by,
but in every case the contraction notation (S ® T') 2 will be available.

In every frame system each component of a contraction of a tensor field is a sum of
components of the uncontracted tensor field, hence the contraction is at least as smooth as the
uncontracted field. In particular, every contraction of a product S ® T is at least as smooth as the
less smooth of S and T'; the same is true, therefore, of the various compositions of 1" with S.

It is true, but not obviously so, that not every frame system is a coordinate frame system.
A test that can be applied to a frame system to determine whether it is a coordinate frame system

will be developed later.
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XI. SYMMETRY, ANTISYMMETRY, AND EXTERIOR ALGEBRA

Let U be a finite-dimensional vector space over R, let {a,,} be a basis for U, and let {b™}
be a basis for U*. If p is a positive integer, then (U*)? will denote the space U* ® --- ® U* with p

factors U*.

Theorem 1. If p € (U*)? (resp., (U*)P ® U), and 7 is a permutation of {1,...,p}, then there
is just one element ¢, of (U*)? (resp., (U*)? ® U) such that if wy,...,u, € U, then

Pl .« Up = PUr—1(1) + - Ug—1(p).- (91)

If o is a permutation of {1,...,p}, then (¢r)s = Yor. If p =™ @ --- @ b, then ¢, =
P @ - - DM@ if p =M @ - @V ® ayy,, then wr =D @ -2 QBTTE) & ayy,.

Definition. If p € (U*)? or p € (U*)P? ® U, then
1 1
Sym ¢ == ] Z or and Sk = ] Z(sgn )P, (92)

where the sums are over all permutations 7w of {1,...,p}, and sgnm =1 or —1, according as =
is even or odd.
Theorem 2. If ¢, € (U*)? or p,¥ € (U*)P @ U, and o € R, then
i. Sym (¢ + ) = Sym ¢ + Sym ¢,
ii. Sk (¢ +19) =Sk ¢+ Sk 9,
i. Sym (ap) = a(Sym ¢), and
iv. Sk (ap) = a(Sk ¢).

—-

i

Theorem 3. If p € (U*)? (resp., (U*)P®U), then Sym ¢ and Sk ¢ are in (U*)P (resp., (U*)PQU),
and Sym (Sym ¢) = Sym ¢ and Sk (Sk ¢) = Sk ¢.

Definition. If ¢ € (U*)P or ¢ € (U*)? @ U, then ¢ is symmetric means that ¢, = ¢ for
every transposition 7 of {1,...,p}, and ¢ is skew-symmetric (antisymmetric, alternating)

means that ¢, = —¢ for every transposition 7 of {1,...,p}.

Theorem 4. Such a ¢ is symmetric if and only if ¢ = ¢ for every permutation 7 of {1,...,p},
and is skew-symmetric if and only if ¢, = —¢ for every odd permutation = of {1,...,p}; also,

such a ¢ is symmetric if and only if Sym ¢ = ¢ and is skew-symmetric if and only if Sk ¢ = ¢.

Sym ¢ is called the symmetrization of ¢ and the symmetric part of ¢, and Sk ¢ is called the
skew-symmetrization of ¢ and the skew-symmetric (antisymmetric, alternating) part

of ¢.

If, for each integer sequence {myi,...,m,} such that 1 < m; < M, @p,. m, is a real

number, then for each such sequence {mj,...,m,} the real number ¢(,,,...m,) and the real number
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©lm,...m1) are defined by

1
Plmp..m1) = Zwmfl@)"-mflu) and - P,..mq] = ,Z SENT)Pm_ 11y (93)
s

Theorem 5. If ¢ € (U*)P, and ¢ = @p,..m, ™ @ -+ @07, then

Sym ¢ = @(m,..my)0"" @ - @O (94)

and
Sk ¢ = @m0 @ @O (95)
¢ is symmetric if and only if ©(n,. .m) = ¥Pm,.m,, and skew-symmetric if and only if

D mp.mi] = Py - 0 € (UFP@U, and ¢ = @™y iy 0™ @ -+ - @ 0™ & Gy, then

Sym ¢ = ¢" (.m0 @ - @V ® ap, (96)
and
Sk o =" my..my 0™ @ @V @ am; (97)
¢ is symmetric if and only if ", my) = ¢"my..mi, and skew-symmetric if and only if
Plmp..mi] = P mp.mr -

Theorem 6. If ¢ € (U*)? or ¢ € (U*)?2® U, then ¢ = Sym ¢ + Sk .

Definition. If ¢ € (U*)?, and ¥ € (U*)? or ¥ € (U*)?®@ U, then ¢ A := Sk (p®@13), and ¢ A ¥
is called the exterior, the alternating, and the wedge product of ¢ with 9.
Theorem 7. If o, ¢ € (U*)P, and 9,9 € (U*)? or 9,9 € (U*)?®@ U, and a € R, then
L (p4+@)AI=pAI+ @AY,
i. o A(W+9)=pAd+ @A, and
iil. (ap) NI =alpAd) =@ (ad).

Theorem 8. If ¢ € (U*)P, ¥ € (U*)?, and ¢ € (U*)" or ¢ € (U*)" @ U, then

(ANAY=(p@NNp=p AN RY) = (D AY). (98)

This theorem permits an unambiguous interpretation of ¢ A ¥ A ¢ and, by extension, of such

products as @1 A @2 A=+ A @p.

Definition. If p is a positive integer, then by a p-form on U is meant a skew-symmetric
element of (U*)P, and by a vector-valued p-form on U is meant a skew-symmetric element

of (U*)P @ U. By a 0-form on U is meant an element of R, and by a vector-valued 0-form
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on U is meant an element of RQ U. A p-form ¢ on U is called simple if there exist 1-form(s)
01,92, ..., ¢p such that ¢ = @1 ApaA---Agp,, and compound if there do not. A vector-valued
p-form ¢ on U is called simple if there exist 1-form(s) @1, 2, ..., ¥y, with ¢, vector-valued,

such that ¢ = o1 A2 A -+ A ¢p, and compound if there do not.

Definition. The set of all p-forms on U is denoted by AP U*, that is, AP U* := {p € (U*)P |

¢ is skew-symmetric}.
Theorem 9. If p > 0, A? U* is a subspace of (U*)?.

Theorem 10. The set of all vector-valued p-forms on U is AP U* @ U, that is, APU* @ U =
{p € (U*P @U | p is skew-symmetric}. If p > 0, AP U* @ U is a subspace of (U*)P @ U.

Theorem 11. If p € (U*)P, and ¢ = @y, 0™ ®@ - - @ 0™, then

Sk ¢ = @y 0™ @ @Y (99)
— Py DA A DT (100)
= Oy b™ A A BT (101)
=¢ if e NPU*. (102)

Ifpe (U U, and p =" p, mb™ @ @ @ ay,, then

Sk o =¢@" [y m b @ @O @ ap, (103)
= "y g A AV @ ay (104)
=" g A ADTP @ Ay, (105)
=¢ if pe NPU*®U. (106)

Theorem 12. If p € (U*)P and ¥ € (U*)?, then J A p = (—1)P4(p A ¥); also,
wANY =Sk p AN¥ = p A Sk ¥ =Sk ¢ ASk . (107)
If ¢ is simple, then ¢ A ¢ = 0. If p is odd, then ¢ A ¢ = 0.

Theorem 13. If 1 <p < dimU, then {™ A+ AD™ [my < --- <mp} is a basis for A\"U,
and {6 A AV @ ap, | My < oo < my}is a basis for APU* @ U. If ¢ € (U*)P, and
Y= Pmy.m 0" @ @™, then

o= POy A e ADT, (108)
m1<---<Mmp
= > P Pmym DA AV e NPUR. (109)

mp<---<mp
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If o e (U @U,and o = @™y g ™ @ -+ @ 0™ @ ay,, then

o= PO V™ A AV @ (110)
my<--<my
= > P A AV @ ay i 9 NPUFRU. (111)

mp<--<mp

Theorem 14. If M = dim U, then dim A U* = (), and dim AP U* @ U = (%) - M, where (7))

is the binomial coefficient % if p< M, and is 0 if p > M.

If ¢ is a co...co- or a co...cocontensor field of the smooth manifold M, then there is a
positive integer p such that ¢(P) € (Tp)? for every point P in dom ¢ or ¢(P) € (Tp)P@T? for every
such point P. Because Tp = (T'7)*, all the preceding definitions apply to ¢(P) as an element of
(U*)? or of (U*)P®U, with U = T*. They can be applied to ¢ itself by applying them at each point
P in dom ¢ to ¢(P). Specifically, the tensor fields ¢, (where 7 is a permutation of {1,...,p}),
Sym ¢, and Sk ¢ are given by 6x(P) = (6(P))r, (Sym ¢)(P) = Sym (4(P)), and (Sk §(P) =
Sk (¢(P)), and the latter two are called the symmetrization of ¢ and the symmetric part of ¢,
and the skew-symmetrization of ¢ and the skew-symmetric (antisymmetric, alternating)

part of ¢. Also, ¢ is symmetric means that ¢(P) is symmetric if P € dom ¢, which is equivalent

to ¢ = ¢ for every transposition 7 of {1,...,p}, and ¢ is skew-symmetric (antisymmetric,
alternating) means that ¢(P) is skew-symmetric if P € dom ¢, which is equivalent to ¢, = —¢
for every transposition 7 of {1,...,p}.

In the same vein, if ¢ is a co. . . cotensor field of M, and @ is a co. .. co- or a co. . . cocontensor
field of M, and dom ¢ Ndom 6 # &, then ¢ A 6, the exterior, alternating, or wedge product of
¢ with 0, is defined by (¢ A 0)(P) = ¢(P) AO(P), and this is equivalent to ¢ A0 = Sk (¢ ®6). The
various special properties of this product carry over. For example, if ¢ is a p-cotensor field (that
is, ¢(P) € (Tp)P for each point P in dom ¢), and 6 is a g-cotensor field, then O A ¢ = (—1)P9(p N 0).

If ¢ is a skew-symmetric p-cotensor field of M, then ¢(P) € AP Tp = AP(TT)*, so ¢(P)
is a p-form on the tangent space of M at P; in this case ¢ itself is called a p-form of M and also
a differential p-form of M. If ¢ is a skew-symmetric p-cocontensor field of M, then ¢(P) €
N Tp@TT; in this case ¢ is referred to as a (differential) vector-valued p-form of M. Thus the
1-forms are just the covector fields of M, and the vector-valued 1-forms are the cocontensor fields.
By a 0-form of M is meant a scalar field of M, and by a vector-valued 0-form of M is meant a
vector field of M. A p-form ¢ of M is called simple if there exist 1-form(s) ¢1, ¢2,. .., ¢p such that
¢ =0¢1 NP2 A--- N\ ¢p, and compound if there do not. A vector-valued p-form ¢ of M is called
simple if there exist 1-form(s) ¢1, @2, ..., ¢p, with ¢, vector-valued, such that ¢ = dp1 A A---Adp,

and compound if there do not.
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XII. DIFFERENTIATION IN FRAME SYSTEMS
AND EXTERIOR DIFFERENTIATION

From this point onward the manifold M will be presumed to be doubly smooth unless
the contrary is stated. If T is a tensor field of M, then {P | T is differentiable at P} will be
called the domain of differentiability of 7" and denoted by ddom 7. The same terminology
and notation will be applied to scalar fields f. Clearly, ddom f C dom f, ddomT C domT,
and (ddom f N ddomT) C ddom (fT). If E is a frame system of M, then ddom7T N dom E is
the intersection of the domains of differentiability of the components of T" in E. If each of S
and T is a tensor field of M, then (ddomS N ddomT) C ddom (S ® T') and, if S and T are of
the same type, then (ddomS N ddom7) C ddom (S + T'), and ddom (—7") = ddomT, so that
(ddom SNddomT) C ddom (S —T).

Definition. If E is a smooth frame system of M, € is the dual of E, T is a tensor field of M,
and ddomT Ndom E # &, then by the E-differential of T is meant

dT™ ® e, if T=T"¢p, ondomT Ndom F, (112)
AT, @ w™ if T =T,w™ ondomT Ndom E, (113)
A, @ w" @ en, if T=T",(w" ® em) ondomT Ndom E, (114)
dTmn @ w" @ W™ if T =Thn(w"@w™) ondomT Ndom E, (115)
dT,," @ e, @ W™ if T=T,"(e, @w™) ondomT Ndom E, (116)
dT™ ®@ e, ® e, if T=T""(e, R en) ondomT Ndom E, (117)

dT™ . @ W' @ W" @ e, if T = Tmnk(wk RW" ® en) ondomT Ndom E, (118)

and so on. The E-differential of T is denoted by dgT. If P € (ddomT Ndom E), then dgT'(P) is
called the E-differential of T" at P. If u is a vector field whose domain intersects ddom 7' N dom F,
then (dgT)u is called the E-derivative of T' along wu.

Thus dgT is a tensor field whose type is that of T" augmented by an initial covariant slot, into

which the vector field u is inserted to produce the E-derivative of T  along wu.

Theorem 1. If P is a point of M, and each of F and E’ is a frame system of M differentiable at
P, then in order that Sk dg¢(P) = Sk drp¢(P) for every covector field ¢ of M differentiable
at P it is necessary and sufficient that A[mm/,n](P) = 0, also that Ap,,™ ,,1(P) = 0, and also
that (w”, ® W™ @ e, en])(P) = (0" @ w™ @ e, en]) (P). If these conditions are satisfied,
then Sk dg:¢(P) = Sk dg¢(P) for every p-cotensor field ¢ of M differentiable at P.

(Here Amml = wm/em, A[mm/.n] = %(Amml.n - Anml.m)7 and [ep, €,] = %(emen — €ném).)

Theorem 2. The relation “~" defined by E/ ~ E if and only if A[mm,.n](P) = 0 (hence
if and only if Ap,,™ ,q(P) = 0, hence, also, if and only if (w”l ®wm ® [eny, e]) (P) =
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(W @W™ ®[en, en]) (P)) is an equivalence relation on the set of all frame systems differentiable

at P, one of whose equivalence classes includes all coordinate frame systems around P.

Corollary. If P is a point of M, and each of E and E’ is a coordinate frame system of M differ-
entiable at P, then Sk dg/¢(P) = Sk dg¢(P) for every p-cotensor field ¢ of M differentiable
at P.

Definition. If ¢ is a p-cotensor field ¢ of M, and ddom ¢ # @, then by the exterior differential
of ¢, denoted dn¢ (and, on occasion, by d¢), is meant the (p+ 1)-cotensor field whose domain
is ddom ¢ and whose value at each point P of ddom ¢ is Sk dgp¢(P), where E is any coordinate
frame system around P; if ¢ is a scalar field of M, and ddom ¢ # &, then da¢ := d¢. In either
case, dy¢(P) is called the exterior differential of ¢ at P.

Theorem 3. If ¢ is a scalar field or a p-cotensor field of M, 6 is a scalar field or a g-cotensor
field of M, and (ddom ¢ N ddom 6) # &, then
i. dadis a (p+ 1)-form of M and daf is a (¢ + 1)-form of M,
ii. da(¢p+0) =dpg +dab if p =g,
iii. da(@®0) =da(p8) =drd N0+ @dpb if ¢ is a scalar field,
iv. dpa(@®60) =da(@NO) =drdp NI+ (—1)P(¢ A dAB) if ¢ is a p-cotensor field,
v. dp¢p=01if p> M, and
vi. da(dpg) = 0 if ¢ is C2.

Definition. If ¢ is a p-form of M, then ¢ is closed means that ¢ is differentiable and d ¢ = 0,
and ¢ is exact means that p > 0 and ¢ = d,0 for some (p — 1)-form 6.

Theorem 4. If ¢ is a p-form of M, and ¢ is exact, then ¢ is closed.

(This theorem has an approximate converse to the effect that if the domain of ¢ is “simply con-

nected” (a topological requirement) then ¢ is exact if it is closed.)

Corollary. If F is a frame system of M, and 2 is its dual coframe system, then in order that F

be a coordinate frame system it is necessary that daw™ = 0 and, equivalently, that [e,, e,] = 0.

(If the domain of E is “simply connected”, then these necessary conditions are also sufficient to

cause E to be a coordinate frame system.)
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XIII. FRAME SYSTEMIZATIONS AND COVARIANT DIFFERENTIATIONS

Definition. By a frame systemization of M is meant a mapping F with domain M such that
if P € M, then E: P +— E* a smooth frame system of M around P. By a coordinate frame
systemization of M is meant a frame systemizaton E of M such that if P € M, then ET is

a coordinate frame system.

Note that E¥ is not a frame at P, rather is a frame system of M whose domain has P in it. If Q is
a point in the domain of E¥, then E¥(Q) is a frame at Q; in particular, E¥(P) is a frame at P.

Definition. If F is a frame systemization of M, then by the differentiation generated by E
is meant the mapping d such that

i. the domain of d is the set of all tensor fields 7" of M such that T is differentiable at some

point, and
ii. if '€ domd, then dT is a tensor field on ddom T, and

iii. if 7 € domd and P € ddom T, then dT(P) = dgrT(P).

The essence of this definition is that for each point P of M there is a frame system E? around
P preferred for differentiating at P, in the sense that to differentiate a tensor field T at P it is
sufficient to differentiate at P the components of T in the preferred frame system ET. Another
point @ will have its own preferred frame system E< for differentiation at @, even if @ happens to
lie in dom E¥. An immediate consequence is that if EX = {e;}, with dual {w™}, then des (P) = 0
and dw™(P) = 0.

Definition. By a covariant differentiation on M is meant a mapping d such that
i. the domain of d is the set of all tensor fields T" of M such that T is differentiable at some
point,

ii. if T' € domd, then dT is a tensor field of M whose domain is ddom 7', and if P € ddom T
and W is the tensor space that 7'(P) is in, then d7'(P) is in Tp @ W,

iii. if each of S, T, and S + T is in domd, then d(S +T) = dS + dT,

iv. if f is a scalar field on M differentiable at some point, and each of T" and fT is in domd,
then d(f@7T)=d(fT)=df @ T+ fdT =df T + f ®dT,

v. if each of S, T, and S ® T is in domd, then d(S® T)(-) =dS(-) ® T + S ® dT(+), and
vi. If T is the cocontensor field whose value at each point P of M is the identity mapping of TF
onto 77, then dT = 0.

If T' € domd, then the tensor field dT is called the covariant differential of 7' (determined
by d). If u is a vector field whose domain intersects ddom T, then the tensor field D,T" on
ddom T N domu defined by D, T := (dT')u, that is, (D, T)(P) := dT(P)u(P) if P € ddomT N

domu, is called the covariant derivative of T along u (determined by d).
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Theorem 1. If E is a frame systemization of M, then the differentiation generated by E is a
covariant differentation on M.

Let d be a covariant differentiaton on M. Let E be a smooth frame system of M, with

dual coframe system (2.

Theorem 2. If u is a vector field of M that is differentiable at some point of dom E, then on
ddomu Ndom FE

du = (du™ + vFw,™) @ ey, (119)
= (U™ 4 u*T™)w! @ e, (120)
= (U™ + T (Wl @ em), (121)

and in particular
dep = wi™ ®em (122)
=T W' @ em, (123)
=T (W' @ em), (124)

where

wkm = wmdek and kal = wkmel, (125)

in consequence of which w;™ = T',™; Wt

Definition. The covector fields w;™ and the scalar fields I'y™; are called, respectively, the
1-forms and the coefficients in F of d (and of d in F).

Theorem 3. If v is a covector field of M that is differentiable at some point of dom E, then on
ddomwv Ndom F

dv = (dvg — V™) @ WP (126)
= (V1 — v ™)' @ WP, (127)
= (ks — v TR ) (W' @ W), (128)
and in particular
dw™ = —w™ © W (129)
= T/ @b, (130)

= T (W' @ Wwh). (131)
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Theorem 4. If £’ is a smooth frame system of M whose domain overlaps that of E, then on

the overlap

!

wi™ = (dA™) Ap™ + ApFwr™AL™ (132)

and
D™y = Ap™ p Ay™ + AT ™ AL AL,™, (133)
where [A,,y™] is the transition matrix (field) from E to E’.

Theorem 5. If E is a frame systemization of M that generates d, and P is a point of M, then
the 1-forms and the coefficients of d in EF vanish at P, and if P € dom FE, then

W™ (P) = dA™(P)Ag™(P) and Ty™(P) = Ay™ ((P)An™(P), (134)

where [A,,”] is the transition matrix from E¥ to E.

Theorem 6. There is a frame systemization E of M that generates d. In order that the frame
systemization E of M also generate d it is necessary and sufficient that, at each point P,
dAz™(P) = 0 and, equivalently, dA;™(P) = 0, where [A7™] is the transition matrix from
EP to EP.

Theorem 7. Let T be a tensor field of M that is differentiable at some point of dom F.
If
T=T",(w" ®ep) ondomT NdomkE, (135)

then on ddom 7 Ndom F

dT = (dT™, — T™pwp? + TP, w,™) @ (W™ @ ey,) (136)
= (T™py — T TP + TP, ™) Wl @ (W™ @ e) (137)
= (T — T 0P+ TP, T, ™) (W @ W @ ep). (138)
If
T=Tn(w"®@w™) ondomT NdomE, (139)

then on ddom7 Ndom F
dT = (dTmn — Tonp wn? — Tpp win?) @ (W™ @ W™) (140)
= (Tmn.l - Tmprnpl - Tpnrmpl) wl ® (wn ® wm) (141)

= (Tyunt — Topln?t — Tpu TP (W @ W™ @ ™). (142)
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If
T=T,"(e, ®w™) ondom7T NdomFE,
then on ddom7 Ndom E
dT = (d1," + TP wp" — Tp" wn’) @ (en @ W™)

= (T, 1 + TnPTp" — T," TP ) W' @ (e, @ ™)

= (1" 1+ TnTy" — Tp”Fmpl)(wl ® e, @W™).
If

T=T""(e,Rep) ondomT NdomkFE,

then on ddom7T Ndom F

dT = (dT™" + T"Pw," + TP"w,™) @ (e, ® em,)
= (T +T™PT," + TP"T,™) w' ® (en ® em)

= (T™" ) + T™PT ", + TP"T,™,).
If

T = Tmnk(wk Ruw"®ey) ondomT Ndom E,
then on ddom7T Ndom E

dT = (dT™ g, — T™pwi? — T e wn? + TPop wp™) @ (WP @ W" @ e,)

= (Tmnk.l — Tmnpl“kpl — Tmpkrnpl + Tpnkl“pml) wl & (wk ® w" ® em)

= (Tmnk.l — T'mnpl“kpl — Tmpkrnpl + Tpnkfpml)(wl ® wk’ ® w™ & €m).

If
T = Tmnk(wk Ruw'@w™) ondomT NdomFE,
then on ddomT Ndom E

dT = (dTmnk - Tmnp wif — Tmpk wr?f — pnk wmp) ® (wk Rw" ® wm)
= (Tmnk.l - Tmnprkpl - Tmpkrnpl - Tpnkrmpl) wl ® (wk Qw" ® wm)

= (Tmnk.l - Tmnprkpl - Tmpkrnpl - Tpnkrmpl)(wl & w” Rw"® Wm)'

(143)

(144)
(145)

(146)

(147)

(148)
(149)

(150)

(151)

(152)
(153)

(154)

(155)

(156)
(157)

(158)



41

For each component ¢ of 7" in E the corresponding component in E of DT, that
is, of (dT)e;, is denoted by t;. Thus, if T = u = u™ey, then D, T = (du)e, = (v, +
uFT ) (Whe))em = u™ e, where u™, = u™; + uFT,™, and therefore du = ™, w! ® e,,. Simi-
larly, if v = vpw, then dv = vgy W' @WF, where Vg = v — v [x™;. Likewise, if T = T™, (w"®e.,),
then dT = T™,,,(w! ® W™ ® ey,), where T™,,, = T™,,; — T™,',P; + TP, T,™;, and so on.

Covariant differentiation commutes with the operation of contraction, as the following
calculation illustrates. If T = kal(wl R wkF ® €m), then T:f = v, wF, where v, = TPkp, SO
d(T{’) = vk;l(wl & wk), with

Ukt = Ukt — VL1 = (TPrp)a — TP mpl'k™1- (159)
On the other hand dT = T™p., w" @ (W' ® W* @ e,,), where
Tt =T g, — T 1pltP s = T Ui + TP s (160)

S0 (dT)% = kam:n(wn & wk) = kam;l(wl & wk), with

T = 0" (T ks.0)0%m — T kplin?t — T pin TP 1 + TP ™1 (161)
= (0" T" 50" m) 1 — T pm %" (162)
= (T"kp)a — TPmpl'k™ (163)
= Ukt (164)

in consequence of which (d7)3 = d(T'3).

Divergence of a vector field, as defined in euclidean spaces, has a covariant analog. If u is

a vector field of M, differentiable at some point, then on ddomu
Div u = Tr du = (du)? = wP(du)ey; (165)
if ddomu and dom E overlap, then on the overlap
Div u = wP(u™ W' ® em)ep = u™ (Wep) (WPem) = P mu™, 0ty = ul . (166)

More generally, if T is a tensor field with at least one contravariant slot, then for each of its
contravariant slots 7" has a divergence (dT) ]i’H, where b is the position number in 7' of the
contravariant slot in question. If, for example, T = T""(w* ® e, ® e,,) on dom T N dom E, then,
on ddom 7T Ndom E, (dT)? = TP}, (w* ® ey,) and (dT) 3 = TP, (w* ® €,,).

Definition. If T is a tensor field of M differentiable at some point, then T is said to be
autoparallel (with respect to d) if and only if there is a covector field A on ddom 7" such
that dT = A ® T'; if A is continuous, then T is said to be continuously autoparallel (with
respect to d); if A = 0, so that dT" = 0, then T is said to be covariantly constant (with
respect to d).
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An alternative approach to covariant differentiation is by way of the notion of a connection.

Definition. By a connection on M (called also an affine connection on M) is meant a
mapping I' whose domain is the maximal atlas of M and which assigns to each coordinate
system X a cococontensor field T'(X) on dom X in such a way that if dom X N dom X’ # &,
and T'(X) = '™ (do! ® do* ® 8/82™) and T'(X') = Tp™ y(da’' ® da¥'® 8/0x™"), then, on
dom X Ndom X',

/ ’
/ 0?x™ 9z™  OzF _ . Ozl 9x™

™, = I . 167
MU= onl oxk dzm + ork F Lozl ogm (167)

The scalar fields I'y™; are called the coefficients in X of I (and of I in X'). The covector
fields wy,™ defined by w;,™ := ', da! are called the 1-forms in X of I' (and of I' in X).

Definition. If I' is a connection on M, X is a coordinate system of M, T is a tensor field of M,
and ddom T Ndom X # &, then by the I'(X)-differential of T is meant

0 0
(dT™ + TPw,™) @>EE;E if T’::IW”EE;E on ddom T Ndom X,
(168)
(dT — Ty wy?) @ dx™ if T =1T,,dz™ on ddom7T Ndom X,
(169)

dIm™, —T"pwp? + TP wp™) ® <d:1:" ® i) if T =17, <d:1:" ® i) on ddomT Ndom X,

ox™ ox™

(170)

(dTn — Tinp wn? — Tpp wp?) @ (dz™ ® dz™) if T =Ty, (dx"®dx™) on ddomT Ndom X,

(171)
0 0
(dT" — TP wp" + T" w’) ® <% ® dacm> if T=1T," <% ® da:m> on ddomT Ndom X,
(172)

(dT™ + T™w," + T"w,™) & <£ ® i) i T =7m <% ® 8%) on ddom 7T Ndom X,
x z

(173)

and so on. The I'(X)-differential of T is denoted by dpx)T

Theorem 8. If I' is a connection on M, each of X and X’ is a coordinate system of M,
T is a tensor field of M, and ddom7T N dom X N dom X’ # &, then drxT = dpx)T on
ddom T Ndom X Ndom X'.
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Definition. If I' is a connection on M, then by the differentiation generated by I' is meant

the mapping dr such that
i. the domain of dr is the set of all tensor fields T" of M such that T is differentiable at some
point,
ii. if T' € domdp, then drT is a tensor field on ddom T, and

iii. if 7" € domdr, X is a coordinate system of M, and ddom T'Ndom X # &, then drT' = dpx)T'
on ddom 7T Ndom X.

Theorem 9. If I is a connection on M, then dr is a covariant differentiation on M, and if X is a
coordinate system of M, then the 1-forms and the coefficients of this covariant differentiation
in the frame system {J9/0z™} are the 1-forms and coefficients in X of I". Conversely, if
d is a covariant differentiation on M, and, for each coordinate system X of M, I'(X) =
[ (do' @ do® @ 9/0x™), where the I'y™; are the coefficients of d in {0/0x™}, then T is a

connection on M, and d = dr.

The import of this theorem is that every covariant differentiation determines and is determined by
a connection, and every connection determines and is determined by a covariant differentiation.

When d and I' determine one another, they are said to be associated.
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XIV. TORSION AND CURVATURE

Continue with d a covariant differentiation on M, E a smooth frame system of M, and €2
its dual.

Definition. By the exterior differentiation of d is meant the mapping d, whose domain is
the set of all scalar, p-cotensor, or p-cocontensor fields ¢ of M that are differentiable at some
point, given by da¢ = d¢ if ¢ is a scalar field, and d,¢ := Sk d¢ if ¢ is a tensor field.

Theorem 1. There is a unique tensor field T on M with the property that if v is a covector field
of M that is differentiable at P, then dv(P) = dyv(P) — v(P)T(P); T is a skew-symmetric

cococontensor field, and, on dom E, T = T™ ® e,,, where

T" = dyw™ — daw™ (174)
= dpw™ — WF Awp™ (175)
= dpw™ 4 wp™ AWk (176)
= (Ck™ + T (W' A wh) (177)
= (Ce™ + T3 (W' @ wh), (178)

if dyw™ = Cp™ (W' A WF) = C™ (W @ WF).

Definition. The tensor field T is called the torsion of d, and the skew-symmetric cocotensor
fields T™ are called the torsion 2-forms in E of d (and of d in F).

Theorem 2. If dpv = dv for every covector field v of M such that ddomv # @, then T = 0.
If T =0, then dp¢ = da¢ for every p-cotensor field ¢ of M such that ddom ¢ # @.

Theorem 3. If P € M, then T(P) = 0 if and only if d is generated by a frame systemization E

such that E¥ is a coordinate frame system.

Theorem 4. There is a unique tensor field ©® on M with the property that if v is a vector
field of M that is twice differentiable at P, then d(du)(P) = 30(P)u(P) — du(P)T(P);
O is a cocococontensor field, skew-symmetric in the second and third slots, and, on dom FE,
O=uw"®0,"®e, =w®0,™Lw" ®w ® e, where

O™ = 2(dpwir™ — wiP Awp™) (179)
= 01" (W AW (180)
= 01" (W' © W), (181)
with
01" 1 = 20k 1) + TaP L1 " ng + Tk pCiP ), (182)

if daw™ = Cp™ (W A WF) = CL™ (W @ WF).
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Definition. The tensor field © is called the curvature of d, and the skew-symmetric cocotensor
fields ©;™ are called the curvature 2-forms in E of d (and of d in E). The contraction

©14, a cocotensor field on M, is called the contracted curvature of d and is denoted by ®.

Theorem 5. On dom E, ® = w* @ 0;,™e,, = w" @ &y !, with & = O1eme; = O™ im.

On dom E
d/\Tm = d/\(d/\wm - d/\wm) (183)
= dp(wp™ A WF) (184)
= dawp™A wF — W™ A dawk (185)
= (dawr™ — WP A wp™)A WF + WP A wp A WP — W™ A dpwk (186)
=10, AWF — WP A W A wp™ — dawk A wp™ (187)
= (WP A O™) + (dpw® — dawk) Awp™ (188)
= 3 AB™) = TF Awy™, (189)
and therefore

WP A O™ = 2(dAT™ 4+ TF Aw™), (190)

which is equivalent to
Sk © =2 ((dATm T TR Aw™) @ em) , (191)

inasmuch as Sk © = w* A ©,™ @ e,,. These reduce, when dyT + TFA w,™ = 0, in particular when
T =0, to w*A ©,™ =0 and Sk © = 0, which are equivalent to O™ 1n) = 0, in turn equivalent to

Ok 1n + O™k + O, = 0, (192)
the first Bianchi identity.
Also, on dom F
dpO;™ = 2dp(dpwi™ — wEP A wp™) (193)
= =2(dpwi?’ ANwp™ — wEP A dawp™) (194)
= —2((drwi” — wpT A wg?) Awp™ — WP A (dawp™ — wpl Awg™)), (195)

and therefore

dpaOL™ = wipP A @pm — 0PN wpm. (196)
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From

de,™ () = d(w™Oey)() (197)
= dw™ ()¢ + w"dO( e + W Odeg() (198)
= —wp"(-) @ WPBe), + wdO(-)er + WO (wiP (1) @ €p) (199)
= —(wp" @ O")(-) + w"dO(-)er + (wi” ® 6,™)(") (200)

there follows
drOK™(-) = —w,™ A OkP + Sk (WO (-)ex) + wil A O,™ (201)
— (@A O, — O A w,™) + Sk (WO (e, (202

in consequence of which

Sk (wmd@(-)ek) = d/\@km — d/\@km. (203)

If dp©y™ = dpA©O;™, which holds if T = 0, then Sk(w™d©O(-)ey) = 0. This is equivalent to

O™ [in:p) = 0, which in turn is equivalent to
G)kmln:p + kanp:l + @kmpl:n = 07 (204)
the second Bianchi identity.

Definition. If P € M, then d is torsion free (resp., curvature free) at P means that
T(P) =0 (resp., ©(P) =0). If U C M, then d is torsion free (resp., curvature free) on U
means that T|y = 0 (resp., ©|y = 0); d is torsion free (resp., curvature free) means that

d is torsion free (resp., curvature free) on M.

Definition. If U C M, then U is featureless (with respect to d) means that there is a frame
systemization E that generates d and is such that if P € U, then E? is a coordinate frame
system; that U is flat (with respect to d) means that there a frame systemization of M that
generates d and is constant on U. That M is flat (with respect to d) means that there is a

collection of one or more open flat subsets of M that covers M.

Theorem 6. If U is a featureless subset of M, then d is torsion free on U. If U is a flat subset
of M, then d is curvature free on U. If M is featureless, then d is torsion free. If M is flat,

then d is curvature free.
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XV. COVARIANT DERIVATIVES ON PATHS

Let p: I — M be a smooth path in M, and let u be a vector field on p, that is,
w: I — Uer 7P®) and u(t) € TP® if t € I. Let u be differentiable in the sense that if E is a
smooth frame system of M whose domain intersects the range of p, then each component of u in

E is differentiable (as a mapping from I into R). For each such frame system E let

. ip = (e (p)); = (") en(p) + 0" den (p)p. (205)
i = (") + b0 (p)h) em(p) (206)

= (™) + T () (0)5) em(p) (207)

= (@) + T () ) emp). (208)

With these it is straightforward to show that if E’ is a smooth frame system of M, and (ranp N
dom E N dom E’) # &, then 4p = ug on this intersection, thus that it is justified to define the
covariant (or absolute) derivative of u (determined by d) as that vector field @ on p such
that 4 |,-1(qom ) = @ for every smooth frame system E of M whose domain intersects the range
of p.

In the event that there is a differentiable vector field w of M such that u = w(p), it is easy
to see that

4= (w(p))" = dw(p)p, (209)

a chain rule.

Now let v be a covector field on p, that is, v: I — U,c; Ty, and v(t) € Ty ift € I. Let
v be differentiable in the sense that if F is a smooth frame system of M whose domain intersects
the range of p, then each component of v in FE is differentiable (as a mapping from I into R). For

each such frame system E' let

. i = (00" () = (vn) W™ (p) + vde” (P (210)
o5 = ((vn) = onwa (@)p) " (v) (211)

= () = wb(p) ! ()5 " () (212)

= (o) = o)) " (). (213)

As in the case of a vector field, it is justified to define the covariant (or absolute) derivative
of v (determined by d) as that vector field © on p such that @[,-1(gom gy = 9r for every smooth
frame system E of M whose domain intersects the range of p.

In the event that there is a differentiable covector field w of M such that v = w(p), then,

as above, there is the chain rule

b= (w(p))" = dw(p)p. (214)
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In general, if T is any differentiable tensor field on p, and T is defined in the obvious
way, then T agrees with T where both are defined. This makes possible the definition of the
covariant (or absolute) derivative of 7' (determined by d) as that tensor field 7 on p with the
property that T‘p—l(dom E) = T for every smooth frame system E of M whose domain intersects

the range of p, and the chain rule
T=(W(p) =dW(p)p, (215)

if W is a differentiable tensor field of M and T'= W (p). To illustrate, if T = T™,,(w"(p) @ em(p))
on p~!(dom E), then on p~!(dom E)

T=Tp = (T70) (" (p) © en(p) + T (A" ()5 © m(p) + T (" (p) @ dem(p)p)  (216)
(T7)" = T wn () + T 0™ (p)p) (" (0) @ e (p)) (217)
(T™) = T T u(p) ! () + T T (p) & (0)5) (" (0) © e (p) (218)

= (@) = T T i) B+ T T (p) B) (" (9) © (). (219)

Definition. If T is a differentiable tensor field on p, then 7' is said to be autoparallel (with
respect to d) if and only if there is a mapping A: I — R such that T = AT if X is continuous,
then T is said to be continuously autoparallel (with respect to d); if A = 0, so that
T=0, then T is said to be covariantly constant (with respect to d).

Theorem 1. If T is a differentiable tensor field of M, and ranp C ddom7, then T'(p) is a
differentiable tensor field on p. If T' is autoparallel (continuously autoparallel) with respect to
d, then T'(p) is autoparallel (continuously autoparallel) with respect to d; if T" is covariantly

constant with respect to d, then T'(p) is covariantly constant with respect to d.
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XVI. AUTOPARALLEL GEODESICS.

A particular vector field on the smooth path p: I — M is the velocity p. If p is differen-
tiable, then the covariant derivative of p is called the covariant (or absolute) acceleration of p

(determined by d), or, for short, just the acceleration of p, and is denoted by p.

Definition. The path p is said to be autoparallel (with respect to d), and is called an
autoparallel geodesic path (of d) (an autoparallel geodesic, for short), if and only if
p is doubly smooth and p is continuously autoparallel (with respect to d), that is, there is a
continuous mapping A: I — R such that p = Ap. If A = 0, so that p = 0, and therefore p is
constant (with respect to d), then p is said to be affinely parametrized. By an autoparallel
geodesic curve (of d) is meant a subset C' of M for which there is an autoparallel geodesic

path p of d whose range is C' and whose velocity p vanishes nowhere.

Definition. If ¢ is a C! mapping of an interval .J onto I whose derivative vanishes nowhere, and
q = p(¢), then ¢ is said to be a smooth regular reparametrization of p (by ¢), sense-
preserving if qb > (, sense-reversing if qb < 0. If both p and ¢ are C?, then ¢ is said to be

a doubly smooth regular reparametrization of p (by ¢).

Theorem 1. If ¢ is a smooth regular reparametrization of p by ¢, then ¢ is a smooth path in
M, and ¢ = p(¢) é. If ¢ is a doubly smooth regular reparametrization of p by ¢, then ¢ is a

doubly smooth path in M, and § = p(¢) ¢ + p(¢) ¢.

Corollary. If p is autoparallel, then ¢ is autoparallel. If p is affinely parametrized and is not a
constant, then ¢ is affinely parametrized if and only if ¢ = 0, thus if and only if ¢(s) = as+ 3

for some nonzero number o and some number (.

Corollary. If p is autoparallel, with § = Ap, and 6 is any nonconstant solution on I of the linear
differential equation 6 = A0, then @ > 0 or @ < 0, § has an inverse ¢, and if ¢ = p(¢), then

i. q is a doubly smooth regular reparametrization of p, so q is autoparallel,
ii. q is affinely parametrized,
iii. q is sense-preserving if 6>0,

iv. ¢ is sense-reversing if § < 0.

Every doubly smooth regular reparametrization of p that is affinely parametrized is obtained

in this way.

Theorem 2. If p is an affinely parametrized autoparallel geodesic path, ¢ is an affinely parame-
trized doubly smooth regular reparametrization of p by ¢, s; and so are two numbers in dom ¢,
and s3 and s4 are two numbers in dom ¢, then

S4 — 83 T4 — T3

— , 220
§2 — 81 ro—"m ( )

where r; = ¢(s;) for i =1,2,3,4.



52

The import of this theorem is that on each autoparallel geodesic curve C of d there is an invariant
relative measure of the separation of two points P3 and Py as compared to the separation of two
points P; and Py, given by the ratio (rq4 —r3)/(ro — 1), where P; = p(r;) for i = 1,2, 3,4, this ratio

being the same for all affinely parametrized autoparallel geodesic paths p of d with range C.

Definition. That the affinely parametrized autoparallel geodesic path p: I — M is maximal
means that if p: I — M is an affinely parametrized autoparallel geodesic path, and I N I is a

nondegenerate interval, and p|;~; =p|; ], then I C I.

Theorem 3. If P is a point of M, u is a tangent vector at P, and rg is a number, then there is
just one maximal affinely parametrized autoparallel geodesic path p of d such that p(rg) = P

and p(rg) = u.

Corollary. If ¢ is a nonzero number, and sg is a number, then the maximal affinely parametrized
autoparallel geodesic path ¢ such that ¢(sp) = P and ¢(sg) = cu is a doubly smooth regular
reparametrization of p, sense-preserving if ¢ > 0, sense-reversing if ¢ < 0. If each of 71, ro, s1,

and s is a number, and p(r1) = q(s1) and p(re) = q(s2), then ro — r1 = c(s2 — $1).

Theorem 4. The affinely parametrized autoparallel geodesic path p of d is maximal if and only

every affinely parametrized doubly smooth regular reparametrization of p is maximal.

Definition. That the manifold M is geodesically complete from P (with respect to d)
means that P is a point of M and every maximal affinely parametrized autoparallel geodesic
path of d that has P in its range has R for its domain. That M is geodesically complete
(with respect to d) means that every maximal affinely parametrized autoparallel geodesic
path of d has R for its domain.

Theorem 5. The manifold M is geodesically complete (with respect to d) if and only it is

geodesically complete from each of its points.

Definition. Let P be a point of M. For each tangent vector v at P, let p, denote the maximal
affinely parametrized autoparallel geodesic path p of d such that p(0) = P and p(0) = w.
Let U be the subset of T'¥ consisting of all vectors u for which 1 € domp,. If u € U, let
F(u) = py(1). The function F' thus defined, whose domain is U and whose range is the set of
all points of M reachable from P by autoparallel geodesics, is called the exponential map of
d at P, and is denoted by Expp.

Theorem 6. The manifold M is geodesically complete from P if and only if dom Expp = T'.
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XVII. GEODESIC DEVIATION

Let p be a C? two-parameter path net in M, that is, p: I x J — M, where each of
I and J is an interval of R, and Xp is C? for every coordinate system X of M. The range of p
is a (possibly degenerate) surface ¥ in M, parametrized by p. For each number s in I and each
number ¢ in J let p(s,t) denote the velocity of p|;. s at s, and let p(s,t) denote the velocity of
Pl{syxs at t. If (s,t) € I x J, then p(s,t) is a point of %, and each of p(s,t) and p(s,t) is a tangent
vector of M at p(s,t) that is tangent to 3, so each of p and p is a vector field on p in the obvious
sense. If f: I x J — R, and f is differentiable, let f'(s,?) denote the derivative at s of f[; (4}, and
let f"(s,t) denote the derivative at t of f[(s1xs. Then 7" = f7if fis a C? function.

If u is a differentiable vector field on p, let u’'(s,t) denote the covariant derivative at s of
u|rx (1}, and let u” (s, t) denote the covariant derivative at ¢ of u|(s ;. Then each of v’ and u” is
a vector field on p.

If v is a differentiable covector field on p, let v*(s,t) denote the covariant derivative at s
of v|rx (4}, and let v™(s, ) denote the covariant derivative at ¢ of v|(s. Then each of v* and v" is
a covector field on p.

Let X be a coordinate system of M whose domain intersects the range of p. Then, on
p~Y(dom X), with e,, = /02™ and w™ = da™,

p=p"emp) = (") en(p) and p=p"en(p) = (") em(p), (221)

where p™ := 2™p, so
P =p = [(0™) em(p) + (™) dem(p)p] — [(P™) "em(p) + (0™) dem(p)p] (222)
= (" (p) ®@ den(p)p)p — (W™ (p) ® dem(p)D)P, (223)

because (p™)"" = (p)". From d(w™ ® e,,) = 0 follows

pT=p" = (dw"(P)p @ em(p))p — (dw™ (p)P © em(p))D (224)
= 2(dpw™ @ ) (p) PP (225)
=2((dpw™ = T™) ® ) (p) PP (226)
consequently that
p =" =2T(p)pp, (227)

because daw"™ = dp(dz™) = 0 and T is skew-symmetric.
Now let u be a C? vector field on p. On p~!(dom X)

u” = (u™) em(p) +u"den (p)p (228)
and

u' = (u") em(p) + udem(p)p, (229)
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from which follow, by a slight extension of previous calculations,

u = (™) em(p) + (W) den(p)p + () den(p)p + v d(den ) (p)pp + uden (p)p’,  (230)

*

u” = (u™) Ten(p) + (W) den (p)p + (™) den (p)p + ud(den ) (p)pp + v den, (p)p”,  (231)

in consequence of which

W= = (W) = @) en(p) + 0™ (d(den) )P — d(dey)(p)ip) + u"den ()5 — )

(232)
= 2u™d(dey ) (p)pp + u™den (p) (" — p7) (233)
= 2u™ (30ey — (dew)T) (p)pp + u™den (p)(2 T (p)pp) (234)
= O(p)(u"em(p))pP, (235)
so that
ut = = O(p)upp. (236)

This equation is classical. It is of interest that the torsion of d does not appear explicitly in it.
Finally, suppose that M is triply smooth, that p is C3, and that the paths p| Ix{t} are
affinely parametrized autoparallel geodesic paths of d. Let u = p and n = p. Then

W=p =p=0 (237)
and
n'=p =p +2T(p)pp =u" + 2T (p)un. (238)
Therefore
n" =u""+2[(T(p))un + T(p)u'n + T(p)un’] (239)
=u"" + O(p)upp + 2[dT(p)pun + T(p)u'n + T(p)un’] (240)
=0+ O(p)uun + 2 [dT(p)uun + 0+ T(p)un’]. (241)
At last, then,
i — 2T (p)un — (2dT + O)(p)uun = 0, (242)
and, equivalently,
ii = 2T (p)pn — (2dT + ©)(p)ppn = 0. (243)

This is the Equation of Geodesic Deviation, a second order, linear differential equation satisfied
by 1, which is a measure of the rate at which the autoparallel geodesics p |7y spread. When
T = 0 and © = 0 it reduces to 7j = 0, which implies that n varies linearly with respect to the affine
parameter along each autoparallel geodesic.
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XVIII. SYMMETRIC INNER PRODUCTS ON VECTOR SPACES

Let U be a finite-dimensional vector space over R, with dual space U*, and let M =
dimU = dim U*. By a symmetric inner product on U is meant a mapping (-,-): U x U — R

with the following properties:
i. if each of u, v, and w is a vector in U, then (u,v + w) = (u,v) + (u, w);
ii. if each of u and v is a vector in U, and c is a real number, then (u, cv) = ¢(u,v); and
iii. if each of u and v is a vector in U, then (u,v) = (v, u).
From (i) and (iii) follows
iv. if each of u, v, and w is a vector in U, then (u + v, w) = (u, w) + (v, w).
From (ii) and (iii) follows
v. if each of u and v is a vector in U, and ¢ is a real number, then (cu,v) = ¢(u,v).
That (-,-) is positive (resp., negative) definite means that
vi. if w is a vector in U other than Oy (the zero vector of U), then (u,u) > 0 (resp., < 0).
That (-,-) is positive (resp., negative) semidefinite means that
vii. if u is a vector in U other than Oy (the zero vector of U), then (u,u) > 0 (resp., < 0).
That (-,-) is definite (resp., semidefinite) means that
viii. (-,-) is positive definite (resp., semidefinite) or negative definite (resp., semidefinite).
A consequence of (v) is that (Oy,v) = 0 for every vector v in U (in particular, that (0y,0y) = 0).
That (-,-) is nondegenerate means that, conversely,
ix. if (u,v) = 0 for every vector v in U, then u = Oy .

That (-,-) is degenerate means that (-,-) is not nondegenerate, thus that there is in U a nonzero
vector u such that (u,v) = 0 for every vector v in U. The set of all such vector(s) u is a subspace
of U, called the nullifying space of (-,-); its dimensionality is positive if and only if (-,-) is
degenerate, thus is 0 if and only if (-,-) is nondegenerate.

If (-,-) is a symmetric inner product on U, then u is orthogonal to v (with respect
to (-,-)) means that each of w and v is a vector in U, and (u,v) = 0; if u is orthogonal to v
(with respect to (-,-)), then (iii) implies that v is orthogonal to u. In terms of orthogonality, (-, -)
is degenerate if and only if some nonzero vector in U is orthogonal to every vector in U, and is
nondegenerate if and only if the only vector in U that is orthogonal to every vector in U is Op.

With every symmetric inner product (-,-) on U is uniquely associated a linear transfor-
mation L: U — U* (thus an element L of U* ® U*) such that if each of u and v is a vector in U,
then (u,v) = (Lu)v. The definition of L is simply that, for each vector u in U, Lu is the mapping
[:U — R given by l: v — (u,v); that [ is linear, thus is in U*, follows from (i) and (ii); that L
is linear follows from (iv) and (v). The symmetry property (iii) implies that (Lu)v = (Lv)u. In

terms of L, property (ix) and its converse say that (Lu)v = 0 for every vector v in U if and only
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if w = Oy, in other words that Lu = Oy~ if and only if u = Oy, another way of saying which is
that the kernel of L is {Oy}. From this it follows that (-,-) is nondegenerate if and only if L is
one-to-one (equivalently, is invertible, is nonsingular).

Conversely, with every linear transformation L: U — U* such that (Lu)v = (Lv)u for
every vector u and every vector v in U is uniquely associated a symmetric inner product (-,-) on
U, defined by (u,v) := (Lu)v. As above, (-,-) is nondegenerate if and only if L is one-to-one.

Let (-,-) be a symmetric inner product on U, let L be the the associated linear transfor-
mation in U* @ U*, let {a,,} be a basis for U, and let {a™} be the basis for U* dual to {a,,}. If

each of u and v is a vector in U, then
(u,v) = (U, V" an) = U (A, an)v" = u"((Lay,)ay)v™. (244)

But the representation L = a* ® Ly a' implies that

Lay, = (a"ap) Ly a' = 6" Ly o' = Ly d, (245)
hence that
(Lam)an = Lyy(a'an) = L6 = L, (246)
thus that
Loy = (@m, an) = (an, am) = Lpm (247)
and
(u,v) = u" Ly o™, (248)

which tells that (-,-) is completely determined by the numbers (a,, a,), and is equivalent to

m-— m—

[, 0)] = [ (L))" = [0™] L) ") 1= [0™] [{ms )] [0"] 1 (249)

where [u], [v], and [L] are the matrices that represent u, v, and L with respect to the bases {a,}
and {a™}, and [(u,v)] is the 1-by-1 matrix whose sole entry is (u,v). Briefly, L = a* ® (ay, a;) a'.

If u is a vector in U, then the nonegative number |{u, u)\% is denoted by |u| and is called
the norm, the length, the magnitude, and the absolute value, of u (with respect to (-,-)).
The number (u,u) is called the square length of u (with respect to (-,-)). That u is null
(resp., positive, negative) (with respect to (-,-)) means that u # Oy and the square length
(u,u) of wis 0 (resp., > 0, < 0). Clearly, |u| = 0 if w is null, and |u| > 0 if u is positive or negative.

Moreover, if u # Oy, then w is either positive or negative if (-,-) is definite.
Definition. If U’ is a subspace of U, then
i. U’ is (-,-)-positive means that if u is a nonzero vector in U’, then u is positive;

ii. U'is (-,-)-negative means that if u is a nonzero vector in U’, then u is negative.

iii. The nonnegative integer max{dimU’ | U’ is a (-, -)-positive subspace of U} is called the

positivity index of (-,-), and is denoted by (+, +).
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iv. The nonnegative integer max{dimU’ | U’ is a (-, -)-negative subspace of U} is called the

negativity index of (-,-), and is denoted by (—, —).

v. The nonnegative integer that is the dimensionality of the nullifying space of U determined
by (-,-) is called the nullity of (-,-), and is denoted by (o, o).

Theorem 1. If Ut is a (-,-)-positive subspace of U whose dimensionality is (+,+), U~ is a
(-, -)-negative subspace of U whose dimensionality is (—, —), and U° is the nullifying space of
(-,+), then U is the direct sum of U™, U™, and U°®, and therefore (+,+)+ (—, —) + (0,0) = M.

Theorem 2. The inner product (-,-) is
i. positive definite if and only if (+,+) # 0, (—, —) = 0, and (o0, 0) = 0;
ii. negative definite if and only if (+,+) =0, (—,—) # 0, and (o, 0) = 0;
iii. positive semidefinite if and only if (—, —) = 0;
iv. negative semidefinite if and only if (+,+) = 0;

v. nondegenerate if and only if (o, 0) = 0.

That the basis {a, } is orthogonal (with respect to (-, -)) means that a,, is orthogonal to
ap if m # n; {ay,} is null means that each of its vectors is null; {a,,} is normal means that, for
each m, (am,anm) =1, 0, or —1 (equivalently, |a,,| = 1 if a,, is not null); and {a,, } is orthonormal

means that {a,,} is both orthogonal and normal.

Theorem 3. There is a basis for U that is orthogonal. If {a,,} is such a basis, then {a, }, where

Qm, = G, if ay, is null, and a,, = an/|am| if ar, is not null, is a basis for U that is orthonormal.

Theorem 4. In every orthogonal basis for U the number of positive vector(s) is (+,+), the

number of negative vector(s) is (—, —), and the number of null vector(s) is (o, o).

Theorem 5. The basis {a,} for U is null if and only if the matrix [L] (= [(am,an)]) that
represents L with respect to {a,,} and its dual is symmetric and has no nonzero diagonal
entry; {a,} is orthogonal if and only if [L] is diagonal with (+,4) positive diagonal entries,
(—, —) negative diagonal entries, and (o, o) diagonal entries that are 0; {a,,} is orthonormal

if and only if [L] is diagonal and each positive diagonal entry is 1 and each negative diagonal

entry is —1; in every case, the nullity of L ( := dim (kernel of L)) is (o, o).

Theorem 6. Let {a,,} be any basis for U, and let each of {a,,}*, {am}™, and {a,,}° be a
(perhaps empty) subset of {a,,}, with every vector of {a,,} in one of them, and no vector of
{am} in two of them. There is on U just one symmetric inner product (-,-)* with respect to
which (i) {a,} is orthonormal, (ii) each vector (if any) in {a,,}T is positive, (iii) each vector
(if any) in {a,,}~ is negative, and (iv) each vector (if any) in {a,, }° is null. If, with respect to
(-,+), {am} is orthornormal, each vector (if any) in {a,,}" is positive, each vector (if any) in

{am}~ is negative, and each vector (if any) in {a,,}° is null, then (-,-)* = (-,-).
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The import of this theorem is that to specify on U a symmetric inner product with given
positivity index, negativity index, and nullity is tantamount to selecting some basis for U, decreeing
that it should be orthonormal, and designating which of its vectors should be positive, which should
be negative, and which should be null, in the prescribed numbers.

Suppose now that (-,-) is nondegenerate. Then L, which maps U linearly onto U*, has
an inverse L', which maps U* linearly onto U. Moreover, if each of u* and v* is in U*, and

u= L 'u* and v = L™1o*, then (L~'u*)v* = (L~ 'v*)u*, because
(L " = (L) = (Lo) (LY (Lu)) = (Lv)u (250)

and (L~ 'v*)u* = (Lu)v = (Lv)u. Consequently, with L~! is associated a nondegenerate symmetric

inner product (-,-)* on the dual space U* of U such that, if each of ©v* and v* is in U*, then
(u*,v*)* = (L7'*)o* = (Lv)u = (v,u) = (u,v) (251)
where u = L™ lu* and v = L~!o*. Briefly put, (u*,v*)* = (L7'* L=1*), and, equivalently,
(u,v) = (Lu, Lv)*. The inner product (-,-)* is called the dual of (-, -).
As an element of U** @ U**, thus, by identification, of U ® U, L~! has the representation

L' = a,, ® L™"q,,, where
L .— (Lfl)mn — (Lflam)an — <am’an>* —_ <an’am>* — an’ (252)

in terms of which (u*,v*)* = u* L™"v*. The mapping L~!L has the representation

L7'L = (0 @ L'a,,)(a™ @ Lyia®) (253)
= a™ ® Ly (aya®)L"ay, (254)
= a™ ® Ly (a*a;)L™a, (255)
= a™ @ Lpio* LMay, (256)
=a™ ® Ly L ay,. (257)

But L~!L is the identity mapping of U onto U, which has the representation a™ ® 6,,"a,, and
therefore L,,, L*" = 6,,*. Similarly, because LL ™" is the identity mapping of U* onto U*, L™* L, =
8™, (which also follows from L™* Ly, = L*"L,;, = L, L*" = 6,™ = 6™,).

Theorem 7. The positivity index, the negativity index, and the nullity of (-,-)* are the same
as those of (-,-): (+,+)" = (+,4), (—,—)" = (-, —), and (0,0)" = (0,0) = 0.

Let ™ = 6™ La, = Lay, for m = 1,..., M. Then {b™} is a basis for U*, and ()™, b")* =

(Lam, Lay)™ = (am, ay).

Theorem 8. The basis {0} is null with respect to (-,-)* if and only if the basis {a,,} is null
with respect to (-,-); {b™} is orthogonal with respect to (-,-)* if and only if {a,,} is orthogonal
with respect to (-,-); for each m, b™ is positive (resp., negative) with respect to (-,-)* if and
only if a,, is positive (resp., negative) with respect to (-,-). Also, {b™} is normal with respect
to (-,-y* if and only if {a,,} is normal with respect to (-,-); for each m, (b™,b"™)* =1 (resp.,

—1) if and only if (ay,,an) =1 (resp., —1).
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XIX. METRICS AND INNER PRODUCTS ON SMOOTH MANIFOLDS

In this chapter and the next M need be only smooth, not doubly smooth.

Definition. By a metric on M is meant a smooth, symmetric cocotensor field G of M, globally
defined on M (dom G = M), whose nullity is constant (the kernel of G(P) has the same dimen-
sionality at every point P). If G is a metric on M, the tangent inner product associated
with G is the mapping (-, )¢ : Upen(TF x TT) — R defined by (u,v), := G(P)uv if each
of u and v is in T7; the mapping | - |¢: UpenTT — R is defined by |u|¢ = \(u,u>G|% By a
tangent inner product on M is meant a mapping of [Jp (T x TF) into R that is (-, )¢

for some metric G on M.
Let G be a metric on M, and let (-, ) be the tangent inner product associated with G.

Theorem and Definition. At each point P of M the restriction of (-,-)g to T* x T? is a
symmetric inner product (-, -)¥ on TF whose nullity (o, 0)” is the nullity of G(P). The metric
G and the tangent inner product (-,-)¢ are said to be positive definite (resp., negative
definite, definite, positive semidefinite, negative semidefinite, semidefinite, nonde-
generate, degenerate) if and only if, for each point P of M, (-,-)¥ is positive definite (resp.,
negative definite, definite, positive semidefinite, negative semidefinite, semidefinite, nondegen-
erate, degenerate).

Py VP

Theorem 1. Each of (+,+) , and (o, 0)” is independent of the choice of P.

Definition. The nonnegative integers (+,+)", (=, =), and (o0,0)" that are independent of
P are called, respectively, the positivity index, the negativity index, and the nullity, of
(-,")a, and are denoted, respectively, by (+,+) s, (— —)q, and (0, 0) 4.

Theorem 2. The metric G and the tangent inner product (-, )¢ are

i. positive definite if and only if (+,+),5 # 0, (—,—)s =0, and (0,0), = 0;
ii. negative definite if and only if (+,4+), =0, (—, =) # 0, and (0,0), = 0;
iii. positive semidefinite if and only if (—, =), = 0;

iv. negative semidefinite if and only if (+,+), = 0;

v. nondegenerate if and only if (o,0), = 0.

Definition. If E is a smooth frame system of M, then E is orthogonal (resp., null, normal,
orthonormal) with respect to G and (-,-)¢ means that if P € domE, then E(P) is
orthogonal (resp., null, normal, orthonormal) with respect to (-, -)*.

Theorem 3. If the smooth frame system F is orthogonal, and P € dom F, then the number of
positive vectors in E(P) is (+,+), the number of negative vectors in E(P) is (—, —), and

the number of null vectors in E(P) is (o,0) .
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Theorem 4. If X is a coordinate system of M, then there is on dom X a smooth frame system E
that is orthogonal. If E is such a frame system, then the frame system E defined by é™ =¢e™

if e,, is null, and é,, = e, /|em|c if e, is not null, is orthonormal.

Let E be a smooth frame system of M, with dual coframe system 2; let U = dom F =
dom Q. Then, on U,

G=uw"® gmpw", (258)

where ¢, = Gemen. Also, if each of v and v is a vector field of M, and U Ndomu Ndomv # &,

then, on the intersection,
(u,v)g = Guv = (W™ ® gmnw")(ukek)(vlel) = uk(wmek)gmnvl(w"el) = u"gmpv™. (259)

Suppose now that G is nondegenerate. At each point P of M, G(P) (an element of
L(TP,Tp), thus of Tp ® Tp) has an inverse G(P)~!, which is an element of L(Tp,T?), thus of
TP ® TP. The concontensor field G~! defined globally on M by G~1(P) := G(P)~! is called the
inverse metric of G. If u is a tangent vector at P, then the cotangent vector G(P)u is called
the metric dual of u (with respect to G); if u is a vector field of M, then the covector field Gu
is called the the metric dual of w. If u* is a cotangent vector at P, then the tangent vector
G~Y(P)u* is called the inverse metric dual of u*; if u* is a covector field of M, then the vector
field G~1'u* is called the inverse metric dual of u*. Clearly, the inverse metric dual of the metric
dual of u is w itself, and the metric dual of the inverse metric dual of u* is u*.

The cotangent inner product associated with G is the mapping (-, )7 : Upcyp(Tp ¥
Tp) — R defined by (-, )&u*v* :== G~1(P)u*v* if each of u* and v* is in Tp. Clearly, at each point
P of M the restriction of (-,-)5 to Tp x Tp is the symmetric inner product (-,-)p on Tp that is
the dual of the inner product (-,-)¥ on T%.

Theorem 5. Each of (+,4)p, (—, —)p, and (o,0) p is independent of the choice of P.

Definition. The nonnegative integers (+,+)p, (—, —)p, and (o,0), that are independent of
P are called, respectively, the positivity index, the negativity index, and the nullity, of
(-, )%, and are denoted, respectively, by (+,+)¢, (—, =) and (0,0)¢.

Theorem 6. The positivity index, the negativity index, and the nullity of (-,-)¢, are the same
as those of < ’ '>G (<+?+>*G = <+7 +>G7 <_7 _>*G = <_’ _>G7 and <O7O>E = <O?O>G = 0)

Definition. If Q) is a smooth coframe system of M, then Q is orthogonal (resp., null, normal,
orthonormal) with respect to G and (-,-)% means that if P € domQ, then Q(P) is

orthogonal (resp., null, normal, orthonormal) with respect to (-,-)p.

Let Q be the metric dual of E, defined by @™ := §™"Ge,, = Gey,, for m = 1,..., M. Then
Q is a smooth coframe system of M on U, and (0™, &") 5 = (Gem, Gey) e = G HGem)(Gey) =

em(Gen) = Gemen = (em, en) -

Theorem 7. The coframe system ) is null with respect to G and (-, )¢ if and only if the frame

system E is null with respect to G and (-, -)¢; Q is orthogonal with respect to G and (-, D6 if
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and only if E is orthogonal with respect to G and (-,-)¢; € is normal with respect to G' and
(-,)& if and only if E is normal with respect to G and (-,-)g. For each m, (@™,&™); = 0
(resp., <0, >0, =1, =—1) on U if and only if (e, em)s =0 (resp., <0, >0, =1, =—1) on
U.

If u is a vector field of M, then

Gu = (wm b2y gmnwn)(ukek) = uk (wmek)gmnwn = ukgknwna (260)

so the metric dual of u has the representation Gu = wu,,w™, where wu,, = u*gp,. The latter
relation is often referred to as “lowering of the index of u by G”. (Note the distinction between
this representation and the representation Gu = G(u™ep,) = u"Gep = U 0p,0" =), u"O™.)

In terms of the lowered index, one has that (u,v), = u,v™.

On U, the inverse metric has the representation

G l=e,®g™e,, (261)

where ¢"™" = G~ lw™w", related to gmn bY Gmrg"™™ = 6" and ¢"*gp, = 6™,. From this follows
that if each of u* and v* is a covector field of M, and U N domu* N domv* # &, then, on the

intersection,

(0, 0)" = G0 = (e ® g7 en) (W) (v ) = wh(emw®) g™ 0] (en!) = uh g™ 5. (262)

Intermediately,

G = (e @ g™ en) (Upw®) = uf(emw®) g™ en = ujg e, (263)

so the inverse metric dual of u* has the representation G~ 'u* = u*™e,,, where ©*" = ngkm. The

1»

latter relation is referred to as “raising of the index of v* by G™"”. In terms of the raised index,

(u*, v*) e = u Mk,

The lowering and the raising of an index are inverse operations: if u,, = ukgkm, then

w g™ = uFgpgt™ = uF§™ = w™, which corresponds to GT'Gu = u, and if ©*™ = u,*;gkm, then

u gy, = wi g™ gim = ujk, = u?,, which corresponds to GG™lu* = u*. Also, these operations
are not confined to vector and covector fields. If, for example, T is a coconconcotensor field of
M, say T = T, (W' @ e @ e, @ wh), then, because Ge, = (ep)kgkqwq = p"’gkqwq = gpqw? and

-1 _ k _ k _
P = (W)gtle, = Bygte, = grie,,
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GT = TP (W' ® e, ® Gep @ W) = TP (W' @ € @ gpmw™ @ WF) (264)
= Ti"™ gpm (W' ®en @w™ @ wh) = Tipm™ (W @ e @ W™ @ Wh), (265)
GO)T =T, (W' @ Gep ® ey @ W) = T (W' @ gpnw™ @ e @ wP) (266)
=T gpn (W' @ W ® ey @ W) = T}, (W @ W™ ® ey ® WP), (267)
GIT=T," (W @ep, ®em®GIWP) =T, (W @ e, @ e @ gPFer) (268)
=T, gpk (wl Ren @ em Re) = Tkmn, (wl ®en®em®ey), (269)
and
G'()T =T, (GT'wP ® en @ e @ WF) = T, (¢P'er @ en ® e @ WF) (270)
=1,"", e @en @em @wh) =T (6 ® en @ ey @ WF). (271)

These various metric and inverse metric duals of T" have contractions that 1" has no counterpart
to, and lack counterparts to contractions that T' has. For instance, there is no contraction T%, but

there is the contraction (GT)3, namely,

(GT)§ = WP(GT)(Vep = Tem™1 (W' @ wWPe, @ W™ep @ W) (272)
= Tim"1 (W' ® 67, ® 6™ @ WP) (273)
= Tip"1 (W' @ "), (274)

On the other hand, there is the contraction T3 = Ti,™P) (em @ wk), but there is no contraction
(G71(-)T)3. There is, however, the contraction (G(-)T)3, namely, TP, (w! ® w¥), which, because
TPt = Tir 519 9sp = T 19 Gps = Tir*10"s = Tie "1 = Ty, is the same as (GT) 3.

A case of interest occurs when the tensor field in question is the contracted curvature ®
of a covariant differentiation d on M. As a cocotensor field, ® itself has no contraction, but G—1®
does. This permits the following definition, which is not available in the absence of a nondegenerate

metric.

Definition. If d is a covariant differentiation on M, then by the twice contracted curvature
of d (with respect to G) (the curvature scalar of d, for short) is meant the scalar field
VU defined by ¥ := (G~1®)3%, where ® is the contracted curvature of d.

Theorem 8. In a frame system F,
U=Tr (G71®) = (G71®)2 = ¢, = 9,™,,, (275)
and also

U ="Tr (G 1) = (G711 = %, = 0"y, (276)



63

XX. LENGTHS OF PATHS AND CURVES IN METRIC MANIFOLDS

Let G be a metric on the smooth manifold M. Call the pair {M, G} a metric manifold.

Definition. If p: I — M is a smooth path in the metric manifold {M, G}, and ¢ is a number in
I, then the nonnegative number [p(t)|c is called the speed of p at ¢ (with respect to G).
The function on I whose value at each “time” ¢ is the speed of p at t is called the speed of
p (with respect to GG) and is denoted by |p|g. If I = [a,b], then by the length of p (with
respect to (G) is meant the nonnegative number ¢(p) defined by

p) = / 1ol = / 6l

Theorem 1. If p is constant, then ¢(p) = 0. If p is not constant, then ¢(p) > 0 if G is definite,
and ¢(p) = 0 if and only if G is indefinite and, for each number ¢ in [a, b], the velocity of p at

D=

b
- / GBI}, (277)

t is either the zero vector or a null vector.

Definition. That the path p: I — M is nonstop means that p is smooth and the velocity p
of p vanishes nowhere on I. If I = [a,b], and A = p(a) and B = p(b), then p is said to be a
path from A to B in M. By a smooth (doubly smooth, triply smooth) curve in M
is meant a subset C' of M for which there is a (doubly smooth, triply smooth) nonstop path
p in M whose range is C; every such path p is said to be a parametrization of C, and is
said to parametrize C. If p is a nonstop path from A to B in M, and p parametrizes C,
then C' is said to be a smooth (doubly smooth, triply smooth) curve from A to B in
M. By an arc of C is meant a smooth (doubly smooth, triply smooth) curve C in M that is
parametrized by a path p such that p = p|[a,b}, where p: I € M is a parametrization of C' and
[a,b] is a nondegenerate subinterval of I; if p(a) = A and p(b) = B, then C is called the arc
of C from A to B, also the arc AB of C.

If p: [a,b] — M is a smooth path in M, and ¢ = p(¢), a smooth regular reparametrization of p by
¢: [e,d] — [a,b], then ¢ = p(qb)gb Because ¢ vanishes nowhere, if either of p and ¢ is nonstop, so is
the other. Also,

(4,4 = B(8)d, D(8)d) s = (B(0), D(8)) 7, (278)

from which it follows that if p is nonstop, then the velocity of p and the velocity of ¢ at corresponding
times ¢ and ¢~ 1(t) are both positive, both negative, or both null.

Definition. The nonstop path p in M is said to be null (resp., positive, negative) (with
respect to () if and only if at each “time” ¢ in its interval the velocity of p at ¢ is null
(resp., positive, negative) with respect to G. The smooth curve C' in M is said to be null
(resp., positive, negative) (with respect to G) if and only if there is a nonstop null (resp.,

positive, negative) path p in M that parametrizes C'.
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Continuing, if, as above, p: [a,b] — M is a smooth path in M, and ¢ = p(¢), a smooth regular

reparametrization of p by ¢: [¢,d] — |[a,b], then

l\)\»—l

= /d\<q,q> / [(B(6), B(#)) 0 (279)
/\ Ol¥16] = /\pm )sgn(9)d (250)

#(d)
—sgn<¢<>>/ 6.5 /|< Pl = 0(p), (281)

é(c)

I

which justifies the following definition.

Definition. If each of A and B is a point of M, and C is a smooth curve from A to B in M,

then by the length of C' (with respect to G), denoted by ¢(C), is meant ¢(p), where p is
any nonstop path from A to B in M that parametrizes C'.

Theorem 2. If C' is a smooth curve in M, then £(C) > 0 if G is definite, and ¢(C) = 0 if and

D

only if GG is indefinite and C' is null.

efinition. If C'is a smooth curve in M, and p: I — M is a smooth path in M that parametrizes
C, then p is said to be an arclength-proportional parametrization of C if and only
if there is a positive number k such that if [a,b] is a nondegenerate subinterval of I, then
b—a = kﬂ(p“a,b}) = k{(C), where C is the arc of C' from p(a) to p(b); if k = 1, thus if
b—a = E(p\[al,]) = ((C), then p is said to be an arclength parametrization of C, and is said
to parametrize C' by arclength. Also, p is said to be a constant-speed parametrization
of C if and only if the speed |p|g of p is constant, a unit-speed parametrization of C if

and only if |p|g = 1.

Theorem 3. If C is a smooth curve in M, then p: I — M is an arclength-proportional

T

parametrization of C' if and only if p is a constant-speed parametrization of C' whose speed is
positive, in which event if [a, b] is a nondegenerate subinterval of I, then f(p\[al,]) = |p(a)|a (b—
a), a consequence of which is that p parametrizes C by arclength if and only if p is a unit-speed

parametrization of C.

heorem 4. Let p: I — M be a parametrization of the positive or negative smooth curve
C in M. Let a be any number in I, let ¢ be any number, let k£ be any nonzero number,
and let 8 : I — R be defined by 0(t) := ¢ + (1/k) fj |plg. Then # has an inverse ¢, and if
q = p(¢), then ¢ is an arclength-proportional parametrization of C' with constant speed |k|,
which is an arclength parametrization of C' if and only if |k| = 1. If p itself is a constant-speed
(thus arclength-proportional) parametrization of C, then 6(t) = ¢ + (|p(a)|c/k)(t — a) and
o(s) = a+ (k/|p(a)lg)(s —c). If p is a unit-speed parametrization, then 0(¢t) = ¢+ (1/k)(t — a)
and ¢(s) =a+k(s—c).
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XXI. METRIC GEODESICS

Let {M, G} be a doubly smooth metric manifold, and let C' be a smooth curve in M that

is either positive or negative.

Definition. The positive or negative curve C' is said to be geodesic (with respect to G), and is
called a geodesic curve (of G) (a geodesic, for short), if and only if C'is doubly smooth and,
for each arc C of C from a point A to a point B that lies entirely in a domain of some coordinate
system of M, the length ¢(C) of C' (with respect to () is stationary under comparison with
the lengths of all smooth curves from A to B in M that are “near” C. (That the smooth curve
C from A to B in M is “near” C means here that there is a coordinate system X of M whose
domain incorporates both C' and C, and there are parametrizations p: [a,b] — M of C' and
B a,b] — M of C such that sup;c, (| X 5(t) — Xp(t)| + |X p(t) — X p(t)]) is small.)

Suppose C' is doubly smooth. Let p: I — M be a doubly smooth parametrization of
C, let C be an arc of C from a point A to a point B, parametrized by a restriction of p to an
interval [a, b] such that p(a) = A and p(b) = B. Suppose further that C lies entirely in the domain
of the coordinate system X of M. Then ¢(C) = £(pljay) = f;|G(p)pp\% = f; \pmgmn(p)p”ﬁ =
f;L (Xp, (Xp)'), where, with p™ = 2™p and p™ = (p™)’,

= ‘pkgkl (p)p’ ‘ :
_ (282)

The Euler-Lagrange equations for p that are necessary and sufficient for ¢(C') to be stationary

1
2

L(Xp,(Xp)) =L (p', -, pMpt- pM) = ‘ﬁkgkz (X ([p" - pM])) P

under comparison with the lengths of all smooth curves from A to B in M that are “near” C' are,
form=1,..., M,

0= o (X, (X0)) (e (X0 (X)) ) (283)
-~ st T A P 0~ (g o e (00) e
= 3205077 [ 2 (591~ (5 000500

+ CERCI 2 (i, (xp). (255)

which are equivalent to

2 : 2 Y
(5 Con(x))) = S (X0 (X0 = DO (. (). (286)
p p
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Now
L2 (Xp, (Xp)') = [ g0 @) = sen (8" 908" ) (8" g1 ()8 (287)
= sgn (Pkgkl(p)Pl) (Pkgkl (X1 ([P pM)) Pl> (288)
= sgn(C) (g (X7 (9" .p1)) B') = sen(©) (Foulpp') . (289)

where sgn(C') = 1 or —1, according as C' is positive or negative. Consequently,

2
B O (X)) = () (3 0 (o (X (L D)) (200)
—son(€) (i Gt ') = () (Founil) . (200
and

2 o g
o (00 (X)) = s ©) (S i+ s 5 (202)
= 5gn(C) (m” ()" + 5 912 ()0 ) (293)
= 5e0(C) (gmP)i' + 5 90m(p)) =5e0(C) (25 gm(p)) . (294)

from which follows

oL?

(55 060 C00) ) = 560(0) (amasol 5+ i)Y + ) 00 5) + Pl (299

= 5gn(C) (2(0") 9om (8) + 5" (Gt (®) + Ghna(9) ') (296)

The Euler-Lagrange equations are therefore equivalent to

(") gem (p) + 0" [k 1.m])(p) p' = A" grom (p), (297)

where A = (L(Xp, (Xp))) /L(Xp, (Xp)') and

1
[k 1.m] = §[gml.k + Gkm.t — Gkim); (298)

the Christoffel symbol of the first kind. If G is nondegenerate, then raising of the index m in

these equations by G~! produces the equivalent equations

@™ + "™ o) Bt = AP, (299)
where
1
" =k l.n]g"" = §[in.k + Gknt — Grin) 9", (300)

the Christoffel symbol of the second kind. These calculations establish the following theorem.

Theorem 1. In order that the positive or negative doubly smooth curve C' in M be geodesic

with respect to GG it is necessary and sufficient that, for each doubly smooth parametrization
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p of C, and each coordinate system X of M such that dom X N C # &, the components in X
of p and of p satisfy the differential equations

(B*) gkm(p) + 0" [k L.m](p) ' = Ap" gem (p), (301)

and, if G is nondegenerate, the equivalent differential equations
™)+ ") ' = A (302)

where A = (In[p|g)".

If p is an arclength-proportional parametrization of C, then |p|g is constant, and vice versa, so this

theorem has the following corollary.

Theorem 2. In order that the positive or negative doubly smooth curve C'in M be geodesic with
respect to G it is necessary and sufficient that, for each doubly smooth arclength-proportional
parametrization p of C', and each coordinate system X of M such that dom X N C # &, the

components in X of p and of p satisfy the differential equations

) grm(p) + 9" [k 1.m](p)p' =0, (303)

and, if G is nondegenerate, the equivalent differential equations

(™) + "™} p)p' = 0. (304)

Definition. The smooth path p in M is said to be geodesic (with respect to G), and is
called a geodesic path (of G) (a geodesic, for short), if and only if p is a doubly smooth

parametrization of a geodesic curve of G.

Definition. That the geodesic curve C is maximal means that C' is not a subset of any other

geodesic curve.

Theorem 3. If P is a point of M, u is a nonnull tangent vector at P, and ry is a number,
then there is just one geodesic path p such that p(rg) = P, p(rg) = u, and p is an arclength-
proportional parametrization of a maximal geodesic curve C; if u is positive, then C' is positive;

if u is negative, then C' is negative; if |u|g = 1, then p is an arclength parametrization of C'.

If the metric G is indefinite, then there are doubly smooth curves C in M that are null. If
C is an arc of such a curve from a point A to a point B, then C is null and ¢(C) = 0, so £(C) is an
absolute minimum with respect to the lengths of all smooth curves from A to B in M. Because,
however, the arclength function ¢ on the space of paths in M is not differentiable at any path
that is null (for essentially the same reasons that the real function |x2\%, that is to say |z|, is not
differentiable at 0), the preceding definition and theorems cannot be extended to encompass “null
geodesic”. If P is a point of M, then according to the preceding theorem every nonnull tangent

vector u at P generates by way of a parametrization p a geodesic curve that passes through P in
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the direction determined by u. The following definition causes this property to extend to the null

tangent vectors at P.

Definition. The null curve C is said to be geodesic (with respect to G), and is called a
geodesic curve (of G) (a geodesic, for short), if and only if C' is doubly smooth and, for
each doubly smooth parametrization p of C', and each coordinate system X of M such that
dom X NC # @, the components in X of p and of p satisfy the differential equations

(") g (p) + 5" [k T.m](p) ' = A" grom (), (305)
and, if G is nondegenerate, the equivalent differential equations
™)+ ") ' = A (306)

for some continuous mapping A: dom X N C' — R. If, for each such coordinate system X,

A =0, then p is said to be a pseudo—arclength-proportional parametrization of C.

With appropriate modifications all the preceding definitions and theorems now extend to null

geodesics.
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XXII. METRIC CONNECTIONS

Continue with {M, G} a doubly smooth metric manifold, and with G nondegenerate.

Theorem 1. For each coordinate system X of M let I'(X) = I'y™; (d2! ® do* @ 9/02™), with

1
Ly = 4"t = §[in.k + Gknt — Gkin) 9", (307)

Then

i

ii.

iii

v.

. I' is a connection on M,

the covariant differentiation d associated with I' is torsion free,

i. dG =0,

the autoparallel geodesic paths and curves of d are the geodesic paths and curves of the

metric G, and

. if the doubly smooth path p is a parametrization of the geodesic curve C of G, then p is an
arclength-proportional or pseudo—-arclength-proportional parametrization of C' if and only if
p is affinely parametrized as an autoparallel geodesic path of d, in which case C' is maximal

if and only if p is maximal.

Definition. If d is a covariant differentiation on M, then d is said to be compatible (also to be

consistent) with G if and only if dG = 0. By a metric connection is meant a connection

on a doubly smooth manifold whose associated covariant differentiation is compatible with

some metric on that manifold.

Theorem 2. The covariant differentiation d is compatible with G if and only if dG~! = 0.

Theorem 3. Suppose the covariant differentiation d is compatible with G. If each of v and v is a

differentiable vector field that is covariantly constant with respect to d, and domu Ndomv # &,

then (u,v) . is constant. If p is a differentiable path in M, and each of v and v is a differentiable

vector field on p that is covariantly constant with respect to d, then (u,v) is constant.

The following proposition is referred to as the Fundamental Theorem of Metric Differential

Geometry.

Theorem 4. If T is a skew-symmetric cococontensor field on M, then there is just one covariant

differentiation d on M that is compatible with G and has T for its torsion.

A proof of this theorem proceeds as follows: Suppose that d is such a covariant differentiation. Let

E be a smooth frame system of M, with dual coframe system Q. Then d\w™ = C.™(w! @ WF),

with coefficients C;"; that are skew-symmetric in k& and [. Also, if the torsion T of d is T, then

T —

T" ® e,,, where T™ = T, kml(wl ® wk), with coefficients T;,™; that are skew-symmetric in &

and [. Further, d\w™ = —w," AwF = wFAw,™ = =™y (wl®wk), where w;™ are the 1-forms and

I'.™; the coefficients of d in E. From T = d w™ — d w™ follows that w® A w,™ = dyw™ — T™,



70

which is equivalent to I'y,™ = T};™ — C™, in turn equivalent to
Limt = Timk + 2(Thmi — Cremt), (308)

the index m having been lowered by GG. On the other hand, if d is compatible with G, then from
G =w"® gmpw" follows that

0=dG =dw™ (") ® gmnw" + W™ @ dgmn(-) @ W" + W™ @ grmpdw" () (309)
= —w;" (") ® WP @ grnw” + W™ ® dgmn () @W" — W R gpw"(+) ® Wt (310)
= —w™ QW ® Grnnw” + dgmn @ W™ @ W" — W @ W™ R G (311)
=~k gmn ® W* @ W™ + dgmn @ W™ D W" — W g O W @ W' (312)
= (—wm"Gkn + dgmn — wn'gmi) @ (W™ @ W) (313)
= (—wm"Gkn + dgmn — wn'gim) © (W @ W), (314)

which is equivalent to dgmn = Wmn + Wnm, thus t0 gmniw! = Tpniw! + Tppe!, in turn equivalent

t0 Tyt = —Tpmt + 9mnt, and therefore to

Crim = —Likm + Grtom- (315)
It now follows that
Lkmi = ik + 2(Thmt — Crmt) (316)
= Lok + Gimk + 2(Themi — Crmi) (317)
= —Tgim — 2Tk — Cou) + Gimk + 2Tkt — Crmi) (318)
= Tikm — grtom — 2(Tnik — Crmik) + Gimk + 2(Thmi — Chomi) (319)
= Ikt + 2(Thkem — Cikm) — Gktm — 2(Toike — Cratre) + Gim ke + 2(Thert — Clemt) (320)

= —Timt + 9mkd + 2(Tikm — Ciem) — gkiom — 2Tk — Coik) + Gimke + 2(Thmt — Clomt)
(321)

thus that
2Tkt = gmkd + Gimk — Grtom — 2(Tonik — Coire) + 2(Tikm — Cikm) + 2(Thamt — Cremi) (322)
so that
Chp = [k 1.m] + 2(Thim + Tikm + Temit) — 2(Crim + Cikn + Crmt), (323)
and therefore that

L™ = {1} + Tu™ + Tie™ + Ti™) — (Cu™ + Cu™ + Ci™1), (324)
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where
1
[k 1.m]:= §[gml.k + Gkm.l = Gkim); (325)
and
m nm 1 nm
™} =1k 1.n] g™ = Slgnik + grnit = Grin] g (326)

It is straightforward to show that the I'y™; given by this formula are the coefficients in E of a

covariant differentiation d that is compatible with G’ and has the tensor field T for its torsion.

Note that
Lo™y =™+ Tu™ + Tu™) — (Cu™ + Ci™) (327)
(328)
and
L™y =T™ — C™, (329)

thus that I'y"™; is symmetric in k£ and [ if and only if T}, = C™; and I'y™; = {"™}. If E is
a coordinate frame system, then C3™; = 0. Consequently, I'y""; is symmetric in k and [ in every
coordinate frame system if and only if 7;"; = 0, thus if and only if T = 0. For this reason
metric connections associated with torsion free covariant differentiations are sometimes said to be
symmetric.

The equations dgm,, = Wmn + Wnm and WP A wp™ = dyw™ — T™ provide an algorithm for
calculating the 1-forms wg™ that is useful when the frame system E is chosen so that the g, are
constants, particularly so when F is orthonormal. In that case the matrix [wy™] is the solution of

the matrix equation
W A fwr™] = [daw™ = T™] (= [(Ck™ = Ti™) (W' Awh)]) (330)

that has the symmetries implied by [w,™] = S[G™!] = [wkn][g™™], Where, because Wy, + Wnm =
dgmn = 0, S is a skew-symmetric matrix. Linearity of the lefthand member allows the solution to
be constructed as a sum of partial solutions, one for each of the entries (C},™; — T}, ) (w! A w¥) of

the righthand member.



